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Abstract: One of the major challenges in implementing the equivalent fuel consumption minimisation
strategy in hybrid electric vehicles is the adaptation of the equivalence factor to real-world driving. In
this paper, a novel adaptive equivalent fuel consumption minimisation strategy (A-ECMS) has been
developed for a hybrid two-wheeler to further improve fuel savings by predicting the drive cycles
and thereby estimating and adapting the equivalence factor online for the ECMS energy management
control. A learning vector quantitative neural network (LVQNN)-based classifier was first proposed
to recognise the real-world driving cycle based on a fixed time window of past driving information.
Along with standardised drive cycles, real-world driving data were used in the learning process to
increase the robustness of the learning. The A-ECMS is then capable of regulating its equivalence
factors online based on the LVQNN controller output. Numerical simulation results indicated that
there was considerable improvement in fuel economy of the vehicle with the proposed methodology,
up to 10.7%, compared to the use of traditional ECMS which was manually optimised for a single
drive cycle. The average improvement in fuel economy over the ten drive cycles considered for
testing is 3.93%.

Keywords: optimal real-time control; ECMS; hybrid two-wheeler; equivalence factor adaptation;
neural network; drive cycle recognition

1. Introduction

Concerns over climate change, constraints on energy resources, stringent regulations
on emissions and poor energy efficiency are all pushing the transportation industry to
focus more on alternative technologies, such as hybrid electric vehicles (HEVs) [1]. Plugin
HEVs (PHEVs) have become the prime focus in recent times. The key goal for using the full
potential of hybridisation is by developing an intelligent real-time implementable energy
management strategy (EMS).

Studies have suggested that energy management controllers for HEVs can be divided
into rule-based controllers and optimisation-based controllers [2–4]. Rule-based controllers
are based on predefined rules based on experience, calibration and tuning of controllers
for the desired output without prior knowledge of the trip [5,6]. A hybrid electric vehicle
is more sensitive to a driving cycle than an internal combustion vehicle when fuel con-
sumption and tailpipe emissions are concerned [7]. Studies show that real-world drive
cycles and driving trends have a large negative impact on fuel consumption and exhaust
emissions with a traditional rule-based EMS used in hybrid vehicles [8]. Optimisation
controllers overcome the inherent rigidity of rule-based controllers by using an optimal
control strategy that minimises a cost function [9,10].

One of the most popular solutions for the real-time optimisation of the energy man-
agement controller is the equivalent fuel-consumption minimisation strategy (ECMS) and
it is generally accepted to be a promising real-time controller because of its feasibility and
optimality [4,11,12]. The equivalent consumption minimisation strategy is an instantaneous
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approach derived from Pontryagin’s Minimum Principle [11]. Unlike many optimisation
strategies, the ECMS does not require an a priori driving profile to exist before optimisation.
Feasibility along with fast computation makes ECMS a potentially real-time implementable
strategy. However, one of the most important challenges in implementing an ECMS in
the production of hybrid electric vehicles is the estimation and adaptation of equivalence
factor for real-world driving because the optimal equivalence factor is not readily available
without the trip information. Using an optimally tuned equivalence factor for a specific
drive cycle does not guarantee the optimality of the ECMS controller for other driving data
and by doing so, the actual purpose of using optimal control is completely lost. Adapting
the equivalence factor for on-road driving conditions accurately is essential for the optimal
working of ECMS. The optimal equivalence factor significantly affects the fuel economy,
and the size of this effect varies with the drive cycle [12]. Therefore, precise estimation
of the equivalence factor is crucial for the performance of the ECMS and a challenge for
successful implementation on the production vehicle.

Unlike a four-wheeler, with a two-wheeler, the cost for hybridisation causes a larger
change of marginal cost in the production of the vehicle [13]. This drives a need for a
cost-effective, adaptive ECMS controller, which has a low offline and online computational
load. The real-world drive data would not necessarily be like any of the standardised
drive cycles or previously collected on-road driving data sets. Storage of thousands of
potential drive cycles on board a two-wheeler is not feasible. Thus, the hybrid two-wheeler
platform requires a cost-effective solution, and this manuscript reports a methodology
based on drive cycle recognition to adapt the equivalence factor with precision and efficient
computation for the hybrid two-wheeler.

There is limited literature found for online adaptation of equivalence factors based
on driving cycle or pattern recognition for ECMS implementation. In the paper [14],
a similarity weight is assigned to each reference driving cycle using a fuzzy clustering
method. Fuzzy weights represent the similarity of an unknown driving cycle to each
of the reference driving cycles. Thus, drive cycle recognition is used for estimating the
drive cycle and thereby estimating the equivalence factor online for ECMS. Musardo
et al. implemented an adaptive ECMS method by updating the equivalence factor online
by predicting the future driving cycles using a neural network. This method provided
an online estimation of the equivalence factor [11]. This method showed results very
close to those obtained using a global optimal solution; dynamic programming (DP).
However, the method required additional computation load to implement the predictor,
which would not be a suitable solution for a low-cost energy management application.
Jeon et al. first generated five representative driving patterns (RDP) by rules. A rule-
based control algorithm was extracted from the result of the optimal solution provided
by dynamic programming (DP) on each RDP. Finally, a multi-mode driving control was
realised by switching the control parameters in each RDP [15]. However, this method
requires large computational capability. In 2009, Huang et al. used four features of drive
cycle characteristics for distinguishing between the driving cycle types for the equivalence
factor adaptation for ECMS implementation. However, the fuel benefit of this method was
not evaluated [5]. The study considered only two standardised driving cycle types with
two non-fuzzy rule-based control strategies for each of the driving cycles. Most of the
research in the literature focuses on the fuzzy logic algorithm to predict the driving cycle,
the driving intention, or the driving patterns for adaptive equivalence factors for online
ECMS implementation. Most of the considered literature used statistical and stochastic
velocity forecast approaches for energy management optimisation. However, a study done
by Chao et al. [16] demonstrates that a data-driven neural network (NN) exhibits better
performance when compared to statistical and stochastic prediction approaches concerning
the prediction precision and computational cost.

