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ABSTRACT The Search and Rescue optimization algorithm (SAR) is a recent metaheuristic inspired
by the exploration’s behaviour for humans throughout search and rescue processes. The SAR is applied
to solve the Combined Emission and Economic Dispatch (CEED) and Economic Load Dispatch (ELD).
The comparative performance of SAR against several metaheuristic methods was performed to assess its
reliability. These algorithms include the Earthworm optimization algorithm (EWA), Grey wolf optimizer
(GWO), Tunicate Swarm Algorithm (TSA) and Elephant Herding Optimization (EHO) for the same
two networks study. Also, the proposed SAR method is compared with other literature algorithms such
as Sine Cosine algorithm, Monarch butterfly optimization, Artificial Bee Colony, Chimp Optimization
Algorithm, Moth search algorithm. The cases applied in this work are seven cases: three cases of 6-unit
for ELD issue, three cases of 6-unit for CEED issue and 10-unit for ELD problem. The evaluation of
counterparts is performed for 30 different runs based on measuring the Friedman rank test and robustness
curves. Furthermore, the standard deviation, maximum objective function, minimum, mean and values over
30 different runs are applied for a statistical analysis of all used techniques. The obtained results proved the
superiority of the SAR in determining the fitness function of ELD and CEED is minimizing the cost of fuel

for ELD and emission and fuel costs for CEED.

INDEX TERMS Search and rescue algorithm, economic load dispatch, optimization.

I. INTRODUCTION

Economic load dispatch (ELD) is one of the important
optimization problems for smooth and hassle-free operation
of power system. The net demand of power is increasing
at an alarming rate. Subsequently, the fuel price for power
generation is also increasing. Thus, this calls for the necessity
to reduce the operational cost thereby achieving reliable
operation of the power system. The main aim of the ELD
problem is to reduce the operating cost of the system
by optimizing the energy capability of thermal units and
enhance the reliable operation of the system. In recent
years, it is observed that the trend is to consider both cost
and emission while considering planning and operation of
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power system thereby giving rise to Combined Economic-
Emission Dispatch (CEED) problem. Thus, ELD and CEED
are complex problems of power system optimization having
nonlinear objective function, equality as well as inequality
constraints. The efficacy of the conventional algorithms
is limited in solving the ELD problem because of the
nonlinear nature of the problem. Researchers have proposed
distinct metaheuristic techniques for solving that problem.
The merits of metaheuristic algorithms have provided con-
firming alternative methods for solving complex optimization
issues [1]-[5]. In [6], authors have proposed an enhanced
version of Grey Wolf Optimization (GWO) mimicking the
hunting process of grey wolf for solving the ELD problem.
The algorithm was validated on standard test functions and
ELD for 38 unit, 40 unit, 80 unit, 110 unit, 140 unit test
system. The performance of GWO was compared with other

47109


https://orcid.org/0000-0002-0537-4728
https://orcid.org/0000-0002-8127-7233
https://orcid.org/0000-0002-1032-1081
https://orcid.org/0000-0001-7973-3060
https://orcid.org/0000-0001-6229-1227
https://orcid.org/0000-0001-8801-0884

IEEE Access

M. Said et al.: Economic Load Dispatch Problem Based on Search and Rescue Optimization Algorithm

metaheuristics such as Differential Evolution (DE), Improved
DE (IDE), Particle Swarm Optimization (PSO) etc. and the
superior behaviour of GWO was noticed.

In [7], authors have used a novel Crow Search Algo-
rithm (CSA) mimicking the food searching process of
crows for solving nonconvex ELD with cost as objective
function. In [8], Class Topper Optimization (CTO) and
Advanced CTO (ACTO) were to solve ELD as well as
CEED. It was observed that CTO performed better than other
metaheuristics such as TLBO, DE, GA, PSO etc. In [9], the
authors have addressed the problem of ELD in the context
of a micro grid. Further, they have hybridized Spotted Hyena
and Emperor Penguin Optimizer for solving multi-objective
CEED with cost as well as emission as objective functions.
Simulation results validated the supremacy of the aforemen-
tioned algorithm over NSGA II and MOPSO. In [10], authors
solved nonconvex ELD problem by artificial cooperative
algorithm. Valve point effect and a novel constraint handling
strategy were further introduced in ref [10]. In [11], proposed
anovel parallel hurricane optimization algorithm (PHOA) for
solving ELD and CEED. The speciality of PHOA is that it has
several sub-populations that can move independently in the
search space. The algorithm was validated on IEEE 30 and
IEEE 57 bus test system.

