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Locally Minimum-Variance Filtering of 2-D
Systems over Sensor Networks with Measurement
Degradations: A Distributed Recursive Algorithm

Fan Wang, Zidong Wang, Jinling Liang and Jun Yang

Abstract—This paper tackles the recursive filtering problem
for an array of two-dimensional systems over sensor networks
with a given topology. Both the measurement degradations
of the network outputs and the stochastic perturbations of
network couplings are modeled to reflect engineering practice
via introducing some random variables with given statistics.
The goal of the addressed problem is to devise the distributed
recursive filters capable of cooperatively estimating the true state
in order to ensure locally minimal upper bound (UB) on the
second-order moment of the filtering error (also viewed as the
general error variance). For this purpose, the general error
variance regarding the underlying target plant is first provided
to facilitate the subsequent filter design, and then a certain UB
on the error variance is constructed by exploiting the stochastic
analysis and induction approach. Furthermore, in view of the
inherent sparsity of the sensor network, the gain parameters of
the desired distributed filters are determined and the proposed
recursive filtering algorithm is shown to be scalable. Finally, an
illustrative example is given to demonstrate the validity of the
established filtering strategy.

Index Terms—Two-dimensional systems, recursive distributed
filtering, sensor networks, measurement degradations, random
couplings.

I. I NTRODUCTION

Sensor networks have drawn persistent research attention
owing to their great application potentials in various areas such
as intelligent transportation, military facility and environment
monitoring [4], [7], [22], [34]. Broadly speaking, a representa-
tive sensor network consists of massive smart, inexpensive and
low-power sensor nodes which are geographically deployed
over a certain region [2], [9]. Equipped with a local filter,
each sensor node is competent to sense/compute in the process
of information collection. Unlike a single sensor that merely
observes its own measurements, a sensor within the sensor
network can collect data from not only itself but also its
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neighbors through wireless communication channels. Benefit-
ing from such a distinguishing feature, sensors are empowered
to collaborate with other nodes in a neighbor-wise manner to
accomplish a common yet complicated task.

One crucial issue with sensor networks is the development
of the distributedfiltering problem, for which the core idea
is to reconstruct the system state on the basis of available
measurements observed from the local and neighboring sen-
sors [3], [12], [49]. Comparing with the filtering scheme in a
centralized setup, the distributed filtering algorithm possess-
es the merits of consuming less energy and incurring less
computation cost (at the expense of sacrificing the estimation
performance within an acceptable range), and is particularly
attractive in a resource-constrained environment as evidenced
by its widespread applications in engineering practice. Up
to now, the distributed filtering issue has become a popular
research topic drawing considerable interest from various
communities, and a wealth of literature has been published
[15], [18], [21], [31], [33], [50]. For example, the consensus-
based distributed filtering problem has been studied in [33]
where the asymptotic stability of the error dynamics and the
optimization of the quadratic filtering cost have been analyzed.

The existing distributed filtering methods can be mainly
classified into two categories. Methodologically, the first cat-
egory shares the commonalty of suppressing the effect of
external disturbances, optimizing the worst-case estimation
performance, and then finding the filter gains by means of the
feasibility of some linear matrix inequalities [37], [42], [47].
For instance, the distributed filtering scheme has been investi-
gated in [37] for sector-bounded nonlinear systems with ran-
domly varying sampling periods, where sufficient conditions
have been provided to guarantee theH∞ performance. The
main idea of the second category is to determine the distributed
filters within the framework of Kalman (or Kalman-type)
filters via recursive equations [5], [29], [35]. More specifically,
the celebrated Kalman filter intends to minimize the estima-
tion error variance for linear systems with exactly known
parameters [20], [52]. The Kalman filter algorithms have been
further extended to accommodate nonlinearities/uncertainties
in system models through developing alternativesuboptimal
approaches [14], [36], where the basic ideology behind such
a suboptimal strategy is to attain the tightest upper bound
(UB) on the general error variance. Recently, the distributed
filter design problem has been tackled in [29] for stochastic
systems subject to energy constraints and Markovian switching
topologies.
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So far, most available results concerning distributed filter-
ing problems have been exclusively on the traditional one-
dimensional models whose states broadcast along asingle
direction only [6], [10], [23], [26], [27], [30], [38], [40],
[51]. Nonetheless, it is observed from the practical situations
that evolutions of many system states follow two (or even
more) directions with typical examples including, but are not
limited to, multi-variable networks, chemical processes, and
image processing. As such, the so-called two-dimensional (2-
D) systems exhibit the fascinating property of two-directional
transmissions and have thus been introduced to model those
real-world systems with dynamics evolving along two horizons
[16], [17], [19]. For decades, the estimation issues for 2-
D systems have been gaining an ongoing research interest,
see e.g. [1], [25], [43], [45] for some representative results.
Unfortunately, a thorough literature review has disclosed that
slight research effort has been devoted to the recursive filtering
problem for 2-D systems over sensor networks where the error
variance serves as a crucial criterion. The reason for such a
problem to remain open yet challenging is mainly the essential
difficulties resulting from the complicated system dynamics
and the sparsity of the network topology. Therefore, in this
paper, we are motivated to launch a systematic investigation
on the design issue of 2-D distributed filters in a recursive
structure.

Despite the low cost and high flexibility of the network
communication, sensor networks may undergo coupling per-
turbations on account of potentially harsh and uncertain
wireless environments [41], [48]. The occurrence of random
couplings is fairly pervasive, which brings about complexi-
ties in stochastic analysis of the system dynamics. To date,
some initial research attention has been paid to the filtering
problem concerning sensor networks with random couplings
[13], [42]. Another frequently encountered phenomenon in
networked environments is degraded measurements which
cover the packets dropout as a special case. In consideration
of sensors aging/failure as well as transmission congestion,
measurements may suffer from inevitable degradation that
might lead to serious performance deterioration if not properly
handled [24], [28], [32], [44]. So far, in presence of random
couplings and measurement degradations, the 2-D filtering
issue has not drawn much attention yet especially in the case
where the error variance is also of concern.

To summarize the discussions made so far, it is of the-
oretical importance and practical interest to investigate the
recursive filtering problem for 2-D systems with information
degradations and network coupling perturbations. To address
such an open problem, there appear to be some substantial
challenges that should be overcome. The first challenge we
are facing is the development of effective techniques that
can be used to analyze the general error variance in the 2-
D framework. Notice that it is literally impossible to acquire
the analytical expression of the general error variance based on
the minimum-variance filtering scheme, especially for systems
with coupling perturbations. The second challenge is the
determination of the tightest UB on the error variance by
resorting to the Kalman-type strategy. It should be pointed out
that both the degraded measurement and the network topology

have major impacts on the filtering performance. The third
challenge is, therefore, to propose effective approaches to cope
with the considered network-induced phenomena and further
parameterize suitable filter gains that optimize the UB in the
trace sense.

In this paper, we focus our attention on the 2-D recursive
filtering scheme over sensor networks. In particular, both the
measurement degradations of the network outputs and the
random communication links of sensor networks are taken
into account in order to reflect the engineering phenomena
caused by changeable networked environments. With aid of the
inductive approach, the desired recursive filters are determined
to ensure the guaranteed estimation performance.The main
contributions are emphasized as follows: 1) a distributed
recursive filtering strategy is, for the first time, investigated
for 2-D systems over sensor networks with degraded mea-
surements and random couplings; 2) a delicate distributed
filter is proposed which collects not only the innovation from
the local sensor but also the complemental information from
the neighboring nodes; 3) an elaborated design of the 2-D
filter gains is provided by making full use of the topology
information and the stochastic matrix analysis; and 4) a
satisfactory state estimation is achieved by developing the
locally minimal UB on the general error variance.