Neural networks (NNs) have been used successfully for many applications such as
pattern classification, decision-making, predicting and adaptive control [17]. The data-
driven type classifiers exhibit the best performance as they can learn the short-term driving
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behaviour of a vehicle and capture its nonlinearity with low computation and high preci-
sion [18]. A well-designed NN can fit into a look-up table and can adapt itself by training to
update the table data. It is a powerful computational method, which learns and generalises
from training data. Therefore, it would be very beneficial to use NN for the drive cycle
recognition and estimation of equivalence factors for the successful implementation of
ECMS online. Langari and Won proposed an intelligent energy management agent (IEMA)
which is based on a fuzzy rule-based energy management strategy for parallel hybrid
vehicles, which contained a learning vector quantisation (LVQ) network roadway type
identifier [9]. During their research, 47 parameters were selected for LVQ classification
and most of the drive cycle segments could be correctly classified. Lei et al. analysed
the impacts on identification results caused by the dissimilarity measures used in driving
pattern recognition (DPR). A micro-trip extraction method is used to optimise the training
of the LVQ identifier [19]. Research results show that realizing DPR through calculating the
Euclidean distance is more adaptable. The LVQ neural network recognition algorithms are
exactly based on the calculation of Euclidean distances. In the paper [20], an automated
feature extraction scheme based on convolution neural networks (CNNs) and Kernel PCA
(KPCA) for real-time driving pattern recognition (RTDPR) is proposed to achieve the con-
sistent performance of the energy management. Simulation and experimental results show
that the proposed automated feature extraction strategy outperforms the conventional
driving pattern recognition algorithms based on manual feature extraction. In the research
study [21], the authors propose an improved adaptive equivalent consumption minimisa-
tion strategy (A-ECMS) based on long-term target driving cycle recognition and short-term
vehicle speed prediction, and adapt it to personalised travel characteristics. In the offline
part, typical driving cycles of a specific driver is constructed by analysing personalised
travel characteristics in the historical driving data, and optimal SOC consumption under
each typical driving cycle is optimised by DP. In the online part, the SOC reference trajec-
tory is obtained by recognizing the target driving cycle from intelligent traffic system, and
short-term vehicle speed is predicted by nonlinear auto-regressive (NAR) neural network
which both adjust EF together. Simulation results show that compared with CD-CS, the
fuel consumption of A-ECMS proposed in the paper is reduced by 8.7%. However, this
method needs additional information from the Intelligent traffic system which adds cost to
the vehicle.

There is no literature found which uses the data-driven LVQNN for drive cycle recog-
nition using limited past drive cycle information for online equivalence factor estimation.
In this study, a data-driven LVQNN-based drive cycle recognition based on past data of
the driving cycle for online estimation of equivalence factor for ECMS implementation is
proposed in this paper. In this study, an advanced adaptive equivalent fuel consumption
minimisation strategy, (AECMS) is proposed and developed for the hybrid two-wheeler
considered, based on the previously reported ECMS strategy [22]. An NN-based controller
is used for drive cycle recognition and thereby the online estimation of equivalence factor
for the adaptive ECMS implementation.

This paper reports the development of a novel control approach to estimate the
equivalence factor by classifying the present drive cycle against a range of standardised
and real-world drive cycles using the learning vector quantitative neural network (LVQNN)
algorithm. This classification is based on eight parameters chosen to characterise the drive
cycle. A lookup table is used to estimate the equivalence factor for the modified ECMS
optimal controller based on the output from the supervisory controller.

This paper is organised as follows: In Section 2, the hybrid powertrain configuration
is briefly introduced, and a mathematical model is developed for further investigation.
In Section 3, the modified ECMS implementation is explained. In Section 4, the LVQNN-
based control strategy is constructed and optimised using trained data. In Section 5
the simulation test results are presented and discussed, and the concluding remarks are
provided in Section 6.
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2. Vehicle Configuration and Modelling

The vehicle considered for this study is a full parallel plugin hybrid concept two-
wheeler and the powertrain architecture for the vehicle is as shown in Figure 1. The system
is composed of an engine, a centrifugal clutch, an electric machine, mechanical transmission
and an energy storage device (high voltage battery). Figure 1 shows the mechanical and
electrical power flow between the powertrain components. The electric machine is capable
of power assist and charging from the engine along with pure electric drive depending
on the wheel power requirement and the battery SOC (state of charge). Hard constraints
corresponding to the physical limits of the powertrain components are applied to the
control input.
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Figure 1. Powertrain architecture of the hybrid two-wheeler.

