Does the morphology of cutaneous melanoma help explain the international differences in survival? Results from 1,578,482 adults diagnosed during 2000-2014 in 59 countries (CONCORD-3)

Veronica Di Carlo, ${ }^{1}$ Charles A. Stiller, ${ }^{2}$ Nora Eisemann, ${ }^{3}$ Andrea Bordoni, ${ }^{4}$ Melissa Matz, ${ }^{1}$ Maria P. Curado, ${ }^{5}$ Laetitia Daubisse-Marliac, ${ }^{6}$ Mikhail Valkov, ${ }^{7}$ Jean-Luc Bulliard, ${ }^{8,9}$ David Morrison, ${ }^{10}$ Chris Johnson, ${ }^{11}$ Fabio Girardi, ${ }^{1,12,13}$ Rafael Marcos-Gragera, ${ }^{14}$ Mario Šekerija, ${ }^{15}$ Siri Larønningen, ${ }^{16}$ Eunice Sirri, ${ }^{17}$ Michel P. Coleman, ${ }^{1}$ Claudia Allemani ${ }^{1}$ and CONCORD Working Group*

1 Cancer Survival Group, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

2 National Cancer Registration and Analysis Service, Public Health England, Wellington House, London SE1 8UG, UK

3 Institute for Social Medicine and Epidemiology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

4 Ticino Cancer Registry, Dipartimento Sanità e Socialità, Divisione della Salute Pubblica, Via Ciseri 10, 6600 Locarno, Switzerland

5 Goiânia Cancer Registry, Group of Epidemiology and Statistics on Cancer, AC Camargo Cancer Center, Rua Tamandaré, 753 - Liberdade, São Paulo - SP, 01525-001, Brazil

6 Tarn Cancer Registry, Institut Universitaire du Cancer Toulouse - Oncopole Institut C. Regaud, 1 Avenue Irène Joliot-Curie, 31059 Toulouse, France

7 Northern State Medical University, Prospekt Troitskiy 51, 163000, Arkhangelsk, Russian Federation

8 Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland

9 Neuchâtel and Jura Tumour Registry, Neuchâtel, Switzerland
${ }^{10}$ Scottish Cancer Registry, Gyle Square, 1 South Gyle Crescent, Edinburgh EH12 9EB, UK
${ }^{11}$ Cancer Data Registry of Idaho, 615 North 7th Street, Boise, ID 83701-1278, USA
${ }^{12}$ Cancer Division, University College London Hospitals NHS Foundation Trust, Euston Rd, London WC1H 8NJ, UK
${ }^{13}$ Division of Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padova, Italy

14 Girona Cancer Registry, Carrer del Sol, 15 1era planta, 17004 Girona, Spain
${ }^{15}$ Croatian National Cancer Registry, Croatian Institute of Public Health, Rockefeller Street 7, 10000 Zagreb, Croatia
${ }^{16}$ Cancer Registry of Norway, Ullernchausseen 64, 0379 Oslo, Norway

1
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/bjd. 21274

This article is protected by copyright. All rights reserved.
${ }^{17}$ Epidemiological Cancer Registry of Lower Saxony, Offis Caree GmbH, Industriestr 9, 26121 Oldenburg, Germany

Corresponding author: Veronica Di Carlo
Email: veronica.dicarlo@Ishtm.ac.uk

Funding sources: This project was supported by the American Cancer Society, Centers for Disease Control and Prevention, Swiss Re, Swiss Cancer Research Foundation, Swiss Cancer League, Institut National du Cancer, La Ligue Contre le Cancer, Rossy Family Foundation, US National Cancer Institute, and the Susan G. Komen Foundation.

Conflicts of interest: The authors declare they have no conflicts of interest.
Data availability: These data are provided to us by more than 300 cancer registries worldwide. We hold the data in trust from each of the participating registries to perform the analyses agreed in the protocol. The protocol prohibits us from other analyses and from sharing the raw data with other parties without express approval from the participating cancer registries.

Ethics approval: This study contains the results of secondary analysis of sensitive personal data, carried out with statutory approval from the Health Research Authority and ethical approval from the NHS Research Ethics Service

What's already known about this topic?

The histopathologic features of cutaneous melanoma vary markedly world-wide. The proportion of melanomas with the more aggressive acral lentiginous or nodular histologic subtypes is higher in populations with predominantly dark skin than in those with predominantly fair skin. We set out to assess the extent to which these differences in morphology may explain international variation in survival from melanoma of the skin when all histologic sub-types are combined, as is usually the case.

What does this study add?

The study provides, for the first time, international comparisons of population-based survival at five years for the main histologic sub-types of melanoma for over 1.5 million adults diagnosed during 2000-2014. It highlights the less favourable distribution of histologic subtypes in Asia and Central and South America, and the poorer prognosis for nodular and acral lentiginous melanomas. We found that later stage at diagnosis does not fully explain the higher excess risk of death for nodular and acral lentiginous melanoma than for superficial spreading melanoma.

Summary

Background

CONCORD-3 highlighted wide disparities in population-based 5-year net survival during 2000 2014. Clinical evidence suggests marked international differences in the proportion of lethal acral and nodular subtypes.

Objectives

We aim to assess whether the differences in morphology may explain global variation in survival.

Methods

We grouped melanoma into seven morphology categories: malignant melanoma, not otherwise specified (ICD-O-3 morphology code 8720), superficial spreading melanoma (8743), lentigo maligna melanoma (8742), nodular melanoma (8721), acral lentiginous melanoma (8744), desmoplastic melanoma (8745) and other morphologies (8722-8723, 87268727, 8730, 8740-8741, 8746, 8761, 8770-8774, 8780).

We estimated net survival with the non-parametric Pohar-Perme estimator, correcting for background mortality by single year of age, sex and calendar year in each country or region. All-ages survival estimates were standardised with the International Cancer Survival Standard weights. We fitted a flexible parametric model to estimate the effect of morphology on the hazard of death.

Results

Worldwide, the proportion of nodular melanoma ranged between $7 \%-13 \%$. Acral lentiginous melanoma accounted for less than 2\% of all registrations but was more common in Asia (6\%) and Central and South America (7\%). 36\% of tumours were classified as superficial spreading melanoma.

During 2010-2014, age-standardised 5-year net survival for superficial spreading melanoma was 95% or higher in Oceania, North America and most European countries, but only 71% in Taiwan. Survival for acral lentiginous melanoma ranged between 66\%-95\%. Nodular melanoma had the poorest prognosis everywhere.

The multivariable analysis of data from registries with complete information on stage and morphology found that sex, age and stage at diagnosis only partially explain the higher risk of death for nodular and acral lentiginous subtypes.

Conclusions

This study provides the broadest picture of distribution and population-based survival trends for the main morphological sub-types of cutaneous melanoma in 59 countries. The poorer prognosis for nodular and acral lentiginous melanomas, more frequent in Asia and Latin America, suggests the need for health policies aimed at specific populations to improve awareness, early diagnosis and access to treatment.

Introduction

The incidence of cutaneous melanoma has been rising steadily in most populations of Caucasian origin over the past 50 years. ${ }^{1,2}$ It is now one of the 10 most common malignancies in Oceania, North America and Europe, with age-standardised incidence rates in the range 7.0 to 36.6 per 100,000 person-years. By contrast, melanoma is rare in populations of Asian and African origin, where incidence rates are in the range $0.4-3.0 .^{3}$

The histopathologic features of cutaneous melanoma vary markedly world-wide. The proportion of melanomas with the more aggressive acral lentiginous or nodular histologic types is higher in populations with predominantly dark skin than in those with predominantly fair skin. ${ }^{4,5}$

The third cycle of the CONCORD programme for the global surveillance of cancer survival (CONCORD-3) ${ }^{6}$ highlighted wide disparities in 5-year net survival from cutaneous melanoma, which was lower in Asian populations than in the rest of the world. Age-standardised 5-year net survival for adults (15-99 years) diagnosed during 2010-2014 was 90% or higher in the US, Australia, New Zealand and most Nordic countries, but 60% or lower in Ecuador, China, Korea, Singapore and Taiwan

Stage at diagnosis is recognised as the most important predictor of survival. ${ }^{7-10}$ Age at diagnosis is also a prognostic factor, and several studies have shown much higher survival for younger patients. ${ }^{11-15}$

The prognostic role of morphology in cutaneous melanoma is controversial, however. Traditionally, melanomas of the skin have been classified into three fairly well-defined subgroups, characterised by different patterns of growth: superficial spreading and lentigo maligna melanoma, which is characterised by a long period of superficial growth; nodular melanoma, which is more likely to penetrate into the deeper layers of the skin if not removed, and acral lentiginous melanoma, which mostly develops on the extremities but displays similar biological behaviour to that of nodular melanoma. ${ }^{16}$ Despite the advent of high-resolution genomics and other proposed approaches for the classification of melanocytic tumours, the diagnosis of the different subtypes should continue to be based on the pathologist's interpretation of the histology and how it fits into the WHO Classification of Tumours, commonly known as the WHO `Blue Books'. ${ }^{17}$

However, the morphology classification has not been considered useful for prognostic purposes, because of the idea that the clinical development of all melanomas is similar, whatever the histologic subtype, spreading horizontally within the epidermis and then extending vertically into the dermis, and that they converge in their biologic behaviour once they metastasise. ${ }^{18}$

In this study, we aimed to describe the histologic distribution of cutaneous melanoma in 59 countries that contributed data to CONCORD-3, for adults diagnosed during 2000-2014, and to produce the first international comparison of trends in population-based age-standardised 5 -year net survival by morphology sub-type. We also aimed to examine the role of morphology sub-type on the prognosis of cutaneous melanoma.

Materials and Methods

Anonymised individual tumour registrations for patients diagnosed during 2000-2014 with one of 18 cancers or groups of malignancies, including melanoma, were provided for CONCORD3 by 322 population-based cancer registries in 71 countries worldwide. Patients were followed
up for their vital status to 31 December 2014. Data acquisition, ethical approval and data quality control have been described elsewhere. ${ }^{6}$

We asked participating registries to submit all registrations for malignant melanoma, regardless of anatomic site. Melanoma was defined by morphology codes in the range 87208790 in the International Classification of Diseases for Oncology, third revision [ICD-O-3]. ${ }^{19}$ We focused this analysis of survival on melanomas arising in the skin (ICD-O-3 topography C44.0-C44.9), including the skin of the labia majora (C51.0), vulva (C51.9), penis (C60.9) and scrotum (C63.2). Survival from melanomas arising in internal organs and in the eye will be examined in a subsequent analysis. To facilitate quality control and comparison of the intensity of early diagnostic and screening activity, we requested all melanoma registrations, regardless of behaviour, whether benign (behaviour code 0), uncertain (1), in situ (2) or invasive (3) However, survival analyses included only primary, invasive melanomas.

Records with incomplete data, or of tumours that were benign, in situ, of uncertain behaviour, metastatic from another organ, or unknown if primary or metastatic, or for patients with age outside the range 15-99 years, were not included in survival analyses. We excluded tumours registered only from a death certificate or discovered at autopsy, since their survival is unknown, as well as records for which the sex or vital status was unknown, and those with an invalid date or sequence of dates.

Patients were grouped into seven morphology categories with the ICD-O-3 classification: malignant melanoma, not otherwise specified (NOS; morphology code 8720), superficial spreading melanoma (8743), lentigo maligna melanoma (8742), nodular melanoma (8721), acral lentiginous melanoma (8744), desmoplastic melanoma (8745) and other morphologies (8722-8723, 8726-8727, 8730, 8740-8741, 8746, 8761, 8770-8774, 8780).

Patients were grouped by calendar period of diagnosis: 2000-2004, 2005-2009, 2010-2014 We examined time trends in the morphology distribution in each country. We also estimated trends in age-standardised 5 -year net survival by country and morphology with the nonparametric Pohar Perme estimator, ${ }^{20}$ using the STATA ${ }^{21}$ command stns. ${ }^{22}$ The cohort approach was used for patients diagnosed during 2000-2004 and 2005-2009, because they had all been followed up for at least five years. We used the period approach ${ }^{23}$ to estimate survival for patients diagnosed during 2010-2014, because 5 years of follow-up for vital status were not available for all patients by 31 December 2014.

