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Abstract

The advance of Machine Learning (ML) techniques has become the driving force

in the development of Artificial Intelligence (AI) applications. However, it also brings

about new problems as ML models and algorithms are more data-hungry than ever.

First, the sources of data are often geographically distributed and thus gathering all the

data for centralised training incurs heavy traffic and prohibitive communication costs.

Second and more importantly, moving data out of local devices are now prohibited

in many situations due to privacy concerns. As a promising solution, Federated

Learning (FL) is a framework proposed by Google for learning from decentralised data

without data sharing. Nonetheless, many challenges remain especially regarding how

to facilitate efficient FL in different circumstances. The work presented in this thesis is

mainly focused on optimising the efficiency of Horizontal Federated Learning, the most

commonly used paradigm of FL, from three perspectives: i) redesigning the device–

server synchronisation mechanism of FL for failure-tolerant collaborative training over

unreliable, heterogeneous end devices (clients), ii) integrating FL with the Mobile

Edge Computing (MEC) architecture to utilise the edge layer for robustness, resource

efficiency and fast convergence, and iii) optimising the client selection policy in FL

through the evaluation of clients’ training value based on the learnt representations of

their associated data. Results of extensive experiments are presented to demonstrate

the effectiveness of the proposed approaches. In addition to algorithm design and

experimental observations, this thesis also discusses the research spectrum of FL and

overviews its development in the industry including popular platforms, systems and

emerging applications. Based on the work presented, key conclusions and insights are

provided with a research outlook for the future study of FL.
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Chapter 1

Introduction

The exploration by computer scientists in the area of Artificial Intelligence (AI) has

never stopped ever since the last century. Even though there is still a lot of ground to

cover before human-level AI can be truly realised [22], researchers have made and are

still making rapid advances in the development of Machine Learning (ML) techniques

that empower a variety of AI applications that we are using today. A prominent trend

for the evolution of AI-driven technologies is the constant increase of complexity in

terms of the models we built to excel in specific ML tasks. This is, in a large part,

a result of the paradigm shift from the rule-based reasoning systems (e.g., expert

systems [23]) to the soft computing-based, connectionist models like Deep Neural

Networks (DNNs) [24] whilst the paradigm shift, to a great extent, stems from the

increasing availability of data. From the Convolutional Neural Networks (CNNs) [25]

for Computer Vision (CV) tasks and the Recurrent Neural Networks (RNNs) [26] for

Natural Language Processing (NLP) tasks to the emerging cross-domain models like

Transformers [27], deep models coupled with large/huge datasets (e.g., ImageNet [28]

and C4Corpus [29]) have made the rule of thumb for the recent success in a wide range

of applications such as object detection [30–32], image generation [33–35] and neural

machine translation [36–38].

Machine learning is always data-driven. The more powerful the AI applications

we desire, the more complex the models need to be. Consequently, more data are

required to feed the models during training. This was not a problem when we built

our AI applications and trained the underlying models using centralised computing

resources (e.g., servers in a data center), in which case we first collected a sufficient

amount of data, stored the data in a central storage and trained our model(s) on
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this complete set of data. To better utilise hardware capacity, distributed model

training methods (e.g., [39–43]) have also been proposed to facilitate parallel training.

However, both centralised training and traditional distributed training methods are

mainly designed for performance-oriented scenarios where the training is performed on

high-spec facilities (typically servers and GPU/TPU clusters) with high-speed network

connections between data holders and the parameter server. The training data are

often directly or indirectly accessible to all the workers (i.e., machines that run the

training logic) for the purpose of faster model convergence.

With sources of data moving towards the network edge and the rising concerns

of data privacy, learning from decentralised data over general-purpose devices (e.g.,

mobile phones, smart sensors and wearable devices) has been a topic of interest

and shown great practical value. For example, building an accurate keyboard input

prediction model needs to make use of many users’ typing data which should be

kept private on their personal mobile phones [12, 15]. Apart from privacy protection,

communication efficiency is also an important factor in practical application scenarios

including industrial control, autonomous vehicles and the Internet of Things (IoT). It

is predicted that the data generated by IoT devices will account for 75% of the total

volume in 2025 [44]. End devices, such as sensors and mobile phones, have limited

performance and bandwidth and are typically networked through noisy channels.

Under these circumstances, centralised and traditional distributed training methods

may no longer be feasible due to the following outstanding issues:

1. Prohibitive communication cost: the transmission of data (for centralised

training) or frequent exchange of gradients1 and models (for distributed training)

incurs heavy traffic over the network connections, resulting in high communication

latency and expenses (end devices may use charged networks);

2. Non-IID and imbalanced data: the data are not evenly spread and identically

distributed across end devices, where local datasets may differ a lot from each

other in data distribution, resulting in potentially biased updates with traditional

distributed training methods;

3. Data privacy concerns: moving user data out of their local devices has been

restricted by law in many countries (e.g., the GDPR2 enforced in EU) whilst

1In the domain of machine learning, the term gradient refers to the partial derivative of the
objective function (which we aim to optimise) with regard to the model’s parameters (e.g., neural
networks’ weight vectors) over one or a set of data samples.

2General Data Protection Regulation. https://gdpr-info.eu/
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frequent upload of gradients also risks exposing the raw training data [45, 46].

Federated Learning (FL) [47], originally proposed by Google, has emerged as

a promising framework for learning from decentralised data in a privacy-preserving

manner. The standard implement of FL [12] adopts the conventional parameter server

(PS) architecture where end devices (clients) are connected to the central coordinator

in a star topology. The coordinator can be a central server or a base station at the

network edge. Without creating ambiguity, the central coordinator is also referred

to as the server in the remainder of this thesis. Compared to traditional distributed

learning methods, the key features of FL are i) no data sharing and the server stays

agnostic of any training data, ii) exchange of encrypted models instead of exposing

gradients, and iii) sparing device–server communications instead of batch-wise

gradient uploads. Fig. 1.1 gives a schematic overview of the standard FL framework,

which is also termed Horizontal Federated Learning since different paradigms have

been developed under similar frameworks [48]. The figure shows a typical cross-device

FL scenario [49] where a multitude of user devices (e.g., mobile phones and smart

sensors) are coordinated by a central server (at the edge or on the cloud). The devices

contribute by performing local training on their own data without sharing the data

itself. The work presented in this thesis is focused on Horizontal FL because it well

aligns with the aim of this research — learning from decentralised data at scale.

Coordina�ng

server/base sta�on

end

devices

connec�on
(typically wireless)

model

+ + + ... =

local

data
privacy

regula�ons

central

coordinator

Figure 1.1: An overview of the (Horizontal) Federated Learning framework.

Horizontal federated learning was designed for training on distributed data sets

that typically share the same feature space whilst having little or no overlap
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in terms of their data instances. The term horizontal describes these properties

from the perspective of tabular data — one sample per row and the columns stand

for their features/attributes (Fig. 1.2). In September 2020, the Standard 3652.1-2020

for Federated Machine Learning (which is a synonym for federated learning) was

approved by the C/AISC (Artificial Intelligence Standards Committee) of IEEE and

published as an official IEEE Guide for Architectural Framework and Application

of Federated Machine Learning in early 2021. According to the definition in the

standard3, ‘Horizontal FML refers to building a model in the scenario where data sets

have significant overlaps on the feature spaces (X1, X2, . . .) but not on the ID spaces.

In this case, an FML model can be built as if the data is split and join horizontally.’

An illustration (Fig. 1.2) is provided in the guidebook.

Figure 1.2: Horizontal federated learning from the perspective of data. (Source: IEEE
Standard 3652.1-2020)

Despite the rigorous definition given by the IEEE standard, most of the recent

studies (including the research by the author) on horizontal FL assume an identical

feature space for all the local data partitions so that all the participants in the

system are working on models of the same shape. Something that is not revealed

in the data view (Fig. 1.2) is the specific distribution of data, which separates the

settings of horizontal FL and conventional distributed learning. The distinction can be

explained using the notion of domains. Let D denote the full set of data which actually

corresponds to a domain that can be defined as a two-element tuple (χ, P (X)) where

X = {x1, x2, . . .} is any random sample from D, χ is the feature space and P (X) is the

marginal distribution of samples. Similarly, the local data Dk can be represented as a

local domain (χk, Pk(X)). With these notations, traditional distributed algorithms

3IEEE Standard 3652.1-2020. https://standards.ieee.org/standard/3652_1-2020.html
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typically work on top of the following assumption for all the clients:

χk = χ, Pk(X) = P (X),

which means identical feature space and identical distribution of data.

By contrast, research on horizontal FL is usually developed on the following setting:

χk = χ, Pk(X) ̸= P (X),

which means identical feature space but non-IID data in different local datasets.

The most representative use case for horizontal FL is GBoard, the Google keyboard,

which is claimed to have been optimised over a global scale of user population (1.5

million clients in North America) through thousands of training rounds [15]. As shown

in Fig. 1.3, users of the virtual keyboard do not share their text typed in but allow the

programme to train the underlying model on their data. Some global configuration

(e.g., dictionary size and embedding dimensions) will apply to ensure an identical

feature space for all the local models so that the cloud can aggregate them using

weighted average.

It will be a meeting 

for the IT team...

xxx ...

yyy ...

Cloud

+ + + ... 

zzz ...

Typing data

local

training

upload

modelThe built-in model

(e.g., for next-word prediction)

Figure 1.3: Collaborative model training for virtual keyboards using horizontal FL.

In the following sections, the problem of ‘Data Islands’ in distributed machine

learning will be discussed first, followed by a review of the emergence and evolution

of the federated learning framework and its typical workflow. Then the motivation

behind the research presented in this thesis is elaborated, followed by the definition
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of efficiency in the context of FL. A preview of contributions is given next about the

research to be presented in this thesis including i) a failure-tolerant FL algorithm over

heterogeneous devices, ii) a hierarchical FL algorithm for MEC systems, and iii) an

optimised FL algorithm for data of varied quality. An outline of this thesis is provided

in Section 1.7 to conclude this chapter.

1.1 Data Islands

There are two main factors that propel the rapid advances of AI technology: computing

power and data. As pointed out in a recent study by the Brain team of Google research,

‘the availability of larger datasets coupled with increased computational capacity often

leads to a paradigm shift’ (Tolstikhin et al. [50]), where the ‘paradigm shift’ refers

to the development of large and complex machine learning models. In the meantime,

networks have been prominently used to connect the computer resources and by scaling

out with proper networking and parallelising techniques we can always obtain an

equivalent computational capacity and the right results as a single supercomputer can

provide. However, this is not the case for data in the context of machine learning. By

connecting the sources of data we cannot expect to have an equivalent of the locally-

stored complete set of data, which consequently leads to ‘data islands’ (Fig. 1.4). The

reasons are two-fold. On the one hand, we have seen more and more restrictions on the

storage and management of data as user privacy issues are drawing increasing attention.

This makes gathering data for centralised training infeasible when transferring data

out of user devices is prohibited or not authorised. For example, the General Data

Protection Regulation (GDPR) enforces many restrictions on data transfer.

Any transfer of personal data which are undergoing processing or are inten-

ded for processing after transfer to a third country or to an international

organisation shall take place only if, subject to the other provisions of this

Regulation, the conditions laid down in this Chapter are complied with by

the controller and processor, including for onward transfers of personal data

from the third country or an international organisation to another third

country or to another international organisation. All provisions in this

Chapter shall be applied in order to ensure that the level of protection of

natural persons guaranteed by this Regulation is not undermined. (General
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Principle for Transfers, Article 44, Chapter 5, GDPR4)

≈ ≠

networked computa"on islands of data

x
x

x
x

x

(no transfer)

SUPER

Figure 1.4: Data islands cannot be addressed by just networking.

On the other hand, there is a gap between learning from decentralised data and

learning from a single, complete set of data using gradient-based methods (which is

the basis of model training methods widely used in ML and DL [43]). This is naturally

caused by the way how gradients are calculated. As a common hypothesis, this gap

can be narrowed by algorithm design which, however, typically incurs the increase

of communication costs. Nonetheless, in many scenarios, the gain (in approximating

centralised training) may be marginal whilst the cost (of more frequent communication)

could be prohibitive.

One can think of the problem from an opposite point of view — is it possible for

the communication costs to be significantly reduced at the expense of a compromised

guarantee on the gradients’ quality? The answer is positive for a wide range

of realistic scenarios where the cost of communication dominates the gain

of frequent information exchange. This is one of the key ideas behind federated

learning. A theoretical analysis will be provided in Chapter 2 (Section 2.1.2) for a

better understanding of the problems caused by ‘data islands’.

1.2 Emergence and Evolution of Federated Learning

Federated Learning (FL) was originally proposed by Google as a privacy-preserving

distributed machine learning paradigm over decentralised data [47]. In the paper the

authors first define Federated Optimisation as the implicit problem behind FL. In

contrast to the traditional distributed optimisation problems, federated optimisation

puts more restrictions on the data as well as the resources. Its key properties (or the

key settings in FL) include:

4Art. 44 GDPR. https://gdpr-info.eu/art-44-gdpr/
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� No data sharing: each local dataset is only accessible to the corresponding local

device and data sharing is prohibited between any parties, i.e., ‘data islands’.

� Massive scale: the data are distributed across a large number of devices and

thus the optimisation needs to be performed at scale.

� Imbalanced data sizes: local datasets on the training devices are of dif-

ferent sizes because the devices collect or generate data independently and

autonomously.

� Statistical heterogeneity: the data are typically non-IID across the devices

since different devices are owned by different users who display different use

patterns.