Two different approaches to HEV modelling can be adopted: backward or forward-
facing modelling concerning the physical causality principles [23,24]. The powertrain data
for the two-wheeler hybrid available drives this study to use a simplified appropriate
backward-facing model for this purpose [22]. A backward model developed by sourcing
the detailed technical specifications and experimental data of engine, electric machine, and
battery from the hybrid two-wheeler considered for this study is explained in detail in
the previous work by the author published in Energies journal ‘Evaluation of a Modified
Equivalent Fuel-Consumption Minimization Strategy Considering Engine Start Frequency and
Battery Parameters for a Plugin Hybrid Two-Wheeler—Section 2: Vehicle model and system config-
uration’ [22]. The power sources, transmission and control system were developed using
MATLAB/Simulink/State flow environment. Since the vehicle is a concept two-wheeler
and not production-ready, the actual technical details of the powertrain components are
not disclosed. In turn, the normalised values are displayed wherever necessary.

Figure 2 shows the engine characteristics. It shows the engine’s BSFC map, engine
power lines, engine max torque and engine optimum operating line. The Figure 3 shows
the efficiency map of the traction machine along with max motor and generator torque.
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3. Novel Adaptive Equivalent Fuel Consumption Minimisation Strategy (ECMS_LL)

Previously, a modified novel equivalent fuel consumption minimisation strategy
referred to as ECMS_LL has been designed and developed, which is published in [22]. The
proposed modified ECMS attempts its maximum possibility to bring the engine operating
points toward the engine optimum operating region by deriving a penalty function and
implementing it into the cost function evaluation. The penalty function depends on engine
operating points and their deviation from the engine optimum operating line at every time
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instant. The addition of this penalty function enhances the engine operating towards the
engine optimum operating line, thereby improving the mean engine efficiency for the drive
cycle considered.

The cost function for the conventional ECMS is represented as follows [22]:

J(xt, ut) =
.

m f uel
eqv (t) =

( .
m f uel

ICE (t) +
.

m f uel
BAT(t)

)
=

(
.

m f uel
ICE (t) +

s
Qlhv

PBAT(t)
)

min (1)

where
.

meqv is the instantaneous equivalent fuel consumption,
.

mICE is the instantaneous
fuel consumption from the engine,

.
mBAT is the instantaneous equivalent fuel consumption

from the battery power (both in charging and discharging), s is the equivalence factor,
which represents the conversion of electric power into fuel consumption and PBAT is the
battery power, Qlhv is the low heating value of the fuel. All the parameters in the equations
are in SI units.

The novel modified ECMS, ECMS_LL has been developed where the cost function is
modified with a new penalty factor based on the deviation of engine operating points from
engine optimum operating line (OOL) [22].

The cost function for the modified ECMS_LL is represented as follows [22]:

J(xt, ut) =
.

m f uel
eqv (t) =

(
.

m f uel
ICE (t) +

γS
Qlhv

PBAT(t) + β

(
ICE f uele f f

OP

ICE f uele f f
OOP

(t)

))
min (2)

where β

(
ICE f uele f f

OP

ICE f uele f f
OOP

(t)
)

is the new penalty factor in the cost function that is based on

deviation engine operating point from optimum operating point. ICE f uele f f
OP is the fuel

efficiency of the engine operating point at a particular time instant, and ICE f uele f f
OOP is

the fuel efficiency of the engine’s optimum operating point at that time instant. The

addition of β

(
ICE f uele f f

OP

ICE f uele f f
OOP

(t)
)

affects the equivalence factor of conventional ECMS for the

charge-sustained requirement. Therefore, while implementing this modified ECMS_LL
in real-time, along with the challenge of estimating the equivalence factor ‘γS’ accurately,
there is added task of estimating the penalty weight ‘β’.

The hybrid electric vehicle is more sensitive to a driving cycle than an internal combus-
tion vehicle when it comes to fuel consumption and tailpipe emissions [7]. Studies show
that real-time drive cycles and driving trends have a large impact on fuel consumption and
exhaust emissions of a vehicle [8]. The optimal equivalence factor significantly influences
the fuel economy, and its influence varies with the drive cycle [12]. This makes it very
important to estimate the equivalence factor accurately so that it could have a benefit on
the fuel economy. One of the most important challenges in implementing an ECMS in
the production of Hybrid electric vehicles is the estimation and adaptation of equivalence
factors for real-world driving. Thus, the development of an adaptive ECMS control strat-
egy, which is adaptable, robust and intelligent concerning real-time driving conditions, is
required for real-world applications.

4. Proposed A-ECMS Methodology

In the proposed adaptive equivalence factor estimation strategy, a novel low computation-
based, real-time implementable equivalence factor estimation algorithm has been designed
and implemented for the considered hybrid two-wheeler. A learning vector quantitative
neural network (LVQNN) technique-based classifier is proposed, designed and imple-
mented which is trained using standardised drive cycles and real-world driving data.
Figure 4 shows the control flowchart of the adaptive ECMS implemented.
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There are several steps involved in training and implementing the LVQNN-based
equivalence factor estimation method. The first step involves offline training of the LVQNN
neural network controller for a set of standardised and real road driving data sets. To keep
the offline computation and online computation load low, instead of using all the drive
cycles for training, three drive cycle sets, each corresponding to a different driving pattern
(urban, suburban and highway category) were chosen for learning. These chosen drive
cycles were characterised using identified driving parameters, which were generated from
the speed profile over a pre-defined time window tc. Figure 2 shows the block diagram of
the online implementation of the LVQNN-based equivalence factor estimation. During the
online computation, the real-world driving data are characterised and matched to one of
the driving patterns used for the training (urban/suburban/highway) using the LVQNN
recognition algorithm. The equivalence factor of the closest matched drive cycle is used
from a stored value in a map.