In [12], authors have introduced a phasor PSO (PPSO)
for solving nonconvex ELD problem. PPSO is nothing but
a trigonometric model of PSO with faster convergence rate
and more efficiency. In [13], authors proposed Gradient
Based Optimization (GBO) to solve ELD as well as CEED.
In [14], the dynamic ELD problem have been modelled
considering the integration of renewable sources and solved
the problem by an enhanced version of firework algorithm.
In [15], authors contributed to the state-of-the-art with a
novel algorithm that considers hybridization of artificial algae
algorithm and simplex method for solving ELD. In [16],
authors have introduced an optimized version of DE incorpo-
rating multiple mutation strategies for solving ELD. In [17],
authors have proposed an enhanced version of Jaya algorithm
incorporating multiple population and Levy flight for solving
ELD and CEED. In [18], authors validated the performance
of Turbulent Flow of Water Optimization (TFWO) algorithm
on ELD and CEED and concluded that the algorithm is
as competitive as other state of art metaheuristics. In [19],
the authors proposed a Chameleon Swarm Algorithm (CSA)
mimicking the behaviour of chameleons for solving ELD and
CEED.

In [20] a novel hybrid algorithm based on Coulomb’s
law Franklin’s law was put forwarded for solving different
variants of ELD. In [21], authors have hybridized Sine
Cosine Algorithm (SCA) with g hill climbing algorithm to
enhance the exploitation capacity of SCA for solving ELD
of large-scale networks. In [22], also hybrid GWO applied
for ELD with effect of valve load. In [23], also hybrid SSA
applied for ELD problem. In [24], authors have proposed
a narrowing down area-based approach for solving ELD.
In [25], authors have used a data mining-based approach
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for solving multi-objective ELD. In [26], authors have used
nonconvex ELD problem by Slime Mould Algorithm (SMA).
In [27], authors have proposed an adaptive version of Class
Topper Optimization (CTO) along with the incorporation of
chaos theory for solving ELD, EED, and CEED. In [28],
authors have proposed an Arithmetic Optimization algorithm
based on elementary function disturbance for solving ELD
problem. In [29], enhanced WOA applied for ELD. In [30],
an improved competitive swarm algorithm is applied for
ELD.

As stated by No Free Lunch (NFL) theorem [31]-[35]
metaheuristics differ in performance as well as behavior
while solving different class of problems. So, the Search
and Rescue optimization algorithm (SAR) [36] is such a
novel meta-heuristic method to solve the ELD problem.
SAR algorithm is easy to implement because of its basic
concept, simple formula, and small number of parameters.
In [36], the SAR showed greater performance compared
to several algorithms. Particularly, SAR has been validated
over 18 benchmark constraint functions presented in CEC
2010, 13 benchmark constraint functions, and 7 constrained
engineering design problems, which are considered chal-
lenging optimization problems. However, all meta-heuristic
algorithms should strike a balance between exploration
and exploitation; other solutions can be stuck in optimal
solutions or fail to converge [41]. Indeed, depending on
the optimization problem, SAR may suffer from slow
convergence speed, fall into to a local minimum, performance
depends on algorithm parameters, and difficulty to balance
between exploration and exploitation phases.

The main items of contribution in this work are as follow:

« Discuss two network cases such as Combined Emission-
Economic Dispatch (CEED) and Economic Load
Dispatch (ELD).

o Search and Rescue Algorithm (SAR) is used as a new
metaheuristic method for the seven cases study.

o The proposed SAR method is compared with Earthworm
optimization algorithm (EWA), Grey wolf optimizer
(GWO), Tunicate Swarm Algorithm (TSA) and Ele-
phant Herding Optimization (EHO) for the same seven
networks study.

o The fitness function of ELD and CEED minimize the
fuel cost for ELD and emission and fuel costs for CEED.

o The evaluation of all algorithms is performed for
30 different runs based on measuring the Friedman rank
test and robustness curves.

o The standard deviation, maximum objective function,
minimum, mean and values over 30 different runs
are applied for the statistical analysis of all employed
techniques.

o The evaluation of SAR and all techniques performance
is accomplished according to the power mismatch
between the generated power from units in the system
and the summation of the load demand and losses of
transmission.
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The paper is prepared as follow: the problems of ELD and
CEED are discussed in section two. The SAR algorithm is
analyzed in section three. The experimental analysis of results
is extracted in section four and also in this section analysis of
Friedman rank test is performed. The conclusion of work and
future work is discussed in section five.

Il. ECONOMIC LOAD DISPATCH PROBLEM

Multiple problems can be found in power system operation
including economic load dispatch, ELD. Reducing the costs
of fuel consumption is the principle issue to improve the
ELD problem for maximizing the benefit economic for power
system. The principle variable for ELD problem represents
the allocating vector from every unit that sets the best
production in every unit of the system. ELD with losses and
CEED are discussed as follows.