The remainder of this paper is outlined as follows. Section II
presents the target plant and the 2-D recursive filtering problem
to be investigated. Section III shows some preliminaries,
provides the algorithm for finding the locally minimal UB,
and gives the filter design scheme. Section IV consists of
simulation studies to confirm the efficiency of the developed
filtering algorithm. Conclusion is drawn in Section V.

Notations:Rn signifies then-dimensional Euclidean space,
and 1n is the n-dimensional vector with all entries being
1. For a matrixX , ‖X‖ represents the norm ofX with
‖X‖ ,

√

tr{XTX}. For a real and symmetric matrixY ,
Y > 0 means thatY is real, symmetric and positive definite,
whilst Y ≥ 0 infers thatY is positive semi-definite. The
symbolcolLs=1{As} stands for the matrix[AT

1 AT
1 . . . AT

1 ]
T .

I and 0 are respectively the identity and zero matrices of
compatible dimensions. For integersk1, k2 with k1 ≤ k2,
[k1 k2] denotes the set{k1, k1+1, . . . k2}. tr{·} is the trace of
certain square matrix anddiag{· · · } means the block-diagonal
matrix. ‘◦’ denotes the Hadamard product and ‘⊗’ is the
Kronecker product.E{β} and Var{β} are respectively the
mathematical expectation and the variance of random variable
β.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The plant description

Consider the following 2-D system over a finite horizon
j, k ∈ [0 ♭] with ♭ being a given positive integer:

x(j, k) =f1((j, k − 1), x(j, k − 1)) + w(j, k − 1)

+ f2((j − 1, k), x(j − 1, k)) + w(j − 1, k) (1)

wherex(j, k) ∈ R
n is the state vector,w(j, k) ∈ R

n is the
process white noise obeying the Gaussian distribution with
zero mean and varianceQ(j, k) > 0. For ~ = 1, 2, the
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nonlinear functionsf~((j, k), x(j, k)) satisfyf~((j, k), 0) = 0
and

‖f~((j, k), x1)− f~((j, k), x2)−A~(j, k)(x1 − x2)‖

≤ a~(j, k)‖x1 − x2‖, ∀x1, x2 ∈ R
n (2)

whereA~(j, k) are known shift-varying matrices anda~(j, k)
are given nonnegative scalars. The initial statesx(j, 0) and
x(0, k) for system (1) are modeled by two white-noise se-
quences possessingE{x(j, 0)} = η1(j) and E{x(0, k)} =
η2(k), whereη1(j) andη2(k) are known vectors withη1(0) =
η2(0).

Remark 1: In view of the practical need, 2-D systems have
been a powerful tool to model many physical systems with
two-directional information propagation. In the real world,
nonlinearities occur frequently in some practical situations,
especially in the man-made systems and maneuvering target
modeling. Moreover, due to the system heterogeneity, system
parameters may be shift-varying, and the transient behaviors
of the underlying system are of significance. In this regard,
the 2-D system with shift-varying parameters and nonlinear
functions is considered here.

B. The measurement over sensor network

Consider a sensor network consisting ofL nodes to track
the system states in a cooperative paradigm. The topology of
the sensor network is represented by a directed graphG =
(V , E ,A), whereV = {1, 2, · · · , L} is the index set of nodes,
E ⊆ V×V is the edge set, andA = (hst)L×L is the weighted
adjacency matrix with nonnegative elements. To be specific,
for any s, t ∈ V , the casehst > 0 holds if and only if node
s receives information from nodet (that is to say,(s, t) ∈ E),
otherwisehst = 0. Besides, self-loops are not allowed here,
and the neighbors of nodes is denoted by the setℵs , {t ∈
V|(s, t) ∈ E} for brevity.

The measurement model of sensor nodes is given by

ys(j, k) =γs(j, k)Cs(j, k)x(j, k) + vs(j, k), s ∈ V (3)

whereys(j, k) ∈ R
m is the measured output of thes-th sensor,

Cs(j, k) is a known shift-varying matrix,vs(j, k) ∈ R
m is

the measurement noise modeled by the zero-mean Gaussian
white sequence with varianceRs(j, k) > 0, andγs(j, k) ∈ R

is a random variable taking value on the interval[0, 1] that
governs the measurement degradation with known statistics
E{γs(j, k)} = γ̄s(j, k) and Var{γs(j, k)} = γ̂s(j, k), in
which γ̄s(j, k) and γ̂s(j, k) are known scalars.

C. The distributed filter

To pursue a common task, nodes over sensor network share
information with their neighbors through the communication
channels. In this case, each sensor not only measures its own
local signal but also shares the data with its adjacent sensors,
thereby cooperatively tracking or monitoring the target states
of interest in a distributed manner.

The following distributed filter concerning nodes (s ∈ V)
is adopted for system (1):

x̂−
s (j, k) =f1((j, k − 1), x̂s(j, k − 1))

+ f2((j − 1, k), x̂s(j − 1, k)) (4a)

x̂s(j, k) =x̂−
s (j, k) +Gs(j, k)

(

ys(j, k)− γ̄s(j, k)Cs(j, k)

× x̂−
s (j, k)

)

+
∑

t∈ℵs

h̄st(j, k)Kst(j, k)

×
(

yt(j, k)− γ̄s(j, k)Cs(j, k)x̂
−
s (j, k)

)

(4b)

where x̂−
s (j, k) ∈ R

n is the prediction of statex(j, k) and
x̂s(j, k) ∈ R

n is the relevant estimate.Gs(j, k) andKst(j, k)
are the filter gains to be designed. The coupling coefficient
h̄st(j, k), which is probably confined to some small variations,
is denoted as̄hst(j, k) , hst + ∆hst(j, k). Here, hst is
the nominal parameter of the adjacency matrixA, whereas
∆hst(j, k) represents certain random perturbation acting on
hst. Specifically,∆hst(j, k) satisfiesE{∆hst(j, k)} = 0 and
E{∆hst(j, k)∆hT

st(j, k)} ≤ πst(j, k), where πst(j, k) is a
known positive scalar whenhst > 0, elsewise∆hst(j, k) = 0
when hst = 0. The initial states related to (4) are set as
x̂s(j, 0) = x̂s(0, k) = 0 for j, k ∈ [0 ♭].

Remark 2:For the considered sensor network, each sensor
is equipped with a local filter and therefore has the capacities
of sensing, computing and interacting with the neighboring
nodes. Unlike the case for a single sensor where only its own
measurement is utilized to estimate the internal state, in the
sensor network scenario, the updated information of the pro-
posed filter comes from both itself and the neighboring nodes
in a distributed manner. Actually, the updated information in
(4) is composed of two parts from different sources, one is
the conventional innovationys(j, k)−γ̄s(j, k)Cs(j, k)x̂

−
s (j, k)

from the sensor itself, and the other is the coupling data
∑

t∈ℵs

h̄st(j, k)(yt(j, k)− γ̄s(j, k)Cs(j, k)x̂
−
s (j, k)) from the

neighbors’ measurements. Such a structure, which is shown
in Fig. 1, is adopted in this paper for achieving the state
estimation with an adequate accuracy.

Physical System

Sensor 1

Local Filter

Sensor L

Local Filter

1
( , )ty j k

ÎÀ ( , )
Lty j k

ÎÀ

Wireless Channels with 

Random Perturbations

1 ( , )y j k ( , )Ly j k

( , )Ly j k1 ( , )y j k

( , )x j k ( , )x j k

Fig. 1. Schematic diagram of the considered system over sensor network.

