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Abstract

The spread of an epidemic can be conceptualised as a process on a network, where
vertices refer to individuals and where edges refer to epidemiologically relevant con-
nections between individuals. Understanding the impact of network structure on
epidemiological outcomes is a central task in mathematical epidemiology. Accord-
ingly, a range of mathematical models incorporating network structure have been
designed. In this thesis, we develop a range of network models in the context of
epidemics in human populations.

Firstly, we consider a novel moment-closure approximation for a disease with susceptible-
infected-susceptible dynamics. For diseases without immunity, the possibility of re-
infection can introduce correlations in infection status between indirectly connected
individuals, limiting the accuracy of moment-closure approaches. By incorporating
these correlations into a model, we introduce an improvement to the standard pair-
wise approximation for two different network structures: the isolated open triple
and the k-regular network.

Secondly, we assess the importance of including concurrent sexual partnerships,
partnerships that overlap in time, when modelling the control of sexually transmit-
ted infections. We do this in two distinct settings, firstly developing nested pair-
formation models before developing an individual-based dynamic network model
of a heterosexual population. In both instances we find that while concurrency
can have a large impact on epidemiological dynamics, the inclusion of concurrency
in models matched to prevalence data has only a modest impact on control mea-
sures.

Thirdly, we consider the extent to which the clustering imposed by social bub-
bles, where two households form an exclusive social group, is an effective way of
increasing social contact while minimising the resulting increase in transmission in
the context of COVID-19. Using a stochastic, generation-based network model of
household and bubble contacts, we find that social bubble strategies are effective at
minimising transmission when compared to unclustered increases in contacts.

Xiv



Chapter 1

Introduction

Our lives are defined by our relationships with others - or at least this much is
true when it comes to the spread of infectious diseases. The process of a pathogen
spreading is inherently relational - infectious diseases spread from an infected in-
dividual to an uninfected individual. This transfer requires the two individuals to
be in some sense ‘connected’ - though what counts as a connection depends on the
pathogen in question. At least in theory, by understanding the totality of such con-
nections, we can begin to understand the spread of any epidemic, and by tracing
these connections we can begin to control the spread of any epidemic. We refer to

this totality of connections as a network.

In most cases, a network approach to modelling epidemics faces myriad difficulties.
For many pathogens, even defining the underlying network of connections would
be difficult or impossible. If a pathogen can survive while airborne over long dis-
tances, or can survive remotely on inanimate surfaces, an individual will inevitably
be connected to contacts they have no direct knowledge of. Other pathogens are
transmitted via vectors, such as malaria and mosquitoes, or can be transmitted
through animal reservoirs, such as rabies and dogs. In such cases, the relevant

contacts include non-human, and therefore practically untraceable, connections.



For pathogens requiring relatively close human-to-human contact for transmission,
the varied and fleeting nature of people’s ordinary social interactions makes re-
constructing this network of connections a daunting task. In most cases, the data
practically obtainable are egocentric accounts of only a fraction of relevant con-
tacts, and are insufficient to faithfully reconstruct the underlying epidemiologically

relevant contact network from.

Yet if we are able to capture this contact structure, network modelling approaches
can play an integral role in both understanding the dynamics of epidemics and
predicting the impact of control measures. Here, we consider two distinct scenarios
that are particularly suited to a network approach. These scenarios are outlined

below, and are the subject of this thesis.

1.1 Sexually transmitted infections and the structure

of sexual networks

Sexually transmitted infections (STIs) are pathogens that are primarily transmitted
via unprotected sex. With STIs, the connection between networks and the spread
of epidemics is at its clearest. An individual’s epidemiologically relevant contacts
are simply their partners in sexually active relationships. These contacts often
persist over long durations compared to other social contacts. While the contact
networks relevant to the spread of a respiratory pathogen often change within the
space of a day, people may have the same sexual partner over a period of weeks,
months, or even years. This is particularly true in the heterosexual population,
where relatively long partnerships and serial monogamy is the prevailing social
norm in the UK [Johnson et al., 2001]. As many STIs are often symptomless, or at
least symptomless in the early stages of infections, sexual behaviour can continue

unaltered.



Syphilis is a bacterial STI that, although initially painless, can be fatal if untreated.
In previous generations, syphilis infection was commonplace. Over 20,000 diagnoses
were made in the UK at the peak of infections in 1946 [Mohammed et al., 2018],
and the disease was reported to have afflicted several famous figures, including the
philosopher Friedrich Nietzsche, the painter Edouard Manet, and the gangster Al
Capone [Sarbu et al., 2014]. Like many bacterial infections, the treatment of syphilis
was transformed by the discovery of antibiotics - a previously incurable disease
was now easily remedied by a course of antibiotics prescribed by a doctor. The
introduction of such treatment, in part, led to a large reduction in the prevalence
of syphilis - by 1995, there were fewer than 300 diagnoses in the UK. Yet this respite
was not to last. At the turn of the millennium, syphilis diagnoses in the UK began
to rise, and have not stopped rising since, with almost 8,000 diagnoses in 2019 in

England alone [Office for National Statistics, 2020b].

The recent trend of syphilis is echoed by the trends of other STIs in the UK;
diagnosed cases in England of both chlamydia and gonorrhoea have increased by
46% and 277% since 2010 respectively [Office for National Statistics, 2020b]. This
is despite the fact that these STIs are currently easily treatable. To those interested
in public health, two questions naturally arise: firstly, what is causing this increase

in cases and secondly, how do we stop it?

We have the potential to treat or prevent infection for many STIs. For the hu-
man papillomavirus (HPV), responsible for the majority of cases of cervical cancer
[Mutioz et al., 2003], a vaccine is available and vaccination campaigns have been
rolled out across many countries [Markowitz et al., 2012]. Vaccines are being devel-
oped for other STIs, including the human immunodeficiency virus (HIV) [Bekker
et al., 2018] and chlamydia [Abraham et al., 2019], and have been suggested as po-
tential control measures against others [Gottlieb et al., 2014]. For those in groups
considered at risk of contracting HIV, routinely taking pre-exposure prophylaxis

(PrEP) medication can significantly reduce an individual’s chance of contracting



the virus [McCormack et al., 2016]. For other STIs, where treatments are available,
methods that identify and contact individuals likely exposed to infection can be
an effective way to reduce cases [Eames and Keeling, 2002]. To best deploy the
many tools we have to control the spread of STIs, we must be able to forecast their
likely impact, and to do so we must know what features of the real-world have a

significant impact on such forecasts.

Because it is obvious who should count as an epidemiologically relevant contact, we
are able to collect data on the underlying network of sexual contacts. Because sexual
contacts are, compared to contacts relevant to respiratory pathogens, sparse and
longlasting, the impact of network structure is pronounced [Keeling et al., 2016].
Therefore, an understanding of the impact different aspects of network structure
have, and an understanding of how correlations build up across sexual networks,
is key to understanding the spread of STIs. Further, understanding the impact
network structure can have on the control of STIs is paramount when planning

public health strategies.

STIs and sexual networks are the focus of Chapters 3, 4, and 5 of this thesis. For
many STIs, recovery from infection does not lead to immunity. This possibility of
reinfection provides a further source of correlations between the infection status of
individuals within a sexual network, over and above the correlations that result from
disease dynamics where reinfection is not possible. Chapter 3 aims to understand
these correlations, and utilise them to improve approximate network models of STI
spread. Chapters 4 and 5 consider the impact of concurrent partnerships, sexual
partnerships that overlap in time. By designing models that can be matched to
observed levels of concurrent partnerships, we assess the importance of capturing

concurrency in models forecasting the control of STIs.



1.2 COVID-19 and the role of social structure

In normal times, people’s social lives are varied and variable - varied in that people
have different social contacts corresponding to different aspects of their lives (e.g.
friends, family, colleagues), and variable in that the social connections people make
may vary substantially from day to day. Consequently, accurately recalling one’s
social contacts is a non-trivial task in and of itself. Even with perfect recall, it is
not always clear who should count as an epidemiologically relevant contact in the
context of respiratory pathogens. As Eames et al. [2015] pose, if you have trav-
elled on a bus, should every other person on the bus count as a relevant contact,
or only those in close proximity to you? In part because of the difficulty in accu-
rately defining the underlying relevant contact network, the field of epidemiology
concerning the spread of respiratory pathogens has often utilised methods that do

not explicitly consider contact network structure.

However, these are not normal times. At the time of writing, we are in the midst
of a global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the pathogen responsible for coronavirus disease 2019 (COVID-19) [Wu
et al., 2020]. To counter the spread of this pathogen, to protect health services
from being overrun, and ultimately to save lives, unprecedented social restrictions
have been placed on populations across the world [Hsiang et al., 2020]. These non-
pharmaceutical interventions have included general social distancing measures, the
closure of schools, non-essential shops, bars, and restaurants, asking all those who
can to work from home, and the prohibition of households from mixing socially.

Collectively, these restrictions have been referred to as ‘lockdowns’.

Under lockdown restrictions, and assuming that restrictions are being adhered to,
people’s social networks are radically transformed. Previously varied and transi-
tory, social contacts within a lockdown situation are limited, fixed, and centred

around households [Jarvis et al., 2020]. Yet because of this, we are able to cap-



ture a large number of epidemiologically relevant contacts. This overhaul must
have an impact on the spread of epidemics - indeed, that is why such measures
are introduced. By utilising this information effectively, there is the potential to
understand in finer detail the epidemiological consequences of lockdown policies, as
well as what interventions are likely most effective in controlling the spread of this

pandemic.

People’s social lives are important to them. The isolation imposed by lockdown
policies will likely have a detrimental impact on the mental health of many. Ex-
ploiting the implications of network structure may provide us ways to expand our
social lives, and return a semblance of normality to those that need it most. Clus-
tering the social contacts of individuals has been suggested as a potential solution,
with the aim of minimising the resulting increase in transmission from allowing
individuals to expand their social lives [Block et al., 2020; Willem et al., 2021].
To understand the extent to which this approach is beneficial, one must under-
stand the impact that the resulting network structure implied by relaxation has on
the spread of an epidemic. The impact of one such strategy, known as the ‘social
bubble’ strategy, in the context of a lockdown in the UK, is the focus of Chapter
6.

1.3 Mathematical models

Mathematical models play a central role in the study of epidemics. These tools,
abstractions of real-world systems simplified and rewritten in the language of math-
ematics, play two distinct roles. By simplifying the process of epidemics to core
aspects, researchers gain an understanding of why epidemics unfold in the way they
do, and the impact different features have on epidemiological outcomes. By incor-
porating aspects of the real-world that have a significant impact on the spread of

epidemics into sophisticated models, researchers are able to predict the course of



epidemics, and crucially the impact of possible control strategies. Often, these two
aims are in conflict, and a model most useful for understanding is in general not the
model with the best predictive accuracy, and vice versa [Keeling and Rohani, 2011].
Yet they also complement one another: for example, to create accurate predictive
models to forecast the spread of epidemics, one must understand what features of

the real-world have a significant impact on the spread of epidemics.

Since the seminal works of Kermack and McKendrick [1927], the mathematical
study of epidemics has traditionally used models that do not explicitly account
for the underlying structure of contact networks. By adapting and refining these
models, researchers have been able to understand the behaviour of epidemics and
predict their spread. Today, models of this type are still widely used, and play a key
role in public health [Rozhnova et al., 2019; Keeling et al., 2021; Chin et al., 2020].
However, to understand the impact network structure has, and the impact of this
structure on control measures, methods that take into account network structure

must be developed.

In response, a range of mathematical models incorporating network structure have
emerged [Keeling and Eames, 2005; Danon et al., 2011; Kiss et al., 2017]. Despite
the progress in many areas, many challenges remain in implementing a network
approach to modelling the spread of epidemics [Eames et al., 2015; Pellis et al.,
2015a]. This thesis aims to resolve some of these challenges in specific contexts.

The structure of this thesis is outlined below.

1.4 Thesis outline

In Chapter 2, we survey the relevant academic literature concerning the application
of network models to the spread of epidemics on human populations. We begin

by introducing network theory, available data on sexual and social networks, and



briefly introduce the development of epidemic models without network structure.
Then, we consider the development of static network models that aim to capture
or understand the correlations in infection status between infectious individuals,
before considering the development of dynamic network models that aim to capture
the impact that concurrent partnerships, partnerships that overlap in time, have
on the spread of STIs. Finally, we consider the impact that clustering has on the
spread of pathogens, the clustering imposed by household structure, and the models

capturing this structure.

Incorporating waning immunity into network models remains a key challenge for
network epidemic models, as the possibility of reinfection can lead to correlations in
infection status of indirectly connected individuals [Pellis et al., 2015a]. In Chapter
3, we develop a static network modelling approach for diseases with susceptible-
infected-susceptible (SIS)-dynamics that improves upon previous models by incor-
porating the correlation between infection statuses of individuals into pairwise ap-
proximations. We introduce improved pairwise approximations in two distinct but
related contexts, first introducing an approximation for the disease states of an
isolated open triple before introducing an analogous approximation for k-regular
networks. Doing so, we gain an insight into the errors introduced by previous ap-
proximations, and obtain models capable of closer matching the prevalence levels

obtained from more detailed models and stochastic simulations.

Clarifying the impact of network properties on epidemiological outcomes has also
been identified as a remaining challenge in the field [Pellis et al., 2015a]. Doing so
is necessary to understand the features of network features that have a substantive
impact on outcomes, to inform the level of detail required in models for public
health. In Chapter 4, we use a dynamic network model to assess the importance
of explicitly matching models to observed levels of concurrency when modelling
the control of STIs by vaccination. Specifically, we compare the required levels of

vaccination to eliminate a disease with SIS-dynamics in three nested pair-formation



models - one where infection can only be transmitted via a stable sexual partner-
ship, one where single individuals can also acquire infection via casual partnerships
with other single individuals, and one that incorporates concurrent partnerships by
allowing individuals in stable partnerships to acquire infection via casual partner-
ships. We find that, at a fixed transmission rate, concurrency has a large impact
on required levels of vaccination, but when models are matched to prevalence data,
models require similar levels of vaccination to eliminate the disease from the popu-
lation. This result suggests that models that accurately capture concurrency may

not always be needed to forecast the impact of control measures against ST1Is.

The impact of concurrency in models matched to prevalence data is explored further
in Chapter 5. In this chapter, we introduce a stochastic individual-based dynamic
network model of a heterosexual population that is capable of being fitted to be-
havioural data collected from egocentric surveys of sexual partnerships, including
yearly degree distributions and yearly levels of concurrency. We compare the results
from this model to two alternative models that represent the opposite extremes of
assumptions concerning concurrent partnerships - one that assumes individuals are
serially monogamous, and one that assumes the rate individuals form partnerships
is independent of the number of partnerships they are currently involved in. We
fit each model to data from the National Survey of Sexual Attitudes and Lifestyle
(Natsal), and find that while the instantaneous network structure of each model
differs considerably, the impact of control measures is similar across models when
matched to prevalence data. Doing so, we not only introduce a flexible framework
for modelling dynamic heterosexual networks, but provide a further evaluation of
the importance of matching models of STI control to observed levels of concur-

rency.

Designing network-based interventions that utilise and exploit network structure to

aid the control of epidemics is another key challenge identified by Pellis et al. [2015a].



In Chapter 6, we move away from STIs, and consider the application of network
models to respiratory pathogens. Specifically, we use a stochastic generation-based
static network model to assess the impact of allowing households to form ‘social
bubbles’, exclusive groups of two households that are allowed to socialise freely with
one another, on transmission of SARS-CoV-2. By creating a synthetic population
sampled from the household composition distribution of the most recent census
of England and Wales, we assess the impact of different social bubble strategies
that target different subsets of households on both transmission and mortality.
We find that, when restricted to households that are likely to benefit most, social
bubbles have only a limited impact on transmission. We assess the specific impact
the clustering imposed by social bubbles has by comparing social bubble scenarios
against counterfactual situations where individuals make comparable numbers of
infectious contacts, but in an unclustered fashion. We find that social bubble
strategies are an effective way of increasing contacts while minimising increases in

transmission and fatalities compared to unclustered increases in contacts.

Together, this thesis develops a variety of network approaches to modelling the
spread of epidemics. By doing so, we not only advance the field of network epi-
demiology in specific areas; we also demonstrate the wealth and diversity of network
approaches to modelling epidemics, their capacity to answer a range of theoretical
and applied questions, and the details that must be taken into account when de-
signing network models. We conclude this thesis in Chapter 7, where we offer some
final thoughts on the implications of our results, the limitations of our approaches,

and potential areas for future work.
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Chapter 2

Background

In this chapter, we survey the academic literature concerning the application of
network approaches to epidemic modelling on human populations. In Section 2.1,
we provide a brief introduction to network theory and its numerous applications.
In Section 2.2, we consider the data available that describes sexual network struc-
ture and social network structure. In Section 2.3, we consider the development
of epidemic models without explicit network structure. In Section 2.4, we con-
sider the correlations imposed by network structure in epidemic models, and the
development of approximate static network models that aim to understand these
correlations. In Section 2.5, we consider the impact concurrency has on the spread
of sexually transmitted infections (STIs), and the range of dynamic network mod-
els developed to understand its effects. In Section 2.6, we explore the impact that
clustering has on the spread of epidemics on networks, the clustering imposed by

household structure, and the models including such structure.
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2.1 A brief introduction to networks

A network is an abstract representation of a system consisting of elements that in
some sense interact or are connected with one another. Using terminology from
graph theory, the elements are referred to as vertices, V', while the connections are
referred to as edges, E. The network (or graph in graph theory) is given by the

set of these vertices and edges, which can be represented graphically as dots and

Figure 2.1: An example network. The numbers within each vertex represent

the relevant row/column of each individual in the adjacency matrix that defines it,
given in Equation (2.2).

lines:

Networks are a convenient representation of systems whose behaviour depends on
the structure of these interactions. While the nature of the elements and connec-
tions may differ drastically from real-world application to real-world application,
these different systems may share a common structure, and therefore the same
suite of tools may be useful across disparate disciplines. Indeed, the study of net-
works has been developed and applied across the sciences and social sciences - from
the structure of the world wide web [Albert et al., 1999] to the stability of food
webs [Johnson et al., 2014]; from the role of gene regulatory networks [Davidson
and Levin, 2005] to the patterns of academic citations [Price, 1965]; from optimis-
ing transport networks [Von Ferber et al., 2009] to understanding neural networks

[Bassett and Sporns, 2017].
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Given its wide and varied applications, a slew of terminology has been developed
for similar or equivalent concepts. In this thesis, vertices are typically referred
to as individuals and edges between vertices as connections. This is the most
natural terminology due to our focus on human populations. In some instances,
however, the terminology of vertices and edges is used when it is more natural to

the application.

While networks can be represented graphically, other representations of a network
are much more convenient mathematically and computationally. Networks can be
represented as adjacency matrices. Assuming all edges are of equal strength, an

adjacency matrix A is defined as:

1 if individual j is connected to individual 7,

Ay = (2.1)
0 otherwise

The network from Figure 2.1 can be represented by the following adjacency ma-

trix:

0110
1 01 0

A= (2.2)
1 1 0 1
0010

For networks where edges are undirected, as in Figure 2.1, adjacency matrices are
symmetric, i.e. A = AT. Undirected networks are a natural representation of con-
tact networks in the context of epidemiology - if you have been in close contact long
enough to be able to infect someone, it is natural to assume they have been in close

contact long enough to be able to infect you. In contrast, directed networks are
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not symmetric, i.e. A;; =1 # Aj; = 1. Directed networks are a natural represen-
tation of transmission networks in the context of epidemiology, where connections
denote transmission events - transmitting infection to someone does not necessar-
ily mean they will transmit infection to you. While transmission networks are of
practical interest in the context of contact tracing, the structure of these trans-
mission networks are determined by the underlying contact network. Because of
this, network models of epidemics focus on capturing the structure of contact, and
hence undirected, networks (with some exceptions, such as Sharkey et al. [2006]).
In contact networks, individuals are typically not be considered epidemiologically
relevant contacts of themselves, and hence A;; = 0. The above definition of an
adjacency matrix can be extended to include weighted or multiple edges [Newman,

2010], though this is not considered here.

Many quantities and measures have been defined that capture properties both at
the level of individuals and at the level of the network as a whole [Newman, 2010].
We restrict our discussion to three concepts of interest to this thesis: the degree of
an individual, the degree distribution of a network, and the clustering coefficient of
a network. The degree of an individual 7 in a network is the number of connections
7 has to other individuals. For an undirected network of n individuals, the degree

of an individual ¢, denoted k; can be expressed in terms of the adjacency matrix

A:

ki = ZAij (2.3)

By calculating the proportion of individuals of each degree, we obtain the degree
distribution of a network, which equivalently can be thought of as the probability
distribution of randomly choosing an individual with degree k. Degree distributions

are important when modelling, for two reasons. Firstly, observed degree distribu-
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tions of social networks have a non-random structure. If individuals’ social contacts
were random, i.e. connections between every individuals existed with some proba-
bility p, the degree distribution of social networks would be binomially distributed,
which tends to the Poisson distribution as network size increases [Newman, 2003].
However, social networks are typically characterised by having a heavy tail of highly
connected individuals, with a degree distribution that can be approximated by a
power-law distribution [Liljeros et al., 2001; Schneeberger et al., 2004]. Secondly, in
many cases degree distribution data is the only source of data practically obtainable

for social networks [Danon et al., 2011].

The level of clustering within a network is also of practical interest to many applica-
tions. The global clustering coefficient, ¢, of an undirected network can be defined
in terms of open and closed triples (which are shown graphically in Figure 2.2), as

in Newman [2010]:

# of closed triples

6= (2.4)

# of open and closed triples

As an undirected network is defined uniquely by an adjacency matrix A, ¢ can be

obtained from the formula below [Keeling and Eames, 2005]:

ik AijAje A tr(A3

o= ZignAidide  tr(A%) (2.5)
> ik AijAki || A2|] — tr(A?)

where tr denotes the trace of a matrix A and where ||.|| denotes the sum of all ele-

ments in the matrix. The concept of clustering is particularly relevant to the study
of epidemics on networks - due to its presence in social networks and its relative
absence in sexual networks. While the above measures are not used explicitly in
this thesis, the concept of clustering is relevant to many of the chapters. For ex-

ample, Chapter 3 focusses on open triples to model unclustered populations, while
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Chapter 6 focusses on social networks comprising of household contacts, i.e. highly

clustered networks.

Figure 2.2: Network representation of open and closed triples. In open
triples, individuals = and y are only indirectly connected via individual ¢. In con-
trast, x and y share a direct connection in closed triples.

2.2 Social and sexual network data

Both applied and theoretical models of epidemics on networks must consider the
structure of social networks. Applied models must be matched to epidemiologi-
cally relevant network data, whereas theoretical models must consider the general
features present in real-world data to ascertain whether they are epidemiologically
relevant. Working optimally, there should be a symbiosis between theoretical and
applied work. Data collection can be used to inform researchers about the network
structure present in real-world social networks, while theoreticians can ascertain
the extent to which network features have an epidemiological impact. These ef-
forts inform both applied modellers of what must be included in detailed models
for public health, and also informs future data collection on potentially important
network features to measure. Accordingly, various studies have sought to ascertain
the structure of epidemiologically relevant networks, using a variety of methods
[Klovdahl et al., 1994; Johnson et al., 2001; Mossong et al., 2008]. Of course, what
counts as an epidemiologically relevant contact depends on the infectious disease in

question, which in turn impacts the most suitable data collection method.
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2.2.1 Sexual network data

For STIs, who should count as epidemiologically relevant is straightforward - in-
fection is spread through active sexual partnerships, particularly between those
engaging in condomless intercourse. To ascertain whether such a contact has oc-
curred, participants of a data collection study are simply asked, either through
interviews or surveys. To obtain a more detailed understanding of the structure of
sexual networks, collection methods have been developed that involve contacting
the contacts of initial participants, such as snowball sampling [Goodman, 1961] or
respondent-driven sampling [Heckathorn, 1997]. While several studies have used
these techniques to collect sexual network data in high-risk groups [Klovdahl, 1985;
Klovdahl et al., 1994; Wylie and Jolly, 2001], this approach has several limitations.
Sexual behaviours and sexual partnerships are a sensitive topic, particularly in
the context of studying the spread of STIs. Because of this, both recruiting indi-
viduals onto a study and obtaining accurate information about partnerships from
recruited individuals can be a challenge, particularly if they are concerned about
their anonymity. These approaches also have a more theoretical limitation; meth-
ods that rely on contacting the partners of participants only reveal the network
structure of one connected component, when it is possible in reality that many
disconnected components exist [Danon et al., 2011]. The network characteristics of
the obtained component may differ from the network as a whole, and disconnected
components sampled at one time may connect at a later time. These approaches can
also be extremely time-consuming and labour intensive, making them unsuitable

for capturing the network structure of sexual networks at a population level.

A more common data source to inform public health models for STIs are egocentric
surveys. These typically ask a representative sample of the target population ques-
tions about both the number and characteristics of their epidemiologically relevant
contacts. These surveys attempt to capture the network structure of a popula-

tion at an individual level, and do not consider network properties that require
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knowledge of contacts of contacts, such as levels of clustering. For STIs in the UK,
the decennial National Survey of Sexual Attitudes and Lifestyle (Natsal) is a com-
prehensive survey asking a wide range of questions concerning individuals’ sexual
behaviour [Johnson et al., 2001; Mercer et al., 2013]. Similar surveys have been
used in other countries [Lewin et al., 1998], and for men who have sex with men
(MSM) specifically [Dodds et al., 2000; Weiss et al., 2020]. The Natsal studies have
formed the basis of many modelling studies central to STI control policy, in par-
ticular studies assessing the impact of vaccination programmes against the human

papillomavirus (HPV) [Jit et al., 2008; Choi et al., 2010; Datta et al., 2019].

These studies reveal many aspects of sexual network structure pertinent to mathe-
matical modelling. A frequently observed feature of sexual networks is a heavy-tailed
degree distribution of sexual partnerships, which in many cases can be approxi-
mated by a power-law [Liljeros et al., 2001; Schneeberger et al., 2004], and is a
feature apparent from the Natsal studies. This distribution implies that the lion’s
share of sexual contacts are undertaken by a relatively small group of individuals.
Because of this, sexual networks are often referred to as possessing a ‘core group’ of
individuals - individuals who are active enough within a population to transmit an
infection to more than one individual [Yorke et al., 1978]. The studies confirm that,
in the UK, serial monogamy is the prevailing social norm. This is not a feature of
sexual networks universally - in some cultures polygyny is practiced [Reniers and
Watkins, 2010], while populations of MSM often have more lax social conventions
surrounding monogamy [Parsons et al., 2013]. However, the studies do confirm
that the heterosexual UK population is not entirely monogamous - a modest but
substantial proportion (14.6% of men and 9.0% of women) of the population report
being involved in a concurrent partnership every year [Johnson et al., 2001], de-
fined as being in more than one sexually active partnership at the same time. By
recording the age of respondents, and asking about the ages of contacts, the Natsal

studies have helped understand sexual mixing patterns between age groups [Smid
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et al., 2018], and while the studies are cross-sectional rather than longitudinal, they
ask questions about the number of partnerships in different timeframes, and the
duration of partnerships, making them a rich source of data for modelling networks

that change dynamically through time.

The reconstruction of heterosexual networks from egocentric data raises unique
difficulties. Within a closed population, the number of heterosexual partnerships
involving a woman is necessarily equal to the number of heterosexual partnerships
involving a man. In a representative sample of the population, and assuming that
the size of the population of sexually active men and women is approximately
equal, then the average number of heterosexual partnerships reported by women
should approximately equal the average number reported by men. However, studies
have consistently shown that men report a higher average number of partners than
women [Mercer et al., 2013; Mitchell et al., 2019]. A number of hypotheses have
been suggested to explain this discrepancy, including the undersampling of female
sex workers [Brewer et al., 2000], cognitive biases in rounding errors [Brown and Sin-
clair, 1999], and social factors facilitating either the overestimation of partnerships
by men or the understatement of partnerships by women [Alexander and Fisher,
2003]. In any case, models fitted to egocentric heterosexual must capture the data
available for both sexes while resolving this discrepancy in some way [Garnett and

Anderson, 1994].

2.2.2 Social network data

For the underlying contact networks relevant to respiratory pathogens, who should
count as an epidemiologically relevant contact becomes harder to define. Typically,
researchers define criteria about the proximity, duration, and type of contact to
ascertain whether a contact counts as relevant. As for STIs, participants may be

asked through interviews or surveys about those contacts (e.g. Mossong et al.
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[2008]). Unlike with STIs, sensors or mobile devices may be used to automatically
infer social contacts (e.g. Salathé et al. [2010]). Both approaches face significant
challenges. While some contacts relevant to respiratory pathogens are extremely
longlasting, such as household or family members, others are fleeting, such as one-
time contacts in a bar or on public transport. Because of this, participants may
struggle to recall all relevant contacts accurately. For contact networks inferred via
technological means, a high uptake is required to obtain meaningful information,
and there are ethical and practical concerns about researchers having access to such

data [Eames et al., 2015].

Egocentric surveys have been undertaken that detail the properties of people’s social
contacts relevant to respiratory pathogens, notably the Polymod surveys [Mossong
et al., 2008] for influenza and the CoMix surveys for COVID-19 [Jarvis et al., 2020].
These surveys typically involve individuals recording a diary of their social contacts
over a defined period of time. These studies tell us important features of social
networks. For example, social networks are highly assortative by age, and mixing
patterns are consistent across many European countries [Mossong et al., 2008].
However, egocentric data is ipso facto unable to tell us about the level of clustering
within social networks. While the reconstruction of sexual networks from egocentric
data under the assumption that clustering of contacts is rare is reasonable, doing
so for social networks would be a significant departure from reality. The clustering
of contacts is a hallmark of social networks - this has been consistently observed in
small-scale studies of social networks [Goodreau et al., 2009], but is also something
obvious to us from our everyday lives. Because of this, studies utilising these
studies, more often than not, circumvent this complication by using these data to
infer mixing patterns in models of populations with no explicit network structure
[Wallinga et al., 2006; Baguelin et al., 2010; Keeling et al., 2021], the methods

outlined in Section 2.3.

Other studies have attempted to capture the relevant contact networks in specific
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settings, such as schools [Salathé et al., 2010; Conlan et al., 2011] and hospitals
[Isella et al., 2011]. Such data may be used to inform network models of diseases
within particular settings, but these studies account for only a subset of epidemi-
ologically relevant contacts. For example, those in school will interact with others
outwith the school setting, and these contacts may impact on resulting epidemi-
ological dynamics. The importance of capturing extraneous connections, and the
implications external network structure has on the seeding of epidemics within
structured environments, is raised by Eames et al. [2015] as a key challenge when

measuring contact networks.

By restricting our attention to household contacts, and under the assumption that
those sharing a household are in close enough contact to be epidemiologically rel-
evant, we are able to gain a source of data that does account for the clustering of
contacts. In the UK, a census of household composition is undertaken every 10
years, the most recent census of England and Wales occurring in 2011 [Office for
National Statistics, 2020a]. For this census, the full data on household contacts (as
opposed to a sample obtained from egocentric methods) is obtainable. These data
contain fine-scale information about households by geographical area, and also con-
tain the composition of households by age and size. While censuses provide a rich
data set of social contacts, the obvious limitation is that, at least in normal times,
household contacts represent only a fraction of people’s epidemiologically relevant

contacts.

2.3 Modelling epidemics without network structure

Historically, the field of mathematical epidemiology has used methods that do not
incorporate explicit network structure. The early models formulated by Kermack
and McKendrick [1927] assumed that individuals mix randomly as in the mixing

patterns of molecules in an ideal gas. Consequently, the rate of social contact of
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any individual is homogeneous and constant across the population. Such contacts
are also assumed to be instantaneous. Each individual is considered as belonging
to a discrete state signifying their infectious status. While the original works of
Kermack and McKendrick [1927] describe a general modelling framework where
the infectivity of an infectious individual and their chances of recovery or death
vary over the course of an individual’s infectious period, a special case of their
model was popularised by Anderson and May [1979] that assumed transmission
and recovery/removal occur at constant rates. In this model, known commonly as
the Susceptible-Infected-Removed (SIR) model, individuals are classified as either
being susceptible, denoted by S, infectious, denoted by I, or removed (or recov-
ered), denoted by R. The number or proportion of individuals in each state is
then aggregated into a compartment. Assuming a constant rate of recovery from
the infectious state, the rate of change between compartments is captured in the
following system of ordinary differential equations (ODEs), here expressed in more

familiar notation, as in Keeling and Rohani [2011].

ds
dl
dR

Here, ~ denotes the rate of recovery, i.e. the inverse of infectious period, and
denotes the product of the contact rate and transmission probability. S can be
thought of as a term that informs us about the number of contacts an individual

has: the higher number of contacts individuals have in the population, the higher

3.

The success of this paradigm is due to its flexibility. Since its inception, this frame-
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work has been refined to incorporate multiple heterogeneities in mixing patterns
between different subgroups of a population [Hethcote and Yorke, 1984; Grenfell and
Harwood, 1997; Keeling and Rohani, 2011]. Provided there is relevant data avail-
able, these mixing patterns can be encoded in a matrix known as the Who Acquires
Infection From Whom (WAIFW) matrix [Keeling and Rohani, 2011]. The frame-
work has also been extended to incorporate much more realistic disease dynamics

than those of the original SIR-model [Anderson, 1988; Grenfell et al., 2001].

This approach also allows for the calculation and definition of the basic reproduc-
tion number, Ry, a term central to the mathematical study of epidemiology, defined
as the average number of secondary infections caused by a primary infected individ-
ual in a completely susceptible population. Importantly, Ry exhibits a thresholding
property - Ry > 1 is required for an epidemic to spread throughout the population.
For a randomly mixing population at the infinite population limit, Ry can be calcu-
lated by finding the dominant eigenvalue of the next generation matrix [Diekmann

et al., 1990].

As many STIs do not lead to immunity after recovery from infection, these equations

must be adapted, to a susceptible-infected-susceptible (SIS)-model:

dS
% =BSI —~I (2.10)

These deterministic models without explicit network structure, often referred to
as random-mixing models or mean-field models, were used to glean some of the
earliest results on the spread of STIs [Cooke and Yorke, 1973; Yorke et al., 1978;
Hethcote and Yorke, 1984], finding that the disease dynamics of STIs imply an

endemic prevalence of infection within the population, and that STI epidemics are
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driven by a core group of highly active individuals.

The SIS-paradigm is still widely used to approximate the infection dynamics of
bacterial STIs, such as chlamydia, gonorrhoea, and syphilis, both in models with
and without explicit network structure [Kretzschmar et al., 2009; Chesson et al.,
2016; Smid et al., 2018], often with the inclusion of separate compartments for
symptomatic and asymptomatic infection [Tuite et al., 2018; Ronn et al., 2020].
The dynamics of human papillomavirus (HPV) have also been modelled under the
SIS-paradigm [Ribassin-Majed et al., 2014; Taira et al., 2004], although this may be
an idealisation of the true dynamics [Beachler et al., 2016], and other studies have
modelled HPV as having different epidemiological dynamics [Horn et al., 2013].
However, this paradigm is not appropriate for all STIs, and in particular is unsuit-
able when modelling the dynamics of HIV, where recovery does not occur. While
the assumption of SIS-dynamics is still widely used, other approaches that include
greater realism have been developed including the addition of an incubation period
[Whittles et al., 2019], the modelling of within-host dynamics (particularly for HIV)

[Perelson and Ribeiro, 2013], and site-specific infection [Jenness et al., 2017].

While mean-field models do not consider network structure explicitly, they assume
some implicit network dynamics, either through the absence or through the pres-
ence of risk structure within the population. At the infinite population limit, social
contacts occurring at a constant rate implies that the degree distribution of con-
tacts would be Poisson distributed [Newman, 2003], a departure from the observed
degree distributions of sexual and social networks. Further, under this framework,
infectious contacts are instantaneous; as contacts only last an instant, it is hard to

even define the concepts of concurrency or clustering.

Despite this, models without explicit network structure have continued to be de-
ployed and refined, and are still a vital tool for public health. There are often

advantages to taking this approach. As previously stated, the underlying network
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of epidemiologically relevant contacts is unclear or unfeasible to collect data on for
most pathogens acting on humans. Further, models without network structure can
often be parameterised robustly from incomplete data; in contrast, omitting cer-
tain edges from network models can have a significant impact on modelled epidemic
outcomes [Watts and Strogatz, 1998]. In the absence of reliable network data, with
the impact of some features of network structure still relatively poorly understood,
it is often pragmatic to take such an approach. However, if one is interested in the
correlations between the infection status of individuals, or the impact of network
features on the spread of infection, such as concurrency or clustering, a network

approach to modelling is unavoidable.

2.4 Correlations and static network models

In recent years, both analytical and simulation models incorporating network struc-
ture have been developed. There has been much work on providing a rigorous un-
derlying framework for population-level models, such as mean-field models as well
as models incorporating network structure, from network models concerning the

infection status of individuals.

The spread of epidemics can be conceptualised as a stochastic process on a fixed
network. Assuming that individuals can be labelled as belonging to discrete disease
states, and assuming that transmission of infection across connected contacts and
recovery from infection happen at constant rates, i.e. that both transmission and re-
covery are Poisson processes, the underlying process is Markovian [Kiss et al., 2017].
Accordingly, the probability that the underlying process is in any particular state
can be obtained by (numerically) solving the system’s Master equations. While
these are idealisations, these assumptions are common throughout both the theo-
retical and applied epidemiological literature (although alternative non-Markovian

frameworks have been developed by some, such as Pellis et al. [2015b], Kiss et al.
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[2015Db], and Van Mieghem and Van de Bovenkamp [2013]). In this thesis, the
assumption that transitions between states occur at a constant rate, sometimes

referred to as the Markovian assumption, is made throughout.

While the above framework has provided a useful tool for small networks, these
exact methods are inevitably constrained computationally. As each state of the
system must be recorded, and the state of the system depends on the state of each
individual, the number of equations required to describe the underlying system
grows exponentially with network size. For example, considering a disease with

SIS-dynamics acting on a network of 100 individuals would require 219

equations.
While methods such as lumping [Simon et al., 2011] have been developed that
allow larger network sizes to be considered for specific network configurations, these
exact methods remain unable to handle networks of the sizes required for public

health.