A. ELD

The ELD mathematical model with losses can be identified
as follows. In order to operate n generators, the cost for fuel
consumption will be identified as follows:

Min (F) = Fy (P1) +...Fy (Pp) (1)

where F represents the cost for total fuel, | denotes the cost
for fuel in 1st generator whereas F, indicates the cost for fuel
in nth generator. A function of fuel consumption cost will be
further obtained in quadratic form using:

n n
Min(F) =) Fi(P) =) aP{+biPr e (2)
k=1 k=1
where ¢, b and a represent the weight constants for the fuel

cost. Also, the generator constraints from each unit can be
given using Eqgs. (3 and 5).

n
> Pi—Pp—PL=0 3)
k=1
where Pp denotes total network demand whereas Py,
indicates network transmission losses which can be taken as
follows:

n o n
P = Z ZP,’BUPJ‘ “4)

i=1 j=I

where Bj; indicates loss factor, P; represents the generated
power at the ith generator, whereas P; denotes the generated
power at the jth generator.

PR < Py < PP ©)

B. CEED

Development of the ELD problem can be performed by
considering the reduction of emission along with the
production cost, which is referred as CEED. This problem
sheds light on minimizing gases from the power plants. The
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emission factor can be mathematically specified by:

n n
Min(E) =Y E;(P) =Y axPi+BPi+r (6
k=1 k=1

The fitness function for CEED problem is:

objective function = Min <Z E; (P;) + he Z Fi (Pi)> (N

k=1 k=1

where &, denotes the penalty factor for price as given
in Eq. (8):

_ Fi (P imax)

E; (P imax)

The generator constraints in each unit are taken by Eqgs. (3
and 5).

he ®)

Ill. SEARCH AND RESCUE ALGORITHMIC METHOD

This section presents the mathematical model of SAR
algorithm to solve the ‘“‘minimization problem”. In which,
the humans’ position confronts to the solution for the opti-
mization problem whereas the clue significance reached in
this position denotes the fitness for that solution. An optimal
solution indicates a clue with high significance and vice
versa [36].

A. CLUES

Throughout the course of search operation, the group
members bring clues information together. To find additional
significant clues, the group members leave some clues, but
the information got from them is used to optimize the
searching process. The matrix M is a memory matrix that
stores the positions of left clues, whereas the matrix X is
a position matrix which stores the humans’ positions. The
dimensions of the two matrices are equal. They are Y x Z
matrices where Y represents the dimension for the problem
and Z denotes the group members number. The matrix C
indicates the clues matrix which includes the positions for
found clues and comprises two matrices, X and M. The new
solutions from individual and social phases are all created
based upon the clue’s matrix and the matrices, C, M, and X
are updated in all phases of human searches.

X o Xiz
X Xy1 -+ Xyz
C = = 9
|:M] My - Mz ©)
| My1 -+ Myz |

where X and M represent humans’ positions and memory
matrices, respectively whereas Xy; denotes the position for
the 1st dimension of the Y™ human. Furthermore, M,z
indicates the position for the Z" dimension of the 1st
memory.
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B. SOCIAL PHASE

Considering random clue among the found clues, the search
direction is obtained by Eq. (10). In which, SD;, Xj, and
Ck, represent the search direction from the i" human, the
position from the i human, and the position from the i
clue, respectively. Additionally, k represents random integer
number in the 1 and 2N range. For i = k, C; equals to X;.
Therefore, taking into consideration that k # i, k is chosen.

SZi=Xi—Cv), k#i (10)

Usually, the group members attempt to avoid the search
for location several times. Therefore, the search has to be
implemented in a way that the movement for the group
members towards each other is restricted. Accordingly, all
the dimensions of X; has not be modified by the movement
in a direction of Eq. (10). A binomial crossover operator is
employed to implement this constraint. If the significance
of considered clue is greater than that from the clue of the
current position, the area around the direction of SZ; and
around the clue position is searched; otherwise, the searching
around current position will be continued along with SZ;
direction. Thus, Eq. (11) is implemented in the social phase:

Cy+rl x (Xj—Cy) if f(C) > f(X)
Xy = Xij +.’”1 x (Xjj — Cij)  otherwise an
if r2 <SE

X;i otherwise

where Xij indicates the new position for the jth dimension
from the i human, Cy; represents the position for the jh
dimension from the k'™ clue. The values of objective function
from the solution Xj and Cy are indicated by f (Xj) and f (Cy),
respectively. r1 denotes a random number within a uniform
distribution of the range [—1, 1] whereas r2 represents a
random number uniformly distributed within the [0, 1] range.
Jjrand indicates an integer number randomly ranged in 1 and
Z which confirms that one dimension from Xij is at least
different from Xij, whereas SE represents an algorithm
parameter within the range 0 and 1. In this context, the new
position from the i human over all the dimensions can be
taken by Eq. (11).

C. INDIVIDUAL PHASE
Human searches around its current position in this individual
phase and different clues are connected as employed through
the social phase. Every new position from the iy, human can
be taken by Eq. (12).
Xi=Xi+r3x(Ck—Cp), i#k#m  (12)
where the integer numbers k and m are randomly ranged
in 1 and 2N. For preventing movement along the other
clues, the choice of k and m is done in a manner that
i # k # m. Furthermore, 13 represents a random number
within a uniform distribution of the range 0 and 1.
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D. BOUNDARY CONTROL

In this regard, the solutions taken by the individual and social
phases must be located within the solution space, but if
they locate out of solution space, they have to be modified.

