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Stability Analysis and Performance Improvement of
Power Sharing Control in Islanded Microgrids

Li Sun, Member, IEEE, Xiaowei Zhao, Yongfeng Lv

Abstract—Due to the requirement of synchronism and power
sharing, droop control and its variations have become one
essential component for distributed generator (DG)-powered
microgrids. However, the power sharing accuracy and system
stability margin may be threatened by the randomness from
the load demand and renewable generation. In this paper, a
dynamic stability analysis is first performed on a DG-powered
microgrid through a produced system frequency response model
(SFR). The results point out that (i) the critical system eigenvalues
directly vary with the system operating condition; (ii) a fixed-
gain power sharing control is prone to be less damped and
loses stability easily under some operating conditions. Then, the
heuristic adaptive dynamic programming (HDP) strategy is used
for power sharing control with the benefit of adapting to real-
time disturbances and uncertainties. Through Lyapunov theorem,
stability analysis is provided to demonstrate the reliability of the
HDP-based power sharing control in islanded microgrids. Finally,
simulation tests verify the analysis results and demonstrate the
favorable performance of the HDP-based power sharing control
under uncertain load disturbances.

Index Terms—Distributed generator, dynamic stability, heuris-
tic adaptive dynamic programming (HDP), islanded microgrid,
power sharing.

I. INTRODUCTION

Microgrids have been growing drastically as an alternative
approach for coordinating distributed generators (DGs) and
local loads to achieve grid-disconnected/islanded operation
[1], [2]. DGs (such as photovoltaic (PV) plants and wind
turbines) mostly work with power electronic interface and
use phase-locked loop (PLL) for synchronization control [3],
[4]. In islanded applications, parallel-connected DGs are often
required to operate in an autonomous fashion and share the
load proportionally [2]. This is done by the pre-curtailment
control and power sharing control. The pre-curtailment control
enables DGs to increase output when needed to provide
“upward” reserves [4]. However, it is essential to make a
compromise between technical considerations and economic
factors when defining how much the power curtailment is (not
detailed in this study). The power sharing control is commonly
based on P−f and Q−V droop concept [5]–[7]. It is deployed
in order of seconds and spontaneously offsets the system
power imbalances. Over the years, there are devious droop
control variations to broaden the spectrum of applicability [8].
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It is much more relevant to cope with the limitations of
P −f and Q−V droop methods during islanded applications,
including the steady-state frequency and voltage deviation,
power quality problems, and narrow stability margins [9],
[10]. Some remedial solutions have been reported to cope
with such limitations. In [11], additional derivative P and
Q terms provide another freedom to enhance the P − f
and Q − V droop stability, without affecting the power
sharing performance. However, the derivative loops intensify
the noises and impose impulses to the system. In [12], the
hierarchical droop-based control has been developed to include
the restoration mechanism of the system frequency and volt-
age deviations. Reference [13] upgrades this type of control
scheme via a radial basis function neural network. However,
the hierarchical control schemes are instinctly sluggish due
to multiple control layers. Reference [14] proposes a novel
droop control (named as PID power control) by replicating
the autonomous frequency control for synchronous generators
(SGs). The P-frequency/V̇ term guarantees the proportional
power sharing among DGs, the I-frequency/V̇ term erases the
frequency/voltage offset, and the D-frequency term contributes
to better controllability and transient performance. While [14]
points out that the PID power control effectiveness is related
to the system operating condition, there is a lack of the impact
mechanism analysis of the PID settings on the system stability
by considering the system operating condition change.

As such, this paper attends to further investigate the dy-
namic analysis and improvement ways of P − f and Q − V
droop power control in islanded microgrid applications. Small-
signal stability analysis has been extensively applied in the
field of microgrid control parameter determination [12], [15]–
[18]. These reported papers mostly employ the eigenvalue-
based analysis approach. A full-order or reduced-order (by
neglecting the fast DG states) model is built with a matrix
formation. Followed by the system matrix model, participation
factor or other reasonable indexes can be defined to predict
the impact of system parameters on the dynamic stability of
the microgrid. However, the analysis results in [15]–[18] are
lack of mechanism explanation on a specific control design
accounting for the microgrid stability. Thus, it is still hard to
understand the behaviors of DG-powered microgrids due to
the control complexity. On the other hand, some efforts have
been made to improve the control performance under large
transient events. For example, [19] proposes to stabilize the
microgrids following Lyapunov-based stability studies. How-
ever, the reported schemes in these papers acquiescently adopt
fixed gains, in compliance with the stiff regulation requirement
(to ensure a proportional power sharing). A notable drawback
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is that the fixed-gain control is hard to conserve the microgrid
stability in case of frequent and random operating condition
changes (as explained in Section III. D).

In this context, research is limited to the dynamic stability
issues of the PID power control proposed in [14] (Note,
“dynamic stability” is introduced here to denote the small-
disturbance stability in the presence of automatic controls
[20]). The question is explored here to offer the industry
and system operators a clearer understanding on stabilizing
islanded DG-powered microgrids. As well known, system
frequency response (SFR) modelling is commonly used for
dynamic stability analysis and frequency control design of
SGs in conventional power systems [20], [21]. The SFR model
offers an intuitive way to illustrate the relation between system
frequency behaviors and frequency control settings, and to
describe their relation using a mathematical formulation. In
view of this, our study first develops the SFR model of a DG-
powered microgrid. It allows to provide a principal explanation
on the relationship between PID power control settings and
the dynamic system responses, by considering the operating
condition change.

Furthermore, the heuristic adaptive dynamic programming
(HDP) is introduced to improve the power control effective-
ness during uncertain disturbances. HDP is built on the model-
free framework with the neural network implementation. And
it has been already reported in a number of industrial ap-
plications (like robotics, aircrafts, chemical processes, and
smart grids [22]–[24]). It is hence foreseen to apply the HDP
technology for the power sharing control problem in islanded
microgrids.