Using this framework, one is able to obtain equations describing the rate of change
of the expected infection status of particular individuals. The behaviour of epi-
demics at a population level, in terms of the expected number or proportion of
individuals in certain states, has been derived from understanding the behaviour of
epidemics at an individual level. Of particular importance are the results of Simon
et al. [2011] and Taylor et al. [2012]. By considering the probability of individuals
being either susceptible or infected, Simon et al. [2011] derive exact expressions for
the expected number of susceptible and infected individuals in an arbitrary net-
work for a disease with SIS-dynamics. Letting |S| denote the expected number
of susceptible individuals, |I| denote the expected number of infected individuals,
|SI| denote the expected number of susceptible-infected pairs, and letting 7 and ~
denote transmission and recovery rates respectively, the time evolution of |S| and

|I| is given exactly by the following system of ODEs:
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|S| = y11] - 751| (2.11)

\I| = 7|ST| — |1 (2.12)

From this equation, we are able to recover the standard SIS-model by assuming that
infected individuals are distributed randomly throughout the population. Assuming
that an individual has an average of n neighbours, a susceptible individual will have
an average of nI /N infected neighbours in a population of N individuals [Kiss et al.,

2017]. Doing so, we obtain the following approximation:

n
I = —|S||I 2.1
511 = & 1S11] (2.13)

By substituting this into Equations (2.11) and (2.12), we obtain a closed set of equa-
tions. The assumption that infected individuals are distributed randomly through-
out the population implies that the infection status of individuals within a pair is
independent of one another. However, between connected individuals, we should
expect some correlation - we expect an individual with an infectious contact to be
more likely to be infectious than an individual with only uninfectious contacts. Ac-
cordingly, models that try and account for these correlations have been developed.
Above, we approximate the behaviour of pairs in terms of individuals. Instead,
we could consider the rate of change of pairs, shown rigorously by [Taylor et al.,

2012):
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ST| =y(|I1| — |SI|) + 7(|SSI| — [ISI| — |SI|) (2.14)
11| = — 24|11| + 27 (|ISI| + |SI]) (2.15)

1SS =24|S1| — 27| 581 (2.16)

Here, this equation describing the rate of change of pairs depends on the infec-
tion status of triples. Inspecting the rate of change of triples, we find that these
depend upon order-four terms [House et al., 2009], which in turn depend on the
disease state of yet higher order structures. Moment-closure methods approximate
behaviour of the system by approximating the disease state of higher-order struc-
tures in terms of lower-order structures, as in Equation (2.13). In general, closing
a system at a higher-order one obtains a more accurate model. Many studies have
utilised moment-closure methods to incorporate network structure into their models
- first motivated from considerations at the population level [Keeling, 1999; Rand,
1999; Keeling and Eames, 2005] before being developed from considering dynamics
at the individual level [Sharkey, 2008; Taylor et al., 2012; Sharkey et al., 2015].
However, the question of just how approximate these approximate models are is a
pertinent one. To answer this, research at both the individual-level [Sharkey, 2011;
Sharkey et al., 2015; Pellis et al., 2015b] and at the population-level [House and
Keeling, 2011b; Keeling et al., 2016] has been developed to understand the corre-
lations induced by network structure and the errors introduced by moment-closure

approximations.

There has been significant analytical success in the moment-closure approach for
diseases with SIR-dynamics. Of note, for diseases with SIR-dynamics acting on
unclustered (tree-like) networks, a closure at the level of triples leads to a closed set
of equations that describe the dynamics of the underlying system exactly [Sharkey

et al., 2015]. Kiss et al. [2015a] extend this framework to consider more realistic
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network structures including loops, Trapman [2007] define the reproduction number
of pairwise approximations for diseases with SIR-dynamics, while House [2015]
provide algebraic moment-closures for such diseases based on Lie algebras. This
framework has also been extended to consider non-Markovian infection periods

[Wilkinson and Sharkey, 2014; Pellis et al., 2015b].

However, for diseases with SIS-dynamics, results have been more limited. The cor-
relations imposed by reinfection reduce the analytical tractability of these models.
While progress has been made in providing a rigorous basis for such models [Taylor
et al., 2012; Taylor and Kiss, 2014], and there has been progress in defining more
accurate moment-closure approximations for diseases with SIS-dynamics [House
et al., 2009; Lindquist et al., 2011; Keeling et al., 2016; Simon and Kiss, 2016], a
more detailed understanding of the correlations between connected individuals and

methods that account for or incorporate such correlations is still required.

There have been other approaches to modelling disease with SIS-dynamics on static
networks. This disease dynamic has been considered in the theoretical literature as
the contact process [Liggett, 2013], although results considering the contact process
have tended to focus on global theoretical properties rather than results directly
relevant to epidemiology. Explicit simulation of diseases on networks has been
used to explore the effect of various aspects of network structure on disease spread
[Moore and Newman, 2000; Read and Keeling, 2003; Meyers et al., 2005]. More
recently, other static network modelling approaches have been developed [Floyd

et al., 2012; Lee et al., 2013; Wilkinson and Sharkey, 2013].

2.5 Concurrency and dynamic network models

While static network models are a natural starting point to understand the impact

network structure has, in many cases the formation and dissolution of partnerships
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is a key determinant of epidemiological dynamics. While it is still common for
mathematical models to assume that contacts are fixed throughout an epidemic,
such models can incorrectly predict the outcomes of epidemics on models where
partnerships are transient [Volz and Meyers, 2009; Bansal et al., 2010; Whittles
et al., 2019]. Accordingly, a range of dynamic network models, both determinis-
tic [Miller et al., 2012; Hansson et al., 2019] and stochastic [Jenness et al., 2018;
Whittles et al., 2019], have been developed. These are particularly useful when
considering the spread of ST1Is, where partnership turnover has a significant impact

on epidemiological outcomes.

In the heterosexual population of the UK, the prevailing social norm around sexual
relationships is serial monogamy - the majority of individuals are involved in at
most one active partnership at any given time. Through the exclusivity of monog-
amous partnerships, constituent individuals are shielded from acquiring new infec-
tions from the population at large, and if one individual is infected, the maximum
number of people they can pass the disease onto over the period of the relationship
is 1. However, the population is not strictly monogamous [Johnson et al., 2001],
and sexual networks in other contexts often do not have the same expectation of
exclusivity within relationships [Reniers and Watkins, 2010; Parsons et al., 2013]. If
relationships are non-exclusive, large connected components of individuals become
possible, and infection is potentially able to traverse large paths within the network.
Consequently, there has been considerable interest in the impact of concurrent part-
nerships, partnerships that overlap in time, on the spread of STIs. Using a deter-
ministic model, Watts and May [1992] found that levels of concurrency can have
a large impact on the early growth rate of an epidemic, a finding corroborated by
the stochastic simulation studies of Kretzschmar and Morris [1996] and Morris and
Kretzschmar [1995, 1997], while the models of Bauch and Rand [2000], Eames and
Keeling [2004], and Morris and Kretzschmar [2000] show that concurrency signifi-

cantly increases the final size of epidemics compared to populations that are serially
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monogamous. More recent studies have continued to explore the impact of concur-
rent partnerships on disease dynamics [Kim et al., 2010; Armbruster et al., 2017].
However, while modelling studies have demonstrated the potential impact of con-
current partnerships on epidemiological dynamics, empirical studies on its influence
have been mixed [Kretzschmar et al., 2010; Reniers and Watkins, 2010], perhaps

due to the interplay between concurrency and other network properties.

A difficulty that arises from egocentric surveys is the measuring of levels of concur-
rency within a network. While Kretzschmar and Morris [1996] detail instantaneous
metrics of levels of concurrency, the data obtainable from egocentric surveys is often
the proportion of respondents who have had a concurrent partnership in a specified
time-frame [Johnson et al., 2001]. In the Natsal surveys, whether an individual
has engaged in a concurrent partnership in the previous year is inferred from the
start and end months of individuals’ last three sexual relationships - though some
assumption must be made about whether one partnership that ends in the same

month as another starts is concurrent or not.

A popular deterministic approach to modelling dynamic networks is to extend the
deterministic mean-field framework described in Section 2.3 by explicitly accounting
for partnership formation and dissolution, collectively referred to as pair formation
models [Kretzschmar and Heijne, 2017], first introduced to the epidemiological lit-
erature by Dietz and Hadeler [1988]. Under such a framework, both partnership
formation and partnership dissolution are Poisson processes and hence can be for-
mulated as a system of ODEs. As an extension of the deterministic mean-field
framework, significant analytical insights are tractable from pair-formation models,
with methods to obtain Ry described by Diekmann et al. [1991] and Kretzschmar
et al. [1994]. For diseases with SIS or SIS-like dynamics, where individuals can
potentially be re-infected by the same partner within a relationship multiple times,
alternative reproduction numbers have been defined and derived. This includes the

case reproduction number introduced by Heijne et al. [2013], which defines the av-
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erage number of secondary cases from an initially infected individual. Figure 2.3 is
a schematic of a pair-formation model of a disease with SIS-dynamics for a serially

monogamous population.

4b,
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Figure 2.3: A flow-chart of a pair-formation model assuming serial
monogamy. This chart depicts a pair-formation model for a disease with SIS-
dynamics in a serially monogamous population.

This framework is a flexible way of obtaining relatively simple models that are ca-
pable of incorporating many of the heterogeneities relevant to the spread of STIs,
and has been used to model the impact of real-world public health interventions
[Heijne et al., 2011; Powers et al., 2011]. Pair-formation model approaches have
shown that if there are short gaps between partnerships, reinfection within part-
nerships can sustain the transmission of low-prevalence STIs with SIS-dynamics

[Chen and Ghani, 2010].

Pair-formation models are not immediately suited to deal with concurrent partner-
ships - if individuals are allowed to form more than one partnership, the infection
status of pairs will depend on triples, as in Section 2.4. However, by including
casual partnerships as instantaneous additional mean-field contacts, pair-formation
models can account for concurrent partnerships in a limited capacity. This ap-

proach is taken by Xiridou et al. [2003, 2004] to assess the relative contribution
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of steady and casual partnerships to the spread of HIV. Another approach devel-
oped by Leung et al. [2012, 2015] assumes that individuals have a fixed number of
‘binding sites’ for partnerships, allowing individuals to potentially form concurrent
partnerships, under the assumption that the rate individuals form additional part-
nerships is independent of the number of partnerships they are already in. While
each approach has limitations, both provide further evidence that concurrency can

play an important role in epidemiological dynamics.

While the impact concurrency can have on the spread of epidemics is clear, the im-
portance of explicitly including concurrency in population-level models for public
health remains relatively unexplored. Such models are often calibrated to preva-
lence data, and are matched to available real-world data available from egocentric
surveys like Natsal. In the context of school networks, Nath et al. [2018] show that
models matched to local network data and calibrated to prevalence can sometimes
differ in epidemiological outcomes. Models used to forecast the spread of STIs make
a range of different assumptions surrounding concurrency. Some do not account for
concurrency - either using mean-field models [Barnabas et al., 2006; Ribassin-Majed
et al., 2014], or assuming serial monogamy [Datta et al., 2019]. Other models do
include concurrent partnerships, but are not matched to concurrency data directly
[Gray et al., 2009; Choi et al., 2010]. While the models of Jenness et al. [2017]
and Goodreau et al. [2018] account for concurrency, they only account for instan-
taneous levels of concurrency, rather than observed levels over a period of time.
It is unclear whether models matched to the proportion of individuals involved
in a concurrrent partnership at a snapshot in time also match, for example, the
proportion of individuals who have been involved in a concurrent partnership over
the past year. Hence, understanding the impact that concurrency has in models
that are matched to observed levels of concurrency and prevalence data remains an

important question.
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2.6 Clustering and household models

The previous sections have focussed on networks that are typically unclustered.
In exclusively heterosexual populations, triangles of three connected individuals
are impossible, and higher order loops are presumably rare. Triangles can occur
in homosexual populations, and as MSM relationships are varied in the degree to
which they are monogamous, clustering may sometimes be more common [Parsons
et al., 2013]. In contrast to sexual networks, the clustering of social contacts is
a hallmark of social networks. Because of this, much research has considered the

impact of clustering on the spread of infectious diseases.

Clustering has been incorporated into both static and dynamic deterministic net-
work models using moment-closure methods. Yet incorporating clustering accu-
rately into moment-closure models remains challenging. For tree-like networks, the
moment-closure approach can provide an exact description of the underlying dis-
ease dynamics for certain types of disease dynamics [Sharkey et al., 2015]. However,
inevitable correlations between individuals within closed loops limits the analytical
tractability of this approach on clustered networks. To close a model at the level
of triples, one must approximate the behaviour of open and closed triples (Fig-
ure 2.2). While the choice of closure for open triples is straightforward, the correct
approximation for closed triangles is less obvious. Originally, this was done by
invoking the Kirkwood approximation for closed triples [Kirkwood, 1935; Keeling,
1999]. Assuming that individuals z,¢ and y comprise a closed triple, letting [A,]
denote the probability that individual z is in state A, and letting [A, B.] denote
the probability that individual x is in state A and individual ¢ in state B and so
on, the Kirkwood approximation of the probability that the closed triple is in a

particular state is given by the following equation:
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[Az Be][BeCy[[A2Cy
[Az][Be][Cy]

[A.B.C,) ~ (2.17)

However, this approximation has been criticised because of a lack of accuracy and
because it does not result in a proper distribution over system states [Pellis et al.,
2015b]. More recently, improved closures for closed triangles have been developed
[House and Keeling, 2010; Rogers, 2011], although the Kirkwood approximation
is often still used [House and Keeling, 2011a]. Moment-closure methods provide
reasonable approximations of underlying disease dynamics in networks with low to
medium levels of clustering, but their efficacy at approximating the dynamics of

epidemics on more highly clustered networks is relatively unexplored.

While imperfect, models utilising moment-closures have played a valuable role in
understanding the impact of clustering on both the spread of infectious diseases and
the success of control measures. Static network models have shown that, because
individuals infected after the first generation have a reduced number of new suscep-
tible contacts, the average number of secondary infections from an infected individ-
ual is smaller in clustered populations [Keeling, 1999; Keeling and Eames, 2005].
Consequently, both the early growth rate and full Ry is lower in clustered popula-
tions [House and Keeling, 2011a]. Further, the efficacy of contact tracing is often
increased in clustered populations [House and Keeling, 2010]. These studies cor-
roborate similar findings through explicit stochastic simulation or other approaches

[Huerta and Tsimring, 2002; Miller, 2009; Badham and Stocker, 2010].

A certain level of clustering is imposed by the household structure of a population -
individuals live in households with other individuals, who are likely to be considered
close contacts for many pathogens. The clustering imposed by this structure slows
the spread of epidemics [Volz et al., 2011]. A field of models, known as household

models, has been developed to account for the specific effects of this type of clus-
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tering. Typically, such models account for disease dynamics at two levels - within
the household and between households [Ball et al., 1997]. There are a range of
household modelling approaches, from analytical approaches [Ball and Neal, 2002;
House and Keeling, 2008; Hilton and Keeling, 2019] to detailed simulations used
for public health [Ferguson et al., 2005; Cauchemez et al., 2008].

A specific challenge for household models is the definition of reproduction numbers.
In models that assume random-mixing, it can be assumed in the early stages of an
epidemic that the proportion of the population who are not susceptible to infection,
either because they are infected or they have recovered, is negligible. Consequently,
the next-generation approach outlined by Diekmann et al. [1990] is a reliable way
of obtaining the average number of infections caused by an infected individual.
However, this method relies on the infection status of individuals within the pop-
ulation to be uncorrelated [Diekmann and Heesterbeek, 2000]. In the context of
households, the depletion of susceptibles even in the early stages of an epidemic
is never negligible, and the clustering imposed by households inevitably leads to
correlations in infection status. While Ry can still be defined in the standard way
[Ball et al., 1997], it describes the average number of infections caused by an in-
dividual in a fully susceptible population. However, while infection may spread
quickly within a household, the depletion of susceptibles may mean an epidemic
cannot take off. Therefore, the standard conception of Ry is no longer a useful
parameter for household models, as it does not exhibit the thresholding properties
that make it a quantity of interest in epidemiology [Pellis et al., 2012]. Because of
this, alternative metrics that do exhibit this thresholding property have been pro-
posed: Ball et al. [1997] propose the average number of households infected by an
infected household, Pellis et al. [2012] define a reproduction number that effectively
averages over household members infected in different generations of an epidemic,
while House and Keeling [2011a] compare the ratio between individuals infected in

subsequent generations after infection correlations have equilibrated.
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Recently, it has been suggested that clustering itself could be utilised as an effec-
tive control measure against epidemics, either by encouraging individuals to form
social connections with the contacts of their contacts [Block et al., 2020], or by
restricting individual’s social contacts to another clustered group, such as a house-
hold [Willem et al., 2021; Danon et al., 2020]. To understand the effectiveness of
these approaches, models must be developed that incorporate the data available on
the structure of contacts within the population, that infer the resulting clustered
contacts implied by any such strategy, and that compare epidemiological outcomes
against counterfactual models where individuals increase their contacts in an un-

clustered fashion.
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Chapter 3

Correlations: improving pairwise
approximations for network models
with susceptible-infected-susceptible

dynamics

The research in this chapter has been presented in Leng and Keeling [2020].

3.1 Introduction

The spread of any epidemic can be conceptualised as a process on a network, where
individuals are represented as vertices and epidemiologically relevant contacts as
edges between vertices. An abundance of different network-based approaches to
disease spread have been developed over the years, varying in scope, application,
and sophistication. These range from, at one extreme, Markovian state-based mod-
els, where the probability of a system being in a certain state is given exactly by

its master equations (see Kiss et al. [2017] for an introduction to such methods), to
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explicit stochastic simulations of epidemics on networks (see Goodreau et al. [2017]
and Whittles et al. [2019] for recent examples) at the other. Both approaches have
limitations. The exponentially increasing state-space with network size for state-
based models mean these exact descriptions are computationally unfeasible for most
networks of real-world interest; and while stochastic simulations can deal with net-
works of these sizes, such methods offer little or no analytical tractability, making
sensitivity to network structure hard to quantify and the causal determinants of

the resulting dynamics hard to identify.

One network approach that aims to bridge this gap is moment-closure approxima-
tion, which is the focus of this chapter. In a population, the rate of change of
the number of infected individuals will depend upon how many susceptible-infected
pairs there are. The rate of change of these pairs, in turn, depends upon the number
of triples, and so on up to the full size of the population. Moment-closure approx-
imation methods obtain a closed set of ordinary differential equations (ODEs) for
the disease dynamics by approximating the dynamics of higher-order moments (e.g.
triples) in terms of lower-order moments (e.g. singletons and pairs). By doing so,
one obtains a relatively simple ODE model that retains much of the tractability of
mean-field approximation models (the standard approach to modelling the spread
of infectious diseases) but that also explicitly accounts for some aspects of network
structure. Hence, there has been much interest and research into such methods,
and into the errors such approximations introduce into a model [Sharkey, 2011;

Taylor et al., 2012; Keeling et al., 2016; Pellis et al., 2015b].

There has been considerable progress in this moment-closure method for diseases
that can be modelled via the susceptible-infected-recovered (SIR) paradigm: the
determinants of errors in such methods are detailed by Sharkey [2011]; the exactness
of a closure at the level of triples for tree-like networks is proven by Sharkey et al.
[2015]; this framework is extended by Kiss et al. [2015a] to more realistic network

structures that include loops; Trapman [2007] defines a reproduction number for
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pairwise approximation; House [2015] provides an algebraic moment-closure for
such diseases based on Lie algebraic methods; while Pellis et al. [2015b] explore the

exactness of closures when infective periods are of a constant duration.

By comparison, progress has been modest for diseases with susceptible-infected-
susceptible (SIS) dynamics, equivalent to the network-based contact process [Liggett,
2013], where recovery from infection does not lead to immunity. Despite its lower
dimensionality than the SIR model, the possibility of reinfection can cause correla-
tions between indirectly connected individuals to accrue over time. Consequently,
moment-closure approximations on networks with SIS-dynamics are in general not
exact, and their analytical tractability is limited. Of the progress that has been
made: important formal results on their derivability from exact state-based models
have been achieved by Taylor et al. [2012] and Taylor and Kiss [2014]; Keeling et al.
[2016] compare three systematic moment-closure approximations against stochastic
simulations; House et al. [2009] develop a motif-based approach that outperforms
simpler methods for particular network topologies; while Simon and Kiss [2016]
develop a compact pairwise approximation that agrees well with ODE models of a

much higher dimensionality.

Capturing network structure is at its most important when edges between vertices
are sparse but relatively long lasting. This, alongside the more well-defined nature
of epidemiologically relevant contacts, means that moment-closure methods are
potentially most valuable for understanding the spread of sexually transmitted in-
fections (STIs). However, most STIs are modelled using the SIS-paradigm (though
notably not HIV). Thus, both understanding the errors introduced by moment-
closure approximations for diseases with SIS-dynamics, and improving upon these
approximations, is vital for the successful application of such methods to public-

health problems.

In this chapter, we introduce improvements to the standard pairwise approxima-
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tion for diseases with SIS-dynamics. In particular, we do this for the isolated open
triple and for k-regular networks, by explicitly obtaining equations for the rates
of change of the errors between triples and their standard pairwise approximation.
By applying a closure to these equations, we obtain a closed set of equations that
better approximate the true dynamics of infection, with only a modest increase in
dimensionality. In the case of the isolated open triple, such a model is exact, while
for k-regular networks, closures at the level of order-four structures have to be ap-
plied. Specifically, in Section 3.2 we discuss the isolated open triple, obtaining exact
expressions for the appropriate errors and their rates of change, thus obtaining an
exact set of equations describing the disease dynamics on this network topology. In
Section 3.3, we use the results from the isolated open triple to inform our improved
approximation on k-regular networks, i.e. networks with no loops and where each
individual has k neighbours. In Section 3.4, we consider both higher-order moment-
closure approximations and explicit stochastic simulations for this type of network,
to act as benchmarks for our improved pairwise approximation. In Section 3.5, we
compare this improved approximation to the standard pairwise approximation, to
higher-order approximation models, and to stochastic simulations. In Section 3.6,
we discuss some of the limitations to such an approach, and highlight some potential

areas where we believe further research could be fruitful.

3.2 The isolated open triple

In this section, we consider the errors introduced by performing pairwise approx-
imation on isolated open triples for a disease with SIS-dynamics. We define an
isolated open triple as a central individual ¢ connected to two neighbouring indi-
viduals x and y, where x and y remain unconnected, as illustrated in Figure 3.1. By
investigating this topology, the errors introduced by a pairwise approximation that

result from the disease dynamics of the triple itself are not obfuscated by errors
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introduced via transmission events to the open triple from external connections,
and exact results using the master equation approach [Kiss et al., 2017] can be

generated.

Figure 3.1: Graphical representation of the isolated open triple. A central
vertex ¢ connected to two other vertices x and y. For the SIS model such triples
have eight possible states.

We consider a diseases with SIS-dynamics, that is, upon recovery from infection (1)
an individuals returns to the susceptible (5) class. We can described this process
on the 3-network in terms of its states, of which there are eight - corresponding
to whether each individual belongs to the S or I class - so a particular state A €
{S,I}3. We denote the probability of being in a certain state P(z = X,c = C,y =
Y) as [X,C.Y,], where X,C,Y € {S,I}. If we consider recovery from infection, ~,
and transmission across partnerships, 7, to be Poisson processes, then the above
situation is a continuous-time Markov process, and can be fully described by its
Master equations (see Kiss et al. [2017], Chapter 2 for an introduction to this

approach).

We set initial probabilities of each state by assuming random initial conditions, i.e.
by taking Iy ~ U(0, 1) and setting [, 1.1,]o = IoxIox Iy and so on. Note, under this
assumption, we have the symmetries [S;S.1,| = [I;ScSy] and [Syl 1] = [I1.S,].
Thus, the dynamics of the isolated open triple are fully and exactly described by
the following six ODEs:
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Model 1 - The isolated open triple

[S250Sy) =(2[SuSely] + [So1S,)) (3.1)
[SeSely] = [1:SeSy) =v([Selely) + [LSely] — [SuSely)) — T[Sz Sel] (3.2)
(S 1eSy) =7(2Selely] — [SaleSy)) — 27[SuleS,] (3.3)

[Splely) = [1.1.8,) =y([Lo1.1,] — 2[Selely)) + 7([SeSely] + [SeleS,] — [Selcly])
(3.4)
[LSely] =y ([LoIeLy] = 21,5 1,]) — 27[1,S. 1] (3.5)
[LoIely) = = 3y (LI I)] + 27 ([SaL1y) + [.Sel,)) (3.6)

Note that the disease-free state [S,S.S,| is absorbing, and so given long enough
this system will always evolve to this state. Hence, without an external source
of infection, a disease cannot persist indefinitely with an isolated open triple (or
indeed, within any isolated graph of finite topology). If we wish to consider initial
conditions that do not assume random mixing, e.g. pure initial conditions, eight

equations are required:

[S25eSy) =1([SeSely) + (Lo SeSy) + [Se1eSy]) (3.7
[S2Sely) =v([Selel,) + [IwSel,] — [SeScly]) — 7[SeSc1,] (3.8
[1,5:5y) =Y ([Lo1cS,) + [1oSel,] — [155eSy] — T[125:S,] (3.9
(2 1eSy) =v([Selely] + [Lo1eSy] — [SeleSy]) — 27[SaleS,) (
[SeLely] =Y([LoIeLy] = 2[SoIeLy]) + T([SeSely] + [SuleSy] — [Selely]))
LISy =y LeLy) = 2L 1.S,]) + T([LoSeSy) + [S21eSy] — [L1.S,])  (3.12
[LSely] =y([Le IeLy) = 2[1.ScT,]) — 27 (1S T,] (

(

LoLel,) = = 3Y{LLL,) + 7(1SoLed,) + (L 1eS,) + 2(1,S.1,))
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3.2.1 The pairwise approximation for the isolated open triple

Returning to the homogeneous initial condition, we now introduce the pairwise ap-
proximation for the open triple. It is important to note that we are considering
a local moment-closure approximation, i.e. we are tracking the dynamics and er-
rors introduced for a particular subgraph, as opposed to a global moment-closure

approximation, where we apply closures at a population level.

We begin by considering equations for the probability of individuals (vertices of the
open triple) being in a certain state A € {S, I}, where we denote P(a = A) as [A4,].
ODEs describing the rate of change of these states can be obtained by summing
the rates of change from the appropriate triples, e.g. [S;] = [SxScSy] + [Sib"cly] +
[Sxchy] + [ijcfy]. We observe that the state of an individual depends on the
probability of pairs of individuals being in certain states: we denote P(a = A,b = B)
as [A,Bp] and also obtain these by summing the appropriate triples. We arrive at

the following equations:

3.18

[S5] = [8y] =1L = T[S (3.15)
[Sc] :V[IC] - 27—[[1:50] (316)

[SQ;IC] = [Ics’y] =Y([La1e] = [Sale]) + T([SzSely] — [Sz1e]) (3.17)
(3.18)

[1:Se] = [Sely] =y([Le1e] — [aSe]) = 7([LeSeLy) + [1Se])

where [I,] = 1 — [S,] and [I,I] = [Iy] — [Sals] = [La] — [1aSp]. Thus, we see that
the rate of change of the probability of the infection status of individuals depends
on the infection status of certain pairs, which themselves depend on the infection
status of certain triples. This set of equations is unclosed, as we do not have
expressions representing the time evolution of the disease status of these triples.

Typically, studies have obtained a closed set of equations by assuming that the
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infection status of individuals x and y are conditionally independent given the
infection status of individual ¢ [Sharkey, 2008, 2011; Pellis et al., 2015b]. That is,

the following assumption is made:

Lo Se][Sely) _ [LaSe]®
[Sc] B [SC]

[L.S.1,] ~ (3.19)

Observing that [S;Sc] = [Sz] — [Szlc), and that [Sc] = [S25:] — [1zS.], we obtain a
closed set of three equations, which we refer to as the pairwise approximation for

the isolated open triple, given in full below:

Model 2 - The pairwise approximation for the isolated open triple

15,50] = [505,) =1([LS0] + [S.1.]) — TW (3.20)

[Sx'lc] = [Icsy] :7([190[0] - [lec]) +T (W - [SZL‘IC]> (3'21)
. . 2

1,5 = [Si1,] =([L1.] — [I.S.]) — <[Ifssf]] + [L,,,sc]> (3.22)

where [I,1.] =1 — [S;S¢] — [Sele] — [1:Se] and [Sc] = [SySe] + [12Sc].

3.2.2 Quantifying errors

We can now compare the pairwise approximation model (Equations (3.20) to (3.22))
to the exact model (Equations (3.1) to (3.6)). The approximate model captures
the dynamics of the system at low values of the transmission rate 7, but if 7 is
sufficiently high, the approximate model behaves qualitatively different to the exact
model - there is no absorbing state, and we have a non-zero stationary probability

of individuals being infected (Figure 3.2).
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Figure 3.2: Comparing exact and pairwise models for the isolated open
triple. In (a), we see at low values of transmission between connected individuals
(7 = 1), the pairwise approximation (red) captures the probability of an individual
being infected (given by Iy = ([Iz] + [I] + [I])/3) of the exact model (blue)
reasonably well. In (b), we see that for higher values of 7 (here 7 = 3), the pairwise
model evolves to a non-zero stationary probability of individuals being infected,
while the exact model always proceeds to the disease-free equilibrium. For all
plots, we set v = 1.

While in Model 1 [S;S.S,] never decreases, in Model 2 its approximation [S;S.|[S:Sy]/[Sc]
can decrease. This decrease occurs because of the rate of change of [I.] to [S].
In Model 1, this only affects the transition to the state [S;S.S,] from the state
[Sz1cS,y], which only ever increases the probability of [S;S.S,]. However, in Model
2 the decoupling of the two pairs and single means that this transition, with certain

within pair correlations, can lead to a decrease in [S;S:][S:Sy]/[Sc]-

Comparing the exact value for triples with their approximation at any given time,
we observe this approximation underestimates the probability of the state [I,S.1,],
and overestimates the probability of the state [S;S.I,]. Indeed, the underestimate
of [I;Sc1,] is exactly the overestimate of [S;S.I,] (Figure 3.3).

To understand why, consider the quantities g, g,1,] := [SzSclyl[Se] — [SzSel[Sely]
and oz, 5.1,] = [LuScly[Se] — [1.S:]%, borrowing notation from Sharkey et al. [2015],
which quantify the difference between triples and their approximations. By ex-

panding [S¢| = [S2S:5y] + 2[SzSc1y] + [1xSc1y), [SzSe] = [S2SeSy] + [SzSc1y], and
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Figure 3.3: Comparing exact and approximated probability of isolated
open triples. In (a), we see that the approximation overestimates the probability
of being in state [S;S.I,], and underestimates the probability of an isolated open
triple being in state [[;S.I,]. Similarly, (b) we see this approximation underesti-
mates the probability of [S,/.I,] and overestimates the probability of [S,1.Sy]. In
both cases, the overestimate of one is equal to the underestimate of the other. In
both plots we set 7 =1,v = 1.

[Sely| = [SzScly) + [12Sc1,] and cancelling the appropriate terms, we arrive at the
fact that both quantities are equal but opposite in sign, and thus we now define ag

as:

as = o, s,1,) = —[s,5.1,) = [SeSeSy)[LaScLy] — [SuScly]? (3.23)

Noting further that «(g,g,s,] = as, while clearly o7, 5.5,] = [s,5.1,] = —@s, We
observe that the difference between true and approximate triple values for all triples
with susceptible central individuals depends upon one quantity ag. Similarly, the
difference between true and approximate triple values of all triples with infected

central individuals depends only on one quantity, which we denote aj:
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oy = [I1.1,)[S:1.S,] — [SeI.I,)? (3.24)

3.2.3 Improving the pairwise approximation

If instead of using the approximations from Equation (3.19), we let [S;ScI,] =
([SzSe)[Sely] — as)/[Se] in Equation (3.17), and let [I,S.I,] = ([I.S:]*> + as)/]S]
in Equation (3.18), we obtain the rates of change of pairs in terms of singletons,
pairs, and ag. To obtain a closed set of equations, we must consider o/g, where the

rates of change of triples can be obtained from the exact model.

s =[9:58, L Sely] + [1:SeL,)[SuSeSy] — 2[SuSe1,)[SuSeL,]  (3.25)
=7v(¢s — 2ag) — 278 (3.26)

where ¢g =[S 5.Sy|[Lo1c1y] + [SzleSyl Lz Scly] — 2[SzSely)[Selc1y] (3.27)
o ((SeSILL] — LSS T + arlS? + as(L?)  (3.28)

[Se] [1c]

Thus, the rate of change of g depends in turn on the rate of change of «y, which

is given by:
ar =[I1.1,)[SeIeS,) + [SeleSyl o Iel,) — 2[Selel,)[SeIely) (3.29)
= —dyay + 27(¢p; — ay) (3.30)
where ¢; =2[S,1.5y|[1.Sc1y| — 2[S2Scly|[Sxlcly) (3.31)
:[SC]Q[IC]([SHEIC]Q[LICSC]Q — [SeSe] [l Se|[Sele) [ de] + [LeSe][Sc]ar + [Sele][Ic]as)

(3.32)

48



We insist that ¢g and ¢ are 0 if either [S.] = 0 or [I.] = 0. Using the above
equations, we arrive at a closed set of equations that describes exactly the disease
dynamics of the open triple, without any reference to the particular states of triples
themselves, by tracking the error terms ag and a;. Model 3 below describes in full

this improved pairwise model, with ¢g and ¢; described as above:

Model 3 - Improved pairwise model of the isolated open triple

[SZ‘SC] [IJJSC] — Qg

[S2Se] = Y([LSe] + [Sale]) — 7 5] (3.33)
. o _ - [SJ:SC] [IxSc] — Qg _

8.1 = (11 ~ (5,12 + 7 (S22 s.00)  G3)
' . [IZL‘SC]Q + ag

[IxSc] - 7([196]6] - [IxSC]) - T ([Sc] + [IxSc]> (335)

as = v(ps — 2ag) — 2Tag, with ¢g as in Equation (3.28) (3.36)

ar = —4vyar + 27(¢1 — ay), with ¢r as in Equation (3.32) (3.37)

By including ag and o and their time-evolution in Model 3, we obtain a system of
ODEs that describes exactly the dynamics of the open triple. However, it is worth
noting that this new model is of no lower dimensionality than Model 1. Despite
this, we believe this is still a valuable model to have obtained explicitly. There
are two principal reasons for this: firstly, by creating a system where errors ag
and «j are tracked explicitly, we can obtain results and gain an understanding
about the ways in which the standard pairwise approximation (which ignores the
action of ag and aj) fails to capture the disease dynamics of the isolated open
triple; and secondly, the derivation of this model informs our strategy of how to
derive an improved pairwise approximation for k-regular networks, where there is

a significant reduction in dimensionality.

Upon numerical evaluation, interesting results about the error terms ag and aj
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arise.

When considering the whole state space, both error terms can be either

negative or positive (ag,ar € [—1/4 1/4]). However, this is not the case when

starting from either random or pure initial conditions; in both scenarios, ag > 0

and ay < 0. This is numerically demonstrated in Figure 3.4.

-3
1510 0.015
max(a)
- - _min(ag) 0.01
10 max(a,)
x . x
3 (a,) <
M mintey S 0.005
3 3
£ ° £
< =4 0
€ €
3
-0.005
-5 ! -0.01
0 20 40 60 80 100 0 20 40 60 80 100
transmission, transmission,
(a) Iy = 0.2 (b) Ip = 0.4
15 x10° 15 x10°
max(a)
- -min(ag)
10 max(a) 10
= min(a,) &
g 5 g 5
£ £
£ £
€ €
0 0
-5 -5
0 20 40 60 80 100 0 20 40 60 80 100
transmission, transmission, =
15 x10° 15 x10°
—max(og)
- - -min(ag)
10 10 max(a)
& ol min(a))
x x
£ s £ s
£ £
€ € — |
0 O oo oo e
5 -5
0 20 40 60 80 100 0 20 40 60 80 100

transmission,

(g) [IzScIy}O =1

transmission, =

(h) [SeleSylo =1

15 x10°
10
x
5
£ 5
£
€
0
-5
[ 20 40 60 80 100
transmission,
(c) I = 0.6
15 x10°
10
x
x
g s
£
€
.
-5
0 20 40 60 80 100
transmission,
(f) [SzSclylo =1
15 x10°
10
x
x
g s
£
€

o

0 20 40 60 80

transmission, =

(i) [Selelylo =1

Figure 3.4: Numerical demonstration of the bounds ag > 0,a; < 0 for the
isolated open triple. We consider how min(ax) and max(ax), X € {S,I} vary
with the transmission rate 7 for the isolated open triple, for a range of different
initial conditions - both random (a—e) and pure (e-i). These plots demonstrate the
bounds ag > 0 and a; < 0 hold in general for the isolated open triple. In all plots

we set v = 1.

Consequently, assuming random or pure initial conditions, we arrive at the following

bounds:
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[S2Sc]? L I)?
5] < [525:5] A > [I1.1,)]

[L2Sc]? [Salc]?
S, < [I3S.1,] A > [Sz1.5y]

[SzSc][Scly] [Sele][Ic1y]
S > [SzSc1y) A < [Szlcly)

Of these, the bound [I;I.])?/[I.] > [I;I.I,] is of particular interest. In previous
moment-closure studies, it has been suggested heuristically that moment-closure
models underestimate the probability of [I,I.1,] triples [Taylor et al., 2012]. This
does hold if the system is closed at the level of individuals, i.e. if we assume that
the infection status of neighbours are independent. The above result demonstrates
that the opposite is true if the system is closed at the level of pairs: P(z = I,y =
Ie=1)<Px=Ilc=1I)xPly=Ilc=1I).