� Device heterogeneity and limited communications: local devices are

heterogeneous in performance, bandwidth, availability and reliability while the

connection between the devices and the coordinating server can be slow, unstable

and expensive (e.g., via commercial cellular networks).

These properties differentiate federated optimisation/learning from existing dis-

tributed optimisation/learning paradigms and also make FL a better fit for practical

scenarios especially with privacy requirements. In the design and evaluations of tra-

ditional distributed training algorithms (e.g., [42, 51, 52]), the full data are either

accessible to all the workers or shuffled before partitioning to guarantee IID data across

the workers for local training. But such an ideal distribution of data is not realistic

as it has been discussed in Section 1.1. On the other hand, these training algorithms

were mainly designed for and evaluated on high-spec machines or GPU/TPU clusters

connected with high-speed network, where the workers are homogeneous and the

communication does not cause prominent delays. These infrastructure settings are

also too utopian for most of the real-world systems that consist of general-purpose

devices such as mobile phones, sensors and wearable devices — they run the training

over limited bandwidth and sometimes charged, poor-quality channels.

By contrast, the motivation behind Federated Learning is to effectively perform

federated optimisation in a communication-efficient and usually privacy-preserving

manner. The original framework of FL inherits the canonical Client–Server (C–S)

architecture of distributed ML and stems from the multi-step distributed SGD training

for communication efficiency (which will be elaborated theoretically in Section 2.1.2,
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Chapter 2). The standard FL algorithm developed by Google is called FederatedAver-

aging (FedAvg) [47]. Along with the algorithm, a realistic FL system is also supposed

to incorporate some privacy protection feature such as Homomorphic Encryption (HE)

[53] or Differential Privacy (DP) [54] to prevent (or reduce) information disclosure

regarding the raw data on local devices [49].

Figure 1.5: The 2021 Hype Cycle for Data Science and Machine Learning. (Source:
Gartner)

The potential of FL has attracted lots of attention from both the academia and

the industry. Gartner lists Federated (Machine) Learning as one of the promising

technologies at the stage of ‘Innovation Trigger’ as part of the Hype Cycle for Data

Science and Machine Learning for the year of 2021 (see Fig. 1.5). The prevalence

of FL is largely attributed to its cross-disciplinary nature — the research spectrum

of FL spans from distributed systems and machine learning to Secure Multi-party

Computation (SMC) and wireless communication. The emergence of Federated

Learning framework facilitates a diversity of studies that investigate the problem

and optimise the system from different angles. In the domain of machine learning,

extensive efforts have been made not only in the optimisation of FL, but also in the

exploration of adapting the FL framework to multiple ML paradigms such as Transfer

Learning, Multi-task Learning and Meta-learning. As a result, the FL framework

has evolved into several different paradigms including Horizontal Federated Learning

(HFL) , Vertical Federated Learning (VFL) and Federated Transfer Learning (FTL)

[48]. These variants of FL are defined for different application scenarios based on
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the association between local data (namely, the way local datasets overlap with each

other).

Different from horizontal FL that works in a common feature space (see Fig. 1.2),

VFL was devised for collaborative training by multiple parties that desire a model for

the same task but possess data with different features. As visualised in Fig. 1.6a, the

situation can be considered as splitting the data vertically, which results in several

sub-domains that have no or little overlap in the feature space. In the case of federated

transfer learning, it usually involves two parties where party A (as the source domain)

performs training to help party B (as the target domain, usually without labels)

establish a model for the same machine learning task (Fig. 1.6b).

(a) VFL (b) FTL

Figure 1.6: Vertical FL (VFL) and Federated Transfer Learning (FTL) (Source: IEEE
Standard 3652.1-2020)

Table 1.1 categorises these paradigms from the perspective of data according to

the IEEE Guide for Architectural Framework and Application of Federated Machine

Learning5 with some extension. More Details about VFL, FTL and other FL paradigms

are introduced in the next chapter (Section 2.3.3) as related work.

Table 1.1: Categorisation of FL paradigms.

FL paradigms
Association of local data

Overlap of sample IDs Overlap of features labels
Horizontal FL small large (usually complete) all

Vertical FL large small partial
FTL small small partial

Among these paradigms, horizontal federated learning is focused on the original

problem of federated optimisation [47] where the data samples spread across a large

number of clients but have the same feature space. As the prototypical paradigm,

horizontal federated learning is usually referred to as federated learning (FL for short)

in the literature. Without ambiguity, the same convention is used in the rest of this

thesis unless otherwise stated.
5https://standards.ieee.org/standard/3652_1-2020.html
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1.3 The Workflow of Horizontal FL

The goal of horizontal federated learning is to learn a global model by having the

clients perform training on their local data collaboratively. The standard process of

FL (e.g., FedAvg [47]) is organised in rounds. After initialisation, each round is

comprised of the following steps:

1) the server selects a fraction of clients randomly to participate in this round of

training;

2) the server distributes the latest global model to the selected clients;

3) the (selected) clients download the global model to overwrite their local models and

perform training on their local data to update the models;

4) the (selected) clients upload their updated local models to the server;

5) the server aggregates the local models from the clients into a new global model.

The process repeats for a preset number of rounds or until the global model attains

the desired level of quality (judged from the loss or accuracy in evaluations).

Fig. 1.7 gives an illustration of the workflow by showing the parameter server and

clients in separate swim lanes with interactions.

1.4 Research Motivation

The most important hypothesis behind the research presented in this thesis is that

both device heterogeneity and data heterogeneity in an FL system can be addressed or

mitigated by means of algorithm design. On this basis, the motivation of this research

is explained in this section with the emphasis on algorithmic improvements of the FL

framework. The typical workflow of FL, as shown in Fig. 1.7, has three stages that are

critical to the execution efficiency of a round: client selection, local training and model

aggregation. Besides, the architecture and the synchronisation design of FL systems

also play important roles.

Client selection

Client selection is the very first stage (after initialisation) on the server and usually

a server-side parameter is needed for controlling the fraction of devices engaged in

a round of training. Following the convention from [47], the parameter C is used to

denote the client fraction which takes a value within [0, 1] (where C = 0 means the

server only selects one client per round).
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Figure 1.7: The workflow of a typical horizontal FL process.

In practice, it is suggested that C be set to small fraction (e.g., C = 0.1) [49]. The

necessity of setting a small C rather than involving the entire fleet of clients can be

explained from two perspectives. First, involving the entire set of clients does not

necessarily lead to faster or better convergence of the global model. Experiments by

McMahan et al. [47] with different models and data settings show that the global

model can fail to converge (to a desired accuracy) by setting C = 1 (but manages

to converge with a smaller C) with a large batch size. Their results also show some

cases where the convergence of the global model benefits very little from a large client

fraction when compared to smaller ones. The second reason for limiting the number

of devices active in one round of training is about the cost. A higher value of the

fraction C leads to increased involvement of each client by probability, which makes

local training less resource-friendly. More importantly, more clients engaged in a

round directly increases the traffic in the network as well as the burden of the server.

For example, if each ML model exchanged between the clients and the server is 10
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Megabytes in size and there are totally 1,000 clients, then running 100 rounds of FL

over these clients incurs 1 Terabyte uplink traffic plus 1 Terabyte downlink traffic in

total. Therefore, it is reasonable to set a relatively small fraction parameter.

Having a very limited portion of devices take part in a round of local training

naturally adds subtleties to the stage of client selection. In the standard implementation

of FL [12, 47], the server selects clients randomly at the beginning of each round.

Random selection guarantees fairness of participation but ignores the heterogeneity

of clients as well as their data. In certain situations, it is very likely that recruiting

different clients in a certain round of training leads to complete different gains in

terms of the quality and convergence of the global model. Also, from an engineering

standpoint, choosing high-performance, reliable (i.e., less likely to drop out halfway)

clients over the others may well speed up the whole training process. No matter from

which perspective, there is a lot to explore in the design of client selection policies.

Local training

Once selected by and synchronised with the coordinating server, a client starts local

training. The process of local training is basically no different than the traditional

standalone gradient-based training except the range of data available. However, there

are several challenges for local training in an FL system. First, the imbalanced size of

local datasets introduces the following problem: with a constant and identical batch

size, samples in a large local dataset get outweighted by the samples in a small local

dataset, where a sample zi outweights another sample zj(j ̸= i) means zi is sampled

into a mini-batch (e.g., for SGD) by a higher probability (with random sampling)

than zj , as shown in Fig. 1.8. This consequently incurs two issues: i) local training

on small datasets is more likely to cause over-fitting, and ii) data samples on smaller

local datasets make more contribution than those on larger local datasets. Both issues

can lead to a biased global model.

The non-identical distribution of local data brings up another challenge in local

training. Training on ‘data islands’ leads to the divergence of local gradients (which

will be analysed theoretically in Section 2.1.2, Chapter 2). The divergent gradients

computed on different devices ‘drag’ the local models in different directions in the

parameter space and consequently slows down the convergence of the global model.

The phenomenon is quite common in realistic applications as the owners (or the

devices themselves) behave differently and usually introduce biases into the data. For

instance, if one wants to build a pet object detection app for smart phones via FL
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P(zi) = 1/2 P(zj) = 1/3

batch size = 5 batch size = 5

data size = 10

data size = 15

a mini-batch

a sample of data

D1 D2

Figure 1.8: Local sampling on local datasets of different sizes.

then a prominent issue could be the discrepancy of data domains between users —

some users may only take photos of cats and some may put funny clothes on their

dogs. Therefore, it is worth exploring how to alleviate the negative impact of non-IID

data on local training.

Model aggregation

Once the server has received a C-fraction of client models, the server enters the

stage of model aggregation. The standard implementation of FL uses the FedAvg

[47] algorithm that generates a new global model6 w(t) using the following rule at

time step7 t if t is an aggregation step:

w(t) =

|U |∑
k=1

nk

n
wk(t), if t ∈ TA = {nE|n = 1, 2, . . .} (1.1)

where U is the set of clients, nk is the size of client k’s local dataset, n is the total

data size (i.e., n =
∑

nk), E is the aggregation interval, and wk(t) is the updated

local model based on wk(t − 1) by client k. Throughout the thesis, a different but

equivalent expression for the update rule may also be used:

w(r) =

|U |∑
k=1

nk

n
w

(r)
k , r = 1, 2, . . . (1.2)

where the notation of round r is placed at the superscript. Note that each round

usually involves multiple update steps.

6The model is actually a hypothesis parametrised by w(t).
7Steps are counted as the total number of local updates performed.
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The coefficient nk/n is designed based on the relation between local training

objectives Fk(w) and the global objective F (w). Eq. (1.3) formulates the global

objective function F (w) with more details presented in Section 2.1, Chapter 2.

F (w) =

|U |∑
k=1

nk

n
Fk(w), (1.3)

As proven by Wang et al. [55], the FedAvg algorithm guarantees an upper

bound on the error between the global model w and the centralised model trained by

centralised SGD (Theorem 1, [55]). Also, the convergence upper bound of w (defined

as the F (w) − F (w∗) where w∗ is the theoretically optimal model) is given as an

expression of the total number of local iterations T , learning rate, aggregation interval

and some assumed constants related to the properties of the objective functions (see

[55] for details). Nonetheless, there are two main challenges for model aggregation.

The first challenge lies in the gap between the theoretical convergence rate and

the actual convergence speed of the global model. The causes of the gap include

the complexity of the loss function (e.g., non-convexity) and the discrepancy of local

models’ value in the aggregation. Efforts have been made in recent years towards

analysing or bridging the gap for non-convex objective functions [56, 57] whilst it is

relatively more sophisticated to assess the value of local models because i) the global

model is evaluated after aggregation and ii) the improvement of the global model is

very difficult to be traced down to any individual local model. This leaves a lot to

desire in refining the aggregation rule.

The second challenge for model aggregation is about the timing. The standard

FL algorithm uses synchronous control wherein the end of a round is triggered by the

server upon receiving all the local models from the selected client subset. Although

a preset round timer can be used in practice, the aggregation mechanism is still

vulnerable to the failure of end devices. For example, given some unreliable clients

each of which has a 20% probability to crash during local training, then involving

10 clients each round results in a merely (1− 0.2)10 ≈ 10.7% chance of successfully

finishing the round in time. Therefore, it is necessary to consider ways to enable early

aggregations for the sake of efficiency.

Architecture

FL inherits the classic client–server communication framework, in which the server

does not take on the majority of computation but can possibly be overwhelmed in
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storage and network traffic when coordinating a massive group of clients. Basically

there are three solutions to easing the burden of the server: reducing the size of models,

changing the network topology and extending the architecture of the FL system.

Extensive studies have been carried out in the domain of model/gradient compres-

sion which was already a topic of interest since gradient–model exchange became the

de facto paradigm for distributed machine learning. This branch of techniques can

easily be applied to FL as compressing gradients and models are essentially the same.

The topologies of network can significantly influence the communication cost and

efficiency of any distributed/parallel systems. The C–S structure of FL is equivalent

to the spike–hub architecture where the central server handles all the traffic. It is very

natural to think of more balanced, decentralised structures such as the Peer-to-Peer

(P2P) network, which has already drawn attention from researchers [58–60]. However,

the major problem of topologies without a central server role is the slowdown of

information propagation. In machine learning systems, the convergence of the model

may well be compromised if it takes longer (in time or in logical steps) to disseminate

gradients/models over the whole network.

A promising direction is extending the layer architecture of the standard FL

algorithm. Emerging techniques like Mobile Edge Computing and Internet of Things

provide a natural platform for federated learning but most of them adopt the three-

layer architecture where end devices are governed by edge nodes and edge nodes are

connected to the cloud. In realistic systems, the layers can stack up and the nodes

in the edge layer can interact with each other. There is certainly much potential in

leveraging the multi-layer architecture to facilitate more efficient FL workflows.

