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The functionality of phonon-based quantum devices largely depends on the efficiency of interaction
of phonons with other excitations. For phonon frequencies above 20 GHz, generation and detection
of the phonon quanta can be monitored through photons. The photon-phonon interaction can be
enormously strengthened by involving an intermediate resonant quasiparticle, e.g. an exciton, with
which a photon forms a polariton. In this work, we discover a giant photoelasticity of exciton-
polaritons in a short-period superlattice and exploit it for detecting propagating acoustic phonons.
We demonstrate that 42 GHz coherent phonons can be detected with extremely high sensitivity
in the time domain Brillouin oscillations by probing with photons in the spectral vicinity of the
polariton resonance.

Recently coherent acoustic phonons with frequencies
much higher than 1 GHz have been demonstrated to be
prospective in quantum technologies and nanophonon-
ics [1–6] due to their small wavelength which is com-
parable to the size of quantum nanodevices. Single lo-
calized phonon quanta are generated and detected us-
ing suspended nanostructures [1, 7–12] and propagat-
ing coherent phonons are suggested to become a logistic
element in quantum computer networks [13–16]. Co-
herent phonons with frequency higher than 20 GHz can
be excited and detected exclusively using optical tech-
niques exploiting the photon-phonon interaction which
governs the conversion of phonon to photon and vice
versa. Its strength is the key factor determining the ef-
ficiency and energy consumption for interconversion into
coherent phonons. There are already significant achieve-
ments in the efficient generation and detection of local-
ized coherent phonons using non-suspended optomechan-
ical nanoresonators [17–22]. However, for propagat-
ing phonons the sensitivity of optical methods has re-
mained far from being able to count phonon quanta. The
strength of photon-phonon coupling may be increased in
non-cavity nanostructures hosting polariton resonances
and possessing increased photoelasticity. An example is
a short period semiconductor superlattice (SL) [23, 24]
in which excitons and photons form a coupled state [25]
in analogy with the exciton-polaritons in bulk semicon-
ductors [26].

In the present Letter, we perform picosecond pump-
probe experiments, in which we exploit an exciton-
polariton resonance for detection of propagating coher-
ent phonons with frequencies of ∼ 42 GHz. The coherent
phonon wavepacket propagating through a short-period
SL is probed by measuring the reflectivity of picosecond

optical pulses with photon energy in the vicinity of the
polariton resonance. The measurements show that po-
laritons possess giant photoelasticity and provide a three
orders of magnitude higher sensitivity for detection of
propagating coherent phonons than when probing apart
from the polariton resonance. We show that the giant
sensitivity of optical reflection to phonon associated dy-
namical strain owned by the polariton resonance is suf-
ficient for detection of single phonon quanta in pump-
probe setups.

The scheme of the experiment is presented in Fig.1(a).
The studied SL grown on a GaAs substrate consists of
30 periods of GaAs and AlAs layers with thicknesses of
12 and 14.2 nm, respectively. The reflectivity spectrum
R0(ℏω) [solid line in in Fig. 1(b)] clearly shows the polari-
ton resonance centered at ℏω0 = 1.55 eV. A wavepacket
of coherent acoustic phonons is generated using pulsed
optical excitation of the Al film deposited on the sub-
strate backside. The film is excited by the pump laser
pulses from a Ti-Sapphire regenerative amplifier (100-
kHz repetition rate, pulse duration of 200 fs, and cen-
tral photon energy of 1.55 eV). The film expands due
to the optically-induced heating, and a coherent phonon
wavepacket in form of a bipolar strain pulse with ∼ 10 ps
duration and amplitude η0 is injected into the GaAs sub-
strate [27, 28]. The typical simulated temporal profile
for the used experimental scheme and materials [29], is
shown in Fig. 1(c). The strain pulse, η(t, z), propagates
through the GaAs substrate with the velocity of longitu-
dinal sound ν ≈ 4800 m/s. It contains a broad spectrum
of coherent longitudinal acoustic (LA) phonons, which
can be obtained by fast Fourier transform of the strain
temporal profile. For the pulse shown in Fig. 1(c), it
has a maximum at the frequency f ∼ 20 GHz. The ex-
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FIG. 1. (a) Experimental scheme. (b) Reflectivity spectrum
in the vicinity of the polariton resonance (blue curve). The
broadband nonmonotonic background is subtracted. Dashed
red curve shows the spectrum of the spectrally narrow probe
pulse centered at the polariton resonance.(c) Simulated spa-
tial profile of the strain pulse injected into the GaAs substrate
from the Al phonon generator. (d) TDBS signal measured
with the probe pulses of 200-fs duration. Time t = 0 cor-
responds to the arrival of the phonon wavepacket center at
the free surface with SL (z=0). (e) Folded phonon disper-
sion of the studied superlattice (upper panel) and the fast
Fourier transform of the transient reflectivity signal shown in
(d) (lower panel).