To explore whether a.g and « were uniquely defined for given values of [S,S.] and
[Sely], we ran Model 3 for a range of initial conditions. varying Iy from 0 to 1. For
each of these model runs, we plotted the 3-D trajectory of ([SyS¢], [Sc1y], ax), with
[S2S¢] values on the x-axis, [S.I,] values on the y-axis and ax, X € {S, I} values on
the z-axis. By conjoining adjacent trajectories, we could then visualise a.g or oy as
a surface. For random initial conditions, ag and o appear to be uniquely defined
by the pairs [S;Sc] and [S.I,], in other words ag and «; appear to be functions of
[S2S¢] and [Scly| (explored in the supplementary information of Leng and Keeling
[2020]). In theory, given values of [S;S] and [S.1,], one could determine the values
of ag and aj exactly, consequently reducing the dimensionality of Model 3, as

equations for their time evolution would no longer be necessary.
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3.3 k-regular Networks

In Section 3.2, we considered the accuracy of the standard pairwise approximation
on the isolated open triple, and derived a closed exact set of equations describing
the errors such an approximation makes. We could do so because we could compute
exactly the probability of the states of the open triple (Model 1), and working back-
wards we could derive expressions for aig and dj solely in terms of [S;S.], [Scly],
ag, and aj - i.e. solely in terms of pairs and error terms. Informed by these results,
we move on to consider pairwise approximations for k-regular networks. k-regular
networks are defined as networks in which each individual has k& neighbours. Here,
we consider k-regular networks which are infinite and contain no loops. Diseases
with SIS-dynamics on k-regular networks have been studied before are referred to
in the theoretical literature as the contact process on the homogeneous tree Ty 1
[Liggett, 2013]. Being infinite, the disease dynamics on such a network cannot be
described exactly by a closed set of ODEs, unless a closure at some level is exact, as
in Sharkey et al. [2015] for diseases with SIR-dynamics. As stated previously, the
possibility of reinfection induces correlations between distantly connected individu-
als, meaning the method used by Sharkey et al. [2015] is not successful for diseases
with SIS-dynamics. However, one can close the system at a higher level than pairs
and by doing so, we can obtain expressions for o’g and ay solely in terms of pairs
and error terms. While these are still approximations to the true disease dynamics
on a k-regular network, doing so makes a considerable improvement on the standard

pairwise approximation. This is the strategy we employ in this section.

While k-regular networks are clearly idealisations far removed from any real-world
sexual network, we believe that they are a useful example to study for a number
of reasons. The impact of a small number of contacts, and the resulting dynamical
correlations between non-adjacent individuals, is still relatively poorly understood

[Keeling et al., 2016]. In these idealised networks, the errors such correlations in-
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troduce into moment-closure approximations are at their most pronounced, and are
not muddied by errors introduced from other sources, such as clustering or hetero-
geneity. While heterogeneity in the number of contacts individuals have is apparent
in any real-world sexual network, and is important to capture when modelling ST1Is,
the effect of heterogeneity has been studied extensively [Eames and Keeling, 2002;
Simon and Kiss, 2016], and can oftentimes be modelled by introducing multiple
risk-groups into a mean-field approximation model (e.g. Edwards et al. [2010]).
Additionally, in the case of an infinite network, each individual has exactly the
same properties, allowing us to bridge the gap from local to global moment-closure

approximation.

In this section, we define global moment-closures for k-regular networks. That
is, we define a closure in terms of population-level quantities rather than for the
probabilities of particular individuals being in certain states. Accordingly, we use
the notation [S] to represent the proportion of individuals who are susceptible,
[SI] to represent the proportion of pairs where one individual is susceptible and
one individual is infected, and so on. While it is standard within the moment-
closure literature to refer to numbers of these quantities, we find that dealing with
proportions avoids much of the combinatorial rigmarole involved, and has a more
obvious correspondence with the methods described in Section 3.2. The following
results hold true whether referring to proportions or numbers - in Appendix A.1 we
provide a conversion table to transform the results from this section to numbers,

and provide the model derived in this section in terms of numbers.

While the derivation of this moment-closure is independent to that of the previous
section, and can be treated as a separate modelling exercise, we will observe that
there are clear analogies between the two. This correspondence occurs because
k-regular networks are isotropic - number of partnerships, as well as transmission
and recovery rates, are homogeneous across the population. An alternative concep-

tualisation is that if we were to randomly sample one individual (or a higher-order
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motif) from a k-regular network, the probability of it being in a given state is
directly equal to the proportion of the population in that state. Conversely, if
we consider a population of infinitely many isolated open triples from Section 3.2,
then the proportion in a given state is equal to the probability of one triple being
in that state. Therefore while Section 3.2 is formulated in terms of probabilities
and Section 3.3 is formulated in terms of proportions, we are effectively modelling

interchangeable quantities.

3.3.1 Mean-field and pairwise approximations for k-regular net-

works

For a disease with SIS-dynamics, the following equation describes the rate of change

of [S] for any network [Simon et al., 2011]:

(5] = A[1] = A[ST] = (1 = [S]) = A[S1] (3.38)

In the case of k-regular networks, A\ = k7. By assuming the disease status of
constituent individuals in pairs are uncorrelated, i.e. [SI| ~ [S][I], we arrive at
the mean-field approximation for the k-regular network, which is equivalent to the

standard SIS-model:

Model 4 - The mean-field approximation for k-regular networks

(5] = y[1] = kr[S][T] = ~(1 = [S]) = k7[S](1 - [S)) (3.39)

If instead we want to close the system at a higher-order moment, we must consider

the rate of change of [SI]:
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[S1) = A ([IT) — [SI]) — 7[ST] + (k — 1)7[SST] — (k — 1)7[IS1] (3.40)

To close this system of equations, we must approximate the proportion of triples
[SSI] and [ISI]. We use the standard pairwise approximation of Rand [1999]
and Keeling [1999], commonly attributed to Kirkwood [1935]. Using straight line

brackets to denote numbers of individuals, etc. this is expressed as:

(k—1) |AB||BC
k | Bl

[AB][BC|
[B]

|ABC| ~ < [ABC|~ (3.41)

When terms are expressed in terms of numbers this must be scaled by the factor
(k — 1)/k; this scaling factor disappears for k-regular networks when expressed in
terms of proportions. This can be shown by converting either formulation of the
approximation to the other using the conversion table given in Table A.1. Using

this approximation, we obtain:

Model 5 - The pairwise approximation for k-regular networks

[Sﬂ:mwﬂ—zw—1ywﬂfﬂ (3.42)

SS)[S1]

i 2
S1) =(111) — [ST)) = 7[S1] + (k - )7 [S] [S1]

[5]

(k—1)7 (3.43)

where [S] = [SS]+[SI], [I] = 1—[S], [IS] = [SI], and [IT] = 1—[SS] —2[S1].
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3.3.2 Improving pairwise approximations for k-regular networks

Once again, we can look to improve the pairwise approximation by considering the
rate of change of triples. Reintroducing subscripts (the position of individuals is
illustrated in Figure 3.5), the state of © — ¢ — y triples depend upon topologies
consisting of four connected individuals: line graphs of length 4 [4,X,C.Y,] and
[X,C. Y, By, capturing the external force of infection acting upon individuals on the
periphery of the triple, and star graphs with three outer individuals, [X,C.Y,Z.],

capturing the external force of infection upon the central individual.

olololo §@ -
ofololo

Figure 3.5: Dependence on order-four structures in a k-regular network.
The state [X,C.Yy] of our triple of interest (shaded in blue) depends on the state
of two order-four network structures - length four line-graphs [A,X,C.Y,] and
[X.C.Y,By| and the ‘star’ graph with three outer individuals [X,C.Y,Z.]. The
positions of a, b, and z relative to the triple of interest are shown visually here.
N.B. that [X,.C.Y, By| = [B,Y;C.X,|, meaning only one length-four line graph term
is necessary in the equations below.

The rates of change of the states of triples in a k-regular network depend upon the
state of order-four network structures: line-graphs of length four ([4,X,C.Y,], [X;C.Y,Bs))
and star graphs with three outer individuals ([X,C.Y,Z.]). Assuming random ini-
tial conditions, because of the symmetry of the system [X,C.Y,By| = [B,Y,Cc.X,],
only one length four line-graph term is needed in the equations below. Given that
[SSI] = [ISS] and [SII] = [IIS], the rates of change of these triples are described

by six ODEs, which can be derived from the system of equations (12) described by
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House et al. [2009] by omitting terms that include closed loops and by converting

the equations from numbers to proportions via Table A.1.

[SSS] =v(2[SST] + [SIS]) — 7(k — 2)[S2SeSy L] — 27(k — 1)[12525.S,]  (3.44)
[SST] =~([SII] + [ISI] — [SSI]) — 7[SS] (3.45)
— 7(k = 2)[S2Sel, L) 4+ 7(k — 1)([14525eSy] — [12S4S.1,))
[IST] =y([I11] = 2[IST]) — 2r[IST] — 7(k — 2)[[,S.I,I.] (3.46)
+27(k — 1)[10S2S.1,]
[SIS] =y(2[STI] — [SIS]) — 27[SIS] + 7(k — 2)[S2S.S, L] (3.47)
— 27(k — 1)[145,1.5,]
[STI) =y([I11] — 2[SII]) + 7([SIS] + [SSI] — [SII]) (3.48)
+ 7(k = 2)[SSe, L)) + 7(k — 1) ([[2Sp1eSy] — [[aSeIc1,))
[[11) = — 3y[I11] + 7(2[SI1] + 2[IS1]) + 7(k — 2)[1,S.I,1.] (3.49)

+27(k — 1)[I2S, 1)

As before, we define « values as the difference between triple values and their

standard pairwise approximation. Once again, the following relations hold:

[S] =[SSS] + 2[SSI] + [ISI] (3.50)
195] =[SSS] + [SST] (3.51)
[SI] =[SSI] + [IS1] (3.52)

Thus, as for the isolated open triple, the difference between triple values and pair-
wise approximations depend only upon two quantities: «g and aj, which are as
defined in Equation (3.23) and Equation (3.24). We can use Equations (3.44)

to (3.49) to obtain expressions for dig and o for this type of network:
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as =[SSS|[ISI] + [IS1][SSS] — 2[SSI][SST] (3.53)

=7(Ps — 2as) + 7(Bs — 2as) (3.54)

where Bg =2(k — 1)([1aSsSely][SS] — [10525:5,][S1]) (3.55)
+ (k = 2)(2[S2Sc, L][SSI] — [SsSeS, L) [ISI] — [1..S.1,1.][SSS])

aip =[I11)[SIS) + [SIS|[III] — 2[SII|[SII] (3.56)
:—47a1—|—7'(51—|—2<1>1—20q) (3.57)
where 8 =2(k — 1)([IoSpleI,)[ST] — [1aS:1.S,)[I1)) (3.58)

— (k — 2)(2[SuSeI, L][SII] — [IsScI,I.)[SIS] — [S2SeS, L. [I11])

Despite being calculated for triples within a k-regular network, we find that &g =
¢s and ®; = ¢y as previously defined for the isolated open triple in Equations (3.28)
and (3.32), and so use the ¢g and ¢ terms henceforth. We therefore obtain a closed

set of equations by once again setting

[ABA] ~ MB][QB]“‘B ABC| ~ |

ABJ[BC] — ag
[B]

(3.59)

But now we must also make some approximation for order four terms. We do this

by making the following closures:

[ASB][BSI][ASI][S]

[4,S.B, L] ~ ASTBA]IS (3.60)
1,5, A.B,] %[Isz[g[j]/llﬂ (3.61)
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Thus, we can again express /g and d as (complicated) functions of [SS], [SI], as
and aj. Using this, we arrive at a system of four ODEs, which we call the improved

pairwise approximation for k-regular networks:

Model 6 - The improved pairwise approximation for k-regular networks

[SS]IST] — as

[5S] =2v[ST] — 2(k — 1)T S (3.62)
o [SS][SI] — as [SI]? + as
[ST] =~([LI] — [SI]) — 7[SI] + (k — 1)7T — (k- 1)7T

(3.63)

ds =v(¢s — 2as) + 7(8s — 2as) (3.64)

oy :—4’ya[—|—7'(ﬁ[—|—2¢)[—20q) (3.65)

where ¢g and ¢ are defined as in Section 3.2.

3.4 Higher-order moment-closure approximations

To assess the accuracy gained by modelling the error terms ag and oy, we compare
our model to higher-order moment-closures. The first of these we refer to as a
neighbourhood closure, previously described by Lindquist et al. [2011] and Keeling
et al. [2016], where we model a central individual and their number of infected
neighbours explicitly. This system is described by 2 x (k + 1) ODEs. The second
of these we refer to as an extended triple closure, where we explicitly model a
central triple and every neighbour of this triple. This system is described by 23+~1
equations (though its dimensionality can be reduced by accounting for symmetries).
In both cases, we approximate the external force of infection on outer individuals
by exploiting the symmetry of the topology of the k-regular network. While each

model is still an approximation towards the true dynamics of a k-regular network,
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in virtue of closing the system at a higher order, these models are expected to have
a greater accuracy. From these higher-order models, we can also obtain estimates
of the terms ag and oy, with which we can compare the a terms obtained from the

improved pairwise model for the k-regular network (Model 6).

3.4.1 The neighbourhood closure

()
O

o
O
()-

Figure 3.6: The external force of infection on a neighbourhood. Here
we illustrate the external force of infection on a neighbourhood in the neighbour-
hood approximation for k-regular networks, for the example of £k = 3. Shaded
blue is our triple of interest, shaded in orange are any additional individuals that
are modelled explicitly, while shaded in white are individuals not explicitly mod-
elled who exert a force of infection on the explicitly modelled neighbourhood.
In this approximation, we model a central individual ¢, and the number of in-
fected neighbours ¢ as (here shown by z, y, and z). The external force of infec-
tion on the explicitly modelled neighbourhood will depend upon order-six struc-
tures: [X,CcYyZ. XogoX1a,)s [XoCeYyZ: Yoy, Y1y,), and [X,C.Y,Z.2Z0,,Z1,,]. To
close the system, we make the approximation that, e.g. [X,C.Y,Z.X0,,X1,,] =
([XeCeYy Z:] ¥ [XoCeXogy X12,])/[XaCel-

O2O:
®HE

For the neighbourhood closure, we model a central individual and their number of
infected neighbours explicitly. Visually then, we are modelling a star topology. The

rate of change of state of the ‘star’ will depend upon both the internal configurations
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and the immediate neighbours of the star. We show this visually in Figure 3.6.

To close this system of equations, we make the assumption that the configura-
tion of two overlapping ‘stars’ are conditionally independent given the infection
status of the two shared individuals of the combined configuration. As we only
need to consider the effect of an external force of infection if the relevant neigh-
bour is susceptible (S), there are only two quantities relevant to the external force
of infection on that individual, depending on the infection status of the original
central individual (S or I), which denote Ag and A; accordingly. These terms are
constructed by summing all configurations of the external neighbours including an
infected individuals, multiplied by the number of infected external neighbours in
that configuration, divided by the sum of all possible configurations of external
neighbours. Denoting a central individual in state A € {S, I} with ¢ € {0,1,....,k}
infected neighbours as [4;], the neighbourhood model can thus be described by the

following set of equations:

Model 7 - The neighbourhood approximation model for k-regular networks
0,2 <0
[ = V(L) + (0 + 1)[Siga] — i[S:]) — 7ilSi] + As((k — i+ 1)[Sica] — (k — )[Si)),0< i < k
0,i >k
(3.66)
0,2 <0
[£3) = i+ 1)([Lia] — [1]) + 7S]+ O + 1) (O — i+ D[La] — (k= )[L]),0 < < &
0,e >k
(3.67)

where Ag and A; are given by:
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_ S itk s .
Z o (k —1)[Si]

)\I Z EIZ(Z+1)[51+1] (369)
Z o (i + 1)[Sit1]

To obtain estimates for avg (and ay) from this model, we must derive the proportion
of triples implied by the assumptions of the neighbourhood model. This can be
calculated as follows. For a given triple [XCY], we let [ indicate whether X and
Y are infected. (If X =Y =95,1=0. f X =SandY =1, or X = I and
Y=581=11fX =Y =1,1=2.) In the neighbourhood model we explicitly
model a central individual and the number of its £ immediate neighbours who
are infected. [XCY] will occur as subgraphs of configurations that comprise C)
to Cki;_2. Assuming there are i additional infected individuals surrounding ¢ (in
addition to those specified by X and Y), there are (lil) different configurations such
that a central individual C has ¢ 4 [ infected neighbours. Of these, there are (k;Q)
configurations once the position of the [XCY | subgraph is determined, as there are
k — 2 positions left to fill with i infected individuals. Hence (kfg) / (; +l) of [C;4]

(2

contain [XCY], and so we arrive at the formula:

[Citi] (3.70)

3.4.2 The extended triple closure

For the extended triple closure, we model a triple and each of its neighbours explic-
itly. For a k-regular network, 3k — 1 individuals are modelled explicitly, meaning

23k—1 equations are required to describe this model. The state of this system will
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depend on the infection status of the neighbours of these neighbours, i.e. the rate
of change of states in the extended triple depend upon order 4k — 2 configurations
(illustrated in Figure 3.7). We approximate these external forces on the extended
triple by assuming that the state of these higher-order structures amount to over-
lapping extended triple topologies conditionally independent given the state of their

shared individuals, of which there are 2k.

Figure 3.7: A graphical representation of the extended triple approxima-
tion. Here we visualise the extended open triple model for £ = 3. Shaded blue
is our triple of interest, shaded in orange are any additional individuals that are
modelled explicitly, while dotted lines show connections to individuals not explicitly
modelled that exert an external force of infection upon the topology. The state of
this topology will depend upon order 10 structures.

By accounting for symmetries in the extended triple topology, one could reduce the
dimensionality of this system. However, the method constructing the set of ODEs
algorithmically described below models each state explicitly. Writing an algorithm
that accounts for such symmetries, while possible, would be somewhat cumbersome,
and as such we did not decide to pursue this. We approximate the external forces on
this topology by assuming that the higher-order structures that the rate of change
of states depend on can be approximated by conjoined extended triple topologies

conditionally independent on the state of shared individuals.

We construct the extended triple model in two steps. Firstly, we construct a model
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with SIS-dynamics on the finite topology of the extended triple. To construct this
model, we provide an algorithm for constructing SIS-models on graphs with any
arbitrary finite topology. Secondly, we add on external force of infection to this

model, which we achieve via relabelling.

An algorithm for constructing SIS-models on graphs with arbitrary topol-

ogy

Here, we outline an algorithm for constructing a model with SIS-dynamics on net-
works of arbitrary topology. We can rewrite the full equations for the open triple

in matrix form as follows: if we let
x = {[SSS],[5S1],[SIS), [SII],[ISS], [ISI], [I1S], [I11]}"

Then

d
— =7Re+7Nz (3.71)

States are ordered in this way so that they are interpreted as a binary string (e.g.

[SSS] as 000). For the open triple, R and N are given by:

_0 1 10 1 0 0 O ]
0o -1 0 1 0 1 0 O
o 0 -1 1 0 O 1 O
R— 0o 0o 0 -2 0 0 0 1
o o 0 0o 0 -1 1 1 0
o 0 o 0 0O -2 0 1
o o o o o0 o0 -2 1
o o o o o0 0 0 =3




o o o o o0 0 0 0
0o -1.0 0 0 0 0 O
o 0 -2 0 0 O 0 O
N— 0 1 1 -1 0 0 0 O
o o o 0 o0 -1 0 0 0
o 0 o 0 0 -2 0 O
o o 1 0 1 0 -120
o o o 1 0 2 1 0

Thus, we need an algorithm to construct matrices R and IV for an arbitrary graph
topology, defined by its adjacency matrix A. Such an algorithm is detailed be-

low:

1. Start with empty matrices R and N of size 2 x 2%, where a is the length of
A.

2. Interpret each possible state of A as a vector b, with a 0 in position i of b
representing that ¢ = S in that state, and with a 1 in position ¢ of b repre-
senting that ¢ = I in that state. The column corresponding to a given state

in N and R is given by d = 1 4 b (with b interpreted as a binary number.)

3. For each vector b, go through each entry i. If b(i) = 1, then R(d,d) =
R(d,d) — 1. Let e be the number obtained by changing b(i) from 1 to 0, and

R(e,d) = R(e,d) +1

4. For each vector b, go through each entry j. If b(j) = 0, go through each entry
kof b. If b(k) = 1 and A(j,k) = 1, then N(d,d) = N(d,d) — 1. Let e be the
number obtained by changing b(j) from 0 to 1, and N(e,d) = N(e,d) + 1

Using this algorithm, we can construct a model with SIS-dynamics on the finite

topology of the extended triple.
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Relabelling - an example

To consider the external force of infection acting upon a particular state of the
external triple, we must consider the external force of infection on the susceptible
neighbours of that particular configuration. To evaluate this, we must consider the
states in which this neighbour has no susceptible external partners, up to the state
in which this neighbour has all susceptible external partners. We can achieve this
by relabelling the system to give us equations describing the probability of being in

said states.

Let us consider an example for a 3-regular network. Suppose we want to consider
the external force of infection on the state A = [S;S5cSy; Spo Lz, Lo Lyo Ly, ], With sub-
scripts designating the positions described in Figure 3.7. We include the semicolon
to distinguish between the central triple and its neighbours. The only external force
acting on this topology will be upon xg, who is susceptible, by any external infected
neighbour of zg. Thus, the rate of change of [S;S:Sy; Szo Lz, LeoLyy Ly, | Will depend
upon some order 10 terms: [S3ScSy; SuoLur Leg Lyo Lyr s Teoo Sworls [S2SeSys Sao Lz Leo Ly Lyrs SzooLzor ],
and [SS:Sy; Seo Lz Leo LygLyss Logo L2y, |- We make a closure at this level by assuming,

to take the first of these as an example:

(S8 So Lo Lo Iy Iyy | X [SgSuSei Loy Saor Lx Ieo Sy
[SCCSCSy7 SIOICCl‘[COIyOIyl; I.TOOSCCOI:I ~ S : : O[Syfmositsfgm Sxo;zllc()] = = - Ly

(3.72)

As we have not modelled gy and x¢; explicitly, the probability of state [SySzSe; TugoSwor Loi Leg Sy
remains undefined. However, as we start from random initial conditions, and given
that a k-regular network is isotropic, all extended triples within a k-regular network

are equivalent. Because of this, we have:
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(S0 S2Se; Loy Swor Ly Loy Syl = [SeSeSy; Lug Sy Leg Ly Sy ] (3.73)

Thus, we obtain an expression for this state by taking into account the symmetry of
a k-regular network, and by relabelling individuals so that states containing individ-
uals not explicitly modelled are defined in terms of explicitly modelled individuals

exclusively.

We can now arrive at an expression for the external force of infection acting upon

state A (\4), which is given by:

- ZP,QG{S,I}(lP:I + 19=1) X [S25cSy; Py Qa1 Leg Iyo Sy,

Aa
ZP,QE{S,I} [S2SeSy; PugQuy Leg Lyo Sy, ]

(3.74)

where 1p—; and 1g—; are indicator functions.

Relabelling generally

The particular relabelling depends upon the particular state of the external triple,
and upon the particular neighbouring individuals whose external force of infection
you are considering. The requires labellings for the k = 3 case are given in Ta-
ble 3.1, and the required relabellings for a general k is given in Table 3.2. The
header row gives the neighbouring individual whose external force of infection we
are considering, while the leftmost column gives the new positions of states in a
given column now occupy. External vertices that contribute to the external force

of infection always occupy the relabelled x; positions.
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Table 3.1: Relabelling for k£ = 3.

Individual +— |29g=S5|21=S5|cg=5|yp=S |1y =S8
x — Xo X1 Co Yo Y1
c — X X C Y Y
Y — C C Y C C
x = | {S, I} | {S, I} | {S, 1} | {S,I} | {S,I}
1 — | {S, I} | {S, I} | {S,I} | {S,I} | {S,I}
Cco — X1 X() X Y1 }/0
Yo — Co Co Yo Co Co
Y1 — Y Y Yl X X

Constructing the extended triple model

To make the extended triple model, we begin by constructing the model for the
relevant finite topology with SIS-dynamics, as outlined previously in this section.
To construct a model approximating a k-regular network, we must add an external
force of infection to individuals neighbouring the central triple. The procedure is

as follows:

1. Construct ODEs for the SIS-dynamics for a graph of the relevant topology,

with the central triple as the first three rows of the adjacency matrix.

2. Express each state N as a vector b (of length [ = 3k — 1) with a 0 in position
i of b representing that ¢ = S in that state, and with a 1 in position ¢ of b

representing that ¢ = I in that state.

3. For each vector b, loop through entries i € {4,...,1}. If b(i) = 1 calculate the

external force of infection on this vertex, I..¢, by relabelling.

4. Subtract this, multiplied by 7 and the state itself (i.e. 7N I,z ), to that state’s
ODE (i.e. N = N — 7NIp).

5. Let e be the binary vector obtained by changing b(i) from 1 to 0, and let E
be the state corresponding to this number. Add on the 7Nl to this ODE
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(ie. E=E 4 7NI.y).

Table 3.2: Relabelling for general k. Subscripts of X and Y are modulo k, while
subscripts of C' are modulo k — 1

Individual — | ;=S5 |co=S|ci=S|yw=5|yi=S
c X C C Y Y
y — | C Y Y C C
i = (s | S0y | (s | {s1) | (s
o = X X X Y Yiq
¢ = Xiggr | G | G | Cia | Cigjin
Yo = Y Yo Yo X X
Yj = | G Y; Yi | G | G

3.4.3 Stochastic simulations

We use explicit stochastic simulations as our final benchmark for the accuracy
of our approximate models. It is not computationally possible to construct infi-
nite loopless networks for simulations. Instead, large random graphs where each
individual has k neighbours can be constructed using the Molloy-Reed algorithm
[Molloy and Reed, 1995], which should behave similarly for very large network sizes.
We use the methods outlined by Keeling et al. [2016] to remove short loops and
to efficiently calculate the quasi-equilibrium prevalence of infection. This method
does not capture the infection dynamics on the network through time. As this
chapter uses endemic prevalence of infection as the primary metric for model com-
parison, stochastic simulations capturing infection dynamics through time are not
included, but these could be obtained via numerical simulation using a Gillespie

algorithm.
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3.5 Comparing Models

In this section, we compare the previous described k-regular network models; in
order of dimensionality, these are: the mean-field approximation model (Model 4),
the pairwise approximation model (Model 5), the improved pairwise approxima-
tion model (Model 6), the neighbourhood approximation model (Model 7), and
the extended triple approximation model. As we are considering a disease with
SIS-dynamics, the models evolve to an endemic prevalence of infection (given a
sufficiently high transmission rate) - we use this as the primary metric for model
comparison. All of these models are approximations of the true system, where
there are infinitely many individuals, but we expect as we increase the dimension-
ality of approximation we also increase the accuracy of the model. We compare
all approximate models to explicit stochastic simulations on networks of 10,000

individuals.

3.5.1 Comparing models closed at different orders

In Figure 3.8, we compare the endemic prevalence generated by the four models
that do not explicitly model a to stochastic simulations - the improved pairwise ap-
proximation (which utilises the dynamics of «) is considered in Figure 3.9 onwards.
While we notice large differences between mean-field and pairwise models, the dif-
ference in prevalence between models decreases as we increase the dimensionality
of the model. For k = 3, there is little difference between the neighbourhood and
extended triple approximation models, and there is excellent agreement between
the extended triple model and stochastic simulation. For kK = 4 and k£ = 10, the ex-
tended triple model is omitted, as the neighbourhood approximation models match
closely to stochastic simulations. This indicates that including further complexity
into a model may be unnecessary, or may not be worth the increasing complexity

or computational expense. For k = 2, there is still a significant difference be-
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Figure 3.8: Comparing approximate models for k-regular networks. Here
we compare endemic prevalence (I*) against A = 7k for mean-field (grey, dotted),
pairwise (red), neighbourhood (blue), extended triple (green) approximations for
k-regular networks against explicit stochastic simulations (points) for a) k = 2, (b)
k=3 (c) k=4, and (d) £ = 10. For k = 3 simulations are matched well by
the extended triple model, while for £ > 3 simulations are matched well by the
neighbourhood model. As k increases, all models move closer to the mean-field
approximation, and the difference in I* for a given A between approximate models
decreases. For stochastic simulations, each I* point is calculated as the average of
150 runs, and error bars indicate 95% confidence intervals.

tween simulation and the extended triple model. However, this is unsurprising, as
previous research [Keeling et al., 2016] has shown that errors persist when much
larger neighbourhoods are modelled explicitly. Figure 3.8 also illustrates that as
we increase k, models tend towards the mean-field approximation (which can be

considered the k — oo limit), which we prove for the pairwise models below.

71



3.5.2 Convergence to the mean-field approximation as k — oo

We believe that as k — oo, all models converge to the mean-field approximation.
In this section, we show this is true for both the pairwise and improved pairwise
approximation models, and outline how this would be approached in the general

case.

For all models, Equations (3.38) and (3.40) ([S] and [SI]) hold exactly - only
beginning to differ at the level of triples. Our contention is that as k — oo, [SI] —
[S][I]. First, we note that because [SI] = [S]—[SS], [SI] = [S][I] < [SS] = [S]%.
We consider [$S],

(5] = 29[ST] — 2(k — 1)7[SS1] (3.75)

Now, we introduce A\ = 7k, which remains constant as k increases. We make the

assumption that [SS] = [S]? initially and consider their time evolution:
([51%) = 2[S][5] =2+[S][1] — 2A[S)*[1] (3.76)
(k1)

[SS] = 29[S][1] — 2

A[SSI] —2v[S][I] — 2A[SSI] as k — o0 (3.77)

These equations are equal, and therefore the relationship [SS] = [S]? continues
to hold, conditional on [SSI] = [S]?[I]. In general we need to show that the
relationship [SST] = [S]?[I] continues, given that it holds initially.
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Convergence for the pairwise approximation model

Under the standard pairwise model, [SSI] = [SS][SI]/[S]. Assuming that [SS] =
[S]2, it is clear that [SST] = [S]?[I]. Given that at t = 0,[SS] = [S]?, and that
[9S] = [S]2 = [SS] = [5]2, the convergence of the standard pairwise model is

proved by induction.

Convergence for the improved pairwise approximation model

Under this model [SSI] = ([SS][SI] — ag)/[S], i.e. [SSI] = [S)?[I] < ([SS] =
[S]?,as = 0). Let us assume that [SS] = [S]?, ag = 0, and a; = 0. Then
[SSI] = [S]?[I] and by examining Equations (3.54) and (3.57), we find that dg = 0
and oy = 0. Given that at t = 0,[SS] = [S]?,as = 0,a; = 0, and that [SS] =
[S]2, a5 = 0,00y = 0 = [SS] = [S], ais = 0, iy = 0, the convergence of the improved

pairwise model is proved by induction.

Convergence in the general case

More generally, we believe that as £ — oo, spatial correlation at a particular level
is only introduced by spatial correlations at a higher level. For example, correla-
tions only enter the pairwise model if there are correlations at the level of pairs,
correlations only enter the improved pairwise model if there are correlations at the
level of pairs and triples (« terms), etc. Given that by assumption we start with
no spatial correlation at any level, it follows that correlations are never introduced.
However, we believe that the proof of this more general claim is beyond the remit

of this chapter.

In Figure 3.8 we also see that as we increase k, the difference between pairwise
and neighbourhood approximation models decreases, although the pairwise model

consistently predicts higher endemic prevalences.
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3.5.3 Exploring the shape of errors ag and «a;
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Figure 3.9: Numerical exploration of ag and «; for different approximate
models of the k-regular network. We consider how min(ax) and maz(ay),
X € {S, I} vary with 7k for different approximate models of the k-regular network:
Improved pairwise (left column), neighbourhood (centre column), extended triple
(right column). These plots demonstrate the bound aig > 0 holds for all approxi-
mations of the k-regular network, but that oy < 0 only holds for the case k = 2.
For k > 2, max(ay) > 0 given 7 is sufficiently high. These transmission rates
correspond to high endemic prevalences - in all cases I* > 0.8. In all plots we set

v =1

74



04 06

[SS]

0.4

- 0.2 ‘ 11,51
o
15,5, e

(a) Improved Pairwise (b) Neighbourhood

P

gl

AN
i °
DR T

AT v g

N
W
\
HH

0.2

0.4

1,5 ’ 04 o2
(s,s]

[ss]

0.2 [s1]

(c) Extended Triple (d) Improved Pairwise, ay =0

Figure 3.10: Exploring the shape of ag for different approximate models.
Here we compare the shape of the error term ag as a function of [S\S] and [SI] for
improved pairwise models ((a) and (d)), and as a function of [S;S.] and [I,S,] for
neighbourhood and extended triple approximations ((b) and (c)), for the example
k = 3. We observe that ag in the improved pairwise (a) and the neighbourhood
(b) approximation models are extremely similar, but that the improved pairwise
approximation model underestimates this error compared to the extended triple
approximation (c). By assuming a;y = 0 and ay = 0 (d), the resulting ag surface
more closely resembles that of the extended triple model. In all plots, we set
T=1,y=1.

Now, we turn our attention to the improved pairwise approximation (Model 6),
which tracks the errors ag and aj explicitly. Here we focus on the examples k = 2
and k = 3, though comparable results are found for all higher values of k. The
error in our pairwise model depends on only one term: ag. This term captures
the error between the ‘true’ value of triples and the standard pairwise approxima-
tion of their values. We can obtain estimates for ag from each of our higher-order

models, noting that the improved pairwise approximation (Model 6) is based on
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Figure 3.11: Exploring the shape of «; for different approximate models.
Here we compare the shape of the error term —a; as a function of [SS] and [S!]
for the improved pairwise model (a), and as a function of [S;S.] and [I,S.] for
neighbourhood and extended triple approximations ((b) and (c)), for the example
k = 3. We observe that aj surfaces in all three models are very similar, and that
their magnitude is much smaller than their corresponding aig surfaces (Figure 3.10).
In all plots, we set 7 =1,v = 1.

consideration of four connected vertices. Comparing ag between models allows us
to assess the extent to which the improved pairwise approximation is successful in
capturing the errors introduced to the pairwise approximation induced by dynam-
ics of higher-order structures. Firstly, we observe that the numerical result ag > 0
that was true for the isolated open triple also holds true for each of these models
(numerically demonstrated in Figure 3.9). Hence, the bounds obtained for triples
[S25eSy], [1xSc1y), and [SzS:1,] in Section 3.2 for the isolated open triple also hold
for k-regular networks. Secondly, by plotting ag as a function of the pairs [SS]

and [SI] we obtain surfaces; their shape informing our intuition of the behaviour
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of ag as we move through ([SS], [SI])-space (Figure 3.10). Surface plots are ob-
tained by running each model over a range of initial conditions, varying the initial
prevalence from 0 to 1. For each of these model runs, we plot the 3-D trajectory
of ([S95],[S1],as), with [SS] values on the x-axis, [SI] values on the y-axis and
ag values on the z-axis. By conjoining adjacent trajectories, we then visualise ag
as a surface. Doing so, we obtain similar ag surfaces from the improved pairwise
and neighbourhood approximation models. We do, however, see these are smaller
than ag from the extended triple. In other words, models that include higher-order
correlations, such as the extended triple, have higher values of ag than are obtained

from the improved pairwise model.

3.5.4 Assessing the accuracy of improved pairwise models

Comparing the prevalence of infection obtained from these models, we observe only
a minor difference between improved pairwise and neighbourhood approximations
(Figure 3.12). By including just two more equations (for ag and ay), we arrive at a
model with an endemic prevalence much closer to results obtained from stochastic
simulation, with only a marginal increase in dimensionality. Unlike the isolated
open triple, oy can be positive when k£ > 2 in each of the approximate models.
However, this only occurs at very high transmission rates - typically when endemic

prevalence I* > 0.8 (Figure 3.9).

In an attempt to further improve the accuracy, and to reduce the dimensional-
ity, of the model, we consider the effect of ignoring a; on the shape of ag in the
improved approximation; noting that the values of ag from the extended triple ap-
proximation are consistently larger than from the other lower-order approximations
(Figure 3.10). We do this by setting a; = 0, which is equivalent to using the stan-
dard pairwise approximation for triples with infected central individuals. This is in

part justified by the fact that values of o are typically much smaller in magnitude
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Figure 3.12: Comparing improved pairwise approximations against higher-
order approximations for £ = 2 and k = 3-regular networks. We compare en-
demic prevalence I'* obtained from improved pairwise model (full in orange; ay = 0
in purple) against neighbourhood (blue) and extended triple (green) approxima-
tions, as well as against explicit stochastic simulations (points), as we vary A = 7k,
for (a) k = 2 and (b) k = 3-regular networks. In both (a) and (b) I* obtained
from the improved pairwise approximation is very similar to I* obtained from the
neighbourhood approximation. By assuming oy = 0 and oy = 0, the dynamics
of the improved pairwise approximation are closer to those of the extended triple
approximation, and match I* from stochastic simulations well for £ = 3. For all
models we set v = 1. For stochastic simulations, each I* point is calculated as the
average of 150 runs, and error bars indicate 95% confidence intervals.

than ag (Figure 3.11). This assumption further reduces the dimensionality of the
system, as we have one less variable. Moreover, as aj is typically < 0, ignoring it
will increase ag, meaning we will generate higher values of ag. (Positive values of
ay can only occur at very high values of 7; at such values, the disease dynamics
on the k-regular network are already well approximated by the standard pairwise
approximation). Indeed, comparing shapes of ag (Figure 3.10), we see this assump-
tion provides a closer match to the values from the extended triple. In Figure 3.12,
we compare the endemic prevalence obtained using this ay = 0 assumption against
the extended triple approximation, as well as against the improved pairwise approx-
imation where oy is a dynamic variable. Ignoring a; provides an estimate closer to
the extended triple approximation than accounting for aj explicitly, which in the

case of k = 3 matches stochastic simulations closely.
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Figure 3.13: Comparing the time-evolution of improved pairwise approxi-
mations against higher-order approximations for k£ = 2 and k = 3-regular
networks. (a) and (b) illustrate the performance of improved pairwise approxi-
mations compared to the higher-order neighbourhood (blue) and extended triple
(green) approximations in matching prevalence through time, (c) and (d) show how
ag varies through time for each model, and (e) and (f) show how «; varies through
time for each model. We choose values 7 s.t. I* = 0.1 in the extended triple model
((a, ¢, e) 7 =1.4163, (b, d, f) 7 = 0.5744). In both (a) and (b) there is little differ-
ence between the time-evolution of improved pairwise (orange) and neighbourhood
model. In (b), while the improved pairwise model with ¢; = 0 (purple) matches
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3.5.5 Exploring the time-evolution of approximate models for k£ =

2and k=3

Here, we present the time-evolution of improved pairwise models, as well as for the
neighbourhood and extended triple approximation models, for k = 2 and k = 3,
with the the improved pairwise approximation matching closely to that of the neigh-
bourhood approximation models. We also see that while for & = 3 the improved
pairwise model with a; = 0 matches the endemic prevalence of the extended triple
approximation closely, the same cannot be said about their time-evolution. For
the parameters considered, the magnitude of ag and «; monotonically increases
through time for all models for £ = 3. For k = 2, |a;| monotonically increases
through time for all models; |ag| increases monotonically for the extended triple
approximation and improved pairwise for a; = 0, but |ag| reaches a maximum
value before slightly decreasing to its steady state value for the extended triple

approximation and for the improved pairwise approximation with a;y = 0.

