

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/165670

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/165670
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Robust Optimization Over Time by Estimating
Robustness of Promising Regions

Danial Yazdani, Member, IEEE, Donya Yazdani, Jürgen Branke, Member, IEEE,
Mohammad Nabi Omidvar, Senior member, IEEE, Amir Hossein Gandomi, Senior member, IEEE,

and Xin Yao, Fellow, IEEE,

Abstract—Many real-world optimization problems are dy-
namic. The field of robust optimization over time (ROOT) deals
with dynamic optimization problems in which frequent changes
of the deployed solution are undesirable. This can be due to the
high cost of switching the deployed solutions, the limitation of
the needed resources to deploy such new solutions, and/or the
system being intolerant towards frequent changes of the deployed
solution. In the considered ROOT problems in this article, the
main goal is to find solutions that maximize the average number
of environments where they remain acceptable. In the state-of-
the-art methods developed to tackle these problems, the decision
makers/metrics used to select solutions for deployment mostly
make simplifying assumptions about the problem instances. Be-
sides, the current methods all use the population control compo-
nents which have been originally designed for tracking the global
optimum over time without taking any robustness considerations
into account. In this paper, a multi-population ROOT method is
proposed with two novel components: a robustness estimation
component that estimates robustness of the promising regions,
and a dual-mode computational resource allocation component
to manage sub-populations by taking several factors, including
robustness, into account. Our experimental results demonstrate
the superiority of the proposed method over other state-of-the-art
approaches.

Index Terms—Robust optimization over time, Evolutionary
dynamic optimization, Multi-population, Computational resource
allocation, Robustness estimation.

This work was supported by the Research Institute of Trustworthy Au-
tonomous Systems, the Guangdong Provincial Key Laboratory (Grant No.
2020B121201001), the Program for Guangdong Introducing Innovative and
Entrepreneurial Teams (Grant No. 2017ZT07X386), and Shenzhen Science
and Technology Program (Grant No. KQTD2016112514355531).

Danial Yazdani is with Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and Engi-
neering, Southern University of Science and Technology, Shenzhen 518055,
China (e-mail: danial.yazdani@gmail.com).

Donya Yazdani is with the Advanced Reasoning Group, Department of
Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY23
3DB, United Kingdom (e-mail: d.yazdani@aber.ac.uk).

J. Branke is with the Operational Research and Management Sciences
Group in Warwick Business school, University of Warwick, Coventry CV4
7AL, United Kingdom (e-mail: Juergen.Branke@wbs.ac.uk).

M. N. Omidvar is with the School of Computing, University of Leeds, and
Leeds University Business School, Leeds LS2 9JT, United Kingdom. (e-mail:
m.n.omidvar@leeds.ac.uk).

A. H. Gandomi is with the Faculty of Engineering & Information Tech-
nology, University of Technology Sydney, Ultimo 2007, Australia. (e-mail:
Gandomi@uts.edu.au).

X. Yao is with Research Institute of Trustworthy Autonomous Systems
(RITAS), and Guangdong Provincial Key Laboratory of Brain inspired In-
telligent Computation, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
(e-mail: xiny@sustech.edu.cn). X. Yao is also with the CERCIA, School of
Computer Science, Birmingham B15 2TT, United Kingdom.

Corresponding author: Xin Yao

I. INTRODUCTION

SEARCH spaces of many real-world optimization problems
are dynamic. To tackle optimization problems in dynamic

environments, it is important that the optimization algorithms
can efficiently react to the environment changes [1], [2]. A
dynamic optimization problem (DOP) can be defined as:

f (t)(x⃗) = f
(
x⃗, α⃗(t)

)
, (1)

where f is the objective function, t ∈ [0, T] is the time index,
x⃗ is a solution in the search space, and α⃗ is a vector of time-
dependent control parameters of the objective function. Almost
all existing works in the field of DOPs consider problems
whose environmental changes occur only at discrete time
steps, i.e., t ∈ {1, . . . , T}. For a DOP with T environmental
states, there is a sequence of T stationary environments:{
f(x⃗, α⃗(k))

}T

k=1
=

{
f(x⃗, α⃗(1)), f(x⃗, α⃗(2)), . . . , f(x⃗, α⃗(T))

}
(2)

Some main characteristics of a DOP are defined based on its
change severity and frequency. Hence, these two are among
the main criteria used for classifying DOPs [2]. The change
severity shows how much the morphology of the problem
space changes after each environmental change. In the DOP
literature, it is mostly assumed that environmental changes are
not highly severe and there is a degree of similarity between
consecutive environmental states. This is the case for many
practical applications [3]–[5]. In real-world DOPs, change
frequency is defined based on the duration of the time interval
between environmental changes which depends on the nature
of the events that cause the environmental changes. In some
problems, the duration of this time interval can be very short
which results in higher change frequency (e.g., the short time
gaps between changing demands/customers in some dynamic
covering location problems [6]). Change frequency is usually
very low (i.e., longer time gap between changes) for problems
where environmental changes are caused by accidents or faults
in parts of the system.

Evolutionary algorithms are commonly used for tackling
DOPs [1], [5], [7]. However, since these algorithms are
originally designed for solving static optimization problems,
they cannot directly be used for DOPs. This is due to the
challenges caused by the environmental changes in DOPs,
which are: global and local diversity loss, outdated stored

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

fitness values1, and limited number of fitness evaluations that
can be performed in each environment (i.e., between two
consecutive environmental changes)2 [8]. In order to avoid
influences of some factors such as hardware, compiler, and
programming skills, the academic community of evolutionary
dynamic optimization (EDO) uses the number of fitness eval-
uations as the unit of change frequency instead of time in the
real-world applications. In many real-world DOPs, the fitness
evaluation is time-consuming (e.g., in large-scale problems [9],
or simulation optimization). Consequently, a limited number
of fitness evaluations can usually be performed in each envi-
ronment. To address the aforementioned challenges of DOPs,
EDO algorithms are often created by augmenting evolutionary
algorithms with other algorithmic components to address the
DOPs’ challenges stated above [2].

The majority of the existing EDOs tackle DOPs by track-
ing the moving global optimum after each environmental
change [3], [10]. However, tracking is impractical for solv-
ing many real-world DOPs because frequent change of the
deployed solution is not possible. This can be due to different
reasons, such as high switching cost [11], [12], limited avail-
able resources to deploy new solutions, or system intolerance
for frequent changes in the deployed solution [13], [14].

To solve this type of DOPs, Yu et al. proposed an approach
called robust optimization over time (ROOT) [13]. In ROOT,
in order to reduce the number of times that the deployed
solution is changed, it is reused (i.e., kept deployed) until its
quality degrades to an unacceptable level. Therefore, although
a deployed solution in an environment is not necessarily the
best solution, it must satisfy a quality-based constraint [15].
In this type of ROOT problems, a new solution must be
chosen for deployment when the current deployed solution is
no longer acceptable after the last environmental change [10].
We wish to maximize the average number of environments
where the previously deployed solutions can be reused and
kept deployed [15], [16]. Later, two other types of ROOT
problems were investigated: time window based [17] and
switching cost based [12] ROOT problems. In this article, we
focus on the first type, i.e, ROOT problems with a quality-
based constraint [13]. Unless otherwise stated, we use the term
ROOT to refer to this specific type of ROOT throughout this
paper.

To solve a ROOT problem, not only should an EDO be
capable of addressing the challenges of reacting/responding
to the environmental changes, but also the challenges of
estimating the robustness and acceptability of solutions in the
forthcoming environments. A desirable solution in ROOT can
remain acceptable for a higher number of environments in the
future. Nevertheless, accurate estimation/prediction of the fu-
ture acceptability of solutions is very challenging. Depending
on how the existing ROOT methods deal with this challenge,
they can be categorized into fitness prediction [15], [17] and
promising regions’ reliability based approaches [10], [18]. In
prediction based methods, the actual fitness function is altered
with a substitute fitness function that considers the predicted

1Also called the outdated memory issue in the DOP literature.
2Also called limited available computational resources in each environment.

fitness values of the candidate solutions in the upcoming
environments [15], [17]. It is shown in [18] that using the
predicted future fitness values to find robust solutions is too
error-prone for problem instances generated by the moving
peaks benchmark (MPB) [19]. Reliability based methods, on
the other hand, choose the solutions for deployment based
on the estimated behavior of the promising regions instead of
predicting the future fitness values of solutions [18], [20]. In
these methods, some reliable promising regions are determined
based on the gathered information by a multi-population
method. Thereafter, a solution is chosen for deployment from a
reliable promising region based on a strategy, such as picking
the best found solution in the reliable promising region with
highest fitness3 [20], or the best found solution in the promis-
ing region with the smallest estimated shift severity [18].