To control for wide differences in background mortality between geographical areas, men and women, and over time, we constructed life tables of all-cause mortality in the general population for each country or registry by single year of age, sex, calendar year and, where possible, by race/ethnicity (Israel, Singapore, United States, Australian Northern Territory, and New Zealand).

We estimated five-year net survival by morphology in each of five age groups (15-44, 45-54, $55-64,65-74$ and 75-99 years). We obtained age-standardised estimates for all age-groups combined using the International Cancer Survival Standard type 2 weights for the five age groups $(0.28,0.17,0.21,0.20$ and 0.14$) .{ }^{24}$ We did not estimate survival if fewer than ten patients were available for analysis in a given combination of morphology group and calendar period. If 10-49 patients were available in a given calendar period, we only estimated survival for all ages combined. If 50 or more patients were diagnosed in 2000-2004 and in 2005-2009, we attempted survival estimation for each age group in each calendar period. For 2010-2014, we estimated net survival using the period approach, including in the analyses all patients diagnosed during the 5 years 2010-2014, plus those diagnosed before 2010 who were still alive at the beginning of 2010. Therefore, for 2010-2014 the threshold of 50 or more patients for attempting age-standardisation applies to the combined cohort of patients. If a single age-
specific estimate could not be obtained, we merged the data for adjacent age groups and assigned the combined estimate to both age groups before standardisation for age. If two or more age-specific estimates could not be obtained, we present only the unstandardised estimate for all ages combined. The pooled estimates for countries with more than one registry do not include data from registries for which the estimates were less reliable. Less reliable estimates are shown with a flag (§) in Table 2 when they are the only available information from a given country or territory (see footnote in Table 2 for the definition of less reliable estimates). We comment in the text only on reliable, age-standardised survival estimates. Continental regions were defined using the United Nations Geoscheme. ${ }^{25}$

To estimate the effect of morphology on the hazard of death due to melanoma, we fitted a flexible parametric model on the \log cumulative hazard scale, using stpm2 2^{26} in STATA. We restricted this analysis to registries where at least 65% of registrations had a specific morphology code, i.e. not malignant melanoma, NOS. Among these registries, we further selected those for which data on stage were available for at least 75\% of registrations in one of the following classifications: UICC Tumour-Node-Metastasis staging system, $7^{\text {th }}$ edition, ${ }^{27}$ Condensed TNM, ${ }^{28}$ or SEER Summary Stage $2000 .{ }^{29}$ With this constraint, we were able to include data from one regional cancer registry in Germany (Lower Saxony), two registries in Spain (Basque Country and Granada) and the Norwegian national cancer registry.

For each country, we first fitted a model with only morphology as a covariable (model 1). We then included, as additional covariables, sex, a restricted cubic spline for the effect of age at diagnosis (4 degrees of freedom) and stage at diagnosis (metastatic vs. non metastatic) (model 2). We excluded patients for which stage at diagnosis was unknown (complete case analysis)

Results

We obtained data from 284 registries in 59 countries on 2,303,095 adults who were diagnosed with melanoma during 2000-2014 (Table 1). Among these, 49\% were diagnosed in North America, 37% in Europe, 12% in Oceania, and only 2% in Asia and less than 1% in both Africa and in Central and South America.

We excluded from survival analysis 637,957 patients (28\%) who were diagnosed with an in situ tumour, ranging from 11% in Central and South America to 35% in North America. The proportion of in situ melanoma was 20% or higher in 10 countries (Table 1), suggesting a highly effective approach to early diagnosis. We additionally excluded 78,587 patients for other reasons (see footnote in Table 1). The proportion of melanomas of benign or uncertain behaviour was particularly high in Norway (22\%), highlighting intensive activity of monitoring atypical naevi and pre-malignant lesions.

Of the $1,586,551$ eligible patients, we further excluded 7,139 patients (0.5%) who were diagnosed only from a death certificate or discovered at autopsy and 930 patients (less than 0.1%) for other reasons. Finally, $1,578,482$ patients diagnosed with a primary, invasive melanoma of the skin were available for survival analysis (99.5% of those eligible). More than 99% of these tumours were microscopically confirmed, either cytologically or histologically.

About 42% of the tumours were registered as malignant melanoma, NOS. The proportion was generally high in countries in Asia (76\%), Central and South America (63\%), North America (51\%) and Africa (46\%) and much lower in Oceania (33\%). In Europe, the proportion of melanomas with a non-specific morphology was higher in Eastern European countries (57\%) than in Southern (37%), Northern (32%) and Western European countries (27%). The proportion of melanomas diagnosed with a non-specific morphology fell substantially in Australia (from 40\% in 2000-2004 to 26\% in 2010-2014), Denmark (from 42\% to 11\%), Iceland
(from 36% to 18%), Italy (from 32\% to 19\%), Lithuania (from 85\% to 35\%), Portugal (from 70% to 35%) and the United Kingdom (from 39\% to 23\%) (Table A1).

Overall, superficial spreading melanoma was the second most common histology (36% of all cases). It accounted for more than half the patients in Denmark, France, Iceland, the Netherlands, Norway, Sweden and Switzerland (Figure 1). Nodular melanoma accounted for 7\% of all cases in North America and Asia, 9\% in Oceania and 13\% in Central and South America. In Europe, 12% of the cases were registered as nodular melanoma, with higher proportions in Czech Republic, Ireland, Norway, Romania, Slovakia and Sweden. About 6\% of adults were diagnosed with lentigo maligna melanoma, ranging from 2\% in Asia to 8% in Oceania. Acral lentiginous melanoma was very rare in North America, Europe and Oceania (less than 2\% of all cases) but the proportion was higher in Central and South America (more than 10\% in Colombia, Costa Rica, Guadeloupe and Martinique) and Asia (more than 10\% in Korea, Singapore and Taiwan). Desmoplastic melanoma represented less than 1\% of the patients. The proportion of patients diagnosed with other morphologies was higher than 20% in Estonia, Italy and Latvia.

Malignant melanoma, not otherwise specified
Age-standardised 5 -year net survival varied widely between world regions (Table 2). It was in the range $85-89 \%$ in Oceania and North America during 2010-2014. It was higher than 80% in all Western European countries and ranged from 54% to 79% in Eastern Europe. In Central and South America, age-standardised 5-year net survival ranged from 57\% in Ecuador to 76\% in Costa Rica and Puerto Rico. Five-year survival was lower than 70% in all Asian countries except Israel (88%), and as low as 47% in Taiwan.

Five-year survival increased between 2000-04 and 2010-14 by 10\% or more in China (from 36 to 48%), Bulgaria (from 52 to 62%), Croatia (from 66 to 77%) and Estonia (from 71 to 83%).

Superficial spreading melanoma

Age-standardised 5-year net survival for patients diagnosed during 2010-2014 was 90% or higher in North America, Oceania and almost all European countries; survival was lower than 90% only in Slovakia, Poland, Lithuania, Portugal and Bulgaria. In Asia, survival ranged from 71% in Taiwan to 98% in Israel (Figure 2).

Lentigo maligna melanoma

This sub-type of melanoma had the most favourable prognosis: age-standardised 5-year net survival was close to 100% in North America, Australia and most European countries. Estimates were not available for most countries in Central and South America and Asia because of the small numbers of patients diagnosed with this specific sub-type.

Nodular melanoma

The prognosis for nodular melanoma was the poorest in all continents. Age-standardised 5year net survival for patients diagnosed during 2010-2014 reached 72\% in Canada and United States, 77% in New Zealand and 80% in Australia. In Central and South America, it ranged from 58\% in Costa Rica to 72\% in Argentina, and in Europe, from 58\% in Poland to 80\% in Ireland. Survival improved dramatically in Bulgaria (from 46\% in 2000-2004 to 64\% in 20102014) and in Portugal (from 59\% to 76\%).

Acral lentiginous melanoma

Five-year net survival for adults diagnosed during 2010-2014 was in the range 77-82\% in North America and Oceania and 70-95\% in Europe. Most of the estimates for countries in Asia and Central and South America were not age-standardised because of the small numbers of patients available for survival analysis.

Five-year net survival for adults diagnosed with desmoplastic melanoma during 2010-2014 ranged between 76% and 91%. Estimates were not available for Central and South America or for most countries in Asia because of the small numbers of patients available for analysis.

With the excess hazard of death for patients with superficial spreading melanoma taken as the reference category, the excess hazard ratio for patients diagnosed with nodular melanoma was 21.8 ($95 \% \mathrm{Cl} 14.7-32.3$) in Germany, 12.1 (8.1-18.1) in Spain and 6.7 (5.7-7.9) in Norway (Table 3). The excess hazard ratios were lower after controlling for sex, age and stage at diagnosis, but the excess hazard of death for patients with nodular melanoma was still 13.5 (9.6-18.9) times higher in Germany, 6.7 (4.8-9.3) times higher in Spain and 4.1 (3.6-4.8) times higher in Norway, than for patients in the same country diagnosed with superficial spreading melanoma.

The excess hazard ratio for patients diagnosed with acral lentiginous melanoma vs. superficial spreading melanoma was 15.2 (9.0-25.5), 9.0 (5.2-15.5) and 1.7 (0.5-5.1) in Germany, Spain, and Norway, respectively. After controlling for sex, age and stage at diagnosis, the excess hazard of death for patients with acral lentiginous melanoma was still 10.8-fold (6.8-17.1) in Germany, 5.0 -fold (3.1-8.1) in Spain and 2.2-fold (1.0-4.9) higher in Norway, than in patients diagnosed with superficial spreading melanoma.

Discussion

This study of over 1.5 million adults diagnosed with cutaneous melanoma world-wide during 2000-2014 has highlighted wide international differences in the distribution of histologic subtypes as well as in survival by sub-type. The prognosis is poorest everywhere for nodular and acral lentiginous melanoma.

The prognostic role of the morphology of cutaneous melanomas is controversial. Clinical guidelines indicate that stage at diagnosis is the most important prognostic factor. The prevalent idea is that melanomas of different morphologies converge in their biologic behaviour once they metastasize, ${ }^{30}$ so the recommended treatment options do not differ between morphological sub-types at a given stage at diagnosis. Clinical guidelines even indicate that the histologic sub-type is only an optional item for inclusion in pathology reports. ${ }^{31}$

Probably for this reason, the primary histologic sub-types of melanoma are often poorly specified, if at all, in pathology reports. ${ }^{11,14}$ In turn, this determines the high proportion of melanomas that are coded as "malignant melanoma, not otherwise specified (NOS)" in cancer registry data. ${ }^{13}$ In this global study, 43% of melanomas were registered as malignant melanoma NOS. The proportion varied widely, and was higher in Asia, Central and South America and Eastern Europe, as has been shown elsewhere. ${ }^{13,32}$ However, our study shows that the proportion of melanomas with poorly specified morphology has fallen in most countries over the last 15 years, suggesting improvements in pathological practice. ${ }^{33}$

Overall, superficial spreading melanoma was the most frequent of the specific morphologies, and the proportion has been increasing over time. It is generally associated with an excellent prognosis in Europe, North America and Oceania, as has been shown in previous studies. ${ }^{13,14,30,34}$ Several international studies have shown an increasing incidence of thinner melanomas (1 mm or less), ${ }^{15,35-41}$ as a result of raised public awareness and earlier detection, especially for superficial spreading melanomas. The result is an increasing number of people
with melanoma who are less likely to die because of their tumours. This phenomenon may help explain the improvement in the already high 5 -year net survival from superficial spreading melanoma.