This paper is organized as follows. Section II discusses
the configuration and stability of P − f and Q − V droop
based DGs in islanded applications. In Section III, a SFR
model for a 2-DG test system is established. The proposed
SFR model is then used to examine the relationship between
the critical system eigenvalues and the power control settings
as well as the operating conditions. Section IV describes the
implementation of the proposed HDP based power control
and conducts a stability analysis through Lyapunov theorem.
Section V presents the simulation tests to verify the theoretical
analysis and demonstrate the proposed control effectiveness.
Finally, conclusions are drawn in Section VI.

II. POWER CONTROL FOR DGS IN ISLANDED MICROGRIDS

A. Control Architecture of DGs

A DG system may consist of different types of resources,
such as biomass energy, wind turbines, and PV arrays. The
physical and electrical parts of each DG are bridged by a dc
link that decouples the dynamics of such two parts. Thus,
the physical part is commonly cast as a power source and
interfaces the external grid through an inverter. Fig. 1 illus-
trates a 2-DG islanded microgrid system, where the general
configuration of DG control system is also included. It adopts
a decoupled active and reactive power control. The power
control is traditionally based on the P − f and Q− V droop
concept. It enables DG to help preserve the frequency/voltage
within tight tolerances and maintain a proportional load

sharing between DGs. However, it is hard to maintain the
frequency stability for a DG working in an islanded mode.
This is explained as follows.

1) Islanded operation of P−f and Q−V droop based DGs:
For ease of simplicity, we assume that V1 is stemmed from
DG1 while V2 is absent in Fig. 1 (DG2 is not considered in
this segment). Let the feeder line impedance Z1 = R1+jωL1

and the load impedance ZL = RL + jωLL. The PCC voltage
V is written as

V ∠θ =
ZL

Z1 + ZL
V1∠θ1 = K1V1∠(θ1 + p1(ω)) (1)

where K1 =
∣∣∣ ZL

Z1+ZL

∣∣∣ and p1(ω) = phase( ZL

Z1+ZL
). K1 is the

equivalent coefficient and p1(ω) is the the phase-shift angle at
the frequency ω. Using Park transformation, the input of the
PLL PI compensator can be written as

Vq = K1V1 sin(θ1 + p1(ω)− θp) = K1V1 sin(∆θ1) (2)

where θ1 = η + θp and ∆θ1 = η + p1(ω) since the power
angle η is controlled and estimated in PLL coordinate frame
[25]. Following [25], the islanded DG system is stable if and
only if

Vq = 0 ⇒ ∆θ1 = η + ζ + p1(ω) = 0 (3)

can be automatically secured. Therein, ζ accounts for any
additional time delay in producing the power angle.

Fig. 2 is used to present the PLL synchronization mech-
anism of an islanded DG. Two feedback loops contribute to
generating the DG frequency. (i) Loop 1 is a 1st-order positive
feedback of ω through the load and PLL; (ii) Loop 2 may be
a 1st-order (when P − f droop engages) or 2ed-order (when
PID power control engages) negative feedback of ω through
the converter and PLL.

Figure 2. Frequency feedback of a DG through PLL and P − f loop.

2) Stability estimation of P − f and Q − V droop based
DGs: In islanded applications, the power angle η provides
a freedom to fulfill (3). However, a negative η is hard to be
timely produced once a P−f droop based DG loses the utility
frequency. This is due to a lack of supporting the transient
response through the P − f droop. A non-zero ∆θ1 would
be accordingly caused by ζ and the perturbation p1(ω). The
DG frequency ω keeps increasing or decreasing when ∆θ1 is
positive or negative. What’s more, Loop 2 going through the
power control has a time constant one or two orders larger
than PLL. Thus, the DG frequency may be driven away by
the fast-respond positive feedback loop (Loop 1) [26] and a
frequency collapse may occur.

It is crucial to improve the transient performance of the
P−f and Q−V droop-based power control. In this sense, the
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Figure 1. An islanded system with 2 DGs integrated.

PID power control [14] is introduced to maintain the operation
stability of DGs in an islanded mode. As shown in Fig. 1,
the introduced control consists of a P − f/Q − V̇ droop
(i.e., P-control), an f/V̇ restoration loop (i.e., I-control) and
a virtual inertia loop (i.e., D-control) [14]. The corresponding
power control equations are given by Equation (5) in the next
subsection. Compared to the conventional P − f and Q− V
droop control, the PID frequency/voltage control also includes
the f/V̇ restoration and a virtual inertia loop that empower
DGs to undertake the frequency/voltage offset elimination and
the frequency/voltage transient performance improvement.

For DGs, the PID based power control should be designed
with a relatively small bandwidth (around 2Hz), due to the
requirements of high power quality injection and measuring
filter design [11]. The followed DC-/AC- voltage control loop
typically has a bandwidth around 20Hz that is at least five
to ten times slower than that of the inner current control
loop. Thus, the outer power control dictates the low-frequency
dynamics of the inverter due to the timescale separation
between the power and the voltage, current dynamics.

B. P − f and Q− V̇ Droop Control

The PID power control in Fig. 1 is inspired from the
behavior of synchronous generators (SGs) in the bulk utility
grid where the increasing output power leads to frequency
(rotor speed) decline. Fig. 3 describes SGs’ swing equation
and frequency control block. The spin inertia (Jg , typically
4 − 20s [20]) makes the frequency decline slow down; the
P-frequency control (with a gain Kp) helps lift the frequency
nadir; and the I-frequency control (with a gain Ki) is in charge
of the frequency restoration. Ggov represents the governor and
turbine dynamics with a relatively large time constant, so that
it can be cast as constant while studying the rotor dynamic.
Thus, the transfer function of SGs’ frequency regulation, from
∆ω to ∆P , has a simplified expression as

∆ω = − s

Jgs2 +Kps+Ki
∆P (4)

On the other hand, the P − f and Q− V̇ control for DGs

Figure 3. Control block of SGs’ frequency regulation.