Despite the importance of ROOT in many real-world appli-
cations and more than a decade from the first time it was
introduced [13], very little attention has been given to the
field. A major weakness of the existing methods is that they
are all tailored for very simple problems. For example, some
of their components are specifically developed for low dimen-
sions [16], simple dynamics [18], and/or regular/smooth search
space/promising regions [15], [16], [18]. This creates a gap
between the academic research and the real-world applications.
Moreover, all existing ROOT methods use EDOs [10], [15],
[16] which are originally designed for performing tracking the
moving global optimum where robustness is not considered in
their population management and control components. Despite
the significant role of EDOs in the ROOT methods, little
attention has been given to design EDO components which
are ROOT-specific.

In this paper, we propose two components that address the
aforementioned shortcomings: a robustness estimation compo-
nent and a systematic dual-mode computational resource allo-
cation component. By combining the proposed components
with those of a multi-population EDO capable of tracking
multiple moving promising regions, a new ROOT method is
formed. Thanks to the proposed robustness estimation com-
ponent, the new ROOT method is not dependent on some
oversimplified characteristics of the benchmark problems. This
component keeps and transfers the historical knowledge about
the covered promising regions and estimates their robustness
degrees accordingly. The estimated robustness degree of each
promising region is calculated based on the number of envi-
ronments that previous promising region’s summit positions
could be reused/kept as the deployed solution until the current
environment. The estimated robustness values of the promising
regions are used for choosing the next solution for deployment
and controlling the sub-populations. A systematic dual-mode
robustness based computational resource allocation component
for managing the sub-populations is also proposed. Using this
component, the proposed method controls the sub-populations
based on the estimated robustness of the covered promising

3In this paper, maximization problems are considered.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

regions and the system status4.
The organization of the remainder of this article is as

follows. Section II covers the related works. The proposed
method is described in Section III. Section IV explains the
experiment setup including the used benchmark, performance
indicator, comparison algorithms, and parameter settings, and
also reports experimental results, comparisons, and analysis.
Finally, Section V concludes this paper.

II. RELATED WORK

A ROOT method is usually constructed by assembling an
EDO and some additional components such as a decision
maker [20] or a transformation of the objective function [15],
[17]. The literature of EDOs is not covered in this article due
to space limitations and the reader can refer to the two-part
survey in [2], [5]. Instead, we only focus on reviewing ROOT
methods and the components specifically designed for them.

A. ROOT problems

Three types of ROOT problems have been investigated in
the literature: 1) ROOT problems based on acceptability of
the deployed solution in which the deployed solution is kept
as long as it remains acceptable [13], 2) ROOT problems
with time window in which the deployed solution is kept
during each time window [17], and 3) ROOT problems based
on acceptability of the deployed solution and switching cost
in which the deployed solution is kept until it becomes
unacceptable or another solution is found whose fitness is
considerably higher than that of the deployed solution, making
the benefit of switching outweigh the cost [12]. As stated
before, in this article, we focus on the first type of ROOT
problems where the main objective is to minimize the number
of times when the deployed solution is changed.

Given a DOP f (t)(x⃗) with T environments, the aim
of ROOT is to find a set of deployed solutions S =
{s⃗1, s⃗2, · · · , s⃗l} where 1 ≤ l ≤ T . The main objective in
ROOT is to minimize l. A deployed solution s⃗i ∈ S is con-
sidered robust if it remains acceptable across more than one
environment. For a deployed solution s⃗i to be acceptable in
the tth environment, f (t)(s⃗i) must be greater than a predefined
threshold µ [17]. Otherwise, a new solution must be chosen for
deployment. This acceptability evaluation approach has been
used to determine the acceptability of solutions in the majority
of the works in the literature [11], [18], [20], [21].

B. ROOT methods

Despite the importance of ROOT in tackling many real-
world DOPs, this field has not received much attention so
far. To the best of our knowledge, there are only three main
ROOT methods which are proposed by Jin [15], Fu [17], and
Yazdani [18]. The rest of the works in the field are designed
based on these three works [12], [22], [23].

4In the proposed method, the system can be in two different states: 1) the
deployed solution is currently acceptable or a new solution for deployment
has already been chosen and 2) the deployed solution is no longer acceptable
and a new solution must be chosen for deployment before a deadline.

Jin et al. [15] proposed the first ROOT method in 2013.
This method uses the predicted fitness values of solutions
in a predefined number of future environments to estimate
their robustness. The main components of this method include
a single-population EDO, a database, an approximator, and
a predictor. The single population EDO is responsible for
gathering data to train the predictor and also the optimization
process. The historical data are archived in the database over
time, which is used to train the approximation and prediction
methods. Jin’s method uses a substitute objective function
which is the accumulation of the actual fitness, predicted, and
approximated values.

Fu et al. [17] proposed a survival time based ROOT method
whose main components are the same as Jin’s method, how-
ever, the used substitute objective function is different:

F (t)(x⃗) =

{
0, if f (t)(x⃗) < µ

1 + max{l′ | ∀i ∈ {1, 2, · · · , l′} : f ′′(t+i)(x⃗) ≥ µ}, otherwise
,

(3)

where f ′′(t+i) is the prediction function that predicts the future
fitness value of x⃗ in the (t+i)th environment. According to (3),
if the fitness value of a solution in the current environment is
less than µ, this solution is considered as a non-robust solution.
Otherwise, robustness value of this solution will be the number
of successive future environments in which its fitness values
are predicted to remain above µ.

Several multi-objective ROOT methods have been proposed
to find robust solutions based on the substitute objective
function in (3) and an additional objective function such as
average fitness of the deployed solutions or switching cost.
In [24], the algorithm tries to find a Pareto front based on the
substitute objective functions of average fitness over a prede-
fined time window and survival time. In [11], a multi-objective
approach, called ROOT/SC, is proposed for optimizing two
objectives including maximizing the survival time (3) and
minimizing the switching cost. The switching cost is defined as
the Euclidean distance between the current deployed solution
and a candidate solution. ROOT/SC was modified in [21] by
adding the current fitness of candidate solutions as the third
objective. Another group of multi-objective ROOT methods
are designed to find robust Pareto optimal solutions [25]–[27].
In these methods, the main goal is to find Pareto optimal
solutions whose performance is acceptable for the current and
upcoming environments.

Yazdani et al. [18], [20] proposed a reliability based ROOT
method. Unlike the previous ROOT methods that search for
robust solutions based on a substitute objective function,
this method works on the search space constructed by the
original objective function. The components include a multi-
population EDO capable of locating and tracking multiple
moving promising regions and a decision maker that chooses
the solutions for deployment. The multi-population EDO is
responsible to gather information about the promising regions
(e.g., shift severity and fitness fluctuation degree). Based
on the gathered information, the reliability of each covered
promising region is determined for choosing the next solution
for deployment. To this end, first, the fitness fluctuation degree

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

of each region covered by the ith sub-population (popi) is
calculated after each environmental change as follows:

τ
(t)
i =

∣∣∣f (t−1)
(
g⃗
∗(t−1)
i

)
− f (t)

(
g⃗
∗(t−1)
i

)∣∣∣ , (4)

where τ
(t)
i is the fitness fluctuation in the tth environmental

change, and g⃗
∗(t−1)
i is the best found position by popi in the

t−1th environment. Thereafter, the average values of τi in the
past environments (τ̄i) is used for determining the reliability
of the region using:

ρi =

{
1, if f (t)

(
g⃗
∗(t)
i

)
− τ̄i ≥ µ

0, otherwise
. (5)

If the best found position g⃗
∗(t)
i is reliable, it means that it is

expected that its worst possible future fitness value will remain
above the threshold µ for at least another environment. In the
tth environment, if the previous deployed solution becomes
unacceptable, the best found positions in the reliable promising
regions (i.e., ρi = 1) are considered as a set of candidate
solutions C for the next deployed solution. In [20], the solution
j in C is picked for deployment using:

j = argmax
i∈C

(
f
(
g⃗
∗(t)
i

)
− τ̄i

)
, (6)

where the solution from C that has the highest worst estimated
future fitness value is chosen for deployment. Another strategy,
used in [18], to choose a solution for deployment is as follows:

j = argmin
i∈C

(
s′i
s′max

+
h′i
h′max

), (7)

where s′i and h′i are the estimated shift and height sever-
ity values of the promising region covered by the ith sub-
population, respectively, and s′max and h′max are the largest s′

and h′ values among reliable promising regions, respectively.
A major shortcoming of the reviewed methods in this sec-

tion is that they are all tailored for very simple problems. For
example, some of their components are designed for low num-
bers of dimensions, regular/smooth search space/promising
regions, and/or simple dynamics. As described before, both
Jin’s and Fu’s methods use approximation and prediction
components to estimate the solutions’ future fitness values. On
the one hand, it is shown in [10] that using such approximation
and prediction methods to estimate the future fitness values of
solutions can be error-prone. On the other hand, Yazdani’s
method depends on the accuracy of the estimated fitness
fluctuations in (4). Until now, this method has only been tested
on MPB whose promising regions are regular/smooth, without
ill-conditioning, fully-separable, and symmetric peaks [28],
with fixed peak relocation length over time and homogeneous
dynamics [2]. However, our investigations indicate that the ef-
fectiveness of determining reliability of the promising regions
based on the estimated fitness fluctuations deteriorates where
the problems are more challenging.