Synchrony and Asynchrony

The concepts of synchrony and asynchrony differ in different domains of studies.

In this thesis, these two terms are used to describe the behaviours of clients under

the coordination by the server. Both synchronous and asynchronous algorithms for

distributed learning have been well studied for conventional gradient-based training

paradigms [61–64]. The main property that distinguishes synchrony and asynchrony

is whether the server sets a ‘synchronization barrier’ to keep all the clients working in

sync (i.e., always in the same logical round). Fig. 1.9 illustrates the difference with a

case of two clients. Synchronous approaches barrier all the local updates to guarantee

they are applied to a consensus model with regard to which the gradients are computed

[63, 65, 66]. In contrast to that, asynchronous approaches adopt instant update on
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the server upon the arrival of any local update [67, 68]. It frees the server from long

waiting at the cost of having to deal with stale updates [42, 69, 70]. Following the

idea from asynchronous SGD algorithms [52, 67], Xie et al. [71] proposed FedAsync,

an asynchronous federated optimisation scheme that regularises local optimisation

and adopts a non-blocking update rule for the iterates of global model. A similar

algorithm has been exploited by Sprague et al. [72] in a geo-spatial application

for training a global model asynchronously, allowing the devices to join halfway.

However, the main issue of the asynchronous approaches is that the server may receive

too many local updates sent from a massive number of clients that remain active,

which could overwhelm the server but with little benefit to the model convergence.

Evidence from previous studies also shows that synchronous SGD can outperform

asynchronous approaches in the data center setting [43], which to some extent inspired

the synchronous design of FL [12]. Table 1.2 compares the upsides and downsides of

synchronous and asynchronous training approaches over distributed data.
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Figure 1.9: An illustration of the difference between synchrony and asynchrony in the
context of FL.

Table 1.2: A comparison between synchronous and asynchronous approaches.

Advantages Disadvantages

Synchrony
�Stable convergence
�Fewer communications

�Vulnerable to stragglers
�Infrequent central updates

Asynchrony
�No sync. barriers
�Frequent central updates

�Intensive communications
�More local updates to converge

How to speed up the convergence rate of FL remains an open challenge. The
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optimisation mechanisms for traditional distributed SGD have great potential in

FL. For example, gradient staleness control has been shown critical to guarantee

convergence [73, 74]. Dutta et al. [74] theoretically characterised the trade-off between

reducing error (by including more stragglers) and shortening run time (by bounding

staleness). Wang et al. [75] refined ASGD by modulating the learning rate based on

the staleness of incoming gradients. Smith et al. [76] proposed MOCHA, a fault- and

straggler-tolerant multi-task learning method without forging a global model. Chen

et al. [43] introduced backup workers to reduce server waiting time in synchronous

stochastic optimisation. Inspired by these approaches, this work investigates the

impact of straggling clients and model staleness on FL and presents a novel solution

to the strong heterogeneity of participating devices by modifying the workflow of

synchronous FL with asynchronous designs at a controllable cost of computation and

communication.

1.5 Definition of Efficiency

Motivated by the aforementioned challenges, the research presented in this thesis is

mainly focused on the improvement of horizontal FL in efficiency. The definition of

efficiency for FL is much more intricate than the definition of accuracy for a single

model. It is commonly recognised (especially in the field of machine learning) that one

can use standard metrics such as top-k accuracy, precision, f1-score and mean error to

evaluate, assess and compare models trained. But in the case of federated learning,

the accuracy of the final global model contains way too limited information in terms

of reflecting how good an FL algorithm is. Also, the value of FL is never merely about

producing an accurate global model.

Therefore, efficiency-related metrics are defined in this work in order to assess

the performance of FL from multiple perspectives. These metrics are the number of

rounds for convergence, total time for convergence8 and average round length9.

Rounds for convergence

In this thesis, a round (or communication round) of FL is defined as the process

spanning from client selection to model aggregation (see Fig. 1.7). As introduced in

Section 1.3, the workflow of FL can go through any number of rounds until a stop

8The time here is recorded by the server no matter it is synchronous or asynchronous.
9Using different algorithms, rounds can differ in length.
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criterion is met. In practice, the most convenient way is to preset a number of rounds

to run but it is very hard to balance between the cost and gain as the rounds needed

for a decent convergence is fairly unpredictable. Therefore, an alternative is to set

a goal based on how good the model needs to be. Specifically, the goal can be an

accuracy value (e.g., 90%) or a loss value with regard to the global model during

evaluation. Then by running the FL process till the goal is achieved, one can assess

the efficiency by the number of rounds needed:

min
r

Acc(w(r);Dtest) ≥ Acc goal or F (w(r);Dtest) ≤ Loss goal, (1.4)

where the Acc goal and Loss goal are the pre-specified accuracy goal and loss goal,

respectively. Dtest is a set of data for evaluating the global model and is typically

possessed by the server. The superscript r denotes the round index as the version of

the global model w.

Total time for convergence

The number of rounds is a logical measurement of how far the process of FL fares,

but it does not reflect the actual cost of time. On this point, one can use the wall

clock time to measure how long it takes for the global model to converge. Again, a

preset goal is needed.

min
T

Acc(w(Ω(T ));Dtest) ≥ Acc goal or F (w(Ω(T ));Dtest) ≤ Loss goal, (1.5)

where Ω(T ) denotes the number of training rounds performed given a time period of

length T . For different FL algorithms, the process can go through different numbers

of rounds given a same time budget T , which yields different values of Ω(T ). It is

noteworthy that the time for convergence is certainly associated with the rounds

for convergence and may seem to be a more realistic (and thus valuable) metric

than the latter, but in many cases the round needed could be more important as a

reference of efficiency. This is mainly because the number of rounds also indicates the

number of times the clients need to communicate with the server and thus the cost of

communication throughout the system.

Average round length

The metric of average round length is derived from the number of rounds for

convergence and the total time for convergence. It measures the efficiency of an FL
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process from the perspective of one round.

avg RT =
total time needed for convergence

number of rounds for convergence
(1.6)

Average round length directly reveals how long on average it takes to finish a

round of training, which includes a full cycle of client selection, model distribution,

model downloading, local update, model uploading and model aggregation. It also

indicates how fast the FL process is expected to proceed as the global model is

updated once a round. However, the limitation of this metric is that it does not

provide any information on the total time consumption or rounds needed to achieve

the convergence.

In the evaluation of FL, it is suggested that all these metrics be taken into account.

Beside these basic efficiency metrics, there are some auxiliary metrics that are related

to or indicative about the efficiency of federated learning. For example, energy

consumption of end devices reflects the cost of participating in the training as well as

the efficiency of the FL process in terms of energy. The energy used by the clients is

also a key factor that influences the willingness of the clients to participate because

the global model is the only reward if no incentive mechanism (e.g., [77–79]) is applied.

In addition to that, network traffic can also be used as a cost metric to characterise

the burden on the devices and the channels caused by data transfer [80].

1.6 Summary of Contributions

In support of this dissertation, contributions are made by the author from the following

perspectives: i) designing efficient algorithms for horizontal FL over heterogeneous

devices, ii) integrating the two-layer FL framework with the three-layer architecture

of edge computing systems, and iii) optimising the client selection policy for efficient

FL over local data of varied quality.

1.6.1 FL over Heterogeneous Devices with Flexible Synchron-

isation

A typical use case of (horizontal) federated learning is model training in cross-device

scenarios [49] where a vast number of end devices are recruited to contribute their

computing power. However, it is very challenging to guarantee the efficiency of
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FL considering the unreliable nature of end devices while the cost of device–server

communication cannot be neglected. In view of this, a semi-asynchronous FL algorithm,

SAFA, is presented in this thesis to address the problems in federated learning such

as low round efficiency and poor convergence rate in extreme conditions (e.g., clients

go offline frequently). Novel designs are introduced in the steps of model distribution,

client selection and global aggregation to mitigate the impacts of stragglers, crashes and

model staleness in order to boost efficiency and improve the quality of the global model.

Results of extensive experiments with various machine learning tasks demonstrate that

the proposed algorithm is effective in terms of shortening federated round duration,

reducing local resource wastage and improving the accuracy of the global model at an

acceptable communication overhead. This work is detailed in Chapter 3 corresponding

to the published paper:

� Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen A

Jarvis. Safa: a semi-asynchronous protocol for fast federated learning with low

overhead. IEEE Transactions on Computers, 70(5):655–668, 2021. [1]

1.6.2 Adapting Horizontal FL to the Edge Computing Archi-

tecture

The emerging Mobile Edge Computing (MEC) technique has shown great potential in

narrowing the gap between where the data are processed and where the data reside.

From this standpoint, MEC can be a natural fit for federated learning in terms of

facilitating the training of AI models without breaching privacy regulations. However,

it remains a big challenge to optimise the efficiency and effectiveness of FL when it is

integrated with the MEC architecture whilst the unreliable nature (e.g., stragglers

and intermittent drop-out) of end devices significantly slows down the FL process

and affects the global model’s quality in such circumstances. To address these issues,

this research presents a multi-layer federated learning algorithm called HybridFL.

The proposed solution adopts two levels (the edge level and the cloud level) of model

aggregation enacting different aggregation strategies. Moreover, in order to mitigate

stragglers and end device drop-out, controlling variables named Regional Slack Factors

are introduced into the stage of client selection performed in the edge layer using a

probabilistic approach without identifying or probing the state of end devices (whose

reliability is unknown). Convergence analysis is presented for the proposed algorithm.
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Extensive experiments were conducted with machine learning tasks in different scales

of MEC system. The results show that HybridFL improves the FL training process

significantly in terms of shortening the federated round length, speeding up the global

model’s convergence and reducing end device energy consumption. This work is

detailed in Chapter 4 corresponding to the published paper:

� Wentai Wu, Ligang He, Weiwei Lin, and Rui Mao. Accelerating federated

learning over reliability-agnostic clients in mobile edge computing systems. IEEE

Transactions on Parallel and Distributed Systems, 32(7):1539–1551, 2021. [2]

1.6.3 Selective Federated Learning over Data of Varied Quality

An issue that stands out in the settings of FL is that the whole system is agnostic

about the quality of data that local models are trained on. In many scenarios, on

top of the non-IID property of data, a large proportion of the clients are probably in

possession of low-quality data that are biased, noisy or even irrelevant. As a result,

they could significantly slow down the convergence of the global model we aim to build

and also compromise its quality. In light of this, a novel algorithm called FedProf is

presented with the aim of optimising FL under such circumstances without breaching

data privacy. The key of the approach is a data representation profiling and matching

scheme that uses the global model to dynamically profile data representations and

allows for low-cost, lightweight representation matching. Based on the scheme the

server adaptively scores each client and adjusts its participation probability so as

to mitigate the impact of low-value clients on the training process. To evaluate the

proposed solution, a series of experiments have been conducted by setting up both

regression and image classification tasks under various FL settings. The results show

that FedProf effectively reduces the number of communication rounds and overall

time for the global model to converge while improving the accuracy of the final global

model. This work is detailed in Chapter 5 corresponding to the paper:

� Wentai Wu, Ligang He, Weiwei Lin, and Rui Mao. Fedprof: Selective federated

learning with representation profiling. arXiv preprint arXiv:2102.01733. Under

review, ICLR’22, 2021. [3]
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1.7 Thesis Outline

This chapter provides an overview of the foundation, motivation and contributions of

the research to be presented in this thesis. The remainder of this thesis is organised

as follows:

Chapter 2 first introduces the preliminaries including the federated optimisation

problem, a theoretical analysis on the key idea behind FL and the participation and

model aggregation strategies. This part is a complement to the background knowledge

provided in Chapter 1. Chapter 2 also provides an industrial vision by reviewing a

wide range of applications and multiple existing FL systems and platforms. Then

a literature review is presented discussing the relevant studies and recent advances

in the research domain of FL, followed by a comprehensive list of FL datasets for

facilitating relevant research.

Chapter 3 discusses the challenges in accelerating FL over a large group of hetero-

geneous devices. The impacts of involving heterogeneous, undependable clients are

analysed, followed by the formulation of the system model. A semi-asynchronous FL

algorithm SAFA with novel designs to address the heterogeneity of clients is presented

in this chapter. Experimental results are provided to demonstrate the effectiveness of

the proposed algorithm.

Chapter 4 investigates the emerging confluence of edge computing and AI applications

followed by a breakdown of the benefits and challenges when it comes to federated

learning in edge computing systems. In this chapter, a novel three-layer FL algorithm

HybridFL is presented with the aim of performing FL efficiently in MEC systems

over a massive group of clients of unknown reliability. Comprehensive results of

experimental evaluation show significant boost of efficiency by using the proposed

algorithm in a simulated MEC system.

Chapter 5 begins with the concept of representation learning for neural network

models and studies why and how FL can be optimised with the exchange of represent-

ations. Besides, the problem of low-quality data on the training devices is discussed.

Intriguing observations on the distribution of data representations from neural net-

works are given for which theoretically proofs are also provided. A representation

profiling and matching scheme is further proposed and used to optimise the client

selection strategy in FL. Based on the scheme, a novel FL algorithm called FedProf
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has been developed. Extensive experimental results demonstrate that the FedProf

can leverage the learnt representations to differentiate the training value of different

local datasets and facilitate fast convergence of the global model via selective client

involvement.