The drive cycles considered for this study, the characterisation of the correspond-
ing drive cycles and the training process of LVQNN methodology are explained in the
later sections.

4.1. LVQNN Learning Methodology

Neural networks (NNs) are computing systems inspired by the biological neural
networks that constitute animal brains. An NN is based on a collection of connected units
or nodes called artificial neurons, which loosely model the neurons in a biological brain.
They can learn from a set of data and construct weight matrices to represent the learning
patterns [25]. NNs are usually classified as supervised or unsupervised learning based on
their training processes. If the training is based on the desired responses to given stimuli,
then it is termed supervised learning and if the training is based on clustering of stimuli
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without specified responses, then it is called unsupervised learning [26]. Here we use
LVQNN, which is a hybrid network that uses advanced behaviours of both competitive
learnings and thereby it applies a well-known Kohonen feature map for classification.

Figure 5 shows the structure of an LVQNN framework. The LVQNN structure contains
the following four layers [17]:

First layer: Input layer with m nodes;
Second layer: Competitive layer with S1 nodes;
Third layer: Linear layer with S2 nodes;
Fourth layer: Output layer with n nodes.
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During the learning operation, the input layer with m modes is initialised in the first
layer. In the second layer, the competitive layer is initialised, and then it maps the input
vectors into the clusters through training. In the competitive layer, these clusters are merged
into classes based on the input target data. Here the number of clusters to be merged is
dependent on the hidden neurons considered. The bigger the hidden layer, the better is
the learning and thereby mapping of input to target classes can be performed. With the
proper selection of structure and training of the weighting factors, the LVQNN can classify
the information of any system. The LVQNN is based on the nearest-neighbour method.
For real-valued input variables, the most popular distance measure is Euclidean distance.
Euclidean distance is calculated as the square root of the sum of the squared differences
between a new point (X) and an existing point (Xi) for each attribute j [17]:

nj = D(X, W1(j)) =

√
m

∑
i=1

(X(i)− W1(j, i))2, j = 1, . . . S1 (3)

where X is the input vector and W1(j, i) is the weight of the jth node in the competitive
layer corresponding to the ith element of the input vector. Thereby the Euclidean distances
are passed onto the competitive transfer function which returns an output vector O1. This
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vector is given as input to the linear layer and the output is derived for each element that
relates to a node of the output layer and is computed as follows [17]:

Y(k) = O2(k) = kW(k)n2(k) = kW(k)
S1

∑
j=1

W2(k, j)O1(j), k = 1, . . . n, (n = S2) (4)

where W2(k,j) is the weight of node k in the linear layer corresponding to element j of the
competitive output vector; and kW(k) is the linearised gain of node k in the linear layer. In
the learning process, the weights of LVQNN are updated by the well-known Kohonen rule
by the following equation [17]:{

Wt+1
1 (j) = Wt+1

1 (j) + µ
(
X − Wt

1(j)
)

Wt+1
1 (j) = Wt+1

1 (j)− µ
(
X − Wt

1(j)
) , j = 1 . . . .S1 (5)

where µ is the learning ratio which is positive, and decreased concerning the number of
training iterations (niteration), µ = 1

niteration
.

4.2. Drive Cycles Considered for the Study

For this study, several standardised drive cycles and some real-time on-road driving
data sets are considered for training and testing. Table 1 shows the ten different drive cycles
considered for this study. The first six drive cycles considered in the table are standardised
drive cycles used for emission and fuel economy tests. The last four drive cycles in the table
are on-road hybrid two-wheeler driving data. Each of these drive cycles can be categorised
into one of these; urban, suburban, or highway.

Table 1. Drive cycles considered for the study (standardised drive cycle and on-road driving data (*)).

Drive Cycle Maximum
Velocity (m/s)

Average Velocity
(m/s)

Max Acceleration
(m/s2)

Max Deceleration
(m/s2)

Drive Cycle
Length (s)

WMTC 13.89 6.41 1.66 –1.94 600
IDC 11.67 6.03 0.67 –0.63 120

ECE15 13.70 4.98 1.03 –0.89 210
10–15_Japanese 19.44 6.41 0.93 –1.11 660

NYCC 12.33 3.16 2.66 –2.62 598
Manhattan 11.24 3.03 2.04 –2.48 1089
IND_SU * 17.27 6.38 1.72 –2.09 2689
IND_H * 20.98 13.18 2.10 –1.90 881
IND_U * 18.20 7.90 2.28 –2.61 867

IND_CD * 13.20 4.47 2.13 –2.71 5434

Hybrid electric vehicle performance may change dramatically between urban driving
and highway driving [12]. For example, highway cycles usually have higher average
vehicle speed while urban cycles usually have larger vehicle idling time and comparatively
lower average vehicle speeds [12]. The characteristics of the drive cycles can be analysed
and clustered into urban, suburban and highway. This segregation would make it easier
for the training and adaptation process.