Accordingly, the new position from the i human can be
modified by Eq. (13).

. X+ X1) /2 if Xy > X

X = | A
Xl:l + )(j{‘ﬂlﬂ) /2 l:f‘ XZJ > Xjn‘”n’

(13)

where Xj?“i“ and ijax represent the values of the minimum
and maximum threshold, respectively, from the j' dimension.

E. UPDATING INFORMATION AND POSITIONS

The group members, through each iteration, will search based
on these two phases. Furthermore, after every phase, if the
objective function value in a position Xi(f <X1> exceeds the
previous value, (f (Xj), arandom position in a memory matrix
M will be used to store the previous position, Xj, as in Eq. (14)
and such position will be considered as new position by using
Eq. (15). Otherwise, such position will be left and also the
memory will not be updated.

M. {x,- if f (%) > £ (%0 "
M, otherwise

X {x,- if £ (%) = f s
X; otherwise

where M, denotes the position from the n' kept clue within
the memory matrix, n represents an integer number randomly
ranges in 1 and N. This kind of memory updating can increase
the diversity for the algorithm and its capability to find the
global optimum.

F. ABANDONING CLUES

The time is necessary factor in the search and rescue
processes as the lost people can be injured. In addition, the
delay of the teams responsible for the search and rescue might
cause their deaths. So, these processes have to be performed
in such a manner that the greatest space is searched through
the least time. Thus, if the group member could not find many
significant clues after some searches surrounding his/her
current position, it is expected that s/he will leave the current
position and go to new position. Accordingly, this behavior
can be modeled firstly by setting unsuccessful search number,
USN, to 0 for every group member. If a human reaches many
significant clues through the first or even second phase in
the search process, the USN will be set to 0 in case of such
human, otherwise, 1 point will be added to theUSN as in
Eq. (16).

USNi+1 if f (X) > f (X))

0 otherwise

USN; = { (16)
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where USN; denotes number of times through which the
i human was not able to reach many significant clues.
If the USN from a human exceeds MU, s/he will go to
another different position within the search space. For solving
the problems of constrained optimization, for any solution,
if it is observed that USN > MU, current solution will be
swapped with random solution within the search space as
in Eq. (17). Furthermore, for any solution, if it is observed
that USN > MU, the solution within the memory matrix of a
minimum degree in the constraint violation will be chosen
and current solution will be substituted with that solution
whereas current solution will take its place within the memory
matrix.

Xij =ijin Ty % (ijax _X/(nin) , j=1,...,Z (17

where r4 denotes random number uniformly distributed in the
range of 0 and 1, which is different in each dimension.

G. THE TECHNIQUE OF CONSTRAINT-HANDLING

Many constraint-handling methods are used, e.g., the penalty
functions approach, stochastic ranking, and the e-constrained
method. For instance, the penalty functions approach is
popular in solving the problems of constrained optimization,
but they are proven to be sensitive for penalty factors.
In the e-constrained method, for the minimization problem,
the solution will be optimal than another solution when
the subsequent conditions are met:

X is better than X,
fXD)>fX) fGX)<eandG(Xy) Z¢
fFX)>f&X) if GX1)=GX2) (18)
G (X1) > G(Xp) otherwise

where ¢ parameter is employed to control the feasible space
size. It is computed by Eq. (19):

t\?
e (1) = G"(l_i) yr=te (19)

0 otherwise

where t denotes current iteration number. Gg represents the
6™ lowest constraint violation within the initial population.
The parameter T, indicates truncate & value while the
parameter cp controls the speed for reducing feasible space.
In the problems of constraint optimization, comparisons of
SAR algorithm are performed according to the e-constrained
approach. Thus, Egs. (11, 14, 15, and 16) will be modified as
in the following:

Cij+rlx (Xij—ij) if Cy is better than X;

if r2 < SEorj = jrana,

)’(ij: j=1...,Z
Xjj+r1x(Xj—Cy) otherwise
X;j otherwise

(20)
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TABLE 1. Parameters of each algorithm used in this work.

Parameter values
No. of Iteration = 1000
Decision variables = 6
Population’ size = 30

Algorithms
General setting

SAR SE=0.05

TSA Pmin = 1and Py =4 (default)
EWA o= 0.98,B, = 0.1 and y = 0.9
EHO a=0.5andp=0.1

GWO A which linearly decreases from 2 to 0

M, — )?l- if f(i is.better than X; 21
M, otherwise

)?l- if )2,- is better than X;

X; = _ (22)
X; otherwise
0 ; (x) X;
USN; = ifflXi) >fX) 23)
USN;+1 otherwise

H. RESTART STRATEGY
The problems of constraint optimization may have compli-
cated constraints. Such constraints are multimodal where
optimization and nonlinear algorithms may converge in
infeasible regions. So, a restart strategy was suggested to
avoid that point. In the infeasible regions, a method is firstly
required to recognize if the population converged in local
optima. Accordingly, the whole population is infeasible.
Furthermore, similarities between them are excessive, e.g.,
if standard deviation of the constraint violations degree or the
objective function values were very small. If the « predefined
value is greater than standard deviation of the constraint
violations degree and the population was infeasible, the
algorithm employs the restart strategy while the matrices of
memory and human are randomly regenerated.