periments are performed at temperature T = 5 K and
phonons generated in the Al film reach the SL without
attenuation. The coherent phonons are detected in the
SL by measuring the reflectivity changes ∆R(t) of an op-
tical probe pulse originating from the same laser.

First, we present ∆R(t) measured by the probe pulse
taken straightforward from the laser system. The laser
pulse with duration τpr = 200 has the spectral width of
20 meV, which covers completely the spectrum around
the polariton resonance. The detected transient signal
is shown in Fig. 1(d). It possesses the oscillatory be-
havior that is known as time domain Brillouin scattering
(TDBS) [30–32]. In the time interval -150 ps ≤ t ≤
150 ps, where the oscillations have a large amplitude,
coherent phonons propagate through the SL toward the
free surface, and after reflection at t = 0 ps in the op-
posite direction towards the substrate. The fast Fourier
transform (FFT) of ∆R(t) shown in the lower panel of
Fig. 1(e) demonstrates an intense line at fB = 42 GHz

and low intensity spectral lines with frequencies up to 450
GHz. The FFT spectrum agrees with the selection rule
for TDBS q = 2k1 (q and k1 are the phonon and pho-
ton wave vectors in the SL, respectively) for normal inci-
dence. The corresponding compliance is demonstrated in
Fig.1(e), where the upper panel shows the folded disper-
sion relations in the studied SL [33]. The TDBS signal in
our SL is governed by phonons which frequencies are far
from the SL stop bands. Therefore, phonon localization
effects in the SL [33] will not be considered further.

To study the effect of the SL polariton resonance on the
TDBS signal we extend the duration of the probe pulse
up to τpr = 1.35 ps with a corresponding narrowing of
its spectral width down to 1.4 meV by using a tunable
filter and measure the TDBS signal ∆R(t) for different
central photon energy ℏω. The spectrum of the extended
probe pulse for ℏω = ℏω0 is shown in Fig. 1(b) by the
dashed red line. The value of ℏω is varied in the vicinity
of the polariton resonance between 1.544 and 1.556 eV.
In order to avoid nonlinear exciton effects [34, 35], we
keep the probe fluence on the surface with the SL to less
than 300 nJ/cm2.

Figure 2(a) shows the detected signal for a number of
detuning values ℏω − ℏω0. It is seen that the amplitude
of the oscillations strongly depends on the probe pulse
photon energy. Within the time interval when coherent
phonons propagate in the SL, the measured signal can
be fit with high precision by rising (t < 0) and decay-
ing (t > 0) harmonic oscillations of single frequency, fB,
amplitude, AB, phase, pB, and rise or decay rates, τ−1

B ,
respectively. The dependences of these parameters are
presented by the symbols in Figs. 2(b) and 2(c): open
symbols for phonons propagating toward the free surface
(anti-Stokes) and filled symbols for phonons propagating
in the opposite direction after reflection (Stokes). The
dependences are symmetric for AB and τ−1

B and anti-
symmetric for fB and pB relatively to ℏω0. This leads
us to the conclusion that the TDBS signals and depen-
dences AB, τ

−1
B , fB and pB are governed by the polariton

resonance when probing with ℏω close to ℏω0.