(see Fig. 1) has a conceived control law [14]

Jω̇ +Dpω = −upo (5a)
kpżp = Jω̇ +Dpω (5b)

Dq|V |−1V̇ = −uqo (5c)

kq żq = Dq|V |−1V̇ (5d)

Mostly, the power supply from the power source should
provide the needed energy of the inverter as fast as possible.
This implies that Pin = P and Qin = Q. Thus, (5) has
an equivalent form in the concept of small-signal modelling,
expressed as

J∆ω̇ +D′
p∆ω + k−1

p Dp

∫
∆ω = ∆P r −∆P (6a)

Dq|V |−1∆V̇ + k−1
q Dq|V |−1

∫
∆V̇ = ∆Qr −∆Q (6b)

where D′
p = Dp + k−1

p J . The superscript r denotes the
reference value of variables. It is apparent that P−f (see (6a))
and Q− V̇ (see (6b)) control are indeed a PID and PI control,
respectively. That is, the P −f and Q− V̇ control parameters
could be optimized following the PID control optimization
method. In this paper, authors have been dedicated on a
compromise between the accurate power sharing and better
damping power mode fluctuations, and accordingly discussion
will be limited to active power loop only. In addition, PI
control is a special case of PID control, thus the optimal design
of Q− V̇ could be referred to the P − f control optimization
process. For conciseness, the voltage stability is then cast to
be preserved during an operating interval through using local
reactive power compensators.
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III. SFR MODEL AND DESIGN REQUIREMENTS OF PID
POWER CONTROL BASED DGS

As mentioned in Section II, PID power control based DGs
provide the freedoms to maintain proportional power sharing,
improve transient response and avoid any frequency deviation.
This section demonstrates the dynamic stability of PID power
control based DGs dependent on the PID control settings,
line impedances and operating conditions. It is based on an
examination of the dynamic frequency behaviors using the
system frequency response (SFR) model. The requirements
on PID control settings are established and further confirmed
by small-signal stability studies.

A. 2-DG Test System

For ease of theoretical analysis, we consider a 2-DG con-
nected local load system in Fig. 1. Reference [9] has pointed
out that (i) a grid-forming DG with the multi-loop droop
control (constituted by a cascaded outer power control and
inner voltage & current control) properly bolsters the inverter
filter capacitor voltage V1/V2 and makes it approximately a
controllable voltage source; (ii) the fast inner voltage & current
control compensates for the function of the filter inductance
(Lf1/Lf2) as a coupling reactance, so its variation does not
have an impact on the output impedance. On this basis, (i)
(6a) is able to describe the motion of the voltage angle θ1/θ2;
(ii) the line impedance has a dominant role in preserving the
test system stability, while the impact of the filter inductance
is hidden by the inner voltage & current control.

Figure 4. Equivalent circuit model of the 2-DG test system.

B. Frequency Response Model

The test system has an equivalent circuit model as shown in
Fig. 4. R1, X1 and R2, X2 represent the line resistance and
reactance of DG1 and DG2, respectively. The power equations
of DG1 and DG2 can be written as

Pi =
Ri

Zi

[
ViV

Zi
cos(θi − θ)− V 2

Zi

]
+
Xi

Zi

ViV

Zi
sin(θi−θ) (7)

where i = 1 or 2 represents the two branches in the simplified
circuit; Zi =

√
R2

i +X2
i is the magnitude of the line

impedance. Perturbing (4) yields

∆Pi = Ki(∆θi −∆θ) (8)

Ki =
Vi0V0

Z2
i

[−Ri sin(θi0 − θ0) +Xi cos(θi0 − θ0)] (9)

In addition,
∆P1 +∆P2 = ∆PL (10)

where ∆PL is the given load perturbation. Using (6) and (7)-
(10), the SFR model is established as shown in Fig. 5. It is able
to represent the dynamic behaviors of the test system. Note

that the control design (see Fig. 1 and (6)) of DGs is modified
such that it resembles the input-out characteristic of SGs
(see Fig. 3(b)) while still preserving the original dynamical
properties. The scalability of SFR modeling for a multiple-
DG system is discussed in Appendix. A. Following [20], [27],
using the SFR model of 2-DG system is enough to reveal
the impact mechanism of the frequency control on the system
dynamic stability. In this sense, the 2-DG SFR model would
be hence used for the followed theoretical analysis, instead of
the multiple-DG SFR model with much more complexity.

Figure 5. SFR model of the 2-DG test system.

C. Stability Analysis and Design Requirements

From Fig. 5, the dynamic of the frequency ω1 under the
load perturbation ∆PL can be described by

∆ω1 =
−sK1(G2(s) +K2)∆PL

K1G1(s)(G2(s) +K2) +K2G2(s)(G1(s) +K1)
(11)

where Gi(s) = Jis
2+(Dpi+k−1

pi Ji)s+k−1
pi Dpi (i = 1 or 2)

represents the PID frequency control action. According to
[14], the control parameters (Dpi, kpi and Ji) based on the
DGi’s rating should be the same to maintain the power sharing
accuracy between DGs. For convenience, the notations Dp, kp
and J are used to denote the PID power control parameters
for all DGs in what follows. It means that G1(s) = G2(s) =
Js2 + (Dp + k−1

p J)s+ k−1
p Dp = G(s). Thus, (11) becomes

∆ω1 = − sK1(G(s) +K2)

(K1 +K2)G(s)(G(s) + 2K12)
∆PL (12)

where K12 = ωb
K1K2

K1+K2
. Manipulating (9) gives that

∆ω1 = −1

2

[
K1 −K2

K1 +K2

1

G(s) + 2K12
+

1

G(s)

]
s∆PL (13)

Consider G(s) = J2
s+(Dp+k−1

p J)s+k−1
p Dp, some important

findings can be obtained
• The moment of inertia Jg (in (4)) helps the rotor mass

release/absorb the kinetic energy and provides fast re-
sponse to disturbances. This phenomenon gives time for
the frequency control to respond and rebalance the power
supply and demand. By contrast, the presence of D-
frequency control in DGs could be regarded as a virtual
inertia J (in (13)), which can be assigned at a desired
value differing from the physical rotor inertia.
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• The P-frequency control (with an equivalent gain Dp +
k−1
p J) arrests the frequency decline and partially restores

frequency to enter tight tolerances. In conventional power
systems, the P-frequency control ensures the power shar-
ing between SGs, suppresses oscillations, and helps SGs
to be in synchronism with the power grid. This underlying
mechanism has been immigrated for parallel-connected
DGs in an islanded microgrid.

