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Network Identification Using μ-PMU and Smart 

Meter Measurements 
Priyank Shah, Student Member, IEEE and Xiaowei Zhao 

Abstract- The network identification plays a very prominent 

role for the network operator to accomplish the various 

objectives such as state-estimation, monitoring, control, 

planning, and real-time analytics. The network structure varies 

from time-to-time and its details are often not available with the 

network operator. To address this issue, an alternating direction 

method of multipliers (ADMM) based framework is presented 

herein to identify the network topology and line parameters 

using smart meter (SM) and micro phasor measurement unit (µ-

PMU) measurements. The presented algorithm is divided into 

two sections, 1) approximate parameter evaluation through 

regression, to extract the partial topology information, and 2) 

complete network topology identification through the ADMM 

framework. This algorithm accomplishes the objectives of 

identifying the network configuration, branch parameters (e.g., 

conductance and susceptance), and change in branch 

parameters. Simulation results demonstrate the effectiveness of 

the presented algorithm on the benchmarked IEEE 13-bus and 

IEEE 123-bus feeders under various operating scenarios. 

Furthermore, the presented framework illustrates excellent 

network identification even with the presence of the stochastic 

nature of renewable power generation. The presented algorithm 

exhibits an excellent performance even with the consideration of 

noise in both measurements. In addition, the comparative 

performance is carried out on the benchmarked unbalanced 

IEEE 13-bus and balanced IEEE 33-bus feeders to highlight the 

efficacy of the presented framework over the state-of-art 

framework. 

Keywords- Grid parameter estimation, Distribution feeder, 

Phasor measurement unit (PMU), Smart grid, and Smart meter. 

I. INTRODUCTION 

Nowadays, the phasor measurement units (PMUs) are 

widely popular in the electrical grid in order to acquire system 

information (e.g. magnitude and phase). This traditional 

PMU has good estimation accuracy for the long transmission 

line as the network has a significant phase difference between 

the buses, however, it is not the same in the case of the low-

voltage distribution feeders [1]. Hence, the researchers have 

introduced a micro-phasor measurement unit (μ-PMU) device 

to improve the estimation accuracy for a low-voltage 

distribution network. In addition, the smart meter (SM) 

device is also popular in the network to acquire active power, 

reactive power, and voltage magnitude measurements. The 

measurements from the SMs and μ-PMUs are very helpful for 

a network operator to achieve the optimal operation [2-3] of 

the distribution network. 

The network identification helps the network operator to 

accomplish the operations [4-5] such as state estimation, 

network expansion, network planning, fault detection, etc. It 

is well-known fact that the state-estimation algorithm is 

successful only when the system topology and the line 

parameters of the system are accurately known. Therefore, 

various algorithms are reported in the literature [6-8] to 

identify the network structure accurately, with the 

synchronized voltage and current samples. The machine-

learning algorithm [8] needs enough time to let the algorithm 

learn and develops enough to comply their purpose with a 

considerable amount of accuracy and relevancy. This 

algorithm [8] is autonomous but highly susceptible to errors 

and it may not be able to discover immediately. These 

graphical algorithms [6-8] are not able to identify the line 

parameters, change in branch parameters, etc. In contrast with 

the graphical algorithm [6-8], the maximum likelihood 

estimation method is analyzed in [9] to estimate the branch 

parameters and network configuration using μ-PMU data. 

Although this method provides robust operation with the 

presence of noise, it fails to suffice identification objectives 

for an unbalanced distribution network. To overcome these 

shortcomings, the least absolute shrinkage and selection 

operator (Lasso) algorithm is analyzed in the literature [10-

11] to identify the line parameters, event, change in structure 

for low-voltage feeders. Nevertheless, there are several 

scenarios in the low-voltage feeders where synchronized data 

(e.g., voltage, current) are not available to study due to having 

the high cost of a μ-PMU device, which creates a hindrance 

to accomplishing the identification objectives. Hence, the 

smart meter is an emerging device in low-voltage feeders to 

acquire system information. 

The affinity propagation clustering-based approach is 

reported in [12] for the connectivity identification in a low-

voltage distribution feeder using smart meter data. Although 

these algorithms [12-13] identify the network configuration, 

they are not capable to identify the network branch 

parameters with the presence of Gaussian noise in the 

measurements. The topology identification algorithm [13] is 

formulated using the weighted least square framework via 

multiagent systems. This framework [13] does not comply 

with the identification objectives such as branch parameters, 

changes in network configuration, etc. Peppanen et al. [14] 

have constructed the series-circuit regression model for 

network identification using SM data. Howbeit, this series-

circuit model is less accurate and possibly invokes mistakes 

while performing the pairing process. Likewise, it fails to 

facilitate the new upstream node into the existing model, 

which may render erroneous results. To overcome these 

shortfalls, Shi et al. [15] have described the parallel-circuit 

regression model to identify the network configuration. 

Nonetheless, this algorithm [15] may not suffice the 

identification objectives with the presence of noise in smart 

meter data for unbalanced distributed systems. 

To overcome these shortcomings, the mixed-integer 

linear/quadratic programming (MILP/MIQP) based 

algorithm is developed in [16] to identify the network 

configuration and outages for the unbalanced distribution 

network. However, it suffers from high-dimensionality issues 

and a high computational burden. Zhang et al. [17] have 

developed a numerical approach to identify the branch 

parameters, topology, and sudden change in the network 

using SM data. The Markov random filed technique is 

analyzed in [18] to accomplish the topology identification for 

the distribution network. This algorithm lacks to solve long-

distance correlations of observation sequences and is  
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TABLE-I COMPARISONS BETWEEN EXISTING FRAMEWORKS 

References Type of Network Topology Identification Event Detection Parameter Estimation 

Prostejovsky et al. [2] 
Balanced Not Feasible Not Feasible Feasible 

Unbalanced Not Feasible Not Feasible Not Feasible 

Babakmehr et al. [4] 
Balanced Feasible Feasible Feasible 

Unbalanced Not Feasible Not Feasible Not Feasible 

Hosseini et al. [8] 
Balanced Feasible* Not Feasible Not Feasible 

Unbalanced Feasible* Not Feasible Not Feasible 

Si et al [12] 
Balanced Feasible Feasible Not Feasible 

Unbalanced Not Feasible Not Feasible Not Feasible 

Gandluru et al. [16] 
Balanced Feasible Feasible Not Feasible 

Unbalanced Feasible Feasible Not Feasible 

Zhang et al. [17] 
Balanced Feasible Feasible Feasible 

Unbalanced Not Feasible Not Feasible Not Feasible 

He et al. [21] 
Balanced Feasible Feasible Not Feasible 

Unbalanced Not Feasible Not Feasible Not Feasible 

Tian et al. [22] 
Balanced Feasible Feasible Not Feasible 

Unbalanced Not Feasible Not Feasible Not Feasible 
*It performs only phase identification for a balanced and unbalanced network. 

susceptible to obtaining accurate local optimal solutions. In 

addition, it overlooks to analyze the impact of the stochastic 

nature of renewable power generation on network 

identification objectives. The impact of a renewable energy 

sources is studied on the benchmarked network configuration 

[19-21]. Papadopoulos et al. [19] have developed a 

probabilistic framework to study the dynamics and impact of 

uncertainties associated with the variation in network 

configuration, events, and stochastic nature of renewable 

energy sources. Nevertheless, the overall analysis depends 

upon the accurate availability of the network configuration 

and event location. To deal with these issues, the auto-

regression model and random matrix theory-based hybrid 

framework is described in [21] to identify the network 

configuration and event detection for the given network. 