The exciting experimental result is the observation of
the huge amplitude of the TDBS signal. When probing
coherent phonons at the polariton resonance (ℏω = ℏω0),
the relative changes ∆R/R0 are ∼ 10−2 for the used
pump fluence J ∼ 0.1 mJ/cm2. The measurements of
TDBS in a material without a narrow optical resonances
for a similar wavepacket of coherent phonons would give
∆R/R0 ∼ 10−5 [33, 36] which is three orders of magni-
tude smaller than measured for the detection at the po-
lariton resonance in the present work. This result means
that our experiments reveal a giant photoelasticity of po-
laritons and extremely high sensitivity to propagating co-
herent phonons.

For a qualitative description of the detected signals,
we use a simplified model in which the spectral width
of the probe pulse is much smaller than the width of the
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FIG. 2. (a) TDBS signals measured by the spectrally nar-
rowed probe pulses for several ℏω. (b,c) Dependences of the
specific properties of the TDBS signals on the probe photon
energy: amplitude AB (b), frequency fB (c), decay rate τ−1

B

[lower insert in (c)], and a shift of the phase pB relatively to
the signal measured at the resonant conditions [upper insert
in (c)]. Enlarged colored symbols in (b) correspond to the
transient signals shown by the same color in (a). (d,e) Calcu-
lated spectral dependences of the real and imaginary part of
refractive index and their derivatives in the vicinity of the po-
lariton resonance. (f) Spectral-spatial density of phonons in
the coherent phonon wavepacket for J = 0.5 mJ/cm2. Shaded
area shows the spectral range of detected phonons.

polariton resonance (the full theoretical analysis does not
include this assumption). The amplitude of the TDBS
signal, in this simple model, can be estimated from the
following equation [37]:

∆R(t)

R0
= 2Re

i1− r201
r01

dk1
dη

∞∫
0

η(z, t)e2ik1zdz

 (1)

where k1 = 2πñ/λ and ñ and λ are the complex re-
fractive index in the SL and the wavelength of the probe
light in vacuum, respectively, r01 = (1 − ñ)/(1 + ñ) and
η(z, t) = η(z± νt) is the time-spatial profile of the strain
pulse propagating in the SL along z (z = 0 at the free
surface of SL) toward the free surface (+) and backwards
(-). The crucial parameter in Eq. (1) which governs the

sensitivity of detection is the derivative of k1 on strain η
which is defined by the strain dependence of the effective
dielectric function in the SL with the polariton resonance
given by [38]:

εeff(ω) = εb

[
1 +

ωLT

ω0 − ω − iΓ

]
(2)

where εb is the background dielectric constant, ωLT and
Γ are the longitudinal-transverse splitting defined by the
interaction of the excitons with light and the nonradiative
decay rate of the polaritons, respectively. The deforma-
tion potential mechanism is the main one responsible for
the phonon-induced changes of εeff(ω): the strain asso-
ciated with coherent phonons induces the energy shift of
the polariton resonance, i.e. ℏω0 [39]. If this shift is
much smaller than Γ we get

dk1
dη

=
1

2

k1
εeff

Ξ

ℏ
dεeff
dω0

. (3)

where Ξ = −10 eV is the deformation potential for exci-
tons in GaAs [40].
The presented model explains the measured TDBS

signals and dependences presented in Fig. 2(b) and
2(c). The explanation comes from the dependences of
the real (n) and imaginary (κ) parts of the refractive in-
dex ñ =

√
εeff and their derivatives on strain. They are

shown in Figs. 2(d) and 2(e) for the polariton parame-
ters, which fit our experimental data: ℏω0 = 1.550 eV,
ωLT = 0.13 meV and Γ = 0.7 meV. It is seen that at

ℏω = ℏω0 = 1.55 eV,
∣∣∣dndη ∣∣∣ ≈ 4 × 103 possesses an ex-

tremum which results in the maximum for AB(ℏω) [Fig.
2(b)]. Tuning ℏω away from the polariton resonance leads

to the decrease of
∣∣∣dndη ∣∣∣ which obviously leads to the de-

crease of the TDBS signal amplitude observed experi-
mentally. The dependence of fB in Fig. 2(c) qualitatively
follows n(ℏω), in full agreement with the wavevector se-
lection rule q = 2k1 for the phonon-polariton interaction
which governs the TDBS signal. The measured depen-
dence of the rise/decay rate τ−1