According on the previous steps, the flowchart of SAR
algorithm is presented in Figure 1 to solve the problem of
minimization constrained.

IV. RESULTS OF NUMERICAL ANALYSIS

The performance of SAR algorithm for two cases of ELD
is discussed. The proposed SAR method is compared with
Earthworm optimization algorithm (EWA) [37], Grey Wolf
Optimizer (GWO) [38], Tunicate Swarm Algorithm (TSA)
[39] and Elephant Herding Optimization (EHO) [40] for the
same two networks study. The first network is ELD problem
for 6 generators unit network at three levels of load demand
as follow: 1200, 1000, and 700 MW. The second network is
CEED problem for 6 generators unit network at three levels of
load demand as follow: 700, 1000, and 1200 MW. The overall
setting for all algorithms is illustrated in Table 1.

A. RESULTS OF ELD PROBLEM
Case study of 6 generators at three levels of load is applied
to solve ELD issue. Several techniques are used in this
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Start

Randomly initialize a uniformly distributed population
of 2V solutions in the range [}{}mm,}{}m” li=t1..z

¥
Sort the solutions in the decreasing order
and find the current best position (K., )
3 No IfUSN; > MU &

X; is infeasibl
Employ the first half of the sorted pisinlsas e
solutions for human positions (X) and the
others for memory matrix (M)

IfUSN; > MU &
X; 15 feasible

X; 13 subshifuted with a

random solution in the

search space using Eq.
(17) and USN; = 0

) X; is substituted with the solution
Set the algorithm parameters and define with 2 minimum degree of constraint
USN; =0 wherei =1,...Y violation in the memory matrix and
¥ takes its place USN; = 0
Employ the first half of the sorted
solutions for human positions (X) and the
others for memory matrix (M)

| Apply the restart strategy |4—

!
While stop Find the current best position and
criterion is not met update Xpese
End
No
| Update the clues matrix (C) by Eq.9 |
No Yes
Apply the individual Apply the social phase
phass and calculate the and calaulate the new
new position of the position of the
i* human using Eq.12 human by using Eq.20
[ 7 |
Boundary control of the new position
of the i human using Eq.13
¥
Update the ¥ memory and the position of
the ¢ human vsing Eq.21 and 22
¥
Update USN; using Eq.23
I
FIGURE 1. Flowchart of SAR algorithm.
TABLE 2. Parameters of each algorithm used in this work.
Demand (MW) | Algorithm SD max mean min
700 SAR 55606.53334 245848.9878 30565.16566 8543.678882
TSA 11464055.69 43445577.33 13242490.67 275801.5266
EWA 66375860.4 244645523.2 42827773.86 29445.71163
EHO 208559054.2 904072137.8 225933121.5 744637.0511
GWO 4862857.508 18492971.2 6216649.832 77581.5973
1000 SAR 23970.02948 94453.21286 27278.65799 12216.18978
TSA 25787851.34 100550789.9 2387672091 513017.4415
EWA 52844654.12 268561019.9 31634359.22 103024.2258
EHO 30299165.71 116819671.4 33060167.78 2775506.229
GWO 9639762.69 43875780.32 8542630.726 37315.95616
1200 SAR 64312.93448 359469.1506 35847.5843 14893.32371
TSA 15447223.38 59693585.68 22343301.98 356166.7317
EWA 176794336.4 842861368.6 105046777.6 32251.07236
EHO 4045382835 20600426781 3301712150 11512349.61
GWO 10206452.1 39006032.81 12261554.6 38161.43314
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TABLE 3. Minimum fuel consumption costs of case 1 in ($ per hour).

Algorithm 700 MW 1000 MW 1200 MW
SAR 8536.578073 12213.08975 14893.32321
TSA 8755.288223 12352.53542 14890.39485
EWA 9290.599374 13655.88847 16384.85345
EHO 9225.735035 13535.68419 16640.70332
GWO 9101.367455 12296.40155 15000.56429

TABLE 4. The value of power generated (MW) from each generator for case 1 with load level of 700 MW.

SAR TSA EWA EHO GWO
280.891608 141.3053858 53.00082661 81.02099422 104.1852297
114.107787 200 64 93.84736919 195.5282081
70.73084215 171.9075607 72.0024561 97.27104527 102.9844775
108.4858022 51.70787633 101 101.0689918 147.3228766
75.23183439 98.14614977 145.0079506 166.1349969 57.04849501
61.97800695 50 249.9985388 173.626733 106.7050996

TABLE 5. The value of power generated (MW) from each generator for case 1 with load level of 1000 MW.