Acral lentiginous melanoma represented less 1\% of the patients in Europe, North America and Oceania, but almost 6\% of the patients in Asia and 7\% in Central and South America. Very few studies have focused on survival from cutaneous melanoma in Asia and Central and South America, perhaps because the overall incidence is much lower than in fairer-skinned populations. In Singapore, acral lentiginous melanoma accounted for 16% of all cases diagnosed during 2008-2017.42 In a study of 915 patients diagnosed during 1997-2011 in Brazil, the acral sub-type accounted for 7% of all cases and that 5 -year cause-specific survival was much lower (51%) than for superficial spreading melanoma (82%). ${ }^{43}$ A study of 142 patients in China confirmed the poor prognosis for patients with acral lentiginous melanoma; 5 -year cause-specific survival was $53 \% .{ }^{44}$ By contrast, an analysis of 252 patients diagnosed in a single institution in Japan during 2001-2014 showed no difference between 5 -year survival for acral and non-acral lentiginous subtypes (59% vs. 62% in men and 71% vs. 85% in women), ${ }^{45}$ although the numbers of patients were too small to derive definitive conclusions.

Our study found that age-standardised five-year net survival for acral lentiginous melanoma was generally lower than for other morphologies, with the only exception of nodular melanoma, and globally in the range 66-95\%. The poorer prognosis for acral lentiginous melanoma, which usually develops on the palms, the sole of the foot or underneath the nails, is commonly ascribed to delayed diagnosis, because these areas are not routinely examined by patients or primary care physicians. ${ }^{46}$ Moreover, the proportion of the acral sub-type is higher in Blacks than Caucasians; ${ }^{47}$ but because the risk of melanoma in black populations is perceived to be low, the lack of secondary prevention is also considered a major cause of late diagnosis. ${ }^{48,49}$

Nodular melanoma had the poorest prognosis in all countries, as has been reported elsewhere. ${ }^{50-52}$ Forty years ago, a multivariable analysis of 339 patients diagnosed in a single institution in the US during 1960-1977 found that the increased risk associated with nodular histology was confounded by an increase in thickness and ulceration; in other words, the higher risk of death was due to more advanced stage at diagnosis, not intrinsic to the morphologic sub-type. ${ }^{53}$ On the basis of this conclusion from a small study, the American Joint Committee on Cancer did not include histologic sub-type in the cutaneous melanoma staging system, because it was not considered to be a significant prognostic factor. ${ }^{54}$ Thirty years later, however, a very large population-based study of 118,508 patients diagnosed in the US with superficial spreading or nodular melanoma during 1973-2012 showed that morphology is in fact an independent predictor of survival. ${ }^{30}$ After controlling for thickness, ulceration, mitotic index and stage at diagnosis, nodular sub-type remained an independent risk factor for death from melanoma (HR $1.55,95 \% \mathrm{CI} 1.41$ to 1.70). Another population-based study of 82,901 patients diagnosed in Germany during 1997-2013 showed that differences in 5-year survival by histologic subtype were partially explained by tumour size. ${ }^{55}$

Our population-based study confirms these findings. The multivariable analysis of data from four population-based registries with complete information on stage and morphology highlights a much higher excess risk of death with nodular or acral lentiginous melanoma than for superficial spreading melanoma, after controlling for major confounders. Sex, age and stage at diagnosis only partially explain the higher risk of death for nodular and acral lentiginous subtypes. The different magnitude of the excess hazard ratios in Germany, Spain and Norway may be due to the low baseline hazard for superficial spreading melanoma in Germany, where national skin cancer screening for people aged 35 years or more with health insurance was introduced in 2008. This may have improved early detection of the generally slow-growing, less aggressive superficial spreading melanomas. ${ }^{55}$

Our study has also shown that while five-year survival from cutaneous melanoma in Eastern Europe has been increasing in recent years, survival continues to lag behind the rest of Europe for each morphologic sub-type of melanoma. A study of seven common malignancies diagnosed in Europe during 2000-2007 found that late stage at diagnosis alone did not explain the lower survival for melanoma of the skin in Eastern Europe. ${ }^{56}$ In the current study, data on stage at diagnosis in Eastern European countries were only available for Russia and Slovakia, where the proportion of metastatic disease (6% and 7%) was higher than in Norway (2%) and Denmark (3\%) (data not shown). More detailed information on morphology would have helped investigate the reasons for the persistent gap in survival.

The high proportion of melanomas registered with poorly specified morphology was the major limitation of our study, because it limited the interpretation of net survival estimates for melanomas with specific morphological sub-types in all countries. Information on stage at diagnosis was also limited; complete data could have contributed disentangling the prognostic role of morphology at international level. Additionally, we were not able to control for surgical margins, a relevant prognostic factor, because these data were not available.

Our study is the largest analysis to date of survival from cutaneous melanoma. It provides, for the first time, international comparisons of population-based survival for the main histologic sub-types of melanoma in more than 50 countries. The higher frequency and poorer survival of nodular acral lentiginous melanomas in Asia and in Central and South America suggest the need for health policies in these populations that are designed to improve public awareness, and especially to facilitate earlier diagnosis and prompt access to optimal treatment.

References

1. van der Esch EP, Muir CS, Nectoux J, et al. Temporal change in diagnostic criteria as a cause of the increase of malignant melanoma over time is unlikely. Int J Cancer 1991; 47: 483-90.
2. Coleman MP, Estève J, Damiecki P, Arslan A, Renard H. Trends in cancer incidence and mortality. Lyon: International Agency for Research on Cancer; 1993.
3. International Agency for Research and Cancer. Cancer Incidence in Five Continents, Vol. XI.

Lyon, France; 2017.
4. Chen YJ, Wu CY, Chen JT, Shen JL, Chen CC, Wang HC. Clinicopathologic analysis of malignant melanoma in Taiwan. J Am Acad Dermatol 1999; 41: 945-9.
5. Ishihara K, Saida T, Otsuka F, Yamazaki N, The Prognosis Statistical Investigation Committee of the Japanese Skin Cancer S. Statistical profiles of malignant melanoma and other skin cancers in Japan: 2007 update. Int J Clin Oncol 2008; 13: 33-41.
6. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 200014 (CONCORD-3): analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018; 391: 1023-75. 7. Schoffer O, Schülein S, Arand G, et al. Tumour stage distribution and survival of malignant melanoma in Germany 2002-2011. BMC Cancer 2016; 16(1): 936-48.
8. Rockberg J, Amelio JM, Taylor A, Jörgensen L, Ragnhammar P, Hansson J. Epidemiology of cutaneous melanoma in Sweden. Stage-specific survival and rate of recurrence. Int J Cancer 2016; 139: 2722-9.
9. Xing Y, Chang GJ, Hu CY, et al. Conditional survival estimates improve over time for patients with advanced melanoma: results from a population-based analysis. Cancer 2010; 116: 2234-41. 10. Kemeny MM, Busch E, Stewart AK, Menck HR. Superior survival of young women with malignant melanoma. Am J Surg 1998; 175: 437-44.
11. Galceran J, Uhry Z, Marcos-Gragera R, et al. Trends in net survival from skin malignant melanoma in six European Latin countries: Results from the SUDCAN population-based study. Eur J Cancer Prev 2017; 26: S77-S84.
12. Enninga EAL, Moser JC, Weaver AL, et al. Survival of cutaneous melanoma based on sex, age, and stage in the United States, 1992-2011. Cancer Med 2017; 6: 2203-12.
13. Crocetti E, Mallone S, Robsahm TE, et al. Survival of patients with skin melanoma in Europe increases further: Results of the EUROCARE-5 study. Eur J Cancer 2015; 51: 2179-90.
14. Pollack LA, Li J, Berkowitz Z, et al. Melanoma survival in the United States, 1992 to 2005. J Am Acad Dermatol 2011; 65: S78-86.
15. Downing A, Yu XQ, Newton-Bishop J, Forman D. Trends in prognostic factors and survival from cutaneous melanoma in Yorkshire, UK and New South Wales, Australia between 1993 and 2003. Int J Cancer 2008; 123: 861-6.
16. Clark WH, From L, Bernardino EA, Mihm Jr MC. The histogenesis and biologic behaviour of primary human malignant melanomas of the skin. Cancer Research 1969; 29: 705-26.
17. Elder DE, Massi D, Scolyer RA, Willemze R. WHO Classification of Skin Tumours. 4th ed; 2018
18. Ackerman AB, David KM. A unifying concept of malignant melanoma: biologic aspects. Hum Pathol 1986; 17: 438-40.
19. Fritz A, Percy C, Jack A, et al. International classification of diseases for oncology (ICD-O) first revision of 3rd edition. Geneva: World Health Organization; 2013.
20. Pohar Perme M, Stare J, Estève J. On estimation in relative survival. Biometrics 2012; 68:
113-20.
21. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC.; 2017.
22. Clerc-Urmès I, Grzebyk M, Hedelin G. Net survival estimation with stns. Stata Journal 2014; 14: 87-102.
23. Brenner H, Gefeller O. An alternative approach to monitoring cancer patient survival. Cancer 1996; 78: 2004-10.
24. Corazziari I, Quinn M, Capocaccia R. Standard cancer patient population for age standardising survival ratios. Eur J Cancer 2004; 40: 2307-16.
25. United Nations Statistic Division. Methodology; standard countries or area codes for statistical use (M49). 2022. https://unstats.un.org/unsd/methodology/m49/ (accessed 11 Feb 2022). 26. Lambert PC, Royston P. Further development of flexible parametric models for survival analysis. The Stata Journal 2009; 9: 165-90.
27. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010; 17: 1471-4.
28. Berrino F, Brown M, Moller C, Sobin L. ENCR recommendation: Condensed TNM for Coding the Extent of Disease. Lyon: Europen Network of Cancer Registries; 2002.
29. Young JL, Roffers SD, Ries LAG, Fritz AG, Hurlbut AA. SEER Summary Staging Manual-2000: codes and coding instructions; 2001.
30. Lattanzi M, Lee Y, Simpson D, et al. Primary melanoma histologic subtype: impact on survival and response to therapy. J Nat/ Cancer Inst 2019; 111: 180-8.
31. Swetter SM, Tsao H, Bichakjian CK, et al. Guidelines of care for the management of primary cutaneous melanoma. J Am Acad Dermatol 2019; 80: 208-50.
32. de Vries E, Sierra M, Pineros M, Loria D, Forman D. The burden of cutaneous melanoma and status of preventive measures in Central and South America. Cancer epidemiol 2016; 44: 100-9. 33. Barbarić J, Coebergh JW, Šekerija M. Completeness of Data on Malignant Melanoma Skin Sites and Morphology in the Croatian National Cancer Registry 2000-2014: An Overview of Recent Progress. Acta Dermatovenerol Croat 2017; 25: 285-91.
34. Green AC, Baade P, Coory M, Aitken JF, Smithers M. Population-based 20-year survival among people diagnosed with thin melanomas in Queensland, Australia. J Clin Oncol 2012; 30: 14627.
35. Baade P, Meng X, Youlden D, Aitken J, Youl P. Time trends and latitudinal differences in melanoma thickness distribution in Australia, 1990-2006. Int J Cancer 2012; 130: 170-8. 36. Montella A, Gavin A, Middleton R, Autier P, Boniol M. Cutaneous melanoma mortality starting to change: a study of trends in Northern Ireland. Eur J Cancer 2009; 45: 2360-6.
Lyth J, Eriksson H, Hansson J, et al. Trends in cutaneous malignant melanoma in Sweden 1997-2011: thinner tumours and improved survival among men. Br J Dermatol 2015; 172: 700-6. 38. Armstrong A, Powell C, Powell R, et al. Are we seeing the effects of public awareness campaigns? A 10-year analysis of Breslow thickness at presentation of malignant melanoma in the South West of England. Journal of Plastic, Reconstructive \& Aesthetic Surgery 2014; 67: 324-30. 39. Sacchetto L, Zanetti R, Comber H, et al. Trends in incidence of thick, thin and in situ melanoma in Europe. Eur J Cancer 2018; 92: 108-18.
40. Shaikh WR, Dusza SW, Weinstock MA, Oliveria SA, Geller AC, Halpern AC. Melanoma thickness and survival trends in the United States, 1989 to 2009. J Natl Cancer Inst 2016; 108. 41. Rubio-Casadevall J, Puig-Vives M, Puigdemont M, et al. Patterns of increased incidence and survival of cutaneous melanoma in Girona (Spain) 1994-2013: a population-based study. Clinical and Translational Oncology 2018: 1-9.
42. Singapore Cancer Registry. 50 years of cancer registration (1968-2017). Singapore; 2019. 43. Vazquez V L, Silva TB, Vieira Mde A, et al. Melanoma characteristics in Brazil: demographics, treatment, and survival analysis. BMC Res Notes 2015; 8: 4.
44. Lv J, Dai B, Kong Y, Shen X, Kong J. Acral melanoma in Chinese: a clinicopathological and prognostic study of 142 cases. Sci 2016; 6: 31432.
45. Wada M, Ito T, Tsuji G, et al. Acral lentiginous melanoma versus other melanoma: A singlecenter analysis in Japan. J Dermatol 2017; 44: 932-8.
46. Albreski D, Sloan SB. Melanoma of the feet: misdiagnosed and misunderstood. Clin Dermatol 2009; 27: 556-63.
47. Bradford PT, Goldstein AM, McMaster ML, Tucker MA. Acral lentiginous melanoma: incidence and survival patterns in the United States, 1986-2005. Arch Dermatol 2009; 145: 427-34. 48. Kundu RV, Kamaria M, Ortiz S, West DP, Rademaker AW, Robinson JK. Effectiveness of a knowledge-based intervention for melanoma among those with ethnic skin. J Am Acad Dermatol 2010; 62: 777-84.
49. Byrd KM, Wilson DC, Hoyler SS, Peck GL. Advanced presentation of melanoma in African Americans. J Am Acad Dermatol 2004; 50: 21-4.
50. Mahendraraj K, Sidhu K, Lau CS, McRoy GJ, Chamberlain RS, Smith FO. Malignant melanoma in African-Americans: a population-based clinical outcomes study involving 1106 African-American patients from the Surveillance, Epidemiology, and End Results (SEER) Database (1988-2011). Medicine 2017; 96: e6258.
51. Shaikh WR, Xiong M, Weinstock MA. The contribution of nodular subtype to melanoma mortality in the United States, 1978 to 2007. Arch Dermatol 2012; 148: 30-6.
52. Mar V, Roberts H, Wolfe R, English DR, Kelly JW. Nodular melanoma: a distinct clinical entity and the largest contributor to melanoma deaths in Victoria, Australia. J Am Acad Dermatol 2013; 68: 568-75.
53. Balch CM, Murad TM, Soong SJ, Ingalls AL, Halpern NB, Maddox WA. A multifactorial analysis of melanoma: prognostic histopathological features comparing Clark's and Breslow's staging methods. Ann Surg 1978; 188: 732-42.
54. Balch CM, Buzaid AC, Soong SJ, et al. New TNM melanoma staging system: linking biology and natural history to clinical outcomes. Semin Surg Oncol 2003; 21: 43-52.
55. Brunssen A, Jansen L, Eisemann N, et al. A population-based registry study on relative survival from melanoma in Germany stratified by tumor thickness for each histologic subtype. J Am Acad Dermatol 2019; 80: 938-46.
56. Minicozzi P, Walsh PM, Sánchez M-J, et al. Is low survival for cancer in Eastern Europe due principally to late stage at diagnosis? Eur J Cancer 2018; 93: 127-37.