• The I-frequency control (with an equivalent gain k−1
p Dp)

is used to completely restore frequency and return the
grid to normal operation. To ensure the control system
to be effective and stable, the I-frequency control gain is
usually assigned at a small value.

The following criteria should be considered when selecting
the appropriate PID settings for DGs:

• The I-frequency control upgrades the frequency restora-
tion capacity with an assigned gain k−1

p Dp. k−1
p and

Dp both have a maximum allowable value to ensure the
effective gain not too large.

• The updated droop gain is given as (Dp + k−1
p J). So,

Dp should not be too small to comply with the require-
ments of power sharing response and damping effect.
In addition, the accurate power sharing still needs to be
established and leads to

P1

D′
p1

= · · · = Pi

D′
pi

= · · · = Pn

D′
pn

(14)

where D′
p = Dp + k−1

p J .
• The inertia gain J provides a freedom to resist changes

in frequency and to improve the dynamic response. Con-
sider a step load increment (with a magnitude of Pd).
Revisiting (13), ∆ω1 evolves with the time

∆ω1(t) =− 1

2

K1 −K2

K1 +K2

Pd

Jωd
e−

D′
p

2J t sinωdt

− 1

2

Pd

Dp − k−1
p J

(e−k−1
p t − e−DpJ

−1t)
(15)

associated with ωd = ωn

√
1− ξ2, ω2

n = J−1(k−1
p Dp +

2K12) and 2ξωn = DpJ
−1 + k−1

p .
(15) reveals that (i) the steady-state frequency deviation

is in around proportional to the power disturbance with a
coefficient of D−1

p under the assumption that Dp ≫ k−1
p J

(Note that Dp has no impact on the dynamic frequency
response when J = 0); and (ii) the inertia J allows us to shape
the transient frequency response while keeping the static droop
characteristics. Therefore, the droop gain Dp fixes the steady-
state droop function (subject to the requirement in (14)), whilst
J and kp are selected to guarantee good transient response and
stable frequency restoration.

In what follows, a small-signal analysis is conducted to
provide a better understanding of the role of the power control
parameters in determining the system stability. A full-order
model of the test system is established in Matlab/Simulink.
The Model Linearizer is adopted to clearly illustrate the
critical eigenvalue immigration along with the control pa-
rameter settings. DG1 and DG2 are identical and rated at
2MW and 575V. In all cases, we let Lf1 = Lf2 = 0.2pu,

Cf1 = Cf2 = 0.057pu, the PID-frequency control parameters
(Dp, kp, J) initially at (15, 1, 2), the time constant (Td) of
the washout filter (that is used to emulate the derivative term
in D-control) at 0.1. The line has a low X/R ratio at 3.427
(Xl = 0.3951Ω/km, Rl = 0.1153Ω/km [28]). Other key
parameters associated with DGs are referred to [28].

Table I
CRITICAL EIGENVALUES AND PARTICIPATION FACTOR (PF) CALCULATING

Critical eigenvalues of the 2-DG test system
λ1,2 λ3,4 λ5,6 λ7,8 λ9,10

−17.8± j307−15.8± j64−12.4± j22.9−10.3± j7.98−1.12± j2.84

For the two DGs, P10 = P20 = 0.958pu. The critical
eigenvalues that significantly affect stability are tabulated in
Table I. The real eigenvalues and the other eigenvalues that
are far away from the imaginary axis are not presented in
this context. Fig. 6 depicts the immigration of the critical
eigenvalues with the control parameters. It shows that

• Dp should not be relatively small subject to the low-
frequency stability of λ9,10, and meanwhile it has a
maximum allowable value accounting for the PLL and
power control stability of λ3,4. Thus, Dp is selected by
considering a compromise between the fast response and
stability requirement.

• Increasing k−1
p drives both λ3,4 and λ7,8 to the right.

This means that k−1
p should not be set at a relatively

large value.
• The inertia control has two concerned parameters that

significantly impact the system stability. For a small time
constant Td (= 0.1), the range of the gain J is limited
since increasing J easily provokes the DC-link mode λ1,2

to the right half s-plane (RHP) of the root loci spectrum
while a smaller J causes the power control mode λ7,8

toward the RHP. By increasing Td to 1, a large inertia
J and stability margin can be ensured. However, a large
Td leads to a delayed inertial response for DGs. Thus,
it is crucial to make a trade off between the stability
margin and the inertia requirement when selecting the
inertia control parameters.

D. Consideration of the Impact of the Operating Condition

The presence of coefficients K1, K2 in (15) admits that
the frequency dynamic will be significantly impacted by the
operating condition. That is, the system frequency stability
may be hard to be preserved for a conventional PID frequency
control, although it is well-designed compliance with the stiff
regulation requirement at a specific operating condition. This
is examined in details hereafter.

Revisiting (12), its eigenvalue equation is obtained as

G(s)
[
Js2 + (Dp + k−1

p )s+ k−1
p Dp + 2K12

]
= 0 (16)

(16) generates four eigenvalues. The former two eigenvalues
originated from G(s) are just determined by the PID control
parameters, while the latter two eigenvalues created by

Js2 + (Dp + k−1
p )s+ k−1

p Dp + 2K12
constant term

= 0 (17)
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By calculating (17), the concerned critical eigenvalues are

λc1,c2 = −ξωn ± j
√

1− ξ2ωn (18)

that would directly vary with the operating condition (through
the coefficient K12(= ωbK1K2/(K1 + K2)), even if the
regulation requirements are applied to select the PID control
parameters. The properties of the critical eigenvalues (18) are
examined by considering the following three cases.