B of the TDBS oscillations
shown in the lower inset in Fig. 2(c) is similar to the
dependence κ(ℏω), and the phase of the oscillations pB
changes by π in the vicinity of the polariton resonance
[the upper inset in Fig. 2(c)], following the sign of dκ/dω.
For a quantitative analysis, we developed a comprehen-

sive theoretical approach [41], which takes into account
the spectral width of the probe pulse and the Stokes/anti-
Stokes energy shift of the reflected light. The solid curves
in Figs. 2(b) and 2(c) are the results of calculations for
the parameters given above. Excellent agreement be-
tween the measured and calculated dependences is seen.
Now we turn to the discussion of phonon quantum sen-

sitivity of polaritons. The number of phonons, NB, re-
sponsible for the TDBS is determined by their spectral
density Ñ in the phonon wavepacket around the Brillouin
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frequency fB. It is determined by the spatial-temporal
shape of the generated phonon wavepacket η(z, t). Fig.
2(f) is an example of the phonon spectral density [42] for
the strain pulse shown in Fig. 1(c) with the amplitude
η0 = 3 × 10−5, which corresponds to J = 0.5 mJ/cm2

[36]. The shaded area centered at the frequency fB = 42
GHz indicates the spectral range of phonons detected at
ℏω = ℏω0. The finite spectral width, ∆fB, is due to the
finite size of the SL and the penetration depth of light,
which determines the rise/decay rate of the TDBS sig-
nal. For τ−1

B = 12 ns−1, ∆fB = 4 GHz and the estimated
density of detected phonons NB ≈ 104 µm−2 per pulse.
Figure 3(a) shows the power dependence of the TDBS
amplitude AB(J) measured at ℏω = ℏω0. The minimal
number of detected phonons, which is proportional to J2,
is ≈ 102 µm−2 and corresponds to the pump fluence, at
which the TDBS amplitude exceeds the noise level. The
statistical and fit errors of the measured AB do not ex-
ceed the size of the symbols. In the experiments with
a high repetition rate laser, the sensitivity limit can be
easily lowered to NB ∼ 10−2 µm−2 (AB ∼ 10−5). This
enables the detection of phonon wavepackets with one
phonon quantum at the Brillouin frequency emitted by a
nanodevice, e.g. a semiconductor quantum dot [43, 44].

The experimental results and theoretical considera-
tion presented above concern a small number of coherent
phonons where the phonon-induced shift of the exciton
resonances in the SL quantum wells is negligibly small. In
this regime, the amplitude AB of the TDBS oscillations
depends linearly on J . This consideration is likely not
valid for high pump fluence when the maximum strain
η0 in the coherent phonon wavepacket induces the exci-
ton shift ∆ℏω = η0Ξ by a value comparable to the width
Γ of the polariton resonance. Then dk1

dη given by Eq.

(3) becomes dependent on time and coordinate. Qualita-
tively, at high J the polariton resonance broadens and at
ℏω = ℏω0 the sensitivity to phonons of the Brillouin fre-
quency decreases. Indeed, the dependence AB(J) shown
in Fig. 3(a) saturates at J ≈ 2 mJ/cm2, and a further
increase of J results in a decrease of AB. The measured
dependence perfectly agrees with the theoretical simula-
tions [solid line in Fig. 3(a)] for the strain pulse shape
shown in Fig. 1(c). We have checked that the observed
nonlinearity is not related to nonlinear acoustic effects
[45, 46] which start to become pronounced in our exper-
iment at J > 3 mJ/cm2.
Nonlinear photoelastic effects emerge also in the exper-