Chapter 6 concludes this PhD thesis providing a summary of the research work

presented in the previous chapters. This chapter also discusses the open challenges in

developing FL systems and several possible research directions worth exploring in the

future.
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Background and Literature

Review

Since the emergence of federated learning, we have seen rapid development of the

framework and relevant techniques thanks to the extensive efforts by the researchers

and practitioners in this field of study. Fig. 2.1 visualises the research spectrum of FL

with a word cloud generated from the titles of >200 most-cited papers. Most of these

influential studies are included in the references of this thesis and will be discussed in

this chapter.

Figure 2.1: A word cloud of research keywords for visualising the spectrum of FL.

In this chapter, important preliminaries for FL are first introduced including the
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problem formulation of federated optimisation, the key idea behind FL (also its key

difference from traditional distributed training), the participation control and model

aggregation methods as well as the synchrony and asynchrony in the context of FL.

The second section of this chapter casts light on the development of FL in the industry

covering libraries, systems and applications. The third section discusses the related

research work including distributed learning, various paradigms of FL, communication

optimisation in FL and privacy preservation solutions in FL. The last section provides

a list of public datasets for FL research.

2.1 Preliminary Knowledge

This section first mathematically formulates the objective of federated learning. Import-

ant prerequisites are then introduced for a better understanding of the key mechanisms

in FL.

2.1.1 Problem Formulation

Federated learning was originally introduced by McMahan et al. [47]. The framework

is termed federated learning because of its property of being a ‘loose federation of

participating devices’. In the seminal paper the authors ‘refer to the optimisation

problem implicit in federated learning as federated optimisation’, where the problem

and the settings thereof were first defined in [81]. Formally, the problem is to find a

model that minimises the global objective (or empirical risk) F (w) as follows:

arg min
w

F (w) =
1

n

∑
(xi,yi)∈D

ℓ(w;xi, yi), (2.1)

where D contains all the data across the system, n is the size of D and ℓ(·) denotes the

loss function which can be any forms including non-convex neural network objectives

[47]. The vector w parametrises the model (hypothesis) hw ∈ H : χ→ Y one aims to

establish.1 Since the optimisation has to be done on decentralised data (D is a logical

union of numerous distributed local datasets), each client is actually working on its

respective local objective Fk(w):

arg min
w

Fk(w) =
1

nk

∑
(xi,yi)∈Dk

ℓ(w;xi, yi), (2.2)

1Without ambiguity, w is also referred to as the model itself for brevity in this thesis.
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where Dk is the local dataset on client k and nk = |Dk| is the size of Dk. Using the

relations D =
⋃

k∈U Dk and n =
∑

k∈U nk, the global objective (2.1) can be rewritten

as:

arg min
w

F (w) =
nk

n

∑
k∈U

Fk(w), (2.3)

where U is the set of clients.

Note the problem formulation given in this section is strictly consistent with the

seminal work by McMahan et al. [47] and so are the majority of researches under the

framework of federated learning. But actually the objectives can be adapted in order

to fit different applications, system settings or algorithm designs. For example, local

objectives can be averaged with identical weights [71, 82]. In the research work to

be presented in Chapter 5, a different global objective is defined based on the idea

that the local data on different clients differ in training value and thus should be

differentiated in their weights.

2.1.2 The Key Idea behind FL

Decentralised data requires distributed training. Gradient-based methods (such as

Gradient Descent (GD) and Stochastic Gradient Descent (SGD)) are currently the

most popular choices for training machine learning models (especially deep neural

networks). It is also true that training with gradient-based methods (including the way

local models are trained in horizontal FL) on decentralised data (without any form of

data exchange) always leads to the divergence of gradients (except the case of using

GD on even sizes of local data). More specifically, the exact gradients (obtained by

centralised training on full data) cannot be recovered using the gradients computed on

several separate datasets in most of the practical situations, which is termed Gradient

Divergence in this work. Essentially, (horizontal) federated learning is a form

of multi-step SGD over decentralised datasets with periodic aggregation.

The following section provides a theoretical analysis on how training on decentralised

data leads to gradient divergence and its connection to the key value of FL.

By analysing why running distributed GD and SGD on ‘data islands’ introduces

gradient divergence and how much the gradients deviate from the centralised, ‘correct’

gradients, this section aims to reveal the impact of ‘data islands’ on gradient-

based training and ultimately the key value of (horizontal) FL.

In the work presented in this thesis, gradient divergence is defined as the deviation
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of the globally aggregated gradients (over decentralised data) from the centralised

gradients (virtually over a full set of data). Without loss of generality, this definition is

suitable for both GD and SGD (thus the terms gradients and stochastic gradients are

generally interchangeable in the following analysis). More specifically, the aggregated

gradients refer to the gradients calculated by the parameter server (PS) by aggregating

all the locally computed gradients uploaded by the training devices (called workers

in some studies and clients in the context of federated learning). The centralised

gradients, on the other hand, are defined as the result of gradient computation over

the union of data (i.e., a complete dataset containing all the data from all the clients)

using sequential SGD. The centralised gradients are virtual and impractical (because

of the data locality constraint in FL) but are usually used as a baseline that represents

the ideal direction of each model update. In the following content, theoretical analysis

on gradient divergence is provided.

Given a set of data holders (clients) U , let Dk denote the local dataset on client

k, D =
⋃

k∈U Dk be the joint, complete dataset and w̃ be the virtual model trained

on D (in a standalone manner). let G denote the aggregated gradient from locally

computed gradients {Gk}k∈U and let G̃ denote the virtual gradient obtained from

gradient computation on the complete dataset D. Both Gk and G̃ are calculated

based on sample-wise gradients. Given a data sample (Xi, Yi) and a model w (in the

following content, w also represents the parameter set of the model), the sample-wise

gradient gi(w) with regard to w can be formulated as:

gi(w) ≜ ∇ℓ(w;Xi, Yi) =
∂ℓ(w;Xi, Yi)

∂w
, (2.4)

where ℓ(·) is the loss function (as the objective function).

Given a data sample (X,Y ) randomly drawn from D, the centralised gradient

with regard to w̃ is a random variable that has the expectation E∼D[g(w̃)] (without

ambiguity, E∼D means E(X,Y )∼D unless otherwise stated):

E∼D[g(w̃)] =

|D|∑
i=1

1

|D|
gi(w̃). (2.5)

Similarly, the expectation of sample-wise gradient over the samples in a local
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dataset Dk can be formulated as:

E∼Dk
[g(wk)] =

∑
(Xi,Yi)∈Dk

1

|Dk|
gi(wk), (2.6)

where wk denotes the model snapshot on client k based on which the gradient is

computed. Note that wk is not necessarily same as w̃. In the following analysis, it is

assumed that wk = w̃ only for the case of one-step update.

In this work, G (the aggregated gradient) and G̃ (the centralised gradient) are

defined differently for GD, SGD and multi-step SGD. In the following content, the

gradient divergence introduced by distributed training is analysed in three cases:

Gradient Descent update, Stochastic Gradient Descent update, and Multi-step SGD

update (the basis of horizontal FL).

Case 1: Gradient Descent update

In this case, G̃ and {Gk}k∈U are computed using GD over full batches of data

from the complete dataset and the local datasets, respectively. Using GD, gradients

are deterministic and are computed as the average of all sample-wise gradients. By

the definition of G̃ and Gk, Gradient Descent yields:

G̃ =
1

|D|
∑

(Xi,Yi)∈D

gi(w̃), (2.7)

and

Gk =
1

|Dk|
∑

(Xi,Yi)∈Dk

gi(wk). (2.8)

Further, the aggregated gradient G can be derived from Gk:

G =
1

|U |
∑
k∈U

Gk

=
1

|U |
∑
k∈U

1

|Dk|
∑

(Xi,Yi)∈Dk

gi(wk)

=
∑

(Xi,Yi)∈D

1

|U |
1

|Dik |
gi(wk), (2.9)

where ik denotes the index of the client/local dataset that the sample (Xi, Yi) belongs

to.

For a single step of gradient computation, the gradient divergence can be formally

defined as E∥G − G̃∥, where ∥ · ∥ denotes the 2-norm used to measure the distance
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between vectors. Due to the deterministic nature of full-batch Gradient Descent, the

divergence between G and G̃ is given by:

E∥G− G̃∥ = ∥G− G̃∥

= ∥
∑

(Xi,Yi)∈D

1

|U ||Dik |
gi(wik)− 1

|D|
∑

(Xi,Yi)∈D

gi(w̃)∥, (2.10)

From Eq. (2.10), one can see that in the virtually centralised training on D (which

produces the centralised gradient G̃), every sample shares the same weight 1
|D| , whilst

for the aggregated gradient G, the sample-wise gradients are weighted by the reciprocal

of its corresponding local dataset’s size times the population of clients.

Considering a single step of update from a fixed point in the parameter space (i.e.,

wk = w̃ = w, ∀k ∈ U), Theorem 2.1 is given as follows:

Theorem 2.1. With a single step of update using Gradient Descent with regard to a

same model (i.e., w1 = w2 = · · · = w|U | = w̃ = w), the aggregated gradient G is equal

to the centralised gradient G̃ over the full set of data when all the local datasets are of

the same size or all the local data are IID, i.e.,

G = G̃, (2.11)

only if |D1| = |D2| = . . . = |D|U || = 1
|U | |D| or P

(
(X,Y )|D1

)
= P

(
(X,Y )|D2

)
= . . . =

P
(
(X,Y )|D

)
.

Proof. Given the first condition (i.e., even local data sizes) in Theorem 2.1 and recall

that wk = w̃ = w ∀k ∈ U , the aggregated gradient can be rewritten as (2.12).

G =
∑

(Xi,Yi)∈D

1

|U |
1

|Dik |
gi(wik)

=
∑

(Xi,Yi)∈D

1

|U |
1

1
|U | |D|

gi(w)

=
∑

(Xi,Yi)∈D

1

|D|
gi(w),

= G̃ (2.12)

which proves Theorem 2.1.

Alternatively, given the second condition (i.e., IID local data) in Theorem 2.1 and
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recall that wk = w̃ = w, ∀k ∈ U , one can derive that:

G̃ =
1

|D|
∑

(Xi,Yi)∈D

gi(w̃) = E∼D[g(w)], (2.13)

Gk =
1

|Dk|
∑

(Xi,Yi)∈Dk

gi(w) = E∼Dk
[g(w)], (2.14)

where E∼D[g(·)] and E∼Dk
[g(·)] are defined in Eqs. (2.5) and (2.6), respectively. The

IID-data condition P
(
(X,Y )|Dk

)
= P

(
(X,Y )|D

)
, ∀k ∈ U implies that the gradient

distribution P (g(w)|Dk) (where g(w) denotes the gradient given a random sample

(X,Y )) is identical to P (g(w)|D) w.r.t. a same model snapshot w. Thus we have:

E∼D[g(w)] = E∼Dk
[g(w)]. (2.15)

Equivalently,

Gk = G̃. (2.16)

Combining Eqs. (2.20) and (2.16), it follows that

G =
1

|U |
∑
k∈U

Gk

=
1

|U |
∑
k∈U

G̃

= G̃, (2.17)

which proves Theorem 2.1.

Remark. Gradient Descent is a deterministic optimisation method that produces the

exact gradients over a full batch of data samples. Nonetheless, successful recovery of

the exact gradient by aggregating locally computed gradients is subject to two conditions

as stated in Theorem 2.1. These conditions, however, are rarely satisfied in practical

situations. For example, it is more common than not to have different sizes of local

training data. Besides, GD is not a good option for modern deep learning models due

to its low training efficiency (because each iteration of update involves an entire set of

data).

Case 2: Stochastic Gradient Descent update

SGD improves the efficiency of GD by picking one or a random subset of training
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samples from a dataset for gradient computation in each iteration. SGD is also

referred to as mini-batch Stochastic Gradient Descent when gradients are computed

over a subset (mini-batch) of data for parallelism. In the following content, gradient

divergence for a single step of SGD update is analysed on the basis that local models

{wk}k∈U and the virtual model w̃ are at the same point in the parameter space (i.e.,

w1 = w2 = · · · = w|U | = w̃ = w).

Let Bk denote a mini-batch of data drawn from Dk for one step of gradient

computation and B̃ be a global mini-batch of data from D. To facilitate the analysis,

let |B̃| =
∑

k∈U |Bk| always hold (note that it does not necessarily mean B̃ =
⋃

k∈U Bk

as samples are randomly drawn) and let bk = |Bk| and b̃ = |B̃|. Without generality, we

also assume an identical local batch size b for the computation of local gradients Gk,

i.e., b1 = b2 = . . . = b, and thus the batch size b̃ for computing G̃ satisfies b̃ = |U | · b.

Then by the definition of SGD, it follows that

G̃ =
1

b̃

∑
(Xi,Yi)∈B̃

gi(w̃), (2.18)

and

Gk =
1

bk

∑
(Xi,Yi)∈Bk

gi(wk), (2.19)

where 1 ≤ b̃ ≤ |D| is the global batch size for computing G̃ (on the full data w.r.t. the

model w̃) and 1 ≤ bk ≤ |Dk| is the local batch size for computing local gradients (on

the local data of client k w.r.t. the local model wk). With local gradients given by

Eq. (2.19), the aggregated gradient G, given by Eq. (2.20), is the average across all

the local gradients uploaded to the parameter server (PS).

G =
1

|U |
∑
k∈U

Gk

=
1

|U |
∑
k∈U

1

bk

∑
(Xi,Yi)∈Bk

gi(wk)

=
∑

(Xi,Yi)∈B

1

|U |
1

bik
gi(wik), (2.20)

(letB =
⋃
k∈U

Bk).