• The ratio Xi/Ri is very high and the impact of Ri can
be omitted. In this case, K1 and K2 are both positive,
making the constant term in (17) stay positive. The
concerned eigenvalues (18) could be kept in the left half
s-plane (LHP). It is of interest to note that a relatively
large K1 and K2 (thus K12) are obtained for a small Xi,
creating the condition where the test system is prone to
be less damped (ωn increases but ξ decreases from (15))
and loses stability more easily under some circumstances.
This is the same to the result drawn in [9] and needless
to repeat in this context.

• The ratio Xi/Ri is not very high, usually appearing for
a low-voltage microgrid distribution line [28], [29]. If
the power angle (θi0 − θ0, i = 1 or 2) is small enough,
K1 and K2 could be still kept positive. The concerned
eigenvalues (presented by (18)) hence always stay in the
LHP. However, the test system has a threat of losing
stability under the case of a relatively small Ri and Xi.

• For a low Xi/Ri and a large power angle (θi0 − θ0), K1

and K2 would become negative (refer to (6)). This creates
a condition where the constant term in (17) becomes
negative if k−1

p Dp < −K12. One of the concerned
eigenvalues hence shifts to the RHP, posing a threat to
frequency stability. This effect is worse under a heavily
loading condition and a loosely-interconnected network.

Revisiting the small-signal analysis on the full-order model
of the 2-DG test system, Fig. 7 illustrates the immigration of
the critical eigenvalues along with DGs’ operating condition.

Figure 6. Critical eigenvalues of the test system varying with the PID power
control parameters (the arrow of the respective critical eigenvalues indicating
the direction of their movement).

(i) Under a lightly loading condition, the eigenvalues λ1,2 and
λ3,4 both move left along with increasing the power angle;
λ5,6 move right but their stability is maintained in this process.
(ii) Under a heavily loading condition, λ1,2 move left when
increasing the power angle, but λ3,4 move right and even enter
the RHP; the remainder eigenvalues are less susceptible to the
change of the operating condition. Thus, the test system has a
threat of losing stability when a large power angle is created
under a heavy load condition and a long interconnecting line.

Figure 7. Critical system eigenvalues under different operating conditions
(Xi(↑) = 10Xl, 20Xl, 30Xl, 40Xl, 50Xl): (a) P10 = P20 = 0.479 pu
and (b) P10 = P20 = 0.958 pu.

Remark 1:

• The immigration of the critical eigenvalues significantly
depends on the operating condition; this is at the expense
of the stability margin of these eigenvalues. The fixed-
gain PID power control, in light of the stiff regulation
requirement, is typically designed to ensure a proportional
power sharing and good frequency performance at one
operating condition.

• The PID parameters can be designed offline by possi-
ble disturbances through intelligent algorithms (such as
particle swarm optimization (PSO) or genetic algorithm
(GA)). With the target frequency stability and power
constraints, the PID control parameters can be set to
guarantee the stability of the critical eigenvalues along
a wide range of loading trajectory.

Remark 2:

• When uncertain disturbances appear, the fixed-gain PID
power control struggles to effectively preserve the system
frequency quality and the power sharing among DGs.

• The adaptive control method is very necessary and sig-
nificant to online cope with the real-time and uncertain
load disturbances in islanded microgrids.

IV. HDP-PID POWER CONTROL FOR DGS IN ISLANDED
MICROGRIDS

In this section, a HDP-PID power control scheme is devel-
oped to improve the power sharing performance and system
stability under frequent and uncertain disturbances. Using a
Lyapnov approach, it shows that the developed adaptive power
sharing control retains the property of uniformly ultimate
boundedness (UUB) (with the definition referred to [30]) under
mild conditions.
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A. Feedforward Neural Network of HDP

In what follows, a HDP-PID power control is developed to
enable DGs the inertia support and power buffer in an online
learning way. Fig. 8 displays a generalized version of the
neural network for HDP, with one hidden layer. Notably, the
input states xi (i = 1, . . . ,m) are augmented at the hidden
layer, so that the network outputs yk (k = 1, . . . , n) are
function of the augmented states. m and n are the neuron
number of the inputs and outputs, respectively. Let pk, and qk
denote the input and output of a hidden node, respectively. In
addition, ϕ(·) denotes a hyperbola tangent threshold function.

Figure 8. Feedforward neural network.

Refer to Fig. 8, we have

pk =
m∑
i=1

W
(1)
ki xi, qk = ϕ(sk), yk =

Nh∑
i=1

W
(2)
jk qk (19)

The relationship of yk and xk can be produced by (19). In a
compact form, we get

y = W (2)Tϕ(W (1)x) (20)

It was discovered in [31] that the input-to-hidden layer
weights W (1) are chosen initially at random and kept constant
and if Nh is sufficiently large, then the neural network approx-
imation error can be made arbitrarily small since the activation
function vector forms a basis. Therefore, only the output
weights W (2) are proposed to be updated during learning. For
ease of discussion, the subscripts “c” and “a” are introduced
to indicate the variables for the critic and action network,
respectively; the hidden-to-output weights for critic network
and action network are denoted as Wc and Wa, respectively;
the hidden layer neuron activation function vector y is denoted
as ϕ(x) in what follows.

B. HDP-based Power Control Design

Define the Hamiltonian function as

H(x, u) = Ẏ (x) + r(x, u) (21)

Therein, the performance index Y (x) is defined as

Y (x) =

∫ ∞

t

r(x(τ), u(τ))dτ (22)

It achieves its optimal value until Y ∗(x) = min
u

Y (x). The
utility function r(x, u) is expressed as

r(x, u) = xTBx+ uTRu (23)

where B and R are symmetric positive definite matrices
with appropriate dimensions. The critic network learns from
a reinforcement signal r(x, u) to approximate the minimal

cost function Y (x). The action network produces the control
action u by minimizing the approximated cost function Ŷ (x).
In what follows, the action and critic networks are both
implemented using the neural network in Fig. 8. They perform
the feed-forward calculation and the back propagation during
the learning process. The proposed HDP-PID power control is
shown in Fig. 9.

Figure 9. Schematic diagram of HDP-PID power control.

