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Automated building classification framework 
using convolutional neural network
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Abstract:  Despite extensive study, performing Rapid visual screening is still 
a challenging task for many countries. The challenges include the lack of trained 
engineers, limited resources, and a large building inventory to detect. One of the 
most important aspect in rapid visual screening is to establish the building classi
fication based on the guidelines’ specific criteria. This study proposes a general 
framework based on Convolutional Neural Network to perform automated building 
classification for the rapid visual screening procedure. The method classifies build
ings based on the Federal Emergency Management Agency (FEMA)-154 guidelines 
and uses transfer learning techniques from a pre-trained network. The Indonesian 
building portfolio is used as a case study and a dataset of building images gener
ated through web-scraping on Google Search™ engines and Google StreetView™ 
website is used for the method validation. Results show that the proposed frame
work has promising potential to automate the building classification based on 
FEMA-154 guidelines.

Subjects: Automation; Human Computer Intelligence; Neural Networks; Computer Graphics 
& Visualization; Civil, Environmental and Geotechnical Engineering  
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1. Introduction
Up till date, earthquakes have remained one of the natural hazards that cause huge losses for 
many communities worldwide (Ritchie & Roser, 2014). Due to the uncertain characteristics of an 
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PUBLIC INTEREST STATEMENT 
Identifying vulnerable buildings against earth
quakes is very important to establishing a proper 
community’s earthquake disaster mitigation sys
tem. However, in many developing countries, 
building vulnerability assessment effort is still 
hindered by many aspects such as the limited 
trained inspectors and budget for assessment of 
the building inventory. This work highlights the 
application of Convolutional Neural Network 
(CNN) to automate building classification for rapid 
vulnerability assessment against earthquakes. 
The experiments show that a high-performing 
automated building classification process can be 
achieved, leading to reducing the dependency on 
human domain expertise in vulnerability assess
ment with improved efficiency and effectiveness. 
Finally, in the end, the paper can contribute to 
developing an earthquake-resilient community.
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earthquake, it is challenging to predict its magnitude, time of occurrence, and location, albeit 
countless efforts to study and understand its nature. It leads to another challenging task which is 
to determine and identify the vulnerable structure against this hazard.

In civil engineering, identifying vulnerable structures due to earthquake hazards is part of the 
seismic risk assessment field (Porter, 2003). There are two categories of assessment methods, i.e., 
rapid assessment and detailed assessment methods (Kalman Šipoš & Hadzima-Nyarko, 2017). 
While rapid assessment is more convenient and faster than detailed assessment, both procedures 
are complementary and depend on several factors, including inventory size, resource availability, 
and assessment purposes.

Calvi et al. divide the vulnerability assessment method into two categories, i.e., the empirical 
method and the analytical/mechanical method (Calvi et al., 2006). In both methods, the damage 
scale is determined based on a probabilistic approach. In this approach, the damage scale is 
expressed by the vulnerability indices and damage probability matrix (DPM). Some probabilistic 
approach-based frameworks use capacity-demand relation to evaluate the vulnerability level 
(D’Ayala & Speranza, 2003; Lizundia et al., 2014; ATC, 1985). Then, several works also proposed 
the use of a vulnerability index (Brando et al., 2021) and damage probability matrix (DPM; Basaglia 
et al., 2018; Vicente et al., 2011) to determine building vulnerability. The latest development also 
proposed a hybrid method that combines both vulnerability index and DPM to derive the vulner
ability of the large urban area (Alberto Basaglia et al., 2018).