Combining Eqs. (2.18) and (2.20), the gradient divergence for the case of SGD can
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be formulated as:

∥G− G̃∥ = ∥ 1

|U |
∑
k∈U

Gk − G̃∥

= ∥ 1

|U |

|U |∑
k=1

Gk −
1

|U |

|U |∑
k=1

G̃∥

=
1

|U |
∥

|U |∑
k=1

(Gk − G̃)∥

≤ 1

|U |

|U |∑
k=1

∥Gk − G̃∥

=
1

|U |

|U |∑
k=1

∥ 1

bk

∑
(Xi,Yi)∈Bk

gi(wk)− 1

b̃

∑
(Xi,Yi)∈B̃

gi(w̃)∥, (2.21)

which implies that the upper bound of gradient divergence for single-step SGD boils

down to the randomness of SGD (in sampling) and the relation between the data

distribution of each Dk and the population distribution of D.

Considering that every batch of samples are drawn randomly from the dataset D

for computing G̃ (or from Dk for Gk), the expectation of G̃ can be formulated as:

E[G̃] =
1

b̃
EB̃∼D[

∑
(Xi,Yi)∈B̃

gi(w̃)]

=
1

b̃
|B̃|E∼D[gi(w̃)]

=
1

b̃
b̃

|D|∑
j=1

1

|D|
gj(w̃)

=

|D|∑
i=1

1

|D|
gi(w̃)

= E∼D[g(w̃)], (2.22)

where E∼D[g(w̃)] denotes the expectation of sample-wise gradient g(w̃) on the complete

data. The result is intuitive because the gradient of a randomly drawn sample gi(w̃)

is a random variable, which means that the average gradient G̃ over a mini-batch of

randomly drawn samples is also a random variable with the same expectation. As

discussed in [83], G̃ actually follows the Gaussian distribution N (E∼D[g(w̃)], Σ(w̃)

b̃
)

(where Σ(w̃) denotes the covariance matrix of g(w̃) over D) according to the Central
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Limit Theorem (CLT). In a similar way, the expectation of Gk can be formulated as:

E[Gk] = EBk∼Dk
[

1

bk

∑
(Xi,Yi)∈Bk

gi(wk)]

=
1

bk
|Bk|E∼Dk

[gi(wk)]

=
1

bk
bk

∑
(Xi,Yi)∈Dk

1

|Dk|
gi(wk)

=
∑

(Xi,Yi)∈Dk

1

|Dk|
gi(wk)

= E∼Dk
[g(wk)], (2.23)

where E∼Dk
[g(wk)] denotes the expectation of sample-wise gradient over local dataset

Dk with regard to the local model wk.

Remark. Comparing Eq. (2.22) and (2.23), one can find out that, for a single step

of SGD, the difference between the expectations of the centralised gradient G̃ and the

locally computed gradient Gk lies in i) the coverage of data samples and ii) the models.

It is noteworthy that, even if G̃ and Gk are supposedly computed w.r.t. a same model

snapshot (i.e., w̃ = wk), the two expectations are equal only when the data in Dk and

D are Independent and Identically Distributed (IID). If the data are non-IID across

the clients (which is the common case for FL), Gk cannot be expected as an unbiased

estimate of G̃, i.e., E[Gk] ̸= E[G̃].

Given the expression of the aggregated gradient G (Eq. 2.20), the expectation E[G]

can be formulated as:

E[G] = E[
1

|U |
∑
k∈U

Gk]

=
1

|U |
∑
k∈U

E[Gk]

=
1

|U |
∑
k∈U

EBk∼Dk
[

1

bk

∑
(Xi,Yi)∈Bk

gi(wk)]

=
1

|U |
∑
k∈U

1

bk
|Bk|E∼Dk

[gi(wk)]

=
1

|U |
∑
k∈U

1

bk
bk

∑
(Xi,Yi)∈Dk

1

|Dk|
gi(wk)

=

|D|∑
i=1

1

|U |
1

|Dik |
gi(wik), (2.24)
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where |U | is the number of clients (or local datasets) and ik represents the index of

the client that sample (Xi, Yi) resides on.

From the perspective of expectation, Theorem 2.2 is given as follows:

Theorem 2.2. With regard to a same point w in the parameter space (i.e., wk = w̃ = w

for any k ∈ U), the aggregated gradient G is an unbiased estimate of the idealised

gradient G̃ if at least one of the following conditions is satisfied: i) all the local datasets

have the same size; ii) the data are IID in all the local datasets. Formally,

E[G] = E[G̃] (2.25)

only if |D1| = |D2| = . . . = |D|U || = 1
|U | |D| or P

(
(X,Y )|D1

)
= P

(
(X,Y )|D2

)
= . . . =

P
(
(X,Y )|D

)
.

Proof. From Eq. (2.22) and (2.24), it follows that

E[G]− E[G̃] =

|D|∑
i=1

1

|U |
1

|Dik |
gi(wik)−

|D|∑
i=1

1

|D|
gi(w̃). (2.26)

Theorem 2.2 apparently holds with the first condition satisfied in which case 1
|U |

1
|Dik

| =

1
|D| and given wk = w̃ = w for any k ∈ U .

To prove Theorem 2.2 under the second condition that the data are IID across all

the local datasets, one can use the same logic as in the proof of Theorem 2.1 and first

rewrite Eq. (2.26) as:

E[G]− E[G̃] =
1

|U |
∑
k∈U

E∼Dk
[g(wk)]− E∼D[g(w̃)]. (2.27)

Recall that IID data implies IID sample-wise gradients for any Dk(k = 1, 2, ..., |U |)

and D with regard to an identical model snapshot w, i.e., E∼Dk
[g(w)] = E∼D[g(w)].

Therefore, with wk = w̃ = w for any k ∈ U , one can further derive that:

E[G]− E[G̃] =
1

|U |
∑
k∈U

E∼D[g(w)]− E∼D[g(w)]

=
1

|U |
|U |E∼D[g(w)]− E∼D[g(w)]

= 0, (2.28)

which proves Theorem 2.2.
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Remark. The gradient divergence for single-step SGD sources from i) the uneven

distribution of local dataset size and ii) non-IID data distribution across the training

clients. The discrepancy in the amount of data held by the clients results in the

discrepancy of mini-batch sampling from the datasets. This can be explained intuitively

from the perspective of a single sample (Xi, Yi). If (Xi, Yi) resides on client k, then

with a mini-batch size of b, probabilistically it has the chance b
|Dk| that it will be

selected into the mini-batch for a step of SGD update and contributes to Gk and G.

On the other hand, recall that the complete dataset D has all the data samples and

therefore, the sample (Xi, Yi) is drawn from D by the probability b̃
|D| , where b̃ = |U |b

is the centralised mini-batch size. Consequently, this leads to unequal likelihood of

contribution by the sample (Xi, Yi) to G and G̃ when |Dk| ≠ 1
|U | |D|.

Non-IID data directly results in local gradients Gk being potentially diverged from

G̃. The expectation of gradients over a mini-batch of samples is exactly equal to that

over the dataset whilst non-IID data indicates a different distribution of Dk from

D. Consequently, local gradients deviate from the centralised, ‘correct’ gradients in

expectation, which can possibly result in the gradient divergence between G and G̃.

Case 3: Multi-step SGD update

Training machine learning models using distributed SGD on decentralised data is

essentially equivalent to running multiple SGD chains, as opposed to the single SGD

chain on the joint, complete dataset. In the case of multi-step SGD update, multiple

steps of gradient computation are performed between two aggregation operations, i.e.,

periodic averaging. To facilitate the analysis, the notations of local gradient Gk(t) and

local model wk(t) at time point t are introduced, where Gk(t) is computed with regard

to wk(t) and by applying Gk(t), wk(t) is updated to wk(t+ 1) using the following rule:

wk(t + 1) = wk(t)− ηGk(t), (2.29)

where η is the learning rate. Similarly, the virtual model w̃ trained on D is updated

as:

w̃(t + 1) = w̃(t)− ηG̃(t), (2.30)

Both single-step SGD and multi-step SGD compute gradients and update models

in chains. The difference is that single-step SGD aggregates all the local gradients at

every time step whilst multi-step SGD delays the aggregation. Fig. 2.2 illustrates the
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model

SGD update

aggrega!on

distribu!on

(copy)

. . .

. . .

. . .

. . .

client 1

(D1)

client 2

(D2)

client 1

(D1)

client 2

(D2)

w2(0) w2(1) w’2(1) w2(2) w’2(2)

w2(0) w2(1) w2(2) w2(3) w’2(3)

w1(0) w1(1) w1(2) w1(3) w’1(3)

w1(0) w1(1) w’1(1) w1(2) w’1(2)
+ +

+

+

G1(0) G1(1) G1(2)

G2(0) G2(1) G2(2)

G1(0) G1(1) G1(2)

w(0) w(1) w(2) w(3)

G(0) G(1) G(2)

w(4)

G(3)
. . .

G(4)

~ ~ ~ ~ ~

~ ~ ~ ~ ~

Centralised

(D)

G1(3)

G2(0) G2(1) G2(2) G2(3)

Centralised SGD

Distributed, one-step SGD

Distributed, Mul!-step SGD

Figure 2.2: The chains of gradient computation.

difference between single-step SGD update and multi-step SGD update on decentralised

data given two clients (i.e., two local datasets). With multi-step SGD update on

the clients, local gradients are sent to the coordinating PS for aggregation at a fixed

interval (i.e., a number of updates). In this part, the analysis presented is focused

on one interval containing τ SGD updates (for example, τ = 3 in Fig. 2.2) and one

aggregation.

In the following content, the gradient divergence is analysed given the same number

of SGD updates (i.e., τ) for calculating the centralised gradient G̃ and the aggregated

gradient G. Both G̃ and G are accumulated through τ updates. First, by summing

up Eq. (2.30) for all t = 0, 1, . . . , τ − 1 one can derive that

τ−1∑
t=0

w̃(t + 1) =

τ−1∑
t=0

(
w̃(t)− ηG̃(t)

)
, (2.31)

which can be reorganised by eliminating the terms w̃(1), w̃(2), . . . , w̃(τ − 1) on both

sides of the equation:

w̃(τ) = w̃(0)− η

τ−1∑
t=0

G̃(t). (2.32)

Similarly, using Eq. (2.29) one can formulate wk(τ) as:

wk(τ) = wk(0)− η

τ−1∑
t=0

Gk(t). (2.33)
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From the above equations, one can see that multi-step SGD accumulates the

gradients along the local update chains until aggregation happens. Aggregating the

accumulated local gradients across the clients yields:

Gcum(τ) =
1

|U |
∑
k∈U

τ−1∑
t=0

Gk(t), (2.34)

where
∑τ−1

t=0 Gk(t) is the accumulated gradients along the SGD chain of client k for τ

steps and Gcum(τ) denotes the aggregated gradient.

Note that averaging accumulated local gradients and aggregating local models are

equivalent, i.e.,

w(τ) =
1

|U |
∑
k∈U

wk(τ)

=
1

|U |
∑
k∈U

(
wk(0)− η

τ−1∑
t=0

Gk(t)
)

=
1

|U |
∑
k∈U

wk(0)− 1

|U |
η
∑
k∈U

τ−1∑
t=0

Gk(t)

= w(0)− ηGcum(τ), (2.35)

where w(τ) is the aggregated model at time point τ and the last equality holds by

ensuring a same base model w(0) for all the clients before the first update is taken,

i.e., wk(0) = w(0) for all k ∈ U .

Remark. Aggregating local models is the standard practice in FL. Eq. (2.35) indicates

that, to obtain an aggregated model (called the global model in FL), the coordinating

PS can either directly aggregate local models or aggregate accumulated gradients first

and then apply it to the latest consensus model. Besides, ensuring an identical base

model for every τ steps of local training is naturally achieved by the PS that distributes

the aggregated model (Eq. 2.35) back to the clients. The clients also typically have a

common initial model at the very beginning of the whole process.

Since model aggregation and gradient aggregation serve the same purpose, the

following content of this subsection assumes that it is the (accumulated) local gradients

that get uploaded to the PS for aggregation.

Without ambiguity, let G̃cum(τ) ≜
∑τ−1

t=0 G̃(t) representing the accumulated gradi-

ent in the centralised SGD chain. The expectation of G̃cum(τ) can be formulated
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as:

E[G̃cum(τ)] = E[

τ−1∑
t=0

G̃(t)]

=

τ−1∑
t=0

E[G̃(t)]. (2.36)

With the aggregated gradient Gcum(τ) given in Eq. (2.34), its expectation can be

formulated as:

E[Gcum(τ)] = E[
1

|U |
∑
k∈U

τ−1∑
t=0

Gk(t)]

=
1

|U |
∑
k∈U

τ−1∑
t=0

E[Gk(t)]. (2.37)

Combining Eq. (2.36) and (2.37), the expected difference between the aggregated

gradient by multi-step SGD and the centralised gradient can be formulated as:

E[Gcum(τ) − G̃cum(τ)] = E[Gcum(τ)]− E[G̃cum(τ)]

=
1

|U |
∑
k∈U

τ−1∑
t=0

E[Gk(t)]−
τ−1∑
t=0

E[G̃(t)]

=
1

|U |
∑
k∈U

τ−1∑
t=0

E[Gk(t)]− 1

|U |
∑
k∈U

τ−1∑
t=0

E[G̃(t)]

=
1

|U |
∑
k∈U

τ−1∑
t=0

(
E[Gk(t)]− E[G̃(t)]

)
(2.38)

From the equation, one can discover that the fact that Gcum(τ) deviates from

G̃cum(τ) boils down to the difference (in expectation) between local gradients {Gk(t)}k∈U

and the centralised gradient G̃(t) at each time point before aggregation. Recall that the

expectation of {Gk(t)}k∈U and G̃(t) are given in Eq. (2.23) and (2.22) respectively for

one SGD step, which can be rewritten with the notation of t for the case of multi-step

SGD:

E[Gk(t)] = E∼Dk
[g(wk(t))], (2.39)

and

E[G̃(t)] = E∼D[g(w̃(t))]. (2.40)

Remark. From the equations above and recalling the update rules, one can learn

that generally E[Gk(t)] ̸= E[G̃(t)] for multi-step SGD update even with a common
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initial model w(0). The reason behind is that Gk(0) = G̃(0) cannot be guaranteed no

matter the data are IID or not across the clients. Both gradients are random variables

(due to the nature of SGD) and the IID assumption, if it holds, can only guarantee

E[Gk(0)] = E[G̃(0)]. Consequently, wk(1) = w̃(1) cannot be guaranteed for any k ∈ U ,

which means E[Gk(t)] ̸= E[G̃(t)] since t = 1 because the gradients are computed w.r.t.

different models. In other words, the local SGD chains and the centralised sequential

SGD chain diverge at the second update.