1) Critic network learning: The critical network attends to
approximate Y (x) as follows:

Y (x) = WT
c ϕc(x) + εc (24)

where εc is the approximation error of critic network. The
derivative of Y (x) with respect to x is

∇Y = ∇ϕT
c Wc +∇εc (25)

where ∇ϕc , (∂ϕc(x)/∂x) and ∇εc , (∂εc/∂x).
Let Ŵc be an estimate of Wc, it leads to Y (x) having an

estimate as
Ŷ (x) = ŴT

c ϕc(x) (26)

The critic network error ec is derived as

Ec = eTc ec/2

ec = H(x, u, Ŵc) =
˙̂
Y (x) + r(x, u)

(27)

The weight for the critic network update in light of a gradient
descent rule, which is given by

˙̂
Wc = −lcσc(σ

T
c Ŵc + r(x, u)) (28)

where lc > 0 is the learning rate of critic network; σc =
σ/(σTσ+1), σ = ϕ̇c(x). There exists ∥σc∥ ≤ σcM (for a σcM

larger than 1). For a fixed control policy u, the Hamiltonian
function (24) becomes

H(x, u,Wc) = Ẏ (x) + r(x, u) = εh (29)

Define the weight estimation error W̃c = Ŵc −Wc. By using
(25)-(27) and (29), (28) can be written as

˙̃
W c = −lcσc(σ

T
c W̃c + εh) (30)

2) Action network learning: The action network is trained
to develop the feedback control policy. It approximates the
control u as

u = ϕ(v) + εa, v = WT
a ϕa(x) (31)

where εa is the approximation error of action network. Let
Ŵa be an estimate of Wa, the following can be yielded

v̂ = ŴT
a ϕa(x) (32)
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The action network error ea is defined is

Ea = eTa ea/2, ea = ϕ(v̂) + (1/2)R−1Bu∇Ŷ (33)

where Bu characterizes the relationship between x and u in
the system state-space model. The weight update rule in the
action network is a gradient descent algorithm, as shown by

˙̂
Wa = −laϕa[Ŵ

T
a ϕa + (1/2)R−1Bu∇ϕT

c Ŵc]
T (34)

where la > 0 is the learning rate of action network. Define
the weight estimation error W̃a = Ŵa−Wa. Since the control
policy in (31) minimizes the performance function Y (x) in the
infinite horizon, we have

εa +WT
a ϕa + (1/2)R−1Bu(∇ϕT

c Wc +∇εc) = 0 (35)

by assumption that ϕ(v) = v for a relatively small v (referred
to Theorem 1). Combining (34) and (35) yields

˙̃
W a = −laϕa[W̃

T
a ϕa + (1/2)R−1Bu∇ϕT

c W̃c + εca] (36)

where εca = −[εa + (1/2)R−1Bu∇εc].

C. Stability Analysis

Before moving on, the following assumption is made, which
can reasonably be satisfied under the current problem settings.

Assumption 1:
• The following notations involved in the HDP algorithm

are upper bounded. That is, (i) ∥Wc∥ ≤ WcM , ∥Wa∥ ≤
WaM ; (ii) ∥εc∥ ≤ εcM , ∥εa∥ ≤ εaM ; (iii) ∥ϕc(·)∥ ≤
ϕcM , ∥ϕa(·)∥ ≤ ϕaM ; (iv) ∥∇εc∥ ≤ εdM , ∥∇ϕa∥ ≤
ϕdM and ∥εh∥ ≤ εhM .

• The persistent excitation conditions for tuning critic and
action network require that ∥σc∥ ≥ σcm and ∥ϕa∥ ≥ ϕam

(σcm and ϕam are positive constants) [33].
Theorem 1: Let Assumption 1 hold and design the re-

inforcement signal as given in (23). Let the critic network
output be given as (26) , and critic network weights update
according to (28), action network weights update according
to (34). Let the initial action network weights be chosen to
generate an initial admissible control. And provided that the
learning rate lc and la fulfill the inequalities of (44). Then the
weight estimate errors W̃c and W̃a are UUB. Furthermore, the
obtained control input û is close to the optimal control input
u within a small bound εu, i.e., ∥û− u∥ ≤ εu as t −→ ∞
(herein, εu is a small positive constant).
The proof is referred to Appendix.

Remark 3: The principle of tuning the action network is to
indirectly backpropagate the error between the desired ultimate
objective (Uc) and the approximate performance function Ŷ
from the critic network. Thus, the feedback error signal ea
could be defined as

Ea = eTa ea/2, ea = Ŷ − Uc (37)

where Uc is set as “0” without loss of generality [32]. While
(37) is equivalent to (33), it allows to update the weight free
of the system model. From [32], we have

˙̂
Wa = la

(
−∂Ea/∂Ŵa

)
(38)

In what follows, (37)-(38) would be used as a substitute for
(33)-(34) when obtaining the weight estimate Ŵa.

Remark 4: The HDP-PID control stability is able to be
preserved from the following two aspects:

• The proposed control through HDP networks offers a sup-
plementary power correction signal. When disturbances
and uncertainties happen, the P−f droop control outputs
the main control signal and the HDP network outputs the
auxiliary control signal (see Fig. 9). Until the frequency
deviation reaches zero, both control values become zero.

• The stability of the HDP-PID control mainly relies on the
basic P−f droop control. The HDP network usually sets
the output limit, which is small and not enough to cause
any instability. Additionally, the HDP algorithm has the
uniformly ultimately bounded stability (see Theorem 1).

That is, the original fixed-gain PID control is mainly respon-
sible for the stability and the HDP networks could greatly im-
prove the control performance during uncertain disturbances.

V. SIMULATION TESTS

A. Case Studies for Theoretical Analysis

In this subsection, we use the time-domain model of the 2-
DG test system to demonstrate the analysis results presented
in Section III. Each DG is an aggregated 2-MW full-converter
wind turbine (refer to [28]). The rated power of each DG is
100 MW (50×2 MW). The mechanical system is represented
by a power source, while the dynamics of power control,
voltage & current control, PLL control, DC link, filter and
interconnecting lines are all captured. The block diagram of
a DG with a PID power control is shown in Fig. 1, with the
PID control parameters initially set as Dp = 15, J = 20 and
kp = 1 (other key parameters of the DG system are referred
to [28]). The interconnecting lines have a uniform X/R ratio
at 3.427 (Xl = 0.3951Ω/km, Rl = 0.1153Ω/km) [28].