The simple application of rapid assessment allows for the development of rapid visual assessment 
using a classification system developed by the aforementioned technique (Ajay Kumar, Rajaram, 
Mishra, Pradeep Kumar & Karnath, 2017; Achs & Adam, 2012; Albayrak et al., 2015; Karbassi & Nollet, 
2007; Ningthoujam & Nanda, 2018; Sucuoglu & Yazgan, 2003). Due to the variety of seismic character
istics, building inventory and materials properties, the parameters for rapid seismic vulnerability assess
ment may be different for each rapid screening method. Rapid visual screening procedures can benefit 
from well-recorded building inventory, spatial data and earthquake hazard history. The work by Basaglia 
et al. shows that automated procedures to process this data can make the vulnerability assessment of 
large urban areas becoming more efficient and effective (Basaglia et al., 2018). However, this record 
system may not always be available in every country. Hence, many countries prefer to adopt the well- 
established RVS system for their standard. Among the well-established rapid assessment guidelines, 
the FEMA-154 RVS procedure is the most widely adopted in developing countries (Alam et al., 2012). It 
uses a probabilistic approach to assess building vulnerability and identify the structural integrity based 
on visual inspection of the building from a sidewalk survey. The FEMA-154 introduce a scoring system to 
measure the level of structure vulnerability. These scoring systems evaluate several building attributes, 
such as building classes, building irregularities, soil condition, pounding effect, etc, and the information 
of these building attributes are summarized in the data collection form. The main task of the field survey 
is to identify and quantify those attributes in the assessed building. The expert will compile the gathered 
information and evaluate the building score by the following equation: 

SL1 ¼ SB þ∑
i

Si; i ¼ 1;2;3 . . . . . . . . . :n (1) 

where SB is the basic score that considering the building typology and n is a number of building 
attributes. Based on this building score, the expert then proposes a recommendation for further 
action to keep the building still adhere to the acceptable vulnerability level.

The FEMA-154 technique heavily relies on a qualified screener to understand the building 
information and calculate the building score. The screener will identify building qualities, depend
ing on the survey form during the field survey. The screener gets this information through visual 
recognition from the sidewalk to make a quick visual assessment. It is critical to precisely 
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determine the building classification during the field survey to calculate the structure’s vulner
ability using the FEMA-154 technique. Currently, the trained/expert screener is in charge of this 
task. Due to the limited number of experienced screeners doing RVS, the reliance on a trained 
screener can be a bottleneck for vulnerability assessment work. Automating the RVS procedure 
using Artificial Intelligence (AI) maybe be a solution to this challenge.

AI has progressed from theoretical knowledge to well-implemented technology in the last 
decade, affecting many facets of human civilization. It alters how humans interact with machines 
and how machines improve their ability to tackle social problems. The incredible advancement of 
hardware technology also enables AI to be used for increasingly advanced and difficult activities 
that were previously impossible to complete without the assistance of humans. The AI has 
resulted in a major change away from a traditional technique that heavily relies on human 
intervention and toward an automated system controlled by the machine. Machine Learning 
(ML) and Deep Learning (DL) are some of the more comprehensive branches of AI (Salehi & 
Burgueño, 2018). The goal of all branches is to provide the machine with the ability to solve 
complicated issues (e.g., clustering, classification, recognition, and planning).

ML is a trending topic in AI that focuses on enabling the computer to learn through experience 
automatically (Jordan & Mitchell, 2015). ML has emerged as a powerful method to train a machine to 
perform computer vision, speech recognition, natural language processing, expert system, control, 
and many more (Fadlullah et al., 2017; Grigorescu et al., 2020; Otter et al., 2020). Conventional 
machine learning techniques have a drawback on the dependency in domain expertise to extract the 
important component from a raw dataset and use it to identify the input. A new class of machine 
learning technique called deep learning was introduced to reduce the domain knowledge depen
dency (Lecun et al., 2015). Deep learning is multiple computational layers that try to learn the raw 
data automatically by recognising the representation of raw data from a basic interpretation into 
a deeper and abstract representation. This approach is different from the traditional machine learn
ing technique which more focus on improving the learning process based on input data that has 
already been processed through feature and data engineering based on human expertise. Meanwhile, 
instead of relying on domain expertise interpretation, DL recognizes the pattern, exposes the repre
sentation and find a significant feature in the raw data. Hence, the more accessible dataset nowa
days, makes the deep learning technique becoming more popular and robust since that huge dataset 
can be used to properly train deep learning architecture and make DL model more accurate.