For the training LVQNN, three drive cycles are chosen: one from urban, one from
sub-urban and the third one from highway driving pattern. The three drive cycles chosen
for the training data were WMTC (urban), IND_SU drive cycle (suburban) and IND_H
(highway) as shown in Figure 6. However, for the testing phase, all the ten-drive cycles
were extended to 3000 s (16 km).
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4.3. Characterisation of Drive Cycles

After the consideration of the drive cycles, the drive cycle characteristic parame-
ters need to be analysed further. Dembski et al. [27] introduced a systematic method
of analysing driving cycles and clustering. Twenty-one statistical metrics were used to
represent the characteristics of a driving cycle. In [28], Beta et al. discussed the basic drive
cycle characteristic parameters, which directly relate to fuel consumption and emissions.
Twenty-four parameters including the grade information of the road are chosen to charac-
terise driving patterns. Each of these twenty-four parameters was weighted based on its
contribution to driving pattern recognition. In this paper, around ten drive cycle param-
eters that have a significant influence on fuel consumption and emissions are identified
and considered [28]. The selection of representative features has a great impact on the
effect of drive cycle recognition [29]. In [15] the study used 24 features of the driving
pattern recognition. In [30], around 17 driving pattern parameters were considered for
characterisation. In [31], around 15 drive cycle parameters were considered in the study
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for driving pattern recognition. In [29], 62 different driving parameters that might have
influenced fuel economy and emissions of hybrid electric vehicles have been studied. The
study concluded that out of sixty-two, nine drive cycle parameters had a significant effect
on fuel economy and emissions of hybrid vehicles. A similar method is used in this study
to classify the driving cycles. As shown in Table 2, for our study the eight most important
drive cycle parameters responsible for the significant influence on fuel consumption are
identified based on various literature studies [17,25,29]. All the velocity and acceleration
related characteristic are taken into consideration.

Table 2. Drive cycle characteristics and their description.

Drive Cycle
Characteristic DCC[i] Characteristic Name Description of Characteristic Unit

DCC[1] Vavg Average velocity over the time window (tc − ∆tdc, tc) m/s
DCC[2] Vmax Maximum velocity over the time window (tc − ∆tdc, tc) m/s
DCC[3] ACCavg Average acceleration over the time window (tc − ∆tdc, tc) m/s2

DCC[4] DECCavg Average deceleration over the time window (tc − ∆tdc, tc) m/s2

DCC[5] Vst Start velocity at (tc − ∆tdc) m/s
DCC[6] Vend End velocity at tc m/s
DCC[7] ACCmax Maximum acceleration over the time window (tc − ∆tdc, tc) m/s2

DCC[8] DECCmax Maximum deceleration over the time window (tc − ∆tdc, tc) m/s2

A characteristic-selection algorithm was developed with the recorded speed profile
as the input and a set of eight variables as the output, namely: average vehicle speed
(Vavg), maximum vehicle speed (Vmax), Average acceleration (ACCavg), average deceleration
(DECCavg), vehicle speed start (Vst), vehicle speed end (Vend), maximum acceleration
(ACCmax) and maximum deceleration (DECCmax) as shown in Table 1. All these parameters
are calculated respectively for the time window defined as (tc − ∆tdc, tc) where tc is the
present time of the drive cycle and ∆tdc is the predefined time window. All these parameters
are used for the investigation and training of NN.

A neural network-based prediction of driving trends was developed using periodically
updated eight drive cycle characteristic parameters over the predefined time window tc as
described above in the table. A time window range of 25 to 150 s has been used in previous
similar studies for drive cycle or driving pattern recognition methods [14–16]. A higher
time window range requires higher memory for data (drive cycle characteristic parameters)
storage. Hence, for this study, the time window (∆tdc) is fixed to the lower time window
range of 25 s.

4.4. Application of LVQNN for Learning

In a network-training problem, the preceding task is to collect the system behaviour
data to improve the performance of the training process [17]. To perform the investigation,
three different categories of drive cycle are considered for the NN learning. The number of
hidden neurons can influence the error on the nodes to which their output is connected.
The stability of neural network is estimated by error. The minimal error reflects better
stability, and higher error reflects worst stability. The excessive hidden neurons will
cause over fitting; that is, the neural networks have over-estimated the complexity of the
target problem. One of the problems that occur during neural network training is called
overfitting. The error on the training set is driven to a very small value, but when new data
are presented to the network the error is large. The network has memorised the training
examples, but it has not learned to generalise to new situations. A lower hidden neurons
cause underfitting and cause larger error during training as well as in new data. One of the
major challenges in the design of neural network is the fixation of hidden neurons with
minimal error and highest accuracy. A neuron range of 10–60 has been used in previous
similar studies [17].

To investigate the performance of the LVQNN concerning different drive cycles,
training was performed using the selected data set by varying the number of inputs from 2
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to 8 (number of drive cycle characteristic parameters), and the number of hidden neurons
from 20 to 60. After each training process, the correlation between the simulation output
and target output was taken as indicative of the success of the training. The range of the
number of neurons used typically in similar studies is 10–60 neurons [17]; the LVQNN
training was therefore tested for a range of 10–60. The performance was evaluated by RMSE
(root means square error). However, it was found that the test results of the range 20–60
neurons (nodes of the competitive layer) gave a good fit. Considering below 20 neurons
gave a low success rate (accuracy levels were below the acceptable range and larger errors).
Considering neurons above 60 gave a low success rate. The training results (goodness of
fit (%)) of the LVQNN are shown in Figure 7 and Table 3. The results indicate that the
most suitable LVQNN structure is comprised of six parameters in the input vector (average
velocity, maximum velocity, average acceleration, average deceleration, start velocity and
end velocity over the time window respectively) and 60 nodes in the competitive layer.
The highest learning success rate was ~88.3% in this case, which is considered sufficient
for the recognition of the drive cycle because usually anything above 75% is considered
a good fit [17]. The corresponding weights matrix W1 and W2 from equations x and y
are taken from the best-fit point (6, 60; representing the number of input parameters and
the number of neurons respectively) and used for the online estimation and classification
using LVQNN.
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Table 3. The learning success rate of LVQNN (%).