Remark 3:The random variable∆hst(j, k) is introduced in
(4) to model the possible perturbations with known statistics.
The rational for such an introduction is the practical need for
reflecting the fact that the communication links might be ran-
domly changeable due mainly to the unideal communication
interferences. Also, there appear to be unavoidable fluctuations
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on the deterministic couplings, and hence the combined cou-
pling coefficients (both stochastic and deterministic ones) are
used in (4) to characterize the random coupling strengths.

The following assumptions are made for the convenience of
later discussion.

Assumption 1:For j, k ∈ [0 ♭] with  ∈ {1, 2, 3, 4}
and s, t ∈ V , the initial statesx(j1, 0), x(0, k1), the noises
w(j2, k2), vs(j3, k3) and the random parameterγk(j4, k4) are
mutually uncorrelated with each other.

Assumption 2:For j, k ∈ [0 ♭] and s, t ∈ V , the stochastic
perturbation∆hst(j, k) is a white-noise sequence with respect
to all indices j, k, s, t in the case ofhst > 0. Moreover,
∆hst(j, k) is uncorrelated with all the other random variables
involved in systems (1) and (3).

For notational simplicity, let us definee−s (j, k) , x(j, k)−
x̂−
s (j, k) as the prediction error andes(j, k) , x(j, k) −

x̂s(j, k) as the estimation error. Then, the following error
dynamics can be attained from (1) and (3)-(4):

e−s (j, k) =f̃1((j, k − 1), es(j, k − 1)) + w(j, k − 1)

+ f̃2((j − 1, k), es(j − 1, k)) + w(j − 1, k) (5a)

es(j, k) =e−s (j, k)−Gs(j, k)
(

ys(j, k)− γ̄s(j, k)Cs(j, k)

× x̂−
s (j, k)

)

−
∑

t∈ℵs

h̄st(j, k)Kst(j, k)

×
(

yt(j, k)− γ̄s(j, k)Cs(j, k)x̂
−
s (j, k)

)

(5b)

where for~ = 1, 2, f̃~((j, k), es(j, k)) , f~((j, k), xs(j, k))−
f~((j, k), x̂s(j, k)). By further denotingĪ , 1L ⊗ I and

Ks(j, k) , [Ks1(j, k) Ks2(j, k) · · · KsL(j, k)]

H̄s(j, k) , diag{h̄s1(j, k), h̄s2(j, k), · · · , h̄sL(j, k)} ⊗ I

Γ(j, k) , diag{γ1(j, k), γ2(j, k), · · · , γL(j, k)} ⊗ I

C̄(j, k) , colLs=1{Cs(j, k)}, v(j, k) , colLs=1{vs(j, k)}

we rewrite the error dynamics (5b) as

es(j, k) =
[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)H̄s(j, k)Ī
)

× Cs(j, k)
]

e−s (j, k)−Ks(j, k)H̄s(j, k)
[(

Γ(j, k)

× C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

x(j, k) + v(j, k)
]

−Gs(j, k)
(

γ̃s(j, k)Cs(j, k)x(j, k) + vs(j, k)
)

(6)

with γ̃s(j, k) , γs(j, k)− γ̄s(j, k).
In this paper, we are interested in designing the distributed

recursive filter (4) with desirable gains, for the 2-D system
(1) under consideration, to provide an UB on the general
estimation error for each sensor node (namely, a bound on
E{es(j, k)e

T
s (j, k)} with s ∈ V), and further obtain the locally

minimized UB in the trace sense.

III. M AIN RESULTS

This section provides certain UB on the error variance at
each iteration by solving two sets of recursive difference equa-
tions. Moreover, the desirable distributed filter is acquired for
each senor, which ensures the locally tightest UB in the trace
sense. Prior to giving the main results, some preliminaries are
first introduced.

Hereafter, let us definePs(j, k) , E{es(j, k)e
T
s (j, k)} and

P−
s (j, k) , E{e−s (j, k)(e

−
s (j, k))

T } which are, respectively,
termed as the general estimation and prediction error variances
concerning thes-th filter, and further let the second-order
moment of the system state beX(j, k) , E{x(j, k)xT (j, k)}.

A. Auxiliary lemmas

The following fundamental lemmas determine the dynamics
of the general error variances.

Lemma 1:For the prediction error dynamics (5a), the evo-
lution of P−

s (j, k) is given by

P−
s (j, k) =Φ1,s(j, k − 1) + Φ2,s(j − 1, k)

+ Ψs((j, k − 1), (j − 1, k)) +Q(j, k − 1)

+ ΨT
s ((j, k − 1), (j − 1, k)) +Q(j − 1, k) (7)

where, for~ = 1, 2,

Φ~,s(j, k) = E
{

f̃~((j, k), es(j, k))f̃
T
~ ((j, k), es(j, k))

}

Ψs((j, k − 1), (j − 1, k))

= E
{

f̃1((j, k−1), es(j, k−1))f̃T
2 ((j−1, k), es(j−1, k))

}

.

Proof: For all j, k ∈ [0 ♭], notice the uncorrelatedness
between random variablesw(j, k) and f̃~((ı0, 0), es(ı0, 0))
with ~ = 1, 2, s ∈ V and (ı0, 0) ∈ {(ı, )|ı ∈ [0 j − 1],  ∈
[0 ♭]}∪{(ı, )|ı ∈ [0 ♭],  ∈ [0 k−1]}∪{(j, k)}. It is concluded
from (5a) that the statement of this lemma is correct.

Lemma 2:For the estimation error dynamics (6), the evo-
lution of Ps(j, k) obeys the following inequality constraint:

Ps(j, k) ≤
[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)HsĪ
)

Cs(j, k)
]

× P−
s (j, k)

[

I −
(

Gs(j, k) +Ks(j, k)HsĪ
)

× γ̄s(j, k)Cs(j, k)
]T

−Πs(j, k)−ΠT
s (j, k)

+Ks(j, k)
[

γ̄2
s (j, k)Ĥs(j, k) ◦

(

ĪCs(j, k)

× P−
s (j, k)CT

s (j, k)Ī
T
)

+ Ĥs(j, k) ◦ Θ̄s(j, k)

+HsΘ̄s(j, k)H
T
s

]

KT
s (j, k) +Gs(j, k)

(

Rs(j, k)

+ γ̂s(j, k)Cs(j, k)X(j, k)CT
s (j, k)

)

GT
s (j, k) (8)

where

Hs = diag{hs1, hs2, · · · , hsL} ⊗ I

Ĥs(j, k) = diag{πs1(j, k), πs2(j, k), · · · , πsL(j, k)} ⊗ I

Γ̂(j, k) = diag{γ̂1(j, k), γ̂2(j, k), · · · , γ̂L(j, k)} ⊗ I

Θ̄s(j, k) = Θs(j, k) +R(j, k)

+ Γ̂(j, k) ◦
(

C̄(j, k)X(j, k)C̄T (j, k)
)

Θs(j, k) =
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

X(j, k)

×
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)T

R(j, k) , diag{R1(j, k), R2(j, k), · · · , RL(j, k)} ⊗ I

Γ̄(j, k) , diag{γ̄1(j, k), γ̄2(j, k), · · · , γ̄L(j, k)} ⊗ I

Πs(j, k) = E

{

[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)H̄s(j, k)Ī
)

× Cs(j, k)
]

e−s (j, k)x
T (j, k)

(

Γ(j, k)C̄(j, k)

− γ̄s(j, k)ĪCs(j, k)
)T

H̄T
s (j, k)K

T
s (j, k)

}

.
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Proof: The statistics of∆hst(j, k) indicate that

E
{

∆hst(j, k)∆hT
st(j, k)

}

≤ πst(j, k)

E
{

∆hst1(j, k)∆hT
st2

(j, k)
}

= 0, t1 6= t2.