The robust development of the DL technique enables a machine to substitute humans on various 
tasks that previously required human intervention. However, there is still strong scepticism in 
implementing the DL method to replace humans on RVS procedure since it heavily relies on 
human perception to determine information from the inspected building. Hence, the questions 
arise regarding DL’s application in RVS procedure, i.e., 1) In what aspect DL techniques can reduce 
the dependency on human screener in RVS? and 2) What is the main issue that can hinder its 
implementation in automating the RVS process?

Previous research has attempted to implement DL to optimize spatial vulnerability analysis by 
automating building detection and spatial clustering based on satellite imagery (d’Oleire-Oltmanns 
et al., 2011; Geib et al., 2019; Kang et al., 2018; Miura & Midorikawa, 2003; Pushparaj et al., 2017). 
These previous works focused on detecting building in broader areas and predicting building 
typology based on building’s plain view obtained from satellite imaging. However, using satellite 
imagery data for predicting building type can reduce the DL ability to extract features important 
for more detailed and specific building classes. Pamuncak et al. (2019) use DL to predict load rating 
based on the bridge image. This work shows that DL can extract bridge’ load rating information 
from an image as long as DL has been trained with suitable data. The work to use building façade 
images to identify the building was proposed by Taoufiq et al (Taoufiq et al., 2020). However, this 
work only focus on classifying the land-use depending on building occupancy criteria. Furthermore, 
DL framework was also developed to detect the façade of the building (G. G. Zhang et al., 2022). In 
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more detailed inspection, several works tried to investigate the DL application to identify the crack 
or defect in the structure based on image input (Dung & Anh, 2019; Long et al., 2021; Perez & Tah, 
2021). The latest work on determining building soft-storey using images was proposed Yu et al. 
(2020). In this work, the building soft-storey based on FEMA-154 definition was determined by 
using DL method. Wang et al. (2021) proposed the method to discern the unreinforced masonry
(URM) structure based on image input from Google StreetView™. The conclusion from these works 

Figure 1. The proposed frame
work for automated building 
classification by using.
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emphasises the robust performance of DL in object detection and classification for structural 
assessment. However, exploiting DL ability to reduce the human intervention in rapid visual 
screening is still challenging.

This paper proposes a framework for automated building classification based on FEMA-154 
guidelines using the CNN technique. Instead of satellite imagery, which is lack in the information 
of building detail, structural type and material visualization, this research uses a dataset generated 
through web-scraping of building images on the internet, which nowadays are easy to get due to 
the widespread use of smartphones.

This study is synthesized into the following sections: Section 2 explains the methodology of the 
proposed framework. Section 3 presents the implementation of the proposed framework with 
specific building classification in Indonesia. Section 4 discusses the result of implementing the 
proposed method. Finally, the conclusion of this research and suggestion for future work are 
represented in section 5

2. Materials and methods
This research automates the building classification task in the FEMA-154 Rapid Visual Screening 
(RVS) process. Hence, to achieve that goal, the framework, as depicted in Figure 1, is proposed.

Convolutional Neural Network

It consists of four main steps: 1) Data collection of building images from the internet using 
Google Search™ and Google StreetView™, 2) Generating dataset by grouping and labeling of the 

Table 1. List of FEMA building classification
Building Type Description
W1 Lightwood frame single—or multiple-family dwellings 

of one or more stories in height

W1A Lightwood frame multi-unit, multi-story residential 
buildings with plan areas on each floor of greater than 
3,000 square feet

W2 Wood frame commercial and industrial buildings with 
a floor area larger 
than 5,000 square feet

S1 Steel moment-resisting frame (VH)

S2 Braced steel frame

S3 Light metal building

S4 Steel frames with cast-in-place concrete shear walls

S5 Steel frames with unreinforced masonry infill walls

C1 Concrete moment-resisting frames

C2 Concrete shear wall buildings

C3 Concrete frames with unreinforced masonry infill 
walls

PC1 Tilt-up buildings (VH)