At all cases, P10 = P20 = 0.958pu, X = 10Xl; a load
step change occurs in the test system at t = 1s. Fig. 10
shows the responses of DGs varying with the PID power
control parameters. (i) The increase of Dp results in a higher
oscillating frequency and a lifted frequency nadir. This is the
consequence of a degraded PLL dynamic but an improved low-
frequency dynamic. (ii) The increase of J drastically improves
the dynamic frequency performance (leading to a smaller slope
and a higher nadir during the frequency dropping). However,
an undue value of J (such as J = 300) indeed provokes
the frequency instability. (iii) For a larger k−1

p , the frequency
can quickly regain its normal value but may concomitantly
manifest an aggravated oscillation. This is because that the
increase of k−1

p tends to deprave the damping of the PLL and
PID control dynamics (see Fig. 6).

In Fig. 11, the responses of DGs varying with the operating
conditions are presented (versus a load step change at t = 1s
in the test system). (i) When picking up a given heavy local
load, a large power angle of DGs is created for a long
interconnecting line. This accordingly causes a damage to the
islanded microgrid stability. (ii) However, a smaller power
angle of DGs is counted during lightly loading. DGs are more
easily to conserve stability in this case.
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Thus, results in Fig. 10 and Fig. 11 reveal that the small-
signal analysis in Section III is able to predict the islanded
microgrid stability and provides a guidance to circumvent
the stability problems through tuning PID parameters. Some
algorithms (like PSO or GA) can be then used to train the
PID parameters offline with the frequency stability objective
and power constraints. However, the fixed-gain PID power
control is weak in addressing the real-time and uncertain load
disturbances. To cope with this problem, an online HDP-based
power control is developed. The control performance tends to
be demonstrated in the next subsection.

Figure 10. Responses of DGs varying with the PID settings. (Note: the output
power (∆P1/∆P2) of DG1/DG2 is denoted by the solid/dashed line.)

Figure 11. Responses of DGs varying with the operating conditions: (a)-(b)
for a highly loading condition (P10 = P20 = 0.958pu); (c)-(d) for long
interconnected lines (X = 50Xl).

B. Case Studies for HDP-PID Power Control

The input data consists of the current frequency deviation
∆ω(t), the time-step delay variable ∆ω(t − 1), as well as
their derivatives ∆ω̇(t) and ∆ω̇(t − 1). These data are first
normalized in [-1, 1] before proceeding HDP’s neural network.

x(t) =
1

mf
[∆ω(t),∆ω(t− 1),∆ω̇(t),∆ω̇(t− 1)]

T (39)

where mf is the normalization coefficient, determined by the
maximal possible absolute value of the frequency deviation.
The matrices B and R when generating the reinforcement
signal r(t) are set as B = diag (1, 0.5, 0.05, 0.01) and R = 1.
Once load disturbances or network topology changes appear,
r(t) grows with the increase of frequency deviation. This
consequently updates the weights of both neural networks, thus
the HDP-PID output signal upo updates and adaptively reduce
the impact of load and network topology changes.

The 2-DG and a modified IEEE 14-bus test system (see Fig.
12) are both used for the following case studies. DGs have the
same control configuration and parameters in these two test
systems (importantly, Dp = 15, J = 20, kp = 1). Notably, the
foremost is to demonstrate the control performance a severe
operating condition where the test system operates with a
heavy load and a loosely-interconnected network. Responses
of DGs fitted with a conventional PID and the proposed HDP-
PID power control are both displayed to reveal some insights
into the necessity of an optimal control design.

Figure 12. 14-bus 6-DG test system (with the load power at each bus).

1) Scenario A- a step load disturbance: In Scenario A, a
load step event occurs at t = 1s. Fig. 13 shows the simulation
results (herein ∆P1 of DG1 is selected for the demonstration).
The fixed-gain PID and HDP-PID power control are both
considered. We observe that (i) using fixed-gain PID control,
the system frequency is prone to be less damped (resulting in
a large drop slope, a small nadir and a salient overshoot); (ii)
Using HDP-PID power control, the test system has a relatively
smooth and well-damped frequency profile.

2) Scenario B- an uncertain load disturbance: In Scenario
B, an uncertain load disturbance is considered. The uncertain
load ∆Pload, with a power profile displayed in Fig. 14, is
picked up at t = 1s. Fig. 14 also illustrates the simulation
results. On one hand, much more severe frequency transients
are observed when DGs fitted with the fixed-gain PID control.
This is because that the fixed-gain PID control has less
adaptivity to the uncertain disturbances and consequently the
system would be more vulnerable to the load uncertainties.
On the other hand, the HDP-PID power control enables well-
improved frequency transients for both test systems. It helps
that the HDP is a learning technology and enables the power
control much more adaptive to the load uncertainties. Thus,
the results claim that the HDP-PID power control outperforms
the fixed-gain PID power control in stabilizing the islanded
microgrids against uncertainties.

In addition, the HDP-PID control could enable DGs to have
a more accurate power sharing, compared to the fixed-gain PID
control. This is demonstrated from Fig. 15, where an uncertain
disturbance appears in the 14-Bus test system. Actually, the



10

Figure 13. Responses of DGs versus a step load disturbance: (a)-(b) for 2-DG
system and (c)-(d) for 14-Bus test system.

Figure 14. Responses of DGs versus an uncertain load disturbance: (a)-(b)
for 2-DG system and (c)-(d) for 14-Bus test system.

frequency is a global variable which results in an accurate
active power sharing among DGs for both controls (the active
power responses of DGs are not displayed here).

Figure 15. Reactive power responses of DGs in the 14-Bus test system versus
an uncertain load disturbance: (a) installing a fixed -gain PID control; (b)
installing an HDP-PID control.