3.6 Discussion

Whenever detailed information on underlying network structure is available, de-
tailed stochastic simulation of an epidemic on a network is always the ‘gold stan-
dard’ for any real-world application. In the absence of such information, moment-
closure approximation methods for the spread of infections promise relatively simple
models that allow us to understand the effect of network structure on the dynamics
of an epidemic. The success of such a method, however, depends upon understand-
ing the errors introduced by moment-closure approximations, and upon refinements
that minimise such errors. While this approach has been successfully applied to
diseases with SIR-dynamics, the dynamic build-up of correlations between distant

individuals for diseases with SIS-dynamics means success for infections with this
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natural history has been more limited. However, as the dynamics of most STIs can
be well approximated by the SIS-paradigm, and given the importance of network
structure in this case, further research into this area is paramount. Indeed, there
is already a considerable body of literature concerning moment-closure approxima-
tions for SIS-dynamics [Taylor et al., 2012; Taylor and Kiss, 2014; Keeling et al.,
2016; House et al., 2009; Simon and Kiss, 2016], as well as other network approaches
to diseases of this type [Floyd et al., 2012; Lee et al., 2013; Wilkinson and Sharkey,

2013], demonstrating this as an active research area.

This study improves upon the standard pairwise approximation by explicitly track-
ing the errors between the ‘true’ value of triples and their estimate from the stan-
dard pairwise approximation. We show that these errors are fully described by the
quantity ag for triples with susceptible central individuals, and by the quantity
aj for triples with infected central individuals. By tracking the time-evolution of
these error terms, we improve upon the standard pairwise approximation by incor-
porating these terms into the modelling framework. For the isolated open triple
(just three individuals connected in a line), both aig and aj are exactly described
as functions of [S;S.], [[xS], «s and ag; hence, in this case, the improved pairwise
model is itself exact. For k-regular networks, oig and aj depend upon order-four
structures. However, by approximating the prevalence of these structures via higher
order moment-closures, we obtain expressions for aig and a; solely in terms of pairs,
ag and ay. While such a model is not exact, explicitly modelling the time-evolution
of these errors markedly improves upon the standard pairwise approximation for k-
regular networks, obtaining prevalence estimates comparable both to models closed

at even higher orders and to explicit stochastic simulations.

The findings of this chapter contribute towards understanding the shape and di-
rection of errors introduced by pairwise approximations. We show that the errors
between triples and their standard approximation are quantified by just two val-

ues: ag and «aj. Interestingly, we find numerically that ag > 0 and oy < 0, which
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inform us as to whether the standard pairwise approximation underestimates or
overestimates the proportion of certain triples. While both bounds hold for the iso-
lated open triple, only ag > 0 holds in general for k-regular networks. This result
also appears to hold for the constituent triples of all other investigated topologies
(line graphs up to length 10, star graphs with up to 10 neighbouring individuals,
the extended triple with no external force of infection), while the result oy < 0
only appears to apply when central individuals in a triple have no other connec-
tions outside of the triple. We hence believe that an analytical exploration of such
bounds could be fruitful, and would make an important contribution to this re-
search area if such bounds could be proven generally. A deeper understanding of
the shape, direction, and magnitude of such error terms is not only of interest to
those concerned with using the improved pairwise approximation model described
in this chapter, but to any researcher interested in applying the standard pairwise
approximation to a network model of a disease where recovery from infection does

not lead to immunity.

In this chapter, we compare approximations to the dynamics of k-regular networks
closed at increasingly higher levels of complexity - from individual, to pair, to
neighbourhood, to an extended neighbourhood. As we increase the dimensionality
of a model, we expect to obtain more accurate results. On the other hand, models
of high dimensionality are difficult to understand intuitively and are much more
computationally expensive. Whether including such complexity is worthwhile de-
pends on the task at hand. We believe that our improved pairwise approximation
provides a reasonable compromise between intuition and complexity - this model
is still described by a small number of ODEs, and has dynamics closely resembling
those from the model closed at the level of neighbourhoods, more closely matching
prevalence estimates obtained from stochastic simulations. An unexpected result is
that by ignoring aj, i.e. using the standard pairwise approximation for triples with

infected central individuals, one appears to obtain a better approximation to the
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true dynamics. It is important to establish if such a result holds generally, and if so

why, or whether this result is a spurious convenience for k-regular networks.

The results here consider the two most ideal networks: the isolated open triple is the
simplest possible network topology including three individuals, while in k-regular
networks each individual has exactly k& neighbours and there are no closed loops
within the network. We consider these idealisations as it is in these networks that
network structure is most dominant and the errors introduced by moment-closure
approximations are most pronounced. But this means there is fertile ground for
further exploration on both local and global scales. On a local scale, a taxonomy of
the errors that occur for a variety of different small topologies, as has been done by
Pellis et al. [2015b] for diseases with SIR-dynamics, would be useful contribution to
understanding the impact of local moment-closures for diseases with SIS-dynamics.
On a global scale, understanding whether tracking the dynamics of error terms
explicitly would be worthwhile in heterogeneous networks (building upon the work
of Simon and Kiss [2016]), and assessing whether the same techniques can be applied

in the presence of clustering, are important next steps.

This chapter makes three assumptions common to the literature on the mathemat-
ics on epidemics on networks: first, that epidemiologically relevant contacts (the
edges between vertices) are fixed throughout the epidemic and not dynamic; sec-
ond, that these contacts are identical in kind, such that probability of infection
for an individual from any partner of theirs is equal to any other partner; third,
that individuals have exponentially distributed periods of infection (the Markovian
assumption). Each of these are in some senses unrealistic: people’s sexual part-
nerships change over time (it is a question of theoretical importance the extent to
which the dynamics of epidemics on dynamic networks can by approximated by the
dynamics of epidemics on static networks, which has begun to be explored [Volz
and Meyers, 2007; Bansal et al., 2010]); for individuals in more than one partner-

ship, the frequency of sexual contact will be different for each partnership, hence
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the probability of transmission across partnerships will also be different; whilst
periods of infection may be better modelled as having a constant duration. For
SIR-dynamics, a variety of dynamic network models incorporating moment-closure
approximations, or other low-dimensional ODE models have been developed [Ball
and Neal, 2008; Volz, 2008]. So too are there a variety of dynamic network models
for SIS-dynamics (e.g. Bauch and Rand [2000]; Leng and Keeling [2018]). Incorpo-
rating improved moment-closure approximations into such models, and exploring
how the introduction of partnership formation and dissolution effects the errors
introduced, are important next steps. While studies into the contribution of steady
and casual partnerships to the spread of STIs has been explored [Xiridou et al.,
2003; Hansson et al., 2019], heterogeneity in edge type is an underexplored topic for
moment-closure approximations, even for diseases with SIR-dynamics. Assuming
constant periods of infection, instead of making a Markovian assumption, can make
closures exact for different network topologies in the case of SIR-dynamics [Pellis
et al., 2015b]. Exploring this alternative assumption and its effect on errors avg and

a5 may prove interesting avenues of research.

3.7 Conclusion

In this chapter, we have detailed moment-closure approximations for the isolated
open triple and for k-regular networks that improve upon standard pairwise approx-
imations. We do so by accounting for the correlations in disease status between
unconnected individuals within triples, through the « error terms now included.
Our research highlights the importance of accounting for such correlations, and the
relative simplicity of including such terms into a model. By considering a disease
with SIS-dynamics on two ideal networks, our research illustrates the complexity
of disease dynamics that occur in even the simplest systems, and that analytical

insights remain hard to obtain for disease dynamics without immunity.
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With regards to modelling the spread of STIs, it is clear that research should
continue to develop more realistic and more sophisticated stochastic simulations.
However, we believe that approximate methods have an important role to play, in
both developing an intuitive understanding of the effect of network structure on
the fate of the spread of STIs, and as a benchmark to compare such simulations
against. It is in this context that improving the accuracy of such approximate
methods is paramount, and it is in this context that we believe we make a valuable

contribution to the literature.
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Chapter 4

Concurrency of partnerships,
consistency with data, and control of

sexually transmitted infections

The research in this chapter has been presented in Leng and Keeling [2018].

4.1 Introduction

Controlling the spread of sexually transmitted infections (STIs) remains an im-
portant public health challenge globally. Each year, there are an estimated 357
million new infections from four common STIs: chlamydia, gonorrhoea, trichomo-
niasis, and syphilis [Newman et al., 2015]. Both chlamydia and gonorrhoea can
lead to infertility and ectopic pregnancy [Cates Jr et al., 1990; Ankum et al., 1996],
while syphilis can be fatal if untreated [Kent and Romanelli, 2008]. Further, these
infections can increase the risk of transmission of another STI - the human immun-
odeficiency virus (HIV) [Gelmon and Piot, 1996; Cohen, 1998], which presently
infects an estimated 36.7 million people globally [UNAIDS, 2017]. These common
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STIs are usually treated with antibiotics. However, the increasing problem of an-
tibiotic resistance [Cohen, 1992; Barry and Klausner, 2009] requires academics and
public health professionals concerned with STTs to propose new and more effective
control measures. As such, it has been suggested that the development of vac-
cines is required to abate the spread of many of the STIs where antibiotics are
failing [Brunham and Rappuoli, 2013; Jerse et al., 2014; Cameron and Lukehart,
2014; Gottlieb et al., 2014]. For HIV, which cannot be treated by antibiotics, in-
cidence levels globally remain high [UNAIDS, 2017], and hence much research has
focussed on developing an HIV vaccine [Burton et al., 2004; rgp120 HIV Vaccine
Study Group et al., 2005], albeit with limited success [Sekaly, 2008].

For one STI, human papillomavirus (HPV), a vaccine has been successfully devel-
oped and deployed [Markowitz et al., 2007]. HPV is the most common STT globally,
with the majority of people being infected by the virus at some point in their lives
[Koutsky, 1997]. Though most will recover with no serious health consequences,
in a small proportion of cases, HPV infection (especially with strains 16 and 18)
can lead to cancer later in life: principally cervical cancer [Munoz et al., 2003]
but also oropharyngeal, vulvar, anal, penile and vaginal cancers; in addition HPV
(strains 6 and 11) can cause genital warts [Ljubojevic and Skerlev, 2014]. In many
countries, including the UK [Jit et al., 2008] and the USA [Stokley et al., 2014],
vaccination programmes targeted at young girls before the age of sexual debut have

been implemented [Markowitz et al., 2012].

Due to its substantive public health impact, multiple predictive models have been
developed to examine the effectiveness of vaccinating against HPV. These models
range in complexity and sophistication, based on the questions they are attempt-
ing to address and the data that is available. The stochastic models developed
by Kulasingam and Myers [2003], Goldie et al. [2004], and Canfell et al. [2012],
while capturing individual-level behaviour in detail, do not consider population-

level changes in prevalence and therefore cannot capture the impact of herd immu-
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nity. In contrast, dynamic population-scale models capture this impact but require
assumptions about partnership formation. For example, the model by Ribassin-
Majed et al. [2014] assumed homogeneous random mixing throughout the popu-
lation, while the models of Taira et al. [2004] and Barnabas et al. [2006] assumed
sexual mixing patterns can be stratified between age-groups. The model by Jit
et al. [2008], which provided health-economic policy advice to the UK, accounts for
age, sex, risk-group and multiple strains of HPV. It has been observed previously
that the differing assumptions between models for HPV control can lead to conflict-
ing results [Van de Velde et al., 2010]. However, all such models assume implicitly
that individuals have serially monogamous relationships. While this is a reasonable
first approximation, it is a simplification of real-world sexual networks. In the UK,
where detailed data is available, it is estimated that around 20% of sexually active
adults aged 16-24 years engage in a concurrent partnership in a year [Johnson et al.,
2001], that is, temporally overlapping sexual partnerships with two or more people.
Intuitively, concurrency breaks the protective nature of a partnership, allowing an
STT to enter an otherwise uninfected pairing. It is thus important to understand the
extent to which the level of concurrent partnerships within a population impacts

the success of vaccination efforts.

While concurrency is clearly an important feature of sexual transmission networks,
and is epidemiologically important because it allows infection into otherwise closed
partnerships, it is difficult to measure precisely. For example, the National Survey
of Sexual Attitudes and Lifestyles (Natsal) questionnaires [Johnson et al., 2001]
provide fine-scale details on sexual behaviour in the UK; for example capturing the
number of sexual partners (and sexual behaviours) over multiple time scales. Such
information allows for rich heterogeneous risk-structured models to be developed.
In contrast, concurrency only features in limited number of questions; the third
Natsal survey [Wellings and Johnson, 2013] only specifically asks about concurrency

on two occasions: (i) a binary question about overlap between partners in last 5
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years and (ii) a binary question about swinging couples. Other than these questions,
concurrency is estimated from the dates of the last three sexual relationships. While
this is likely to be the most detailed information on concurrency at the population
scale, it is difficult to correlate this information with other risk factors and therefore
difficult to robustly include concurrency in mathematical models. For these reasons,
we test the sensitivity of predictive models for STI control by vaccination to the

level of concurrency.

In this chapter, we develop three nested pair-formation models of STI spread.
Pair-formation models, by explicitly modelling the formation and dissolution of
partnerships, are particularly useful in modelling the spread of infections where
the assumption of instantaneous contact is inappropriate. These dynamic models
are particularly applicable to the spread of STIs, given sexual partnerships are of-
ten long lasting. Kretzschmar and Heijne [2017] provide a useful review on this
approach and previous applications to modelling STIs. We begin by developing
a model with no concurrency; this is a deterministic ordinary differential equa-
tion (ODE) model, where an infection with susceptible-infected-susceptible (SIS)
dynamics can only be transmitted through stable sexual partnerships. We then ex-
tend this model to include casual partnerships, where single individuals can acquire
infection from other single individuals who are infected without having to enter into
a stable partnership. Finally, to this model we add concurrent partnerships, where
those in stable partnerships can acquire infection from both single infected individ-
uals and infected individuals in other partnerships. For all these models we also
consider the addition of a protected (vaccinated) subpopulation that is immune to
infection. In agreement with HPV vaccination programmes, these individuals are
assumed to have been immunised before sexual debut and are also assumed to ob-
tain life-long protection (although the data on the duration of protection offered by
the vaccine is limited [De Vincenzo et al., 2014]). We use the models developed to

explore the effect of concurrency on the transmission of an STI and on the critical
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level of vaccination required to eliminate the infection from the population. We
perform this analysis in two distinct scenarios: firstly, when the epidemiological
and behavioural parameters are fixed and the level of concurrency is allowed to
vary, mimicking changing patterns of sexual behaviour; and secondly, when models
with and without concurrency are matched to available data, capturing the impact

of model misspecification.

The effect of concurrent partnerships on the spread of STIs has been explored
before: Watts and May [1992] develop a deterministic ODE model to explore the
effects of concurrent partnerships on the dynamics of HIV; Kretzschmar and Morris
(1996 and 1997) show that concurrent partnerships have a large impact upon the
early growth rate of an epidemic through a stochastic simulation model; Bauch and
Rand [2000] derive a moment closure approximation model of STI spread through
a concurrent partnership network; Eames and Keeling [2004] compare their model
of STI spread assuming serial monogamy against a model where individuals form
short-term casual partnerships with others outside the relationship; and Leung
et al. [2012] develop a dynamic partnership network model to explore the influence
of concurrency. In particular, Xiridou et al. [2003, 2004] model concurrency in a
similar approach to this chapter to assess the contribution of stable and casual part-
nerships to the spread of HIV. While all these models highlight the implications of
concurrency on transmission and endemic prevalence of infection, to our knowledge,
the implications that concurrency has on the control of STIs when parameters are

matched to data has not been fully explored.

The model we develop is deliberately simplified, described by only a few ODEs
and ignores many levels of real-world structure. For example, the formulation of
our model assumes that partnerships occur via random mixing. In reality, sexual
networks are highly heterogeneous, with sexual behaviours depending upon a large
number of factors such as age, sex, sexual orientation, and cultural norms [Adimora

and Schoenbach, 2005; Garnett et al., 1992]. Further, we do not specifically model
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any particular STI; rather, we model some generic STI with SIS-dynamics. We use
this generic formulation to observe the effects of concurrency on transmission and
control, and hence to inform future researchers whether modelling concurrent part-

nerships explicitly is necessary in more sophisticated models of STT control.

4.2 The model

4.2.1 A model without concurrency

We first develop a simple model of STI transmission across partnerships without
concurrency; this introduces our methodology and provides simple predictions to
compare with our later more realistic model. A large number of STIs follow SIS
dynamics — that is, recovering from infection does not provide immunity to an indi-
vidual, but rather returns them to the susceptible population. Chlamydia [Garnett
and Anderson, 1996] and gonorrhoea [Hethcote and Yorke, 1984] are generally as-
sumed to exhibit these dynamics, although not HIV due to the lack of recovery
[Anderson et al., 1986]. In addition, many of the models exploring the impact of
vaccination against HPV also assume SIS-dynamics [Ribassin-Majed et al., 2014;
Taira et al., 2004], although this may be an idealised view of the true behaviour
[Beachler et al., 2016]. In common with these studies, we focus on infections with

SIS-dynamics throughout.

We develop a deterministic ODE-model focussing on the behavioural aspects (for-
mation and breaking of partnerships) onto which we graft the spread of infection —
we label individuals by their infectious state: S for susceptible and I for infected.
Single individuals, not in a partnership and represented by S or I, are assumed
to form partnerships at a rate f; while sexual partnerships, represented by [SS],
[SI] and [II] break at a rate 2b (as each partner breaks up the partnership at a

rate b). Once in a partnership, an infected partner will transmit an infection to
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their susceptible partner at a rate 7. Infected individuals are assumed to recover
at a rate -y, which could either represent natural recovery (as observed for HPV)
or obtaining treatment. Table 4.1 describes all notation used in this chapter. We
set the time scale of all parameters to be yearly, though we omit the suffix yr—!

throughout. We also insist that S + I + 2([SS] + [SI] + [[I]) = 1, such that the

model refers to proportions of the population.

Our model makes a number of simplifying assumptions: we assume a closed pop-
ulation without demography (i.e. no births or deaths), the recovery of individuals
back into the susceptible class is sufficient to maintain infection in the population;
we assume homogeneous mixing within the population (i.e. partnerships are formed
uniformly at random) ignoring the impact of gender and sexual preference (all part-
nerships within the population are equally likely). These assumptions are clearly
unrealistic — for example the number and pattern of sexual partners is highly het-
erogeneous between individuals [Johnson et al., 2001; Anderson, 1988] — however,
the effects of such heterogeneities is not the focus of this study, and indeed has
been studied extensively elsewhere [Garnett et al., 1992; Eames and Keeling, 2002;
Gupta et al., 1989]. The simplifying assumptions we make are common to other
studies exploring the effect of concurrency [Kretzschmar and Morris, 1996; Bauch
and Rand, 2000] and allow us to highlight the likely impact of concurrency in a

generic setting.

In our model, an individual leaves the class of susceptible individuals not in a
partnership (5) if they form a partnership (which they do so at a rate f), or if
any other individual not in a partnership forms a partnership with the susceptible
individual (also at a rate f). Individuals enter the susceptible class from the class
of infected individuals at a rate . Individuals enter the susceptible class from the
[SI] class at a rate of 2b, as the susceptible individual will enter the S class if they
break up the partnership (which they do so at a rate b) or if their infected partner

breaks up the partnership (also at a rate b). Individuals enter the susceptible class
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Table 4.1: Chapter 4 table of notation.

Term | Meaning
f rate at which individuals form a stable partnership
b rate at which individuals break up a stable partnership
T transmission rate across a stable partnership
¥ recovery rate
K rate at which single individuals form casual partnerships
K rate at which individuals in partnerships form casual partnerships
P probability of transmission via a casual partnership
S susceptible individuals not in a partnership
1 infected individuals not in a partnership
\%4 vaccinated individuals not in a partnership
F totality of individuals not in a partnership
[SS] | susceptible-susceptible partnerships
[[I] | infected-infected partnerships
[VV] | vaccinated-vaccinated partnerships
[SI] | susceptible-infected partnerships
[SV] | susceptible-vaccinated partnerships
[IV] | infected-vaccinated partnerships
P totality of individuals in a partnership
Sp susceptible individuals currently in a partnership
Ip infected individuals currently in a partnership
Vp vaccinated individuals currently in a partnership
Tiot totality of infected individuals
v proportion of population vaccinated
vo critical level of vaccination required to eliminate the infection from the population
p rate of new partnerships (including casual partnerships)
Y individuals not in a partnership who have had a concurrent partnership
N individuals not in a partnerships who have not had a concurrent partnership
[YY] | had concurrent partner - had concurrent partner partnerships
[NN] | no concurrent partner - no concurrent partner partnerships
[YN] | had concurrent partner - no concurrent partner partnerships
T rate of vaccination
o critical rate of vaccination required to eliminate the infection from the population
w rate of waning immunity

from the [SS] class at a rate of 4b, as either partner can break up the partnership,

ds

and both return to the susceptible class. Hence < is given by
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% — 5 fF% + 41 + 2b[ST] + 4b[SS]

= —2fS + I + 2b[SI] + 4b[5S]

(4.1)

Similar considerations give us the rest of the ODEs for Model 1, which are given in

full below:

Model 1:
%f — _2fS 4+ 4T + 4b[SS] + 2b[S1] (4.2)
% = —2fI — ~I + 4b[I1] + 2b[ST] (4.3)
d[is] - fSSiI — 2b[SS] + ~[SI] (4.4)
d[jtl] = 2fSSI+I — 2b[S1] — 7[SI] — y[SI] + 2~[I1] (4.5)
d[I1] _
o = g — U+ 781 = 20111) (4.6)

We note that in this simple formulation transmission only occurs within an [ST]
partnership. We can consider the behavioural dynamics if we sum appropriate
terms to obtain the proportion of individuals who are single or in a partnership.
We set F' := S+1, denoting the proportion of individuals free to form a partnership,
and P := 2([SS] + [SI] + [LI]), denoting the proportion of individuals currently in

partnerships.

dF dP
— =——=-2fF + 2bP 4.7
dt dt JE+ (47)

which has a non-trivial equilibrium at F* = ﬁ, and P* = %. The model

developed here is similar to the deterministic model of Kretzschmar and Morris
[1996], and yields the same equilibrium values for F' and P. However, their model

assumes a different disease dynamic - SI-dynamics as opposed to SIS-dynamics.
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This is primarily because their model was focussed upon the effect of concurrency

on the early growth rate of an STI.

Using the equilibrium values found for F' and P, we can find the fixed points of the
full system. The fixed points of the system are given by:

_2bfT — (2bfy 4 3by* + 2%y + by 4+ 242 ++°)

r 2fr(b+ f) (4.8)
el (4.9)
[SI]" = WI* (4.10)
I = VT+2fT—ilb):—27f—v2I* (4.11)
[SS]* = 2(bf+f) —[SI)* — [I1]* (4.12)

From this, we are able to obtain the endemic prevalence of infection within the
population. We denote the total prevalence as Ijot := I + [SI] 4 2[II]. The non-
trivial equilibrium value of I;,;, when it exists, is given by:
20+2f 4+~ I

2b

(2b+ 2f +7)(2bf T — (2bf 7y + 3072 + 262y + byT + 212 +73))
abfr(b+f)

It*ot -
(4.13)

Hence we obtain conditions for the existence of the non-trivial equilibrium, which

is stable, when I* > 0:
2fT > 2bf~y + 3072 + 262y + byr + 2142 ++° (4.14)

Further, in the case where transmission is rapid (instantaneous) within a part-

nership, such that [SI] partnerships do not exist, the expression for the endemic
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prevalence simplifies to:

lim I, — (20 +2f +v)(2f —7)

700 Af(b+ f) (4.15)

In this limit it is clear that, the formation of new partnerships must be sufficiently
rapid compared to the recovery from infection to allow persistence; in particular
v < 2f to maintain the infection which acts as a lower bound for the persistence
of the full model (Equations (4.2) to (4.6)). Figure 4.1 highlights the effects of the
main parameters (v, 7, f and b) on the endemic prevalence. As expected [}, is a
monotonic increasing function of the infectious period, the within partnership trans-
mission rate and the rate at which single individuals form partnerships. However,
the effects of breaking partnerships is more complex with infection maximised at an
intermediate value of b; this is because persistence of infection requires a turnover
of partnerships in order to infect new individuals, but if this is too rapid there
is insufficient chance of transmission within the partnership and most individuals

spend the majority of their time single.

4.2.2 Including casual partnerships

Model 1 describes a situation where individuals must enter into a stable partner-
ship before they engage in sexual activity that could lead to disease transmission.
However, for real-world populations, especially those at greater risk of contracting
STIs, some sexual partnerships will be over a much shorter time-period - where
the pair engage in a single instance of sexual activity, but do not form a stable
partnership. We refer to such partnerships as casual partnerships and can include
them through small additions to Model 1. Let x denote the rate that single individ-
uals have a casual partnership with another single individual, and let p denote the
probability of transmission by a casual partnership. The equations for individuals

in partnerships remains unchanged from Model 1, whereas the equations for single
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Figure 4.1: The effect of varying parameters on endemic prevalence.We plot
the effects of varying ~, 7, f, and b against I}, respectively. Default parameter
values are v = 2, 7 = 22.50, f = 3, b = 1.5, while the key parameter is varied. As
we increase the infectious period y~! the total level of infection asymptotes to one,
whereas for 7 and f the asymptote is lower. For b we find that [}}, is maximised
at intermediate values.

individuals are modified to:

Model 2:
ds I
=Sl 4b[SS) + 2b[ST) — pS & (4.16)
7 I
% = <21 — I + 4b[I1) + 2[SI] + rpS (4.17)

Although in this formulation it is only the product xp that influences the dynam-
ics, it is useful to have a value for the probability of transmission across a casual
partnership p. From Model 1 it is clear that the probability of transmission across

the duration of a stable partnership is given by p = and we assume that

T
2b+~+7°
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this should reasonably place an upper bound on the casual transmission probability
p. The precise relationship between p and p is complex and will depend on many
factors including the number and type of sex acts involved. In addition, it has
been observed that for some STIs, transmission occurs early on in a partnership
or not at all [Peterman et al., 1988], suggesting that p should be close to p. In
the calculations that follow we assume that p = %]3, while acknowledging that this
merely forms a scaling for the rate of casual partnerships x. Once again, we can

obtain the fixed points of Model 2:

o bEbfT + k(207 + 42 4 3by + bT) — (3672 + 2%y + 292 f + 43 + 2bfy + byT))

(b+ f)(2bfT + Kkp(2b% + 2 + 3by + b))

(4.18)

s = (4.19)

b+ f '

. V(20 +2f + v+ kp) .

I = I 4.2

[57] 2bfT + kp(20% + v2 + 3by + b7) (4.20)

. fRQRb+y+7)+ym +2fT — 2by —2fy —92) _,
I = I 4.21
L1] 2(2bf7 + R(20% + 2 + 3by + b7)) (421)

* f * *
SS)* = ————— — [SI]" — [I] 4.22
1551 = 5 107 - 1] (4:22)
Hence, for Model 2, I}, is given by:

2 2
I = FT(20+2f + ) + &p(20° + 20f +3by + b7 + 2f7 + [T +77) L (4.23)

20fT + Kkp(2b2 + 3by + b1 + +?)

Although not obvious from these equations, it is clear from the model formulation
that the addition of these casual partnerships increases the prevalence of infection.

The results of Model 1 are all regained by setting x = 0.
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4.2.3 Including concurrency

The models developed above (Models 1 and 2) describe populations where individ-
uals are serially monogamous, and do not have overlapping partners: either they
form a stable partnership, in which infection can be transmitted between partners,
or they have a casual partnership - a one-time sexual partnership with another
single individual. Here we develop two variations of the model that incorporate
concurrent sexual partnerships - where an individual in a stable partnership can
be involved in casual partnerships, with both single individuals and individuals
in other stable partnerships. As such this breaks the protection of a partnership
and can lead to greater transmission of infection. This approach is similar to that

developed by Eames and Keeling [2004].

We now extend the model to allow both single individuals and those in stable
partnerships to partake in casual sexual activity. We retain the parameter s to
be the rate at which any single individual takes part in a casual partnership, and
include a new parameter K for the rate at which those in a stable partnership

partake in an additional casual partnership. This leads to the following model:

Model 3:
% = —2fS +~I + 4b[SS] + 2b[ST] — kpST (4.24)
% — 2 — ~I + 4b[I1] + 2b[ST] + xpSi (4.25)
d[is] _ fS% — 2b[SS] +~[ST] — 2Kp[SS) ] (4.26)
T80 — 25— (ST~ 7[S1) — ST + M {L1] + 2KISSIT - KplSTIE (427
d[;t]] = flé — 20[I1) + 7[ST] — 24[11] + Kp[SI]] (4.28)

where I refers to the level of infection for individuals engaging in such casual rela-

tionship:
kI + K(2[II] + [ST])

j:
kF+ KP

(4.29)
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We define two variations of this model. In Model 3.1, we make the simplifying
assumption that all individuals engage in casual relationships at an equal rate
K = k, which implies that I = I;¢. In Model 3.2, we let K and & take different
values, but in all figures we set k = 2K capturing the intuition that singles should
be more likely to partake in casual sexual activity. We note that we can regain

Model 2 by setting K = 0.

4.2.4 Obtaining levels of concurrency

By considering the rate of formation of stable and casual partnerships, we are able
to describe a system of equations to obtain the proportion of the population who
are involved in concurrent partnerships for Model 3. To do so, we let Y denote
individuals not in a partnership who have had a concurrent partnership, N denote
individuals not in a partnership who have not had a concurrent partnership, [YY]
partnerships between individuals who have both had concurrent partnerships, and
so on. We rescale parameters f, b, and K so that they are over the time scale of a
day - i.e. they are 1/365 of the corresponding parameters from the previous models.

We assume that the proportion of individuals in partnerships is at equilibrium, and

individuals begin in N classes, i.e. N(0) = %, [NN](0) = ﬁ,Y(O) = [Y'N](0) =
[YY](0) = 0. The model is described as follows:
% — _9fN + 4b[NN] + 25[Y N] (4.30)
‘% = —2fY +4b[YY] + 2b[Y' N] (4.31)
d[];[tN l_ fN% — 9[NN] — 2K[NN] (4.32)
d[th |y fY% — 2b[Y N] + 2K[NN] — K[V N] (4.33)
d[;y] _ fY% _2[YY] + K[YN] (4.34)
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We obtain our estimates for K by running the ODEs for 365 days, and find the
value of K that satisfies Y +[Y N]+2[YY] equalling the desired level of concurrency

numerically.

4.2.5 Including vaccination

Now, we extend our model to include a vaccinated and hence immunised class. Here,
we make the simplifying assumptions that these individuals are immunised before
they enter the sexually active population and that the immunity is long-lived; hence
individuals in this V-class play no active role in the epidemiological dynamics, but
may limit the population spread on infection. Again, these assumptions are based
on the natural history of HPV, where young girls (aged 12-13 years in the UK) are

vaccinated. In Section 4.2.6 we consider a model including waning immunity.

We let V' denote the vaccinated individuals not in a partnership and [XV] denote
a stable partnership between a vaccinated individual and someone in state-X .
Further, we let Sp = [SI] + [SV] + 2[SS], Ip = [SI| + [IV] + 2[II], and Vp =
[SV]+[IV]+42[VV] - the susceptible, infected, and vaccinated individuals currently

in a partnership. Assuming that a proportion v of the population is vaccinated
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initially, we amend Model 3 to include vaccination as follows:

as

7 = ~2fS+ 71 +2bSp — kpSI (4.35)
% = —2fI — I + 2bIp + kpSI (4.36)
% = —2fV + 2bVp (4.37)
d[jts] = fS% — 2b[SS] +~[ST] — 2K p[SS|T (4.38)
U 5L~ S1] — r{S1] - A[S1) + 29(11] + Kp(2[SS] ~ [ST)I (439
d[;tf} = flé — 2[I1] 4 7[ST] — 2y[I1] + Kp[SI|I (4.40)
d[ZtV] _ fV% B[V (4.41)
d[iv} = ZfS% — 2b[SV] +~[IV] — Kp[SV]I (4.42)
UV) 17— ab{1v] —Al1v] + Kplsv]i (4.43)

where now I = 2?:5{[1’3, F=8S+1+V,and P =2([SS]+ [SI]+ [II]+[VV]+
[SV] + [IV]). We obtain the same differential equations for F' and P as before.
If we set K = k, we obtain an analogue for Model 3.1 with vaccination, while
analogues for Model 1 and Model 2 are recovered by setting k = K =0 or K =0
respectively. With no vaccination, the infection remains endemic; when a large
enough proportion of the population is vaccinated, the infection cannot persist -

we refer to the smallest such proportion as the critical level of vaccination, denoted

vo. We explain how v¢ is determined in Section 4.2.7.

4.2.6 Including waning immunity

In our main analyses, we consider the case of vaccination that confers lifelong immu-
nity to an infection. In reality, protection against infection offered by vaccination
often wanes over time. Previous HPV studies have shown that the duration of vac-

cine protection impacts the effectiveness of vaccination [Van de Velde et al., 2010].
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To understand the impact that waning immunity has on our results, we developed

a vaccination model for Model 3 that incorporates waning immunity.

We now vaccinate susceptible individuals at a constant rate r, and allow the vaccine

to wane at a constant rate w. This amended model is given by:

% = —2fS +~I +2bSp — kpSI — rS + wV (4.44)

I -
o = 2T =1+ 2bIp + rpST (4.45)

d
di‘t/ ==2fV+20Vp +71S —wV (4.46)

d[ig] =[S % — 2b[SS] +[ST] — 2Kp[SS|T — 2r[SS] + w[SV] (4.47)

d[iﬂ = Qf% — 2b[ST] — 7[ST] = A[ST] + 2+[11] + Kp(2[SS] — [SI))] — r[SI] + w[IV]

(4.48)
d[g] = flé — 2b[IT] + 7[SI] — 2[IT] 4+ Kp[SI|I (4.49)
d[ZtV] =/ V% = 2[VV] +r[SV] = 20[VV] (4.50)
d[jg/] = QfS% — 20[SV] +~[IV] = Kp[SV]I + 2r[SS] — w[SV] — r[SV] + 2w[V V]
(4.51)
d[étv] = 2ff% — 2[IV] = A[IV] + Kp[SV]I + r[ST] — w[IV] (4.52)

We then determine the value of r required to eliminate the infection, r¢, by proce-

dure outlined in Section 4.2.7. The endemic proportion of the population vaccinated

r
rtw’

rC
ro+w’

is given by and so the critical level of vaccination is given by vg =
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4.2.7 Finding the critical level of vaccination

To determine the critical level of vaccination, we consider the stability of the disease
free equilibrium. At this equilibrium, there is random mixing between susceptible
and vaccinated individuals, so if we vaccinate v of the population, the fixed points
are given by S* = (1—v)F*, V* = vF* [SS]* = (1—-v)2P*/2, [SV]* = v(1 —v)P*,
VV]* = v2P*/2, I* = [SI|* = [[I]* = [IV]* = 0, where F* = %, pPr = %.
We then consider the Jacobian of the system evaluated at this equilibrium. The
stability of the equilibrium is ensured given the real parts of all eigenvalues of the
Jacobian are less than zero [Kretzschmar et al., 1994], thus varying v we numerically
determine when the largest real part of the Jacobian’s eigenvalues is 0 to find the

critical level of vaccination.

Note, we do not have to consider the Jacobian of the full system, only of the states
including an infected individual. If we let f; = %, and so on, the Jacobian is given

by:

ofr Ofr ofr Ofr
oI  d[SI ol 9V
Ofisy  Ofisn 9fisnp 9fisn
g_ | or s oum oV
Ofuny  Ofun  Ofun  Ofun
ol 9[SI] ol o[V
Ofurvy  Ofuvy Ofuvy  Ofuv
oI d[SI] ol OlV]

Assuming no waning immunity, evaluated at the disease-free equilibrium, and let-

. _ p : .
ting ¢ = 1 p, we obtain:

K2eS* —2f — v kKcS* +2b 2(kKcS* +2b) kKcS* +2b

| 26Ke[SS] +2f(1 —v) 2K%¢[SS]* —2b—T —v 2(2K*c[SS]* +7) 2K2%c[SS]*

N 0 T —2(b+7) 0
kKc[SV]* +2fv K2c[SV]* 2K2c[SV]* K?2c[SV]* —2b—~
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Assuming that immunity can wane, we obtain:

K2cS* —2f — v KKeS* +2b 2(kKeS* +2b) KKeS* +2b
| 2REc[SS]F +2f(1—v) 2K?c[SS]* —2b—T —v—1 2(2K?c[SS]* +7) 2K%c[SS]* +w
- 0 T —2(b+ ) 0
KKc[SV]* + 2fv K2c[SV]* 2K2[SV]* +r  K2%[SV]* —2b—vy —w

4.3 Results

4.3.1 Parameter inference

Our aim has been to develop a generic model of STI transmission and control
by immunisation, rather than to model the specific details of any single infection.
However, despite this generic approach, it is still important that we use parame-
ters that reflect the general behavioural dynamics of human populations and the
general epidemiology that is comparable with STIs. We do this by utilising data
from surveys of sexual behaviour and estimates of HPV prevalence in England. We
acknowledge that our simplified model cannot capture the complex heterogeneities
of the true sexual network; for example, the rates of partnership, break-ups, and
concurrent partnerships are not fixed, but rather are culturally situated social con-
ventions [Adimora and Schoenbach, 2005], which change over time [Haavio-Mannila,
2001]. However, we inform our default parameter choices from available real-world

data.

The parameters determining partnership dynamics (f, b, k and K) are estimated
from data contained within the National Survey of Sexual Attitudes and Lifestyles

conducted in 2000 (Natsal-2) [Johnson et al., 2001] and the US National Longi-
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tudinal Student of Adolescent Health (AddHealth) [Scott et al., 2011], focussing
on the sexual behaviours of young adults (aged 16-24 years from Natsal-2, 18-25
years from AddHealth). We choose this group as they have, in general, a higher
rate of sexual partnerships, are less likely to be in very long-term monogamous

relationships, and report higher levels of concurrency [Johnson et al., 2001].