PC2 Precast concrete frame buildings

RM1 Reinforced masonry buildings with flexible 
diaphragms

RM2 Reinforced masonry buildings with rigid diaphragms

URM Unreinforced masonry buildings

MH Manufactured housing
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images based on FEMA-154 building typology, 3) Training and validation of the built network based 
on transfer learning technique from VGG16 model, and 4) Testing the prediction performance of 
the network on building image in the testing dataset. There are 17 building classifications intro
duced in FEMA-154 representing building material and structural systems as described in Table 1.

Determining the building classification based on FEMA building typology is one of the main 
challenges in the sideways survey. However, this attribute is crucial to determine the basic score in 
the screening process since FEMA building classification represents building material and structural 
system. FEMA-154 provides a guideline to identify the most suitable building topology based on 
the visual impression from the sidewalk by judgment based on building architecture, age and 
shape.

The most significant benefit of using Convolutional Neural Network (CNN) to handle the problem 
is that it can extract features from raw data without requiring human intervention. Transfer 
learning is the idea of using a pre-trained model’s previous knowledge to tackle a new task. 
Because the pre-trained model has acquired most of the knowledge, this notion is practical for 
saving resources and avoiding complexity in model training.

Figure 2. Number of images 
obtained for each building type 
by using a web-scraping 
technique.

Figure 3. The general architec
ture of CNN.
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3. Case study of building classification in Indonesia
Indonesia can be benefitted from an abundant resource of structure raw materials. However, due to 
the lack of industrialization and manufacturing, that resource cannot be fully exploited to develop 
Indonesia’s construction industry. Indeed, the construction know-how from the colonial era is still 
preserved and applied in many places in Indonesia. The effort from the Indonesian government to 
standardise the construction work by introducing Indonesia National Standard (SNI) cannot be under
estimated. This standard is mainly adopting the US construction standard, i.e., FEMA, ACI, AISC, etc, as 
a reference. Indonesian construction practitioners also take a lesson to learn from various earthquake 
disaster that hit the country. They learn reinforced building is more suitable for the seismic condition in 
Indonesia and no longer use URM building. However, the shortage of trained and certified construction 
workers still constrain the development of construction technology in Indonesia. This situation makes 
Indonesia’s building inventory is still limited to conventional building types with un-standardised 
structure design. Timber and concrete with simple one or two storeys structures are still the most 
preferable structure since it is cheap, less complicated to build and require low maintenance. The 
situation is improving in big cities which have better access to skilled workers and higher quality of 
construction material with cheaper prices compare to most of the areas in Indonesia. In this urban 
area, the building inventory is more varied in terms of the structural system and materials.

The author employs the proposed framework to conduct building classification based on FEMA- 
154 in Indonesia. The following sub-chapters describe the workflow for implementing the frame
work for Indonesia,

3.1. Data collection, pre-processing
The dataset was collected from various resources using a web-scraping technique on Google 
Search™ and Google StreetView™. As illustrated in Figure 2, the web-scraping technique success
fully gathers 11,029 images comprising 9,358 images for training, 631 images for validation, and 
1040 images for testing. The image for training and validation process is obtained from web- 
scrapping using Google Search™ and Google StreetView™ website, whilst the testing process 
only uses the image from Google StreetView™ in a specific area that was not explored for obtaining 
the training and validation dataset. This process is selected since the trained model must be 
evaluated against the testing dataset that has not been used for the training and validation process.

The images collected from the internet were searched with the keyword from FEMA-154 building 
classes description as shown in Table 1. Furthermore, the searching process also used the 
Indonesian translation of FEMA building classes description to increase the chance of suitable 
building types to be captured in the web-scrapping of website in the Indonesian language. 
However, irrelevant images may appear in the searching process. Hence further screening process 

Figure 4. General map of neural 
network for classification.
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is required to make the dataset can accurately describing each building classification. The photos 
from each keyword were collected and manually identified with relevant building classes as per 
the guidelines mentioned in appendix E and D of FEMA-154. Furthermore, the image labelling 
process follows several assumptions as suggested by FEMA-154 for simplification.