To facilitate further analysis of gradient divergence for multi-step SGD, Assump-

tion 2.1 is made to bound the divergence of any local gradients in expectation. Similar

assumptions are also made in the literature [55, 84–87].

Assumption 2.1 (Bounded local gradient divergence). For any clients in U and

models wk(t) and w̃(t) at time point t, there exists an upper bound δ of the divergence

between Gk(t) and G̃(t) in expectation:

E∥Gk(t)− G̃(t)∥ ≤ δ. (2.41)

For multi-step SGD (equivalently, periodic model averaging as in FL) with a full

cycle of τ local updates and one global aggregation, the following Theorem holds:

Theorem 2.3. With Assumption 2.1 satisfied, the divergence between the aggregated

gradient Gcum(τ) and the centralised gradient G̃cum(τ) is upper bounded by τδ:

E∥Gcum(τ) − G̃cum(τ)∥ ≤ τδ, (2.42)

where τ is the number of SGD steps.

Proof. From the definitions of Gcum(τ) and G̃cum(τ) and using triangle inequality, one

can derive that

∥Gcum(τ) − G̃cum(τ)∥ = ∥ 1

|U |
∑
k∈U

τ−1∑
t=0

Gk(t)−
τ−1∑
t=0

G̃(t)∥

=
1

|U |
∥

|U |∑
k=1

τ−1∑
t=0

(
Gk(t)− G̃(t)

)
∥

≤ 1

|U |

|U |∑
k=1

τ−1∑
t=0

∥Gk(t)− G̃(t)∥ (2.43)
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Then by taking expectation of both sides and using Assumption 2.1, it follows that

E∥Gcum(τ) − G̃cum(τ)∥ ≤ 1

|U |

|U |∑
k=1

τ−1∑
t=0

E∥Gk(t)− G̃(t)∥

≤ 1

|U |

|U |∑
k=1

τ−1∑
t=0

δ

= τδ. (2.44)

Theorem 2.3 gives the divergence upper bound for multi-step SGD update with τ

as the aggregation interval. By revisiting the case of single-step SGD update, one can

also derive the corresponding upper bound E∥G− G̃∥ ≤ δ based on Assumption 2.1

from Eq. (2.21). By now one can discover the association between single-step SGD

and multi-step SGD: the gradient divergence upper bound is relaxed by a factor of τ

(i.e., the steps of update between two aggregations) using multi-step SGD update as

compared to the single-step SGD update based on a consensus model.

The result of the analysis reveals that for gradient-based training, having each

client/worker download the latest consensus model from the PS and limiting local

SGD update to one step can minimise the gradient divergence (and thus achieve faster

model convergence). This is the reason why most of the state-of-the-art distributed

training methods (e.g., SyncSGD [43], AsyncSGD [52], DC-ASGD [42], etc.) use

single-step SGD for each local update.

However, multi-step SGD update has its advantages in training and communication

efficiency. Clients/workers perform gradient computation and model update for several

mini-batches without communicating with the coordinating PS. This effectively saves

network traffic in the system. In particular, for synchronous training approaches,

reduced communication frequency means fewer synchronisation barriers and generally

higher overall efficiency of the training process.

Remark. The comparison between single-step SGD and multi-step SGD over de-

centralised data shows a trade-off between resource efficiency and model accuracy in

practical distributed machine learning systems. Exchanging gradients and the model

after each gradient computation (i.e., SGD update) theoretically yields the least error

of gradients. However, the benefit diminishes in the case of non-IID data where The-

orem 2.2 does not hold and the gradient divergence is more potentially unpredictable.
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This in some ways tips the scale towards the focus on communication efficiency and

motivates the study of (horizontal) federated learning. FL is essentially a multi-step

SGD paradigm with more flexibility in the number of steps, batch sizes as well as

the optimisation algorithm for local update. The key idea of FL is to relax the

gradient divergence in local training in exchange for significantly improved

communication efficiency. The advantages in communication efficiency can be

crucial in many resource-limited circumstances (e.g., MEC and IoT) where model

transfer takes much longer than local update on the training devices [80].

2.1.3 Participation and Aggregation

This section introduces the ways clients get selected to participate in a round of

training and subsequently how local models get aggregated into the global model.

Client participation can be flexible in an FL system. The standard algorithm

FedAvg uses a fraction parameter C to control the proportion of clients allowed to

take part in one round of training. In other words, given a set U of clients (which is

usually assumed unchanged throughout the process or at least determined for any

specific round), the parameter C ∈ [0, 1] pre-set by the server defines the quota C · |U |.

With C = 1 the recruiting mechanism is called full participation, otherwise (C < 1)

indicates partial participation. A special case where C = 0 is defined in [47], wherein

only one client is selected for local training each round regardless of the size of the

population.

Even though FL was initially devised with communication-efficient properties for

mobile and edge devices [12], various application scenarios are emerging where the

device population can range from a couple to more than a million. For this reason,

both full participation and partial participation can make sense depending on the

scenarios. For example, the comprehensive survey by Kairouz et al. [49] specifies two

typical scenarios of FL: cross-device FL and cross-silo FL. Cross-device FL is in line

with the original settings oriented to relative large population of participating devices,

whilst the cross-silo FL is defined as performing FL over a small number of data silos

each of which contains relatively large amount of data and is typically held proprietary

by an organisation such as an e-business company. In the case of cross-silo FL, it is

reasonable to allow full participation by all the parties because the clients are limited

in numbers but sufficient in computational and network resources.

The operation of model aggregation is executed by the server and can also take
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two different forms: full aggregation and partial aggregation. Full aggregation refers to

the aggregation rules that take into account all the clients when aggregating the their

local models. Every local model accounts for a term in the aggregation rule no matter

if the corresponding client participated in the round or not. Actually there are two

ways to perform full aggregation. The first way is termed keep-local aggregation in

this thesis and can be formulated as:

w(t) =
∑
k∈U

nk

n
w

(t)
k , (2.45)

where w(t) denotes the global model produced at the end of round t. Formally,

w(t) := w(tE) with tE being the final time step of round t and the same rule applies

to w
(t)
k . The local models are weighted by the local dataset size nk as the numerator

and the total size n as the denominator. For brevity, the value nk

n is termed relative

data size or data ratio in the following content. Note that the formula averages across

all the local models but one does not necessarily need to have them uploaded. From

the engineering perspective, the server can keep a cache of local models and every

round of local training results in a partial or full update of the cache. Then server only

needs to do aggregation based on the cache. This should be feasible as long as the old

entries (unchanged local model files) are compatible to the new entries (updated local

model files) when encryption or other privacy protection techniques apply. Details

on how techniques such as Homomorphic Encryption and Differential Privacy may

affect model aggregation are provided in the next section. Another full aggregation

implementation is keep-global aggregation which, as opposed to keep-local, replaces

the model entries of inactive clients with the existing global model when performing

the aggregation. Here inactive clients refer to those which did not participate in the

round. The rule of keep-global aggregation can be written as:

w(t) =
∑

k∈S(t)

nk

n
w

(t)
k +

∑
k/∈S(t)

nk

n
w(t−1), (2.46)

where S(t) is the selected clients (here drop-outs are not taken into account) for round

t and w(t−1) denotes the global model obtained at the end of round t − 1, i,e., the

consensus model at the start of round t. Technically, keep-global aggregation can also

be realised via a cache on the server as long as the encrypted (by HE) or masked (by

DP) models are cross-round compatible. The standard implementation of FL (i.e.,
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FedAvg) adopts full aggregation but the authors did not clarify whether the inactive

clients’ local models are replaced in the aggregation step.

Partial aggregation, as it literally indicates, is a class of aggregation rules that only

account for the updated local models in each round. Again, let S(t) denote the set

of clients that participate in round t and assume no crash or network failure. The

general rule of partial aggregation is formulated as follows:

w(t) =
∑

k∈S(t)

akw
(t)
k , (2.47)

where ak is the weight of client k’s model and generally should add up to 1 because

the global model is expected to be at the same scale as the local models. For example,

Li et al. [88] adopt partial aggregation in their approach and use 1/|S(t)| (where

|S(t)| = C · |U | is a constant in the paper) to weight the local models submitted each

round. From the theoretical perspective, the reason why they use equal weights is

that they select C · |U | clients using weighted random with nk/n being the probability

for client k to be selected. Besides, the work [85] proposed a distinctive aggregation

rule that weights each client model with its relative data size multiplied by a constant

|U |
|S(t)| = 1

C . The constant rescales the relative data sizes so that the sum of weights

adds up to 1 in expectation. Comprehensive convergence analysis is also provided in

their paper for all the three partial aggregation rules mentioned above.

A special case of partial aggregation is instant update of the global model, which

is designed to support more flexible pace control in asynchronous FL algorithms. As

opposed to the synchronous implementations of FL discussed above, asynchronous FL

algorithms remove the barrier of each round and allow the server to update the global

model upon the arrival of any local model. As an typical example, the FedAsync

algorithm [71] periodically selects a random subset of clients and distributes the global

model to them, after which the server launches an updater thread to keep listening

and performs the following update whenever a local model is uploaded:

w(t) =
(
1− α(t, tk)

)
w(t−1) + α(t, tk)w

(tk)
k , (2.48)

where w
(tk)
k is the client model trained based on a previous global model from some

logical time point tk before, and α(t, tk) is a staleness function that adaptively de-

termines the weights based on the difference between tk and the current (logical) time
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t. In the paper, the time stamp t is a server-side counter and increments whenever

the global model gets updated. The biggest advantage of asynchronous FL is that it

significantly reduces the interval between two global updates by making the model

aggregation an incremental operation. But the downside of asynchronous approaches

is also outstanding — the convergence of the global model largely depends on the

form of the staleness function (which has tunable parameters) and thus can be less

stable if the function is not properly set.

Table 2.1 categorises relevant studies of FL that adopt different participation and

aggregation rules in their implementations. Details of these studies will be discussed

in the next section.

Table 2.1: Categorised studies by participation and aggregation rules.

Refs.
Model aggregation

Full aggregation Partial aggregation
Full
particip-
ation

Wang et al. [55], Konečnỳ et al. [81],
Ma et al. [89], Mothukuri et al. [90],
Truex et al. [91], Yang et al. [92],
Ang et al. [93], Amiri and Gündüz
[94], Shlezinger et al. [95], Qu
et al. [96], Song et al. [97], FEDL
[98], FedCOM [99], SlowMo
[82], FedNova [100], EDM [101],
FedMA [102], PEFL [103], Fed-
Per [104], MOON [105], FedMD
[106], NbAFL [107], L2GD [108],
FedAwS [109], UVeQFed [110],
HFL [111], MFL [112], FedRo-
bust [113], C-DDPG [114]

Sprague et al. [72], Kall and Tra-
belsi [115], Ghosh et al. [116],
Yang et al. [117], Lalitha et al.
[118], So et al. [119], Chen et al.
[120], Liu et al. [121], Chen et al.
[122], CMFL [123], VerifyNet
[124], FeSEM [125], HybridAl-
pha [126], CFL [127], FedMe
[128], LG-FedAvg [129]

Partial
particip-
ation

Bonawitz et al. [12], Ramaswamy
et al. [16], McMahan et al. [47],
Konečnỳ et al. [130], Preuven-
eers et al. [131], Geyer et al.
[132], Chen et al. [133, 134, 135],
Jiang et al. [136], Chai et al.
[137], Li et al. [138], FedCS
[139], FedMom [140], SplitFed
[141], Favor [142], FL+HC [143],
huang2020RBCS-F [144], SAFA
[1], HybridFL [2], FedProf [3]

Li et al. [85] (2019), Li et al.
[145] (2020), Niu et al. [146], Yao
et al. [147], Sattler et al. [148],
Yang et al. [149], Zhu and Jin
[150], Nguyen et al. [151], Pil-
lutla et al. [152], Sun et al. [153],
Bonawitz et al. [154], Tolpegin
et al. [155], Shi et al. [156], Sarkar
et al. [157], Ye et al. [158] AFL
[159], FedAdam [160], FedAsync
[71], FedFusion [161], FedProx
[88], Power-of-Choice [162],
FedGLOMO [163], SCAFFOLD
[164], FedPAQ [165], MIME
[166], MUSCS [167], APFL [168],
TiFL [169], IFCA [170], Per-
FedAvg [171], FetchSGD [172],
FedBoost [173], FedDyn [174],
Ditto [175], FedGRU [20], VIR-
TUAL [176], FedProf [3]
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Note that the partial model aggregation may sound weird intuitively in the case of

full client participation, but it is actually reasonable for algorithms with asynchronous

nature, selective aggregation rules or failure-tolerant designs. For example, Dhakal et

al. [127] Coded Federated Learning (CFL) that preemptively calculates an estimate

of the gradient aggregate so that it allows the server to perform aggregation without

having to receive all the local updates. Kall and Trabelsi [115] adopt an asynchronous

FL algorithm for building code scanners wherein all devices are allowed to participate

at any time. The server is designed to perform instant model update upon the arrival

of any local update, which makes it a case of partial aggregation. A special case

of partial aggregation under full participation is client clustering (e.g., [116, 125],

where the clients perform local training, get clustered by some metrics and make

contributions to their corresponding cluster models only.