Nonetheless, the state-of-art framework [21] does not capable 

to estimate the branch parameters for either balanced or 

unbalanced system configuration. The comparative summary 

between various frameworks to identify the network 

configuration, event, and branch parameters is summarized in 

Table-I. Therefore, it is necessary to formulate a robust 

algorithm to accomplish the identification objectives with 

help of synchronized (e.g., μ-PMU) and non-synchronized 

(e.g., smart meter) data. 

In this paper, a robust alternating direction method of 

multipliers (ADMM) is presented, to identify the network 

structure, branch parameters, event detection, etc., using μ-

PMU and SM measurements. The salient features of the 

presented work are summarized as follows. 

➢ The presented ADMM based algorithm leverages the 

measurements from both SMs and μ-PMUs, for accurate 

network identification, whereas, the state-of-art 

algorithms [10, 17, 22] deals with uniform measurements 

(e.g., either μ-PMUs or smart meters) to fulfil the 

identification objectives. 

➢ The presented framework provides robust and efficacious 

identification performance even with wide variations of 

standard deviation in the μ-PMUs and smart meters 

measurements. In addition, the scalability and efficacy of 

the presented framework are validated through the 

benchmarked IEEE 123-bus feeder. 

➢ The presented framework accomplishes the network 

identification objectives even with the presence of the 

stochastic nature of renewable power generation. To 

validate this feature, the performance is validated on 

benchmarked IEEE 13-bus feeders with the presence of 

renewable energy sources on certain buses. 

➢ As the presented framework does not depend upon the 

types of loads, it accomplishes the network identification 

objectives without having particular knowledge of the 

number of households and its load profile. 

➢ In contrast with the state-of-art methods [4, 6, 17, 22], the 

presented algorithm efficiently estimates the network 

configuration, branch parameters, change in branch 

parameters, and change or event in network structure. It is 

validated for an unbalanced IEEE 13-bus network with 

the opening of a three-phase branch (e.g. branch 671-692) 

and connection of a three-phase branch (e.g., branch 

between 680 to 692). 

➢ Illustrative comparative performances are carried out to 

validate the effectiveness of the presented algorithm over 

traditional algorithms [10-11, 17]. The comparative 

identification result is demonstrated to estimate the 

revised branch parameters with the 10% variation in 

branch parameters (e.g., branch between 671 to 680) on 

the IEEE 13-bus unbalanced feeder. In addition, the 

comparative estimation of branch parameters is analyzed 

between the presented and state-of-art framework [17] on 

the benchmarked IEEE 33-bus balanced feeder with the 

presence of Gaussian noise. 

The methodology for network identification is described in 

Section-II. In Section-III, the results and discussion for the 

presented framework are analyzed for the modified IEEE 13-

bus and IEEE 132-bus feeders under various operating 

scenarios such as a change in branch parameter, change in 

network structure. To demonstrate the effectiveness of the 

presented framework over the traditional frameworks [10-11, 

17], the comparative performances are analyzed in Section-

IV. The conclusions are described in Section-V. 

II. METHODOLOGY FOR NETWORK IDENTIFICATION 

The methodology for network identification is reported in 

this section. Initially, the available measurements are 

described, obtained from the smart meters and μ-PMUs 

installed at various nodes in the network. Later, a method to 

obtain the partial information of the topology using only the 

smart meter measurements is described. Finally, the μ-PMU 

measurements are used to obtain the complete network 

identification. The topology information, as well as the 

conductances and susceptances of each of the lines, is 

obtained through this method. The methodology is thus 

organized in three subsections, described as follows. 

A. Available Measurements 

The measurements are available from the smart meters and 

the distributed phasor measurement units. The measurements 

available from the smart meters are the real and reactive 
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power injections and the voltage magnitudes, while the 

measurements with distributed phasor measurement units 

include the time-stamped voltage phasors and the current 

phasors. It is assumed that the smart meters are installed at 

certain buses, while the phasor measurement units are 

installed at the rest of the buses.  Assuming that ‘Gij’ and ‘Bij’ 

are the susceptance and conductance of a line between the 

nodes ‘i’ and ‘j’ (i, j ∈ ℕ), then the active and reactive power 

injections at a given bus can be written as [23], 

𝑃𝑖 = |𝑉𝑖|∑ |𝑉𝑗|(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗)
𝑛

𝑗=1
   (1) 

𝑄𝑖 = |𝑉𝑖|∑ |𝑉𝑗|(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗)
𝑛

𝑗=1
   (2) 

where ‘Pi’ and ‘Qi’ are the nodal real power and reactive 

power injections, while |Vi| represents the voltage magnitude 

at a node ‘i’. The smart meter measurements are initially 

processed using (1)-(2) as base equations, in order to extract 

the partial information of the topology, while the μ-PMU 

measurements are then utilized to extract the complete 

topology information. 

B. Extraction of Partial Topology Information using Smart 

Meter Measurements 

Assuming that the smart meter measurements are available 

only at certain nodes, the partial information about the 

network topology is extracted using the corresponding 

measurements. This information is extracted in two main 

steps. The first step involves a regression process to evaluate 

the approximate values of the partial topology parameters, i.e. 

the line susceptances and the conductances, while the second 

step involves obtaining their exact estimates.  

1) Step-I: Parameter Evaluation through Regression 

From (1)-(2), for a given number of nodes ‘n’, it is possible 

to write, 

[
𝑃𝑖
|𝑉𝑖|

𝑄𝑖
|𝑉𝑖|
]
𝑇

= [
𝐺𝑖1
# 𝐺𝑖2

#

𝐵𝑖1
# 𝐵𝑖2

#

⋯ 𝐺𝑖𝑛
#

⋯ 𝐵𝑖𝑛
# ] [

|𝑉1|

|𝑉2|
⋮
|𝑉𝑛|

] (3) 

where, 

𝐺𝑖𝑗
# = (𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃𝑖𝑗) 

𝐵𝑖𝑗
# = −(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃𝑖𝑗) 

(4) 

Initially, using the available smart meter measurements (i.e. 

real power, reactive power and the voltage magnitude) at 

different time stamps, the following matrices are formulated 

for ‘K’ instants of measurements, 

[𝐏𝐕𝐊] =

[
 
 
 
 
𝑃1
(1)

|𝑉1|
(1)

⋯
𝑃1
(𝐾)

|𝑉1|
(𝐾)

⋮ ⋱ ⋮
𝑃𝑟
(1)

|𝑉𝑟|
(1)

… 𝑃𝑟
(𝐾)

|𝑉𝑟|
(𝐾)]
 
 
 
 

 

[𝐐𝐕𝐊] =

[
 
 
 
 
𝑄1
(1)

|𝑉1|
(1)

⋯
𝑄1
(𝐾)

|𝑉1|
(𝐾)

⋮ ⋱ ⋮
𝑄𝑟
(1)

|𝑉𝑟|
(1)

… 𝑄𝑟
(𝐾)

|𝑉𝑟|
(𝐾)]
 
 
 
 

 

(5) 

The superscripts ‘(1)’ to ‘(K)’ represent the time instants 

of measurements, while the subscripts ‘1’ to ‘r’ represent the 

numbers corresponding to a node assuming that the smart 

meters are installed at ‘r’ nodes (r ∈ ℕ). Using (3),(5), the 

following expression can be written, 

[𝐏𝐕𝐊]𝑟×𝐾 = [
𝐺11
# ⋯ 𝐺1𝑛

#

⋮ ⋱ ⋮
𝐺𝑟1
# … 𝐺𝑟𝑛

#
] [
|𝑉1|

(1) ⋯ |𝑉1|
(𝐾)

⋮ ⋱ ⋮
|𝑉𝑟|

(1) … |𝑉𝑟|
(𝐾)
]   (6) 

A pseudo-inverse technique [23], is then used to compute 

the approximate values of ‘Gij
#’ matrix as, 

[𝐆#] = [𝐏𝐕𝐊][𝐕𝐊]([𝐕𝐊][𝐕𝐊]𝑇)−1 (7) 

where, [𝐆#] corresponds to the first matrix of the right-hand 

part of (6), while [𝐕𝐊] is the corresponding second matrix. 