3.2. Labelling
The main objective of this phase is to build the dataset of building in Indonesia based on FEMA-154 by 
considering local building characteristics and materials. There are several challenges to generating 
this dataset. One of the challenges in this research is that several FEMA building classes are rare or 
not in Indonesia. Hence, it is not easy to obtain an image of particular classes for the dataset.

Among FEMA building typologies, the application of timber structure in Indonesia is mainly for 
a one or two-story building of a single home or residential occupancy. Most of the traditional and 
old houses in Indonesia use timber as their material. In traditional Indonesian architecture, the 
timber structure is painted with resin coating or left exposed. This type of house lies under W1 and 
W1A building classes. However, differentiating the W1 and W1A building classes is requires more 
information on the plan area’s size. Hence, for simplification in this research, timber frame 
structures are associated only with the W1 class while W1A class is not considered.

A further challenge in generating datasets is those specific building criteria are not easily recog
nized from the façade view such as in S4 and C2 building types. Identifying both building types is 
challenging since the shear wall structure may not be observed from the front of the building because 
a façade often covers it. In Indonesia, these classes usually appear in a multi-storey buildings for an 
apartment, offices or commercial buildings that are mainly built in the big city. The S4 and C2 classes 
are not the main classes in the building inventory and are new building that implements Indonesian 
National Standard (SNI) code for building material and construction design. Shear walls and core 
walls are usually installed in the center of the building, mostly concealed as the elevator shaft. FEMA- 
154 mentions that unless the structure has an exposed shear wall, the prediction on this building type 
will not be accurate. Therefore, these building classes are excluded from this study.

Identifying URM building types in Indonesia is also challenging as this structure can be mis
interpreted as RM building class. Most masonry building in Indonesia is covered with cement 
plaster which will make identification of the structural system becoming more challenging. 
However, the most common feature of URM is that it was previously used during the Dutch colonial 
era or pre-SNI standard era. Meanwhile, the Indonesian authority no longer considered URM in the 
building standard as it is not suitable for active seismic regions such as Indonesia. While most 
buildings constructed in the colonial era have been demolished or damaged due to independence 
war or natural disasters, the web-scraping technique still obtained several images of URM building, 
but with less variation compared to the other building class.

In the end, there were only 13 classes of building dataset that can be collected by a web- 
scrapping technique which was suitable for the re-training process.

Figure 5. Modified VGG16 net
work for building classification.
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3.3. Training and evaluation of convolutional neural network
In general CNN architecture consists of two phases, i.e., feature extraction and classification, which 
can be depicted in Figure 3 as follow:

In the feature extraction process, the convolution layer will examine the input and create 
a feature map by applying a filter or kernel. The pooling layer scales down the amount of data 
from the previous step and maintains only the most important data. By arranging convolution and 
pooling layers, the input image is passed through a series of convolution and pooling layers in the 
CNN model and generate a feature mapping.

The output from the feature extraction phase is then passed to the classification phases. The 
classification process is consist of a series of neuron nodes that connect each other by synapses 
and arrange a multi-layer neural network as depicted in Figure 4 . The primary process in the node 
comprises of accepting the input, processing it by activation function and sending the output to 

Figure 7. Dataset proportion for 
investigation of image aug
mentation effect on model 
prediction accuracy.

Prediction label
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Figure 6. Classifier for predic
tion outcome
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other nodes. Each node contains a weight value that will transform the node’s output into the 
input for the next neuron layer.

The process is mathematically written by the following equation: 

xi ¼ f ∑
j

xi� 1 �wij þ bi

 !

(2) 

This process continues forward until the value obtained at the output layer of the network. The 
value retrieved from the output layer is then compared with the expected result and back- 
propagated into the network for weight adjustment until the lowest error is obtained.