* CONCORD Working Group

Africa-Algeria: S Bouzbid (Registre du Cancer d'Annaba); M Hamdi-Chérif*, L Kara (Registre du Cancer de Sétif); K Meguenni, D Regagba (Registre du Cancer Tlemcen); Mali: S Bayo, T Cheick Bougadari (Kankou Moussa University); Mauritius: SS Manraj (Mauritius National Cancer Registry); Morocco: K Bendahhou (Registre du Cancer du Grand Casablanca); Nigeria: A Ladipo, OJ Ogunbiyi* (Ibadan Cancer Registry); South Africa: T Ramaliba, NIM Somdyala (Eastern Cape Province Cancer Registry)

America (Central and South)-Argentina: MA Chaplin, F Moreno (National Childhood Cancer Registry); GH Calabrano, SB Espinola (Chubut Cancer Registry); B Carballo Quintero, R Fita (Registro Provincial de Tumores de Córdoba); WD Laspada (Registro Provincial de Tumores de Mendoza); SG Ibañez (Population Registry of Cancer of the Province Tierra del Fuego); Brazil: CA Lima (Registro de Câncer de Base Populacional de Aracaju); A Mafra Da Costa (Registro de Câncer de Base Populacional da Região de Barretos); PCF De Souza (Registro de Câncer de Base Populacional de Cuiabá); K Del Pino, C Laporte (Registro de Curitiba); MP Curado, JC de Oliveira (Registro de Goiânia); CLA Veneziano, DB Veneziano (Registro de Câncer de Base Populacional de Jaú); ABM Almeida, MRDO Latorre (Registro de Câncer de São Paulo); MS Rebelo, MO Santos (Instituto Nacional de Câncer, Rio de Janeiro); G Azevedo e Silva* (University of Rio de Janeiro); Chile: JC Galaz (Registro Poblacional de Cáncer Region de Antofagasta); M Aparicio Aravena, J Sanhueza Monsalve (Registro Poblacional de Cáncer de la Provincia de Biobio; Registro Poblacional de Cáncer Provincia de Concepción); DA Herrmann, S Vargas (Registro Poblacional Region de Los Rios); Colombia: VM Herrera, CJ Uribe (Registro Poblacional de Cáncer Area Metropolitana de Bucaramanga); LE Bravo, LS Garcia (Cali Cancer Registry); NE Arias-Ortiz, D Morantes (Registro Poblacional de Cáncer de Manizales); DM Jurado, MC Yépez Chamorro (Registro Poblacional de Cáncer del Municipio de Pasto); Costa Rica: S Delgado, M Ramirez (National Registry of Tumors, Costa Rica); Cuba: YH Galán Alvarez, P Torres (Registro Nacional de Cáncer de Cuba); Ecuador: F Martínez-Reyes (Cuenca Tumor Registry); L Jaramillo, R Quinto (Guayaquil Cancer Registry); J Castillo (Loja Cancer Registry); M Mendoza (Manabí Cancer Registry); P Cueva, JG Yépez (Quito Cancer Registry); France: B Bhakkan, J Deloumeaux (Registre des cancers de la Guadeloupe); C Joachim, J Macni (General Cancer Registry of Martinique); Mexico: R Carrillo, J Shalkow Klincovstein (Centro Nacional para la Salud de la Infancia y la Adolescencia); R Rivera Gomez (Registro Poblacional de Cancer Region Fronteriza Norte de Mexico Zona Tijuana); Peru: P Perez, E Poquioma (Lima Metropolitan Cancer Registry); Puerto Rico: G Tortolero-Luna, D Zavala (Puerto Rico Central Cancer Registry); Uruguay: R Alonso, E Barrios (Registro Nacional de Cáncer)

America (North)—Canada: A Eckstrand, C Nikiforuk (Alberta Cancer Registry); RR Woods (British Columbia Cancer Registry); G Noonan, D Turner* (Manitoba Cancer Registry); E Kumar, B Zhang (New Brunswick Provincial Cancer Registry); FR McCrate, S Ryan (Newfoundland \& Labrador Cancer Registry); M MacIntyre, N Saint-Jacques (Nova Scotia Cancer Registry); A Anam, P De (Ontario Cancer Registry); CA McClure, KA Vriends (Prince Edward Island Cancer Registry); C Bertrand, AV Ramanakumar (Registre Québécois du Cancer); S Kozie, H Stuart-Panko (Saskatchewan Cancer Agency); USA: T Freeman, JT George (Alabama Statewide Cancer Registry); RM Avila, DK O'Brien (Alaska Cancer Registry); A Holt (Arkansas Central Cancer Registry); L Almon (Metropolitan Atlanta Registry); S Kwong, C Morris (California State Cancer Registry); R Rycroft (Colorado Central Cancer Registry); L Mueller, CE Phillips (Connecticut Tumor Registry); H Brown, B Cromartie (Delaware Cancer Registry); AG Schwartz, F Vigneau (Metropolitan Detroit Cancer Surveillance System); GM Levin, B Wohler (Florida Cancer Data System); R Bayakly (Georgia Cancer Registry); KC Ward (Georgia Cancer Registry; Metropolitan Atlanta Registry); SL Gomez, M McKinley (Greater Bay Area Cancer Registry); R Cress (Cancer Registry of Greater California); J Davis, B Hernandez (Hawaii Tumor Registry); CJ Johnson (Cancer Data Registry of Idaho); LP Ruppert (Indiana State Cancer Registry); S Bentler, ME Charlton (State Health

Registry of lowa); B Huang, TC Tucker* (Kentucky Cancer Registry); D Deapen, L Liu (Los Angeles Cancer Surveillance Program); MC Hsieh, XC Wu (Louisiana Tumor Registry); M Schwenn (Maine Cancer Registry); K Stern (Maryland Cancer Registry); ST Gershman, RC Knowlton (Massachusetts Cancer Registry); G Alverson, T Weaver (Michigan State Cancer Surveillance Program); J Desai (Minnesota Cancer Reporting System); DB Rogers (Mississippi Cancer Registry); J Jackson-Thompson (Missouri Cancer Registry and Research Center); D Lemons, HJ Zimmerman (Montana Central Tumor Registry); M Hood, J RobertsJohnson (Nebraska Cancer Registry); CA Geiger, JR Rees (New Hampshire State Cancer Registry); KS Pawlish, A Stroup (New Jersey State Cancer Registry); C Key, C Wiggins (New Mexico Tumor Registry); AR Kahn, MJ Schymura (New York State Cancer Registry); S Radhakrishnan, C Rao (North Carolina Central Cancer Registry); LK Giljahn, RM Slocumb (Ohio Cancer Incidence Surveillance System); C Dabbs, RE Espinoza (Oklahoma Central Cancer Registry); KG Aird, T Beran (Oregon State Cancer Registry); JJ Rubertone, SJ Slack (Pennsylvania Cancer Registry); J Oh (Rhode Island Cancer Registry); TA Janes, SM Schwartz (Seattle Cancer Surveillance System); SC Chiodini, DM Hurley (South Carolina Central Cancer Registry); MA Whiteside (Tennessee Cancer Registry); S Rai, MA Williams (Texas Cancer Registry); K Herget, C Sweeney (Utah Cancer Registry); AT Johnson (Vermont Cancer Registry); MB Keitheri Cheteri, P Migliore Santiago (Washington State Cancer Registry); SE Blankenship, S Farley (West Virginia Cancer Registry); R Borchers, R Malicki (Wisconsin Department of Health Services); J Espinoza, J Grandpre (Wyoming Cancer Surveillance Program); HK Weir*, R Wilson (Centers for Disease Control and Prevention); BK Edwards*, A Mariotto (National Cancer Institute)