Number of Inputs Considered
Number of Nodes in Hidden Layer

20 25 30 35 40 45 50 55 60

2 62.9 70.2 72.4 74.1 73.7 77.2 79.1 79.4 79.3
3 72.5 70.1 78.2 80.6 80.1 80.5 80.5 82.5 81
4 70.2 71.9 81.1 80.8 81.8 81.7 82.2 85.3 86.6
5 73.9 75.5 77.3 81.4 81.7 83.6 86.6 85.5 86.8
6 71.9 73.5 76.6 79.8 84.7 84.4 86.9 86.9 88.3
7 73.6 74.7 80 82.7 81.5 83.6 84.2 85.5 86
8 73.9 74.1 77.6 82.8 82.9 80.9 86.5 87 85.9

Goodness of fit in %

The red signifies the maximum learning success rate.
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After the training process, the second step is the implementation and the integration
of LVQNN-based drive cycle recognition with the ECMS controller. As shown in Figure 4, a
predefined time window tc past driving information with driving parameters characterizing
the drive cycle is updated every one second. The LVQNN_DCR block is fed with these
vehicle characteristic parameters. The block takes these inputs and, based on the previously
trained information, identifies the present driving cycle and matches it to one of the
nearest representative standardised drive cycles used for training. Later, based on the
LVQNN_DCR output, the equivalence factor and penalty weights corresponding to the
recognised drive cycle are used by the ECMS controller.

5. Evaluation of the Proposed Method for Different Drive Cycles

In this section, the capability of the proposed LVQNN_DCR controller for estimating
the equivalence factor is evaluated. LVQNN_DCR is tested and evaluated for all ten-drive
cycles shown in Table 1. From the results obtained from the LVQNN learning, the block
LVQNN_DCR is constructed and used for the estimation of the equivalence factor in real-
time. The LVQNN_DCR block recognises the candidate/new drive cycle and classifies the
drive cycle to the nearest of the standardised drive cycles used for training (WMTC (urban),
IND_SU drive cycle (suburban) and IND_H (highway)) as shown in Figure 8. In every time
instant, the LVQNN_DCR block evaluates instantaneous equivalence factor based on the
drive cycle parameters analysed for previous time windows of 25 s.
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Figure 8 shows the LVQNN_DCR block output for the IND_CD input drive cycle; this
is an ‘unseen’ real-time drive cycle. The output of LVQNN_DCR varies between 1, 2 and 3.
Each number implies the match of the present drive cycle to the respective standardised
drive cycles; 1, 2 and 3 correspond to the WMTC, IND_SU and IND_H drive cycles which
were used during the LVQNN training respectively. Based on LVQNN_DCR output, the
pre-optimised values of equivalence factor stored in a map are used correspondingly.

5.1. Performance Evaluation of LVQNN for Different Drive Cycles

The performance evaluation of the LVQNN is done using root mean square error
(RMSE) and R-squared (R2). The performance of LVQNN was tested for all the ten drives
cycles considered for testing and evaluation. The RMSE and R2 values for different drive
cycles are as shown in Table 4.

Table 4. RMSE and R2 values when LVQNN tested for various drive cycle.

Drive Cycles WMTC IDC ECE 15 JP 10-15 NYCC Manhattan IND_SU IND_H IND_U IND_CD

RMSE 0.013 0.009 0.014 0.014 0.018 0.22 0.014 0.012 0.01 0.008
R2 0.97 0.96 0.98 0.98 0.97 0.98 0.986 0.99 0.988 0.98
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R2 represents the proportion of variance explained by the model. R2 is formulated as:

R2 = 1 − (SSE/SST)

SSE is the sum of squared errors, the sum of the squared differences between the
actual values and predicted values. SST is the total sum of squares, the sum of the squared
differences between the actual values and the mean of the actual values. A model that
explains no variance would have an R2 of 0. A model with an R2 of 1 would explain all
of the variances. Higher scores show better results. Most of the R-squared values in the
Table 4 tested for various drive cycles show that the model covers nearly 98% variance
on average.

The predicted drive cycles versus the actual drive cycle were plotted for all the drive
cycles considered. Figure 9 shows the plot between the predicted and the actual drive cycle
values for real-world test data.

Energies 2022, 15, x FOR PEER REVIEW 14 of 20 
 

 

5.1. Performance Evaluation of LVQNN for Different Drive Cycles  
The performance evaluation of the LVQNN is done using root mean square error 

(RMSE) and R-squared (R²). The performance of LVQNN was tested for all the ten 
drives cycles considered for testing and evaluation. The RMSE and R² values for dif-
ferent drive cycles are as shown in Table 4. 

Table 4. RMSE and R2 values when LVQNN tested for various drive cycle. 

Drive Cycles WMTC IDC ECE 15 JP 10-15 NYCC Manhattan IND_SU IND_H IND_U IND_CD 
RMSE 0.013 0.009 0.014 0.014 0.018 0.22 0.014 0.012 0.01 0.008 

R2 0.97 0.96 0.98 0.98 0.97 0.98 0.986 0.99 0.988 0.98 

R2 represents the proportion of variance explained by the model. R2 is formulated 
as: 

R2 = 1 − (SSE/SST)  

SSE is the sum of squared errors, the sum of the squared differences between the 
actual values and predicted values. SST is the total sum of squares, the sum of the 
squared differences between the actual values and the mean of the actual values. A 
model that explains no variance would have an R² of 0. A model with an R2 of 1 would 
explain all of the variances. Higher scores show better results. Most of the R-squared 
values in the Table 4 tested for various drive cycles show that the model covers nearly 
98% variance on average. 