Males aged 16-24 years report an average of 1.45 new partnerships a year, while
for females the average is 0.75. From this we assume an individual will average one
new partnership a year. At equilibrium, the instantaneous rate of new partnership
acquisition can be calculated: for Model 1 is given by F*f = b{%, while for Model
3.2 this becomes F* f + F*k + (1 — F*)K.

From AddHealth, we find that 67% of 18-25 year olds are in an exclusive rela-
tionship. This gives us F* ~ 1/3 = f = 2b. We use this US data source as no
comparable question is asked in the Natsal-2 for the UK. For Model 1, this re-
lationship data together with the partnership information allows us to make the
approximation that f = 3 and b = 1.5, as f = 2b, % =1=f=3,b=3/2. We
set these as our default values for f and b for all models.

Natsal-2 reports that, of individuals who have had a sexual partnership in the last
year, 20.8% of males and 15.2% of females aged 16-24 years report to be involved
in at least one concurrent partnership within the previous year. From this we
take our default level of concurrency to be 20%. We estimate our values of x
and K by reformulating our infection models to simply capture whether or not
individual have been involved in a concurrent partnership, and assess the level of
concurrency after 1 year. This gives us K = 0.335 for Models 3.1 and 3.2 (with
k = K and k = 2K respectively). Given this definitive value for K we introduced
two parameter variations for Model 2: in Model 2.1 we set x = 0.335 as above,
such that single individuals partake in the same level of casual partnerships in both

Model 2.1 and Model 3.1; in Model 2.2 we set k = 0.335/F* = 1.005, which is three
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times as high, such that there are the same level of casual partnerships across the
entire population in both Model 2.2 and Model 3.1. We note that keeping f and b
constant, whilst adding in casual and concurrent partnerships, increases the overall

rate of new partnerships: later we consider controlling for this.

We assume on average that within half a year of contracting the virus an individual
will recover, i.e. we set v = 2. We inform our default transmission rate 7 by
considering data on the prevalence of HPV in women aged 16-24 years in the UK
prior to the introduction of the mass vaccination campaigns against the STI. Howell-
Jones et al. [2012] report the prevalence of high-risk HPV substrains to be 35% for
females of this age-group, which we set as our default endemic prevalence. For
Models 1 and 2 we can derive a value of 7 satisfying I, = 0.35 analytically - for

Models 3.1 and 3.2 we obtain the appropriate value of 7 numerically.

4.3.2 Comparing models with fixed behavioural and epidemiolog-

ical parameters

First, we compare models when behavioural and epidemiological parameters are
fixed, and allow the rate of casual partnerships to vary. For models that include
casual partnerships (all but Model 1) we find an increasing non-linear relationship
between the rate of casual partnerships and the total prevalence of infection in the
population; unsurprisingly increasing this rate also leads to increasing prevalence.
Allowing those in stable partnerships to partake in casual partnerships, hence intro-
ducing concurrency to the population, has the greatest impact upon the prevalence
of infection as it breaks the protection afforded by uninfected partnerships; we
observe that, other things being equal, the introduction of concurrency increases
endemic prevalence (c.f. Model 2.2 and Model 3.1, where the total level of casual

partnerships is equal between models).

Accordingly, the critical level of vaccination, v¢, required to eliminate the disease
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Figure 4.2: Comparing endemic prevalence and critical levels of vaccina-
tion across models. In all models we maintain the same epidemiological and
behavioural parameters while modifying the levels of concurrency (K). Model 1
does not allow for concurrency, so the endemic prevalence remains constant. In
Model 2.1 (blue) and Model 3.1 (green), we insist that x = K, while for Model
2.2 (purple) we set k = 3K and for Model 3.2 (orange) we set k = 2K. In (a),
we see the addition of casual partnerships increases endemic prevalence, and al-
lowing individuals in stable partnerships to engage in casual sexual activity has a
greater impact on endemic prevalence than allowing only individuals to engage in
casual partnerships, even when the total rate of such partnerships remains equal
(c.f. Model 2.2 and Model 3.1). In (b) we consider how this translates into the
critical level of vaccination v¢ required to eradicate infection. (f = 3, b = 1.5,
v=2,7=2250,= p=045)

from the population too has an increasing non-linear relationship between the rate
of casual partnerships. With fixed parameters, the addition of concurrency can
have a large impact upon v¢: in the absence of casual partnerships (Model 1) only
22.45% of the population need to be protected by the vaccine to eliminate the
disease, while at K =1 v¢ is as high as 42.46% (Model 3.2).

4.3.3 Comparing models for a fixed endemic prevalence

In practice, we rarely have estimates of the transmission rate 7 a priori which can
be fed into our model. Rather, we generally need to estimate our value of 7 to match

the observed level of infection within the population. We can compare the models,
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and hence different levels of concurrency, by altering 7 and fixing I, (Figure 4.3).
As expected, higher prevalences require higher levels of transmission, and this is
non-linear due to the saturating nature of the dynamics. We also observe that
the introduction of casual partnerships (going from Model 1 to Model 3.2) lowers
slightly the transmission rate required to satisfy a given level of infection. Thus for
a prevalence of 35%, which mimics reported levels of HPV, the fitted transmission

rate drops from 7 = 22.50 to 7 = 17.03.
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Figure 4.3: Impact of constraining all models to have the same endemic
prevalence. All models have their transmission rate 7 set such that they reproduce
the same prevalence of infection at equilibrium. In (a) we see that the models with
less concurrency require a higher transmission rate to achieve the same endemic
prevalence. In (b) we consider how this translates into the critical level of vaccina-
tion v¢ required to eradicate infection. (For all models we set f = 3, b = 3/2 and
v = 2; Model 2.1 k = 0.335, Model 2.2 k = 1.005, Model 3.1 kK = K = 0.335; and
Model 3.2 k = 2K = 0.670.)

We can now use these fitted values of 7 to determine for each model v¢, the critical
level of vaccination required to eliminate infection. We find that when matching to
the same endemic prevalence, the impact of model formulation is limited. We still
find a ranked order of models (Model 1, Model 2.1, Model 2.2, Model 3.1, Model
3.2), with Model 3.2 needing a higher proportion of the population to be immunised
in order to eliminate infection, but the differences between the models is minimal.
At a prevalence of 35%, the critical proportions of the population that need to be
protected by the vaccine range from 22.45% to 23.93%.
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4.3.4 Controlling for the rate of new partnerships

As a further step to ensure agreement between models and data, we can aim to
match both behavioural and demographic data. We therefore now insist that all
models have both the same endemic prevalence of infection (I;,) and the same
total rate of new partnerships (both long-term and casual), which we denote as p.
In Figure 4.3, as we move from Model 1 to Model 3.2, the introduction of more
casual partnerships inevitably leads to an increase in the expected number of sexual

partners of each individual.

For Model 3.2 (which is the most general of the models with all other models nested

within), we find that the rate of new partnerships, p, is:

p=F"f+Fr+(l-F)K = f= —(k—K) (4.53)

Hence, we can determine the parameter f such that the expected number of new
sexual partners per year agrees with reported values (here assumed to be approx-
imately one per year). As previously described, to obtain F* = 1/3 we require
f = 2b. We then solve for the appropriate mix of K and x (as prescribed by
the model) and the parameter f, to obtain both 20% of individuals having a con-
current partnership within a year and to achieve a given partnership rate from

Equation (4.53).

When we additionally control for the rate of new partnerships (p), a larger transmis-
sion rate is required to satisfy a given endemic prevalence for all versions of Models
2 and 3 (first panel of Figure 4.4). This is due to the corresponding lower rates of
f and b for models with more casual partnerships, as these additional casual part-
nerships also contribute to p. In such models, individuals in [SS] partnerships are
offered a longer duration of relative isolation (they can only be infected through ca-

sual partnerships) due to the lower rate of stable partnership break-up. Similarly,
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Figure 4.4: Controlling 7 for a fixed endemic prevalence and f to fix the
rate of new partnerships. In the top panel, for each model we choose values
of f, b, K and s such that p = 1, F* = 1/3, and where appropriate 20% of
the population will have a concurrent partnership in a year. We then find 7 that
satisfies the endemic prevalence, which is varied. In the bottom panel, a similar
approach is taken but I}, is fixed at 35%, and the total rate of new partnerships
per year p is varied.

individuals in [I]] partnerships are retained in the stable partnership for longer
and hence are less infectious to the population. This effect is sufficiently strong to
change the ordering of transmission rates compared to the first panel of Figure 4.3;
Model 1 now requires the lowest transmission rate, while the transmission rates

needed for Model 2.2 and Model 3.2 are largest and comparable.

As we control for the rate of new partnerships, adding concurrency only has negli-
gible impact upon the critical level of vaccination v¢; moreover for higher endemic
prevalences, Model 1 requires the largest v while Model 2.2 requires the lowest.

If we instead fix the prevalence I}, = 35%, and vary the rate of new partnerships
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p, the differences between the five models is more clear, although the absolute dif-
ferences in the required critical vaccination level are minimal. Larger partnership
rates require slightly larger vaccination levels, but given that we are maintaining
a constant infection prevalence even doubling the partnership rate invokes a rela-
tively small change in v¢o. We consistently find that Model 1 (without any casual
partnerships) requires the greatest level of vaccination, while either Model 2.2 or

3.2 requires the least depending on parameter values.

4.3.5 Impact of waning immunity

In the above figures, we have assumed that the immunity conferred via vaccination is
lifelong. Here, we consider the impact of waning immunity, and the extent to which
the duration of vaccine protection impacts previous results, i.e. whether for shorter
durations of vaccine protection it still holds true that the addition concurrency has

minimal impact upon the critical level of vaccination.
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Figure 4.5: Impact of including waning immunity. For each model we choose
values of f, b, K and k such that p = 1, F* = 1/3, and where appropriate 20% of
the population will have a concurrent partnership in a year. We set 7 such that
I, = 0.35 for each model, and vary the rate of waning. immunity w. In the
left panel, we consider the critical rate of vaccination, while in the right panel we

consider the critical level of vaccination, given by vo = Tc’f’rw.

As we increase the rate of waning w, and hence decrease the duration of vaccine

protection, the critical level of vaccination increases for all models. Importantly
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however, we see that for any given value of w, the values of obtained for vo re-
main within a small range between models; indeed, as we increase w, this range

decreases.

4.4 Discussion

Models for the spread of STIs play a critical role in public-health planning, allow-
ing policy-makers to assess the impact of control measures. Of these, the control
of HIV by increased behavioural awareness [Coates et al., 2008] or through anti-
retroviral drugs [Granich et al., 2009], and HPV by vaccination, are amongst the
most studied. One factor that arises from many of these models is that increases in
concurrency (extra sexual partnerships in addition to stable sexual relationships),
while all other factors remain constant, lead to greater prevalence of infection and
more difficulty in controlling the infection. This is intuitive as an increase in con-
currency both increases the number of sexual partnerships in the population and
breaks the protection otherwise afforded to stable partnerships. This might suggest
that models which include concurrency, compared to those that do not, will also
predict greater prevalence and the need for greater control. However, this neglects
the fact that these models should first be matched to available data, before the
implications of control are assessed. Here we have developed a range of models
that include various amounts of casual partnerships and consider the behaviour as

we match the model to both epidemiological and behavioural data.

If we assume a fixed transmission rate, then our models echo previous findings that
concurrent partnerships have a significant impact on the effectiveness and appro-
priateness of interventions; the addition of concurrency to such models increases
markedly the endemic prevalence of infection, and hence the critical level of vacci-
nation required to eliminate the infection. This captures what we would expect to

happen if the level of concurrency (and the number of short casual relationships)
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increases in a population while all other aspects remains unperturbed.

To assess the importance of robustly measuring and capturing concurrency within
a predictive model, we take an alternative approach. This is of public-health im-
portance given the potential reluctance of individuals to disclose this behaviour and
the difficulty of assessing how concurrency may correlate with other risk factors. To
address this, we compared models with and without concurrency, that are matched
to the same endemic prevalence of infection. When we adjust the transmission rate
T to obtain the same endemic prevalence for each model (as would occur if we were
matching models to observations), the inclusion of concurrent partnerships has a
much more limited impact upon vaccination. Further, when we also control for
the total rate of new partnerships (including stable and casual partnerships), the
difference between estimates of the critical level of vaccination is further reduced
and the rank-order of the models is reversed: the model without concurrency re-
quires the greatest level of vaccination to control the infection. Given that models
without concurrent partnerships are in general simpler — in our examples (Models
1 and 2) are analytically tractable — our results would question the need for the
additional complexity of modelling concurrency to achieve accurate predictions for

public-health policy regarding vaccination.

This very weak dependence on the level of concurrency can be intuitively explained
as follows. In the simple (one-dimensional) SIS model, that does not explicitly
include partnerships, the critical vaccination level is equal to the endemic preva-
lence of infection. This precise relationship is only broken in models that capture
partnerships due to the correlations that quickly develop between the status of in-
dividuals in partnerships due to transmission within the partnership. This simply
introduces a linear scaling between prevalence and critical vaccination levels. The
action of concurrent partnerships is effectively random across the population, so
does not impact on the relationship between prevalence and critical vaccination

levels. The analysis in this chapter has focused on vaccination, and it remains to

114



be seen whether the inclusion of concurrency has an impact on the success of more
targeted interventions that depend more closely on the network structure of a pop-
ulation, such as contact tracing. Such interventions require a different modelling

approach, and are considered in the next chapter.

Our models, and the data that underpin them, take a highly simplified form which
is necessary to elucidate the behaviour. In our models we do not differentiate
between sexes — individuals are equally likely to form a partnership with any other.
This simplification not only ignores the obvious point that most partnerships are
heterosexual, but also ignores parameter differences between sexes. In the UK,
reported rates of new partnership and rates of concurrency are higher amongst
men [Johnson et al., 2001] (although this may represent reporting bias), while in
cultures where polygyny is the prevailing social norm, this difference is even more
pronounced [Reniers and Tfaily, 2012]. Further, for a large number of STIs there
can be asymmetric transmission between sexes [Hethcote and Yorke, 1984; Nicolosi
et al., 1994; Nyitray et al., 2013]. Such factors are important to consider in an
applied context, given that vaccination campaigns such as those against HPV are

generally targeted to young girls.

Our model describes a situation where there is a simple asymmetry between the
types of partnerships. Individuals are either in long-term stable partnerships, or
they are involved in casual one-time partnerships akin to a single sexual encounter
with another individual. Hence for our model when there are concurrent partner-
ships they are always of the form one stable partnership and one casual partnership.
Our models do not describe a situation where an individual can be engaged in mul-
tiple stable sexual partnerships; nor do they capture the spectrum of partnership
durations. When considering the appropriateness of this model it is therefore im-
portant to consider the appropriateness of this assumption. This simple asymmetry
may not hold across all cultures - in some sub-Saharan countries (a focal point of

the global HIV-epidemic) the reported proportion of individuals engaged in multi-
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ple long-term partnerships is significant (reported to be as high as 55% in Lesotho,
Southern Africa) [Carael, 1995]. Thus our models may be a closer approximation
to the behaviour in UK and western Europe, although we again expect a spectrum
of behaviours. Other models of concurrency that allow for individuals in multiple
stable partnerships have been developed: of note for their analytic tractability are
the models created by Leung et al. [2012] and Miller et al. [2012]. Our research
could naturally be extended to such models, but carefully matching these models
to data is paramount. When including multiple long-term partnerships, it may be
important to consider the effect of coital dilution (as one engages in more sexual
partnerships, they tend to have less frequent sexual contact with any one partner)

on transmission parameters [Gaydosh et al., 2013].

Potentially the most substantial omission in our models is the lack of heterogeneity.
Patterns of sexual partnerships are generally characterised by extreme levels of
heterogeneity, such that some individuals have few lifetime partners while others
have many [Anderson et al., 1986]; in addition it is likely that the rate of new
partners is correlated with other factors such as the propensity to be involved
in concurrent partnerships, the likelihood of being involved in higher-risk sexual
activities, or lower rates of vaccine uptake. It is well understood that heterogeneities
in the rate of new sexual partnerships play an important role in STI transmission
and control [May and Anderson, 1987]. However, there is limited data, or theoretical
studies, on the impact of the interaction between this heterogeneity and other

elements of risk.

4.5 Conclusion

In summary, our simplified model highlights that the impact of casual partnerships
(and hence concurrency) on the control of STIs by vaccination is limited, once the

models are matched to infection prevalence and the rate of new partnerships. This
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strongly suggests that we should question the need of including the complexity
of concurrent partnerships in more complex models. Obviously, complex models
that include a multitude of heterogeneities are vital when addressing public health
problems that require accurate answers, but we should continue to question the

role of complexity in these models.

Our results illustrate the role that relatively simple epidemiological models can play
in understanding the importance of including network features in models for public
health. While we believe our findings are generic, the inclusion of heterogeneity
across multiple risk factors is an important next step, especially if greater realism
is required. Understanding how this risk heterogeneity and concurrency interact is

a key area of future work, and is the subject of the next chapter.
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Chapter 5

Capturing partnership heterogeneity
and concurrency in a dynamic

heterosexual network model

5.1 Introduction

In Chapter 4, our results from a deterministic pair-formation model suggest that
explicitly including concurrency may not be necessary to reliably forecast the im-
pact of vaccination against sexually transmitted infections (STIs). However, this
approach can only tell us so much. Our pair-formation model does not include
many of the heterogeneities that exist within real-world sexual networks, nor does
it account for the stochasticity of the dynamics of epidemics, nor does it consider the
uncertainty in the underlying data. Moreover, state-based models are unsuitable for
assessing the impact of control measures that require knowledge at an individual-
level, such as contact tracing. In lieu of a vaccine, contact tracing is a key control
measure against the many STIs [Clarke, 1998; FitzGerald et al., 1998; Golden et al.,

2003]. In order to assess the impact heterogeneities have, and to assess a wider
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range of control measures, in this chapter we take a different approach, modelling
a dynamic heterosexual partnership network explicitly by simulating both the for-
mation and dissolution of partnerships in a heterosexual population and fitting this

simulation model to available behavioural data on heterosexual networks.

In order to obtain forecasts of the spread and control of STIs, models must capture
heterogeneities in partnership behaviour that have a substantive impact on the
dynamics of epidemics. While the impact of heterogeneity in the rate of sexual
partnerships [Garnett et al., 1992; Eames and Keeling, 2002; Rozhnova et al., 2016],
the impact of concurrency [Watts and May, 1992; Morris and Kretzschmar, 1997;
Leng and Keeling, 2018], and the impact of heterosexual transmission [Gomez-
Gardenes et al., 2008] are well documented, the impact of such heterogeneities in
models matched to prevalence data, and the impact these have in conjunction with

one another, is still an area relatively unexplored.

There have been many individual-based models used to forecast STI spread and
control that capture some aspects of partnership behaviour. Inevitably, however,
such models must make some assumptions. For example, the model of Datta et al.
[2018] captures the observed degree distribution of partnerships across the popula-
tion, but assumes that individuals are serially monogamous. At the other extreme,
the models of Garnett and Anderson [1994] and Choi et al. [2010] assume that part-
nerships form independently of one another. Under this assumption, the resulting
level of concurrency within the modelled population is unclear. Others still assume
randomly mixing populations [Barnabas et al., 2006; Smid et al., 2018], and hence
do not consider concurrency explicitly. While some models have been matched to
concurrency data (e.g. Jenness et al. [2017]; Goodreau et al. [2018]), this is often of
the form of instantaneous concurrency data rather than yearly concurrency data.
These models also are not matched to yearly degree distribution data, and have

typically focussed on populations of men who have sex with men (MSM).
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Recently, Whittles et al. [2019] have described methods to obtain dynamic partner-
ship network models capable of capturing the yearly degree distribution in popula-
tions of MSM. Such distributions are typically heavy-tailed, and have been observed
to approximately obey a power-law degree distribution [Schneeberger et al., 2004].
These populations have been the focus of much of the literature surrounding the
control of STIs, due to the higher prevalence of certain STIs within this population.
However, for some STIs such as chlamydia, there are a larger number of diagnoses
within the heterosexual population, while the incidence of gonorrhoea and syphilis
has seen a sustained increase in recent years within this population [Public Health
England, 2019]. Of particular interest are young people, aged 16-24 years, who
accounted for 49.6% of STI diagnoses in 2019 among the heterosexual population

in England [Public Health England, 2019].

As well as the public health motivation in modelling STIs in heterosexual popula-
tions, such populations are interesting and challenging from a theoretical perspec-
tive. While for MSM, a dynamic network model attempting to match yearly degree
distribution data must capture one distribution, a dynamic network model of het-
erosexual partnership networks must be capable of capturing two distinct yearly
degree distributions (one for males, one for females) from one dynamical process.
Compounding this issue, observed male and female degree distribution data from
surveys such as the National Survey of Sexual Attitudes and Lifestyle (Natsal) are
often mutually inconsistent [Mercer et al., 2013; Mitchell et al., 2019]. While dy-
namic partnership models of heterosexual networks that capture some heterogeneity
in the number of partnerships have been designed before [Garnett and Anderson,
1994; Gray et al., 2009], these models typically assume a pre-defined number of risk
classes within the population, are not fitted to observed yearly degree distributions

explicitly, and do not attempt to capture observed levels of concurrency.

In this chapter, we describe a stochastic individual-based dynamic model of a het-

erosexual network, consisting of an arbitrary number of male and female risk groups,
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that is capable of being fitted to male and female yearly degree distributions simul-
taneously. This simulation model is also fitted to observed levels of concurrency and
observed proportions of single individuals for each sex. We compare this simulation
model, matched to concurrency data, to alternative models representing the two
extremes of assumptions surrounding concurrency - at one extreme, individuals are
serially monogamous and there is therefore no concurrency; at the other extreme,
an individual’s rate of forming new partnerships is independent of their relation-
ship status, potentially leading to high levels of concurrency. At both extremes,
the yearly degree distributions and expected proportion of singles can be obtained
either analytically or numerically, and the methods of doing so are described in
this chapter. By fitting these models using a Markov Chain Monte Carlo (MCMC)
approach, and selecting models using the Deviance Information Criterion (DIC)
[Spiegelhalter et al., 2002], we compare the optimal number of risk groups for these
models, and we explore other aspects of network structure, that have not been

explicitly fitted to, in the three models.

Acting on this dynamic network model, we explore the impact of a disease with
susceptible-infected-susceptible (SIS) dynamics, which approximates the dynamics
of many bacterial STIs, [Garnett and Anderson, 1996; Yorke et al., 1978] and has
been used to model the spread of human papillomavirus (HPV) [Ribassin-Majed
et al., 2014], although this may be an idealisation of its true behaviour [Beachler
et al., 2016]. Doing so, we compare the resulting epidemiological dynamics in each
of the three scenarios. By matching models to prevalence data, we compare the
impact of the control measures vaccination and contact tracing in each of the dy-
namic models. By doing so, we not only assess the impact such measures have, but
we also compare the extent to which the three models differ, and whether models
not explicitly matched to levels of concurrency lead to underestimates or overesti-
mates of different quantities. The methods described in this chapter therefore not

only provide a flexible dynamic model capable of matching observed data, but also

121



provide an assessment of the merits of explicitly matching models of heterosexual

populations to concurrency data in a realistic setting.

5.2 Defining the network model

5.2.1 Full simulation partnership model

Here, we present a stochastic individual-based model of partnership formation and
dissolution for a heterosexual population with an arbitrary number of ‘risk groups’
for males and females. Individuals from different risk groups form and dissolve
partnerships at different rates, and hence have different risks of transmitting and
contracting infection. Letting kj; denote the number of distinct male risk groups,
and letting kr the number of distinct female risk groups, single individuals form
partnerships at a yearly rate of fs,s € {M,F},r € {1,...,ks}. As in Chapter 4,
the total rate an individual forms a new partnership depends both on their rate of
partnership formation and on the rate that other individuals partner with them.

The number of individuals in each risk class also varies, and is denoted by Nj;.

We assume the rate at which partnerships dissolve depends upon the rate at
which its constituent individuals form partnerships when single, i.e. a partner-
ship between a male from risk group x and a female from risk group y dissolves
at a rate b x g(faaz, fry), where b is a positive constant, and where g is some
function of fy;, and fr,. We assume that individuals who form partnerships
at a high rate also dissolve partnerships at a high rate, and hence we consider
9(fmzs fry) = fmz + fry. Alternative functions that could be considered are
9(fMz, fry) = maz(fya, fry), 9(fa, fry) = min(fya, fry), and g(fua, fry) =
(fmz + fry)®, where 0 < o < 1, and g(fuma, fry) = 1, though these alternative

assumptions are not explored here.
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As well as allowing single individuals to form new partnerships, we allow individuals
within partnerships to form additional partnerships at a reduced rate, in order to
capture concurrency within the model. Specifically, we introduce the concurrency
parameters cg, s € {M, F'}, where 0 < ¢; < 1, which scale the rate individuals form
additional partnerships - an individual who forms a partnership when single at a
rate fs- forms additional partnerships when in a relationship at a rate cgfs-. We
assume that individuals within partnerships form additional partnerships at this
rate despite the number of partnerships they are already in - that is to say, the rate
at which an individual who is currently in one partnership forms new partnerships
is the same as the rate at which an individual who is currently in two partnerships
forms new partnerships, and so on. This assumption is made by Kretzschmar and
Morris [1996] for a population with only one sex. We assume that all individuals
are capable of entering into concurrent partnerships - an alternative assumption
could be that only a fraction cg of the population form concurrent partnerships,
but they do so at their original rate fg,, similar to the assumption made by Gray

et al. [2009].

When an individual forms a new partnership, the probability of choosing a par-
ticular partner is proportional to the potential partner’s rate of forming new part-
nerships. For example, if a single male forms new partnerships at a rate fus., the
probability a female chooses that male when they form a new partnership is fs
divided by the total rate that males form new partnerships. If that male is in a
relationship, they form new partnersihps at a rate cpsfar-, and the probability a
female chooses that male when they form a new partnership is cps fasr divided by

the total rate that males form new partnerships.

In this model, we assume there is no distinction between the additional (concur-
rent) partnerships and the original partnerships, in contrast to Chapter 4, which
assumed one stable partnership and one additional (instantaneous) casual partner-

ship. At the extreme values ¢y = cp = 1, the rate individuals form partnerships
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is independent of their relationship status (as in the public health model described
by Choi et al. [2010] and the theoretical model described by Leung et al. [2012]),
while at the extreme values cp; = cp = 0, individuals are serially monagamous, and
the model described is an extension to the partnership model described in Chapter

4.

From this model we can obtain several outputs, which can be used for compari-
son with real-world data. For each sex, we can obtain both instantaneous degree
distributions (the number of partnerships individuals are in at any given time)
and yearly degree distributions (the number of new partnerships individuals form
within a year). We can also obtain yearly concurrency data for both sexes, i.e. the
proportion of individuals who have engaged in a concurrent partnership in the past
year. We could also obtain the duration of finished partnerships. Each of these
can be disaggregated by risk group. In this chapter, we fit models to yearly de-
gree distributions and the instantaneous proportion of single individuals. At both
cpy = cp = 1 and ¢py = ¢ = 0, the expected values of these can be obtained
exactly, which is described in Section 5.2.2 and Section 5.2.3 respectively. For the

full simulation model (0 < cg < 1), we also fit to yearly concurrency data.

The model can be simulated using a Gillespie algorithm, which simulates each
event and the time of that event explicitly. Doing so renders the most faithful
simulation of the underlying process, but is computationally expensive, and the
time for simulations grows exponentially with population size. Alternatively, it can
be simulated with a 7-leap algorithm, where time progresses in discrete steps (e.g.
days) and the number of each type of event is drawn from a Poisson distribution.
However, such an algorithm only provides an approximation to the underlying
process, as it excludes the possibility of multiple dependent events happening within
the same time-step. For example, using this algorithm, partnerships that are formed
within a time-step cannot dissolve in the same time-step, and individuals cannot

form an additional concurrent partnership within the same time-step. The choice
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of which algorithm to use is a trade-off between efficiency and accuracy. In this
chapter, we a use a 7-leap algorithm with time-steps of 0.25 days for model fitting,

and use a Gillespie algorithm for obtaining results from the fitted model.

5.2.2 Special case - ¢y =cp =1

Assuming that cy; = ¢p = 1, the rate individuals form partnerships is independent
of their relationship status. In this special case, both the instantaneous propor-
tion of single individuals and yearly degree distributions can be obtained analyti-

cally.

Obtaining proportion of single individuals for ¢y = cp =1

By considering partnerships between different risk groups separately, we are able to
calculate analytically the expected proportion of single individuals for ¢y = cp = 1.
Because partnership formation and dissolution happen at constant rates, the un-
derlying process is Markovian. By aggregating together individuals from the same
sex and risk class, and considering the number of partnerships they are involved in
with a given risk class from the opposite sex, we can obtain continuous-time Markov
processes for which the Master equations can be feasibly defined and solved. Con-
sidering an arbitrary male from risk class » who is currently in ¢ partnerships with
females from risk class ¢, the male forms new partnerships at a rate independent
of the number of partnerships they are involved in, while the rate of losing a part-
nership is proportional to the number of partnerships that individual is in. In fact,
this situation is described in the theoretical literature as a M/M /oo server queue
[Kulkarni, 2016]. Letting N§,. pq denote the number of men from risk class r who
have i partnerships with women from risk class ¢, the situation can be visualised

by the following state-space diagram:
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Figure 5.1: Graphical representation of number of partnerships between
males from risk class » and females from risk class g.

Here, basyrq is given directly from our break-up function:

bMTFq = b(er + qu) (51)

Considering the rate of partnership for an arbitrary male from risk class r, there

are two ways a partnership could form. Either that male forms a partnership with

quNFq
Zp prNFP’

from risk class ¢ forms a partnership with that male, which happens at a rate

a female from risk class ¢, which happens at a rate fu, or a female

frqNFq > JJ;C;’;NFP Hence furrrq is given by:
1 1
fvrrq = frr frgNF + 5.2
i Y, freNEy X, FupNup (5:2)

We can obtain the expected number of males from risk class r with no partnerships
with females from risk class g by solving the Master equations describing the above
situation. This is achieved by considering the proportion of individuals in each
state required to satisfy that the rate of exit from a particular state is equal to
the rate of entry to that state, i.e. we must solve the system of equations via the

principle of detailed balance:
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(i X barerg) Niprrg =frirrg Ny g for i = 1,2, .. (5.3)

7 fM’r‘Fq ! 1 0
< NMrFq — <erFq Z*'NMTFq (54)

We can solve the above system of equations as we know that ), Nj\/[r rq = Nur,

and so:

2 furrg ' 1
Ny = N ) = 5.5
= Morg 3 (et ) 55)
- N](\]/[rFq = NM’I’ X exp <_ fMTFq) (56)
erFq

So, the stationary distribution of number of partners for males of risk class r with
females of risk class ¢ is a Poisson distribution with mean far,rq/barrrq, multiplied
by Nprr. As the number of partnerships males of risk class r have with females
of different risk classes are independent of one another, the stationary distribution
for the number of partners for males of risk class r is a Poisson distribution with
mean q frrrq/brirrg, and the expected number of single males from risk class r

is given by:

Inrr
Ny, = Nagy x eap(~ 3 120050 (5.7)
q MrFq

Finally, the expected number of single males is given by summing over all risk

classes:
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= (- 3 2 59

r q bMTFq

Analogously, the expected number of single females is given by:

Np=3" (NFpem— > FpM’") (5.9)

» r prMr

The expected proportion of single males and females is then given by N](\)J /Ny and

N%/NF respectively, where Ny = ) Ny and Np = Zq Nrpq.

Obtaining yearly degree distributions for c¢y; = cp =1

Similarly, we can express the yearly degree distribution for males and females by
summing the appropriate Poisson distributions. Considering an arbitrary male
from risk class r, they enter into a partnership in two different ways. Either they
themselves form a partnership, which they do so at a rate fj;., or a female forms
a partnership with that individual, which occurs at a rate f},,, where f},,. is given

by:

freNFq  frrNar
Foar = (5.10)
M zq: NMT Zp fMpNMp

quFqNFq

= fur szer o Non (5.11)

The first fraction in Equation (5.10) is the rate of partnerships formed by females of
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risk group q with any specific male from risk group r, while the second fraction is the
probability of a female choosing a male from risk group r out of all possible males.
As both cases (far and f};,) are independent Poisson processes, the individual will
enter into partnerships at a rate fas. + f},, Thus, the yearly degree distribution of

males from risk group r, denoted Yy, is given by:

Z f F qN Fq
Y = Pois 1+ =4L——— 5.12
Mr (er ( Zp fMpNMp ( )
The yearly degree distribution for all males, denoted Yj;, will be given by the
sum of these degree distributions, relative to the size of that particular risk group,

i.e.

_ Zr NMrYMr

Y
M Nus

(5.13)

Analogously, the yearly degree distribution for all females, Y, is given by:

> NrqYrq > far N
Yr="9 _— = where Yr, = Pois 14 === 5.14
F NF Fq f Fq Zp pr NFp ( )

Removing the free parameter

If we consider the case where there is only one risk class for both males and females,
it is clear that the yearly degree distributions for men and women only depend on
the sum of their rates of forming partnership, described by a Poisson distribution

with mean fj;q1 + fr1, rather than the values of the rates in and of themselves; in
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other words, we are left with a free parameter. We constrain this free parameter
by making the assumption that the total rate of males forming partnerships must

equal the total rate of females forming partnerships, i.e. by setting:

ZfMTNMT:ZquNFq (515)
r q

This assumption does not impact the previous analyses, which holds for any valid
parameter set. Instead, this assumption determines the value of the final parameter
in a given parameter set. This constraint simplifies our expressions for Yi.,s €

{M, F} to:

Ysr = Pois(2fs) (5.16)

We assume that this free parameter persists for a higher number of risk classes of
men and women, though we do not show this explicitly in this chapter. Accordingly,
we make the above assumption in each of our models. Doing so, we arrive at the
surprising result that for this model, under the assumption that the total rate of
males forming partnerships is equal to the total rate of females forming partnerships,
the yearly degree distribution of males is independent of the risk structure of the

female population, and vice versa.

5.2.3 Special case - ¢y =cp =0

Assuming that ¢y = ¢p = 0 implies that individuals are serially monogamous, and

therefore we can obtain a closed set of ordinary differential equations describing
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the underlying partnership dynamics of the population. Doing so, we obtain an
extension of the pair-formation model described in Chapter 4. By solving these
equations numerically, we are able to obtain both the instantaneous proportion of

single individuals as well as the yearly degree distribution.

Obtaining proportion of single individuals for cy; = cp =0

We let [s,] denote the number of single individuals from sex s and risk class r, and
let [M, Fy] denote the number of partnerships involving a male from risk class r and

a female from risk class q.

Considering first the rate of change of [M,]. A male from risk class r forms a
partnership in two different ways: either they form a partnership themselves, which
they do so at a rate fys, or a female forms a partnership with that individual, which
occurs at a rate fj,, - here, the expression for f},. can be obtained by replacing
Np, terms in Equation (5.10) with [F,] terms, reflecting that only single individuals
can form new partnerships. A male from risk class r in a relationship with a female
from risk class ¢ becomes single again at a rate b(far + frq), and to obtain the
total rate that males from risk class r re-enter the single population, we must sum
over all female risk classes. Doing so, and by considering the analogous situation

for females, we obtain the following equations:

d[Mr] N Zq qu[Fq]

dt __fMT[M’/‘] (1+ prMp[Mp]> +b§(er+qu)[MTFq] (517)
dlFg] _ > e [My]

a frqlFy] (1 + Zp FrolFy) ) + sz:(er + frg) [M, Fy] (5.18)

Considering partnerships between males from risk class r and females from risk

class g, partnerships are formed in two different ways, either a male from risk class
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r forms a partnership with a female from risk class ¢, which happens at a rate

fMTM or a female from risk class ¢ forms a partnership with a male from

Zp TrplFp] 2
3 4 f]W'r[M'r] : :
risk class r, which happens at a rate quizp Pty Partnerships break up simply

at a rate b(fuyr + frq). The equation describing the dynamics of partnerships is

then given by:

1 1

d[M, F,] N
Zi pr[Fp] Zz fMp[Mp]

dt

= frr [My] frqFy] ( > = b(frr + frg) M Fy

(5.19)

The above equations result in a system of ky; + kp + (ky X kp) equations. These
equations can be solved numerically until equilibrium, and the expected propor-
tion of single males and females is given by Y .[M;|*/Ny and >, [F;]* /NF respec-
tively.

Obtaining yearly degree distributions for cy; = cp =0

The above system can be extended to obtain yearly degree distributions for ¢y =
cr = 0. Specifically, we extend the above system by explicitly tracking the number
of new partnerships individuals have had, up to a maximum of n new partnerships.
Letting [si] denote the number of single individuals from sex s and risk group
r who have had ¢ new partnerships in the last year, and letting [M;Fg | denote
partnerships between males of risk class » who have had ¢ new partnerships in the
last year and males of risk class ¢ who have had j new partnerships in the last year.
We initialise this by setting [s%](0) = [s,]* and [MTOF(?](O) = [M,F,|*, i.e. we set
the initial values of all states indicating no new partnerships to be the equilibrium
values obtained from the previous system, and set all other states to have an initial

value of zero. Tracking the number of new partnerships individuals have, we arrive
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at the following system of equations:

d[M]
dt

d[F?)

q9

dt

d[M]
dt

d[Fy]

dt

d[MFy]
dt

kol

d[M;Fy]

dt

d[M"F!]

T 4q

dt

dM}EY

dt

dME?

T~ 4q

dt

_ 0 ZzquFq[FqL 0 =0
= fMT‘[Mr] <1+ ZJ Epf]\/[p[Mg]> +b - (f]W'r"i_qu)[MrFq]
_ 0 Z]ZTfMT[M’rZ] 0 =0
=l (14 R ) Vs
> 2oq fralFY]
=— fur Mﬁ i B
! ]<H >, Eprp[M£]>

03N (fare + frg) IMEF]] for 1<k <n
i q

ey (1 S )
+bZZ(er + frg)[MFy) for 1<1<n
== b(farr + frg) [MOF)
. k—1 -1 1 .
=fue My frglFg <ZZ >, frplF] T PIDIN f]v[p[Mg]>

= b(farr + frg)[MIF)] for 1 < k,l <n

1 1

=Fare (M) + (M) g [y (Z-z Fel B TS5, fa M)

—b(farr + frg) [IMPF)] for 1<l <n

1 1
S TrlE] Y, S, M)

—b(frrr + frg) IMFF) ] for 1<k <n

Zer[Mrk_l]qu([F;_l] +[F']) <

1

)
)

1

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

=fare (M7 + M) frq (B 1+ (D) (

- b(f]\/fr +qu)[MrnF;]

S TelF] S, S, M) >

(5.28)

We obtain yearly degree distributions by running this system of equations for a year.