Likewise, ‘Bij
#’ matrix is computed as, 

[𝐁#] = −[𝐐𝐕𝐊][𝐕𝐊]([𝐕𝐊][𝐕𝐊]𝑇)−1 (8) 

It may be noted that only the information of conductances 

and susceptances corresponding to the smart meter nodes is 

obtained from (7)-(8). The voltage angle ‘θij’ in the 

distribution feeder, is usually within 0.1 rad, thereby, sin θ ≈ 

0, cos θ ≈ 1. Therefore, the obtained values of ‘Gij
#’ and ‘Bij

#’ 

from (7)-(8), form the approximate values of ‘Gij’ and ‘Bij’, 

to be utilized in the succeeding step as depicted in Fig. 1.  

2) Step-II: Parameter Evaluation through Newton-Raphson 

Analysis 

In this step, the approximate values of conductances and 

the susceptances obtained in step-I, are used to obtain the 

corresponding exact values of the partial topology 

information (corresponding to the smart meter nodes) as 

depicted in Fig. 1. The Newton-Raphson (NR) method [17] 

is employed here, where the approximate conductances and 

susceptances serve as a fine initial start for this method. Using 

the available active and reactive power injection 

measurements, at the buses with smart meters, the change in 

the active and reactive power matrices are built as, 

[∆𝐏𝐊] = [
𝑃1
(1) − 𝑃1𝑐

(1) ⋯ 𝑃1
(𝐾) − 𝑃1𝑐

(𝐾)

⋮ ⋱ ⋮

𝑃𝑛
(1) − 𝑃𝑛𝑐

(1) … 𝑃𝑛
(𝐾) − 𝑃𝑛𝑐

(𝐾)

] 

[∆𝐐𝐊] = [
𝑄1
(1) − 𝑄1𝑐

(1) ⋯ 𝑄1
(𝐾) − 𝑄1𝑐

(𝐾)

⋮ ⋱ ⋮

𝑄𝑛
(1) − 𝑄𝑛𝑐

(1) … 𝑄𝑛
(𝐾) − 𝑄𝑛𝑐

(𝐾)

] 

(9) 

where, the prefix ‘c’ denotes the calculated values. Initially, 

these real and reactive powers are calculated using the 

approximate susceptances and conductances. The Jacobian  

Smart meter measurements: Pi, Qi, |V|i;

i= 1, 2, … , r. @certain buses

μ-PMU measurements: |V|i, θi; 

i= r, r+1, …, n. @ rest of certain buses

Obtain approximated [G
#
] and [B

#
] 

for ‘r’ nodes with help of smart 

meter measurements from (7) to (8)

Calculate Pjc      and Qjc      using 

approximated  [G
#
] and [B

#
] 

Formulate the change in active and 

reactive power for certain nodes in (9)

Evaluate Jacobin matrix in (12)

Obtain the accurate conductance, 

susceptance, phase angle of buses with help 

of Newton-Raphson method

Obtain ‘Y1r’ matrix

Formulate Vphasor, Vphasor, 

Jphasor using θphasor

Perform orthogonal triangular 

decomposition of Vphasor

Sort diagonal elements of the 

upper triangular matrix

Obtain the linearly 

independent rows of ‘Vbus’

Obtain sub-matrix 

‘Iv’ &‘Dv’ and ‘IJ’ ‘DJ’

Obtain ‘DI’ in (24)

Formulate the problem 

statement (26) & solve 

using ADMM approach

Obtain ‘YT2’, ‘YT3’, ‘YT1’ 

and ‘YT4’ using (25)

Obtain ‘Yrn’ matrix 

as Yrn= TmYrnTm
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Fig. 1 Flow-chart of the presented framework for network identification 
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matrix [17] in the NR method is as, 

[
∆𝐏
∆𝐐
] = [

𝜕𝐏

𝜕𝐠

𝜕𝐏

𝜕𝐛

𝜕𝐏

𝜕𝛉

𝜕𝐐

𝜕𝐠

𝜕𝐐

𝜕𝐛

𝜕𝐐

𝜕𝛉

] [
∆𝐠
∆𝐛
∆𝛉

] (10) 

where, 

∆𝐠 = [

𝒈𝟏
⋮
𝒈𝒎
] ; ∆𝐛 = [

𝒃𝟏
⋮
𝒃𝒎

] ; ∆𝛉 = [
𝜃1
(1)

… 𝜃1
(𝐾)

⋮ ⋱ ⋮

𝜃𝑛
(1)

… 𝜃𝑛
(𝐾)
] (11) 

The problem (10), is solved using the pseudo-inverse [17] as, 

[
∆𝐠
∆𝐛
∆𝛉

] = [

𝜕𝐏

𝜕𝐠

𝜕𝐏

𝜕𝐛

𝜕𝐏

𝜕𝛉

𝜕𝐐

𝜕𝐠

𝜕𝐐

𝜕𝐛

𝜕𝐐

𝜕𝛉

]

†

[
∆𝐏
∆𝐐
] (12) 

The conductances, the susceptances as well as the voltage 

angles are updated as, 

[𝐠 𝐛 𝛉]𝑢
𝑇 = [𝐠 𝐛 𝛉]𝑇 + [∆𝐠 ∆𝐛 ∆𝛉]𝑇 (13) 

The new values of the line parameters and the voltage 

angles are then used for the next NR iteration, while these 

iterations are carried out until the convergence point is 

reached. For the threshold for convergence, computation of 

the pseudo-inverse (†) as well as the Jacobian matrix, the 

reader is directed to [17]. A threshold is set for the topology 

modification, where the small values of conductances and 

susceptances are identified as wrong branches and thus 

eliminated. The NR iteration is run again whenever a branch 

is less than this threshold. the accuracy of the voltage angle 

estimation is also improved using a pseudo power flow 

conducted with the known information, before every 

iteration. The overall process to obtain the accurate network 

parameters is illustrated in Fig. 1. 

C. Complete Topology Information with μ-PMU 

Measurements 

The partial information of the line susceptances and 

conductances are obtained, using the smart meter 

measurements, by solving the NR method in section B-2. 

However, to obtain the complete information of the topology, 

the μ-PMU measurements are mandatory. As depicted earlier, 

for SM installed at buses ‘1’ to ‘r’, the information obtained 

from solving (12), are the elements of the true conductance 

and susceptance matrices, corresponding to the approximate 

matrices [𝐆#] and [𝐁#] in (6) and (7) respectively. Thus, as 

the ‘Gij’ and ‘Bij’ from the rows ‘1’ to ‘r’ are accurately 

known by step B-2, which implies that the top ‘r’ rows of the 

bus admittance matrix are known accurately, i.e. from the 

system’s bus admittance matrix (14), the submatrix ‘Y1r’ 

corresponding to the matrix with first ‘r’ rows, is entirely 

known. 