This study employs the transfer learning technique using a modified VGG16 network, which has 
excellent potential for classification tasks (Zhang et al., 2016). VGG16 use CNN architecture to 
achieve high performance in image classification. It was previously used in ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) in 2014 and outperformed other computer vision techniques 
in that challenge. In that challenge, the VGG16 model was evaluated based on its performance to 
identify 1000 classes of object in the ImageNet dataset. In VGG16 architecture, 13 convolutional 
layers and 5 layers of Pooling layers is used for the feature extraction phase. VGG16ʹs classifier 
process consists of two fully connected layers and a softmax layer. The fully connected layers will 
process the output from the convolutional phase into a single vector that can be used to activate 
the softmax layer to determine the probability of the image in each classes.

Since it had been trained with 1000 classes of ImageNet dataset, the VGG16 pre-trained network 
has already incorporated the adjusted weight based on the training with ImageNet dataset. 
Additional modifications on the VGG16 network should be performed to enable it to work on 

Figure 8. Re-training and vali
dation of VGG16 network with 
obtained FEMA 156 building 
classification dataset.
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a new object class. In this research, the softmax output layer in the pre-trained VGG16 network is 
modified so that the modified VGG16 network can return 13 outputs of FEMA building classes, as 
depicted in Figure 5 .

Figure 9. (a) Confusion matrix 
(b) precision, recall, and f1 
score of the model trained with 
9,358 RGB images dataset.
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The images are pre-processed to transform all datasets into appropriate input for the VGG16 
pre-trained network. The input for the modified network follows the default input of the VGG16 
pre-trained network, which is 224 × 224 × 3. For a single epoch or iteration, the training dataset is 

Figure 10. (a) Confusion matrix 
(b) precision, recall, and f1 
score of the model trained with 
grayscale images dataset
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fed into the neural network in batches. Each training batch contains 32 images. The stochastic 
gradient descent algorithm with a learning rate of 0.0001 and a momentum value of 0.9 is 
employed in the training process. The early stopping technique is employed to avoid overfitting 
by monitoring the validation accuracy value.

Figure 11. (a) Confusion matrix 
(b) precision, recall, and f1 
score of the model trained with 
augmented images dataset
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3.4. Testing and validation
One thousand forty testing images are captured from Google StreetView™. The selection of building 
images from Google StreetView™ is randomly selected within the Indonesian region. These images are 
then manually labelled based on the visual perception and interpretation from the human screener 
perspective. The algorithm processes validation and testing dataset through the network to validate and 
test the trained model. This work uses the confusion matrix, accuracy, precision, recall, and F1 score to 
measure trained network performance (Goutte & Gaussier, 2005). If the classification for each class is 
described as a binary classifier, then the possible outcome of the classifier will be:Figure 6

Then, the performance parameter of accuracy, precision, recall, and F1 score can be mathema
tically written as follows: 

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
(3)  

precision ¼
TP

TPþ FP
(4)  

recall ¼
TP

TPþ FN
(5) 

and 

F1score ¼ 2 � precision� recallprecisionþ recall (6) 

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.

3.5. Effect of color
The convolutional neural network extracts the feature by recognising the pattern in the dataset. In 
terms of image dataset, the color pattern can be a feature that can differentiate classes of the 
dataset. The sensitivity to the color pattern may be varied for each object class. Hence, the 
implementation of color variation to the CNN training process can also influence the prediction 
performance of trained model in a specific class.

In this work, the image color’s effect on the prediction performance is also investigated by 
examining the RGB and grayscale image dataset. VGG16 pre-trained model accepts a three- 
channel image, while the grayscale image has only one channel. Accordingly, the proposed 
method employs image pre-processing to transform the RGB image into a grayscale image that 
still have three channel instead of one channel. Since the weight in the pre-trained VGG16 model is 
adjusted based on the RGB image with three channels, it is interesting to see the viability of the 
modified network to predict the grayscale image.