Moreover, based on the expression ofγ̃s(j, k), one has
E{γ̃s(j, k)} = 0 and E{γ̃s1(j, k)γ̃s2 (j, k)} = γ̂s1(j, k) for
s1 = s2, while E{γ̃s1(j, k)γ̃s2 (j, k)} = 0 otherwise.

For a given deterministic matrixZ ≥ 0, it follows from the
property of Hadamard product that

E
{

H̃s(j, k)ZH̃T
s (j, k)

}

=E
{

diag{∆h2
s1(j, k)I,∆h2

s2(j, k)I, · · · ,∆h2
sL(j, k)I}◦Z

}

≤ diag{πs1(j, k)I, πs2(j, k)I, · · · , πsL(j, k)I} ◦ Z

= Ĥs(j, k) ◦ Z

and

E
{

Γ̃(j, k)ZΓ̃T (j, k)
}

= Γ̂(j, k) ◦ Z

where

H̃s(j, k),diag{∆hs1(j, k),∆hs2(j, k), · · · ,∆hsL(j, k)}⊗I

Γ̃(j, k) , diag{γ̃1(j, k), γ̃2(j, k), · · · , γ̃L(j, k)} ⊗ I

with E{Γ̃(j, k)} = 0 and E{Γ̃(j, k)Γ̃T (j, k)} = Γ̂(j, k).
Consequently, it is not difficult to verify the validity of the
following relationships

E

{

γ̄2
s (j, k)Ks(j, k)H̃s(j, k)ĪCs(j, k)e

−
s (j, k)

×
(

Ks(j, k)H̃s(j, k)ĪCs(j, k)e
−
s (j, k)

)T
}

≤ γ̄2
s (j, k)Ks(j, k)

[

Ĥs(j, k) ◦
(

ĪCs(j, k)P
−
s (j, k)

× CT
s (j, k)Ī

T
)]

KT
s (j, k),

E

{

[(

Γ(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

x(j, k) + v(j, k)
]

×
[(

Γ(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

x(j, k) + v(j, k)
]T

}

= E

{

(

Γ(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

X(j, k)

×
(

Γ(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)T

}

+R(j, k)

=
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

X(j, k)

×
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

+R(j, k)

+ E
{

Γ̃(j, k)C̄(j, k)X(j, k)C̄T (j, k)Γ̃T (j, k)
}

= Θs(j, k)+R(j, k)+Γ̂(j, k) ◦
(

C̄(j, k)X(j, k)C̄T (j, k)
)

= Θ̄s(j, k).

On account of Assumptions 1-2, the definition ofPs(j, k) and
equation (6) result in the validity of (8), where part of the
detailed technical analysis is omitted for conciseness.

This subsection derives the standard recursions of the gener-
al error variances. Nevertheless, in the considered framework
of (7)-(8), wherein not only the nonlinearities but also the
random couplings affect the 2-D evolutions, calculation of the
exact error variances is inaccessible, which complicates the
design of theoptimal filter gains. In view of this, alternative
suboptimal filtering strategies should be exploited, and a
frequently used strategy is to devise the filter gains that achieve
the locally tightest bounds on the error variances.

B. Upper bounds (UBs)

It is observed from (7)-(8) that the involvement of the cross
terms, the nonlinearities and the second-order moment of the
state in the general error variances adds much difficulty to the
filter design, which are to be handled in the following.

First, the cross termΠs(j, k) will be addressed by using the
elementary inequality. For an arbitrary positive scalarµ, it is
derived from the expression ofΠs(j, k) in Lemma 2 that

− Πs(j, k)− ΠT

s (j, k)

= −E

{

[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)H̄s(j, k)Ī
)

Cs(j, k)
]

× e
−
s (j, k)x

T (j, k)
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)T

× H̄
T

s (j, k)KT

s (j, k) +Ks(j, k)H̄s(j, k)

×
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

x(j, k)(e−s (j, k))
T

×
[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)H̄s(j, k)Ī
)

Cs(j, k)
]

T
}

≤ µ
{

[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)HsĪ
)

Cs(j, k)
]

× P
−
s (j, k)

[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)HsĪ
)

× Cs(j, k)
]T

+ γ̄
2
s(j, k)Ks(j, k)

[

Ĥs(j, k) ◦
(

ĪCs(j, k)

× P
−
s (j, k)CT

s (j, k)ĪT
)]

K
T

s (j, k)
}

+ µ
−1

Ks(j, k)

×
(

Ĥs(j, k) ◦Θs(j, k) +HsΘs(j, k)H
T

s

)

K
T

s (j, k).

Consequently, the obtained evolution ofPs(j, k) (as shown
in (8)) obeys:

Ps(j, k) ≤(1 + µ)
{

[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)HsĪ
)

× Cs(j, k)
]

P−
s (j, k)

[

I −
(

Gs(j, k) +Ks(j, k)

×HsĪ
)

γ̄s(j, k)Cs(j, k)
]T

+ γ̄2
s (j, k)Ks(j, k)

×
[

Ĥs(j, k) ◦
(

ĪCs(j, k)P
−
s (j, k)CT

s (j, k)Ī
T
)]

×KT
s (j, k)

}

+Ks(j, k)
(

Ĥs(j, k) ◦ Θ̂s(j, k)

+HsΘ̂s(j, k)H
T
s

)

KT
s (j, k) +Gs(j, k)

(

Rs(j, k)

+ γ̂s(j, k)Cs(j, k)X(j, k)CT
s (j, k)

)

GT
s (j, k) (9)

with

Θ̂s(j, k) = (1 + µ−1)Θs(j, k) +R(j, k)

+ Γ̂(j, k) ◦
(

C̄(j, k)X(j, k)C̄T (j, k)
)

. (10)

Next, to deal with the nonlinearities, one obtains from (2)
and the elementary inequality that

E
{

f̃~((j, k), es(j, k))f̃
T
~
((j, k), es(j, k))

}

= E

{(

f̃~((j, k), es(j, k))− (A~(j, k)−A~(j, k))es(j, k)
)

×
(

f̃~((j, k), es(j, k)) − (A~(j, k)−A~(j, k))es(j, k)
)T }

≤ (1 + ǫ)E
{(

f̃~((j, k), es(j, k))−A~(j, k)es(j, k)
)

×
(

f̃~((j, k), es(j, k))−A~(j, k)es(j, k)
)T }

+ (1 + ǫ−1)A~(j, k)Ps(j, k)A
T
~
(j, k)

≤ (1 + ǫ−1)A~(j, k)Ps(j, k)A
T
~ (j, k)

+ (1 + ǫ)a2
~
(j, k)tr{Ps(j, k)}I , P̂~,s(j, k) (11)
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for ~ = 1, 2 and a given scalarǫ > 0. Analogously, it is
evident to see that

E
{

f~((j, k), x(j, k))f
T
~
((j, k), x(j, k))

}

≤ (1 + ǫ)a2~(j, k)tr{X(j, k)}I

+ (1 + ǫ−1)A~(j, k)X(j, k)AT
~ (j, k) , X~(j, k). (12)

Based on (11), matrixP−
s (j, k) in (7) satisfies

P−
s (j, k) ≤(1 + µ)P̂1s(j, k − 1) + (1 + µ−1)P̂2s(j − 1, k)

+Q(j, k − 1) +Q(j − 1, k). (13)

Furthermore, a bound function of matrixX(j, k) is derived
by using (12) in the following lemma.