𝐘𝐛𝐮𝐬 =

[
 
 
 
 
 
𝑌1,1 ⋯ 𝑌1,𝑛
⋮ ⋱ ⋮
𝑌𝑟,1 ⋯ 𝑌𝑟,𝑛

𝑌𝑟+1,1 ⋯ 𝑌𝑟+1,𝑛
⋮ ⋱ ⋮
𝑌𝑛1 ⋯ 𝑌𝑛𝑛 ]

 
 
 
 
 

 (14) 

The matrix ‘Yrn’ is the matrix with the last ‘n-r’ rows of 

‘Ybus’ in (14), associated with the unknown values. Thus the 

main goal is to estimate the elements of the matrix ‘Yrn’ using 

the available μ-PMU voltage phasor and the current phasor 

measurements. For a distribution network with ‘n’ number of 

nodes, the admittance matrix is associated with the current 

injections at the ‘n’ nodes and the voltages at the ‘n’ nodes in 

the following way, 

[𝐽1(𝑘) 𝐽2(𝑘) … 𝐽𝑛(𝑘)]
𝑇

= 𝐘𝐛𝐮𝐬. [𝑉1(𝑘) 𝑉1(𝑘) … 𝑉𝑛(𝑘)]
𝑇 

(15) 

It may be noted that the elements of the current injections 

vector are 𝐽𝑖|i=1,2,..,n and the nodal voltages vector are 

𝑉𝑖|i=1,2,..,n, both of which are the complex quantities i.e. 

phasors at a particular instant of time ‘k’. These phasors are 

obtained from the phasor measurement units installed in the 

network. The information available from the phasor 

measurement units are the time-stamped current and voltage 

phasors with nodes ‘r’ to ‘n’, which are given as, 

𝐕𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼 = [

𝑉𝑟+1(1) ⋯ 𝑉𝑟+1(𝐾)
⋮ ⋱ ⋮

𝑉𝑛(1) ⋯ 𝑉𝑛(𝐾)
] 

𝐉𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼 = [

𝐽𝑟+1(1) ⋯ 𝐽𝑟+1(𝐾)
⋮ ⋱ ⋮

𝐽𝑛(1) ⋯ 𝐽𝑛(𝐾)
] 

(16) 

The indices in the brackets in (16) represent the voltage and 

current sample instants from ‘1’ to ‘K’. With this available 

phasor information, the matrix ‘Yrn’ needs to be estimated. 

For this purpose, the problem statement is formulated as, 

𝐘̂𝐫𝐧 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖
‖𝐘𝐫𝐧. [

𝐕𝒑𝒉𝒂𝒔𝒐𝒓
𝑺𝑴

𝐕𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼

]
⏟      
𝐕𝐩𝐡𝐚𝐬𝐨𝐫

− 𝐉𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼

‖
‖ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐘𝐫𝐧 ∈ 𝐒
(𝑛−𝑟)×𝑛  

(17) 

where, 

𝐕𝒑𝒉𝒂𝒔𝒐𝒓
𝑺𝑴 = [

𝑉1(1) ⋯ 𝑉1(𝐾)
⋮ ⋱ ⋮

𝑉𝑟(1) ⋯ 𝑉𝑟(𝐾)
] (18) 

The vector in (18) is the phasor vector of voltages 

corresponding to the buses with smart meters, i.e. buses ‘1’ 

to ‘r’. The information of this vector is known from the 

measured magnitudes ‘|𝑉𝑖|’, while the angle information is 

also known, from (13). Therefore, the feasible solution to the 

problem statement (17) could be obtained from the available 

information. By solving (17), the accurate ‘Yrn’ is obtained, 

while the accurate ‘Y1r’ is acquired in section B-2, thereby, 

the complete information of ‘Ybus’ matrix is obtained. This 

information depicts both the topology, along with the line 

parameters of the network. However, obtaining the ‘Yrn’ 

matrix directly from (17) is challenging, owing to the sparsity 

in the matrix and the matrices ‘𝐕𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼 ’ and ‘𝐉𝒑𝒉𝒂𝒔𝒐𝒓

𝑷𝑴𝑼 ’ being 

rank-deficient matrices. Therefore, the procedure to obtain 

‘Yrn’ accurately is reported as follows. 

Initially, the upper triangular elements of the admittance 

matrix are grouped in the function 𝐺(𝐘𝐫𝐧) as, 

𝐺(𝐘𝐫𝐧) = [𝑌𝑟+1,1 𝑌𝑟+1,2 … 𝑌𝑟+1,𝑛  
                        𝑌𝑟+2,2 𝑌𝑟+2,3 … 𝑌𝑟+2,𝑛 

                                        𝑌𝑟+3,3 … … 𝑌𝑛,𝑛]  
(19) 

A binary operator ‘OX’ is formulated, that could convert 

the 𝐺(𝐘𝐫𝐧) to 𝑣𝑒𝑐(𝐘𝐫𝐧), which implies that 𝑣𝑒𝑐(𝐘𝐫𝐧) =
𝑶𝑋 × 𝐺(𝐘𝐫𝐧). Thus, (17) is rewritten using (19) as [10-11], 

𝐺(𝐘̂𝐫𝐧) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐱∈ℂ(𝑛

2+𝑛)/2×1

‖(𝐕𝐩𝐡𝐚𝐬𝐨𝐫⊗𝟏𝒏)𝑶𝑋. 𝐱

− 𝑣𝑒𝑐(𝐉𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼 )‖ 

(20) 

where, ⊗ represents Kronecker product. 

Owing to the low-rank structure of the matrices (16), a 

transformation matrix ‘𝐓𝐌’ (size: 𝑛 × 𝑛 matrix) is 

formulated, that separate the linearly independent rows from 

the linearly dependent rows as, 

𝐓𝐌. 𝐕𝐩𝐡𝐚𝐬𝐨𝐫 = [𝐈𝐕 𝐃𝐕]
𝑇 (21) 

In (21) ‘𝐈𝐕’ is a matrix with the ‘p’ linearly independent 

rows of ‘𝐕𝐩𝐡𝐚𝐬𝐨𝐫’ and ‘𝐃𝐕’ with the remaining ‘n-p’ rows of 

the ‘𝐕𝐩𝐡𝐚𝐬𝐨𝐫’ matrix.  
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To obtain ‘𝐓𝐌’, firstly, the orthogonal triangular 

decomposition of ‘𝐕𝐩𝐡𝐚𝐬𝐨𝐫’ is done and the diagonal elements 

of the upper triangular matrix are sorted [10]. The overall 

process to obtain ‘𝐓𝐌’ is illustrated in Fig. 1. Then, the first 

‘p’ elements of the permutation matrix thus obtained, are 

selected as the indices of the linearly independent rows. The 

sub-matrices ‘𝐈𝐕’ and ‘𝐃𝐕’ are thus obtained and in the 

similar way, sub-matrices ‘𝐈𝐉’ and ‘𝐃𝐉’corresponding to the 

‘𝐉𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼 ’ are also obtained i.e., 

𝐓𝐌. 𝐉𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼 = [𝐈𝐉 𝐃𝐉]𝑇 (22) 

The transformation operation for the admittance matrix is 

evaluated from (21) and (22) as, 

𝐓𝐌. 𝐉𝒑𝒉𝒂𝒔𝒐𝒓
𝑷𝑴𝑼 = (𝐓𝐌. 𝐘𝐫𝐧. 𝐓𝐌

−𝟏)⏟        

[
𝐘𝑻𝟏 𝐘𝑻𝟐
𝐘𝑻𝟑 𝐘𝑻𝟒

]