The last issue concerns the EDOs used in every ROOT
methods to perform the optimization in dynamic environments.
All existing ROOT methods use EDOs which are originally de-
signed for tracking the moving global optimum (Jin’s and Fu’s
methods use a single-population EDO presented in [29], and

Yazdani’s method uses the multi-population EDO from [30]).
Despite the significant role of EDOs in the ROOT methods,
little attention has been given into designing some components
of EDOs which take ROOT’s considerations into account.

III. ROBUSTNESS ESTIMATION AND COMPUTATIONAL
RESOURCE ALLOCATION FOR ROOT

In this section, to address the shortcomings of the existing
ROOT methods, we propose two new components:
• A robustness estimation component that uses an explicit

archive to keep and transfer historical knowledge about
the covered promising regions for estimating their ro-
bustness degrees. The estimated robustness values of the
promising regions are used for choosing the next solution
for deployment and controlling the sub-populations.

• A systematic dual-mode robustness based computational
resource allocation component which picks the sub-
populations to run in each iteration in order to manage the
consumption of the fitness evaluations. This is done ac-
cording to several factors, including the system status, the
estimated robustness of each covered promising region,
and roles and task achievements of sub-populations.

We integrate the proposed components into a state-of-the-
art multi-population EDO to construct a ROOT algorithm.
Algorithm 1 shows a high level procedure of the resulting
ROOT method. As shown in this pseudo-code, the proposed
robustness estimation component is executed after each envi-
ronmental change (line 8). The proposed resource allocation
is executed at the beginning of each iteration (line 3) to pick
the sub-populations to be run in the current iteration.

The high-level components of a multi-population EDO
can be classified into change reaction (line 9), optimization
(line 5), and population management and diversity controlling
components (line 6) which usually include the mechanisms
used for dividing the population into sub-populations, remov-
ing/randomizing redundant individuals/sub-populations, gener-
ating new sub-populations, and increasing/maintaining global
diversity5. Finally, a decision maker is used (line 11) to choose
a solution for deployment.

In the rest of this section, we describe:
• Suitable multi-population EDOs that can be equipped

with the proposed components to form ROOT algorithms,
• The proposed robustness estimation component, and
• The proposed computational resource allocation.

A. Compatible multi-population EDO

In ROOT, the main responsibility of the multi-population
EDO is not to find the global optimum, but to locate and
track multiple moving promising regions. Each sub-population
tracks and covers one promising region. The main purpose of
tracking the promising regions for tackling ROOT problems
is that the solutions around their summits are more likely
to remain acceptable after environmental changes [14], [18],

5The reader is referred to [2] for a detailed review of the population
management and diversity controlling components used in multi-population
EDOs.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

Algorithm 1: Procedure of the ROOT method constructed
by assembling the proposed components and those of a multi-
population EDO.

1 Initialize pop1;
2 repeat
3 Choose sub-populations for execution by the proposed resource

allocation (Alg. 3);
4 foreach chosen popi do
5 popi ← Optimizer(popi);

6 Execute population management and diversity control components;
7 if Environment has changed then
8 Estimate robustness of the covered promising regions (Alg. 2);
9 Execute change reaction components;

10 if a solution need to be deployed then
11 Choose the best found solution in the promising regions with the

highest estimated robustness;

12 until stopping criterion is met;

[31]. Using the proposed robustness estimation component’s
explicit archive, the historical information of the best found
positions by each sub-population in the previous environments
is retrieved and used to estimate the robustness of each covered
region.

Although many multi-population EDOs have been devel-
oped for tracking the moving global optimum, not all of
them are efficient at performing tracking multiple moving
promising regions. For example, many state-of-the-art multi-
population EDOs, such as those that form the sub-populations
by clustering the individuals based on their fitness and po-
sition [32], are defective for this purpose as they may lose
track of the inferior (based on fitness) promising regions.
Besides, those multi-population EDOs whose number of sub-
populations and overall population size do not adapt to the dis-
covered promising regions, are not suitable for constructing a
ROOT method. Such EDOs are incapable of tracking multiple
moving promising regions effectively in the problems whose
number of promising regions is larger than the number of the
EDO’s sub-populations. In such problems, several promising
regions cannot be covered due to the limited number of sub-
populations.

A suitable class of multi-population EDOs for performing
a stable and reliable tracking of multiple moving promising
regions over time are those whose number of sub-populations
adapts to the number of discovered promising regions, where
the membership of individuals in each sub-population is fixed
and determined based on the individuals’ indices [8], [30],
[33]. These multi-population EDOs usually start with one sub-
population (Algorithm 1, line 1) and once it has converged
to a promising region, a new sub-population is initialized
(Algorithm 1, line 6).

B. Proposed robustness estimation component
The first component which is triggered right after an envi-

ronmental change is the proposed robustness estimation whose
main responsibility is to estimate the degree of robustness of
the covered promising regions. Estimated robustness values
are used for choosing solutions for deployment and also in
the population control by the proposed resource allocation. The
pseudo code of the proposed robustness estimation component
is shown in Algorithm 2.

Algorithm 2: Estimating the robustness of popi (γi) and
managing the explicit archive Mi.
Input: Mi and g⃗

∗(t−1)
i .

Output: Mi and γi.

1 Mi ← Push(g⃗∗(t−1)
i);

2 mi ← Update(mi);
3 γi ← 0;
4 j ← t;
5 repeat
6 j ← j − 1;
7 y⃗ ← Retrieve(g⃗∗(j)

i ∈ Mi);
8 if f(t)(y⃗) ≥ µ then
9 γi ← γi + 1;

10 until γi = mi ∨ f(t)(y⃗) < µ;
11 if γi < mi then
12 Remove({g∗(t−k)

i ∈ Mi|k > γi});
13 mi ← γi;

Each popi is equipped with an explicit memory Mi which
is a circular queue of size mmax. After each environmental
change, the best found position by popi in the last environment
(g⃗∗(t−1)i) is archived in Mi (line 1). mi is the number of
archived solutions in Mi. In the case in which the explicit
archive is full (i.e., mi = mmax) the oldest archived solution
is removed, then g⃗

∗(t−1)
i will be archived.

After updating the explicit archive of all sub-populations, a
robustness value γ is calculated for each covered promising
region (lines 7–9). To this end, for each popi, γi is first reset to
zero. Thereafter, the acceptability of the archived solutions in
Mi in the current environment t is evaluated. We first evaluate
f (t)(Mi,1). If f (t)(Mi,1) is acceptable (i.e., f (t)(Mi,1) >
µ), we increment γi by one. Then, we repeat this step for
Mi,2 which contains g⃗

∗(t−2)
i . This step is repeated until we

either reach an archived solution which is unacceptable or have
evaluated all mi archived solutions in Mi.

Calculation of γ is costly (i.e., it consumes fitness evalua-
tions), in particular when the number of discovered promising
regions is large. To avoid wasting the computational resources
for calculating γ, archived solutions are re-evaluated one-
by-one from the most recent to the oldest, and once an
unacceptable archived solution is detected, the re-evaluation
process stops. Furthermore, after detecting an unacceptable
archived solution, this solution and all older ones are removed
from the explicit archive. Actually, when a historical best
found solution in a promising region is not accepted in the
current environment, it cuts off the chain of robustness in the
successive environments. Consequently, we take no account
of the older archived solutions in the robustness estimation.
We remove the older archived solutions once the chain of
robustness is cut off by an unacceptable archived solution
(line 12). This pruning mechanism helps to reduce the bur-
den of fitness evaluation consumption caused by using the
robustness estimation component.

According to Algorithm 2, γi ∈ {0, 1, · · · ,mi}. The value
of γi indicates the number of successive environments for
which if any of the previous best found positions by popi
were deployed, they would have remained acceptable until the
current environment. Besides, considering the removal of the
unacceptable archived solutions in line 12, all existing archived

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

best found solutions in the tth environment were acceptable
from the environment that they were added to the archive until
the current environment, i.e.:

f (t−j)(g⃗
∗(t−k−1)
i) ≥ µ | j, k ∈ {0, 1, · · · , γi} ∧ k ≥ j. (8)

For a popi, larger values of γi show that the promising
region covered by this sub-population had some characteristics
during the recent γi environments that resulted in acceptability
of the best found solutions over a larger numbers of the
environmental changes. Larger values of γi can be due to
several morphological and dynamical characteristics such as
smaller shift severity, smaller fitness fluctuation, and/or wider
shape of the promising region. Therefore, larger values of
γi indicate higher likelihood of robustness to environmental
changes.