SAR TSA EWA EHO GWO
413.5381133 500 51.07116947 100.7205506 495.8829288
97.11432466 190.2175803 80.0754891 115.2499079 116.7271178

160.819485 94.11613766 114.9287934 141.1628118 132.6834266
119.0534279 73.19660117 137.1398829 167.2109452 150
126.8011693 111.8730319 2324202156 167.3316043 74.73016267

106.53652 52.3490818 376 333.1243936 51.59571718

TABLE 6. The value of p

ower generated (MW) from each generato

r for case 1 with load level of 1200 MW.

application such as SAR, EWA, GWO, TSA and EHO
algorithm. The results of 30 independent runs are extracted
for all competitor algorithms. The comparison between these
methods is performed based on statistical data of 30 runs.
The minimum objective function, mean, maximum value and

VOLUME 10, 2022

SAR TSA EWA EHO GWO
509.4656347 500 82.01817953 112.0761519 500
163.2981256 163.2411789 133.8684334 128.3963197 102.7634159
251.7499969 300 134 144.0680366 295.1236759
144.4995777 111.8069123 162.7599846 180.6707543 149.8323055
155.0685298 107.0600108 230 267.3987062 66.35670923
9.57459306 51.4005784 448.3121752 403.0754487 120

Robustness curve of case 1 at 700 MW load demand

Objective Function

s
Number of Independent Run

SAR _—__TSA

GWO ____EHO

——EWA

Robustness curve of case 1 at 700 MW load demand

Objective Function

s
Number of Independent Run

FIGURE 2. Robustness characteristics for case 1 with load level of 700 MW.

standard deviation are the main items in statistical recorded
data at each level of load demand as in table 2. Referring
to the data recorded in this table; the best fitness function
is achieved by the SAR algorithm and also the best standard
deviation is achieved by the proposed SAR technique. Hence,
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Robustness curve of case 1 at 1000 MW load demand
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FIGURE 3. Robustness characteristics for case 1 with load level of 1000 MW.

Robustness curve of case 1 at 1200 MW load demand
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FIGURE 5. Convergence characteristics for case 1 at load level of 700 MW.

the results estimated by SAR method is high accuracy and
more reliable than all algorithms used in this study. The
minimum cost of fuel consumption for all demand levels
used in this case is illustrated in table 3. The value of power
generated from each generator is extracted as in table 4 for
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700 MW load level. The value of power generated from
each generator is extracted as in table 5 for 1000 MW load
level. The value of power generated from each generator is
extracted as in table 6 for 1200 MW load level. The data
recorded in tables 4,5 and 6 are based on the minimum
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FIGURE 6. Convergence characteristics for case 1 at load level of 1000 MW.
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FIGURE 7. Convergence characteristics for case 1 at load level of 1200 MW.

TABLE 7. Statistical recorded data for case 2.

Demand (MW) Algorithm SD max mean min
700 SAR 13798.84441 33793.36677 181820.674 36732.29057
TSA 10731747.71 42219737.54 12658164.49 221163.2708
EWA 69645534.63 336969212.3 36483350.16 22325.7472
EHO 11691360.09 204720511 499872502.1 123308166.4
GWO 5228740.372 20163441.61 5809853.255 234235.4394
1000 SAR 21895.63163 36041.37006 121474.9088 25110.04976
TSA 26782647.95 104560461.7 20200913.27 579498.6101
EWA 19449264.29 81905471.65 10667872.53 57007.61007
EHO 250535.9703 45753050.04 167977714.5 43157836.88
GWO 7944972.278 30373317.01 10386716.64 177824.4601
1200 SAR 29074.45844 73166.83013 307958.234 69644.96909
TSA 22767833.1 90336653.91 21145788.47 568641.7148
EWA 260964544.3 1325436141 129645632.7 556671.3405
EHO 121679044.4 1882764224 6464536933 1693829131
GWO 10261965.16 42728669.23 10790450.61 585360.9853

value of fitness function for all algorithms used in this
work. The extracted results from all algorithms are compared
along 30 runs for all load levels. Based on this data the
robustness and convergence characteristics is performed for
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the best function for all methods in each runs as in figure 2,
3 and 4 as a robustness curves and figures 5, 6 and 7 as a
convergence curve for 700 MW load level, 1000 MW load
level and 1200 MW load level respectively. Based on the
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TABLE 8. Minimum fuel consumption and emission costs of case 2 in ($ per hour).

Algorithm 700 MW 1000 MW 1200 MW
fuel Emission Fuel | Emission Fuel | emission
SAR 8407.547001 7352.212268 12208.75425 10792.67902 14890.23056 17948.23832
TSA 8835.650248 9346.501116 12156.78351 9211.30619 14914.53759 15639.3182
EWA 9173.696676 8246.294368 13887.70944 34026.14467 16369.97692 31664.73178
EHO 9419.025517 10407.54045 13674.81196 26247.35079 17137.2867 45432.61852
GWO 8940.890004 5980.92318 12271.31808 10602.56874 14924.13695 16278.87748

TABLE 9. The value of power generated (MW) from each generator for case 2 at load level of 700 MW.