The above equations result in a system of (n + 1)(ky + kr) + (n? + 1) (kpm X kr)
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equations. Because of this, the computational benefits of this approach diminish
rapidly. However, the benefit of this method is that the expected yearly degree
distribution can be derived exactly in the case of ¢y = c¢p = 0. In Figure 5.2, we
demonstrate the soundness of the methods to obtain yearly degree distributions for
cy = cr =1 and c¢jyr = cp = 0 by comparing them to yearly degree distributions

obtained from explicit stochastic simulation.
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Figure 5.2: Comparing yearly degree distributions obtained from exact
methods and from simulation for c¢j; = ¢cp = 1 and ¢y = ¢ = 0. Here we
demonstrate the accuracy of the exact methods described for ¢y = ¢p =1 (above)
and ¢y = cp = 0 (below) by comparing their results against yearly degree distri-
butions obtained from direct simulation (circles). For both sexes, we see excellent
agreement between exact methods and simulation, both for models fitted to Natsal
data (blue for cpy = ¢ = 1 and green for c¢py = cp = 0) and for models with
formation rates and risk group sizes chosen arbitrarily (red). Simulated degree dis-
tributions here are obtained from 100 simulation runs, and error bars refer to 95%
prediction intervals.
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5.3 Fitting the network model

5.3.1 Natsal data

The Natsal is a decennial survey, asking a representative sample of participants
across the UK a range of questions concerning their sexual behaviour [Mercer et al.,
2013]. These surveys can be used to inform underlying behavioural parameters in
epidemiological models of STI spread, as done by Datta et al. [2018], Choi et al.
[2010], and Smid et al. [2018].

In this chapter we use data from Natsal-3, a survey of 15,162 adults between
September 2010 and August 2012. Specifically, we consider data from the Natsal-3
concerning heterosexual 16-24 year olds. We focus on this age bracket owing to the
disproportionate number of STI diagnoses. Considering heterosexual males diag-
nosed in 2019 in England, 53.5% of chlamydia diagnoses, 42.2% of gonorrhoea diag-
noses, and 31.5% of anogenital herpes diagnoses were aged 15-24 years; considering
heterosexual females diagnosed in 2019 in England, 69.2% of chlamydia diagnoses,
60.8% of gonorrhoea diagnoses, and 45.5% of anogenital herpes diagnoses were aged
15-24 years [Public Health England, 2019]. To consider a heterosexual population,
we constrain the data to include only those who have ever had a heterosexual sexual
partnership (coded everhet). Using this definition, we capture the sexually active
population of this age range. This definition is not based on sexual orientation,
and therefore includes individuals who do not identify as exclusively heterosexual.
Restricting to this age bracket, using this criterion to determine the sexually active
heterosexual population, and filtering out respondents with anomalous answers, we

are left with a sample of 1432 females and 1091 males.

Of these individuals, we can obtain the number of new (heterosexual) partnerships
each individual has had in the previous year (coded hetnonew), from which we

can construct the yearly degree distributions for both males and females. For both
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sexes, the majority of respondents report having either 0 or 1 new partnerships -
(73.2% of males and 80.5% of females). Only 6.7% of males and 3.2% of females
report having five or more new partnerships, 2.0% of males and 0.63% of females
report having 10 or more new partnerships, and 0.64% of males and 0.07% of females

(only one respondent) report having 20 or more new partnerships.

We obtain the number of single male and female individuals from their response
to the question of whether they are likely to have sex again with their most re-
cent partner (coded risexagn). If respondents answered ‘Yes’ or ‘Probably’, we
assumed that individuals were involved in a sexually active partnership, other-
wise we assumed that individuals were single. Using this criterion, we find that
31.9% of male respondents and 21.9% of female respondents are defined as single.
Regarding concurrency, we obtain whether individuals have been involved in a con-
current partnership within the last year, coded lypartn2 - finding that 13.8% of
male respondents and 11.4% of female respondents report being involved in such a

partnership within the last year.

5.3.2 Fitting to Natsal data

Balancing degree distributions

While yearly degree distributions of males and females will differ, within a closed
population the total number of new heterosexual partnerships that males have will
necessarily equal the total number of new heterosexual partnerships that females
have. This is a necessary feature of the individual-based model described in this
chapter. However, this is in general not a feature of observed yearly degree dis-
tributions, where typically the male population report a higher number of new
partnerships than females [Mitchell et al., 2019]. Under the assumption of a closed
population, and that the size of the sexually active population of males aged 16-24

years is equal to that of females 16-24 years, then the average number of partners
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reported from males should approximately equal the average number of partners
reported from females. However, from the data we consider, males report an aver-
age of 1.43 (Clgsy = [1.27,1.60]) new partners, while females report an average of
0.927 (Clys4 = [0.76,1.09]) new partners. Several suggestions have been made to
explain this persistent discrepancy, including undersampling of female sex workers
[Brewer et al., 2000], the cumulative impact of rounding errors [Brown and Sin-
clair, 1999], and cultural factors that cause either the exaggeration of partnerships
by males or the understatement of partnerships by females [Fisher, 2009]. To fit to
our model, we make the simplifying assumption that females underreport the true
number of new partnerships they make, while male estimates are accurate. While
doing so has some justification within the literature [Alexander and Fisher, 2003],
we also do so because it is a conservative assumption, in the sense that making
such an assumption will result in a model with a larger number of partnerships,
where consequently infection will spread more rapidly. Doing so is also convenient
mathematically. Letting p = 0.927/1.43 be the probability that a new partnership is
reported by a female, letting n be the largest number of partnerships obtained from
a simulation, and letting Yz denote the female yearly degree distribution obtained
from a model, then the adjusted female degree distribution, Ylff can be obtained by

assuming that reported new partnerships are binomially distributed, i.e.

v =3 ()P - 0 vt (5.29)

j=i

In the case of ¢y = cp = 1, the yearly degree distributions of each risk class r
are Poisson distributed. Accordingly, adjusted female degree distributions in this

instance can be given by adjusting Equation (5.16) :
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YF. = Pois(p X 2fpy) (5.30)

Fitting models via MCMC

In this chapter, we use a basic Metropolis-Hastings (MH) algorithm for fitting
[Metropolis et al., 1953; Hastings, 1970]. While using this type of algorithm can
be slow to converge, especially for high parameter models, we find that this fitting
regime works adequately for convergence for all models fitted. For models consisting
of kps male risk groups and kg female risk groups with cpy = ¢p = 0 or ¢py =
cp = 1, 2kp 4+ 2kp — 2 parameters must be fitted: kg — 1 parameters specify
the proportion of the population in each risk group (with the size of the last risk
group specified by 1 — Z;?S:_ll Nsj), kar + kp — 1 parameters specify the formation
rates of each risk group (with the formation rate of one risk group determined to
satisfy > . farr Nar = Zq frgNpq), and one parameter specifies the partnership
dissolution parameter b. For the full simulation model, ¢); and cg must also be

fitted, meaning 2kp; 4+ 2kp parameters must be fitted.

MCMC approaches require defining the likelihood function of a model given the
data, L(0|x), where 6 denotes the parameters of the model and where = denotes
the observed data. We let Y denote the yearly degree distribution of sex s obtained
from the model (expressed in terms of proportions), letting ach denote the observed
yearly degree distribution of sex s (expressed in terms of numbers), and letting
X5 = >, xY (i), i.e. the sample size of sex s , then the likelihood of obtaining
the sampled degree distribution z) from the degree distribution Y; is given by the

probability mass function of the multinomial distribution:
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X! oY (i
Ly, = m 1:[3/3(1) s @ (5.31)

While the multiplicative constant ﬁf;'() cannot be feasibly calculated owing

7)!
to the large factorial terms, we can use the above definition to calculate the log

likelihood of obtaining the sampled degree distribution:

log(Ly,) = Z zY (i) log(Ys(d))) + KY (5.32)

where KY is some constant that only depends on the data. Because K} only
depends on data, it is irrelevant when conducting our MCMC fitting approach, as

it does not affect the probability of choosing a new set of parameters.

Letting S5 denote the proportion of single individuals of sex s obtained from the
model, and let 2% denote the observed number of single individuals of sex S, the
likelihood of sampling z% given that S, individuals in the population are single is
given by the probability mass function of the binomial distribution with parameters
X, and Ss. Again, the likelihood cannot be computed directly, but the log likelihood

is easily computable:

log(Ls,) =25 log(Ss) + (X, — 25) x log(1 — (S,)) + K= (5.33)

Similarly, letting Cs denote the proportion of individuals of sex s who had a con-
current partnership in the past year obtained from the model, and xso denote the

observed number of individuals of sex s reporting a concurrent partnership, the
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likelihood of sampling ¢ given C, is given by the probability mass function of the

binomial distribution with parameters Ny and Cj.

log(Lc,) =2 1log(Cs) + (X, — 28) x log(1 — (Cy)) + KE (5.34)

For the instances ¢y = cp = 1 and ¢j); = ¢ = 0, where concurrency is not fitted
to explicitly, the log likelihood used for the MCMC approach is given by summing
the log-likelihoods of the observed degree distributions and number of singles for
both sexes. For the full simulation model, the log-likelihoods from the observed

levels of concurrency are also added:

log(L) =Y log(Ly,) + log(Ls,) + log(Lc, ) (5.35)

S

For fitting, male degree distributions are counted up to 20 new partnerships (i.e.
individuals reporting 20 or 21 new partnerships in a year are both classified as ‘20
or more’) while female degree distributions are counted up to 10 new partnerships.
For both sexes, ~ 99.4% of sampled individuals fall below their respective cut-
offs. These are specified, rather than the maximum number reported by both
males and females, so that the full simulation model consistently returns finite
estimates of log(L). If the chance of observing an individual within the model with
n partnerships is too low, then on some runs there will be no such individuals,
and in which case the log likelihood will return a value of —oco. Doing so also
reduces the computational intensity of running the c)y = ¢p = 0 model. While for
cy = crp = 1, we do not encounter the same problems, we still use the same cut-offs

for consistency between models.

To fit models, we start at an arbitrary initial parameter set . The next candidate

parameter set 6 is sampled from a multivariate distribution with mean 6, covari-
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ances equal to zero, and variances equal to 0.05 x 8, but are restricted to parameter
sets that do not violate the underlying assumptions of the parameters (e.g. pa-
rameter sets that suggest > N > Nar, fr1 > fra2 or b < 0 are not considered).
We let the algorithm run for a burn-in period of 100,000 parameter sets. After
which, the next 100,000 parameter sets are taken as the posterior distribution of
the parameters given the data. In all cases, doing so allows the log likelihood to

stabilise around a constant value.

5.3.3 Model selection

Increasing the number of risk groups within each model should always improve
the fit to the underlying data. However, this comes at a cost - as the number of
model parameters increases, so does the time it takes to fit the parameters of the
model. Moreover, by increasing the number of risk groups, one runs the risk of
overfitting the model, meaning the model may generalise badly to other scenarios.
To assess the optimal number of risk groups, we use an information criterion, a
standard method of model selection within the literature. While the Akaike In-
formation Criterion and Bayesian Information Criterion are the most commonly
used, these measures only assess the quality of a model at its maximum likeli-
hood estimate [Kuha, 2004]. As we obtain a distribution of possible parameter
sets that could generate the underlying data, we wish to use a criterion that ac-
counts for the quality of a distribution. Methods that account for the quality of
distributions, such as Watanabe-Akaike-Information Criterion [Watanabe, 2013],
and leave-one-out cross-validation [Vehtari et al., 2017], require calculation of the
likelihood explicitly, rather than just the log-likelihood. Because of this, we use the
DIC, a criterion for model selection that applies to distributions, and can be calcu-
lated solely from log likelihoods [Spiegelhalter et al., 2002]. Defining the deviance
as D(0) = —2log(L) + C, where C is some constant, the DIC can be calculated

as:
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DIC =2D(6) — D(9) (5.36)

For each model, we select the number of risk groups that produces the lowest DIC.
It is important to note that the DIC is only valid when posterior distributions are
approximately multivariate normal - a property satisfied for the posterior distribu-
tions of our models (Figures 5.3, B.1 and B.2). DIC values here should only be used
to assess the optimal number of risk groups for each model, not to select between
the three models. The the log-likelihood for the full simulation model includes log-
likelihoods from the observed levels of concurrency, resulting in higher DIC values
in cirtue of this. Further, while the c); = cp = 0 and cp; = ¢ = 1 log-likelihoods
are comprised of the same components, the most suitable model is likely more
influenced by the suitability of the underlying assumption regarding concurrency.
While there has been recent concerns about the DIC as a model selection criterion
[Celeux et al., 2006; Pooley and Marion, 2018], we believe this criterion is sufficient

for our purposes.

5.3.4 Fitted models

By comparing the DIC obtained for each model, we obtained the optimal number of
risk groups for males and females to match the data for each of our three models.
Here, we only explore situations where kjy; = kp, i.e. where there is the same
number of risk groups for both males and females, although this need not necessarily

be the case.

In Table 5.1, we compare the DICs obtained for different models. We stress that
the DIC values here should only be used to assess the optimal number of risk groups

for each model, not to select between the three models. Selecting between models
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Table 5.1: DIC values and summary statistics for a varying number of
risk groups. Bold typeface within the table indicates the optimal number of risk
groups for each model, given by the number of risk groups that minimises the DIC.

Model No. of risk DIC KS statistic | absolute A | K8 statistic | absolute A
groups + constant (male) in singles (female) in singles
(male) (female)
cy=cp=1 1 1777.6 0.180 0.057 0.140 0.043
2 210.7 0.031 0.056 0.022 0.045
3 7.7 0.003 0.060 0.009 0.041
4 36.1 0.022 0.021 0.004 0.010
5 80.7 0.021 0.022 0.007 0.011
Full model 3 1963.4 0.008 0.038 0.008 0.031
4 1969.4 0.008 0.041 0.007 0.035
cyy=cp =0 1 3241.1 0.253 0.202 0.21 0.102
2 235.3 0.030 0.076 0.019 0.024
3 59.15 0.007 0.056 0.006 0.044
4 59.24 0.009 0.055 0.007 0.045

depends on the suitability of the underlying assumptions around concurrency, and

its impact on transmission dynamics. Additionally, the DIC is inevitably higher

for the full model, where 0 < cp;,crp < 1, as in this instance we are also fitting

to observed concurrency levels. In this table, we also include values obtained for

the the absolute differences between the proportion of singles from the models and

observed in data, and the Kolmogorov-Smirnov (KS) statistics for the yearly degree

distributions of each sex, defined as:

KS, = sup|Y(i) — ¥ (i)
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Figure 5.3: Posterior distribution obtained from MOCMC for the full
model. Here, we plot the posterior parameter distributions obtained via a MH-
algorithm for the full model (where 0 < cpr,cp < 1). We observe that the distri-
butions are approximately normally distributed. Distributions are obtained from
100,000 iterations of a MH-algorithm, after an initial burn-in period of 100,000
iterations.

For the cpr = ¢p = 0 model and the full simulation model, only three risk groups



are optimal, while for the cy; = cp = 1 models, four risk groups are optimal. Upon
inspection of the posterior parameters, we see that the size of one of the female
risk groups is extremely small, while the formation rate of the least active male
risk group is almost zero. The c); = cg = 1 model is thus best fitted by assuming
that there are three sexually active risk male and female risk groups, and one
additional sexually inactive male risk group. The improved fit from including an
extra risk group primarily comes from being able to capture the observed proportion
of singles better, as evidenced by the absolute difference in singles for both males

and females.

Table 5.2 contains the mean parameter values obtained for each of the optimal
models, seeing similar trends in the size and formation rates of risk groups between
models. Each model contains a large group of low or very-low risk individuals
for both males and females, constituting between 86.6 — 89.8% of the male and
75.4 — 79.7% of the female population respectively, who form partnerships at a
relatively modest rate (in the cpy = ¢p = 1 model, this includes a subgroup of
extremely inactive males). Each model contains a smaller group for each sex of
medium-risk individuals, and a yet smaller group of high-risk individuals. These
results signify a long established feature of sexual networks - a ‘core’ group of
more sexually active individuals who are integral in driving the spread of sexually
transmitted infections [Yorke et al., 1978]. Naturally, partnership formation rates
are lower for the cj; = cg = 1 model than the full model and c¢j; = ¢ = 0 model,
as in this instance individuals do not have to wait until they are single to form

partnerships at a high rate.

From fitting the full model, we obtain very low values of cj; and cp as the opti-
mal choice to match observed concurrency levels (Table 5.2 and Figure 5.3). This
result agrees with our intuition that in general, there is a strong social preference
for monogamous relationships within the heterosexual population of the UK. Ac-

cordingly, the values of the other fitted parameters are relatively similar to those
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Table 5.2: Mean parameter values for optimal models. Note that Nj; and
N values presented in the table refer to the proportion of each sex belonging to
each risk class, as opposed to the absolute numbers.

Parameter | Risk group | cpr = ¢ = 1 model | full model | ¢pr = cp = 0 model
mean (sd) mean (sd) mean (sd)
fu Very low | 4 x 1077 (1 x 1077) - -
Low 0.48 (0.03) 1.16 (0.13) 1.12 (0.13)
Medium 2.47 (0.25) 13.09 (2.28) 16.18 (1.42)
High 8.29 (0.57) 65.45 (7.16) 80.49 (7.03)
Ny Very low 0.167 (0.022) - -
Low 0.731 (0.023) 0.866 (0.025) 0.868 (0.013)
Medium 0.083 (0.013) 0.109 (0.026) 0.111 (0.013)
High 0.019 (0.003) 0.025 (0.006) 0.021 (0.004)
fF Very low 0.32 (0.03) - -
Low 1.09 (0.30) 0.74 (0.25) 1.10 (0.19)
Medium 1.78 (0.32) 9.39 (2.10) 10.09 (1.48)
High 6.00 (0.79) 47.31 (11.27) 50.43 (6.17)
Np Very low 0.797 (0.032) - -
Low 4x 1074 (1 x 107%) | 0.754 (0.058) 0.755 (0.045)
Medium 0.179 (0.030) 0.216 (0.054) 0.217 (0.042)
High 0.023 (0.007) 0.031 (0.013) 0.029 (0.007)
b - 0.375 (0.021) 0.194 (0.015) 0.191 (0.010)
CuM - 1 0.054 (0.009) 0
cp - 1 0.019 (0.005) 0
obtained from the c¢py = ¢p = 0 model, which assumes serial monogamy. His-

tograms describing the posterior distributions for the c); = cp = 1 model and

ey = cp = 0 model are included as an appendix (Figures B.1 and B.2). For
most parameters, we observe little correlation between fitted parameters for the
full model (Figure 5.4). However, we observe a clear trade-off between the sizes of
the first two risk groups for both males and females - i.e. larger values of Njs1 or

Np1 imply smaller values of Njso or Npo, and vice versa.

Compared to observed data, the cpy = ¢ = 0 model underestimates the propor-
tion of single males and overestimates the proportion of single females. This is a
necessary feature of this model - in a serially monogamous heterosexual population,

with equal numbers of males and females, the number of single males is necessarily
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the number of single females. This underestimation of single males and overesti-
mation of single females also occurs in the full model, owing to the low values of
cy and cp that emerge from the fitting process that dictate that partnerships are
predominantly monogamous. However, we see that each of the models produces

yearly degree distributions that fit closely to observed data (Figure 5.5).
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Figure 5.4: Pairwise scatter plot of posterior distribution for the full
model. By comparing scatter plots of the fitted values of each parameter for
the full model (0 < cpr,cp < 1), we observe that there is little correlation between
most parameters. Notable exceptions are Ny against Njso, N1 against Npo,
which are negatively correlated with one another. Distributions are obtained from
100,000 iterations of a MH-algorithm, after an initial burn-in period of 100,000
iterations.
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Figure 5.5: Fitting models to yearly degree distributions and proportion
of singles. In the first three rows, we compare the yearly degree distributions
obtained from the fitted models (blue - ¢py = ¢p = 1, orange - full model, green
ey = crp = 0) and yearly degree distributions reported from Natsal-3 (circles).
There is close agreement between models and observed data for each model for
both males (left) and females (right). Shaded areas refer to 95% prediction inter-
vals and error bars refer to 95% confidence intervals. In the last row, we com-
pare the proportion of singles obtained from the fitted models against the reported
proportion of singles from Natsal-3, observing that the fitted models in general
underestimate the proportion of single males and overestimate the proportion of
single females. Results are generated from 100 parameter sets sampled from fitted
posterior distributions. Whiskers refer to maximum and minimum values.
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5.3.5 Network characteristics

We can compare the emergent network characteristics that are present in each of
the fitted models. In particular, we can compare the levels of concurrency present
in the cp; = c¢p = 1 model, which assumes that partnership formation rates are
independent of relationship status, to the full model, which has been explicitly
fitted to yearly concurrency data (the cpr = cp = 0 model assumes that there are
no concurrent partnerships). For the ¢y = ¢p = 1 model, on average 47.5% of males
and 47.2% of females engage in a concurrent partnership in a year, markedly higher
than both the observed levels from Natsal-3 (13.8% for males and 11.4% for females)
and the levels obtained from full model (15.8% for males and 10.6% for females),
which has been explicitly fitted to concurrency. Further, in the c¢j; = cp = 1 model,
a significant proportion of both the male and female population are engaged in
multiple active relationships at any given time - at equilibrium, 25.5% of males and
22.8% of females are engaged in three or more partnerships in the ¢y = cp = 1
model. In contrast, individuals engaged in more than two partnerships at any given
time are extremely rare in the full model (0.3% of males and 0.08% of females).
As a consequence, large connected components of individuals interconnected by
sexual relationships emerge in the cpy = c¢p = 1 model, while in the full model
the population consists of islands of individuals, pairs, and very small connected

components.
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Figure 5.6: Comparing instantaneous and yearly levels of concurrency be-
tween the full model and the cy; = ¢y = 1 model Top row - we compare
the proportion of individuals who have engaged in a concurrent partnership in a
year in the ¢py = c¢p = 1 model (blue) and the full model (orange) to for both
sexes (males left, females right) against reported levels of concurrency from Natsal-
3. Middle row - we compare the instantaneous levels of concurrency in each of
these models by plotting the instantaneous degree distributions of both males and
females - observing that individuals in many partnerships are commonplace in the
cy = cp = 1 model. Results for the first four plots are generated from 100 pa-
rameter sets sampled from fitted posterior distributions. Bottom row - we generate
illustrative networks of 200 individuals for the cpy = c¢p = 1 model (left) and the
full model (right), observing that large interconnected components can emerge from
the underlying behavioural assumptions of the cy; = ¢ = 1 model. Here, light
blue designates males and yellow designates females.

150



The proportion of both males and females who are low, medium, or high risk is
roughly the same across models. Accordingly, we can compare the proportions
of singles and levels of yearly concurrency within each risk group to assess the
difference between these models. For each model, the probability of being single
decreases with increasing risk behaviour. Only a very small proportion of medium
or high risk individuals are single at equilibrium in the cyy = ¢ = 1 model;
as illustrated in Figure 5.6, these individuals are typically engaged in multiple
relationships at any given time. This is in contrast to the full model and cj; =
cr = 0 model, where a larger proportion are single at equilibrium. Within risk-
group levels of concurrency also vary drastically between models (Figure 5.7). While
clearly there are no concurrent partnerships in any risk group in the cjy = cp =0
model, for the other two models the proportion of individuals engaged in a yearly
concurrent partnership increases with risk group. In both of these models, males
are more likely to have been involved in a concurrent partnership than females.
However, the c)s = ¢ = 1 model sees a larger proportion of individuals engaged in
concurrent partnerships in every risk group - in this model, almost all medium or
high risk male individuals will engage in a concurrent partnership in a year. In the
full model, low-risk males and females only rarely engage in concurrent partnerships
(6.4% of low-risk males and 2.1% of low-risk females), while concurrency is fairly

common among low-risk individuals within the c); = ¢ = 1 model.

5.4 Modelling transmission and control

5.4.1 Transmission dynamics

Acting on this dynamic partnership network, we consider a disease with SIS-
dynamics. While many studies assume that transmission within a partnership is a

Poisson process, i.e. with infection happening at a constant rate over time across
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Figure 5.7: Comparing levels of singles and levels of concurrency across
models delineated by risk group. Top row - we compare the proportion of
the population who belong to ‘low or very low’, ‘medium’, of ‘high’ risk groups,
for each model - ¢pr = ¢p = 1 (blue) full model (orange) cpr = cp = 0 (green),
for both males (left) and females (right), observing that similar proportions fall
into each risk group across models. In the middle row, we consider the proportion
of individuals within each risk group who are single, while in the bottom row, we
consider the proportion of individuals within each risk group who have been involved
in a concurrent partnership in a year. Plotted results are averages obtained from
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partnerships, for HIV it has been observed that within partnerships infection hap-
pens predominantly in the early stages of a relationship [Peterman et al., 1988],
although the specific infectivity profile of different ST1Is will depend both upon bio-
logical and social factors. Because of this, in this chapter, we make the simplifying
assumption that upon partnership formation, an infected individual infects their
partner with a probability p,. A newly infected individual then infects each of their
other (susceptible) partners with that probability, and so on until no new infections
are recorded. Thus, at each time step infection percolates outward from a newly
infected individual. This assumption also captures that the probability of infection
across partnerships will also strongly depend on behaviour within a partnership,
such as condom use - it is unclear how such behaviour varies over time in real-world
relationships. However, this assumption may underestimate the probability of in-
fection across longlasting partnerships and overestimate the probability of infection
across shorter partnerships. Using this assumption omits the duration from part-
nership formation to infection onset, which may have some impact the trajectory
of incidence through time. Our results focus on the endemic prevalence obtained
through the model, rather than the time-evolution, which we would not expect to
be largely effected by this assumption. Recovery from infection occurs at a constant

1 mirroring the assumption made in Chapter 4.

rate -y, which we set as v = 2year™
Upon recovery from infection, an individual is reinfected with probability p, from

each of their infected partners.

5.4.2 Transmission results

All simulations consist of a population of 2000 males and 2000 females. Before
infection is introduced to the population, simulations run for 20 years, in order to
reach an equilibrium of partnership dynamics. After this, infection and any control
measures are introduced to the populations, and simulations have a further burn-

in period of 10 years. When infection is introduced, all individuals are infected
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- we find that this assumption reaches an endemic prevalence more quickly than
assuming a small initial infected population, and also avoids the issue of stochastic
extinction early on in simulations. Prevalence estimates are then taken as the mean
values over that following year. For each model considered, 100 different param-
eter sets sampled from the obtained posterior distribution are simulated. Results
show the mean value of these simulations, while bounds refer to 95% prediction

intervals.

As these models differ in their underlying network structure, it is natural to assume
that epidemics acting upon these dynamic networks would have different epidemi-
ological dynamics. We compare the endemic prevalence obtained from each model
as we vary the probability of infection across a partnership (Figure 5.8). For each
model, the prevalence of infection is higher within the female population than in
the male population, consistent with observed levels of STIs within heterosexual
populations [Public Health England, 2019]. While this trend must emerge due to
the different behaviours of males and females, which result in differing yearly de-
gree distributions, an intuitive reason why this occurs is less clear. Medium- and
high-risk females form partnerships at a lower rate than medium- and high-risk
males, but there are more medium- and high-risk females than males. Females also
engage in less concurrent partnerships than males. An answer may, in part, be
found by considering that an individual’s risk of infection is largely determined by

their partner’s behaviour, rather than their own.

Infection persists within the population at much lower probabilities of infection
in the ¢py = ¢p = 1 model. For example, at a 30% probability of infection, the
disease does not survive in either the full model or the c); = cg = 0 model, but
in the cpy = cgp = 1 model, around 20% of individuals are infected. While the
prevalence of the disease is higher in the full model than in the c¢;; = ¢ = 0 model,
the endemic prevalence follows a similar trajectory in these models. At a 100%

probability of infection across contacts, the emergent endemic prevalence is similar
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across all three models.
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Figure 5.8: Comparing prevalence across models. Here we plot how the
endemic prevalence within the population varies for each model as we increase the
probability of infection across partnerships, p,. Above left, we consider the endemic
prevalence in males; above right, we consider the endemic prevalence in females;
Below, we consider the combined endemic prevalence. While for all models, females
in general have a higher endemic prevalence than males, both follow similar trends
as p, is increased. We observe that the trajectory of the cpy = c¢p = 1 model (blue)
differs substantially from that of the full model (orange) or the cpr = ¢ = 0 model
(green). Plotted results are averages of 100 epidemics generated from parameters
sampled from the fitted posterior distributions.

In practice, instead of considering a disease with a fixed probability of infection,
models are more likely to be calibrated to observed prevalence within the popula-
tion. From Figure 5.8, we can obtain the probability of infection required to satisfy
a given endemic prevalence. For the cy; = c¢p = 1 model, the full model, and the
cy = crp = 0 model respectively, transmission probabilities of 0.474, 0.803, and
0.846 are required to obtain a 35% prevalence, the level of infection used to as-

sess the impact of vaccination, while transmission probabilities of 0.248, 0.407, and
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0.448 are required to obtain a 5% prevalence, the level of infection used to assess

the impact of contact tracing.

At these prevalences, we can compare the within risk group prevalence in each
of the models (Figure 5.9). In all models prevalence increases with risk group, as
expected. At 35% population prevalence the within risk group prevalence is similar.
At 5% population prevalence, high risk males and females have a lower prevalence
in the ¢cpy = ¢p = 1 than in the full model or c); = cp = 0 models, indicating
that prevalence is less concentrated in high-risk individuals. There is considerable
variation in within-risk group prevalence at 5% prevalence for medium and high
risk groups. The large prediction intervals in the top panel of Figure 5.9 are, in
part, a consequence of the variability in endemic prevalence between simulations -
while transmission probabilities are set to obtain an average 5% prevalence, there
is variability between the prevalence obtained for a given parameter set (indicated

by the prediction intervals in Figure 5.8c).

5.4.3 Modelling control measures

We consider the impact of two different control measures on disease prevalence:
vaccination and contact tracing. To consider the impact of vaccination, we assume
that individuals are vaccinated with a probability py at time ¢ = 0, and have full im-
munity from the modelled pathogen. We assume that immunity conferred through
vaccination is longlasting and does not wane over the period of the simulation. We
consider the impact of vaccination both when it occurs uniformly at random across
the population, and when higher risk individuals are vaccinated first. To assess the
impact of contact tracing, we consider a situation where only individuals recover
following treatment, i.e. there is no spontaneous recovery. After individuals have
been treated, each of their partners in the last T}.qc years is contacted with a prob-

ability pirace, and all contacted infected individuals seek treatment and recover from
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Figure 5.9: Comparing within risk group prevalence across models. Here,
we compare the differences between within risk-group prevalences across models,
when there is an average endemic prevalence of 5% (above) and an average endemic
prevelance of 35% (below). In all models, at both prevalences, and across both
sexes, within risk-group prevalence increases with risk group. At 5% prevalence,
we see a lower prevalence in the high risk males and females for the cpy = cp =1
model (blue) compared to the full model (orange) or the c¢yr = c¢p = 0 model
(green), suggesting infection is more diffuse across the population in this model.
At 35% prevalence, within risk-group prevalence is fairly consistent across models,
despite the different underlying model assumptions. Plotted results are averages of
100 epidemics generated from parameters sampled from the fitted posterior distri-
butions, while error bars indicate 95% prediction intervals.

infection. If individuals are successfully traced, and are infected, their partners in
the last T},.4ce years are then contact traced. In this instance, similarly to infection,

contact tracing percolates outward from a newly recovered individual.

To compare the impact of control measures acting on the full simulation model
against results obtained from c¢p; = ¢p = 0 and ¢pr = ¢ = 1 models, we match

models to prevalence data, finding the probability of infection required to obtain
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a certain mean endemic prevalence for each model. To assess the impact of vac-
cination, we consider a sexually transmitted infection where there is 35% endemic
prevalence, reflecting the pre-vaccination prevalence of HPV of females aged 16-24
years in England prior to vaccination [Howell-Jones et al., 2012]. To assess the im-
pact of contact tracing, we consider a sexually transmitted infection where there is
5% endemic prevalence, a prevalence comparable to that of chlamydia [Gray et al.,

2009; Public Health England, 2019].

5.4.4 Control by vaccination results
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Figure 5.10: Comparing the impact of untargeted and targeted vaccina-
tion across models. Here,we compare the impact of untargeted (left) and tar-
geted (right) vaccination on combined endemic prevalence, for the cpy = c¢p = 1
model (blue), the full model (orange), and the ¢y = c¢p = 0 model (green). For
untargeted vaccination, as the proportion of the population who are vaccinated, all
three models similar trends. For targeted vaccination, while models follow different
trends, the required level of targeted vaccination to eliminate the disease is similar
across models. Plotted results are means of 100 epidemics generated from parame-
ters sampled from the fitted posterior distributions, with shaded areas referring to
95% prediction intervals.

Setting the probability of infection for each model to be such that there is 35%
endemic prevalence within each model, we consider the impact of vaccination. First,
we consider the impact of untargeted vaccination, where vaccinated individuals are
chosen at random across the population. Prevalence within the population follows

similar trajectories in all three models, in particular the full model and ¢y = cp =0
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models (Figure 5.10). For the cyy = ¢ = 1 model, a slightly lower proportion of the
population is required to bring the disease to below 0.1% prevalence - (70.7%, while
the full model and the ¢y = ¢p = 0 model both require 74.7% to be vaccinated),
although all required levels of vaccination fall into a small range. This echoes our
previous finding from Chapter 4 that models assuming serial monogamy and models
matched to observed levels of concurrency require similar levels of vaccination to
eliminate a disease, when models are matched to prevalence data. More novel, and
perhaps more surprising given the radically different underlying network structure,
is the result that same holds true for models that assume partnership formation

rates are independent of relationship status, as in the cj; = cp = 1 model.

We also considered the impact of targeted vaccination, whereby those in high-
risk groups are vaccinated first, followed by those in medium-risk groups, and so
on. Under this strategy, the trajectory of prevalence as the proportion of the
population vaccinated increases does differ between models, although the full model
and cyy = c¢p = 0 model remain fairly similar. For a given proportion of the
population vaccinated, there is a higher prevalence in the cjyy = cp = 1 model,
followed by the cpy = cp = 0 model, followed by the full model. Strikingly, the
required level of vaccination to eliminate the disease is similar across models, despite
these different trajectories of prevalence. To bring prevalence below 0.1%, 13.3% are
required to be vaccinated in the full model, compared to 13.4% in the cpy = cp =1
model and 14.3% in the cy; = ¢ = 0 model. Notably, this is approximately the
combined proportion of medium- and high-risk males in each model, indicating
that vaccinating all medium- or high-risk males along with a sufficient number of
medium- or high-risk females is enough to eliminate the disease from the population

in each model.

The trends in prevalence in males and females mirrors their combined trend for
both untargeted and targeted vaccination - this is included in the appendix as

Figure B.3.
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5.4.5 Control by contact tracing results
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Figure 5.11: Comparing the impact of contact tracing across models.
Above, we plot heat maps showing the impact that contact tracing period and
the probability of contacting and treating traced individuals has on the combined
endemic prevalence, for each model. Below, we focus on the impact of contacting
and tracing traced individuals has on prevalence when the tracing period is (d) 0
years and (e) 1 year . Thus the lines in the plots below correspond to first and
last rows of the heat maps above. While the impact of a contact tracing with a
tracing period of 0 years diverges between models, the impact of contact tracing
with a tracing period of 1 year is similar across models. Plotted results are means
of 100 epidemics generated from parameters sampled from the fitted posterior dis-
tributions, with shaded areas referring to 95% prediction intervals.

In Figure 5.11, we consider the impact of contact tracing, setting the endemic preva-
lence to be 5% for each model. For higher prevalence infections, contact tracing
programmes would likely be logistically unfeasible. A contact tracing programme
only contacting current partnerships is least effective in the cpy = c¢p = 0 model;

supposing that all contacts that fall within the contact tracing period are suc-
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cessfully traced and treated, such a programme would reduce prevalence to 3.7%.
Under the full model, such a strategy reduces prevalence to 3.3%, a slight reduc-
tion. While the impact of such a contact tracing programme is similar between
these models, a contact tracing programme that only traces current partners is
much more effective at reducing prevalence in the cy; = c¢p = 1 model, reducing
prevalence to 1.4%, owing to the larger connected components within the sexual
network at any given time and the recursive nature of contact tracing. While the
success of contact tracing improves as the period of contact tracing is extended
for all models, this improvement is more modest in the c¢)y = ¢p = 1 model than
in the full model or ¢y = ¢ = 0 model. However, a contact tracing programme
that contacts partners over the past year has a very similar impact on population
prevalence across models. The trends in prevalence as a consequence of contact
tracing in males and females mirrors their combined trend - this is included in the

appendix as Figure B.4.

5.5 Discussion

Mathematical models are a vital tool for assessing the impact of public-health con-
trol measures against STIs. While models used to assess the adequacy of real-world
interventions always aspire to realism, they must necessarily make some simplifying
assumptions. Knowing which modelling assumptions have a significant impact on
epidemiological outcomes, and which features have little bearing on the final out-
comes of modelled interventions, is therefore of particular interest to the applied

modeller.

The implications of differing assumptions surrounding concurrent partnerships are
of particular interest. Different public health models of STI spread make different
assumptions surrounding concurrent partnerships, some assuming serial monogamy

(e.g. Datta et al. [2018]), others assuming partnership formation rates independent
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of relationship status (e.g. Choi et al. [2010]), but the implications this has on
the underlying network structure is relatively unexplored [Leng and Keeling, 2018].
In this chapter, we introduce a heterosexual simulation model that is capable of
being fitted to concurrency, and compare it to alternative models either assuming
serial monogamy or partnership formation rates that are independent of relationship
status. After fitting these models to observed yearly degree distributions and the
proportion of singles, we find that the underlying structure of the population is
similar in some respects, but differs drastically in others. While fitted models share
a similar risk structure - with similar proportions of low-, medium-, and high-risk
males and females across models, they differ significantly in their instantaneous
network structure. In particular, assuming that formation rates are independent
of relationship status leads to a significant proportion of individuals being involved
in multiple partnerships at once, which may lead to large connected components
within the sexual network at any given time. In contrast, individuals involved
in three partnerships scarcely occur when models are fitted to yearly concurrency
data, resulting in a sexual network dominated by islands of very small connected

components.