C. Decision-making process

A decision-maker is responsible to choose a solution for
deployment based on γ values calculated by the robustness
estimation component (Algorithm 1, line 11). Indeed, γ values,
which indicate robustness of the covered promising regions
from past to the current environment, form the historical
knowledge that is used by the decision-maker for choosing
solutions for deployment. These solutions are chosen from the
promising regions with more reliable and suitable dynamical
and morphological characteristics which are likely robust to
the upcoming environmental changes. To identify such promis-
ing regions, we use the gathered historical knowledge, i.e.,
γ values, to estimate their future robustness. We describe the
relation between γ values, some dynamical and morphological
characteristics of promising regions, and likelihood of future
robustness in Section S-I of the supplementary document.

In the proposed ROOT method, the best found position in
the promising region with the largest γ value is chosen for
deployment. The purpose of choosing such a solution is to
maximize the survival time, which is the number of successive
environmental changes that the deployed solution can remain
acceptable. Applying Algorithm 2 for the promising region
covered by popi, the output indicates that during the last γi
environments, a best found position in this region which could
be successfully deployed, is still reusable until the end of the
current environment. Larger γ values for a promising region
demonstrate that it has some dynamical and morphological
characteristics which make it more suitable for choosing
solutions for deployment that are likely robust to the upcoming
environmental changes.

Note that in the proposed robustness estimation component,
the archived solutions are used to form the historical knowl-
edge to estimate the future robustness of the promising regions
and they are not candidates for deployment. Indeed, similar
to [18], the proposed method focuses on robustness of promis-
ing regions which differs from those ROOT methods proposed
in [15], [16] which focus on the robustness of all candidate
solutions. This allows us to avoid the complexities and issues
of using approximation and prediction components [10], [18]
which are necessary for estimating the robustness of candidate
solutions used in [15], [16].

D. Proposed computational resource allocation component

In most existing multi-population EDOs, a simple Round
Robin/parallel method is used to allocate computational re-
sources to sub-populations in each iteration [2]. Knowing that
sub-populations do not necessarily share the same priority [2],
[8], equal allocation of resources to all sub-populations is
inefficient [2].

Herein, we propose a new computational resource allocation
component which works based on the estimated robustness of
the covered promising regions, the role of the sub-populations,
sub-populations’ progress in their tasks, their age, and the
current system status. The proposed resource allocation com-
ponent uses three thresholds to identify the role of the sub-
populations and measuring sub-populations’ progress in their
tasks:
• rconv: when the spatial size of a sub-population is less

than rconv, it is assumed that is has converged to a
promising region. Otherwise, it has not yet converged
to any promising region and is still performing explo-
ration. Such a mechanism is commonly used to identify
converged sub-populations in EDOs [2], [34]. In this
paper, the spatial size λi of a sub-population popi is
defined as the Euclidean distance of the farthest pair of
individuals [35] which is calculated by:

λi = max
x⃗j ,x⃗k∈popi

∥x⃗j − x⃗k∥. (9)

• rcover: when the spatial size of a sub-population drops
below rcover, we assume that it has converged to the
promising region’s summit. Note that rcover < rconv and
if rcover < λi < rconv, we assume that although popi
has converged to the promising region, it is still climbing
the promising region to reach the summit.

• rmin: this threshold has the smallest value out of the three,
i.e., rmin < rcover < rconv. When the spatial size of a
sub-population drops below rmin, it is assumed that the
individuals of popi have collapsed on the summit of a
promising region. In this circumstance, it is assumed that
the tracking task has been fulfilled. Many EDOs use rmin

to deactivate collapsed sub-populations [9], [36].
Algorithm 3 shows the details of the proposed resource

allocation component. In each iteration, it determines which
sub-populations are allowed to run and use computational
resources (Algorithm 1, line 3). As can be seen in Algorithm 3,
the proposed resource allocation component is composed
of two operational modes which are selected based on the
current system status: normal (lines 11–17) and quick recovery
(lines 18–20):
• Normal mode: in the environments in which the previ-

ously deployed solution is still acceptable/reusable, or the
new solution for deployment has been chosen, and

• Quick recovery mode: when the previously deployed
solution is no longer acceptable and a new solution must
be chosen for deployment.

In the following, we describe these two modes.
1) The normal mode: In the normal mode, the proposed

resource allocation prioritizes the following sub-populations:

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

Algorithm 3: Selecting sub-populations to run in the
current iteration.
Input: t, f (t)(⃗s), and γ and λ of all sub-populations.
Output: L.

1 L ← ∅; // Create an empty set L
2 if t = 1 then // For the first environment
3 foreach {popi|λi > rmin} do
4 L ← L ∪ i;

5 else
6 γmax = max{∀popi}(γi);
7 if f(t) (⃗s) < µ ∧ {∃popi|rmin < λi ∧ γi = γmax} then
8 Mode← Quick recovery;

9 else
10 Mode← Normal;

11 if Mode = Normal then
12 foreach {popi|rmin < λi ≤ rcover} do
13 Calculate pi using (10);
14 if U [0, 1] ≤ pi then
15 L ← L ∪ i;

16 foreach {popi|λi > rcover} do
17 L ← L ∪ i;

18 else if Mode = Quick recovery then
19 foreach {popi|rmin < λi ∧ γi = γmax} do
20 L ← L ∪ i;

a) Sub-populations with larger γ values: these sub-
populations are very important since they are tracking the
promising regions that likely contain high quality robust
solutions. Consequently, by allocating more computational
resources to such sub-populations, their exploitation capability
will be accelerated and improved.

b) Sub-populations with unfinished explo-
ration/exploitation tasks: the proposed resource allocation
component also considers relatively young sub-populations
whose γ values are small, but they are important for locating
and covering promising regions. A promising region can
be considered properly covered when a sub-population
exploits around its summit and tracks it. The last generated
sub-population is the one that is responsible for the vital task
of performing exploration in the multi-population method.
This sub-population fulfills its task once it has converged to
a promising region. Besides the explorer sub-population, the
ones that have lately converged to the promising regions, but
still have not got close to the summit, are also prioritized
by the proposed resource allocation component. The main
task of each of these sub-populations is to exploit the
promising region and getting close to its summit. Assigning
computational resources to such sub-populations to fulfill
their current tasks is crucial for providing more accurate
information for the robustness estimation component. Besides,
lack of prioritizing such sub-populations may even result
in losing the coverage of the newly discovered promising
regions.

Allocating computational resources to converged sub-
populations is a waste of limited resources. For this reason, re-
source allocation component stops optimizing sub-populations
with lost local diversity. This happens irrespective of the
resource allocation component mode, environment number,
and γ values. In the resource allocation component, when the

spatial size of a sub-population becomes smaller than rmin,
it does not get selected until its spatial size is increased by
the local diversity control component after each environmental
change [2], [10].

In the first environment, the Round Robin method is used
to allocate an identical amount of computational resources to
all sub-populations (whose spatial size is larger than rmin)
in each iteration since in the first environment, γ = 0 for
all sub-populations (Algorithm 3, lines 2–4). After the first
environmental change, in each environment where either the
previous deployed solution is still acceptable or a new solu-
tion has been chosen for deployment, the resource allocation
component in normal-mode is activated. Below, we describe
this process.

In all iterations, the resource allocation component selects
the sub-populations with unfinished exploration/exploitation
tasks to run in the current iteration. The spatial size of the
the last generated sub-population is always larger than rconv
since right after its spatial size falls under the threshold,
a new sub-population is initialized. Therefore, the resource
allocation component selects any sub-population whose spatial
size is larger than rconv. Besides, the sub-populations that have
recently converged to the basin of attraction of a promising
region and are not yet close to the summit, are selected.
These sub-populations are the ones whose spatial sizes are less
than rconv but more than a second threshold rcover. When the
spatial size of a sub-population falls under rcover, we assume
that it has converged to the promising region’s summit and
fulfilled its previous task. Since rcover < rconv, the proposed
resource allocation component’s normal-mode selects all sub-
populations with spatial sizes larger than rcover, which are
assumed to be not finished with their exploration/exploitation
tasks, to run in the current iteration.