3.6. Effect of image augmentation
Ideally, the training process will produce well-adjusted weights if there is an adequate image. 
Meanwhile, certain building classes have few samples in this research since those building classes 
are rare in Indonesia. Accordingly, image augmentation is used to generate a new image by 
modifying the available image. The primary purpose is to create a new image that is slightly 
different from the source image to allow the model to extract the image’s main feature without 
overfitting the train image. This research uses rotation, noising, and mirroring to generate new 
augmented images. The image augmentation technique produced 29,635 images, with the pro
portion as depicted in Figure 7.
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4. Results and discussion
The proposed framework establishes a trained neural network based on a modified VGG16 net
work. This network is then tested to predict the building class by using building images from the 
internet. The performance of training, validation, and testing of the re-trained network is described 
in the following sub-chapter.

4.1. Training and performance of model prediction
Figure 8 describes the re-training process of the VGG16 model by using the RGB dataset. It shows 
that the training and validation accuracy has reached approximately 99% only in five epochs. After 
five epochs, the training and validation accuracy is not significantly improved, and the training 
process only needs 33 epochs to converge due to the early stopping parameter to avoid overfitting. 
Furthermore, there has been no significant discrepancy between training and validation accuracy 
at the beginning of the process. It indicates that the VGG16 pre-trained network was already well 
adjusted to classify the building. The re-training process improved the pre-trained model to better 
understand each building type based on FEMA-154 building classification.

The testing process on the RGB model shows 71.9% of prediction accuracy. By investigating the 
result of RGB model’s prediction as depicted in Figure 9(a), it appears that the model has lower 
performance on predicting PC1, PC2, S1, and S5 classes as the TP prediction in those classes are 
significantly lower than other classes. In this work, further evaluation by precision, recall, and F1 
scores matrix is carried out.

Figure 9(b) shows that the RGB model has varied precision and recall values from each building 
class. However, having examined the precision and recall ratio of PC1, PC2, S1, and S5 classes, 
there is significantly higher precision than recall value in these classes, making the model tend to 
consider the input image is more relevant to these classes. Hence, this condition leads to a high 
false-positive prediction when many non-relevant images are predicted as correlated images. This 
condition causes lower accuracy on PC1, PC2, S1, and S5 classes.

However, instead of reducing the accuracy, considerably higher recall values in MH, RM2, and S3 
classes make these classes’ accuracy among the best in all classes. This higher recall value means 
that the model not only identifies the most relevant images but is also less likely to exclude the 
correlated image. Hence, this high recall performance makes the accuracy still high even though 
the precision is low.

Considering precision or recall only is not proper to evaluate model performance, since both 
values only consider a single type of false prediction on each parameter, i.e., False-positive and 
False-Negative prediction, respectively. Hence, an f1 score is needed to determine the harmonic 
mean between precision and recall value when evaluating model performance. By evaluating the 
f1 score, significant precision and recall discrepancy cause a lower f1 score in several classes. The 
lower f1 score is also impacting a lower model performance to predict those classes. In this RGB 
model, the f1 score is significantly low for the S5 class, with the lowest accuracy.

Furthermore, having examined the confusion matrix in Figure 9(a), the false predictions on both 
S1 and S5-building classes are not clustered on specific classes. This behavior may occur due to 
unbalance dataset in which the size of the S1 and S5 dataset is among the lowest. Meanwhile, 
false exchange predictions between PC1 and PC2 occur in both classes. This behavior is under
standable since the appearance of PC1 and PC2 building classes are similar and differs only on the 
construction methodology, which is challenging to be identified only from external shape.

Two parameters are investigated to determine the possible solution to increase the model’s 
performance, i.e., the variance in color and size of the dataset.
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4.2. The impact of image color on prediction performance
The previous RGB dataset is modified to get the grayscale dataset. One thousand forty grayscale images 
are fed into the trained network. The confusion matrices, as depicted in Figure 10(a), are obtained.