In the table, SAFA, HybridFL and FedProf are devised by the author and will

be introduced in details in Chapters 3, 4 and 5, respectively. Note that the proposed

FedProf is applicable to both full aggregation and partial aggregation.

2.2 Industrial Practice

The boom of research on FL has stimulated the development of prototype FL systems,

integrated FL platforms as well as a wide range of applications. In this section, first

provided is a brief review of existing FL systems and open platforms designed and

developed for FL. Then a number of emerging or potential application scenarios for

FL (especially horizontal FL) are introduced.

2.2.1 Open Platforms and Systems for FL

Platforms/Libraries

The implementation of a realistic FL system requires a comprehensive collection

of techniques spanning from networking and machine learning to encryption and

scheduling. It is usually not plausible for individuals or small groups of researchers

to build such a system from scratch. Fortunately, a number of open platforms and

libraries have been developed and released.

TensorFlow Federated
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TensorFlow Federated (TFF)2, maintained by the TensorFlow3 community, is

an open-source framework4 developed for facilitating research and experimentation of

federated learning algorithms and protocols. TFF was built on top of the TensorFlow

engine and provides a rich set of interfaces enabling developers to run the FL algorithms,

which can be built-in or customised, with their own models and data. It is worth

mentioning that the TFF provides two levels of APIs (fig. 2.3), Federated Learning

(FL) API and Federated Core (FC) API, to facilitate both easy plug-in of user models

for basic tasks and lower-level flexibility for customised FL algorithm reproduction.

Keras is the recommended base framework for model implementation on TFF.

Federated Core (FC)

Federated Learning (FL) Interfaces

Federated Computa�on Builders
(e.g., !f.templates, !f.learning.build_)

Models
(e.g., !f.learning.Model)

Datasets
(e.g., !f.simula�on.datasets)

computa�on.proto

Federated Operators
(e.g., !f.federated_sum)

Type System
(e.g., !f.FederatedType)

TF Computa�ons
(!f.!_computa�on)

Lambda Expressions
(!f.federated_computa�on)

Placement Literals
(e.g., !f.SERVER, !f.CLIENTS)

Figure 2.3: The architecture of TensorFlow Federated. (based on the official docu-
mentations and the author’s understanding)

PySyft

PySyft5 is a Python library for secure and private Deep Learning. PySyft integ-

rates the commonly used privacy-preserving techniques for FL such as Homomorphic

Encryption and Differential Privacy. The library also provides a bunch of interfaces

for performing federated learning over data of different owners securely. Note that

for complete implementation of FL, PySyft needs to be used within a main machine

learning framework such as TensorFlow or PyTorch6.

FATE

FATE7, developed and maintained by WeBank, is an industrial-grade, open-source

project that provides a secure computing framework to support the federated AI

2https://www.tensorflow.org/federated/get_started
3https://www.tensorflow.org/
4GitHub link: https://github.com/tensorflow/federated
5GitHub link: https://github.com/OpenMined/PySyft/blob/dev/packages/syft/
6https://pytorch.org/
7https://fate.fedai.org/
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ecosystem. FATE provides developers with out-of-the-box usability and built-in secure

computation protocols. It also features scalable modelling pipeline, clear visual

interface and flexible scheduling system. Researchers and developers can perform agile

experiments with pre-configured tasks like logistic regression, tree-based algorithms,

deep learning and transfer learning.

FATE itself has actually developed into a comprehensive ecosystem that encompasses

a pipelined high-performance FL system (FATE-serving) for production environment,

a module-based FL library (FederatedML) for developers as well as a bunch of tools

for building key components (e.g., networking, containerisation and visualisation) of

an FL system. The FederatedML library8 in the FATE project is developer-oriented as

it offers standard implementations of common algorithms and utilities in the form of

APIs. The architecture of the FederatedML library is illustrated in Fig. 2.4.

FederatedML, FATE

Framework (kits and models)

U!li!esFML algorithms

DataIO Intersect
Federated

Sampling

Homo NN Hetero LR Hetero LinR

Feature

 Scale

......

Encryp!on Sta!s!cs

Param.

Defini!on

Transfer Var.

Autogenerator

Secure Protocol

Figure 2.4: The architecture of FederatedML, FATE (based on the official documenta-
tions and the author’s understanding)

FedML

FedML9 is an open-source library for FL research and benchmarking [11]. The

library follows a versatile design and supports three different running mode: FL over

edge devices, distributed computing and standalone simulation. It also integrates a

variety of FL applications and state-of-the-art FL training algorithms. The library

is developed based on PyTorch as its training engine and uses MPI and MQTT for

its main backend module for communication. FedML also features cross-platform

compatibility with support of both mobile devices (Android and iOS) and IoT devices

such as NVIDIA Jetson Nano and RaspBerry Pi. Deployment on these specific

hardware requires two extension frameworks, FedIoT and FedMobile, on top of FedML

8https://fate.fedai.org/federatedml/
9https://fedml.ai
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(please refer to the official documentations for more details). Fig. 2.5 shows a structural

overview of the FedML library.

Figure 2.5: The architecture of FedML. (Source: He et al. [11])

An ecosystem has been built around FedML where a variety of domain-specific system

frameworks are provided. These systems use FedML as the core library and mainly

focus on models and datasets for specific tasks such as Natural Language Processing

(NLP), graph processing and Computer Vision (CV), or specific environments such as

IoT and MEC. These extension frameworks will be detailed later.

PaddleFL

PaddleFL10, or Paddle Federated Learning (PFL), is an open-source FL framework

developed on the basis of the scalable deep learning platform PaddlePaddle [177].

PaddleFL can be used to build easy-to-deploy horizontal FL systems over a large-scale

cluster or a two-party vertical FL system. Along with built-in FL algorithms, it also

10https://github.com/PaddlePaddle/PaddleFL
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provides a wide range of applications from CV and NLP to recommendation tasks

and elastic scheduling on Kubernetes.

Figure 2.6: An overview of the PaddleFL framework. (Source: PaddleFL documenta-
tion at https://paddlefl.readthedocs.io/en/stable/)

Frameworks/Systems

Though we have seen the emergence of both research-facilitating platforms (discussed

above) and conceptual FL system designs [121, 178, 179], production FL systems at

scale are still scarce due to the underlying engineering complexity. Only Google and a

few tech giants have the user coverage and social influence to facilitate and benefit

from a large-scale FL system.

Google

Google built a scalable production system for federated learning and introduced

its high-level designs in their published paper Towards federated learning at scale:

System design [12]. The system was developed based on TensorFlow in the domain

of mobile phones. According to the authors, the system has reached the standard of

production with capability to run federated learning over tens of millions of real-world

devices. The system uses a learning algorithm that basically follows FedAvg [47]

and also incorporates several engineering techniques and tricks to address practical

issues. For instance, a mechanism called pace steering is adopted along with partial

participation to control the pattern of device connections. An FL plan needs to be

generated for each task and the plan describes the model (in the TensorFlow graph

format) and configuration for on-device training as well as the aggregation logic for

the server. Figs. 2.7a and 2.7b depict the software architectures for the device side

and the server side, respectively.

FATE-Serving

50

https://paddlefl.readthedocs.io/en/stable/


Chapter 2. Background and Literature Review

(a) device architecture

(b) server architecture

Figure 2.7: The software architecture of Google’s FL system implementation. (Bonaw-
itz et al. [12])

Within the FATE ecosystem, FATE-Serving11 is a highly-integrated FL system

that supports federated learning and online reasoning in production environments.

FATE-Serving not only provides out-of-the-box models, datasets and FL algorithm

implementations, but also has a built-in pipeline that connects basically all the

inference procedures from post-processing to A/B testing. Fig. 2.8 shows the overall

architecture.

Figure 2.8: The architecture of the FATE-Serving system. (Source: official document-
ation at https://fate.fedai.org/fate-serving/)

FATE-Serving features a centralised job scheduling subsystem FATE-Flow, which

11https://fate.fedai.org/fate-serving/
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Figure 2.9: The architecture of the FATE-Flow scheduling subsystem. (Source: official
documentation at https://github.com/FederatedAI/FATE/tree/master/python/

fate_flow)

manages the entire federated learning job cycles including data pre-processing, feature

engineering, statistics tracking, fine-grained task scheduling and resource allocation.

According to the official documentation, FATE-Flow now supports both single-party

scheduling and multi-party coordinated scheduling of FL jobs described in the form of

Directed Acyclic Graphs (DAGs). Fig. 2.9 shows the architecture of the scheduling

subsystem FATE-Flow. Trained models can be published via the model registry module

on the server and be tracked through HTTP APIs. In addition, the FATE-Serving

system provides an online inference pipeline based on the gRPC protocol that allows

for request-driven remote reasoning.

Domain-specific Frameworks

FedNLP

FedNLP is an open-source framework built on top of FedML specifically for research

on NLP tasks under FL settings. The framework has been released as a GitHub

repository and officially introduced in [180]. 10+ benchmark datasets for experimental

evaluation on NLP tasks are provided within the framework in a pre-partitioned

format. The overall structure of FedNLP is shown in Fig. 2.10.

FedGraphNN
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Figure 2.10: The structure of the FedNLP framework. (Source: GitHub documentation
at https://fate.fedai.org/fate-serving/)

FedGraphNN was built on top of the core APIs of FedML. It is an open framework for

facilitating research on Graph Neural Networks (GNNs) in federated learning systems.

A number of benchmark datasets are also incorporated covering several molecular ML

tasks in quantum mechanics, physical chemistry, biophysics and physiology domains.

The framework, federated GNN algorithms and the datasets are detailed in the paper

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks

[13].

FedCV

FedCV is another FedML-based, research-oriented FL framework specifically de-

veloped for evaluating and benchmarking FL algorithms on computer vision tasks. At

the time of writing, four popular datasets and six state-of-the-art models are integrated

within the framework for three categories of CV tasks (i.e., image classification, image

segmentation and object detection), together with a non-IID pre-processing module

(implemented based on Latent Dirichlet Allocation). These datasets will be introduced

in Section 2.4. Fig. 2.12 illustrates the overall structure of FedCV.
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Figure 2.11: FedGraphNN architectural design. (Source: He et al. [13])

Figure 2.12: FedCV architectural design. (Source: He et al. [14])
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2.2.2 Application Scenarios

FL has great potential to drive a diversity of real-world applications including naviga-

tion optimisation, content suggestion [12], health care (e.g., NVIDIA Clara Imaging12)

and service recommendation [181]. This section introduces a number of representative

applications driven by FL.

Commercial Applications

As the initiator of FL, Google has created or optimised quite a few commercial

applications through the deployment of federated learning. The most famous example is

Google Keyboard (GBoard), which is claimed to have been optimised over a global scale

of user population. Researchers and engineers of Google first targeted at the three basic

features of GBoard: next-word prediction, auto-correction and word completion. As

revealed in [182, 183], the old-version prediction mechanism for GBoard was based on an

n-gram finite state transducer (FST) and a static Katz smoothed Bayesian interpolated

5-gram language model. To improve the prediction quality with constrained memory

and data, they switched to Coupled Input-Forget Gates (CIFG) for the language

model and deployed the application in an FL setting to realise large-scale training in

their live production environments. The training process involved 1.5 million clients

in North America over a course of 3000 FL rounds (4–5 days), as reported in their

paper [15].

(a) Next-word predictions

(b) Emoji predictions

Figure 2.13: GBoard virtual input assistant. (Source: Hard et al. [15] and Ramaswamy
et al. [16])

The adoption of FL for user experience enhancement is not just limited to the

next-word prediction function in GBoard. Research efforts have also been made in

12https://developer.nvidia.com/clara-medical-imaging
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dealing with out-of-vocabulary words and emoji predictions [16, 134]. Further, Google

optimised the use case of search query suggestions for GBoard by integrating an

triggering model trained on the user behaviour data under the federated learning

framework [17]. The triggering model learns from users’ reaction to the suggested

queries (generated by a baseline model, stored locally in a SQLite database) and acts

as an filter to keep useful queries only. This optimised search query suggestion solution

is depicted in Fig. 2.14.

Figure 2.14: GBoard search query suggestion architecture. (Source: Yang et al. [17])

Figure 2.15: An example of how FLoC groups users into cohorts to guarantee k-
anonymity (k = 3 in this example). The grouping is based on the ‘likes’ of users
according to their browsing history. For more details, see the FLoC whitepaper.
(Source: Ravichandran and Vassilvitskii [18])

Apart from typing assistant applications, Google has also made ambitious attempts

to replace the ‘reigning’ third-party cookies with a new cohort-based user grouping
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technique called FLoC [184]. FLoC is designed for better privacy protection of users’

browsing behaviours by means of hashing, clustering and FL so that individual users’

properties are less exposed (see Fig. 2.15 for an example). Google Research & Ads

realised a whitepaper titled Evaluation of Cohort Algorithms for the FLoC API [18]

where part of the technical details for the FLoC technique is revealed. As an addition

to the proposals, the adoption of federated learning is expected in the future to address

the privacy concerns of the clustering-based algorithms introduced by FLoC.