The main tasks of the sub-populations with spatial sizes
less than rcover include tracking the optimum of the promising
region and providing a history of the optimum position in each
environment for the robustness estimation component. It is
expected that after initial environments and due to prioritizing
the sub-populations that have not converged to the summits
yet, most existing sub-populations will become tracker sub-
populations whose spatial sizes are less than rcover. The reason
is that the number of the promising regions in the DOPs
considered in this paper – and in all existing works – is not
excessively high to hinder performance [2]. Consequently, it is
expected that after a while, most of the promising regions will
be covered by sub-populations that are residing around their
summits. Among these sub-populations, the proposed resource
allocation component prioritizes those with larger γ values
using a probability based selection process. To this end, at
the beginning of each iteration, the resource allocation com-
ponent assigns a probability pi to each popi which satisfies
rmin < λi ≤ rcover, i.e., the sub-populations participating
in the selection process are the ones whose spatial sizes are
larger than rmin and smaller than rcover. This probability is
calculated as below:

pi =
γi

max{popj |rmin<λj<rcover} γj
. (10)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

Afterwards, a random number is generated in [0, 1] with
uniform distribution for each of these popi and if this number
is less than pi, then popi will be selected by the resource
allocation component to execute an internal iteration. In other
words, after determining the probability value for each sub-
population using (10), a selection process is independently run
for each sub-population which decides whether it is chosen
to run in the current iteration or not. Since the probability
of selecting the sub-population with the highest robustness
value among the participating sub-populations in the selection
process is 1.0 using (10), it will definitely be selected. Other
participating sub-populations also are selected with probability
pi. Thus, at least one sub-population and at most all participat-
ing sub-populations might be chosen. According to this prob-
ability based selection process, the superior sub-populations,
i.e., the ones with larger robustness values, have more chance
to be selected in each iteration. Note that although the inferior
sub-populations are less likely to be selected, they still have
a chance to be selected and perform tracking. Moreover, the
more frequent the superior sub-populations are selected, the
quicker they will be omitted in the selection process due to
loss of diversity (once their spatial sizes have shrunk to less
than rmin). Consequently, by excluding the sub-populations
with larger γ values, the selection probabilities for inferior
sub-populations increase.

2) The quick recovery mode: When the algorithm responses
to an environmental change, if the deployed solution is no
longer acceptable, the proposed resource allocation component
switches to the quick recovery mode. This mode is designed to
ensure that the full potential of the algorithm in finding a better
solution for deployment is used, in particular, when the change
frequency is high or there is a deadline (temporal constraint)
for deploying a new solution [3]. As stated in Section III-C,
the best found solution in the promising regions with the
highest γ value is chosen for deployment. To this end, we
first identify the highest value of robustness among all sub-
populations as γmax = max{∀popi}(γi). Then, we identify the
sub-populations whose γi = γmax and compare their best
found solutions. The one with the highest fitness value is
chosen for deployment (see Algorithm 4, lines 24-25).

In this mode, only the sub-populations whose γi = γmax run
in all iterations while all other sub-populations are hibernated.
The resource allocation component remains in this mode until:
• The spatial sizes of the running sub-populations become

less than rmin (i.e., sufficient exploitation has been per-
formed), or

• The computational budget has run out before the deadline.
When one of the aforementioned conditions is met, the re-
source allocation component will switch back to the normal
mode immediately.

E. Detailed description of an instantiation of the proposed
ROOT method

Algorithm 4 shows how the proposed robustness estimation
and resource allocation components and those of a multi-
population EDO are assembled to form an instantiation of
the proposed ROOT method. Herein, we choose a simple,

Algorithm 4: An instantiation of the proposed ROOT
method.

1 Initialize pop1;
2 repeat

// Executing the proposed computational resource
allocation component

3 Obtain list L using Alg. 3;
// Execute the optimization component of EDO

4 foreach popi ∈ L do
5 popi ← Optimizer(popi);

// Execute population management and diversity
control components of the EDO

6 foreach {popi&popj |i ̸= j} do // Exclusion component
7 if ∥x⃗∗

i − x⃗∗
j ∥ < φexcl then

8 Remove the inferior sub-population;

9 foreach popi do // Spatial size calculation
10 Update λi by Eq. (9);

11 if {∄popi|λi > rconv} then
12 Initialize a new sub-population;

13 if Environment has changed then
14 foreach popi do
15 Agei = Agei + 1;
16 Calculate ŝi by Eq. (S-3);

// Executing the proposed robustness
estimation component

17 foreach {popi|Agei > 1} do
18 Calculate γi by Alg. 2;

// Executing change reaction components of the
EDO

19 foreach {popi|λi < rconv} do
20 Re-diversify by Eq. (S-2);

21 foreach popi do
22 Update stored fitness values in the new environment;

23 if a solution need to be deployed then
24 γmax = max{∀popi}(γi);
25 Deploy x⃗∗

i from
{popi|i = argmax{popj |γj=γmax}(f

(t)(x⃗∗
j))};

26 until stopping criterion is met;

yet very efficient, multi-population EDO framework from [9],
[10], which is described in Section S-II of the supplementary
document. A complexity analysis of the instantiation of the
proposed ROOT method shown in Algorithm 4 is provided in
Section S-III of the supplementary document.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first describe the experimental de-
sign. Then, we investigate the effectiveness of the proposed
robustness estimation and computational resource allocation
components. We finally compare the performance of a multi-
population EDO equipped with the proposed components and
several peer ROOT algorithms.

A. Experimental design

1) Benchmark generator: The experiments in this paper are
based on various problem instances generated by the general-
ized moving peaks benchmark (GMPB) [28], [37]. GMPB is
a benchmark generator which is capable of generating land-
scapes with a controllable number of promising regions with a
variety of parametric and changeable characteristics, including
symmetry, condition number, irregularity, roughness, modality,
and variable interaction. GMPB has several parameters (see
Table I) that can be set by the user to generate problem

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

instances with a vast variety of morphological and dynamical
characteristics and difficulty levels. Detailed information of
the GMPB used in this paper is provided in Section S-IV of
the supplementary document. The MATLAB source code of
this benchmark is available from [38].

2) Performance indicator: The focus of this paper is on
solving ROOT problems in which the main goal is to find
solutions for deployment in order to maximize the average
number of environments that the deployed solutions remain
acceptable. It is worth to mention that none of the algo-
rithms examined in this paper, including the proposed one,
are designed to maximize the fitness of deployed solutions
or minimize the switching cost which are related to other
classes of ROOT problems or can be considered as other
objectives [11], [12], [17]. Considering the focus of this paper,
we compare the performance of the algorithms according to
the average survival time [17] which is the most commonly
used performance indicator in the field [16], [18].

3) Algorithms: In the experiments, we use the multi-
population framework from [10] for all multi-population based
methods, including the proposed one. We also use PSO with
constriction factor [39] as the optimization component in
the multi-population framework. To evaluate the effectiveness
of proposed resource allocation and robustness estimation
components, we add them to mPSO. This approach is denoted
as mPSO+CRA

+RE in the experiments.
Besides mPSO+CRA

+RE , we also use three other multi-
population comparison algorithms which are: mPSO,
mPSOb, and mPSOsh. mPSO is a tracking the moving global
optimum method that is adapted to tackle ROOTs in which the
best found solution (in terms of fitness) is chosen for the next
solution for deployment. mPSORb uses the ROOT decision
maker from [20], where the best found solution among the
candidate reliable promising regions is chosen for deployment.
mPSORsh applies (7) (for which estimated shift and height
severity values are needed) to choose the next solution for
deployment [18].

We also choose the fitness prediction-based ROOT methods
from [17] (denoted as PbMF) and [15] (denoted as PbMJ)
as comparison algorithms. For the experiments, we assume
that these methods have access to the previous environmental
parameters; thus, they do not need any approximation method.
It should be noted that the fitness evaluations used for training
the predictor in the previous environments are not counted
towards the overall computational cost. This means that the
results obtained by these algorithms are not affected by the
approximation error and can therefore be taken as an upper-
bound for what the algorithms are capable of achieving in
practice.

In this paper, we focus on DOPs with visible environmental
changes where the optimization algorithms are informed about
environmental changes by other parts of the system, such as
sensors and agents, similar to many real-world DOPs [2].
Therefore, the examined algorithms in this paper do not use
any change detection component. If needed, a simple re-
evaluation based change detection component [40] could be
added to the algorithms.

TABLE I
PARAMETER SETTINGS OF THE GMPB. THE DEFAULT PARAMETER

VALUES ARE HIGHLIGHTED WHERE SEVERAL VALUES ARE USED IN OUR
EXPERIMENTS. THE MATLAB SOURCE CODE OF THE USED GMPB CAN

BE ACCESSED FROM [38].