While these models differ in their underlying network structure, the vital question
for public health is whether these differences impact the success of interventions.
While previous studies have confirmed that, other things being equal, increased
levels of concurrency within a population results in a higher prevalence of infec-
tion [Watts and May, 1992; Morris and Kretzschmar, 1997], our previous work has
shown that when models are matched to prevalence data, pair-formation models
matched to concurrency data give similar predictions on required levels of vaccina-
tion to pair-formation models assuming serial monogamy [Leng and Keeling, 2018].
Here, we extend this work by considering the impact of concurrency in a more
realistic setting, using models that account for the heterogeneity in the number of

new partnerships individuals form in a year. This chapter confirms that the main
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result of Chapter 4 holds despite the inclusion of greater realism - that models
explicitly matched to concurrency data yield similar results to those not matched
to concurrency, when all models are matched to prevalence data. Given the uncer-
tainty surrounding available concurrency data, this result should be reassuring for

modellers interested in public health.

All models considered yielded similar levels of vaccination required to eliminate
the disease from the population, when vaccination is untargeted. Perhaps more
surprisingly, the same is true when considering targeted vaccination, where indi-
viduals who form partnership at a higher rate are vaccinated first - in this instance,
around 10 — 15% of the population must be vaccinated. This proportion is roughly
equal to the combined proportion of males in medium- and high-risk groups, mean-
ing that in the models considered vaccinating all medium- or high-risk males and
enough medium- or high-risk females was sufficient to eliminate the disease from the
population. This reiterates the standard result that the spread of sexually trans-
mitted infections is driven by a ‘core group’ of active individuals [Yorke et al., 1978].
Further, it underlines the importance of capturing heterogeneity in the number of
partnerships in models of sexual networks, which appears to be a key determinant

of the critical level of vaccination.

The results from our three models diverge when it comes to contact tracing, when
only current contacts are traced. Because of the interconnected structure of the
network that emerges from assuming partnership formation is independent of rela-
tionship status, contact tracing is much more successful in this model than either
the model assuming serial monogamy or the model that has been fitted to yearly
concurrency data. However, when contacts from the previous year are traced, the
results are extremely similar across models. In some ways, this is unsurprising - all
models have been fitted to yearly degree distribution data, hence the distribution
of number of partnerships are the same across models. However, models devi-

ate significantly both in their instantaneous network structure and in their yearly
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levels of concurrency. This reiterates the point above - that the success of con-
trol measures appears to be largely determined by the underlying heterogeneity in
risk, and accurate of models of concurrency may not be needed to obtain reliable

results.

Heterosexual network models face the specific challenge of satisfying two distinct
degree distributions from just one dynamic process. This chapter introduces a
generic framework for modelling heterosexual networks, capable of being fitted to
arbitrary observed male and female degree distributions. At the extremes of concur-
rency behaviour (serial monogamy or formation rates independent of relationship
status), we provide methods to obtain the expected yearly degree distributions ex-
actly. While these models are capable of having a large number of risk groups, we
find that the optimal choice of risk groups is relatively modest (three or four risk
groups for males and females). This suggests it may be feasible to design determin-
istic models, such as pair-formation models [Kretzschmar and Heijne, 2017], that
are capable of capturing the required heterogeneity in risk, that have a manageable

number of equations.

This study has several limitations regarding the underlying population. Firstly, the
models do not account for age structure explicitly, assuming a closed population
of 16-24 year olds. In reality, individuals age. As individuals age, their sexual
behaviour, which translates to their rate of forming new partnerships, changes.
Furthermore, 16-24 year olds do not exclusively form relationships with individuals
who are the same age, as detailed by Smid et al. [2018]. While we believe that our
framework is robust and flexible enough to incorporate age structure, doing so is
beyond the remit of this study. Secondly, we only consider heterosexual contacts.
While many individuals will be exclusively heterosexual, some individuals will also
have homosexual sexual partners. The interplay between these populations may be
necessary to realistically model the spread of many STIs in heterosexual popula-

tions, particularly those STIs that have a higher prevalence among MSM.
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This study also makes several simplifying assumptions surrounding the underlying
disease dynamics - considering no specific STI, but a generic STI with SIS-dynamics.
In particular, by assuming that infected individuals recover at a constant rate,
we assume that durations of infection are exponentially distributed. While this
assumption is common within the literature, for some STIs this may be unrealistic.
Further, this model does not model sex acts explicitly - we assume that individuals
are infected at the start of relationships or not at all, according to some fixed
probability. While this does capture an observed feature of sexual transmission, it
overlooks that individuals may be more likely to engage in riskier behaviour, such as
sex without a condom, as a relationship progresses. It also overlooks the potential
impact of coital dilution, i.e. if an individual is engaged in multiple relationships,
they may engage in fewer sex acts with any one of those relationships [Gaydosh
et al., 2013]. When constructing realistic models for public health, the above factors

should be considered.

In summary, in this chapter we define a generic dynamic network simulation model,
consisting of an arbitrary number of male and female risk groups, that can be
fitted to observed yearly degree distribution and concurrency data. Additionally,
we describe two exact methods for obtaining the yearly degree distribution data, at
either of the extreme assumptions surrounding concurrency. Moreover, we use these
models to assess the impact of concurrency on control measures in a realistic setting,
when models are matched to prevalence data. Our results provide further evidence
that the impact of concurrency on control measures is relatively limited - for all
interventions considered, similar results are garnered from the model assuming
serial monogamy and the one matched explicitly to concurrency. Doing so, this
chapter provides further insight into the behavioural features of sexual networks

most important to capture when designing models for public health.
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5.6 Conclusion

The research in this chapter provides a further evaluation of the importance of
capturing concurrency when modelling public-health interventions to control the
spread of STIs. The findings corroborate the results from Chapter 4 - that explicitly
matching models to concurrency may not be necessary to obtain forecasts for the
control of STIs. However, it should be stressed that the importance of capturing
concurrency, or any other network property, will depend both on the question being
asked, and the data available. If data concerning the probability of infection across
partnerships is more readily available than prevalence data, and if one is interested
in inferring the early growth rate of an epidemic, then capturing concurrency will

still be vital.

To evaluate the importance of capturing concurrency, we have created a flexible
framework for modelling dynamic heterosexual networks, capable of being fitted to
data from surveys such as Natsal. While this model does not include age-structure,
or interactions between heterosexual and homosexual populations, we believe that
this framework is capable of being extended to include such heterogeneities. While
we consider a generic STI with relatively simple disease dynamics, incorporating the
infectivity and recovery profile of a specific STI should also be achievable. With the
advent of the next Natsal survey, Natsal-4, this framework may provide a useful
tool for both researchers interested in modelling public health interventions and
researchers interested in exploring the impact of explicitly fitting models to other

features of network structure.
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Chapter 6

Clustering: the effectiveness of social
bubbles as part of a COVID-19

lockdown exit strategy

The research in this chapter has been presented in Leng et al. [2020].

6.1 Introduction

In this chapter, we move away from sexually transmitted infections (STIs), and
consider the application of network modelling to a pathogen operating on an al-
together different underlying contact network - severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019
(COVID-19). SARS-CoV-2 is a respiratory pathogen, transmitted via respiratory
droplets generated from coughing, sneezing, and breathing [Huang et al., 2020]. Be-
cause of this, an infected individual has the potential to infect their friends, their
family, their colleagues, and their chance encounters, in contrast to the much more

restricted relevant contact network in the case of STIs. As discussed in Chapters 1
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and 2, because of the transience and uncertainty of aspects of the underlying rele-
vant contact network, modelling the spread of such pathogens is not easily amenable

to a network modelling approach.

This changed in March 2020. In response to the ensuing COVID-19 pandemic,
and informed by modelling suggesting that inaction would result in health services
being overwhelmed and a large number of deaths [Ferguson et al., 2020; Davies
et al., 2020], governments across the world imposed strict restrictions on people’s
social interactions, colloquially known as ‘lockdown’. In the UK, individuals were
told to stay at home as much as possible - measures included the closure of schools,
non-essential retail, bars, restaurants, and leisure facilities, asking all those who
were able to work from home to do so (alongside furloughing a large proportion of
the work force), as well as restricting households from mixing with one another.
People’s social interactions, previously transitory and varied, had become fixed and

limited.

By severely restricting these social interactions, the UK was successful in reduc-
ing transmission of SARS-CoV-2, alleviating the burden on the healthcare system
[Flaxman et al., 2020]. However, such stringent restrictions come at a high so-
cietal, economic, and wider health cost [Cluver et al., 2020; Forman et al., 2020;
Appleby, 2020]. As infection incidence has declined, countries have had to consider
ways to ease restrictions that still ensure that the epidemic remains under control
[Gilbert et al., 2020; Keeling et al., 2021]. Multiple options have been suggested
and implemented in different countries, including the widespread use of contact
tracing in conjunction with testing and household isolation [Ferretti et al., 2020;
Kucharski et al., 2020], expanded random testing in order to detect asymptomatic
and presymptomatic individuals [Liu et al., 2020; Peto et al., 2020], quarantining
travellers on arrival to a different country [Clifford et al., 2020; Kraemer et al.,
2020], and the use of face masks [Clase et al., 2020; Lustig et al., 2020]. While

the stringent lockdown from March to June of 2020 was successful in reducing
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transmission, as restrictions have eased infection levels have increased.

Another option that has been suggested, and has been implemented to some ex-
tent in several countries such as Germany, New Zealand, and the UK, has been
the clustering of contacts beyond the household - referred to as the social bubble
strategy. Under this strategy, a household is allowed to enter into a cohesive and
exclusive unit with other households. Doing so allows individuals to increase their
social interactions beyond their household, but is intended to limit the risk of in-
fection through the exclusivity of the bubble and the clustering such a strategy

imposes.

Previous studies have shown that, because of a reduced number of new contacts
in the second and subsequent generations, the average number of secondary infec-
tions from an infected individual is smaller in clustered populations [Keeling, 1999;
Keeling and Eames, 2005]. Accordingly, control measures that increase the cluster-
ing of contacts have the potential to be an effective way of reducing transmission.
Some studies have considered strategies aiming to increase the clustering of social
networks specifically as a way of controlling the COVID-19 epidemic. Block et al.
[2020] suggest several social reorganisation measures that result in more clustered
social networks as a potential way to flatten the curve of an epidemic, while in a
parallel study to our own Willem et al. [2021] consider the impact social bubble

strategies would have on a population with the structure of Belgium.

Under the social bubble strategy, people’s social interactions remain fixed and rel-
atively limited - the only warranted social interactions are within household and
within bubble. Because of this, we can use available census data to construct a
network of the population’s household contacts, and additionally we can use this to
define the resulting network of bubble contacts from a given social bubble strategy.
By doing so, and by defining an epidemic process on the resulting networks, we can

assess the likely impact different social bubble strategies would have on infection
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and mortality rates. By comparing these social bubble strategies to unclustered
increases in contacts, we can assess the effectiveness of social bubbles induced by

the clustering the strategy imposes.

In this chapter, using a stochastic generation-based static network model, we as-
sess the likely increase in transmission resulting from various plausible social bubble
strategies. As well as comparing the impact of allowing all households to enter into
a social bubble with another household, we consider the impact of limiting bubbles
to households who are likely to benefit most. While many adults are able to com-
pensate for the lack of physical interaction with increased social interaction, doing
so is harder for young children, for whom verbal interaction is only a small part of
their communication with peers. Further, their carers have often had to balance
working from home with childcare and homeschooling without the support networks
of extended family, friends, and childminders usually available [Minello, 2020]. Sin-
gle occupancy and single parent households will have also been disproportionately
effected as the absence of meaningful face-to-face interaction may negatively impact

mental wellbeing [Feys et al., 2020].

Using this model, we assess both the likely increase in transmission and in mortality
induced by different social bubbles. By comparing populations under social bubble
strategies to populations who have increased their contacts by an equivalent but
unclustered amount, we assess the effectiveness of these different social bubble
strategies. We assess the sensitivity of our results to a range of alternative model
assumptions and parameterisations. By doing so, this chapter informs the potential
value of social bubble strategies in the event of future social restrictions. Several
studies have suggested that in order to avoid large casualties resulting from the
COVID-19 epidemic, intermittent use of further lockdowns, either on a local or
national scale, may be necessary over a period of years until a viable exit strategy
to the epidemic is found [Keeling et al., 2021; Ferguson et al., 2020]. With this as a

possibility, countries must find strategies that control the spread of an epidemic but
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allow some semblance of normality in people’s social lives. Clarifying the extent to

which social bubbles are such a strategy is the aim of this chapter.

6.2 Methods

6.2.1 Population

Constructing household contacts

In order to assess the impact of social bubbles, we created a synthetic population,
similar in structure to that of the UK, which we could implement social bubble
strategies onto. The model’s synthetic population was created by generating indi-
viduals who are residents of one of 10,000 households. We assume that each individ-
ual belongs to exactly one household, and that households are non-overlapping. The
size of households, as well as the age distribution within households, was sampled
to match the most recent census of England and Wales 2011 [Office for National
Statistics, 2020a]. Specifically, we used data from this census to construct a distri-
bution of age-stratified household compositions in terms of 10-year age bands, with
the final age band designating ages 80 years and above. A probability was assigned
to each composition observed in the census data based on the frequency of its ap-
pearance, and then used these probabilities to construct our simulated household
population. This gave us a synthetic population whose age structure was compa-
rable with that of England and Wales and whose household compositions reflected
the observed correlations between the ages of household occupants. Of particu-
lar importance, doing so should accurately capture the generational structure of
households in England and Wales, expected to be an important factor in transmis-
sion among age classes, and of interest due to the disproportionate health impact

COVID-19 has on older individuals.
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Recalling that a network can be represented as an adjacency matrix, the population

of household contacts can be represented by the matrix Ag:

o 1, if ¢ and j are within the same household
0, otherwise

In this model, we consider a situation similar to the UK lockdown in May 2020,
where stringent physical distancing has been implemented, with schools, non-essential
retail, and leisure facilities closed. As such, household contacts (prior to the intro-

duction of social bubbles) are the only close contacts individuals have.

Constructing bubble contacts

With the synthetic population defined, we consider a number of potential ‘social
bubble’ strategies, targeting different types of household. The population of so-
cial bubble contacts can be represented by the matrix Ag, which can be obtained

straightforwardly with an algorithm joining eligible households:

o 1, if ¢ and j are within the same bubble (but not the same household)
AB (Za ]) =
0, otherwise

(6.2)

Here, we can note some properties of the household and social bubble adjacency
matrices A and Ap. Social bubbles imply that all members of the same household

enter into a social bubble with the same household, which can be expressed as

AH(Z,]) = 1,AB(i,]€) =1= AB(j, k‘) =1 (6.3)
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Similarly, an individual being part of a social bubble with one household precludes

them from being part of a social bubble with another household:

Ap(i,7) =1, An(j, k) =0= Ap(i,k) =0 (6.4)

In this chapter, we consider a number of different feasible social bubble strategies,
outlined in Section 6.2.5. All scenarios assume that pairing occurs at random
between permitted households. In reality, it is likely that social bubbles form in a
non-random way, but it is unclear the direction this non-randomness would act in.
To some extent households of similar ages, may be more likely to form a bubble
with one another - something explicitly accounted for by Willem et al. [2021]. On
the other hand, families may choose to form social bubbles with elderly relatives,
and young adults may choose to form social bubbles with their parents, resulting

in a disassortativity between age groups.

6.2.2 Transmission model

Because SARS-CoV-2 is a novel pathogen, first identified in December 2019 [Huang
et al., 2020], it is not known in the long term whether recovery from infection
from COVID-19 leads to immunity. However, this appears likely to be the case at
least in the short term. Serological studies on other coronaviruses, such as SARS,
report immune periods of 2 years [Wu et al., 2007]. Studies estimate that SARS-
CoV-2 has a median latent period from infection to infectivity of 5.2 days [Lauer
et al., 2020] , followed by a median infectious period of 4-9.5 days [Byrne et al.,
2020]. In this chapter, we consider an epidemic over its first 10 generations, i.e.
over a period of months since the first infected case in the model. Because of

this, in this chapter we model SARS-CoV-2 as a disease with Susceptible-Infected-
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Figure 6.1: An overview of the social bubble model. Top panel: schematic of
model structure and its stratification into different household sizes with three com-
ponents of transmission dynamics, community transmission, bubble transmission
and household transmission. Left panel: household size distribution for all house-
holds in England and Wales, for those households with at least one child younger
than 20-years-old and for those with at least one child younger than 10-years-
old (about primary school age or younger). Right panel: illustrative transmission
probability matrix P4, composed of household and bubble contacts and including
community transmission.

Recovered (SIR) dynamics. While an exposed class is common to models of COVID-
19 [Keeling et al., 2021; Davies et al., 2020; Ferguson et al., 2020], including such
a class in unnecessary for our purposes, as in both SIR-models and SEIR-models
the average number of secondary infections from an infected individual is the same,
with the distinction only altering the time-evolution of the epidemic [Keeling and

Rohani, 2011].

In this model, individuals have three potential sources of transmission: firstly, via
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Table 6.1: Chapter 6 summary of notation.

Symbol | Meaning
Ag Adjacency matrix of household contacts
Ap Adjacency matrix of bubble contacts
C(7) Age-dependent susceptibility scaling factor of individual 4
T(7) Age-dependent transmissibility scaling factor of individual ¢
Ny (i) Number of household contacts an individual i has
TH Baseline transmission rate across household contact
Py Matrix of transmission probabilities across household contacts
pr(i,7) | Household transmission rate from individual j to individual i
TB Baseline transmission rate across bubble contact, 7p = k7, k € [0 1]
Pp Matrix of transmission probabilities across bubble contacts
pp(i,j) | Bubble transmission rate from individual j to individual 4
€ Baseline mean-field transmission rate
€() Mean-field transmission rate to an individual i
1,(7) Infection status of individual i at generation g
I,(i) = 0 if 7 is susceptible at generation g
I,(i) = 1 if ¢ has been infected by generation g (so includes recovered individuals)
Sg(i) 1 - I4(i), i.e. the susceptibility status of an individual i at generation g
N Size of population

a household contact; secondly, if they are in a social bubble with another household
then via a bubble contact; and finally, via the general population through mean-
field transmission. We define a baseline transmission rate across household contacts
as Ty, a baseline transmission rate across bubble contacts as 7z, and a baseline
mean-field transmission rate €. For all routes of transmission, we assume that
susceptibility to infection as well as transmissibility of infection is potentially age
dependent. We let T'(7) denote the (age-dependent) transmissibility of an individual
1, a factor which scales the rate at which ¢ transmits infection. Similarly, we let
C(i) denote the (age-dependent) susceptibility of an individual ¢, which scales the
rate at which ¢ becomes infected from an infected contact of theirs. We consider
transmission across close contacts (household or bubble) and transmission from the
general population separately. The notation used in this section is summarised in

Table 6.1.
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Transmission across close contacts

Transmission rates across household contacts are derived by assuming that inter-
action between close contacts is frequency dependent, in line with observational
studies showing that an individual’s risk of SARS-CoV-2 infection from a specific
household member decreases with household size [Streeck et al., 2020]. Frequency
dependent transmission across household contacts has also been assumed in house-
hold models of influenza [Cauchemez et al., 2004]. We also assume that transmission
is frequency dependent across bubble contacts. In this instance, care must be taken,
as bubble contacts 7 and j in general do not have the same set or number of bubble
contacts (recall that i is a bubble with contacts with every member of j’s household,
and vice versa). This is similar to Chapter 5 when considering the rate of partner-
ship formation in a heterosexual population, and has an analogous solution. We do
so by decomposing interaction between individuals ¢ and j into interactions led by ¢
and interactions led by j. The amount of interaction led by ¢ (or 7) depends on the
number of other close contacts i (or j) has. The total amount of interaction, hence
the rate of transmission, is given by summing these interactions. Finally, to obtain
the specific transmission rate from j to i, we multiply this rate of interaction by the
rate of transmission given interaction between the two individuals. Letting Nx ()
denote the number of relevant social contacts an individual ¢ has, the transmission

rate across close contacts px, X € {H, B} is given by:

- N v Ax (i, 7) AX(LJ‘))
1,7)=T(7)C(i)Tx X - : 6.5
px(iod) =TIy x (30T 4+ 2x 0 (65)
For transmission across household contacts, this becomes:
GOCATH  if A (i 1) —
L. No (i , 1 H(Z’]) =1

pu(i,j) = ) (6.6)

0, otherwise
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an expression equivalent to the standard frequency dependence transmission for-
mula. For transmission across bubble contacts however, we obtain the following

expression (after noting that Np(j) = Ny (i) + 1):

T(.])C(Z)TB(NH(ll)+1 + NH(1]')+1)’ if AB(ZaJ) =1

pp(i,j) = (6.7)

0, otherwise

Assuming transmission occurs at a constant rate across relevant contacts over the
course of an individual’s infectious period, and with an individual’s infectious period
equalling one generation, we obtain the elements of the probability matrices Py and
Pp, the matrices of within household and within bubble transmissions respectively

by taking:

Px(i,j) =1 — e Px0:9) X € {H, B} (6.8)

We obtain the overall probability matrix of the close contacts for the population
by taking P4 = Py + Pp. This is used to drive forward the stochastic dynamics
of the simulated epidemics via a next-generation approach, described in the Model

set-up.

To obtain equations assuming density-dependent transmission, the dividing Ny
terms are omitted from from Equations (6.6) and (6.7), which is an assumption

considered in the sensitivity analysis.
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Community transmission

The exact expression determining an individual’s rate of transmission from the
community depends on whether we assume that individuals interact with the pop-
ulation at large at a constant rate or whether we assume that households interacts
with the population at a constant rate. If we assume the former, then mean-field
transmission to an individual 4, denoted €(7), is given by standard frequency depen-
dence assumption, once the relative susceptibility and transmissibility of individuals

is taken into account:

(6.9)

However, we consider a situation where we assume that households are adhering
to lockdown restrictions and social distancing, and therefore largely act as a co-
herent and largely isolated unit. Because of this, we assume that the risk of a
household acquiring infection from the community is independent of its number
of occupants as observed in a cross-sectional serological study for SARS-CoV-2 in
Germany in March and April [Streeck et al., 2020]. To capture this, we assume that
the mean-field transmission to an individual, as well as an individual’s contribution
to mean-field infection, is inversely proportional to the number of individuals in

their household:

(i) = S 2 ' ’ (6.10)
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Model set-up

To simulate an epidemic, we begin by randomly sampling the probability matrix
Py, i.e. the connection from individual j to individual 7 is retained with probability
P4(i,7). Doing so, we retain only the infectious connections between individuals
that will lead to an infection. These sampled probability matrices therefore repre-
sent potential transmission networks (though the exact transmission network for a
given simulation will depend upon who is initially infected). Because these sam-
pled matrices refer to transmission events rather than contacts, this matrix may
be unsymmetric. We refer to the sampled matrix as P. P’ (i,j) = 1 denotes that
individual j will infect individual ¢ with probability 1, given individual j is infected.
Initially infected individuals are chosen with probability proportional to their mean-
field interaction, i.e. with a probability inversely proportional to their household
size. Letting I, be the vector of infection statuses of individuals in generation g,

we obtain the next generation by:

Ipiq = sign((Py +1) x 1) (6.11)

where [ is the identity matrix, and where sign() is an element-wise function equal to
1 for each positive element and 0 otherwise. Via this matrix multiplication, every
newly infected individual in generation g infects all of their infectious contacts
that generation. Here, the identity matrix is added to impose that individuals
do not become susceptible again after one generation, while the sign function is
used to impose that individuals cannot be infected more than once. This process
can be iterated until equilibrium is reached, and the epidemic has ended. To this,
we also mean-field transmission. Each generation, the number of new infections is
calculated in order to calculate €(7) for each susceptible individual i, who is infected

from mean-field transmission with probability 1 — e€(!) each generation.

Recovery from infection is not explicitly modelled in the simulation, but rather is
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implicitly built into the structure of the model. If an individual ¢ is infected in
generation g, they will infect all of their transmission contacts in generation g + 1
via the matrix multiplication. They also only contribute to community infection
in generation g + 1. While individual i remains ‘infected’ (with value 1), they no
longer play any role in the infection dynamics, nor can they be reinfected. Hence,
the simulation model assumes that individuals are infectious for one generation,

before recovering with immunity.

While in this chapter, we consider a disease in which recovery from infection leads to
immunity, this modelling framework could be easily adapted to diseases with other
dynamics. For example, to consider a disease where recovery from infection does not

lead to immunity (i.e. SIS-dynamics) I can be omitted from Equation (6.11).

6.2.3 Outcome metrics

We assess the epidemiological impact of interventions in our simulation model us-
ing two key metrics. Firstly, the net reproduction number, R, which relates to
epidemic risk, and secondly the relative increase in mortality, a measure of adverse
health outcomes. Results are averages obtained from simulations of 1000 epidemics
for 10 different sampled epidemic networks, hence results are averages of 10000
simulations. The value of R and the number of fatalities obtained from any single
simulation varies considerably owing to the stochasticity of the underlying dynam-
ics, while there is much less variability between average values from 1000 epidemics
values obtained for different sampled networks (Figure 6.2). The variation in R
values obtained from single simulations does not imply different rates of onward
transmission between simulations; rather, this variability is a consequence of the
small number of infected individuals in the generation used to measure R as well

as the contact structure of those particular individuals.
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Figure 6.2: Exploring the variability of R and fatalities. Above, we explore
the variability in outcome metrics between simulated runs on one sampled network,
using Scenario 6 as an example. We plot histograms of R and the percentage of
fatalities over 10 generations obtained from 1000 single simulated epidemics over
one sampled network. Below, we explore the variability between in outcome metrics
between sampled networks, where obtained values are averages of 1000 epidemics.
We plot histograms of the mean values R and the percentage of fatalities over 10
generations obtained from 1000 simulations, for 100 different sampled networks.

Net reproduction number

Reproduction numbers are quantities central to the study of infectious diseases, all
of which try to capture the average number of secondary infections generated by an
infected individual, though there are numerous definitions applicable to different
scenarios. Central to the concept of reproduction numbers are their thresholding
properties - a value greater than 1 is required for an epidemic to occur. For ran-
domly mixing populations, the basic reproduction number, Ry, is defined as the

expected number of infected individuals infected by an initially infected individ-
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ual, over the course of their entire infectious period. In this instance, Ry can be
calculated by taking the dominant eigenvalue of the next-generation matrix, the
method developed by Diekmann et al. [1990]. However, such a method is unsuit-
able when considering a population with households. In this instance, the dominant
eigenvalue does not possess the threshold property desired of reproduction num-
bers, and does not account for the early local depletion of susceptibles household
structure imposes [Pellis et al., 2009]. Accordingly, alternative metrics have been
proposed for populations composed of households [Pellis et al., 2012] . However,
even in simpler models than ours, the formal derivation of R for households can
be involved. Therefore, we take a numerical approach to calculating R. We wish to
capture the number of secondary infections generated by a typical case. In models
incorporating household structure, the typical case is effectively an average over the
probability that such a case is the first, second, third or later generation case within
the household [Ball et al., 2009]. Following the principle of Pellis et al. [2012], using
an approach similar to House and Keeling [2011a], we determine the net reproduc-
tion number R numerically as the ratio of the number of new infections in the fifth
to the fourth model generation, adjusted to account for the partial depletion of
susceptibles. We obtain this by rearranging the equation for I from the standard

STR model, expressed as a difference equation [Allen, 1994]:

At
Ins1 = In(1 — yAt + O‘Tsn) (6.12)

where « is the probability of removal in a time period At and « is the average
number of individuals an infected individual would infect if all of their contacts
were susceptible. In such a case, R = a/v. Our model progresses in steps of 1
generation (i.e. At = 1 generation), and individuals recover with probability 1 in

a generation (i.e. v = 1). Hence, in our model & = R, and by substituting terms
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and rearranging we obtain:

S, I
InH:Ianﬁn e R=1H

X — (6.13)

n

| =

n

Expressing time in terms of generations, g, and recalling in our model I (S,) refers
to the vector of infection (susceptible) statuses in generation g, we thus define R(g)

as

R(g) — iIg-i- (Z) « ]‘;f

L6 S 5,0) (6.14)

In all scenarios we observed that R(g) decreases markedly in the first generation. In
most cases, we observed that R(g) continued to decrease by a much smaller amount
over the next couple of generations, but in some cases R(g) increased by a small
amount between the second and third generation. In all scenarios, we observed
R(g) stabilises at a value that persists over several generations (Figure 6.3) by the

fourth generation. Because of this, we take R(4) as our estimate of R.

Relative mortality

Our second metric is the relative mortality (i.e. number of deaths), compared to a
baseline scenario of isolated household with no social bubble strategy implemented.
Doing so provides a measure of adverse health impacts as a result of the increased
contact rates caused by the implementation of a given social bubble strategy. We
use age-stratified infection fatality rates (IFR) estimated from repatriation flights
early in the COVID-19 pandemic [Verity et al., 2020] to predict the mortality risk

from the fourth to the ninth generation, i.e. once R has stabilised. Roughly,
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Figure 6.3: Numerical exploration of R by generation. Left shows examples
of the method for which e was fitted to satisfy R(4) = 0.8 under our baseline
parameters for different household secondary attack rates. Right shows R(g) by
generation from each of our scenarios from our baseline parameterisation. In both
plots, R(g) decreases over the first few generations, before reaching an equilibrium
value that persists over multiple generations.

this measures the relative mortality in the second month after social bubbles were

initiated.

Each simulation is initiated with the required number of infectious individuals for
1% of the population to be infected by generation 4, in order for the fatalities fol-
lowing this generation to be meaningfully compared. This is achieved by choosing
arbitrary an initial number of infected individuals, I;;;:(1), and observing the re-
sulting proportion of the population infected by generation 4, I;;;(4). Doing so,
we obtain an estimate of the required number of initial infected individuals for a
prevalence of 1% in generation 4, given by (0.01 X Linit(1))/Iinit(4), a strategy we

find works well.

6.2.4 Parameterisation

To parameterise the COVID-19 transmission dynamics in the model we need to
define the infection dynamics within a household, within a bubble and from the
community. To parameterise the within household transmission we assume that the

secondary household attack rate, SARg g, is 20%. This is in line with observations
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from contact tracing [Koh et al., 2020; Bi et al., 2020] while accounting for some
underreporting. This is achieved by finding the value of 7 which results in 20% of
connections between individuals remaining after sampling the probability matrix,
which is achieved through tuning. In this chapter, we consider a situation similar
to the lockdown in the UK of May 2020. At this time, R was estimated to be
approximately between 0.7 and 1 [GOV.UK, 2020a]. Accordingly, we assume that
community transmission is such that, in combination with household transmission,
the model generates an overall reproduction number of 0.8. As a base case, we
assume that transmission between social bubble contacts, i.e. between households
within the same bubble, is 50% lower than between household contacts, i.e. 7 =

O.5TH.

The role that age plays in an individual’s susceptibility and transmissibility is com-
plex. While it has been observed that children are more likely to experience mild
or no symptoms, meaning that they may have a lower transmission rate, cases with
more severe symptoms are likely to self-isolate, reducing their infectious period.
Consequently, children that are asymptomatic or mildly symptomatic may continue
to transmit for longer. In our base parameterisation, we assume that children (less
than 20-years-old) are half as susceptible to infection as adults (20 to 59-years-old)
or older adults (60-years-old or above) but assume that transmissibility is indepen-
dent of age, echoing the assumptions of a previous study [Davies et al., 2020]. An
alternative parameterisation based on other work [Keeling et al., 2021] is considered

as part of our sensitivity analysis, where transmissibility is age-dependent.

Under this parameterisation, we find that a 3.75-fold increase in community con-
tacts yielded a reproduction number of about 2.5, in line with an approximate 70%
reduction in contacts during lockdown and a reproduction number of about 2.5 in
the early phase of the pandemic, when little to no distancing measures were in place

[Jarvis et al., 2020].
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Table 6.2: Key model parameters and assumptions.

Parameter | Description Value Value Source
(base case) (sensitivity)
- Household structure - - Office for National
and age distribution Statistics [2020]
TH Baseline household 0.345 (20% SAR) 0.155 (10% SAR) | Matched to SAR
transmission rate 0.86 (40% SAR) | Koh et al. [2020]
Bi et al. [2020]
B Baseline bubble 0.5 X 7 TH Assumption
transmission rate 0.1 X 7
T(4) Relative transmissibility | 1 (child) 0.64 (child) Davies et al. [2020]
compared to adult 1 (older adult) 2.9 (older adult) | Keeling et al. [2021]
C(7) Relative susceptibility 0.5 (child) 0.79 (child) Davies et al. [2020]
compared to adult 1 (older adult) 1.22 (older adult) | Keeling et al. [2021]
- Infection fatality rate In 10 year age bands | - Verity et al. [2020]
R net reproduction 0.8 0.7, 0.9 GOV.UK [2020a]

number

Baseline mean-field
transmission rate

1.13 (20% SAR)

1.29 (10% SAR)
0.925 (40% SAR)

Matched to R
given Tx

We additionally assume that all eligible households would take up the opportunity

to expand their contacts and enter into a social bubble with one other household,

and that they would adhere to the exclusivity of this bubble. The impact of only

partial uptake is explored in our results, and , the impact of non-adherence, incorpo-

rated by allowing 50% of eligible households to form an additional social bubble, is

explored in our sensitivity analyses. Table 6.2 summarises the key model parameters

and assumptions, as well as alternative parameterisations and their sources.

6.2.5 Scenarios modelled

In this chapter, we consider six different feasible social bubble strategies, which we

refer to as Scenarios, targeted at different types of households.

1. Allow households with children younger than 10-years-old (about primary

school age or younger) to pair up.

2. Allow households with children younger than 20-years-old to pair up.
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3. Allow single occupancy households to pair up with another single occupancy

household.

4. Allow adults who live alone or with dependent children only to pair up with
another household of any size in a ‘support bubble’ - the social bubble strategy
implemented in the UK as of June 2020.

5. A combination of Scenarios 1 and 3.
6. Allow all households to pair up with another household.

Another potential strategy we began to consider was to allow all households with
two or fewer adults to form a bubble with households of any size - an extension
to the current situation in England. However, as 87.7% of households have two
or fewer adults, we found that such a policy would result in 98% of households
forming bubbles, such a policy would have largely the same impact as allowing all

households to form bubbles.

To assess the impact social bubbles strategies have, we compare our results to three

counterfactual scenarios:

C1. Perfect adherence to the household-only contact strategy (other than the
background transmission risk from the community), i.e. a scenario where no

social bubbles are implemented.

C2. Individuals increase their number of contacts, making the same number of
infectious contacts as in Scenario 6, but contacts are unclustered and chosen
at random. In this scenario, contacts are fixed, staying the same for each

generation.

C3. Individuals increase their number of contacts, making the same number of
infectious contacts as in Scenario 6, but contacts are unclustered and chosen at

random. In this scenario, contacts vary over time, changing each generation.
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Counterfactual scenarios C2 and C3 maintain the same number of infectious con-
tacts each individual makes. Both scenarios are obtained by taking the sampled
probability matrix of bubble connections, Pj, from Scenario 6 and rewiring con-
tacts. We do this by swapping edges in the adjacency matrix. The sampled prob-
ability matrix Py is a directed and asymmetric adjacency matrix - just because
an infected individual j would infect an individual ¢, the same is not necessarily
true vice versa, as the probabilities Pp(i,j) and Pp(j,i) are sampled indepen-
dently. However, Pg(i,j) and Pg(j,i) are often both sampled due to i and j being
close contacts. To capture this correlation when rewiring for counterfactual C2, we
rewire directed edges (where Pj(7,7) = 1 but Pg(j,i) = 0) and undirected edges
(where Pg(i,7) = Py(j,i) = 1) separately. For counterfactual C3, no such corre-
lation exists, as an individual chooses new contacts each generation, and hence all
connections are treated as directed edges and rewired independently. As well as
generating these counterfactual scenarios, we can also use this method to generate
scenario specific counterfactual Scenarios, e.g. a C2 and C3 for Scenario 1, to assess

the specific effectiveness of social bubbling in that instance.

6.2.6 Sensitivity analyses

Other than the previously described base case, we performed a number of uni-
variate sensitivity analyses to test the robustness of our findings to the underlying

assumptions. Specifically, we consider:

1. that the current value of R prior to the introduction of social bubbles is 0.7

and 0.9, instead of 0.8 [GOV.UK, 2020a].

2. that the secondary attack rate within the household is 10% or 40%, instead
of 20% [Koh et al., 2020].

3. that 7 = 7y or 73 = 0.17y, instead of 75 = 0.57y
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4. that a household’s risk of infection from the community increases with house-
hold size, as in Equation (6.9), instead of being independent from household

size, as Equation (6.10).

5. that transmission across close contacts is density dependent rather than fre-

quency dependent.

6. that 50% of eligible bubbles do not adhere to the recommendations, forming

bubbles with an additional household, instead of perfect adherence.
7. that households including an individual over 70-years-old do not form bubbles.

8. that the relative susceptibility to infection of children and older adults com-
pared to adults is 79% and 125% while the relative transmissibility is 64%
and 290%, respectively [Keeling et al., 2021].

We model non-adherence to the strategy by allowing 50% of eligible households to
enter into close contact with an additional household. Doing so means that bubbles
are no longer mutually exclusive, and that chains of transmission could potentially
span many households. Letting Ppo denote the probability matrix of additional
bubbles through non-adherence, P4 is now obtained by the sum of Py, Pg and

Pps.

6.3 Results

6.3.1 Households

We begin by observing several relevant descriptive statistics we can obtain by analy-
sis of the age-distribution data of households obtained from the 2011 census of Eng-
land and Wales [Office for National Statistics, 2020a]. Considering all households,

the average size of a household was 2.36 persons. When we consider households
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with at least one child under 10-years-old, the average household size increases to
3.89 persons, and 30.4% of the population live in such households. For households
with at least one child under 20-years-old, the average household size is 3.73 per-
sons, and 49.5% live in such households. In total, 37% of households are occupied
by someone over the age of 60 years, and 50% of single occupancy households were
occupied by such older adults. Single occupancy households comprise 30.2% of
households. There is limited multi-generational mixing, with only 3.6% of house-
holds having both a child aged under 10 years and an adult aged over 60 years. Less
than 0.7% of households are occupied by more than 6 persons, and less than 0.03%
are occupied by more than 10 persons. The largest household in our modelled pop-
ulation comprises of 15 persons. An infected individual in a large household may
result in a high number of secondary infections, particularly under the assumption
of density dependence, but such households represent a very small proportion of all

households, both in our model and in the 2011 census of England and Wales.