3) Comparative simulations to the communication-based
control: In this segment, we try to compare the con-
trol performance of the proposed HDP-PID control to the
communication-based power control. The consensus-droop
control in [34] is employed hereafter. The key parameters
(with the notations reference to [34]) are set as J = 20,
Dp = 15, kp = 1, kq = 1, Dq = 10 (where J is the inertia
parameter). The communication network is naturally modeled
as an undirected and connected graph.

The 14-Bus test system is used and an uncertain load
disturbance is considered (like Scenario B). Fig. 16 displays
the responses of DGs with the consensus-droop control and the
HDP-PID control. It shows that the HDP-PID power control is
advantageous over the consensus-droop control when coping
with the uncertain disturbances.

4) Scenario C- specific sudden disturbances: In this seg-
ment, the HDP-PID control performance versus specific sud-
den changes is simulated. At first, we consider the grid
topology change of the 14-Bus test system. The topology is
modified with the removal of six transmission lines (that link
Bus 1-2, Bus 2-4, Bus 2-3, Bus 7-9, Bus 9-14, Bus 12-13) at
t = 21s. In addition, a step load increment is considered at

Figure 16. Responses of DGs versus an uncertain load disturbance (with the
HDP-PID control or consensus-droop control used).

t = 51s. Fig. 17 depicts the DGs’ responses. The result is that
the proposed HDP-PID control is able to cope with the grid
topology change.

Then, a sudden change to the switch-in/out of a DG is
considered. However, the proposed HDP-PID power control
would fail in restoring the power sharing of the rest DGs. The
reason may be that relatively large changes of the frequency
and its derivative are created during the sudden large power
flow change. This would require undue learning and lead to the
failure of the HDP-PID control. The improvement strategies
will be investigated in a future paper.

Figure 17. Responses of DGs versus a grid topology change of the 14-Bus
test system.

VI. CONCLUSION

We have shown that the dynamic stability of PID power con-
trol is very sensitive to the operating conditions. This problem
is relevant in islanded microgrids, where the interconnected
lines have a low X/R ratio and the output power level of DGs
is closely dependent on the pick-up loads. Using the proposed
SFR model of DGs, a dynamic stability analysis is conducted
for an islanded microgrid system. The results show that the
critical eigenvalues of islanded systems directly vary with the
operating condition and would lose stability under a heavy
load and a loosely-interconnected network condition. This
claims that the fixed-gain PID power control may not be able
to effectively preserve the frequency quality and power sharing
during load uncertainties. By using the learning algorithm, the
HDP-PID power control is capable of ensuring the control
performance against uncertain disturbances. With such control,
it is conceivable to achieve an improvement of both the power
sharing and the system stability during frequent load changes
and uncertainties in islanded microgrids. These have been
tested and validated by the simulations.

VII. APPENDIX

A. Proof of Theorem 1

The following provides the proof of Theorem 1. Here, the
Lyapunov function candidate is selected as below

L = Lc + La (40)
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where Lc = tr
{
W̃T

c W̃c

}
/2lc and La = tr

{
W̃T

a W̃a

}
lc/2la.

Under Assumption 1, we have

L̇c = (1/lc)tr
{
W̃T

c
˙̃
W c

}
= (1/lc)tr

{
W̃T

c

[
−lcσc(σ

T
c W̃c + εh)

]}
≤ −

(
σ2
cm − lc

2
σ2
cM

)∥∥∥W̃c

∥∥∥2 + 1

2lc
ε2h

(41)

L̇a = (lc/la)tr
{
W̃T

a
˙̃
W a

}
= (lc/la)tr

{
W̃T

a

[
−laϕa(W̃

T
a ϕa

+(1/2)R−1Bu∇ϕT
c W̃c + εca)

T
]}

≤ −
[
lcϕ

2
am − (3/4)lclaϕ

2
aM

] ∥∥∥W̃a

∥∥∥2
+

lc
4la

∥∥R−1
∥∥2 ∥Bu∥2 ϕ2

dM

∥∥∥W̃c

∥∥∥2 + lc
2la

εTcaεca

(42)

Thus, the time derivative of (40) is given by

L̇ =−
(
σ2
cm − lc

2
σ2
cM − lc

4la

∥∥R−1
∥∥2 ∥Bu∥2 ϕ2

dM

)∥∥∥W̃c

∥∥∥2
− lc

[
ϕ2
am − (3/4)laϕ

2
aM

] ∥∥∥W̃a

∥∥∥2
+

1

2lc
ε2h +

lc
2la

εTcaεca

(43)

Selecting lc and la to satisfy

lc <
(
4laσ

2
cm

)
/
(
2laσ

2
cM +

∥∥R−1
∥∥2 ∥Bu∥2 ϕ2

dM

)
la <

(
4ϕ2

am

)
/
(
3ϕ2

aM

) (44)

it enables L̇ < 0 under admissible
∥∥∥W̃c

∥∥∥ and
∥∥∥W̃a

∥∥∥. There-
fore, using Lyapunov theory, it claims that the network weight
estimation errors W̃c and W̃a are UUB.

Hereafter, we attend to prove that ∥û− u∥ ≤ εu as t → ∞.
Revisiting (31), we have (45) for a small positive constant εv .

ṽ − v = W̃T
a ϕa ≤ εv (45)

when t → ∞. Moreover in (31), u is a function of v. Thus,

ũ− u ≤ (1/2)(1− u2)εv ≤ εu (46)

when εu is a positive constant.

B. DG Parameters (on Base of Machine Rating) [28]

Pn = 2MW,Vn = 575V, ω0 = 120π, filter resistance:
Rf = 0.003pu, Lf = 0.2pu, Cf = 0.057pu, DC capacitor:
Cdc = 90000µF , DC voltage: Vdc = 1100V , terminal-voltage
control: kpv = 1, kiv = 20, DC voltage control: kpdc =
1.1, kidc = 27.5, current control: kpi = 1, kii = 50, PLL
control: kpp = 60, kip = 140, Q-V̇ control: Dq = 10, kq = 1.
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