Parameter Symbol Value(s)

Acceptability ROOT threshold µ 40,45,50
Dimension d 5,10
Numbers of promising regions m 10,25 ,50,100
Shift severity s̃i

† U [1, 3],U [1, 5] ,U [1, 7]‡
Change frequency ϑ 250 ,500,1000,2500
Computational budget⋆ δ ⌊ϑ

3
⌋, ⌊ϑ

2
⌋

Height severity h̃i U [1, 15]
Width severity w̃i U [0.1, 1.5]
Irregularity parameter τ severity τ̃ 0.05
Irregularity parameter η severity η̃ 2
Angle severity θ̃ π/9
Search range [Lb, Ub]d [−50, 50]d

Number of environments T 100
† The value of a given parameter X in the ith promising region is shown by Xi. In the case

a parameter value is the same for all the promising regions or it is a temporal parameter,
no subscript is used.

‡ U [a, b] denotes a uniform distribution used to uniformly draw random numbers in the
range [a, b].

⋆ It indicates the deadline for deploying a new solution when the previous one is no longer
acceptable, which can be found in many real-world DOPs [3].

4) Parameter settings: Table I shows the parameter settings
of GMPB. The experiments are done on the problem instances
with various numbers of promising regions (m), acceptability
threshold (µ), and dimensions (d). The parameter settings
chosen in Table I are commonly used in the ROOT and
EDO literature. Different parameter settings result in problem
instances with different difficulty levels. In addition, different
parameter settings generate problem instances with different
maximal robustness values for both problems and promising
regions. By increasing µ, the regions containing the robust
solutions shrink, the maximal possible survival time decreases,
and finding robust solutions becomes more challenging [16].
The higher the number of promising regions m, the easier
to find robust solutions. This is due to the fact that in
landscapes with larger numbers of the promising regions,
the size/number of areas containing robust solutions with
better qualities increases [18]. In addition, in problems with
larger m values, the promising regions are likely to overlap
and support the deployed solution to remain acceptable for
further environments. Finally, by increasing the dimension, the
problem instances become more challenging.

We use the parameter settings extracted from the sensitivity
analysis in [10] for our multi-population EDO framework
and also for PSO in the multi-population methods. Besides,
the parameter settings of the proposed components are taken
from the sensitivity analysis reported in Section S-V of the
supplementary document. Parameter settings of mPSO+CRA

+RE

are summarized in Table II. For the parameter settings of the
comparison algorithms, the values suggested in their original
references are used. Our investigations also indicate that these
algorithms show their best efficiency with those suggested
settings.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE II
PARAMETER SETTINGS OF THE COMPONENTS OF mPSO+CRA

+RE . THE
MOST RIGHT COLUMN INDICATES WHETHER THE PARAMETER SETTINGS

ARE TAKEN FROM THE ORIGINAL REFERENCES OR FROM THE SENSITIVITY
ANALYSIS RESULTS REPORTED IN SECTION S-V OF THE SUPPLEMENTARY

DOCUMENT. NOTE THAT VALUES OF OTHER PARAMETERS OF THE
PROPOSED COMPONENTS, γi AND γmax , ARE CALCULATED IN EACH

ITERATION BY ALGORITHM 2 AND LINE 24 OF ALGORITHM 4,
RESPECTIVELY.

Method Parameter Value Reference

PSO

χ 0.729843788 [10]
C1, C2 2.05 [10]
Neighbourhood topology global star [10]
Sub-population size 5 [10]

mEDO framework∗
φexcl 0.5Ub−Lb

d√p

† [9], [41]

rconv 0.5Ub−Lb
d√p

[9], [41] and Table S-II

Proposed components
mmax 9 Table S-I
rcover 5 Fig. S-4
rmin 0.75 Fig. S-4

∗ The multi-population EDO framework used in this paper is described in Section S-II of the
supplementary document.

† Where p is the number of sub-populations.

B. Experimental results

The statistical results provided in this section are based
on 31 independent runs. For statistical analysis, we use mul-
tiple comparison tests using Wilcoxon rank-sum test with
Holm–Bonferroni p-value correction and α = 0.05.

1) Effect of the proposed components on performance:
In this section, we investigate the effectiveness of the pro-
posed robustness estimation and computational resource allo-
cation components. To this end, we compare the performance
of mPSO, mPSO with robustness estimation component
(mPSO+RE), and mPSO with both proposed robustness es-
timation and computational resource allocation components
(mPSO+CRA

+RE). Figure 1(a) compares the average survival
time over time by these three methods on GMPB with the
default parameter settings from Table I. We also compare the
average percentage of the previously deployed solutions which
are reused (i.e., remaining acceptable) by these methods in
each environment in Figure 1(b). Comparing the performance
of mPSO and mPSO+RE in these plots based on average
survival time and the average percentage of acceptability of the
previously deployed solutions demonstrates the effectiveness
of this component in choosing more robust solutions for
deployment.

As can be seen in Figures 1(a) and 1(b), adding the proposed
computational resource allocation component further improves
the performance of the algorithm. This improvement is a
result of systematic control of the computational resource
consumption by each sub-population according to their esti-
mated robustness value (provided by the proposed robustness
estimation component), role, task achievement, and current
system status. To further investigate the effectiveness of the
proposed resource allocation, we compare the performance
of mPSO+RE and mPSO+CRA

+RE on the problem instances
generated by GMPB with different numbers of the promising
regions and the default settings for the remaining parameters.
The results are compared in Figure 2. As can be seen in this
figure, by adding the proposed resource allocation component,
the performance is improved, in particular in the problem in-

0 10 20 30 40 50 60 70 80 90 100

Environment Number

0

0.5

1

1.5

2

2.5

3

A
v

er
ag

e
S

u
rv

iv
al

 T
im

e

With both proposed components

With robustness estimation component

Without proposed components

(a) Average survival time over time plot.

0 10 20 30 40 50 60 70 80 90 100

Environment Number

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
ro

b
u

st
n

es
s

With both proposed components

With robustness estimation component

Without proposed components

(b) Average percentage of the previously deployed solutions which are reused (i.e.,
remaining acceptable) in each environment. For the ith environment, the value plotted

in this figure is obtained by
∑b̂

b=1 ai,b

b̂
× 100, where b̂ is the total number of runs

and ai,b ∈ {0, 1} shows the acceptability of the last deployed solution in the ith
environment of bth run. ai,b = 1 indicates that the last deployed solution is still
acceptable and reused in the ith environment, and it is zero otherwise.

Fig. 1. Effects of the proposed robustness estimation and computation
resource allocation components on the performance of mPSO for GMPB
with the default parameter settings from Table I. This figure compares the
efficiency of simple mPSO, mPSO with robustness estimation component
(mPSO+RE), and mPSO with both proposed robustness estimation and
computation resource allocation components (mPSO+CRA

+RE). The plots are
obtained by averaging the results of 31 independent runs.

stances with larger numbers of the promising regions. In such
problems, larger numbers of sub-populations are generated
to cover the promising regions. Thus, the role of resource
allocation becomes more vital since larger numbers of the
fitness evaluations is needed in each iteration. mPSO+RE suf-
fers from a shortage of the available computational resources
before the deployment time. However, for the mPSO+CRA

+RE ,
this challenge is ameliorated by systematic allocation of the
computational resources to the sub-populations with higher
robustness and taking the system status into account.

As described in Section III-D, besides prioritizing the sub-
populations with larger γ values, the proposed computa-
tional resource allocation component also prioritizes the sub-
populations which are performing exploration or recently have
converged to a promising region and are moving toward the
summit. This systematic prioritizing approach considerably
improves the abilities of exploration, exploitation, and tracking
which results in discovering and covering larger numbers of
promising regions. Figure 3 shows the effect of using the
proposed resource allocation in the ability of the algorithm
in finding and covering/tracking promising regions over time.
Note that a promising region is considered covered if there
is a sub-population whose individuals reside in the basin of
attraction of the promising region. As can be seen in this

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

10 25 50 100

Number of promising regions (m)

1

2

3

A
v

er
ag

e
su

rv
iv

al
 t

im
e

Without CRA component

With CRA component

Fig. 2. Investigating the effect of the proposed computational resource alloca-
tion (CRA) by comparing the obtained average survival time by mPSO+RE

and mPSO+CRA
+RE in problem instances generated by GMPB with different

numbers of promising regions (m) and the default parameter settings from
Table I for the rest of the parameters.

0 10 20 30 40 50 60 70 80 90 100

Environment Number

0

10

20

30

40

50

N
u
m

b
er

 o
f

C
o
v
er

ed
 P

ro
m

is
in

g
 R

eg
io

n
s

With CRA component

Without CRA component

Fig. 3. Investigating the effect of the proposed computational resource
allocation (CRA) by comparing the ability of finding and covering/tracking
promising regions in mPSO+RE and mPSO+CRA

+RE over 100 environments
of GMPB with 50 promising regions (m = 50) and the default parameter
settings from Table I for the rest of the parameters. The plots are obtained by
averaging the results of 31 independent runs. Note that usually some smaller
promising regions are covered by larger ones, thus, the number of visible
promising regions is usually less than m. Besides, by changing the size
and location of promising regions, the number of visible promising regions
changes over time [28].

plot, thanks to the proposed resource allocation component,
mPSO+CRA

+RE covers larger numbers of promising regions in
comparison to mPSO+RE. By covering larger numbers of
promising regions in mPSO+CRA

+RE , the possibility of missing
promising regions, which may contain solutions with higher
robustness, decreases which in turn results in improving the
performance of the algorithm in finding better robust solutions.