The predicted drive cycles versus the actual drive cycle were plotted for all the 
drive cycles considered. Figure 9 shows the plot between the predicted and the actual 
drive cycle values for real-world test data. 

 
Figure 9. Predicted and actual drive cycle match for a real-world test data. 

The actual drive cycle data matches one of the three drive cycles used for training 
and validation (1, 2 and 3 each referring to a particular drive cycle used for training). 
The predicted drive cycle data are as shown in the figure as red dots. Though there is 
some variation in the predicted drive cycle, it can predict most of the time within the 
limits of error. 
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The actual drive cycle data matches one of the three drive cycles used for training
and validation (1, 2 and 3 each referring to a particular drive cycle used for training). The
predicted drive cycle data are as shown in the figure as red dots. Though there is some
variation in the predicted drive cycle, it can predict most of the time within the limits of error.

5.2. FC Comparison for Optimal and Adaptive Equivalence Factor

The ten drive cycles considered for this study were tested with two controllers. First,
the manually tuned equivalence factor (EQWMTC) in EMCS_LL was optimised for the
WMTC drive cycle. Second, the equivalence factor (EQLVQNN) in AECMS was derived
from the LVQNN-based estimation. The test cycles were run for a standard time of 3000 s,
approximately equivalent to 16 km of driving. Table 5 shows the normalised fuel consump-
tion of both the controllers ECMS_LL and AECMS for ten different drive cycles considered.
As seen in Table 5, a noticeable benefit in fuel savings was achieved with AECMS when
compared to ECMS_LL for almost all the drive cycles considered. However, in the case of
the WMTC drive cycle, there is a reduction in the fuel benefit when tested with AECMS
when compared to using ECMS_LL for obvious reasons.

A maximum of 10.70% fuel benefit was seen by using the LVQNN-based estimation of
equivalence factor in AECMS overusing an optimally tuned equivalence factor in ECMS_LL
for the IND_CD drive cycle. The fuel economy benefit percentage varies with the drive cycle
considered because the equivalence factor estimation is based on the nearest classification
of the drive cycle to the standardised drive cycle. The average fuel economy benefits,
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when tested over the ten drive cycles considered for this study, was 3.93% demonstrating a
consistent tangible benefit of this optimisation and adaptation strategy.

Table 5. Comparative study of fuel-saving for different drive cycles considered.

Drive Cycle NFC with ECMS_LL NFC with AECMS_LL Fuel Savings (%)

WMTC 1.00 1.015 –1.47
IDC 1.00 0.938 6.21

ECE15 1.00 0.893 10.70
JP_10-15 1.00 0.991 0.90
NYCC 1.00 0.989 1.13

Manhattan 1.00 0.894 10.58
IND_SU * 1.00 0.974 2.64
IND_H * 1.00 0.994 0.61
IND_U * 1.00 0.973 2.71

IND_CD * 1.00 0.946 5.36
* Real world driving data.

Figure 10 shows the engine operating points for the ECMS_LL (a) and AECMS (b)
controllers for the real-world driving data; IDC_CD. The AECMS controller uses the
adaptive equivalence factor estimation using LVQNN, and ECMS_LL uses the equivalence
factor optimised for the WMTC drive cycle. Thus, because of the better estimation of the
equivalence factor with AECMS, the engine operating points are more optimally placed for
the entire drive cycle thereby increasing the average engine efficiency.
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6. Discussion

The usual methodology of using a conventional ECMS is to manually tune the equiv-
alence factor concerning the drive cycle considered. However, this does not work for a
real-world application where the future drive cycles are unknown. Thus, an Adaptive
Equivalent fuel Consumption Minimisation Strategy (A-ECMS) is essential to be developed
and integrated to obtain a better estimation of the equivalence factor in real-time.

In this paper, a novel NN-based controller with better prediction precision and low
computational load for cost-sensitive applications such as a hybrid two-wheeler has been
developed. In this study, a learning vector quantitative neural network-based classifier was
proposed, designed and implemented which was trained and tested on several standardised
drive cycles and on-road driving data. The implementation of NN-based drive cycle
recognition method involved a two-step process. The first step involved a learning process,
where the system behaviour data, which was the drive cycle characterisation data, was
used for the training process. To perform the investigation, three different categories of
drive cycle were considered for the NN learning. The categorisation of driving patterns into
urban, suburban and highway for training, eliminates the similar type of driving patterns
to be used for training and thereby reduces the computational time for optimisation. The
categories considered were urban, suburban and highway. Each of these drive cycles
considered was characterised by eight drive cycle parameters. A detailed training process
by varying the number of the inputs (drive cycle characterisation parameters) and the
number of neurons (20–60) were run for all the combinations to get the best-fit matrix
(weights W1 and W2). These weights are further used in the LVQNN-based drive cycle
recognition controller LVQNN_DCR.

The LVQNN-based classifier dynamically identifies the present driving cycle and
matches it to one of the nearest representative standardised drive cycles, based on the past
driving information. During the operation, a predefined time window of 25 s past driving
information of critical parameters defining the drive cycle was updated every second. A
simple interpolated curve is used to estimate the equivalence factor and penalty weights
based on the output of the LVQNN_DCR block.