Asia-China: N Wang, L Yang (Beijing Cancer Registry); JS Chen, Y Zhou (Changle City Cancer Registry); YT He, GH Song (Cixian Cancer Registry); XP Gu (Dafeng County Center for Disease Control and Prevention); D Mei, HJ Mu (Dalian Centers for Disease Prevention and Control); HM Ge, TH Wu (Donghai County Center for Disease Prevention and Control); YY Li, DL Zhao (Feicheng County Cancer Registry); F Jin, JH Zhang (Ganyu Center for Disease Prevention and Control); FD Zhu (Guanyun Cancer Registry); Q Junhua, YL Yang (Haimen Cancer Registry); CX Jiang (Haining City Cancer Registry); W Biao, J Wang (Jianhu Cancer Registry); QL Li (Jiashan County Cancer Registry); H Yi, X Zhou (Jintan Cancer Registry); J Dong, W Li (Lianyungang Center for Disease Prevention and Control); FX Fu, SZ Liu (Linzhou Cancer Registry); JG Chen, J Zhu (Qidong County Cancer Registry); YH Li, YQ Lu (Sihui Cancer Registry); M Fan, SQ Huang (Taixing Cancer Registry); GP Guo, H Zhaolai (Cancer Institute of Yangzhong City); K Wei (Zhongshan City Cancer Registry); WQ Chen*, W Wei*, H Zeng (The National Cancer Center); Cyprus: AV Demetriou (Cyprus Cancer Registry); Hong Kong: WK Mang, KC Ngan (Hong Kong Cancer Registry); India: AC Kataki, M Krishnatreya (Guwahati Cancer Registry); PA Jayalekshmi, P Sebastian (Karunagappally Cancer Registry); PS George, A Mathew (Trivandrum Cancer Registry); A Nandakumar* (National Centre for Disease Informatics and Research); Iran: R Malekzadeh, G Roshandel (Golestan Population-based Cancer Registry); Israel: L Keinan-Boker, BG Silverman (Israel National Cancer Registry); Japan: H Ito, Y Koyanagi (Aichi Cancer Registry); M Sato, F Tobori (Akita Prefectural Cancer Registry); I Nakata, N Teramoto (Ehime Prefectural Cancer Registry); M Hattori, Y Kaizaki (Fukui Cancer Registry); F Moki (Gunma Prefectural Cancer Registry); H Sugiyama, M Utada (Hiroshima Prefecture Cancer Registry); M Nishimura, K Yoshida (Hyogo Prefectural Cancer Registry); K Kurosawa, Y Nemoto (Ibaraki Prefectural Cancer Registry); H Narimatsu, M Sakaguchi (Kanagawa Cancer Registry); S Kanemura (Miyagi Prefectural Cancer Registry); M Naito, R Narisawa (Niigata Prefecture Cancer Registry); I Miyashiro, K Nakata (Osaka Cancer Registry); D Mori, M Yoshitake (Saga Prefectural Cancer Registry); I Oki (Tochigi Prefectural Cancer Registry); N Fukushima, A Shibata (Yamagata Prefectural Cancer Registry); K Iwasa, C Ono (Yamanashi Cancer Registry); T Matsuda* (National Cancer Center); Jordan: O Nimri (Jordan National Cancer Registry); Korea: KW Jung, YJ Won (Korea Central Cancer Registry); Kuwait: E Alawadhi, A Elbasmi (Kuwait Cancer Registry); Malaysia: A Ab Manan (Malaysia National Cancer Registry); F Adam (Penang Cancer Registry); Mongolia: E Nansalmaa, U Tudev (Cancer

Registry of Mongolia); C Ochir (Mongolian National University of Medical Sciences); Qatar: AM AI Khater, MM EI Mistiri (Qatar Cancer Registry); Singapore: GH Lim, YY Teo (Singapore Cancer Registry); Taiwan: CJ Chiang, WC Lee (Taiwan Cancer Registry); Thailand: R Buasom, S Sangrajrang (Bangkok Cancer Registry); K Suwanrungruang, P Vatanasapt (Khon Kaen Provincial Cancer Registry); K Daoprasert, D Pongnikorn (Lampang Cancer Registry; Lamphun Cancer Registry); A Leklob, S Sangkitipaiboon (Lopburi Cancer Registry); SL Geater, H Sriplung (Songkhla Cancer Registry); Turkey: O Ceylan, I Kög (Ankara Cancer Registry); O Dirican (Antalya Cancer Registry); T Köse (Bursa Cancer Registry); T Gurbuz (Edirne Cancer Registry); FE Karaşahin, D Turhan (Erzurum Cancer Registry Center); U Aktaş, Y Halat (Eskişehir Cancer Registry); S Eser, CI Yakut (Izmir Cancer Registry); M Altinisik, Y Cavusoglu (Samsun Cancer Registry); A Türkköylü, N Üçüncü (Trabzon Cancer Registry)

Europe-Austria: M Hackl (Austrian National Cancer Registry); Belarus: AA Zborovskaya (Belarus Childhood Cancer Subregistry); OV Aleinikova (Belarusian Research Center for Pediatric Oncology, Hematology and Immunology); Belgium: K Henau, L Van Eycken (Belgian Cancer Registry); Bulgaria: Z Valerianova, MR Yordanova (Bulgarian National Cancer Registry); Croatia: M Sekerija (Croatian National Cancer Registry); Czech Republic: L Dušek, M Zvolský (Czech National Cancer Registry); Denmark: L Steinrud Mørch, H Storm*, C Wessel Skovlund (Danish Cancer Society); Estonia: K Innos, M Mägi (Estonian Cancer Registry); Finland: N Malila, K Seppä (Cancer Society of Finland); France: J Jégu, M Velten (Bas-Rhin General Cancer Registry); E Cornet, X Troussard (Registre Régional des Hémopathies Malignes de Basse Normandie); AM Bouvier (Registre Bourguignon des Cancers Digestifs); AV Guizard (Registre Général des Tumeurs du Calvados); V Bouvier, G Launoy (Registre des Tumeurs Digestives du Calvados); S Dabakuyo Yonli, ML Poillot (Breas and Gynecologic Cancer Registry of Côte d'Or France); M Maynadié, M Mounier (Hémopathies Malignes de Côte d'Or); L Vaconnet, AS Woronoff (Doubs General Cancer Registry); M Daoulas, M Robaszkiewicz (Finistère Cancer Registry); J Clavel, C Poulalhon (French National Registry of Childhood Hematopoietic Malignancies); B Lacour (National Registry of Childhood Solid Tumors); I Baldi, C Pouchieu (Gironde Registry of Primary Central Nervous System Tumors); B Amadeo, G Coureau (General Cancer Registry of Gironde Department); A Monnereau, S Orazio (Registre des Hémopathies Malignes de la Gironde); M Audoin, TC D'Almeida (Registre Général des Cancers de Haute-Vienne); S Boyer, K Hammas (Haut-Rhin Cancer Registry); B Trétarre (Registre des Tumeurs de l'Hérault); M Colonna, P Delafosse (Registre du Cancer du Département de l'Isère); S Plouvier (Registre Général des Cancers de Lille et de sa Region); A Cowppli-Bony (Loire-Atlantique-Vendée Cancer Registry); F Molinié (Loire-Atlantique-Vendée Cancer Registry; French Network of Cancer Registries (FRANCIM)); S Bara (Manche Cancer Registry); O Ganry, B Lapôtre-Ledoux (Registre du Cancer de la Somme); L Daubisse-Marliac (Tarn Cancer Registry); N Bossard, Z Uhry (Hospices Civils de Lyon); J Estève (Université Claude Bernard, Lyon); Germany: R Stabenow, H Wilsdorf-Köhler (Common Cancer Registry of the Federal States); A Eberle, S Luttmann (Bremen Cancer Registry); I Löhden, AL Nennecke (Hamburg Cancer Registry); J Kieschke, E Sirri (Epidemiological Cancer Registry of Lower Saxony); C Justenhoven, SR Zeissig (Rhineland Palatinate Cancer Registry); B Holleczek (Saarland Cancer Registry); N Eisemann, A Katalinic (Schleswig-Holstein Cancer Registry); Gibraltar: RA Asquez, V Kumar (Gibraltar Cancer Registry); Greece: E Petridou (Nationwide Registry for Childhood Haematological Malignancies and Solid Tumors); Iceland: EJ Ólafsdóttir, L Tryggvadóttir (Icelandic Cancer Registry, Icelandic Cancer Society); Ireland: DE Murray, PM Walsh (National Cancer Registry Ireland); H Sundseth* (European Institute of Women's Health); Italy: G Mazzoleni, F Vittadello (Registro Tumori Alto Adige); E Coviello, F Cuccaro (Registro Tumori Puglia - Sezione ASL BT); R Galasso (Registro Tumori di Basilicata); G Sampietro (Registro Tumori di Bergamo); A Giacomin \dagger (Piedmont Cancer Registry Provinces of Biella and Vercelli); M Magoni (Registro Tumori Dell'ASL Di Brescia); A Ardizzone (Registro Tumori Brindisi); A D'Argenzio (Caserta Cancer Registry); M Castaing, G Grosso (Integrated Cancer Registry of Catania-Messina-Siracusa-Enna); AM Lavecchia, A Sutera Sardo (Registro

Tumori Catanzaro); G Gola (Registro Tumori della Provincia di Como); L Gatti, P Ricci (Registro Tumori Cremona; Registro Tumori Mantova); S Ferretti (Registro Tumori della Provincia di Ferrara); L Dal Maso, D Serraino (Registro Tumori del Friuli Venezia Giulia); MV Celesia, RA Filiberti (Registro Tumori Regione Liguria); F Pannozzo (Registro Tumori della Provincia di Latina); A Melcarne, F Quarta (Registro Tumori Della Provincia Di Lecce Sezione RTP); A Andreano, AG Russo (Registro Tumori Milano); G Carrozzi, C Cirilli (Registro Tumori della Provincia di Modena); L Cavalieri d'Oro, M Rognoni (Registro Tumori di Monza e Brianza); M Fusco, MF Vitale (Registro Tumori della ASL Napoli 3 Sud); M Usala (Nuoro Cancer Registry); R Cusimano, W Mazzucco (Registro Tumori di Palermo e Provincia); M Michiara, P Sgargi (Registro Tumori della Provincia di Parma); L Boschetti (Cancer Registry of the province of Pavia); G Chiaranda, P Seghini (Registro Tumori Piacenza); MM Maule, F Merletti (Piedmont Childhood Cancer Registry); E Spata, R Tumino (Registro Tumori della Provincia di Ragusa); P Mancuso, M Vicentini (Registro Tumori Reggio Emilia); T Cassetti, R Sassatelli (Pancreas Tumor Registry of Reggio Emilia Province); F Falcini, S Giorgetti (Registro Tumori della Romagna); AL Caiazzo, R Cavallo (Registro Tumori Salerno); R Cesaraccio, DR Pirino (Registro Tumori della Provincia di Sassari); F Bella, A Madeddu (Registro Tumori Siracusa); AC Fanetti, S Maspero (Registro Tumori della Provincia di Sondrio); S Carone, A Mincuzzi (Registro Tumori Taranto); G Candela, T Scuderi (Registro Tumori Trapani); MA Gentilini, R Rizzello (Registro Tumori Trento); S Rosso (Piedmont Cancer Registry); A Caldarella, T Intrieri (Registro Tumori della Regione Toscana); F Bianconi, F Stracci (Registro Tumori Umbro di Popolazione); P Contiero, G Tagliabue (Registro Tumori Lombardia, Provincia di Varese); M Zorzi (Registro Tumori Veneto); S Beggiato, A Brustolin (Registro Tumori Della Provincia Di Viterbo); G Gatta (Fondazione IRCCS Istituto Nazionale dei Tumori); R De Angelis (National Centre for Epidemiology); R Zanetti* (International Association of Cancer Registries; Piedmont Cancer Registry); M Rugge (Italian Association of Cancer Registries (AIRTUM); Registro Tumori Veneto); Latvia: A Maurina, M Oniščuka (Latvian Cancer Registry); Liechtenstein: M Mousavi (Liechtenstein); Lithuania: N Lipunova, I Vincerževskienė (Lithuanian Cancer Registry); Malta: D Agius, N Calleja (Malta National Cancer Registry); Netherlands: S Siesling, O Visser (Netherlands Cancer Registry, IKNL); Norway: TB Johannesen, S Larønningen (The Cancer Registry of Norway); Poland: M Trojanowski (Wielkopolski Rejestr Nowotworów); P Macek (Świętokrzyski Rejestr Nowotworów); T Mierzwa (Kujawsko-Pomorski Rejestr Nowotworów); J Rachtan (Małopolski Rejestr Nowotworów); A Rosińska (Łódzki Rejestr Nowotworów); K Kępska (Dolnośląski Rejestr Nowotworów); B Kościańska (Lubelski Rejestr Nowotworów); K Barna (Lubuski Rejestr Nowotworów); U Sulkowska (Mazowiecki Rejestr Nowotworów); T Gebauer (Opolski Rejestr Nowotworów); JB Łapińska (Podlaski Rejestr Nowotworów); J Wójcik-Tomaszewska (Pomorski Rejestr Nowotworów); M Motnyk (Śląski Rejestr Nowotworów); A Patro (Podkarparcki Rejestr Nowotworów); A Gos (Warmińsko-Mazurski Rejestr Nowotworów); K Sikorska (Zachodniopomorski Rejestr Nowotworów); M Bielska-Lasota (National Institute of Public Health, NIH); JA Didkowska, U Wojciechowska (Polish National Cancer Registry); Portugal: G Forjaz de Lacerda, RA Rego (Registo Oncológico Regional dos Açores); B Carrito, A Pais (Registo Oncológico Regional do Centro); MJ Bento, J Rodrigues (Registo Oncológico Regional do Norte); A Lourenço, A Mayer-da-Silva (Registo Oncólogico Regional do Sul); Romania: LM Blaga, D Coza (Cancer Institute I. Chiricuta); Russia: MY Valkov (Arkhangelsk Regional Cancer Registry); L Gusenkova, O Lazarevich (Population Cancer Registry of the Republic of Karelia); O Prudnikova, DM Vjushkov (Omsk Regional Cancer Registry); A Egorova, A Orlov (Samara Cancer Regional Registry); LA Kudyakov, LV Pikalova (Population-Based Cancer Registry of Tomsk); Slovakia: J Adamcik, C Safaei Diba (National Cancer Registry of Slovakia); Slovenia: V Zadnik, T Žagar (Cancer Registry of Republic of Slovenia); Spain: L Gil, A Lopez-de-Munain (Basque Country Cancer Registry); A Aleman, D Rojas (Registro Poblacional de Cáncer de la Comunidad Autónoma de Canarias); RJ Chillarón, AIM Navarro (Registro de Cáncer de Cuenca); R Marcos-Gragera, M Puigdemont (Girona Cancer Registry); M Rodríguez-Barranco, MJ Sánchez Perez (Granada Cancer Registry); P Franch Sureda, M Ramos Montserrat (Mallorca Cancer Registry); MD Chirlaque López, A Sánchez Gil (Murcia Cancer Registry); E Ardanaz, M Guevara (Registro de Cáncer
de Navarra, CIBERESP); A Cañete-Nieto, R Peris-Bonet (RETI-SEHOP, Universidad de Valencia); M Carulla, J Galceran (Tarragona Cancer Registry); F Almela, C Sabater (Comunitat Valenciana Childhood Cancer Registry); Sweden: S Khan, D Pettersson (Swedish Cancer Registry); P Dickman* (Karolinska Institutet, Stockholm); Switzerland: K Staehelin, B Struchen (Basel Cancer Registry); C Herrmann (East Switzerland Cancer Registry); C Egger Hayoz (Registre Fribourgeois des Tumeurs); C Bouchardy, R Schaffar (Geneva Cancer Registry); M Rössle (Cancer Registry Grisons and Glarus); SM Mousavi (Cancer Registry Grisons and Glarus; East Switzerland Cancer Registry); JL Bulliard, M Maspoli-Conconi (Registre Neuchâtelois et Jurassien des Tumeurs); CE Kuehni, SM Redmond (Childhood Cancer Registry); A Bordoni, L Ortelli (Registro Tumori Canton Ticino); A Chiolero, I Konzelmann (Registre Valaisan des Tumeurs); S Rohrmann, M Wanner (Cancer Registry Zürich and Zug); United Kingdom: J Broggio, J Rashbass (National Cancer Registration and Analysis Service England); D Fitzpatrick, A Gavin (Northern Ireland Cancer Registry); DS Morrison, CS Thomson (Scottish Cancer Registry); G Greene, DW Huws (Welsh Cancer Intelligence \& Surveillance Unit); C Allemani*, MP Coleman*, V Di Carlo, F Girardi, M Matz, P Minicozzi, N Sanz, N Ssenyonga (London School of Hygiene \& Tropical Medicine); R Stephens* (Patient Advocate, Stevenage); C Stiller* (Public Health England)