Lemma 3:Let µ andǫ be given positive scalars. For system
(1), matrixX(j, k) is bounded by the solution of the following
recursion:

X̄(j, k) =(1 + µ)X̂1(j, k − 1) + (1 + µ−1)X̂2(j − 1, k)

+Q(j, k − 1) +Q(j − 1, k) (14)

whose initial states are set as

X̄(j, 0) = X(j, 0), X̄(0, k) = X(0, k)

with

X̂~(j, k) ,(1 + ǫ)a2~(j, k)tr
{

X̄(j, k)
}

I

+ (1 + ǫ−1)A~(j, k)X̄(j, k)AT
~
(j, k), ~ = 1, 2.

Proof: Recalling the system dynamics (1) and the statis-
tical property ofw(j, k), one has

X(j, k) ≤(1 + µ)X1(j, k − 1) + (1 + µ−1)X2(j − 1, k)

+Q(j, k − 1) +Q(j − 1, k)

where (12) has been used to dispose the considered nonlinear
functions. DenoteX̃(j, k) , X(j, k)− X̄(j, k) for simplicity.
Then, the dynamics of̃X(j, k) satisfies

X̃(j, k) ≤ (1 + µ)
[

(1 + ǫ)a21(j, k − 1)tr
{

X̃(j, k − 1)
}

I

+(1 + ǫ−1)A1(j, k − 1)X̃(j, k − 1)AT
1 (j, k − 1)

]

+(1 + µ−1)
[

(1 + ǫ)a22(j − 1, k)tr
{

X̃(j − 1, k)
}

I

+(1 + ǫ−1)A2(j − 1, k)X̃(j − 1, k)AT
2 (j − 1, k)

]

.

According to the above inequality and the property of trace for
positive semi-definite matrix, for certain given integersj, k ∈
[1 ♭], one easily confirms thatX(j, k) ≤ X̄(j, k) is true under
the conditionsX(j, k − 1) ≤ X̄(j, k − 1) andX(j − 1, k) ≤
X̄(j − 1, k). Bearing this fact in mind, it is not difficult to
check that

X(j, k) ≤ X̄(j, k)

holds for all j, k ∈ [0 ♭] by employing the initial states of
(14) and the induction. Therefore,̄X(j, k) expressed by the
recursion (14) is indeed a bound function onX(j, k).

Now, let us consider the state estimation issue of the 2-D
system (1) over sensor network (3). It is worth mentioning
that the addressed distributed recursive filtering problem is
much more complicated than the one-dimensional standard
one or the conventional one with a sole sensor, it is by no

means trivial to design proper gain matrices for each local filter
with consideration of the topology information of the sensor
networks. In this case, we would like to apply the stochastic
analysis techniques to acquire certain UBs on the general error
variances. The following result is readily accessible on the
existence of UBs.

Theorem 1:Let µ, ǫ be given positive scalars and̄X(j, k)
be the solution to (14). Forj, k ∈ [0 ♭] and s ∈ V , consider
system (1) with filter (4). The general error variances are
bounded by

P−
s (j, k) ≤ Ωs(j, k), Ps(j, k) ≤ Ms(j, k) (15)

where the matrix sequencesΩs(j, k) andMs(j, k) with initial
statesMs(j, 0) = Ps(j, 0) andMs(0, k) = Ps(0, k) are the
solutions of the following recursions

Ωs(j, k) =(1 + µ)M̂1,s(j, k − 1) + (1 + µ−1)M̂2,s(j − 1, k)

+Q(j, k − 1) +Q(j − 1, k), (16)

Ms(j, k) =(1 + µ)
{

[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)HsĪ
)

× Cs(j, k)
]

Ωs(j, k)
[

I − γ̄s(j, k)
(

Gs(j, k)

+Ks(j, k)HsĪ
)

Cs(j, k)
]T

+ γ̄2
s (j, k)Ks(j, k)

×
[

Ĥs(j, k) ◦
(

ĪCs(j, k)Ωs(j, k)C
T
s (j, k)ĪT

)]

×KT
s (j, k)

}

+Ks(j, k)
(

Ĥs(j, k) ◦Υs(j, k)

+HsΥs(j, k)H
T
s

)

KT
s (j, k) +Gs(j, k)

(

Rs(j, k)

+ γ̂s(j, k)Cs(j, k)X̄(j, k)CT
s (j, k)

)

GT
s (j, k)

(17)

where

M̂~,s(j, k) = (1 + ǫ)a2
~
(j, k)tr{Ms(j, k)}I

+ (1 + ǫ−1)A~(j, k)Ms(j, k)A
T
~
(j, k)

Υs(j, k) = (1 + µ−1)Ῡs(j, k) +R(j, k)

+ Γ̂(j, k) ◦
(

C̄(j, k)X̄(j, k)C̄T (j, k)
)

Ῡs(j, k) =
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)

X̄(j, k)

×
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)T

.

Proof: Subtracting (16) from (13) results in

P−
s (j, k)− Ωs(j, k)

≤ (1 + µ)
(

P̂1,s(j, k − 1)− M̂1,s(j, k − 1)
)

+ (1 + µ−1)
(

P̂2,s(j − 1, k)− M̂2,s(j − 1, k)
)

. (18)

On the other hand, it is known from Lemma 3 thatX(j, k)
is bounded byX̄(j, k). Then, according to the expressions of
Θ̂s(j, k) in (10) andΥs(j, k), one has

Θ̂s(j, k)−Υs(j, k)

≤
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
) (

X(j, k)− X̄(j, k)
)

× (1 + µ−1)
(

Γ̄(j, k)C̄(j, k)− γ̄s(j, k)ĪCs(j, k)
)T

+ Γ̂(j, k) ◦
(

C̄(j, k)(X(j, k)− X̄(j, k))C̄T (j, k)
)

≤ 0.

It follows from (9) and (17) that

Ps(j, k)−Ms(j, k)

≤ (1 + µ)
{

[

I−γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)Hs Ī
)

Cs(j, k)
]
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×
(

P−
s (j, k)− Ωs(j, k)

) [

I −
(

Gs(j, k) +Ks(j, k)HsĪ
)

× γ̄s(j, k)Cs(j, k)
]T

+ γ̄2
s (j, k)Ks(j, k)

[

Ĥs(j, k) ◦
(

Ī

× Cs(j, k)
(

P−
s (j, k) − Ωs(j, k)

)

CT
s (j, k)Ī

T
)]

KT
s (j, k)

}

+Ks(j, k)
[

Ĥs(j, k) ◦
(

Θ̂s(j, k)−Υs(j, k)
)

+Hs

(

Θ̂s(j, k)−Υs(j, k)
)

HT
s

]

KT
s (j, k) + γ̂s(j, k)

×Gs(j, k)Cs(j, k)
(

X(j, k)− X̄(j, k)
)

CT
s (j, k)G

T
s (j, k).

(19)

To validate the conclusion of this theorem, we assume that
(15) holds for(j, k) ∈ {(ı, )|ı,  ∈ [1 ♭]; ı +  = ℓ} with
ℓ ∈ [2 2♭ − 1]. Then, the validity of (15) can be checked
for (j, k) ∈ {(ı, )|ı,  ∈ [1 ♭]; ı +  = ℓ + 1} based on the
induction. Actually, the introduced hypothesis brings about

P̂~,s(j, k)− M̂~,s(j, k) ≤ 0

for (j, k) ∈ {(ı, )|ı,  ∈ [1 ♭]; ı+  = ℓ} with ℓ ∈ [2 2♭−1].
This fact, in combination with (18), results in

P−
s (j, k)− Ωs(j, k) ≤ 0

for (j, k) ∈ {(ı, )|ı,  ∈ [1 ♭]; ı +  = ℓ + 1}, which further
yields

Ps(j, k)−Ms(j, k) ≤ 0

with the help of (19). The proof is now complete.