The network accuracy is increased 7% higher than the previous model. The confusion matrix in 
Figure 10(a) shows that most class has increased accuracy rate, with PC1 and S5 classes showing 
the most significant rise. Hence, compared to the previous model, implementing the grayscale 
dataset does not significantly affect the accuracy of prediction for PC2, S1, and S5, which is still the 
lowest performance among other classes.

Further check on the precision, recall, and F1 score of the model as depicted in Figure 10(b) shows the 
positive effect of the grayscale dataset on overall performance. Overall precision, recall, and f1 scores 
increased by 4.2%, 7%, and 7.8%, respectively. Interestingly, this model improves PC1 recall performance 
while PC2, S1, and S5 recall values are still the lowest compared to the RGB model. A significant 
discrepancy between precision and recall value in the previous RGB model is mainly reduced except in 
PC2 and S5 classes. Like the RGB model, PC2 and S5 classes in the grayscale model also have a high 
precision value with low recall performance, making the model prediction for both classes inaccurate 
compared to other classes. Hence, employing the grayscale dataset still cannot improve the model to 
identify both classes. The most probable cause of the different effects of the grayscale dataset in each 
building type’s prediction performance may be due to a different level of variation in the dataset. Dataset 
of building types with a wider variety will be less prone to overfitting behaviour than the less varied 
dataset.

4.3. Impact of dataset size for prediction performance
The available data from web-scraping were used to generate a new image by using image augmen
tation technique. The primary purpose of image augmentation is to create a new image that is 
slightly different from the source image to allow the model to extract the image’s main feature 
without overfitting the train image. This research use rotation, noising and mirroring of the source 
image to generate new images. Thirty-nine thousand images, including the original and augmented 
images, were used in training. This technique outperforms the accuracy of the previous method with 
a further 13.8% increase as the most significant rise. Furthermore, using augmented images for 
training improves overall precision, recall, and F1 scores by 5.9%, 9.9%, and 11.2%, respectively.

The network with RGB dataset displays poor precision performance for predicting RM2 and S3. In 
contrast, as shown in Figure 11), the network with an augmented dataset shows significant 
improvement in which none of the prediction precision is lower than 60%. The recall score of the 
S5 building class is still the lowest score among other classes, and the model prediction is mixed 
up between S5 with S1 building classes. However, it is noticeable that the S1 recall performance 
significantly increases by using an augmented database, contributing to a higher f1 score of the S1 
building type. Overall, increasing the size of the dataset will significantly improve the accuracy, 
precision, and the balance of network prediction.

5. Conclusion and future work
This research proposes a framework for automatic building classification based on FEMA-154 RVS 
procedure using CNN. In this approach, the RVS method takes advantage of the building images available 
on the internet via web-scraping as well as images provided by Google StreetView™. This work develops 
a building dataset that comprises 13 classes. The transfer learning method is used to train the model by 
implementing a pre-train VGG16 network. The trained model is then tested to predict the class of random 
buildings in Indonesia. The investigation shows that CNN can produce a good prediction for classifying 
buildings based on FEMA-154 building typology. The result shows that the transfer learning technique 
can be useful to reduce the effort for training neural network models on building classification since the 
training process can get higher accuracy at lower epochs. The investigation on the effects of image 
properties of the dataset shows that the classifier is not significantly susceptible to the color or image but 
more sensitive to the size of the dataset.
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For building classification, the proposed method promises high accuracy and precision. However, it still 
shows a limitation in predicting buildings with concealed structural components. Although several 
classes incorporate images of structural members to train the network, it is not effective in improving 
prediction performance. Hence, this circumstance introduces uncertainty to the analysis, and further 
analysis should be conducted. Another disadvantage of the proposed method is that it is limited to 
Indonesian building characteristics. Creating a multilayer CNN that classifies the structure’s façade, 
interior, and structural features is one possible solution to these problems. Then, for post-processing, 
use a fuzzy logic method to reliably forecast building categorization. Furthermore, because each coun
try’s construction and building design differ, more training datasets from other parts of the world must be 
included.
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