Oceania-Australia: E Chalker, M Smith (Australian Capital Territory Cancer Registry); R Walton, H You (NSW Cancer Registry); S Qin Li, S Dugdale (Northern Territory of Australia Cancer Registry); J Moore, S Philpot (Queensland Cancer Registry); R Pfeiffer, H Thomas (South Australian Cancer Registry); B Silva Ragaini, A Venn (Tasmanian Cancer Registry); SM Evans, L te Marvelde (Victorian Cancer Registry); V Savietto, R Trevithick (Western Australian Cancer Registry); D Currow* (Cancer Institute NSW); New Zealand: C Fowler, C Lewis (New Zealand Cancer Registry)

Figure 1 - Morphology distribution by continent and country, all periods combined

Figure 2: Age-standardised 5-year net survival for patients diagnosed with cutaneous melanoma during 2010-2014 by continent, country and morphology group

Superficial spreading melanoma

Nodular melanoma

Lentigo maligna melanoma

Acral lentiginous melanoma

Table 1: Data quality indicators, patients diagnosed with melanoma of the skin during 2000-2014, by continent and country

			Ineligible (\%)			Exclusions (\%)				Data quality indicators (\%)			
	Calendar period	Patients submitted	Incomplete dates	$\begin{array}{r} \text { In } \\ \text { situ } \end{array}$	Other \dagger	Eligible patients	DCO	Other $\mathbb{}$	Available for analysis	MV	Non-specific morphology	Lost to follow-up	Censored
AFRICA		498	9.6	0.0	9.2	404	0.0	8.9	368	91.3	45.9	3.0	54.1
Algerian registries	2000-2014	331	13.3	0.0	0.9	284	0.0	12.7	248	99.2	25.0	0.0	47.6
Mauritius *	2010-2012	5	0.0	0.0	20.0	4	0.0	0.0	4	100.0	100.0	0.0	0.0
Nigeria (Ibadan)	2005-2014	87	4.6	0.0	16.1	69	0.0	0.0	69	72.4	92.8	0.0	87.0
South Africa (Eastern Ca	2000-2014	75	0.0	0.0	37.3	47	0.0	0.0	47	76.6	83.0	23.4	44.7
AMERICA (Central and S	outh)	10,610	3.2	10.7	5.1	8,599	1.4	0.3	8,452	99.0	62.4	0.5	6.8
Argentinian registries	2000-2013	1,196	4.7	0.8	3.3	1,092	0.7	0.0	1,084	99.6	67.7	0.0	0.0
Brazilian registries	2000-2014	2,169	0.7	12.7	5.6	1,758	4.8	0.0	1,674	99.2	73.1	0.0	2.0
Chilean registries	2000-2012	569	0.0	0.0	2.5	555	0.2	0.0	554	99.5	60.1	0.0	19.3
Colombian registries	2000-2014	1,698	3.8	5.2	10.0	1,376	0.2	0.0	1,373	98.8	49.4	0.0	25.0
Costa Rica *	2002-2014	1,448	0.0	0.0	0.8	1,436	0.0	0.3	1,432	98.3	44.7	0.0	0.0
Ecuadorian registries	2000-2013	1,483	11.2	8.4	6.5	1,096	0.4	1.1	1,080	98.8	78.0	0.2	5.3
Guadeloupe (France)	2008-2013	60	0.0	13.3	0.0	52	0.0	0.0	52	100.0	0.0	0.0	71.2
Martinique (France)	2000-2012	177	0.0	0.0	2.8	172	0.0	4.7	164	100.0	23.2	25.0	0.0
Puerto Rico *	2000-2011	1,810	2.2	34.6	4.5	1,062	2.2	0.0	1,039	99.3	75.6	0.0	0.0
AMERICA (North)		1,134,825	0.6	35.2	2.7	706,357	0.5	0.0	703,094	99.2	51.1	3.8	0.1
Canadian registries	2000-2014	94,011	0.1	17.2	4.5	73,496	0.3	0.0	73,278	95.6	41.8	0.0	0.0
US registries	2000-2014	1,040,814	0.6	36.0	2.6	632,861	0.5	0.0	629,816	100.0	0.0	2.6	0.1
ASIA		41,718	0.5	14.9	8.4	31,768	1.1	0.3	31,337	98.2	76.4	0.4	2.0
Chinese registries	2003-2013	1,733	0.2	0.0	16.1	1,450	0.1	0.0	1,449	99.0	95.4	4.8	0.2
Cyprus*	2004-2014	687	3.6	3.1	6.1	599	1.7	0.0	589	99.7	32.8	0.0	53.7
Indian registries	2000-2014	61	0.0	0.0	8.2	56	0.0	7.1	52	98.1	94.2	3.8	5.8
Israel *	2000-2013	18,303	0.0	28.3	4.2	12,348	0.7	0.0	12,265	98.0	78.1	0.0	0.0
Japanese registries	2000-2014	6,462	1.3	10.4	22.3	4,263	5.7	0.0	4,018	95.3	88.1	0.0	2.4
Jordan *	2000-2014	306	0.3	1.0	27.8	217	0.0	1.4	214	99.5	84.1	14.0	0.0
Korea*	2000-2014	5,824	0.9	0.0	0.0	5,771	0.0	0.0	5,771	98.6	74.9	0.0	0.0
Kuwait*	2000-2013	21	0.0	0.0	14.3	18	0.0	0.0	18	100.0	72.2	0.0	0.0
Qatar *	2000-2014	61	0.0	1.6	8.2	55	0.0	0.0	55	98.2	87.3	0.0	70.9
Singapore *	2000-2014	521	0.0	9.0	20.3	368	0.3	0.0	367	100.0	56.1	0.0	0.0
Taiwan *	2000-2014	3,123	0.3	3.4	0.6	2,988	0.0	0.0	2,988	100.0	64.0	0.0	0.0
Thai registries	2000-2014	817	0.0	0.0	5.9	769	0.0	9.6	695	99.7	95.0	0.3	3.9
Turkish registries	2000-2013	3,799	1.4	4.8	18.4	2,866	0.3	0.0	2,856	99.3	64.8	0.2	4.8
EUROPE		842,368	0.1	16.8	5.3	651,577	0.5	0.1	647,719	99.3	34.1	1.7	3.9
Austria *	2000-2014	28,233	0.0	24.2	5.9	19,742	2.9	0.1	19,150	97.5	65.4	0.0	0.0
Belgium*	2004-2014	29,278	0.0	22.8	2.4	21,905	0.0	0.0	21,905	99.9	36.3	1.9	0.0
Bulgaria *	2000-2014	6,057	0.0	0.0	0.0	6,056	3.0	0.0	5,875	100.0	73.7	0.0	0.0
Croatia *	2000-2014	8,602	0.0	2.0	3.5	8,126	3.4	0.0	7,848	99.9	90.4	0.0	0.0
Czech Republic *	2000-2014	33,285	0.0	16.0	0.5	27,802	0.0	0.0	27,800	100.0	31.8	0.0	0.0
Denmark*	2000-2014	24,683	0.0	0.0	0.2	24,630	0.0	0.0	24,630	99.7	21.6	0.6	0.0
Estonia *	2000-2012	2,556	0.0	11.8	9.9	2,002	0.9	0.0	1,983	98.4	31.1	1.2	0.0
Finland*	2000-2014	15,873	0.4	0.0	5.3	14,968	0.1	0.0	14,949	100.0	90.8	0.3	0.0
French registries	2000-2010	14,962	0.3	0.0	6.0	14,017	0.0	2.4	13,677	100.0	11.4	3.4	0.0
German registries	2000-2014	99,363	0.3	16.2	2.6	80,338	2.0	0.0	78,713	99.4	28.4	0.6	28.7
Gibraltar*	2000-2010	39	0.0	12.8	7.7	31	0.0	0.0	31	100.0	19.4	0.0	51.6
Iceland *	2000-2014	715	0.0	0.0	0.3	713	0.0	0.0	713	99.9	29.3	0.0	0.0
Ireland *	2000-2013	14,683	0.0	35.3	0.1	9,475	0.1	0.0	9,470	99.8	36.9	0.0	0.0
Italian registries	2000-2014	53,776	0.0	7.8	5.4	46,634	0.1	0.0	46,607	98.2	26.5	1.2	1.5
Latvia *	2000-2014	2,507	0.0	0.0	0.2	2,503	0.1	0.0	2,501	99.8	47.5	0.0	0.0
Lithuania*	2000-2012	4,129	0.0	6.3	13.4	3,317	0.0	0.0	3,317	100.0	55.8	0.0	0.9
Malta *	2000-2013	725	0.0	14.2	10.9	543	0.4	0.0	541	99.6	36.4	0.0	0.0
Netherlands *	2000-2014	80,641	0.0	20.0	6.6	59,141	0.0	0.1	59,088	100.0	13.2	1.1	0.0
Norway *	2000-2014	31,469	0.0	8.6	27.9	19,997	0.0	0.0	19,994	99.9	21.0	0.3	0.0
Poland *	2000-2014	38,834	0.0	0.2	7.3	35,932	0.0	0.3	35,834	100.0	77.1	0.0	0.0
Portugal *	2000-2014	10,897	0.3	11.3	2.5	9,358	0.0	0.0	9,358	99.3	54.6	2.1	0.1
Romania (Cluj)	2006-2012	515	0.0	3.9	11.5	436	0.0	0.0	436	98.9	50.9	0.0	0.0
Russian registries	2000-2014	5,081	0.0	0.1	2.9	4,927	0.1	0.2	4,914	99.5	79.0	2.5	0.7
Slovakia *	2000-2010	7,933	0.0	11.1	7.3	6,478	1.4	0.0	6,389	100.0	21.9	0.0	0.0
Slovenia *	2000-2013	7,442	0.0	18.8	5.9	5,605	0.0	0.0	5,603	100.0	36.3	0.1	0.0
Spanish registries	2000-2013	14,567	0.5	18.8	3.2	11,292	0.3	0.1	11,242	99.7	25.8	0.6	0.1
Sweden *	2000-2014	58,528	0.0	30.2	6.7	36,925	0.0	0.0	36,921	100.0	20.8	0.3	0.1
Swiss registries	2000-2014	19,030	0.0	19.4	2.1	14,923	0.1	0.1	14,893	99.9	20.0	7.2	7.9
United Kingdom *	2000-2014	227,965	0.1	22.9	4.8	163,761	0.2	0.0	163,337	98.5	30.8	4.3	0.0
OCEANIA		273,076	0.2	29.6	1.5	187,846	0.2	0.0	187,512	99.0	32.8	0.0	0.0
Australia *	2000-2014	241,133	0.2	33.5	1.4	156,531	0.1	0.0	156,302	98.9	32.3	0.0	0.0
New Zealand *	2000-2014	31,943	0.0	0.0	2.0	31,315	0.3	0.0	31,210	99.7	35.3	0.0	0.0
Total		2,303,095	0.4	27.7	3.5	1,586,551	0.5	0.0	1,578,482	99.2	43.2	2.5	1.6