(𝐓𝐌. 𝐕𝐩𝐡𝐚𝐬𝐨𝐫)  
(23) 

As ‘𝐈𝐕’ is a linearly independent vector, ‘𝐃𝐕’ could be 

written as ‘𝐃𝐕 = 𝐷𝐼 . 𝐈𝐕’, where, 

𝐷𝐼 (≜ [
𝐷𝐼1 𝐷𝐼2
𝐷𝐼3 𝐷𝐼4

]) = 𝐈𝐕 × 𝑝𝑖𝑛𝑣(𝐃𝐕) (24) 

where, 𝑝𝑖𝑛𝑣 represents Moore-Penrose pseudoinverse. Thus, 

from (21)-(24),  

[𝐈𝐉 𝐃𝐉]𝑇 = [
𝐘𝑻𝟏 𝐘𝑻𝟐
𝐘𝑻𝟑 𝐘𝑻𝟒

] . [𝐈𝐕 𝐃𝐕]
𝑇 (25) 

Finally, the optimization problem (20) is reformulated and 

estimated admittance submatrices (𝐘̂𝐓𝟏, 𝐘̂𝐓𝟒) is computed 

using (23)-(25) as [10-11], 

[𝐺(𝐘̂𝐓𝟏) 𝐺(𝐘̂𝐓𝟒)]

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝐱∈ℂ(𝑛

2+𝑛)/2×1

‖[−(𝐷𝐼⊗𝐷𝐼)𝑶𝐷𝐼1 𝑶𝐷𝐼4]. 𝐱

− 𝑣𝑒𝑐 ((𝐈𝐕 × 𝑝𝑖𝑛𝑣(𝐈𝐕)) − (𝑝𝑖𝑛𝑣(𝐈𝐕) × 𝐈𝐉). 𝐷𝐼)‖ 

(26) 

To simplify the problem statement (26), the elements of 

(26) are assigned to new variables as, 

𝐆|𝐿×1 = [𝐺(𝐘̂𝐓𝟏) 𝐺(𝐘̂𝐓𝟒)] (27) 

𝚼|𝐿×𝐿 = [−(𝐷𝐼 ⊗𝐷𝐼)𝑶𝐷𝐼1 𝑶𝐷𝐼4] (28) 

𝐕|𝐿×1 = 𝑣𝑒𝑐 ((𝐈𝐕 × 𝑝𝑖𝑛𝑣(𝐈𝐕))

− (𝑝𝑖𝑛𝑣(𝐈𝐕) × 𝐈𝐉). 𝐷𝐼) 
(29) 

The size ‘𝐿’ in (27)-(29) can be identified as 

(2(𝑛 − 𝑟)2 − (2(𝑛 − 𝑟) + 1). 𝑝 + 𝑝2) 2⁄ . The rest of sub-

matrices (𝐘̂𝐓𝟐, 𝐘̂𝐓𝟑) can be obtained through (25). Therefore, 

from (26)-(29), the system at hand, is described through 

following equation, 

𝐕 = 𝚼. 𝐆 + 𝛆 (30) 

where, ‘𝛆’ is a finite Gaussian measurement noise. For a 

single ith row, (30) can be written as, 

𝐕𝒊 = 𝚼𝒊. 𝐆𝒊 + 𝛆𝒊|𝒊=𝟏,𝟐,…,𝑳 (31) 

To obtain the ‘𝚼𝒊’ from the (31), the regression problem 

[24-25] is formulated using alternating direction method of 

multipliers (ADMM) approach as follow. 

𝑎𝑟𝑔𝑚𝑖𝑛
𝚼𝒊

(1 2⁄ )‖𝚼𝒊𝐆𝐢 − 𝐕𝒊‖2
2 + 𝛼‖𝐳𝒊‖1 

subject to  𝐆𝐢 − 𝐳𝒊 = 0  
(32) 

where, 𝛼 is a regularization parameter factor; 𝐳𝒊 are typically 

weighted vector and intermediate vector, 𝐳𝒊 ∈ 𝐑
𝑚. Based on 

the formulation of the ADMM method [24-25], the Lagrange 

multiplier (𝒚𝒊 ) is incorporated into the existing formulated 

problem (32) as follows. 

𝑭(𝐆𝐢, 𝒛𝑖 , 𝒚𝑖) = (1 2⁄ )‖𝚼𝒊𝐆𝐢 − 𝐕𝒊‖2
2 + 𝛼‖𝐳𝒊‖1

+ 𝒚𝒊
𝑻(𝐆𝐢 − 𝐳𝐢) + (𝜌 2⁄ )‖𝐆𝐢 − 𝐳𝐢‖2

2 
(33) 

where, 𝜌 is a positive penalty parameter. In ADMM method,  

𝐆𝐢 and 𝐳𝐢 are updated in an alternating or sequential fashion, 

which accounts for the term alternating direction. The 

minimization problem is divided into two subproblems to 

reduce the computational burden and executes the 

minimization independently, unlike the Lasso framework 

[10, 17, 24-25]. The iterative steps of the ADMM algorithm 

are expressed as, 

𝐆𝒌+𝟏 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐆

 𝑭(𝐆𝒊, 𝒛𝒊, 𝒚𝒊) (34) 

𝒛𝒌+𝟏 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒛

 𝑭(𝐆𝒊, 𝒛𝒊, 𝒚𝒊) (35) 

𝒚𝒊
𝒌+𝟏 = 𝒚𝒊

𝒌 + 𝐆𝒊
𝒌+𝟏 − 𝒛𝒊

𝒌+𝟏 (36) 

The iteration (34)-(36) is updated until the stopping 

criterion is satisfied. The stopping criterion is defined as, 

‖𝐆𝒊
𝒌 − 𝒛𝒊

𝒌‖
2
≤ 𝜇𝑎𝑏𝑠 + 𝜇𝑟𝑒𝑙𝑚𝑎𝑥 (‖𝐆𝒊

𝒌‖
2
, ‖𝒛𝒊

𝒌‖
2
) 

𝜌‖𝒛𝒊
𝒌 − 𝒛𝒊

𝒌+𝟏‖
2
≤ 𝜇𝑎𝑏𝑠 + 𝜇𝑟𝑒𝑙𝜌‖𝒚𝒊

𝒌‖
2
 

(37) 

where, 𝜇𝑎𝑏𝑠 and 𝜇𝑟𝑒𝑙 are absolute tolerance, relative 

tolerance, respectively. 

III. RESULTS AND DISCUSSIONS 

To validate the effectiveness of the presented ADMM 

based network identification framework, the benchmarked 

IEEE 13-bus and IEEE 123-bus feeders are considered herein 

with a coupled household load. The Electric Power Research 

Institute (EPRI®) has developed the open distribution system 

simulator (OpenDSS®) software, which facilitates the 

input/output information to study the dynamics of the 

benchmarked distribution feeder. The main advantage of 

OpenDSS® platform is that it is capable to perform multi-

phase power flow, unbalanced power flow analysis, 

fault/event analysis, and stability analysis, unlike 

MATPower® and PowerWorld® simulator platform. Fig. 2 

shows the detailed process of an iterative procedure of 

MATLAB® software with OpenDSS® platform. The 

component object model (COM) interface platform is used to 

communicate between OpenDSS and MATLAB® software. 

The detailed script of location and rating of integrated 

renewable energy sources, variation in branch parameters, 

type of events, etc., are written and recorded in the 

MATLAB® environment and this script is processed as input 

to the OpenDSS® platform. Likewise, the event-logger of the 

OpenDSS® platform also has an inherent feature to 

track/record the operation, control action, switching 

operation, and event for the given network. The voltage 

measurement is directly obtained from the node. The current 

measurement is obtained by taking the difference between the 

net injected current and net outgoing current at a certain bus. 