C. Design of the distributed filter

Note that the UBs of the error variances are presented in
Theorem 1 in a recursive form. Once the initial statesMs(j, 0)
andMs(0, k) are given, the analytical solutions to (16)-(17)
can be iteratively calculated with aid of the filter gains, which
can be appropriately designed so as to optimize the derived
bound at each iteration. As for the distributed filter (4), its key
characteristic lies in that the combined coupling data (collected
from the neighboring nodes) are used to update the estimate
value which, in turn, makes the design of the distributed filter
challenging because of the sparsity of the connectivity for
the sensor network. Keeping the above discussions in mind,
the filtering problem needs to be effectively solved through
applying some intriguing techniques.

For convenience of the subsequent developments, we intro-
duce the following notations:

γ
(s)
j,k ,(1 + µ)γ̄2

s (j, k)

As(j, k) ,(1 + µ)γ̄s(j, k)
[

I − γ̄s(j, k)Ks(j, k)HsĪCs(j, k)
]

× Ωs(j, k)C
T
s (j, k)

Bs(j, k) ,γ
(s)
j,kCs(j, k)Ωs(j, k)C

T
s (j, k) +Rs(j, k)

+ γ̂s(j, k)Cs(j, k)X̄(j, k)CT
s (j, k)

Cs(j, k) ,
[

I − γ
(s)
j,kΩs(j, k)C

T
s (j, k)B

−1
s (j, k)Cs(j, k)

]

× (1 + µ)γ̄s(j, k)Ωs(j, k)C
T
s (j, k)Ī

THT
s

Ds(j, k) ,γ
(s)
j,k

[

Ĥs(j, k) ◦
(

ĪCs(j, k)Ωs(j, k)C
T
s (j, k)Ī

T
)

+HsĪCs(j, k)Ωs(j, k)C
T
s (j, k)Ī

THT
s

]

−Es(j, k)

+HsΥs(j, k)H
T
s + Ĥs(j, k) ◦Υs(j, k)

Es(j, k) ,
(

γ
(s)
j,k

)2
HsĪCs(j, k)Ωs(j, k)C

T
s (j, k)

× B−1
s (j, k)Cs(j, k)Ωs(j, k)C

T
s (j, k)Ī

THT
s .

The following theorem provides an algorithm to explicitly
design the distributed filter gains.

Theorem 2:For j, k ∈ [1 ♭] and s, t ∈ V , the filter gains
that minimize the UBMs(j, k) in the trace sense are given by

Gs(j, k) = As(j, k)B
−1
s (j, k) (20)

Kst(j, k) =

{

(C̄s(j, k)D̄
−1
s (j, k))♯, hst > 0

0, hst = 0
(21)

whereC̄s(j, k) is thesimplifiedmatrix ofCs(j, k) by removing
its zero columns, and̄Ds(j, k) is thesimplifiedone ofDs(j, k)
by removing both its zero columns and zero rows. Here, the
symbol Z♯ denotes the corresponding sub-matrix extracted
from a given matrixZ. In this case, the optimal UB is
expressed by

Ms(j, k) =(1 + µ)
(

Ωs(j, k) − Ωs(j, k)C
T
s (j, k)B

−1
s (j, k)

× γ
(s)
j,kCs(j, k)Ωs(j, k)

)

−Ks(j, k)C
T
s (j, k).

(22)

Proof: Recalling the derived bound in (17) and then
taking the partial derivatives oftr{Ms(j, k)} with regard to
Gs(j, k) andKs(j, k), we arrive at

∂tr{Ms(j, k)}

∂Gs(j, k)

= −2(1 + µ)γ̄s(j, k)
[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)HsĪ
)

× Cs(j, k)
]

Ωs(j, k)C
T
s (j, k) + 2Gs(j, k)

(

Rs(j, k)

+ γ̂s(j, k)Cs(j, k)X̄(j, k)CT
s (j, k)

)

(23)

and
∂tr{Ms(j, k)}

∂Ks(j, k)

= −2(1 + µ)γ̄s(j, k)
[

I − γ̄s(j, k)
(

Gs(j, k) +Ks(j, k)HsĪ
)

× Cs(j, k)
]

Ωs(j, k)C
T
s (j, k)Ī

THT
s + 2Ks(j, k)

{

(1 + µ)

× γ̄2
s (j, k)Ĥs(j, k) ◦

(

ĪCs(j, k)Ωs(j, k)C
T
s (j, k)Ī

T
)

+HsΥs(j, k)H
T
s + Ĥs(j, k) ◦Υs(j, k)

}

. (24)

To obtain the filter parameterGs(j, k), we set (23) to be
zero and then have

Gs(j, k)
[

γ̄2
s (j, k)(1 + µ)Cs(j, k)Ωs(j, k)C

T
s (j, k)

+γ̂s(j, k)Cs(j, k)X̄(j, k)CT
s (j, k) +Rs(j, k)

]

= (1 + µ)γ̄s(j, k)
(

I − γ̄s(j, k)Ks(j, k)Hs ĪCs(j, k)
)

× Ωs(j, k)C
T
s (j, k)

which ascertains the design ofGs(j, k) as in (20).
Similarly, letting (24) be zero and further applying the

relationship (20) to (24), one has

Ks(j, k)
{

γ
(s)
j,kĤs(j, k) ◦

(

ĪCs(j, k)Ωs(j, k)C
T
s (j, k)Ī

T
)

+HsΥs(j, k)H
T
s + Ĥs(j, k) ◦Υs(j, k)

+ γ
(s)
j,kHsĪCs(j, k)Ωs(j, k)

(

Ω−1
s (j, k)− γ

(s)
j,kC

T
s (j, k)

× B−1
s (j, k)Cs(j, k)

)

Ωs(j, k)C
T
s (j, k)Ī

THT
s

}
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=
[

I − γ
(s)
j,kΩs(j, k)C

T
s (j, k)B

−1
s (j, k)Cs(j, k)

]

× (1 + µ)γ̄s(j, k)Ωs(j, k)C
T
s (j, k)Ī

THT
s

which can be rewritten as

Ks(j, k)Ds(j, k) = Cs(j, k). (25)

It should be pointed out that the structures ofHs and
Ĥs(j, k) (reflecting, respectively, the information of the deter-
ministic couplings and the statistics of the random coupling
fluctuations associated with sensors) may lead to the singu-
larity of matrix Ds(j, k). In this scenario,Ks(j, k) cannot be
obtained directly from (25). To deal with such kind of sparsity
issue of network communication, the so-calledmatrix simpli-
fication technique [28] is utilized here to simplifyCs(j, k) and
Ds(j, k), and it can then be derived that

Kst(j, k) =

{

(C̄s(j, k)D̄
−1
s (j, k))♯, hst > 0

0, hst = 0.

The invertibility of matrixD̄s(j, k) is confirmed in Appendix
A, which shows that (21) is well-defined. Finally, substituting
(20)-(21) into (17), it is calculated via some routine matrix
manipulations that

Ms(j, k) =(1 + µ)
(

Ωs(j, k)− Ωs(j, k)C
T
s (j, k)B

−1
s (j, k)

× γ
(s)
j,kC

T
s (j, k)Ωs(j, k)

)

−Ks(j, k)C
T
s (j, k)

which accords with (22) (for which the detailed derivations
can be found in Appendix B). The proof is completed.

Remark 4:Due to the sparsity of the network topology,
matrix Ds(j, k) may be singular, and this gives rise to certain
obstacle in directly calculating the filer gainKs(j, k). To cope
with such an issue, in Theorem 2, a matrix simplification
technique has been adopted by taking advantages of the
topological structure of the sensor network.