[^0]Jer of patients and age-standardised 5 -year net survival ($\mathrm{NS}, \%$) with 95% confidence interval ($95 \% \mathrm{Cl}$): adults ($15-99$ years) diagnosed with melanoma of the skin by continent, country, morphology and d of diagnosis (2000-2004, 2005-2009, 2010-2014)

Malignant melanoma, NOS			Other melanoma morphologies		
No. NS (\%)		95\% CI	No. NS (\%)		95\% CI
131	66.7	57.8-75.5	10	44.8	14.6-75.0
320	62.9	57.0-68.8	44	72.6	55.6-89.5
277	65.2	58.5-71.9	11	52.0	26.6-77.5
359	76.0	70.1-81.9			
437	76.3	71.5-81.1	12	67.8	40.8-94.8
251	69.7	64.4-75.1	13	33.7	5.6-61.8
59	57.0	42.6-71.4			
57	55.8	36.6-75.1			
154	55.6 §	43.1-68.1			
196	54.9 §	46.9-62.9			
219	64.7 §	57.1-72.4	15	42.3 §	9.0-75.6
43	55.8 §	46.6-65.0	10	35.0 §	7.2-62.8
104	75.6	67.0-84.2			
183	69.9	62.5-77.4			
318	75.9	69.2-82.6	23	88.2	59.1-100.0
146	56.2	47.3-65.1			
319	60.1	53.5-66.6	13	54.7	23.2-86.3
332	57.0	50.2-63.8			

Jer of patients and age-standardised 5 -year net survival (NS, \%) with 95% confidence interval ($95 \% \mathrm{CI}$): adults ($15-99$ years) diagnosed with melanoma of the skin by continent, country, morphology and Jd of diagnosis (2000-2004, 2005-2009, 2010-2014)

	Superficial spreading melanoma			Lentigo maligna melanoma			Nodular melanoma			Acral lentiginous melanoma			Desmoplastic melanoma			Malignant melanoma, NOS			Other melanoma morphologies		
	No. NS (\%)		$\begin{gathered} 95 \% \mathrm{Cl} \\ 61.5-100.0 \end{gathered}$	No. NS (\%)		95\% CI	No. NS (\%)		$\begin{gathered} 95 \% \text { Cl } \\ 39.2-61.6 \end{gathered}$	No. NS (\%)			No. NS (\%)		95\% CI	No. NS (\%)			No. NS (\%)		95\% Cl
2000-2004	17	83.1					87	50.4		156	73.1	$64.6-81.6$				982	47.2	$43.8-50.6$	22	41.6	20.9-62.3
2005-2009	27	84.0	66.5-100.0	16	94.2	72.2-100.0	113	38.0	29.5-46.6	247	80.3	74.1-86.4				1,548	51.3	48.5-54.1	38	64.2	47.9-80.5
2010-2014	39	86.3	63.0-100.0		100.0	85.9-100.0	192	41.5	32.1-50.9	399	79.4	73.9-84.9	16	53.7	26.2-81.3	1,790	56.2	53.5-59.0	43	60.8	48.5-73.2
2000-2004										11	71.2	35.8-100.0				59	53.4	40.8-66.1			
2005-2009	17	66.9	41.3-92.5				15	39.8	13.2-66.3	19	62.2	34.6-89.8				71	55.5	45.2-65.9			
2010-2014	14	100.0	100.0-100.0				27	25.2	8.8-41.6	28	65.2	38.9-91.5				76	55.6	43.5-67.6			
2000-2004	10	93.3	73.8-100.0				62	40.9	29.1-52.8	87	66.9	56.5-77.3				612	46.1	41.6-50.7	23	51.0	26.8-75.1
2005-2009	33	81.3	66.0-96.6				81	41.8	31.4-52.2	167	68.2	59.4-77.0				667	49.6	45.2-54.0	34	33.5	15.1-51.8
2010-2014	49	71.4	54.6-88.2				154	36.7	27.0-46.5	306	65.6	57.4-73.8				634	46.7	42.1-51.3	33	35.9	21.2-50.6
2000-2004																103	44.9	34.4-55.4			
2005-2009																248	35.9 §	28.6-43.2			
2010-2014																151	28.0 §	21.5-34.4			
2000-2004	21	79.9 §	59.2-100.0	20	84.8 §	67.1-100.0	48	59.9 §	42.1-77.7	10	61.6 §	26.3-96.9				181	51.9 §	42.9-60.8			
2005-2009	67	77.7	66.4-88.9	58	97.3	85.8-100.0	187	52.3	44.3-60.4	67	73.8	62.3-85.3				810	52.5	48.6-56.4	36	63.2	45.2-81.3
2010-2014	91	80.1	68.7-91.5	94	96.4	90.5-100.0	192	53.9	46.2-61.6	65	72.5	60.2-84.9				858	56.4	52.6-60.1	33	55.9	41.8-69.9
2000-2004	1,433	98.2	96.1-100.0	258	97.3	88.3-100.0	384	75.0	70.0-80.1	48	60.9	45.6-76.1	11	70.3	40.7-99.9	3,306	77.9	76.3-79.6	89	60.2	48.7-71.7
2005-2009	1,236	95.6	93.3-97.9	245	99.6	96.7-100.0	405	67.2	61.7-72.7	55	71.3	56.4-86.3	22	100.0	85.2-100.0	4,044	81.9	80.5-83.4	97	68.6	59.4-77.9
2010-2014	1,522	94.9	92.4-97.3	290	98.7	95.5-100.0	383	62.9	57.3-68.6	54	72.4	59.2-85.6	23	100.0	100.0-100.0	5,180	87.1	85.8-88.4	65	70.5	59.7-81.2
2000-2004	619	93.9	90.3-97.5	50	99.3	81.7-100.0	121	75.6	67.2-83.9	23	77.3	56.0-98.5				645	80.8	77.1-84.4	31	90.5	64.1-100.0
2005-2009	3,852	94.3	92.9-95.6	380	98.0	95.2-100.0	785	70.7	66.7-74.6	146	85.5	78.1-92.9	25	100.0	84.3-100.0	3,181	85.1	83.5-86.7	177	82.2	75.5-88.9
2010-2014	5,590	95.4	94.1-96.7	725	98.5	96.1-100.0	940	74.9	71.3-78.5	190	87.7	81.5-94.0	43	72.4	48.7-96.1	4,128	88.5	87.1-90.0	250	83.3	77.1-89.5
2000-2004	20	85.0	45.5-100.0				151	46.2	36.6-55.7							1,245	51.6	48.3-54.9	180	45.4	36.7-54.0
2005-2009	27	76.8	55.1-98.5				271	57.9	50.8-65.0							1,421	57.1	54.1-60.2	186	35.0	27.2-42.8
2010-2014	90	86.6	75.4-97.8				379	64.0	57.2-70.9							1,661	61.6	58.8-64.4	210	39.9	32.0-47.8
2000-2004																2,174	66.3	63.8-68.7			
2005-2009	39	90.6	75.2-100.0				122	70.4	61.2-79.6							2,622	74.6	72.5-76.6			
2010-2014	288	89.6	81.6-97.7				174	58.9	49.8-68.1	25	67.9	33.9-100.0				2,298	77.1	75.0-79.1	57	80.8	66.6-95.0
lic * 2000-2004	2,214	97.0	95.1-98.9	361	97.9	93.9-100.0	2,016	71.2	68.8-73.7	53	86.3	67.5-100.0	46	59.1	41.7-76.5	2,546	71.3	69.2-73.4	507	77.5	72.6-82.3
2005-2009	3,142	98.1	96.7-99.6	438	97.0	93.3-100.0	2,080	73.0	70.6-75.3	93	83.5	75.2-91.9	106	77.9	68.8-87.0	2,964	77.2	75.4-79.1	540	80.1	75.8-84.3
2010-2014	4,082	98.2	96.9-99.6	442	99.0	96.3-100.0	2,033	73.0	70.7-75.3	93	82.3	72.9-91.7	142	80.2	72.4-87.9	3,335	78.9	77.2-80.7	567	81.5	77.3-85.6
2000-2004	2,597	92.7	90.9-94.5	136	97.3	85.1-100.0	444	72.3	67.4-77.2	17	89.1	66.1-100.0				2,318	83.6	81.6-85.5	27	85.5	66.8-100.0
2005-2009	5,384	95.3	94.1-96.4	218	88.6	78.8-98.4	757	72.4	68.8-76.0	66	84.3	73.9-94.7				1,778	78.1	75.8-80.3	61	90.4	80.0-100.0
2010-2014	8,123	96.0	95.1-97.0	329	93.6	88.6-98.6	943	74.8	71.5-78.1	77	75.3	61.8-88.8	43	100.0	87.7-100.0	1,229	77.1	74.7-79.5	69	90.9	79.9-100.0
2000-2004	27	100.0	93.0-100.0	28	100.0	85.5-100.0	24	82.7	58.1-100.0							109	71.0	62.0-80.1	410	66.3	60.8-71.8
2005-2009	32	100.0	100.0-100.0	15	95.0	71.3-100.0	14	71.6	45.3-97.8							203	70.0	63.4-76.7	500	73.7	69.2-78.1
2010-2014	28	100.0	100.0-100.0	11	100.0	96.1-100.0	29	56.2	34.4-78.0	17	64.0	17.3-100.0				305	82.7	74.0-91.4	207	78.2	72.5-83.8
2000-2004																3,576	84.8	83.3-86.4			
2005-2009	137	92.8	87.0-98.5	102	100.0	93.8-100.0	76	72.0	62.6-81.5	10	79.1	42.8-100.0				4,452	87.0	85.7-88.3			
2010-2014	539	93.9	89.9-98.0	260	100.0	97.3-100.0	216	76.0	69.0-83.1	16	93.1	68.4-100.0				5,539	88.1	86.9-89.3			
2000-2004	2,552	94.6	93.0-96.2	375	92.7	87.6-97.8	518	70.1	65.5-74.8	114	76.5	67.7-85.3	16	69.6	37.9-100.0	565	82.8	79.2-86.5	352	87.7	83.3-92.1
2005-2009	4,419	95.7	94.5-96.9	640	95.9	92.9-99.0	706	70.9	66.5-75.2	155	83.1	75.2-91.0	42	75.5	56.1-94.9	817	83.5	79.7-87.4	483	90.6	87.1-94.2
2010-2014	1,109	94.9	92.4-97.4	115	94.5	88.6-100.0	158	74.6	65.4-83.7	38	82.4	73.1-91.7				167	83.3	76.4-90.1	62	89.1	80.7-97.4
2000-2004	6,566	99.2	98.2-100.0	1,235	99.4	98.0-100.0	2,415	74.4	72.3-76.4	319	85.4	80.4-90.4	39	91.4	77.2-100.0	3,734	83.8	82.3-85.3	481	78.3	73.9-82.7
2005-2009	11,019	98.8	98.1-99.5	2,057	99.4	97.9-100.0	3,394	77.7	76.0-79.5	478	83.7	79.4-88.0	56	80.9	63.6-98.3	5,649	84.6	83.4-85.9	649	79.8	75.9-83.7
2010-2014	11,676	99.0	98.4-99.7	1,990	99.4	97.9-100.0	3,188	77.2	75.3-79.0	450	84.7	80.5-89.0	78	91.6	82.5-100.0	6,095	86.6	85.4-87.8	625	82.7	78.8-86.7
2000-2004	124	92.5	85.6-99.3	13	78.2	48.1-100.0	18	78.9	59.4-98.3							92	88.6	79.8-97.3			
2005-2009	132	87.4	79.7-95.2	16	82.3	55.9-100.0	17	61.6	31.3-91.9							80	87.7	78.8-96.6			
2010-2014	134	91.7	85.6-97.8				26	56.0	29.6-82.5							37	82.7	71.1-94.4			