SAR TSA EWA EHO GWO
284.8221789 119.368407 82.20884693 69.29405881 114.0732492
70.45889296 60.40130478 113.2219045 69.47692619 170.8635487
198.7523186 239.4461211 114.6965031 73.64088866 123.94231
13.53594835 119.813426 120.3089002 148.2614539 51.44745787
75.73512417 125.5566485 143.1039495 172.6286723 143.356137
68.53194184 50 144 180.1536913 110.2491001

TABLE 10. The value of power generated (MW) from each generator for case 2 at load level of 1000 MW.

SAR TSA EWA EHO GWO
426.4675747 403.712259 78.00038339 55.57666967 500
62.75087073 180.7595382 118.0006019 100.0605225 90.14848327
191.4591783 173.4459086 134.9847813 170.6210971 155.4753064
107.3590047 93.78730482 139.9980982 191.0562113 121.8662569
156.5711735 109.1817177 160.0015571 200 75.46002613
79.64642096 62.11170465 392.995093 307.9115306 78.74612226

TABLE 11. The value of

power generated (MW) from each generat

or for case 2 at load level of 1200 MW.

SAR TSA EWA EHO GWO
442.7253595 490.7396876 109.965428 92.5222746 500
157.8807508 200 149.9764533 95.35419047 200
309.004929 259.9323433 174.9302042 112.6943089 281.8347626
89.2616598 58.57800604 180.9736908 189.5123302 69.1395628
129.2369223 112.2794992 275.8988491 292.5175716 90.87214432
107.2606882 112.2166867 345.9167858 451.8652694 91.43231402

TABLE 12. Minimum fuel consumption costs of 10 units system in ($ per

hour).

TABLE 13. The value of power generated (MW) from each generator for
10 units system.

Algorithm Cost
SAR 85233843.42
GWO 93742096.92

SAR TSA
52.06098202 152.7192224
101.3550603 140.9270131
234.8732339 73
130.2124381 97.09493826
104.9570837 190.0149111

121.0660646

132.7303314

107.7862989

82.80092477

44.4449512

50.89074604

80.39470552

74.56561181

72.02988988

54.21931187

characteristics of robustness and convergence figures, the
optimum global solution is achieved by the SAR algorithm.
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B. RESULTS OF CEED PROBLEM

Case study of 6 generators at three levels of load is applied
to solve ELD issue. Several techniques are used in this
application such as SAR, EWA, GWO, TSA and EHO
algorithm. The results of 30 independent runs are extracted
for all competitor algorithms. The comparison between these
methods is performed based on statistical data of 30 runs.
The minimum objective function, mean, maximum value and
standard deviation are the main items in statistical recorded
data at each level of load demand as in table 7. Referring
to the data recorded in this table; the best fitness function
is achieved by the SAR algorithm and also the best standard
deviation is achieved by the proposed SAR technique. Hence,
the results estimated by SAR method is high accuracy and
more reliable than all algorithms used in this study. The
minimum cost of fuel consumption for all demand levels
used in this case is illustrated in table 8. The value of power
generated from each generator is extracted as in table 9 for
700 MW load level. The value of power generated from
each generator is extracted as in table 10 for 1000 MW load
level. The value of power generated from each generator is
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TABLE 14. The power mismatch value (MW) for all cases.
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Cases Method 1200 MW 1000 MW 700 MW
SAR 3.62377E-13 3.10756E-10 7.10189E-10
TSA 3.41276E-05 5.00665E-05 2.67046E-05
EWA 59.28668221 44.66443804 31.65464393
EHO 15.88113591 9.506222837 2.725491776
Case | GWO 2.31609E-06 2.50196E-06 6.84802E-06
SCA 0.00154 0.000182 0.00076719
ABC 0.000464669 0.000172518 8.85E-05
MBO 13.5932468 20.33553784 2.338728225
ChOA 1.28E-05 0.000476787 0.000284475
MSA 22.86726197 16.26317 8.164408631
SAR 8.14784E-08 2.17426E-12 6.20304E-12
TSA 5.40222E-05 5.57843E-05 2.06158E-05
EWA 11.53407616 12.63020626 2.495708213
EHO 21.08914786 9.735103699 3.177958676
Case 2 GWO 5.56911E-05 1.55565E-05 2.19E-05
SCA 0.00153618 0.001259941 0.000128581
ABC 0.000402522 3.74E-05 0.000176679
MBO 19.58822153 18.75789013 2.224948582
ChOA 6.47E-05 0.000476787 0.000284475
MSA 23.26274643 12.18295414 7.228241532

Robustness curve of case 2 at 700 MW load demand
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Robustness characteristics for case 2 at load level of 700 MW.