2) Comparison with peer algorithms: In this section, we
compare the results obtained by mPSO+CRA

+RE and the peer
algorithms described in Section IV-A3 in solving problem
instances generated by GMPB with different dimensions d,
numbers of promising regions m, and acceptability threshold
values µ. The average survival time (and standard error)
obtained by the algorithms are reported in Table III where
the best results are highlighted according to the performed
statistical analysis. The reported results in this table clearly
demonstrate that mPSO+CRA

+RE performs significantly better
than all comparison algorithms in all cases, thanks to the
proposed robustness estimation and computational resource
allocation components. The robustness estimation component
used in mPSO+CRA

+RE does not rely on any estimated parameter

TABLE III
AVERAGE SURVIVAL TIME (AND STANDARD ERROR) ON GMPB WITH

DIFFERENT d, µ, AND m VALUES. THE HIGHLIGHTED ENTRIES ARE
SIGNIFICANTLY BETTER USING WILCOXON RANK-SUM TEST WITH

HOLM–BONFERRONI p-VALUE ADJUSTMENT (α = 0.05).

d µ m
Algorithms

mPSO+CRA
+RE mPSO mPSORb mPSORsh PbMF PbMJ

5

40

10 2.14(0.25) 1.80(0.30) 1.90(0.33) 1.88(0.30) 0.14(0.03) 0.66(0.15)

25 2.63(0.21) 1.83(0.18) 2.23(0.22) 2.21(0.24) 0.26(0.04) 1.10(0.24)

50 2.99(0.16) 2.01(0.11) 2.35(0.19) 2.36(0.20) 0.33(0.05) 1.08(0.18)

100 3.40(0.21) 2.42(0.26) 2.71(0.23) 2.65(0.26) 0.32(0.03) 1.03(0.17)

45

10 1.41(0.12) 0.98(0.11) 1.01(0.11) 1.09(0.12) 0.07(0.02) 0.45(0.12)

25 1.70(0.12) 1.23(0.15) 1.35(0.16) 1.40(0.16) 0.09(0.03) 0.63(0.13)

50 1.90(0.10) 1.30(0.11) 1.48(0.14) 1.55(0.13) 0.07(0.01) 0.75(0.10)

100 2.15(0.15) 1.52(0.16) 1.78(0.16) 1.74(0.15) 0.17(0.02) 0.71(0.11)

50

10 0.85(0.09) 0.54(0.08) 0.62(0.09) 0.57(0.08) 0.01(0.00) 0.21(0.07)

25 1.10(0.09) 0.70(0.10) 0.89(0.11) 0.85(0.10) 0.06(0.02) 0.29(0.07)

50 1.27(0.07) 0.86(0.06) 1.02(0.09) 0.99(0.07) 0.06(0.02) 0.41(0.05)

100 1.46(0.10) 0.98(0.11) 1.18(0.13) 1.15(0.10) 0.09(0.03) 0.35(0.09)

10

40

10 1.06(0.08) 0.82(0.09) 0.83(0.09) 0.83(0.09) 0.07(0.02) 0.38(0.07)

25 1.35(0.12) 1.03(0.11) 1.04(0.11) 1.01(0.10) 0.07(0.03) 0.45(0.11)

50 1.27(0.13) 0.92(0.15) 0.94(0.15) 0.96(0.15) 0.07(0.02) 0.41(0.14)

100 1.60(0.18) 0.90(0.14) 0.98(0.14) 0.97(0.14) 0.11(0.03) 0.56(0.16)

45

10 0.65(0.06) 0.42(0.05) 0.47(0.06) 0.46(0.05) 0.02(0.01) 0.21(0.05)

25 0.80(0.08) 0.51(0.07) 0.56(0.07) 0.56(0.07) 0.02(0.01) 0.25(0.07)

50 0.82(0.09) 0.49(0.10) 0.52(0.10) 0.53(0.10) 0.06(0.01) 0.25(0.10)

100 0.91(0.08) 0.47(0.05) 0.47(0.05) 0.47(0.05) 0.06(0.01) 0.33(0.09)

50

10 0.30(0.02) 0.18(0.02) 0.19(0.02) 0.18(0.02) 0.02(0.01) 0.10(0.02)

25 0.37(0.04) 0.23(0.03) 0.25(0.04) 0.26(0.03) 0.00(0.00) 0.12(0.03)

50 0.40(0.06) 0.19(0.05) 0.21(0.05) 0.20(0.05) 0.00(0.00) 0.10(0.06)

100 0.38(0.05) 0.18(0.03) 0.18(0.03) 0.18(0.03) 0.00(0.00) 0.13(0.04)

values related to the dynamical characteristics of the promising
regions such as fitness fluctuation (used in both mPSORsh

and mPSORb), and/or shift and height severity values (used
in mPSORsh). As a result, mPSO+CRA

+RE does not suffer
from inaccuracy in estimating these values, especially, in
the DOPs with random and/or heterogeneous dynamics [2]
where estimating these parameter values is error-prone. Be-
sides, additional morphological and dynamical characteristics
of the promising regions are also implicitly considered in the
calculation of the estimated robustness values in mPSO+CRA

+RE ,
which are not taken into consideration for choosing solutions
in mPSORsh and mPSORb.

The proposed computational resource allocation component
is another major feature of mPSO+CRA

+RE . The used resource
allocation methods in mPSORsh, mPSORb, and mPSO, are
designed for tracking the moving global optimum [10], and
they do not consider any attribute related to the robustness
of promising regions in controlling sub-populations. On the
other hand, the proposed resource allocation is particularly
designed for tackling ROOT problems which controls the sub-
populations based on several factors, including the robustness
of the promising regions and the acceptability of the deployed
solution. Besides, the proposed resource allocation takes the
roles of sub-populations, their convergence status, and their
task achievements into consideration.

To further investigate the performance of mPSO+CRA
+RE in

problem instances with different characteristics, we carry out

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

additional experiments on the problem instances generated by
GMPB with different acceptability ROOT threshold values,
change frequencies, shift severity degrees, and computational
budget values. The results are reported in Section S-VI of the
supplementary document. Moreover, to show the independence
of the proposed components with respect to the optimization
component used, we compare the performance of the multi-
population methods when they use differential evolution [42]
(DE) as the optimization component in Section S-VII of the
supplementary document. The results indicate the superiority
of the proposed ROOT method when DE is used as the
optimization component.

V. CONCLUSION

In this paper, we have presented two new components –
robustness estimation and dual-mode computational resource
allocation– for ROOT methods. The robustness estimation
component is responsible for estimating the robustness degree
of the covered promising regions, while the systematic dual-
mode robustness based computational resource allocation com-
ponent controls the sub-populations. These two components
and those of a multi-population EDO which is capable of
tracking multiple moving promising regions, are assembled to
form a new ROOT method. Unlike the existing components for
determining robust solutions, the performance of the proposed
robustness estimation component does not rely on the oversim-
ple characteristics of the benchmark problems, such as fixed
relocation length of the promising regions, unimodality and
smoothness of the promising regions, and/or low dimension-
ality of the problem. Moreover, using the proposed dual-mode
computational resource allocation component, the proposed
ROOT method is the first one that takes robustness and the
system status into account for controlling the sub-populations.
The proposed ROOT method and a set of peer methods have
been used for maximizing the average survival time of the
deployed solutions in 48 different problem instances with
various characteristics generated by GMPB. The experimental
results have shown the superiority of the proposed method in
almost all test cases.

In our algorithm, we monitor the spatial size of sub-
populations to determine their role and also progress in
carrying out their tasks, where we used a simple widely used
method [35] for calculating the spatial size of sub-populations.
Designing a more advanced and systematic spatial size mon-
itoring method that takes some problem characteristics such
as ill-conditioning and asymmetry into account, is a potential
future research direction.

In the proposed robustness estimation component, the value
of mmax should be set considering the scope of robustness in
the problem. In this paper, the value of mmax is fixed over time,
which may not be efficient for solving heterogeneous DOPs [2]
in which dynamical behavior changes over time. In such
problems, the scope of robustness significantly change over
time following the changes in the dynamical characteristics
such as change frequency and severity. A potential future
work will be designing parameter adaptation mechanisms [43]
for adapting the value of mmax to the changing scope of
robustness over time in heterogeneous DOPs.