Manage Preferences
Accept All
Reject All

jer of patients and age－standardised 5 －year net survival（ $\mathrm{NS}, \%$ ）with 95% confidence interval（ $95 \% \mathrm{CI}$ ）：adults（ $15-99$ years）diagnosed with melanoma of the skin by continent，country，morphology and Jd of diagnosis（2000－2004，2005－2009，2010－2014）

Desmoplastic melanoma			Malignant melanoma，NOS			Other melanoma morphologies		
No．NS（\％）		95\％CI	No．NS（\％）		95\％CI	No．NS（\％）		$95 \% \mathrm{Cl}$
20	64.6	36．2－93．0	1，007	82.0	79．0－85．1	78	78.5	
35	77.4	58．7－96．2	1，365	84.3	81．8－86．8	124	79.3	71．0－87．7
48	80.7	67．1－94．3	1，121	86.8	84．2－89．4	61	81.1	70．8－91．5
54	78.0	65．8－90．3	4，548	78.9	77．6－80．3	2，515	79.4	77．6－81．3
79	77.1	62．8－91．4	5，983	81.8	80．6－82．9	5，130	83.0	81．8－84．2
25	78.9	64．7－93．1	1，768	79.7	78．0－81．5	2，554	82.8	81．3－84．3
			353	60.7	54．7－66．8	291	72.7	66．2－79．1
			424	64.1	58．6－69．6	357	66.0	59．9－72．1
			410	69.8	64．3－75．3	527	73.2	67．8－78．5
			938	66.4	62．8－70．0			
			573	59.5	54．8－64．2	12	83.5	56．5－100．0
			339	63.3	57．0－69．7			
			54	83.8	73．8－93．8			
			72	76.5	68．0－85．1			
			71	72.4	62．6－82．2			
34	86.4	68．3－100．0	2，630	82.5	80．5－84．5	499	79.4	75．2－83．5
60	76.8	60．4－93．2	2，781	83.6	81．9－85．4	517	88.0	84．3－91．8
115	83.6	76．4－90．7	2，385	84.3	82．6－86．1	455	85.8	81．9－89．8
33	71.9	49．8－94．1	967	78.3	75．2－81．4	29	85.1	56．3－100．0
	100.0	85．2－100．0	1，428	83.4	81．0－85．8	34	64.2	45．2－83．3
46	75.9	61．8－89．9	1，798	87.0	84．9－89．0	59	76.5	63．9－89．1
			7，413	60.5	59．2－61．8	687	62.6	58．4－66．8
			9，291	64.9	63．7－66．0	545	67.0	62．5－71．6
19	53.0	21．4－84．7	10，938	68.1	67．1－69．1	655	66.5	62．1－70．9
			1，766	76.2	73．8－78．5	45	72.1	56．5－87．6
12	69.2	29．1－100．0	2，283	79.8	77．9－81．8	66	82.8	71．5－94．1
15	45.5	3．4－87．6	1，064	81.8	77．7－85．9	92	74.4	62．3－86．4

 섯

\bigcirc	サのMのサO．
$\stackrel{-}{+}$	$\infty \times \infty$
\bigcirc	
ले	
\bigcirc	
8	
F	

 －M mo

N

Lentigo maligna
95\％CI

$90.0-100.0$ | 0 |
| :--- |
| 8 |
| 8 |
| 8 |
| 8 |

 －
$\circ \stackrel{\circ}{2}$
$\begin{array}{ll}0 \\ \mathrm{~N}_{0}^{\infty} & 0 \\ 0 & 0 \\ 0\end{array}$
○

Superficial spreading

 J

 Z
N
N
ò
N Oi पO
N
N
ì
ì
N寸io

2000－2004 \qquad

d
N
N
ì
N

Manage Preferences
Accept All
Reject All

er of patients and age-standardised 5 -year net survival ($\mathrm{NS}, \%$) with 95% confidence interval ($95 \% \mathrm{CI}$): adults (15-99 years) diagnosed with melanoma of the skin by continent, country, morphology and d of diagnosis (2000-2004, 2005-2009, 2010-2014)

Other melanoma morphologies		
No.	(\%)	95\% Cl
951	70.3	61.1-79.5
1,189	84.4	81.8-87.1
895	85.0	82.1-87.9

 val estimates that are not age-standardised due to a low number of cases (less than 50), or where two or more age-specific net survival estimates could not be produced.

Table 3. Excess hazard ratio of death in patients with malignant melanoma of the skin, by morphologic type (reference category superficial spreading melanoma) in Germany, Spain and Norway

	Germany (Lower Saxony)			Spanish registries ${ }^{\ddagger}$			Norway*		
	No. (\%)	Model 1	Model 2	No. (\%)	Model 1	Model 2	No. (\%)	Model 1	Model 2
Superficial spreading	$\begin{aligned} & 9,326 \\ & (58.9) \end{aligned}$	1.0	1.0	$\begin{array}{r} 1,642 \\ (39.8) \\ \hline \end{array}$	1.0	1.0	$\begin{aligned} & 8,624 \\ & (54.0) \end{aligned}$	1.0	1.0
Lentigo maligna	$\begin{gathered} 1,305 \\ (8.2) \\ \hline \end{gathered}$	$\begin{gathered} 0.2 \\ (0.0-35.1) \\ \hline \end{gathered}$	$\begin{gathered} 0.1 \\ (0.0-26.9) \\ \hline \end{gathered}$	$\begin{array}{r} 232 \\ (5.6) \\ \hline \end{array}$	$\begin{gathered} \hline 0.4 \\ (0.0-17.2) \\ \hline \end{gathered}$	$\begin{gathered} 0.4 \\ (0.1-2.1) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 478 \\ (3.0) \\ \hline \end{array}$	$\begin{gathered} 0.3 \\ (0.1-6.4) \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ (0.2-1.4) \\ \hline \end{gathered}$
Nodular	$\begin{array}{r} 1,514 \\ (9.6) \\ \hline \end{array}$	$\begin{gathered} \mathbf{2 1 . 8} \\ (14.7-32.3) \\ \hline \end{gathered}$	$\begin{gathered} 13.5 \\ (9.6-18.9) \\ \hline \end{gathered}$	$\begin{array}{r} 627 \\ (15.2) \\ \hline \end{array}$	$\begin{gathered} 12.1 \\ (8.1-18.1) \\ \hline \end{gathered}$	$\begin{gathered} 6.7 \\ (4.8-9.3) \end{gathered}$	$\begin{aligned} & \hline 3,234 \\ & (20.3) \\ & \hline \end{aligned}$	$\begin{gathered} 6.7 \\ (5.7-7.9) \\ \hline \end{gathered}$	$\begin{gathered} 4.1 \\ (3.6-4.8) \\ \hline \end{gathered}$
Acral lentiginous	$\begin{array}{r} 341 \\ (2.2) \end{array}$	$\begin{gathered} 15.2 \\ (9.0-25.5) \end{gathered}$	$\begin{gathered} 10.8 \\ (6.8-17.1) \end{gathered}$	$\begin{array}{r} 138 \\ (3.4) \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ (5.2-15.5) \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ (3.1-8.1) \end{gathered}$	$\begin{array}{r} 91 \\ (0.6) \\ \hline \end{array}$	$\begin{gathered} 1.7 \\ (0.5-5.1) \end{gathered}$	$\begin{gathered} 2.2 \\ (1.0-4.9) \\ \hline \end{gathered}$
Malignant melanoma, NOS	$\begin{aligned} & 2,953 \\ & (18.7) \end{aligned}$	$\begin{gathered} 6.5 \\ (4.3-9.9) \end{gathered}$	$\begin{gathered} 5.4 \\ (3.8-7.6) \end{gathered}$	$\begin{array}{r} 1,178 \\ (28.6) \\ \hline \end{array}$	$\begin{gathered} 4.2 \\ (2.8-6.4) \\ \hline \end{gathered}$	$\begin{gathered} 2.9 \\ (2.0-4.0) \end{gathered}$	$\begin{aligned} & 3,338 \\ & (20.9) \end{aligned}$	$\begin{gathered} 3.9 \\ (3.3-4.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (2.4-3.3) \\ \hline \end{gathered}$
Other morphologies	$\begin{array}{r} 385 \\ (2.4) \end{array}$	$\begin{gathered} 8.6 \\ (4.7-15.6) \\ \hline \end{gathered}$	$\begin{gathered} 6.5 \\ (3.8-11.0) \\ \hline \end{gathered}$	$\begin{array}{r} 307 \\ (7.4) \\ \hline \end{array}$	$\begin{gathered} 5.6 \\ (3.4-9.2) \end{gathered}$	$\begin{gathered} 3.7 \\ (2.4-5.6) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 201 \\ (1.2) \\ \hline \end{array}$	$\begin{gathered} \mathbf{4 . 5} \\ (2.9-6.9) \\ \hline \end{gathered}$	$\begin{gathered} 2.4 \\ (1.6-3.7) \\ \hline \end{gathered}$

\ddagger Granada and Basque Country

* National coverag

Model 1: only including morphology. Model 2 : including morphology, sex, age and stage at diagnosis

[^0]: Other \dagger : records with incomplete data or for tumours that are benign (behaviour code 0), of uncertain behaviour (behavior code 1), metastatic from another organ (behavior code 6), or unknown if primary or metastatic (behavior code 9); or for patients with age outside the range 15-99 years (adults); or with a topography code that is not in the range for skin (VAR20 $=C 440-C 449$), or the skin of the labia majora (C510), vulva (C519), penis (C609) or scrotum (C632).
 Other \mathbb{T} : tumour coded with unknown vital status; or for patients for which the sex is unknown.
 MV: Microscopically verified

 * Data with 100% coverage of the national population