Remark 5:By far, the distributed recursive filtering prob-
lem has been addressed for the considered 2-D shift-varying
systems over sensor networks. Both the degraded measure-
ments and the random couplings have been introduced for
depicting the possible sensor failures and random couplings.
By means of two sets of recursive matrix equalities, an UB of
the general error covariance has been established in Theorem
1 for each sensor node. Then, the filter gains have been
determined in Theorem 2 to optimize the obtained UB at
each step. It is apparent from (22) that all the information
concerning the system model (i.e., the degradation coefficients,
the sensor network topology, and the coupling perturbations) is
reflected in the filter design algorithm that has direct influences
on the filtering performance.

IV. N UMERICAL EXAMPLE

This section provides an illustrated example to show the
effectiveness of the filtering method proposed in the main
results.

Consider the 2-D system (1) defined on a finite horizon[0 ♭]
with ♭ = 40. The nonlinear functions in (1) are given by:

f~((j, k), x(j, k)) = A~(j, k)x(j, k) + F~((j, k), x(j, k))

with ~ = 1, 2, where

A1(j, k) =

[

0.28 0.1− 0.1 sin(j)
−0.1 0.3

]

,

A2(j, k) =

[

0.2 0.1− 0.1 cos(k)
−0.2 0.25

]

,

F1((j, k), x(j, k)) = 0.016 sin(x(j, k)),

F2((j, k), x(j, k)) = 0.015 sin(x(j, k)).

It is obvious to know that the above nonlinear functions meet
condition (2) witha1(j, k) = 0.016 anda2(j, k) = 0.015.

The sensor network is described by a directed and weighted
graphG = (V , E ,A), whereV = {1, 2, 3, 4, 5, 6, 7, 8}, E =
{(1, 6), (1, 8), (2, 4), (3, 6), (4, 7), (5, 1), (6, 2), (7, 5), (8, 3)},
and A = (hst)8×8 with hst = 1 if and only if (s, t) ∈ E .
In the case ofhst = 1 (s, t ∈ [1 8]), the random variable
∆hst(j, k) is assumed to obey a uniform distribution over
the interval [−0.6, 0.6], and the second-order moment of
∆hst(j, k) is thus confined to a scalarπst(j, k) = 0.12.
Moreover, the matrix parameters in (3) are given by

C1(j, k) = [0.3 1.2], C2(j, k) = [0.8 0.15 sin(j)],

C3(j, k) = [0.45 1.6], C4(j, k) = [0.8 + 0.1e−j − 1],

C5(j, k) = [1 1.5], C6(j, k) = [0.5− 0.1 sin(k) 0.35],

C7(j, k) = [−0.6 0.1 cos(2k)], C8(j, k)=[2 0.2 cos(j)].

The measurement degradation is depicted by the random
variablesγs(j, k) (s ∈ [1 8]) whose probability mass functions
are set to be

pl(j, k) =







0.05, l = 0
0.1, l = 0.5
0.85, l = 1.

It is easy to computēγs(j, k) = 0.9 and γ̂s(j, k) = 0.065.
The process and measurement noisesw(j, k) andvs(j, k) are
modeled by mutually uncorrelated Gaussian sequences with
respective variancesQ(j, k) = 0.09I and Rs(j, k) = 0.16.
For simulation purpose, the initial conditions of (1) are given
as η1(j) = η2(k) = [0 0]T andX(j, 0) = X(0, k) = 0.01I,
which result inPs(j, 0) = Ps(0, k) = 0.01I for all s ∈ [1 8].
The scaling scalars are chosen to beµ = 0.5 andǫ = 2.

For notational brevity, denotee(ı)s (j, k) as theı-th element
of es(j, k) andMSEs(j, k) as the mean square error with

MSEs(j, k) ,
1

M

M
∑

ℓ=1

eTs (j, k)es(j, k).

where the indexℓ infers theℓ-th individual run, and the index
M is the number of the independent repeated runs.

With the above parameters, the UB and the filter gains
can be iteratively calculated from Theorems 1 and 2. Only
part of the simulation results are presented for the first sensor
node due to space limit. Specifically, Figs. 2-3 plot the error
trajectoriese(1)1 (j, k) ande(2)1 (j, k), respectively. Fig. 4 shows
the trace of the UBM1(j, k) and Fig. 5 displays the mean
square errorMSE1(j, k) averaged over 500 independent runs.
Figs. 2-5 illustrate that the developed recursive filter works
well.
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Fig. 2. Trajectory of the estimation errore(1)1 (j, k).
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Fig. 3. Trajectory of the estimation errore(2)1 (j, k).
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Fig. 4. Trace of the UBM1(j, k).
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Fig. 5. The mean square errorMSE1(j, k).

To reflect the effect of the noise amplitudes, the noise
covariances are reset asQ(j, k) = 0.16 andRs(j, k) = 0.81
without changing other parameters. The corresponding simu-
lation result regarding the trace of the UBM1(j, k) is given in
Fig. 6. Comparing the trajectory oftr{M1(j, k)} with the one
in Fig. 4, we can see that the obtained UB becomes bigger
with larger noise amplitudes.
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Fig. 6. Trace ofM1(j, k) with Q(j, k) = 0.16 andRs(j, k) = 0.81.

To evaluate the influence of the measurement degradation,
the probability mass function is reset as:

pl(j, k) =







0.13, l = 0
0.74, l = 0.5
0.13, l = 1.

In this case, it is easily calculated thatγ̄s(j, k) = 0.5 and
γ̂s(j, k) = 0.065. Accordingly, Fig. 7 presents the simulation
result regarding the trace of the UBM1(j, k) with γ̄s(j, k) =
0.5. In comparison with Fig. 4, it is concluded that a larger
value of γ̄s(j, k) contributes to the tighter trace of the UB,
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namely, a better filtering performance because more useful
measurements are available in the statistical sense.

Apart from the examination on the measurement degrada-
tion, the effect of the random perturbation couplings on the
filtering performance is also evaluated. Let us first introduce
the ideal case where only the deterministic couplings con-
tribute to the process of data exchange between sensors with-
out considering the random coupling perturbations (namely,
∆hst(j, k) ≡ 0 for all s, t ∈ [1 8]). Remaining all the other
parameters, the corresponding UB is denoted asM †

s (j, k). The
comparison between the traces of UBsM1(j, k) andM †

1 (j, k)
is depicted in Fig. 8. Next, without changing the remainder
parameters, the random variable∆hst(j, k) is further reset to
be uniformly distributed over the interval[−0.9, 0.9], and the
bound on the second-order moment of∆hst(j, k) is given as
πst(j, k) = 0.27. In this case, the obtained UB is denoted
as M ‡

s (j, k), and the difference betweentr{M ‡
1 (j, k)} and

tr{M1(j, k)} is shown in Fig. 9. It is revealed from Figs. 8-
9 that the random perturbation couplings will degrade the
filtering performance. To be more specific, the best filtering
performance is achieved without any coupling perturbations,
and the increased intensity of random perturbation couplings
leads to the degradation of the filtering performance.
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Fig. 7. Trace ofM1(j, k) with γ̄s(j, k) = 0.5.

V. CONCLUSION

This paper has discussed the recursive filtering problem for
2-D nonlinear system over sensor network in the presence of
degraded measurements and coupling perturbations. Phenom-
ena of measurement degradations and random couplings are
governed by random variables satisfying certain probability
distributions. A novel distributed filter has been proposed in 2-
D case to estimate the system state with a guaranteed filtering
performance. Theoretical results have been established to con-
struct certain UBs on the general error variances. In addition,
the explicit expression of the tightest bound has been derived
and the desired gain matrices have been carefully designed
by matrix analysis techniques and mathematical induction.
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Fig. 8. The difference betweentr{M1(j, k)} and tr{M†
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0

10

20

30

40 0

10

20

30

40

0

0.005

0.01

0.015

0.02

0.025

k=0,1,...
j=0,1,...

tr
{
M

‡ 1
(j
,k
)
−
M

1
(j
,k
)}

Fig. 9. The difference betweentr{M‡
1 (j, k)} and tr{M1(j, k)}.