A command-separated value (.csv) report of the voltage-

current dataset is obtained and processed into the MALTAB® 

software to accomplish the identification objectives. The 

salient points of the iterative procedure are depicted in Fig. 2. 

The detailed configuration of the modified IEEE 13-bus 

system is illustrated in Fig. 3. From Fig. 3, it is easy to 

observe that the IEEE 13-bus system is highly unbalanced 

lateral as each phase is not connected with all buses. For the 

reliability of the electric power supply, the normally open 

(NO) and normally closed (NC) breakers are coupled 

between 692-680 and 692-671 buses as depicted in Fig. 3. 

The detailed installation of the smart meter and µ-PMUs are 

demonstrated in Fig. 3. Based on optimal location, the SMs 

(e.g., 611, 645, 646, 652, 671, 680, 684) and µ-PMUs (e.g., 

632, 633, 634, 650, 675) are considered herein to suffice the 

identification objectives. The necessary data at each bus of 

the IEEE 13-bus system is acquired from the OpenDSS® 

software, then, processed further in the MATLAB® platform. 

The real-time measurements of the local load profile for the 

benchmarked IEEE 13-bus system are acquired from the  
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Fig. 2 Iterative framework between OpenDSS® and MATLAB® to accomplished network identification objectives 

Autonomous Decentralised Renewable Energy Systems 

(ADRES) project repository [26-27]. The performance of the 

network identification algorithm is tested under several 

operating scenarios such as basic identification, identification 

with the consideration of noise in the measurements, impact 

of change in standard deviation in measurements, and 

identification under a change in the system configuration. The 

detailed analysis of the presented framework with various 

cases is analyzed as follows. 

Case-I Basic Identification of Topology 

Figs. 4 (a-c) demonstrate the basic identification of the 

modified IEEE 13-bus system. As smart meter data and µ- 

PMUs data are obtained from the defined buses, the presented 

ADMM algorithm segregates the data based on the type of 

measurements and identifies the network configuration using 

(7)-(8), (13) and (31). Fig. 4 (a) shows the identification of 

phase-‘a’ of the given IEEE 13-bus low-voltage distribution 

system. From Fig. 4 (a), it can be observed that the 

identification error in the admittance matrix is quite low in 

the range of 10−1. Similarly, the identification in the 

admittance matrix for the phase-‘b’ and phase-‘c’ are 

illustrated in Figs. 4 (b-c). The typical value of error in  
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Smart meter (SM)  μ-PMU
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Benchmarked IEEE- 13 Bus Feeder
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Fig. 3 Detailed schematics of the benchmarked IEEE 13-bus system 

identification is very low as the presented method provides 

robust identification and has good accuracy due to having 

insusceptibility against poor conditioning. The detailed 

analysis of the identification error in conductance and 

susceptance of each branch (e.g. for phase-‘a’, phase-‘b’, and 

phase-‘c’) is plotted in Figs. 4 (d-f). It can be easily seen that 

the error in estimated parameters is achieved within 2%. 

Case-II Performance of Network Identification with 

Consideration of Noise in SM Measurements 

Fig. 5 (a) and Fig. 5 (b) demonstrate the robust  
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Fig. 4 Estimation of branch parameters of for the IEEE 13-bus feeder using 

presented framework (a-c) Coloured representation of individual phase 
admittance matrix estimation errors (a) Phase-‘a’, (b) Phase-‘b’ and, (c) 

Phase-‘c’, (d-f) Relative error of the estimated conductance and susceptance 

of each of the branches of (d) Phase-‘a’, (e) Phase-‘b’, (f) Phase-‘c’ 
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 (a)                    (b) 

Fig. 5 Estimation error of the algorithm for different noise levels in the SM power measurements (a) ‘g’ and ’b’ error variation with the standard deviation in 

each of phase-‘a’ branches, (b) MAPE variation of ‘g’ and ’b’ in all three phases 

performance of the network identification algorithm with 

consideration of noise in the SM measurements. Fig. 5 (a) 

shows the illustrative 3-D heat map of estimation error (%) of 

each branch versus standard deviation in SM measurements. 

It is easy to observe that identification error is quite 

noticeably low for having a low standard deviation of SM 

measurements. The Newton-Raphson algorithm (9)-(13) has 

inherent advantages of swiftness and quadratic convergence 

rate. As standard deviation is increased in the SM 

measurements, the identification error is considerably 

increased as depicted in Fig. 5 (a). Furthermore, the mean 

absolute percentage error for the estimated branch parameters 

of each phase is analyzed in Fig. 5 (b) with the variation of 

standard deviation in the SM measurements. The ‘blue’ and 

‘red’ color graph indicates the ‘mean absolute percentage 

error’ for estimated conductance and susceptance, 

respectively. The presented ADMM based network 

identification algorithm provides accurate results as it follows 

the decomposition-coordination procedure and local-

subproblems (34)-(36) are coordinated to find a solution to a 

large global problem. In general, the typical variation in the 

range of 10% is observed in the estimated branch parameters 

when any dynamic reconfiguration/event has occurred in the 

system. Therefore, it may lead to an indication of the change 

in the network configuration for having erroneous results in 

estimated conductance and susceptance parameters. Hence, 

the limit line is chosen at 10% in the maximum absolute 

percentage error (MAPE) graph in Fig. 5 (b). One can be 

easily observed that the permissible standard deviation is 

found in range of 0.07 for the satisfactory identification as 

estimation error breaches the maximum allowable change 

(10%) in branch parameters afterwards. 

Case-III Performance of Network Identification with 

Consideration of Noise in µ-PMU Measurements 

Fig. 6 and Fig. 7 demonstrates the robustness of the 

presented algorithm to suffice the identification objectives 

with the consideration of noise in the µ-PMU measurements. 

Fig. 6 (a) shows the illustrative 3-D heat map of estimation 

error (%) of each branch versus standard deviation in µ-PMU 

measurements. It shows that the identification error is quite 

low for having a small value of the standard deviation. The 

presented algorithm has better noise rejection capability [24-

25], thereby, the identification objective is not compromised 

as depicted in Fig. 6 (a) As the standard deviation is increased 

in the measurements, the identification error is increased as 

depicted in Fig. 6 (a). The detailed error analysis using ‘mean 

absolute percentage error’ is analyzed in Fig. 6 (b) for the 

estimated conductance and susceptance of each branch. It can 

be easily observed that the permissible standard deviation is 

accomplished within the range of 3 × 10−3 for the 

satisfactory operation of the identification algorithm as 

estimation error breaches the maximum allowable change 

(10%) in branch parameters afterward. The salient point of 

the network identification is described in Fig. 6 (b). Fig. 7 

shows the required number of iterations to estimate the 

accurate branch parameters with a variation in the standard 

deviation. The presented algorithm has a better convergence 

rate with a low number of iterations, which is explained as 

follows. The Newton-Raphson algorithm has a quadratic 

converge rate and obtained information is processed further 

to estimate the branch parameters through the ADMM 

algorithm. In the ADMM algorithm, it explicitly targets the 

minimization problem by splitting it into two distinct 

objectives and provides better optimization [24-25]. In 

addition, the presented ADMM algorithm naturally 

decouples the non-smooth term from the smooth term, which 

is computationally advantageous over state-of-art algorithms 

[24-25, 28-30]. Furthermore, the actual effects on the 

identification of the admittance matrix are illustrated in Fig. 