There are many real-world problems whose search spaces
contain multiple moving promising regions and the multi-
population based methods, such as our proposed method, are
efficient in solving them. A potential future work will be
solving a real-world ROOT problem. An example of real-world
ROOT problems is crowd monitoring and management [44]
which is a dynamic covering location problem [45]. In this
problem, the locations of security agent units are changed over
time based on the status of the crowd. However, frequently
changing the locations of security agent units is undesirable as
it disturbs the monitoring task. Consequently, in this problem,
we seek solutions (i.e., the locations of the security agent units)
which can remain acceptable for a longer time.

REFERENCES

[1] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1 – 24, 2012.

[2] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao,
“A survey of evolutionary continuous dynamic optimization over two
decades – part A,” IEEE Transactions on Evolutionary Computation,
vol. 25, no. 4, pp. 609–629, 2021.

[3] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary
algorithms,” Ph.D. dissertation, University of Birmingham, 2011.

[4] J. Branke, Evolutionary optimization in dynamic environments. Springer
Science & Business Media, 2012, vol. 3.

[5] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao,
“A survey of evolutionary continuous dynamic optimization over two
decades – part B,” IEEE Transactions on Evolutionary Computation,
vol. 25, no. 4, pp. 630–650, 2021.

[6] R. Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia, and M. Goh,
“Covering problems in facility location: A review,” Computers & In-
dustrial Engineering, vol. 62, no. 1, pp. 368 – 407, 2012.

[7] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence
for dynamic optimization: Algorithms and applications,” Swarm and
Evolutionary Computation, vol. 33, pp. 1 – 17, 2017.

[8] D. Yazdani, R. Cheng, C. He, and J. Branke, “Adaptive control of sub-
populations in evolutionary dynamic optimization,” IEEE Transactions
on Cybernetics, Early access, DOI: 0.1109/TCYB.2020.3036100, 2020.

[9] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” IEEE Transaction on Evolutionary Computation, vol. 24,
no. 1, pp. 1–15, 2019.

[10] D. Yazdani, “Particle swarm optimization for dynamically changing
environments with particular focus on scalability and switching cost,”
Ph.D. dissertation, Liverpool John Moores University, Liverpool, UK,
2018.

[11] Y. Huang, Y. Ding, K. Hao, and Y. Jin, “A multi-objective approach to
robust optimization over time considering switching cost,” Information
Sciences, vol. 394, pp. 183–197, 2017.

[12] D. Yazdani, J. Branke, M. N. Omidvar, T. T. Nguyen, and X. Yao,
“Changing or keeping solutions in dynamic optimization problems
with switching costs,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2018, pp. 1095–1102.

[13] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over time—a
new perspective on dynamic optimization problems,” in IEEE Congress
on evolutionary computation. IEEE, 2010, pp. 1–6.

[14] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Characterizing environmental
changes in robust optimization over time,” in 2012 IEEE Congress on
Evolutionary Computation. IEEE, 2012, pp. 1–8.

[15] Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao, “A framework for
finding robust optimal solutions over time,” Memetic Computing, vol. 5,
no. 1, pp. 3–18, 2013.

[16] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Robust optimization over
time: Problem difficulties and benchmark problems,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 5, pp. 731–745, 2015.

[17] ——, “Finding robust solutions to dynamic optimization problems,” in
European Conference on the Applications of Evolutionary Computation.
Springer, 2013, pp. 616–625.

[18] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization over
time by learning problem space characteristics,” IEEE Transactions on
Evolutionary Computation, vol. 23, no. 1, pp. 143–155, 2018.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

[19] J. Branke, “Memory enhanced evolutionary algorithms for changing op-
timization problems,” in IEEE Congress on Evolutionary Computation,
vol. 3. IEEE, 1999, pp. 1875–1882.

[20] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A new multi-
swarm particle swarm optimization for robust optimization over time,”
in Applications of Evolutionary Computation, G. Squillero and K. Sim,
Eds. Springer International Publishing, 2017, pp. 99–109.

[21] Y. Huang, Y. Jin, and K. Hao, “Decision-making and multi-
objectivization for cost sensitive robust optimization over time,”
Knowledge-Based Systems, p. 105857, 2020.

[22] M. Fox, S. Yang, and F. Caraffini, “An experimental study of prediction
methods in robust optimization over time,” in Congress on Evolutionary
Computation. IEEE Press, 2020.

[23] P. Novoa-Hernández, D. A. Pelta, and C. C. Corona, “Approximation
models in robust optimization over time-an experimental study,” in
Congress on Evolutionary Computation. IEEE, 2018, pp. 1–6.

[24] Y. N. Guo, M. Chen, H. Fu, and Y. Liu, “Find robust solutions over
time by two-layer multi-objective optimization method,” in 2014 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2014, pp. 1528–
1535.

[25] M. Chen, Y. Guo, H. Liu, and C. Wang, “The evolutionary algorithm to
find robust pareto-optimal solutions over time,” Mathematical Problems
in Engineering, vol. 2015, 2015.

[26] Y. Guo, H. Yang, M. Chen, J. Cheng, and D. Gong, “Ensemble
prediction-based dynamic robust multi-objective optimization methods,”
Swarm and Evolutionary Computation, vol. 48, pp. 156–171, 2019.

[27] Y. Guo, H. Yang, M. Chen, D. Gong, and S. Cheng, “Grid-based
dynamic robust multi-objective brain storm optimization algorithm,” Soft
Computing, vol. 24, no. 10, pp. 7395–7415, 2020.

[28] D. Yazdani, M. N. Omidvar, R. Cheng, J. Branke, T. T. Nguyen, and
X. Yao, “Benchmarking continuous dynamic optimization: Survey and
generalized test suite,” IEEE Transactions on Cybernetics, Early access,
DOI: 10.1109/TCYB.2020.3011828, 2020.

[29] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization: de-
tection and response to dynamic systems,” in Congress on Evolutionary
Computation, vol. 2. IEEE, 2002, pp. 1666–1670.

[30] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A
novel multi-swarm algorithm for optimization in dynamic environments
based on particle swarm optimization,” Applied Soft Computing, vol. 13,
no. 4, pp. 2144–2158, 2013.

[31] L. Adam and X. Yao, “A simple yet effective approach to robust opti-
mization over time,” in 2019 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2019, pp. 680–688.

[32] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 14, no. 6, pp. 959–974, 2010.

[33] T. Blackwell, Particle Swarm Optimization in Dynamic Environments.
Springer Berlin Heidelberg, 2007, pp. 29–49.

[34] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[35] K. Trojanowski, “Properties of quantum particles in multi-swarms for
dynamic optimization,” Fundamenta Informaticae, vol. 95, no. 2-3, pp.
349–380, 2009.

[36] M. Kamosi, A. B. Hashemi, and M. R. Meybodi, “A hibernating multi-
swarm optimization algorithm for dynamic environments,” in Nature and
Biologically Inspired Computing. IEEE, 2010, pp. 363–369.

[37] D. Yazdani, J. Branke, M. N. Omidvar, X. Li, C. Li, M. Mavrovouniotis,
T. T. Nguyen, S. Yang, and X. Yao, “IEEE CEC 2022 competition on
dynamic optimization problems generated by generalized moving peaks
benchmark,” arXiv preprint arXiv:2106.06174, 2021.

[38] D. Yazdani, Generalized Moving Peaks Benchmark for Robust
Optimization Over Time (MATLAB Source Code), 2021 (accessed
December 06, 2021). [Online]. Available: https://bitbucket.org/public-
codes-danial-yazdani/gmpb-for-root/src/main/

[39] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Congress on Evolutionary
Computation, vol. 1. IEEE, 2001, pp. 84–88.

[40] H. Richter, “Detecting change in dynamic fitness landscapes,” in
Congress on Evolutionary Computation. IEEE, 2009, pp. 1613–1620.

[41] T. Blackwell, J. Branke, and X. Li, “Particle swarms for dynamic
optimization problems,” in Swarm Intelligence: Introduction and Ap-
plications, C. Blum and D. Merkle, Eds. Springer Lecture Notes in
Computer Science, 2008, pp. 193–217.

[42] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE transactions on evolutionary computation,
vol. 15, no. 1, pp. 4–31, 2010.

[43] C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter
tuning methods for metaheuristics,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 2, pp. 201–216, 2019.

[44] C. Martella, J. Li, C. Conrado, and A. Vermeeren, “On current crowd
management practices and the need for increased situation awareness,
prediction, and intervention,” Safety Science, vol. 91, pp. 381 – 393,
2017.

[45] F. Plastria, Covering Location Problems. Springer-Verlag New York,
2002, pp. 37–79.