Simulation results show that the real-time driving information can be matched to
standardise drive cycles and provide better fuel economy compared to using conventional
ECMS_LL while sustaining battery SOC within desired limits of target SOC. A maximum
of 10.70% fuel benefit was seen by using the LVQNN-based estimation of equivalence factor
in AECMS overusing a traditional ECMS_LL with equivalence factor optimised for WMTC.
The average FE benefit over the ten drive cycles considered was 3.93%. However, the fuel
benefit percentage depends on the driving data set considered. Along with this fuel benefit,
the final SOC values also showed an acceptable limit of the SOC target. The simulation
results showed that the final SOC values with adaptive ECMS_LL-based estimation were
much closer to the target final SOC when compared to the ECMS_LL for a single drive cycle.

Unlike in the previous research [14], which uses the statistical and stochastic velocity
forecast approaches for energy management optimisation, the proposed research is based
on data-driven using Euclidean distance approach for drive cycle classification. Therefore,
there is an advantage over prediction precision and computational load with the proposed
method. In the previous study [11], an adaptive ECMS was implemented by updating the
equivalence factor using prediction future cycles. Whereas in the proposed research, the
past data over a fixed time window was used which prevents additional computational
load, and adding a classifier would thereby make it a low computational solution in
comparison. Similarly, In study [15], a rule-based control algorithm was extracted from
the result of the optimal solution provided by dynamic programming (DP) on each RDP.
Finally, a multi-mode driving control was realised by switching the control parameters
in each RDP which required high computational capability making it non-suitable for
cost-effective applications. Unlike the previous research, the results show that the proposed
method based on LVQNN not only has a good prediction precision leading to significant
fuel benefit but also has the advantage of low computational load. This makes the proposed



Energies 2022, 15, 3192 17 of 19

method suitable for cost-sensitive applications such as the hybrid two-wheeler considered
for this study.

The primary improvement of the proposed A-ECMS over other algorithms with
similar objectives is that it does not require the knowledge of future driving cycles through
external systems (GPS) or sensors or predictive models. The proposed adaptive strategy is
designed and developed to achieve low computational burden on the controller. Results
obtained in this research show that the driving conditions can be successfully recognised
with better performance and can be achieved in various driving conditions while sustaining
battery SOC within desired limits. The study uses real driving data set for training and
testing along with the standardised drive cycles, unlike previous research which considers
only standardised drive cycles. Thus, the proposed methodology has further enhanced
the training and testing process making it much more suitable for real-world applications
when compared to traditional methodologies.

This study emphasises that the potential implementation of ECMS in a production
vehicle for a near to optimal solution is incomplete without estimating the equivalence
factor accurately. The simulation results presented in this study provide insights that
the equivalence factor is very sensitive and has a high influence when it comes to fuel
economy and charge sustenance. The LVQNN-based estimation method developed and
implemented shows improvement in fuel benefit and charge sustenance when compared
to traditional ECMS_LL with equivalence factor optimised to a single drive cycle.

7. Conclusions and Future Work

In the previous paper [21] a novel equivalent ECMS strategy was developed, and
which showed an improvement in the fuel consumption w.r.t to the traditional ECMS.
However, to make the novel ECMS real-time capable, a method for online estimation of
equivalence factor was necessary. In this research work, a novel LVQNN-based drive
cycle recognition strategy has been developed and implemented for the online adaptation
of the equivalence factor for ECMS. In this study, a learning vector quantitative neural
network-based classifier was proposed, designed and implemented.

For this investigation, three different categories of drive cycles were considered for
the NN learning. The driving cycle categories considered were one of each urban, sub-
urban and highway. Unlike previous research, the proposed methodology has considered
both standardised and real-world driving data for the training and testing of the drive
cycle recognition, which makes this methodology more robust for the real world. Each of
these drive cycles considered was characterised by eight drive cycle parameters. Keeping
the prerequisite for production-ready solution, one of the requirements was to design
a cost-effective EMS solution. Thus, the number and choice of the drive cycle used for
training, the time window range, and the number of drive cycle characteristics considered
for this adaptation methodology were consciously selected keeping the computation load in
consideration. There was considerable improvement in the fuel economy with the proposed
methodology when compared to the standard ECMS, optimised for a single drive cycle.
The maximum FE benefit achieved with the novel adaptive strategy over the ECMS strategy
optimised for a single drive cycle was around 10.7%. The average improvement in FE over
the ten drive cycles considered for this study was found to be 3.93%.

The proposed method of adaptive equivalence factor is not only precise and efficient
but also provides a low computational load suitable for cost-sensitive applications.
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Nomenclature

HEV Hybrid Electric Vehicle
PHEV Plugin Hybrid Electric Vehicle
EMS Energy Management Strategy
ECMS Equivalent Fuel-Consumption Minimisation Strategy
DP Dynamic programming
RDP Representative Driving Pattern
NN Neural Network
LVQNN Learning Vector Quantitative Neural Network (LVQNN)
SOC State of Charge
IEMA Intelligent Energy Management Agent
DPR Driving pattern Recognition
CNN Convolution Neural Network
NAR Non-Linear Auto Regressive
A-ECMS Adaptive Equivalent Fuel-Consumption Minimisation Strategy
GPS Global Positioning System
EF Equivalence Factor
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