8. One can easily notice that there is a significant error in the 

identified branch parameters in the range of ten. Therefore, 

this estimation error in the admittance matrix will propagate 

in the state estimation and will lead to the non-optimal 

operation of the system. 

Case-IV Effect of Change in Standard Deviation with 

Number of µ-PMUs 

The estimation of branch parameters with wide variations 

of standard deviation for different numbers of µ-PMUs are 

analyzed in Figs. 9 (a-b). Fig. 9 (a) shows the identification 

error for having three µ-PMUs in the IEEE 13-bus (e.g., 632,  
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(a)                    (b) 

Fig. 6 Estimation error of the algorithm for different noise levels in the μ-PMU measurements (a) ‘g’ and ’b’ error variation with the standard deviation in 

each of phase-‘a’ branches, (b) MAPE variation of ‘g’ and ’b’ in all three phases 

650, 675) low-voltage distribution system. The identification 

error for having three µ-PMUs is accomplished within range 

of 40 with consideration of standard deviation of 10−1 in the 

measurements. The identification error can be reduced by 

having more numbers of µ-PMUs in the system as depicted 

in Fig. 9 (b). The identification performance is shown in Fig. 

9 (b) for having four µ-PMUs in the system (e.g., 632, 634, 

650, 675). The identification error is achieved within the 

range of 30 with consideration of a standard deviation of 

10−1 in the measurements. The mean absolute percentage 

error for parameter identification is analyzed for having three, 

four, and five µ-PMUs in the IEEE 13-bus feeder. As the 

number of µ-PMUs increases, the identification error is 

reduced, however, it is a trade-off between accuracy and 

overall cost of the network monitoring system. 

Case-V Performance of Network Identification with Change 

in Network Configuration 

Figs. 10 (a-c) show the identification of events in the IEEE 

13-bus distribution system with an altered status of the three-

phase breaker between the buses 671-692 and 680-692. These 

results are captured by taking the difference of estimated 

admittance matrix, which are computed before the event and 

after the event, in the network. Figs. 10 (a-c) show the amount 

of change in the admittance matrix with the specific bus 

number for each phase, respectively. It is worth noticing that 
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Fig. 7 Number of iterations for convergence of the algorithm for three 

different μ-PMU standard deviations 
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Fig. 8 Effect of change in standard deviation in μ-PMU measurements on the 

phase-‘a’ admittance matrix error 

the change is symmetrical (e.g., Y671-692, Y671-671, and Y692-671) 

in the heat map as the three-phase breaker between the buses 

671-692 is altered from its nominal status. Likewise, the 

change in the conductance and susceptance (e.g., Y680-692, 

Y680-680, and Y692-680) of the corresponding buses are also 

detected in Figs. 10 (a-c) as the three-phase breaker between 

the buses 680-692 is altered from its nominal status. The 

typical change in the estimated admittance matrix is about to 

be in the range of 15 to 20 for each phase. The detailed change 

in the conductance and susceptance of the estimated 

admittance matrix is analyzed in Figs. 10 (d-f). In addition, 

the typical changes in conductance and susceptance values 

are captured through its variation in the estimated 

conductance and susceptance at two different instants (e.g., 

before and after the event). For ease of understanding, the 

change in branches 671-692 has been analyzed in Figs. 10 (d-

f) as the branches 680-692 did not exist before the event. 

Hence, the typical variation of the branch parameters (e.g., 

671-692) for each phase is illustrated in Figs. 10 (d-f). 

Case-VI Performance of Network Identification with Only 

µ-PMUs Measurement 

Figs.11 (a-c) show the performance of the system with only 

the presence of μ-PMU measurements (i.e., placed at all 

buses) for the given benchmarked IEEE 13-bus feeder. The  
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Fig. 9 Variation of the estimation error of ‘g’ and ‘b’ in various phase-‘a’ 

branches with optimal μ-PMU locations (a) With 3 μ-PMUs and, (b) With 4 

μ-PMUs 

error in the estimated nodal admittance matrix is plotted in 

Figs. 11 (a-c). It can be easy to observe that identification 

error for phase- ‘a’ is quite low and attained within 

satisfactory limits as depicted in Fig. 11 (a). As these 

measurements include the voltage phase angle and current 

phase angle, the identification computational time quite low 

(i.e., phase angle of the distribution buses is not required to 

estimate through the Newton-Raphson method). Likewise, 

the network identification for phase-‘b’ and phase-‘c’ is 

illustrated in Figs. 11 (b-c). Hence, the presented ADMM 

algorithm-based framework effectively identifies the network 

structure. Therefore, the identification task can be 

accomplished quickly as compared to nominal topology 

identification. 

Case-VIII Performance of Network Identification for 

Benchmarked IEEE 123-Bus Feeder 

Fig. 12 (a) shows the schematics of the benchmarked IEEE 

123-bus feeder. The detailed configuration, connection, and 

location of power system components (e.g., voltage regulator, 

switch, transformer, etc.) are described in Fig. 12 (a). The 

real-time measurements of the local load profile (e.g., the 

household electrical load, commercial load, and industrial 

load) for the benchmarked IEEE 123-bus system are acquired 

from the Autonomous Decentralised Renewable Energy 

Systems (ADRES) project repository [26-27]. For simplicity, 

the identified network for phase-a of the IEEE 123-feeder is 

demonstrated in Fig. 12 (b). It shows the error in the estimated 

nodal admittance matrix of the identified system 

configuration. One can easily notice that identification error 

in the admittance matrix (e.g., conductance and susceptance) 

is quite low and accomplished within permissible limits as 

depicted in Fig. 12 (b). The presented framework provides 

swift network identification as compared to the state-of-art 

least absolute shrinkage and selection operator (Lasso) 

algorithm. The advantage of the presented framework lies in 

the formulation of optimization problem [28-30] and an 

update of search variable can be decomposed, which means  
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                            (e)                    (f) 

Fig. 10 Coloured representation of individual phase admittance matrix 
estimation errors, following the switching event (a) Phase-‘a’, (b) Phase-‘b’ 

and, (c) Phase-‘c’, (d-f) Relative error of the estimated conductances and 

susceptances of each of the branches in three phases, following the switching 

event for phase-‘a’, phase-‘b’ and phase-‘c’ 

the problem can be easily parallelized or scalable even for 

large network/topology. Hence, the presented framework 

works satisfactorily for the benchmarked IEEE 123-bus 

feeder, and it successfully illustrates the scalability and 

efficacy for the large feeder system. 

Case-VII Performance of Network Identification with 

Integration of Renewable Energy Sources 

Fig. 13 shows the performance of the system with the 

presence of renewable energy sources. The location of the 

renewable energy sources at certain buses is given as follows: 

650, 632, 671, 633, 680, 684, and 652. Certain points are 

needed to be clear to understand the impact of renewable 

energy sources on the network identification objectives. The 

heat bar in the left-hand side of the heat map manifests the 

error in the estimated nodal admittance matrix before the 

connection of the renewable energy sources. Likewise, the 

bubble size and bubble colour represent an increment of 

identification error in the estimated nodal admittance matrix 

with the presence of renewable energy sources. One can 

observe that the identified error in an estimated admittance 

matrix is accomplished within the range of 0.35, which is 

quite lower than the nominal operating scenario. It is easy to 

notice that most of the bubble in the heat map is orange, 

yellow, and sky-blue colour, which denotes a minor 

increment in identification error with integration of 

renewable energy sources Nonetheless, the presented 

framework identifies the network configuration satisfactorily 

with the presence of the renewable energy sources.  
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                                           (a)                                                                          (b)                                                                                  (c) 

Fig. 11 Performance of the system with the presence of μ-PMU device (a) Phase-‘a’, (b) Phase-‘b’ and, (c) Phase-‘c’ 
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                                                             (a)                                                                                                          (b) 
Fig. 12 Network identification of the IEEE 123-bus feeder using presented framework (a) Detailed schematics of the benchmarked IEEE 123-bus system, (b) 

Coloured representation of phase admittance matrix estimation errors for phase-‘a’ 

IV. COMPARATIVE PERFORMANCES 

The comparative performance is carried out between the 

presented algorithm and state-of-art algorithms [10-11, 17]. 