imental and theoretical dependences AB(ℏω) for high J
as shown in Figs. 3(b) and 3(c). It is seen that at mod-
erate J = 2 mJ/cm2, and high J = 3 mJ/cm2 fluence
the experimentally measured spectral shape of AB(ℏω)
[Fig. 3(b)] shifts by 1 meV relative to ℏω0 and this
shift has opposite signs for the Stokes and Anti Stokes
signals. The maxima in the theoretical curves [Fig. 3(c)]
also shifts, but the curves are the same for the Stokes
and Anti Stokes cases contrary to the experimental re-
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FIG. 3. (a) Dependence of the TDBS signal amplitude on
the optical excitation density (experimental data, symbols)
and the strain pulse amplitude (theoretical calculations, solid
line). The experiential errors do not exceed the size of the
symbols. The dashed lines indicate the estimated number of
detected phonons per pulse per square micron, NB, for the
corresponding strain amplitudes. (b,c) Measured (b) and cal-
culated (c) dependences of the TDBS signal amplitude on the
probe photon energy for three values of J and η0, respectively.
The dependences are normalized to the values at the maxima.

sults. This difference between experiment and theory
can be explained by the asymmetric temporal shape of
the strain pulse with a predominant compressive com-
ponent [29, 47]. In this case, the phonons propagating
towards the free surface of the SL (Anti Stokes) induce
a blue shift of the exciton resonance. After reflection at
the free surface the tensile component of the strain pulse
becomes dominant inducing a red shift of the exciton res-
onance. In the theoretical simulations this asymmetry
is not included and the calculated dependence AB(ℏω)
demonstrates a spectral shape independent of the phonon
propagation direction.

In conclusion, we have demonstrated the effect of giant
polariton photoelasticity for detecting propagating co-
herent phonons by time domain Brillouin scattering. The
strong dispersion of the permittivity in the visible range
in the vicinity of the polariton resonance results in a huge
ultrafast response of the optical properties to dynamical
strain which accompanies the coherent phonons. We have
developed a quantitative theoretical model which allows
us to predict the absolute values for the optical reflec-
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tivity change induced by the propagating phonons with
Brillouin frequency. We have demonstrated that nonlin-
ear effects for a boosted density of phonon flux suppress
the sensitivity, in full agreement with the deformation
potential model for exciton-phonon interactions used in
treating the observed phenomena.

The frequency of detected phonons in our experiment
is determined by the velocity of sound and the refrac-
tive index of the SL at the probe photon energy, which
is set by the spectral position of the exciton resonance.
Fine-tuning of this value can be realized by adjusting
the widths of the GaAs/AlAs layers, e.g. in a wedge-
shaped SL, while a more significant shift can be achieved
by using alternative combinations of materials, such as
nitrides [48] or II-VI semiconductors [49]. Moreover, the
folded phonon dispersion in the SL extends the spectrum
of detected phonons by discrete values at higher frequen-
cies. Such a discrete spectrum is similar to the sensitivity
spectrum of a superconducting transmon qubit [13], but
for much higher frequencies and wider dynamical range.
In our experiment, the frequency of detected phonons
reaches 0.5 THz [see Fig. 1(e)] despite their extremely
low number for the used excitation densities, and can be
extended further.

The discovery of the giant photoelasticity effect in the
present work paves a way for manipulating phonons on
the quantum level and for widely varying applications
in phononics with extremely low-density phonon fluxes.
The technique could be used for the detection of phonons
emitted from single nanoobjects, like nanoparticles and
nanowires, atomic monolayers (e.g. graphene), quantum
dots, electronic nanodevices in the Coulomb blockade
regime, single photon and phonon emitters, supercon-
ducting tunnel junctions, and other nanoobjects which
emit weak phonon fluxes during operation. Nowadays
phonon imaging is exploited for the nanoscopy of such
delicate nanoobjects as biological cells [50] which can
stand only very low excitation densities. The proposed
technique could be used to measure weak phonon fluxes
reflected from or transmitted through the biological tis-
sue.
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and A. Lemâıtre, Phys. Rev. Lett. 97, 115502 (2006).

[20] N. D. Lanzillotti-Kimura, A. Fainstein, A. Huynh, B.
Perrin, B. Jusserand, A. Miard, and A. Lemâıtre, Phys.
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