The simulation example has also been presented to clarify
the feasibility of our proposed filtering strategy. Our future
research topics would be the extensions of the main results
derived here to other 2-D systems with more complicated
dynamics, such as the state-saturated filtering problem with
cyber-attacks [11], [39] and the protocol-based state estimation
problems [8], [46].

APPENDIX

A. Invertibility of D̄s(j, k)

Noting that matricesQ(j, k) and Rs(j, k) are positive
definite, one obtainsΩs(j, k) > 0 based on the evolution of
Ωs(j, k) in (16). In this case, the following matrix

Ω̄s(j, k) ,Ω−1
s (j, k) + γ

(s)
j,kC

T
s (j, k)

(

Rs(j, k)

+ γ̂s(j, k)Cs(j, k)X̄(j, k)CT
s (j, k)

)−1
Cs(j, k)
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is well-posed and positive definite. According to the well-
known matrix inversion lemma, it can be derived that

Ω̄−1
s (j, k) =Ωs(j, k)− γ

(s)
j,kΩs(j, k)C

T
s (j, k)

[

Rs(j, k)

+ γ̂s(j, k)Cs(j, k)X̄(j, k)CT
s (j, k) + γ

(s)
j,k

× Cs(j, k)Ωs(j, k)C
T
s (j, k)

]−1

Cs(j, k)Ωs(j, k)

=Ωs(j, k)− γ
(s)
j,kΩs(j, k)C

T
s (j, k)B

−1
s (j, k)

× Cs(j, k)Ωs(j, k) > 0. (26)

Combing (26) with the definition ofEs(j, k), one has

γ
(s)
j,kHsĪCs(j, k)

[

Ωs(j, k)− γ
(s)
j,kΩs(j, k)C

T
s (j, k)B−1

s (j, k)

× Cs(j, k)Ωs(j, k)
]

CT
s (j, k)Ī

THT
s

= γ
(s)
j,kHsĪCs(j, k)Ωs(j, k)C

T
s (j, k)Ī

THT
s − Es(j, k) ≥ 0

which means that the sum of the second and third terms of
Ds(j, k) are positive semi-definite. Recall the fact thatD̄s(j, k)
is the simplified one ofDs(j, k) by removing both its zero
columns and zero rows. The invertibility of̄Ds(j, k) can now
be verified from (26) and the sparsity of matricesHs and
Ĥs(j, k).

B. Proof of (22)

Recall the definitions ofAs(j, k), Bs(j, k), Cs(j, k) and
Es(j, k). We derive from the filter gainGs(j, k) determined
in (20) that

As(j, k)B
−1
s (j, k)AT

s (j, k)

= (1 + µ)γ
(s)
j,kΩs(j, k)C

T
s (j, k)B

−1
s (j, k)Cs(j, k)Ωs(j, k)

+Ks(j, k)Es(j, k)K
T
s (j, k)−(1 + µ)2γ̄3

s (j, k)Ks(j, k)Hs

× ĪCs(j, k)Ωs(j, k)C
T
s (j, k)B

−1
s (j, k)Cs(j, k)Ωs(j, k)

− (1 + µ)2γ̄3
s (j, k)Ωs(j, k)C

T
s (j, k)B−1

s (j, k)

×
(

Ks(j, k)HsĪCs(j, k)Ωs(j, k)C
T
s (j, k)

)T
, (27)

(1 + µ)γ̄s(j, k)Ωs(j, k)
[(

Gs(j, k) +Ks(j, k)Hs Ī
)

Cs(j, k)
]T

= (1 + µ)γ̄s(j, k)Ωs(j, k)
[

As(j, k)B
−1
s (j, k)Cs(j, k)

+Ks(j, k)HsĪCs(j, k)
]T

= (1 + µ)γ
(s)
j,kΩs(j, k)C

T
s (j, k)B

−1
s (j, k)Cs(j, k)Ωs(j, k)

+ Cs(j, k)K
T
s (j, k), (28)

γ
(s)
j,kGs(j, k)Cs(j, k)Ωs(j, k)(Ks(j, k)HsĪCs(j, k))

T

= γ
(s)
j,kAs(j, k)B

−1
s (j, k)Cs(j, k)Ωs(j, k)

× (Ks(j, k)HsĪCs(j, k))
T

= (1 + µ)2γ̄3
s (j, k)Ωs(j, k)C

T
s (j, k)B

−1
s (j, k)

×
(

Ks(j, k)HsĪCs(j, k)Ωs(j, k)C
T
s (j, k)

)T

−Ks(j, k)Es(j, k)K
T
s (j, k). (29)

Based on (17), (25) and (27)-(29), the following relationship
for Ms(j, k) can be established:

Ms(j, k)

= (1 + µ)Ωs(j, k) +Gs(j, k)Bs(j, k)G
T
s (j, k)

+Ks(j, k)
{

γ
(s)
j,kHsĪCs(j, k)Ωs(j, k)C

T
s (j, k)Ī

THT
s

+ γ
(s)
j,kĤs(j, k) ◦

(

ĪCs(j, k)Ωs(j, k)C
T
s (j, k)Ī

T
)

+Hs

×Υs(j, k)H
T
s + Ĥs(j, k) ◦Υs(j, k)

}

KT
s (j, k)− (1 + µ)

× γ̄s(j, k)
{

Ωs(j, k)
[(

Gs(j, k) +Ks(j, k)HsĪ
)

Cs(j, k)
]T

+
[(

Gs(j, k) +Ks(j, k)HsĪ
)

Cs(j, k)
]

Ωs(j, k)
}

+ γ
(s)
j,kGs(j, k)Cs(j, k)Ωs(j, k)

(

Ks(j, k)HsĪCs(j, k)
)T

+ γ
(s)
j,kKs(j, k)HsĪCs(j, k)Ωs(j, k)C

T
s (j, k)GT

s (j, k)

= (1 + µ)Ωs(j, k) +As(j, k)B
−1
s (j, k)AT

s (j, k) +Ks(j, k)

× (Ds(j, k) + Es(j, k))K
T
s (j, k)− (1 + µ)γ̄s(j, k)

×
{

Ωs(j, k)
[(

Gs(j, k) +Ks(j, k)HsĪ
)

Cs(j, k)
]T

+
[(

Gs(j, k) +Ks(j, k)HsĪ
)

Cs(j, k)
]

Ωs(j, k)
}

+ γ
(s)
j,kGs(j, k)Cs(j, k)Ωs(j, k)

(

Ks(j, k)HsĪCs(j, k)
)T

+ γ
(s)
j,kKs(j, k)HsĪCs(j, k)Ωs(j, k)C

T
s (j, k)GT

s (j, k)

= (1 + µ)Ωs(j, k)− (1 + µ)γ
(s)
j,kΩs(j, k)C

T
s (j, k)B

−1
s (j, k)

× CT
s (j, k)Ωs(j, k) +Ks(j, k)Ds(j, k)K

T
s (j, k)

−Ks(j, k)C
T
s (j, k)− Cs(j, k)K

T
s (j, k)

= (1 + µ)
(

Ωs(j, k)− γ
(s)
j,kΩs(j, k)C

T
s (j, k)B

−1
s (j, k)

× CT
s (j, k)Ωs(j, k)

)

−Ks(j, k)C
T
s (j, k).

Consequently, the desired UB is given as (22) under the
designed filter gains (20) and (21).
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