6.3.2 Impact of social bubbles on epidemic risk

Here, we consider the impact different social bubble scenarios have on R. Under
our base parameterisation, we find that Scenarios targeting households with chil-
dren (Scenarios 1 and 2) have the smallest impact on R, increasing R to a value of
0.83 and 0.86 respectively. The relatively small impact of social bubbles in these
instances is owed to a combination of the lower susceptibility of children to infection
and the assumption that households act as a cohesive unit when interacting with
the community, reducing any given individual within that household’s interaction
with the community. Strategies that exclusively target single-person households
(Scenario 3) also do not increase transmission substantially, increasing R to a value
of 0.89. Scenario 5, the combination of Scenario 3 and Scenario 1 (the more conser-
vative scenario allowing households with children to enter social bubbles) increases

R to a value of 0.91. For these two targeted strategies, even under conservative
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Figure 6.4: The impact of bubbling scenarios on R and fatalities. Here, we
show the increase in fatalities (left) and the estimated reproduction number (right)
for the considered scenarios under the assumption that all eligible households pair
up and thereby form exclusive social bubbles and that transmission rates within a
social bubble are the same as within the household. Central estimates are assuming
SARpp = 20% and the upper and lower limits represent the respective 10% and
40% assumption.

assumptions (SARy g = 40%, 7y = TB), the increase in transmission is unlikely to
lead to substantial spread of COVID-19, with an R of 0.95 and 0.91 for Scenario 1

and 3, respectively.

However, allowing all households to form bubbles (Scenario 6) is estimated to in-
crease the reproduction number to 1.03, and hence marginally beyond the critical
threshold value of 1 for the base case parameterisation (Figure 6.4). In general,
it appears that the fewer households deemed eligible to expand their social bubble
under a specific strategy, the smaller the average household size eligible to form

social bubbles, and the smaller the risk of onward transmission within the bub-
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ble determined by the age composition of a household, the smaller the increase in

transmission as a result.
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Figure 6.5: The impact of uptake on R and fatality. Here we consider the
impact varying levels of uptake has on the reproduction number, R, and relative
mortality. We consider this for our baseline parameters, at varying levels of trans-
mission across bubble contacts (7p = 7 in blue, 7 = 0.57y in red, 75 = 0.17y
in green). We observe that R scales sublinearly with uptake, with the gradient of
increase dependent on transmission rate across bubble contacts.

As well as considering a situation in which all eligible households entered into a
social bubble, we also consider the impact uptake has on R for Scenario 6. We find
that R scales sublinearly with uptake (Figure 6.5). For example, this means that
the increase in uptake from 0% to 20% has a larger R than an increase in uptake
from 80% to 100%. Under our base parameterisation, if half of all households
entered into a social bubble, R would increase to 0.93, as opposed to 1.03 under full
uptake. However, assuming 7 = 7g, i.e. that transmission across bubble contacts
occurs at the same rate as across household contacts, half of all entering into social

bubbles would increase R above the epidemic threshold.

The impact bubbles have on epidemic risk depends upon the levels of transmis-
sion within the population prior to introducing a bubble strategy. We find that
the impact of bubble strategies on transmission scales linearly with the prior R
value, For all scenarios considered, this linear increase scales with a gradient ~ 1,
meaning the absolute increase in R from allowing social bubbles (Figure 6.6) re-

mains relatively constant over a range of levels of community transmission within
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the population.
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Figure 6.6: The relationship between initial R and R under different bub-
ble scenarios. Here we consider the impact different bubble strategies have on
the reproduction number, R. We consider this for our baseline parameters. For
all scenarios, we find that R with bubbles increases linearly with initial R with a
gradient approximately equal 1.

6.3.3 Impact of social bubbles on mortality risk

In all scenarios, the increased number of contacts lead to both excess infections
and fatalities. Excess risk of infection compared to Scenario C1 was seen in both
eligible and ineligible households under each scenario. This increased risk of in-
fection in ineligible households occurs due to community transmission from eligible
households. However, as expected the relative risk of infection was higher in eligible

households (Figure 6.7).

The mortality risk associated with a social bubble strategy will not only depend
on the increase in R associated with that strategy, but also on the demographic
affected by the increased rate of infections. The average age in the households

eligible to form social bubbles in scenarios 1 to 6 was 21.8, 25.6, 58.1, 40.2, 32.2,
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and 39.4 years, hence the average infection fatality risk in an average household
member eligible under such a strategy was 0.09%, 0.14%, 2.36%, 1.05%, 0.74%,
and 0.93%. Because mortality risk to an individual depends on their age, the
average age of eligible households to form social bubbles is relevant to the associated
increase in mortality. For example, while social bubbles among households with
young children (Scenario 1) saw similar increases in infections to increases in deaths
(with a risk ratio of 1.13 and 1.14 for infections and deaths respectively), social
bubbles targeting single occupancy households saw a larger increase in deaths than
infections (with a risk ratio of 1.26 and 1.83 for infections and deaths respectively)
due to the older targeted demographic. In scenarios targeting families, the mortality
risk was largely attributed to households not eligible to form social bubbles, as a

consequence of limited multigenerational mixing in UK households.
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Figure 6.7: Relative risk of infection and fatality. Left panel: the relative
risks of infection in the considered scenarios if compared to the status quo with no
social bubbles (Scenario C1), stratified into the risks in households eligible and not
eligible for forming social bubbles. Right panel: the population attributable fraction
of fatalities in the considered scenarios. The overall mortality risk is stratified into
the baseline risk, and the excess risk from forming social bubbles in both eligible
and ineligible households.
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6.3.4 Effectiveness of social bubbles

Here we consider the effectiveness of social bubbles, by considering the reduction
in mortality risk compared to counterfactual scenarios where individuals increased
their contacts in an unclustered fashion. Under our base parameterisation, allow-
ing all households to form social bubbles reduced the mortality risk by 30.9% when
compared to individuals making the same number of fixed infectious contacts at
random across the population (Scenario C2). When compared to individual’s mak-
ing new unclustered infectious contacts every generation, social bubbles reduced

the mortality risk by 42.4%.

We also considered scenario specific counterfactual scenarios. In general, the added
benefit of social bubbles increases with a higher proportion of eligible households,
alongside targeting riskier demographics. For example, social bubbles for house-
holds with young children (Scenario 1) reduced mortality risk by 4.2% and 8.1%
compared to those households increasing contacts randomly and time-varying. In
contrast, allowing households with one adult to form a support bubble with another
household (Scenario 4) results in 51% of the households entering into a bubble, and
leads to a 27.7% and 39.3% reduced mortality risk compared to individuals from
those households increasing their contacts randomly but fixed and individuals from
those households increasing their contacts randomly but varying each generation

respectively (Figure 6.8).

6.3.5 Sensitivity analyses

We test the robustness of our findings to a number of alternative assumptions gov-
erning the spread of SARS-CoV-2 and the implementation of the social bubble
strategy (Figure 6.9). Unsurprisingly, a lower initial value of R and a lower than
observed household secondary attack rate, and a lower rate of transmission across

bubble contacts, lowers epidemic risk in all scenarios. Excluding households includ-
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Figure 6.8: Scenario specific effectiveness of social bubbles. Here we com-
pared the effectiveness of social bubbles in reducing mortality risk, when compared
to other ways of increasing social contacts - where individuals from eligible house-
holds either make fixed random contacts (blue) or varying random contacts every
generation (orange). In each comparison, individuals make the same number of
infectious contacts, so the reduction in fatalities can be attributed to the clustering
implied by social bubbles.

ing adults over 70 years also lowers epidemic risk, although in general to a smaller
extent than the factors mentioned above. Conversely, a higher initial value of R, a
higher than observed secondary attack rate, and a higher rate of transmission across
bubble contacts increased epidemic risk in all scenarios. Households not adhering
to social bubble guidelines, modelled by allowing 50% of eligible households, also

increased epidemic risk.

For Scenarios 1-3, R did not exceed 1 under any of the univariate sensitivity anal-
yses considered. For Scenario 4, all four factors leading to increased epidemic risk
mentioned above pushed R above 1. For Scenario 5, R only exceeded 1 when there
was a higher initial value of R prior to implementing social bubbles. For Scenario 5,
all four factors leading to reduced epidemic risk mentioned above dropped R below

1.

196



The alternative assumptions on age-stratified susceptibility and transmissibility
lowering epidemic risk in Scenarios 1 and 2, i.e. households with children, while for
all other scenarios this alternative assumption increased epidemic risk. The opposite
is true when considering the alternative assumptions on close-contact transmission
and community transmission; these alternative assumption increased epidemic risk
in Scenarios 1 and 2 and lowered epidemic risk for all other scenarios. This effect
was sufficient to change the ordering of risk of social bubble strategies. Under our
baseline assumption, Scenario 1, targeting families with young children, resulted in
the lowest increase in R; under these alternative assumptions, Scenario 3, targeting

single-occupancy households, resulted in the lowest increase in R.

The effectiveness of social bubbles also varied according to the underlying paramet-
ric assumptions. Assuming our alternative assumptions around susceptibility and
infectivity, the effectiveness of social bubbles was as large as a 46.1% and a 58.5%
reduction in mortality risk compared to adding the same amount of contacts ran-
domly (Scenario C2) and time varying (Scenario C3). Under our most conservative
assumptions, the reductions in mortality risk compared to C2 and C3 were 87.2%

and 91.3%.

Alongside the parameter sensitivity scenarios considered, we also consider each
scenario where older adults were shielded and excluded from being allowed to form
a bubble as a sensitivity analysis. This only has a small impact on the effect of social
bubbles for families with children (Scenarios 1 and 2), because of the small amount
of multi-generational mixing between households in the UK, but does reduce R for
social bubbles for single occupancy households or all households (Scenarios 3-6).
While shielding older individuals does decrease overall mortality risk, the increase
in infection resulting from social bubble strategies still impacts older individuals;
bubbling strategies increase overall cases, which in turn increases risk to older

individuals through community transmission.
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Figure 6.9: Sensitivity analyses. Each tornado diagram shows the univariate
sensitivity analysis on the expected increase in fatalities and the net reproduction
number for a given scenario. The colour coding is based on factors determining
higher risk (orange) and lower risk (blue) for Scenario 1. The base case estimate is
indicated through the dashed grey vertical line. The sensitivity scenarios are (from
top to bottom): transmission across individuals of households sharing a bubble
is 90% or 0% lower than that within a household instead of 50%; the relative
susceptibility to infection of children and older adults compared to adults is 79%
and 125% while the relative transmissibility is 64% and 290%; the secondary attack
rate in the household is 10% or 40% instead of 20%; R is 0.7 or 0.9 instead of 0.8;
that households including an adult over 70-years-old are excluded from forming
bubbles; that transmission across close contacts is density dependent; that 50%
of bubbles do not adhere to the recommendations but pair up with an additional
household; and that the risk of a household to get infected from the community is
proportional to the household size instead of being the same across households.



6.4 Discussion

In this chapter, we find that contact clustering via the formation of social bubbles
can limit the additional risk of transmission from allowing individuals to increase
their social contacts beyond their own household. Under our base parameterisation,
social bubbles reduced mortality risk by 42% compared to allowing individuals to
make an equivalent number of infectious contacts in an unclustered manner, and
under some alternative parameterisations this risk reduction was even greater. We
find that allowing all households to form social bubbles may increase R above
the epidemic threshold and hence may lead to an exponential increase in cases.
Strategies that target households that may be in the highest need of additional
social contacts only result in a limited increase in epidemic risk, increasing R by
less than 11% individually and less than 15% in combination. Individually, these
targeted strategies remained below the epidemic threshold under all sensitivity
analysis scenarios considered. We find that adverse health outcomes resulting from
a social bubble strategy are largely proportional to epidemic risk, but find that this
will disproportionately affect households with older adults irrespective of whether

they are eligible to enter into a social bubble.

This chapter investigates the effectiveness of social bubbles as a potential exit strat-
egy from a successful period of lockdown, when stringent physical distancing mea-
sures have been imposed that have successfully reduced R to below the epidemic
threshold. While we consider the impact of social bubbles in isolation, such a policy
would only form one component of a multivariable exit strategy. Because of this,
our comparisons of social bubble strategies should be interpreted cautiously and
with regard to other relaxation measures implemented that allow social contact
beyond the household. Such measures may have a non-linear impact on the in-
creased epidemic risk caused by social bubbles. As social contacts increase in other

ways, the benefits gained from the exclusivity of bubbles diminishes. Of particular
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relevance, if schools are kept open, now seen as a priority for future lockdown situa-
tions, the resulting increase in social contact may impact the viability of strategies

that include families with children.

Numerous countries, such as Germany, New Zealand, and the UK, have imple-
mented social bubbles strategies similar to those considered in this chapter. In the
UK, since June 2020, adults who live alone or with dependent children can form
a ‘support bubble’ with another household of any size [GOV.UK, 2020b], since
November 2020 households with a child aged 14 years or younger have been al-
lowed to form a ‘childcare bubble’ with another household of any size [GOV.UK,
2021], and for Christmas Day only all households were allowed to form an exclusive
bubble with two other households. Throughout lockdown in New Zealand, single
occupancy households were allowed to pair up with a ‘lockdown buddy’ in another
single occupancy household, and key workers were allowed to identify ‘childcare
buddies’. On 27 April 2020, New Zealand relaxed some of its restrictions, allowing
residents to extend their household bubbles to reconnect with close family, bring in
caregivers and support isolated members in the community, while recommending
that such extended household bubbles remain exclusive [New Zealand Government,
2020]. A subsequent survey found that allowing households to reconnect, above
reopening of schools, shops, churches and fitness centres, would result in the largest

increase in quality of life [Long et al., 2020].

We identify three key risks impacting the success of social bubble strategies in
maintaining R below the epidemic threshold. Firstly, if R is close to the epidemic
threshold prior to the introduction of a social bubble strategy, implementing such
a strategy may increase R above 1 even if the policy has a small impact. If the
aim is to suppress the growth of cases, in such instances a social bubble strategy
may be unsuitable. Secondly, if there is a higher than observed household sec-
ondary attack rate, then a policy allowing social bubbles will result in a larger

increase in epidemic risk. There remains some uncertainty surrounding the house-
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hold attack rate of COVID-19, with high household attack rates observed in some
instances. However, our base case assumptions are in line with an increasingly
consistent picture emerging in the contemporary academic literature [Koh et al.,
2020]. Also, superspreading events have been raised as a potentially important
source for sustained transmission of SARS-CoV-2, which would further imply a
rather low secondary household attack rate in most instances. However, household
attack rates may vary between different types of household, and may be larger for
some households with unusual network structures [Potter and Hens, 2013], such as
large student households. Thirdly, a lack of adherence to social bubble strategies
could undermine their effectiveness. A lack of adherence allows potentially long
chains of transmission through the population. While we find that some degree
of non-adherence would not necessarily hinder the success of a strategy, if there
is a perception within the population that exclusivity is unimportant, this could
lead to individuals rebuilding their contact networks, resulting in a large increase

in epidemic risk.

Alongside these, we have identified key opportunities to minimise the risk resulting
from allowing social bubble strategies. If there is only partial uptake of social
bubble strategies, this results in a lower increase to the epidemic risk. A survey in
New Zealand found that only 50% of households took up the opportunity to expand
their social bubbles as measures were relaxed [Long et al., 2020]. Under our base
parameterisation, such a reduction would be enough to reduce R well below 1. We
also find epidemic risk is reduced further if the risk of transmission across bubble
contacts is low in comparison to household contacts. Hence, our research highlights
that the messaging surrounding any social bubble policy could play an important
role. In New Zealand, social bubbles were not framed as a relaxation of social
distancing rules but rather as a source of support for those who are at a higher risk
of social isolation or with needs for care, including childcare [Long et al., 2020].

Framed in this way, social bubbles may result in a minimal increase in epidemic
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risk.

The expansion of contacts resulting from social bubbles will naturally lead to some
increase in transmission when compared to a situation where social interaction
is confined to within a household. However, perfect adherence to such stringent
restrictions is not guaranteed over long periods of time. Eventually, adherence may
decline, leading to individuals increasing their contacts in an unclustered fashion.
To illustrate such a scenario, we include counterfactual scenarios capturing the
effects of unclustered increases in contacts. Under Scenarios C2 and C3, we consider
situations where individuals make the same number of infectious contacts as in
Scenario 6, but these contacts are unclustered. In Scenario C2, these contacts stay
fixed over time, while in Scenario C3, these contacts vary every generation. We
show that the clustering reduces the epidemic and reduces the number of infections
and subsequent fatalities by 30.9% and 42.4% in the base case and even more in
some of the parametric sensitivity analysis. Because of this, social bubbles may
actually help to reduce epidemic and mortality risk, if such a strategy is given as
guidance to households struggling to cope with the distancing measures imposed

in lockdown, who may end up increasing their social contacts anyway.

As in any epidemiological modelling study, we must make some assumptions sur-
rounding transmission. Firstly, we assumed that transmission across close contacts
was frequency dependent, informed by previous studies that indicate the probabil-
ity of infection across two specific members of the same household decreases with
household size for COVID-19 [Streeck et al., 2020] and other communicable dis-
eases like influenza [Cauchemez et al., 2004]. However, there remains uncertainty
surrounding the nature of close-contact transmission for COVID-19, and the as-
sumption of frequency dependence may not accurately capture transmission across
all settings. Secondly, we assumed that the risk of a household acquiring infec-
tion from the community is independent of its number of occupants. While this

assumption may be appropriate for some households (e.g. families where one adult
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leaves the household to do shopping), it may not hold true in other contexts (e.g.
student households comprising of largely independent individuals). Because of this
we tested the sensitivity of our results to these assumptions by alternatively con-
sidering close contact transmission as density dependent, and allowing the risk of
household infection to increase with household size. These alternative assumptions
do not qualitatively change our findings, but do change the ordering of the risk of
social bubble strategies. In particular, under either of these alternative assump-
tions, social bubble strategies targeting single occupancy households result in a
lower increase in R than strategies targeting families with children. Reports on
the antibody prevalence in England found household size associated with antibody
prevalence, suggesting that household size may play a role in the probability of
acquiring infection [Ward et al., 2021]; a more detailed understanding of the nature
of close contact and community transmission may help inform more precise evalua-
tions of the effectiveness of social bubbles. We do not consider the risk of community
transmission depending on bubble size. However, if bubbles were to act as cohesive
units, and as a consequence reduce their interaction with the community, this may

further increase the effectiveness of social bubble strategies.

Our analyses have a number of limitations. Firstly, this chapter assessed the risk
associated with social bubble strategies, and their effectiveness compared to unclus-
tered increases in contacts, but did not attempt to assess the benefits social bubbles
could have. As noted previously, allowing individuals to have social interactions is
important for their mental wellbeing and will have a disproportionate benefit for
particular households, though this is not something we attempt to quantify. Social
bubbles would also likely to have indirect benefits related to epidemic risk. Social
bubbles would likely benefit any contact tracing efforts as the clustering imposed
through social bubbles would mean that relevant close contacts would become eas-
ier to identify [House and Keeling, 2010]. Social bubbles could also amplify the

beneficial impact of self-isolation measures, if all individuals within a bubble are
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advised to self-isolate if a member of the bubble tests positive. Secondly, we did
not include the possibility to form bigger social bubbles that would cluster together
three or more households. While this has been implemented in some countries, the
complexity of creating an exclusive cluster of three or more households could lead
to a loss of adherence. Thirdly, we did not consider further heterogeneity within
society that may affect both risk of transmission and adverse health outcomes. For
example, about 20% of the working population is classified as key workers and
will have an increased risk for infection from the community, while adverse health
outcomes have disproportionately affected men, individuals of low socioeconomic
status, and individuals from particular ethnic backgrounds [Kirby, 2020; Raisi-
Estabragh et al., 2020]. Incorporating such information would require combining
these factors with distributions of household compositions, which would not be a
trivial task. Fourthly, we did not consider the impact immunity may have on our
results. If a significant proportion of the population had some level of immunity,
this would likely decrease the risk associated with the social bubble strategies. On
the other hand, if the duration of protection via immunity is very short-lived, then

this may affect our results considerably.

6.5 Conclusion

The modelling in this chapter highlights both the potential of a social bubble ap-
proach in relaxing lockdown measures as well as the continued need for social dis-
tancing measures even if social bubble strategies are implemented. While social
bubble strategies are an effective way of limiting the risk from expanding individ-
uals’ social contacts compared to unclustered increases in contacts, the resulting
increase in infections may result in R crossing the epidemic threshold. If social
bubbles are recommended only for those particularly struggling with lockdown,

while reinforcing the message that some level of social distancing even within social
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bubbles is recommended, this may be an effective way of striking a balance be-
tween minimising the negative impact lockdowns must have on mental health and
minimising the risk of a resurgence of cases. At the time of writing, the UK is cur-
rently in its third lockdown, a pattern echoed across Europe. As countries emerge
from current and future lockdowns, social bubbles may again become a vital tool
to provide social interactions to those that need it most, whilst keeping R below

one.

While much is still uncertain around COVID-19, its treatment, and its control, one
thing is sure: this virus and the control measures implemented to abate its spread
will continue to effect us for a period of years. When considering future control
policies, policy makers are in an unenviable position, having to balance effectiveness
of measures against their proportionality, consistency, and simplicity. Ultimately
though, whatever decisions are taken should be underpinned by thorough research,
and in the context of epidemics this must include mathematical modelling. We
believe this chapter contributes to this research effort, providing one of the first
studies assessing the impact of social bubble strategies as a way of controlling the

COVID-19 epidemic.
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Chapter 7

Concluding thoughts

This thesis has utilised a variety of network modelling approaches. A network ap-
proach to mathematical modelling can provide important insights into a wide range
of theoretical and applied questions. To understand the suitability or feasibility of
such an approach, it is important to understand the impact that network structure
has on epidemiological outcomes. Throughout this thesis, we have demonstrated
that network models can elucidate the importance of different aspects of network

structure in epidemiological modelling.

We began by investigating the correlations in infection status of individuals within
a network that occur because of underlying network structure. Standard pairwise
models assume the infection status of outer individuals in an open triple are condi-
tionally independent given the infection status of the central individual. While this
approach can lead to an exact description of the underlying epidemiological dynam-
ics for diseases with Susceptible-Infected-Recovered (SIR) dynamics [Sharkey et al.,
2015], the correlations induced by the possibility of reinfection means that these clo-
sures are only approximate for diseases with Susceptible-Infected-Susceptible (SIS)
dynamics. In Chapter 3, we introduced improved pairwise approximation models

for diseases with SIS-dynamics by explicitly tracking the time-evolution of the er-
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rors between standard pairwise approximations of triples and their ‘true’ values.
Doing so, we obtained a number of valuable insights: into the size and direction of
errors introduced by standard pairwise approximations; into the small number of
error terms required to capture the errors between approximations and their true
values; and into a generic approach to improve the accuracy of pairwise approxi-

mation methods for diseases without immunity:.

Chapter 3 focussed on a disease with idealised dynamics in two idealised settings.
Firstly, we considered an improved pairwise closure for an isolated open triple,
and we found that by explicitly tracking error terms, we could arrive at a model
capable of describing exactly the underlying disease dynamics. Secondly, we con-
sidered a closure for k-regular networks which, while approximate, is capable of
matching closely the results from higher-order approximation models and explicit
stochastic simulations. We did so because in these settings the correlations between
infected individuals are not disturbed by other features in a network, providing us
with an ideal setting to understand the specific errors induced by SIS-dynamics.
Even in these idealised settings, the disease dynamics are non-trivial and analytical
tractability is limited. Our work in Chapter 3 highlights the complexity of disease
dynamics that can arise on even the simplest network structures, the importance
of basic models to understand these complexities, and the challenge of designing

accurate network models of diseases without immunity.

The network structures considered in Chapter 3 are clear departures from epidemi-
ologically relevant contact networks in the real world. However, we believe that
this approach has the potential to be extended in a variety of ways to more real-
istically capture the structure of real-world networks. As discussed in Chapter 3,
we believe that incorporating these improved closures into networks that are both
heterogeneous and dynamic is possible. However, a key question going forward will
be whether the improvement in accuracy from explicitly tracking errors is worth

the additional complexity. We believe that this approach also has the potential to
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illuminate some identified outstanding challenges for static network models. Pellis
et al. [2015a] note that there has been little research into more complicated dis-
ease dynamics where reinfection is possible, such as Susceptible-Infected-Recovered-
Susceptible (SIRS) dynamics or Susceptible-Exposed-Infected-Susceptible (SEIS)
dynamics. In both cases, we believe our approach could be easily extended, and
that doing so would only require one additional error term. Doing so could pro-
vide a valuable insight into the suitability and accuracy of pairwise approximation

methods for a wide range of disease dynamics.

In Chapters 4 and 5 we considered the importance of accurately capturing levels of
concurrency when modelling the control of sexually transmitted infections (STIs).
We did so using two distinct modelling approaches. In Chapter 4, we used a rela-
tively simple deterministic pair-formation model. Doing so has clear benefits. As
there are a relatively small number of equations we can obtain an intuitive under-
standing of the underlying disease dynamics, and for models without concurrency
we can obtain analytical expressions for the equilibrium values of different states
of the system. Because pair-formation models are an extension of random-mixing
models, it is possible to find the critical level of vaccination numerically, by find-
ing the required level to bring the value of the real parts of all eigenvalues of the
Jacobian matrix to be less than zero to ensure the stability of the disease-free equi-
librium [Kretzschmar et al., 1994]. Through this modelling approach, we showed
that when models are matched to prevalence data, models with and without concur-
rency require similar levels of vaccination, highlighting that accurately capturing
concurrency may not always be necessary in models of STI control. This result
appears to go against the received wisdom that concurrency has a large impact on
epidemiological dynamics. However, the two are not mutually inconsistent. It is
true that the presence of concurrent partnerships in a network will have a large
impact on the prevalence of an STI, but given we know the prevalence of an STI,

including concurrency in models that have been matched explicitly to prevalence
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will have little bearing on the success of control by vaccination.

However, the simplicity of this model is also its limitation. In particular, these
models are not naturally suited to include concurrent partnerships where additional
partnerships have any duration (the models of Leung et al. [2012, 2015] address this
problem, but assume that individuals form partnerships at a rate independent of
their relationship status). In Chapter 5, to consider the impact of concurrent part-
nerships in a more realistic setting, we constructed a dynamic simulation model
of a heterosexual population, with an arbitrary number of male and female risk
groups, that we fitted to observed behavioural data from the National Survey of
Sexual Attitudes and Lifestyle (Natsal). By inspecting the network at a snapshot
in time, we were able to more fully understand the implications of different assump-
tions surrounding concurrent partnership on network structure, observing a stark
difference between models assuming partnerships form at a rate independent of re-
lationship status and models explicitly matched to observed levels of concurrency.
Despite this difference, we once again observed that the impact of concurrency on
the success of control measures is modest when models are matched to prevalence
data, and is particularly similar to models assuming serial monogamy. The results
from Chapter 5 confirm that the results from Chapter 4 hold true in a more re-
alistic setting, and that the impact of concurrency does not have some non-linear

interaction with other heterogeneities present in real-world sexual networks.

We believe that both the pair-formation models of Chapter 4 and the individual-
based models of Chapter 5 have the potential to be extended in illuminating ways.
As only a small number of male and female risk-groups are required to fit to ob-
served yearly degree distributions, it would be feasible to define pair-formation mod-
els that more realistically capture the dynamics of heterosexual networks. Given
that models with and without concurrency require similar levels of vaccinations,
a pair-formation model assuming serial monogamy that is fitted to yearly degree

distribution data could be used to understand the potential impact of vaccina-

209



tions. Doing so may achieve a good balance between complexity and tractability.
With the prospect of future vaccines against STIs, such an approach may become
a useful tool in the future [Gottlieb et al., 2014; Abraham et al., 2019]. For the
individual-based model of Chapter 5, yet greater realism may be possible to include,
including age-structure, the interaction between heterosexual and homosexual pop-
ulations, more realistic disease dynamics, and a wider range of interventions. The
results from the next Natsal survey, Natsal-4, will arrive in the next few years. Our
individual-based modelling framework, fitted to behavioural data from this survey,
could provide a basis to modelling the impact of STI control strategies in the UK

in the coming decade.

While mathematical models that aim to predict the outcome of potential pub-
lic health interventions always aspire to realism, they must inevitably make some
simplifying assumptions. These chapters demonstrate an important task for re-
searchers interested in network approaches to modelling the spread of epidemics:
to understand which features of network structure have a significant impact on epi-
demiological outcomes, and must be included explicitly, as well as to understand
which features have little impact on the resulting dynamics, and may be omitted
without significantly changing outcomes. These chapters demonstrate that, when
considering the impact of STI control measures and sexual network models are

matched to prevalence data, concurrency falls into the latter category.

In Chapter 6, we moved away from STIs, and applied a network approach to answer
an applied question about COVID-19 lockdown relaxation measures. In the context
of a lockdown within the UK, we were able to utilise a rich data source, the most
recent census of England and Wales, to obtain the underlying network and age
structure of our synthetic population. By comparing a scenario where households
form exclusive ‘social bubbles’ to scenarios where individuals make a comparable
number of unclustered additional contacts, we were able to quantify the extent to

which social bubbles were an effective way of minimising the risk from increasing
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contacts. We were also able to compare a range of different potential social bubble
policies, where only some households are eligible to form social bubbles, and we were
able to test the sensitivity of our results to a range of alternative assumptions. By
doing so, we were able to provide an assessment as to which social bubbles strategies
were unlikely to increase transmission above the epidemic threshold. Our work in
this chapter demonstrates the capacity of even relatively simple network models to

provide insights into applied questions of importance to public health.

As we considered a situation where individual’s social contacts were severely re-
stricted to those within their household, we were able to utilise a static network
model, as we could reasonably assume that an individual’s household contacts com-
prised the majority of an individual’s social contacts. While our model was capable
of answering a specific question in a specific context, the extent to which this
modelling approach could be extended to other contexts is unclear. It is unclear
whether our approach could be adapted to consider a non-lockdown situation, where
individual’s contacts are dynamic and diverse, or indeed whether there would be
appropriate data to parameterise such a model. However, adding another layer of
static contacts could be relatively straightforward. For example, our framework
may be able to consider a lockdown situation where schools are open. Given that
further lockdowns are likely in the future, understanding the impact of social bub-
bles remains relevant, and network approaches such as ours may well be important
tools in understanding their impact, and in understanding their interaction with

other relaxation measures.

Overall, this thesis has demonstrated the capacity for network models to answer
a variety of theoretical and applied questions. Doing so, we hope to have demon-
strated the diversity of mathematical models that exist, and the diversity of ques-
tions they try to answer. From basic models to understand the correlations that
result from network structure, to assessing the importance of including aspects of

network structure in public health models, to quantifying the impact that specific
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policies affecting network structure may have, network models are an invaluable
tool. Given their capacity to answer such questions, and given the many open
questions that exist, network models will remain important tools in the mathemat-

ical study of epidemics.
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Appendix A

Appendix to Chapter 3

While we find that considering proportions is a more convenient way to express the
results from Section 3.3, we appreciate that others may prefer to use our results
under the convention of terms referring to numbers of motifs. In this appendix, we
provide a conversion table to transform the terms from this section from proportions
to numbers, and derive the improved pairwise model in terms of numbers. We
stress that the improved pairwise model presented here is equivalent to the model

presented in Section 3.3.2.

A.1 Converting the improved pairwise model for k-

regular networks from proportions to numbers

First, to express the quantities in Section 3.3.2 in terms of numbers, we must be
able to count the number of motifs relative to every individual. In a k-regular
network, for every individual there are k pairs, for every pair there are (k — 1)
triples, and for every triple there are (k — 1) line graphs of length 4 and (k — 2)

4-stars. Using straight line brackets |X| to denote the number of individuals in
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Table A.1: Conversion table between proportions and numbers.

Motif Ratio to # of individuals | Term (proportion) | Equivalent term (numbers)
Individual 1 [X] | X|/N

Pair k (XY IXY|/kN

Triple k(k — 1) (XCY] IXCY|/k(k — )N

Line graph (length 4) | k(k —1)? (A X, C.Y,] |Au X C.Yy|/k(k —1)2N
4-star k(k —1)(k—2) (X,C.Y,Z,] | X,C.Y, Z,|/k(k —1)(k — 2)N

state X etc. Table A.1 below outlines equivalent terms:

Using these conversions for example on Equations (3.38) and (3.40), we obtain the
formally derived equations obtained by Taylor et al. [2012] (Theorem 1). We can
also use these to convert our closures from proportions to numbers. Applying these,
we obtain the unintuitive result that the closure [ XCY] ~ [XC][CY]/[C] in terms
of proportions is equivalent to the closure | XY Z| ~ (k — 1)/k x |XC||CY|/|C]
in terms of numbers. Applying these conversions to this and to Equations (3.60)

and (3.61) we obtain:

k—1|XC||lCY
[ XCY| ~— | ||C|,| | (A1)
k(k — 2) |ASB||BSI||ASI||S|
A.S.B,L,| ~ A2
AeSeBy Lol ~ 12— TASIIBS|IS] (A-2)
_|1SA||SAB
|IaSa:AcBy’ ~ |SA| (A3)

To obtain the improved pairwise approximation in terms of numbers, we again
consider the term o between a triple and its approximation. Below we consider

Q1S
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arsr) =k|ISI||S| — (k — 1)|SI|? (A.4)
|955| +2|SS1I| + [ISI| (|SSS| + |SSI|)?

=k|IST k—1 A5
Qs
:ﬁ where a5 = |S5||151| — |SSI|? (A.6)
As before, we find o757 = g5 = —yg511 = 5//(k — 1). Defining a7 as
[II1||SIS| — |SII|?, we similarly find oys75 = oqrrr) = —ysi = oyr/(k — 1).

By applying the conversions from Table A.1 to Equations (3.44) to (3.49), we can

obtain expressions for the rate of change of g and q:

ajs| =v(¢|s| — 2a5)) + 7(B)s| — 2av5)) (A.7)
where @5 =|SSS||TIT| + |SIS|IST| — 2|SSI||SIT| (A.8)
and where f3g) =2(k — 1)(|1aS2Scly[|SS| — [1aSzSeSyl|[SI|) + 2|SzScly L [|SST|

(A.9)
= [S2SeSy L[ 1S1] — [Ip.ScIy I || S S S|

ajp = —dyoyn + 7B + 20 — 20ypy) (A.10)

where ¢ =2|SIS|[ISI| - 2|SSI||SII] (A11)

and where B =2(k — 1)(|Io Sy T ||ST| = [TuSo TSy || IT]) — 2S,S.1, LL||STT|
(A.12)

4 |1, S, I.||STS| + |82 SeSy L|| I 11|

Finally, rearranging Equation (A.4) and its analogues, substituting in a|x| we can

obtain the closure for triples in the improved pairwise approximation:
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(k — 1)2’AB‘2 + a|B|
k(k —1)]B]

(k — 1)2|ABHBC| - a|B|
k(k —1)|B|

|ABA| ~ |ABC| ~ (A.13)

Thus we arrive at the improved pairwise approximation for k-regular networks, ex-

pressed in terms of numbers rather than proportions:

Model 6 in terms of numbers - The improved pairwise approximation

for k-regular networks

(k — 1)2‘55"51‘ — Oé|s|

|5S| =27[SI| — 27 kE—1)|9] (A.14)
L (k—1)%SS||ST| — oqg; (k= 1)2[SI? + ayg
|SI| =~(|/II| —|SI|)—7|SI|+T Kk = 1|3 -7 k= 1)3]
(A.15)
ajs =v(91s) — 2q5)) + 7(B1s) — 20y5)) (A.16)
ajp) = — 4yay + 7B + 201 — 201)) (A.17)
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Appendix B

Appendix to Chapter 5

This appendix provides supporting plots to Chapter 5.

In Figures B.1 and B.2 we provide posterior distributions obtained for the fitted
cy = ¢ = 1 models and ¢y = ¢p = 0 models, analogous to Figure 5.3 in the
main text. As for the full simulation model, we find that posterior distributions are

approximately multivariate normal distributed.

In Figure B.3 we explore the impact of untargeted and targeted vaccination on
endemic prevalence in males and females, with similar trends emerging for both

sexes.

In Figure B.4 we explore the impact of contact tracing on endemic prevalence in
males and females. Again, we see the combined trend mirrored in the trend of each

individual sex.
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Figure B.1: Posterior distribution obtained from MCMC for the c); =
cr = 1 model. Here, we plot the posterior parameter distributions obtained via
a MH-algorithm for the ¢py = ¢ = 1 model. We observe that the distributions
are approximately normally distributed. Distributions are obtained from 100,000
iterations of an MH-algorithm, after an initial burn-in period of 100,000 iterations.
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Figure B.2: Posterior distribution obtained from MCMC for the c); =
cr = 0 model. Here, we plot the posterior parameter distributions obtained via
a MH-algorithm for the c¢py = ¢ = 0 model. We observe that the distributions
are approximately normally distributed. Distributions are obtained from 100,000
iterations of a MH-algorithm, after an initial burn-in period of 100,000 iterations.
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Figure B.3: Sex-specific comparison the impact of untargeted and tar-
geted vaccination across models. In the top panel, we compare the impact of
untargeted (left) and targeted (right) vaccination on endemic prevalence in males,
for the cpy = ¢p = 1 model (blue), the full model (orange), and the cpy = cp =0
model (green). Similarly, in the bottom panel, we compare the impact of untargeted
(left) and targeted (right) vaccination on endemic prevalence in females. The trends
resulting from vaccination in different models are similar for both sexes. Plotted re-
sults are means of 100 epidemics generated from parameters sampled from the fitted
posterior distributions, with shaded areas referring to 95% prediction intervals.
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Figure B.4: Sex-specific comparison of the impact of contact tracing across
models. For (a) males and (b) females, in (i-iii) we plot heat maps showing the
impact that contact tracing period and the probability of contacting and tracing
traced individuals has on endemic prevalence for each model. In (iv) and (v) we
focus on the impact of contacting and tracing traced individuals has on prevalence
when the tracing period is (iv) 0 years and (v) 1 year . Plotted results are means
of 100 epidemics generated from parameters sampled from the fitted posterior dis-
tributions, with shaded areas referring to 95% prediction intervals.
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