Robustness curve of case 2 at 1000 MW load demand
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Robustness characteristics for case 2 at load level of 1000 MW.

47119



IEEE Access

M. Said et al.: Economic Load Dispatch Problem Based on Search and Rescue Optimization Algorithm

Robustness curve of case 2 at 1200 MW load demand
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FIGURE 10. Robustness characteristics for case 2 at load level of 1200 MW.

Convergence curve of case 2 at 700 MW load demand
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FIGURE 11. Convergence characteristics for case 2 at load level of 700 MW.

Convergence curve of case 2 at 1000 MW load demand
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FIGURE 12. Convergence characteristics for case 2 at load level of 1000 MW.

extracted as in table 11 for 1200 MW load level. The data
recorded in tables 9,10 and 11 are based on the minimum
value of fitness function for all algorithms used in this work.

and convergence characteristics is performed for the best
function for all methods in each runs as in figure 8, 9 and
10 as a robustness curves and figures 11, 12 and 13 as a

The extracted results from all algorithms are compared along
30 runs for all load levels. Based on this data the robustness
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convergence for 700 MW load level, 1000 MW load level and
1200 MW load level respectively. Based on the characteristics
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Convergence curve of case 2 at 1200 MW load demand
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FIGURE 13. Convergence characteristics for case 2 at load level of 1200 MW.
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FIGURE 14. Friedman rank test result for case 1.
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FIGURE 15. Friedman rank test result for case 2.

of robustness figures, the optimum global solution is achieved
by the SAR algorithm.

C. FRIEDMAN RANK TEST
The Friedman Test represents a statistical test utilized to
decide whether three or more measurements to one group
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of subjects were different in a significant manner from each
other based on skewed variable. This variable ought to be
continuous and show similar spread over the groups. The best
performing algorithm i.e., shows least significant difference
will be the one with the lowest rank. The Friedman rank test is
performed, and the results are shown in Fig. 14 and Fig. 15 for
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case 1 and case 2 respectively. It is observed that SAR obtains
the best rank for both the cases followed by GWO.

D. DISCUSSION

Case study of 10 generators is applied to solve ELD issue
to achieve the performance quality of the SAR method
compared with GWO method. The minimum cost of fuel
consumption in this case is illustrated in table 12. The value
of power generated from each generator is extracted as
in table 13.

The ELD problems have a main item is called power
mismatch value. The absolute error between the generated
power from units in the system and the summation of the
load demand and losses of transmission. The algorithm with
high performance for the extracted parameters must achieve
the nearest value of this factor to zero. Table 14 summarizes
the factor value for the two cases based on the estimated
variables from each algorithm. Also, the proposed SAR
method is compared with other literature algorithms such
as sine cosine algorithm, Artificial Bee Colony, Monarch
butterfly optimization, Chimp Optimization Algorithm, Moth
search algorithm as explain in table 14. According to this
data the SAR method achieve the best power mismatch
value for the six cases. The 10-unit network achieve
0.0000157367539692643 power mismatch value for SAR
algorithm and 0.000127766302846055 for GWO algorithm.
Based on these results, the SAR method achieved the best
power mismatch factor foe the seven-network used in this
work compared to the GWO, EHO, SCA, ABC, EWA, MSA,
MBO, TSA and ChOA algorithms.

V. CONCLUSION AND FUTURE WORK

The Search and Rescue optimization algorithm (SAR) is
a novel metaheuristic algorithm mimics the explorations
behavior for humans throughout search and rescue processes.
SAR is proposed to solve eighteen constraint functions
from the benchmark of CEC 2010, which involves: thirteen
benchmark constraint functions and seven design problems
of constrained engineering. In this paper, SAR is applied to
solve two power system operation including the Combined
Emission and Economic Dispatch (CEED) and Economic
Load Dispatch (ELD). To be specific, the role of SAR is
to minimize the fuel consumption cost which represents the
principle issue concerning ELD problem optimization for
maximizing the power system’s economic benefit. The main
variable for the ELD problem represents the allocating vector
at each unit which sets the best production from each unit
of the system. To prove the performance of SAR, a series of
experiments were conducted, and the results were compared
to several metaheuristics methods, including: the Earthworm
optimization algorithm (EWA), Grey wolf optimizer (GWO),
Tunicate Swarm Algorithm (TSA) and Elephant Herding
Optimization (EHO) of 30 different runs is applied as a
statistical analysis for all used methods. Eventually, the
results confirmed the efficiency of the SAR in minimizing the
cost of fuel for ELD and emission and fuel costs for CEED
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compared with the counterparts. The SAR method achieved
the best factor of power mismatch in solving ELD and CEED
for the seven cases compared to the GWO, EHO, SCA, ABC,
EWA, MSA, MBO, TSA and ChOA techniques. As future
perspectives, the SAR algorithm can be adapted for solving
other real-world and large-scale optimization problems of the
power system operations.
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