The two distinct scenarios are considered to evaluate the 

effectiveness of the presented framework over the state-of-art 

framework. Firstly, the comparative performance is carried 

out on the benchmarked IEEE 33-bus balanced feeder with 

the presence of Gaussian noise. The location of smart meters 

and μ-PMUs are given as follows: μ-PMUs are connected at 

certain buses of the IEEE-33 bus feeder [31] such as 16, 17, 

18, 22, 30, 31, 32, and 33; whereas smart meter is connected 

at rest of the buses. Secondly, the event detection is carried 

out on the benchmarked IEEE 13-bus unbalanced feeder. The 

detailed analysis is described as follows. 

Case-I  Comparative Performance Between Presented 

Framework and State-of-art Framework for 

Balanced Feeder 

Figs. 14 (a-b) and Figs. 15 (a-b) show the response of the 

state-of-art framework [17] to identify the benchmarked 

IEEE 33-bus feeder structure with the presence of Gaussian 

noise in the measurements. Fig. 14 (a) shows that 

identification error is attained within the range of 0.7 using 

the state-of-art framework [17], which is quite higher than 

basic network identification. Nevertheless, the performance 

of the identification is attained within permissible limits and 

the tracking of branch parameters is illustrated in Fig. 15 (a). 

It shows that the identification of the branch parameters (e.g., 

conductance and susceptance) fall within the range of 1 % to 

4 %. The performance of the presented framework to identify 

the topology structure is described in Fig. 14 (b) and Fig. 15 

(b). It is easy to notice that the error in the estimated nodal 
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Fig. 13 Network identification of the IEEE 13-bus feeder with the presence 

of renewable energy sources 

admittance matrix is quite low (e.g., 0.25) as compared to the 

state-of-art framework [17], which is clearly described in Fig. 

14 (a) and Fig. 14 (b). The tracking performance of the branch 

conductance and susceptance is demonstrated in Fig. 15 (b). 

In contrast with state-of-art framework [17], it shows that 

presented framework has better estimation accuracy as the 

estimation error is accomplished within the range of 0.5 % to 

2 %. Hence, the presented framework provides an excellent 

response as compared to the state-of-art framework [17]. 

Case-II Comparative Performance Between Presented 

Framework and State-of-art Framework for 

Unbalanced Feeder 

Figs. 16 (a-b) shows the performance of the network 

identification with the steady-state estimation of branch 
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                                                                (a)                                                                                                           (b) 

Fig. 14 Comparative performance of the network identification of the benchmarked IEEE 33-bus feeder with the presence of Gaussian noise (a) Heat map of 

identification error using state-of-art framework [17], (b) Heat map of identification error using presented framework 
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(b) 

Fig. 15 Comparative performance of the network identification of the benchmarked IEEE 33-bus feeder with the presence of Gaussian noise (a) Tracking 

performance of conductance and susceptance of branch parameters using state-of-art framework [17], (b) Tracking performance of conductance and 

susceptance of branch parameters using presented framework 

parameters variation of the branch parameters (e.g., 10% 

variation in branch 671-692). Fig. 16 (a) shows the network 

identification using the state-of-art algorithm [11] for the 

revised branch parameters. It shows that identification error 

using a state-of-art algorithm [11] in the estimated branch 

parameter of phase-‘a’ is found in the range of 3%  to 6% as 

depicted in Fig. 16 (a). In contrast with the state-of-art [11] 

method, the presented algorithm estimates the updated branch 

parameters of phase-‘a’ with the estimation error in the range 

of 1%  to 2% as illustrated in Fig. 16 (b). Furthermore, the 

comparative analysis between several methods [10-11, 17, 

22] is described in Table-II. It shows that the algorithm [22] 

is not robust with respect to noise, unable to identify the 

change in branch parameters, and not feasible to identify the 

unbalanced network. Likewise, the graphical and 

comprehensive model [4, 6] fails to identify the network 

parameters and system configuration under unbalanced or 

noisy measurements. However, Lasso and Newton-Raphson 

algorithms [11, 17] are robust to the input noise and capable 

to identify the change in branch parameters with help of µ- 
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                            (a)                 (b) 

Fig. 16 Comparative performances between state-of-art algorithm [10-11] 

and presented algorithm under variation of branch parameters 

PMUs and smart meter measurements, respectively. 

However, they both fail to accomplish the network 

identification objectives when both measurements are 

available from the network. In contrary to the state-of-art 

methods [4, 6, 10-11, 17, 22], the presented algorithm copes 

up with both non-synchronous and synchronous 

measurements, robust with respect to noise, capable to 

identify the branch parameters even under an unbalanced 

network, etc. The salient points of various algorithms are 

described in Table-II. 
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TABLE-II COMPARISONS OF THE PRESENTED FRAMEWORK 

WITH EXISTING FRAMEWORKS 

Description [22] [10-11] [17] 
Presented 

Algorithm 

Type of algorithm MIQP Lasso NR ADMM 

Identification with 

hybrid dataset 

Not 

feasible 

Not 

feasible 

Not 

feasible 
Feasible 

Robustness No Yes Yes Yes 

Accuracy Average Good 
Relatively 

good 
Better 

Identification in 
unbalanced 

network 

Not 

feasible 
Feasible 

Not 

feasible 
Feasible 

Identification with 

variation in 

branch parameters 

Not 

feasible 
Feasible Feasible Feasible 

V. CONCLUSIONS 

In this article, the alternating direction method of 

multipliers-based framework is presented herein to acquire 

the detailed network information with help of µ-PMU and 

SM measurements. The presented framework suffices the 

manifold identification objectives such as accurate estimation 

of the network structure, branch parameters, change in branch 

parameters, and change in the network configuration for low-

voltage distribution feeder. In contrast with the state-of-art 

algorithms, the ADMM based framework has several 

advantages such as good accuracy, better convergence rate, 

etc. Simulation results confirm the effectiveness of the 

presented algorithm on the highly unbalanced IEEE 13-bus 

feeder with distinct operating scenarios. Accordingly, the 

case study shows that the presented algorithm has provided 

robust identification of the network configuration and branch 

parameters and accomplished the estimation error within 

satisfactory limits even with the consideration of the standard 

deviation in µ-PMU and SM measurements. The scalability 

and efficacy of the presented framework have been validated 

through the benchmarked large-scale IEEE 123-bus feeder. 

In addition, the presented framework has effectively 

accomplished the network identification objectives even with 

the presence of renewable energy sources. In order to validate 

the efficacy of the presented algorithm, the comparative 

performance has been carried out on the benchmarked IEEE 

13-bus and IEEE 33-bus feeders, and it has outperformed 

network identification even under variation of the branch 

parameter and with the presence of Gaussian noise, unlike the 

state-of-art algorithms. In essence, the presented work will be 

very helpful to the network operator to accomplish the 

optimal operation of the distribution feeder. 
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