With the rising concerns of user privacy, more and more commercial applications,

such as content recommendation and advertising, may have to follow the paradigm

shift from mining centrally stored data to learning over decentralised data. Federated

learning has a great potential in leading the trend.

Healthcare and Medicine

Among all the potential applications, healthcare and medical informatics draw the

most attention [185, 186]. This is mainly because clinic data are very sensitive

whilst biomedical analytics heavily relies on colossal volumes of data for healthcare

applications [59]. Federated learning enables inter-institutional collaboration for such

applications and is thus believed to be the future direction for biomedical research

[187].

Substantial evidences for FL’s efficacy in training diagnostic models have been

reported by Sheller et al. [19] in their article published in Scientific Reports, Nature.

The authors evaluated different model training approaches on a medical imaging task

of brain tissue labelling. Fig. 2.16 outlines their federated learning based approach.

The experiments were conducted using multi-institutionally collected glioma data

from the BraTS 2017 dataset plus clinically-required brain tumor MRI scans from

the University of Texas MD Anderson Cancer Center (MDACC) and the Washington

University School of Medicine in St. Louis (WashU). Their empirical results report

that federated learning can achieve a competitive model quality (measured by Dice

Similarity Coefficient [188]) to centralised training.

Security and Smart City

Federated learning can also have catalytic impact on corporate applications where a

joint model is much needed but data sharing is prohibited between multiple organisa-

tions. Typically cross-silo FL applications include cyber security [90], smart city [20],
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Figure 2.16: The FL-based, data-private collaborative training approach evaluated in
[19].

intelligent surveillance [189, 190] and health informatics [186].

Security is a long-term concern across multiple domains whilst conventional data-

sharing solutions usually achieve security by compromising privacy. In this aspect,

federated learning can be a promising next-generation solution. For example, existing

cyber-security companies are working independently on their own risk detection models

using their proprietary data; but with FL, they can probably find a way to enhance

every party’s model through collaborative training without revealing their own data.

The German corporation SAP developed a code scanning tool named Credential

Digger [115], which adopts asynchronous FL to train a sensitive code token detection

model over private code repositories. As an increasing number of risk, leakage and

anomaly detection methods are model-driven and built on a large amount of log

data, federated learning may well be the key technology for next-generation security

solutions on the basis of cross-organisational collaboration.

Learning from big data is a critical part of realising smart cities where many

everyday applications such as delivery service (e.g., UberEats13) can be optimised with

FL-based technologies [158, 191]. Traffic management is a long-time predicament for

metropolitan development and also a principal topic in the course of realising smart

cities. Liu et al. [20] proposed a traffic flow prediction (TFP) solution FedGRU using

the Gated Recurrent Neural Network (GRU) as the prediction model. To address

13https://eng.uber.com/michelangelo-machine-learning-platform/
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Figure 2.17: Different sources of traffic data kept by separate organisations. (Source:
Liu et al. [20])

the problem of ‘data islands’ in TFP (Fig. 2.17), they built a privacy-preserving

training framework based on an improved federated learning algorithm via client

clustering. The developers also adopt a joint announcement protocol to coordinate

the participating organisations in each round of training.

2.3 Related Studies

This section reviews the relevant studies of federated learning including the distributed

machine learning algorithms that cornerstone the development of FL, state-of-the-art

algorithms and protocols for horizontal FL, variants of FL paradigms for specific

learning problems or network topologies, communication optimisation in resource-

limited FL systems, privacy protection and anti-adversary solutions for FL, and

real-world application scenarios of FL.

2.3.1 Learning from Decentralised Data

The roots of machine learning are entangled with the studies on convex optimisation

problems. Among the big family of optimisation algorithms [192–194], gradient-based

training methods are arguably the most important building blocks of modern machine

learning (especially deep learning) models. In the meantime, the increasing volume

of data needed for training deeper and wider models has motivated the research on
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parallelising gradient-based model training over multi-core systems (e.g., IBM Power9

[195]), GPU clusters or inter-connected machines. Therefore, it is necessary to first

discuss the algorithms for parallel and distributed optimisation.

Stochastic gradient descent is naturally suited for data parallelism where the

process of inference (for example, forward propagation through layers in a neural

network) for each sample within a mini-batch of data runs in parallel and so does

the back propagation [196, 197]. Zinkevich et al. [198] discussed a very simplistic

approach to performing distributed SGD over a multitude of machines. Their training

algorithm only requires a ‘one-shot’ averaging of models that are trained locally by

separate workers using SGD. Shamir et al. [63] proposed a distributed optimisation

algorithm based on an approximate Newton-like method (DANE), which takes multiple

synchronous steps to gather local gradients, broadcast the gradient of the global

objective function and perform model aggregation. DANE performs local updates

with second-order gradient information (Hessian) but does not need to exchange it.

Mann et al. [65] discussed three distributed SGD-based training algorithms including

synchronous gradient computation, majority vote and mixture weight methods. With

conditional maxent models the training algorithms were evaluated in terms of prediction

accuracy and CPU and memory consumption. Note that the mixture weight method

is essentially the same as the one-shot averaging method [198] and the parameter

mixing method [62]. They incur very little network usage but potentially lead to a

biased final model over non-IID data.

Asynchronous approaches have also drawn lots of attention due to better scalability

and flexibility [52]. For example, ASAGA [67] is a distributed version of the SAGA

[199] optimiser with modifications to the update rule for gradient sparsification and

an asynchronous online algorithm for shared-memory architectures with potential

read inconsistency. Reddi et al. [200] proposed a generic framework for running

variance-reduced gradient-based optimisation (including SAGA and GD) on multiple

processors in parallel. Each processor works asynchronously on four key operations:

read, read schedule iterate, update and schedule update. The schedule here refers

to the historical gradients/weights stored in a shared memory. Variance reduction is

an effective method for optimising local SGD by eliminating the gradient variance

among workers. Liang et al. [201] introduced VRL-SGD, a distributed update

scheme that has each worker track the average global–local gradient deviation which

is used to rectify stochastic gradients of local objectives. Duchi et al. [61] studied
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the optimisation problem over sparse data and proposed an asynchronous training

algorithm named AsyncDA. This method shares the dual vector (i.e., the accumulated

gradient) among the workers each of which works out the model parameters before

gradient computation and update. Another example of fully asynchronous update

scheme is called Hogwild! [68], which is a lock-free distributed training method that

sparsifies the local SGD updates by computing gradients with regard to the subvectors

instead of the full vector of the central model’s parameters. On the contrary, Langford

et al. [69] constrained the update order of data processors to a round-robin fashion

which allows every processor to access the latest model parameters (so that gradients

can be computed) but only applies the gradient after a fixed delay (i.e., number of

updates). Agarwal and Duchi [202] adopted a similar delayed SGD approach using a

master node for model distribution. Though theoretical proof has been provided to

support the convergence, delayed update can still be ‘poisoning’ for the asynchronous

setting. To address it, researchers came up with delay-compensated update schemes

[42, 70] that ‘compensate’ the out-of-date gradients or losses (from slow workers) via

mathematical approximation or prediction before being applied to update the model.

Synchrony in distributed training avoids stale gradient poisoning but can be slow in

practice due to device heterogeneity. Nonetheless, various mechanisms can be applied

to make synchronous training more efficient. Chen et al. [43] figured out the negative

impact of stale gradients caused by asynchrony and introduced backup workers into the

standard implementation of synchronous SGD for straggler mitigation. By experiments

they demonstrated faster and better convergence than the asynchronous optimisation.

Synchronous implementations can also be flexible. The DC-S3GD algorithm [64]

uses a stale-synchronous mechanism that parallelises gradient computation and the

non-blocking version of AllReduce operation. The algorithm also incorporates a step

for gradient correction with the distance between local update and the average update.

Zhang et al. [51] introduced a proximal term (as the distance between each local model

and a center model) to the overall objective function so that both types of models can

update according to their respective gradients. The scheme, namely Elastic Averaging

SGD (EASGD), was further extended by the authors for both synchronous training

and asynchronous training.

In terms of system design, Agarwal et al. [66] developed a scalable linear learning

system compatible to large-scale data storage systems with MapReduce logic such as
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Hadoop14 and provides the MPI–style AllReduce operation15 for running gradient-

based optimisation algorithms (such as GD and L-BFGS [203]) in parallel. Similarly,

Distributed GraphLab [204] is a machine learning and data mining framework built

based on a shared-memory system. It supports a high degree of parallel performance

by virtue of its distributed data graph representations and distributed lock engine.

2.3.2 Horizontal Federated Learning

Horizontal federated learning was (and in a sense still is) the de facto implementation

of FL before a number of variants evolved from the original framework. The horizontal

FL paradigm stems from the traditional data-parallel distributed learning paradigm

(which has been extensively studied in the last decade as discussed in the last section),

where the data are distributed across multiple workers (namely clients in the context

of FL) and the local data sets i) are non-overlapped or have little overlap in sample

IDs, ii) share the feature space, i.e., have identical sample attributes, and iii) have

labels for their own samples.

In this section, relevant studies on optimising horizontal FL are reviewed from

eight perspectives.

Update rules

The process of FL entails frequent local model update (i.e., client-side update) and

less frequent global model update (i.e., server-side update). Generally, the clients and

server need to exchange intermediate results, such as stochastic gradients or models,

so as to benefit from each other’s update. Both types of update are vital to the

performance of FL in terms of the global models’ convergence and local models’ utility.

A branch of studies, inspired by distributed learning algorithms [200, 201], are

focused on refining the update rules for FL. The common motivation behind is to

realise variance reduction in each update step by introducing server-side incremental

update [71, 99], local and/or global momentums [82, 112, 140, 160, 163, 172, 174] or

general control variates (i.e., state variables that facilitate the update of models) [166].

These methods typically have improved convergence guarantees towards heterogeneous

data distribution.

Special update rules are also employed in many other approaches. To compensate

14http://hadoop.apache.org/
15https://www.open-mpi.org/
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the missing updates from inactive clients, Dhakal et al. [127] use a novel gradient

aggregation formula that encompasses two types of partial gradients that respectively

come from participating devices over the network and the composite parity data shared

by the clients. FedBoost [173] replaces the traditional consensus model on the server

with an ensemble model built upon a group of pre-trained base models, wherein the

corresponding update rule is devised for finding the optimal ensemble coefficients.

Wang et al. [102] studied the permutation invariance properties for popular neural

networks and proposed a layer-wise model aggregation strategy that aligns the neurons

(for MLPs), channels (for CNNs) or states (for RNNs) before averaging the parameters.

Objective adaptation

All gradient-based optimisation algorithms are tightly coupled with the form of the

objective functions (also termed empirical risk in the literature), which is intuitive

because gradients, subgradients and Hessians are defined based on the objective

function with regard to the model that we aim to optimise. In the case of horizontal

FL, the global objective (see the previous section for the standard form) is defined

as a weighted average of the local objectives. Every participating client takes the

responsibility of local training, e.g., using SGD or momentum methods, with the aim

of minimising its local objective function [47, 81, 85].

Many researchers have investigated the relation between the global objective F (w)

and the local objectives {Fk(w)}k∈U of FL and figured out their inconsistency over

heterogeneous data [88, 100, 102, 116], which slows down the convergence of the global

model and compromises its accuracy [101, 137]. Essentially, this is caused by the

discrepancy between the local data distribution Dk and the population distribution D,

which consequently yields divergent local optima in the parameter space (as illustrated

in Fig. 2.18) or mathematically,

arg min
w

F (w)︸ ︷︷ ︸
w∗

̸= arg min
wk

Fk(wk)︸ ︷︷ ︸
w∗

k

,

and typically the optimal combination of local optima is not aligned with the aggrega-

tion rule:

w∗ ̸=
∑
k∈U

|Dk|
|D|

w∗
k,

which results in the sub-optimality of the aggregated global model in heterogeneous
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settings.
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Figure 2.18: Illustrating the drift of local optima from the true global optimum in FL.

To address the aforementioned issue, the local and/or global objectives need to

be ‘corrected’. A common technique is to introduce a proximal term [205–207] to the

local objectives [71, 88, 151, 174]. The idea was initially adopted in the approaches to

optimising centralised SGD such as SAGA [199] , which again can be viewed as an

effective way to reduce gradient variance [208]. In the case of FL, the global model is

suited for being the reference point for the local model in the parameter space, such

that a proximal term can be added to the original local objective, i.e.,

F ′
k(wk;w) = Fk(wk) +

µ

2
∥wk − w∥2︸ ︷︷ ︸

proximal term

, (2.49)

where w is the global model, wk is the local model and µ is a tunable parameter.

The key benefit of introducing the proximal term to local update (for example, as in

FedProx [88]) is a soft restriction that pulls local models closer to the global model

to mitigate heterogeneity. Besides, some approaches such as FedDyn [174] and FOLB

[151] make further modifications to the local objectives to achieve faster convergence

whilst some reconstruct the entire optimisation problem [113, 145, 171, 209] or redefine

the relation between local update and global update [51].

Adaptive steps

The standard implementation of FL adopts the synchronous design because it provides

better convergence property than asynchronous approaches in terms of the logical

steps of updates needed [43]. But the practical issue of device heterogeneity stands
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out in realistic systems and makes FL less efficient [137]. To this end, efforts have

been made in the design of adaptive configurations for local updates.

Flexible participation schemes were proposed to accelerate each round of local

training by allowing (the selected) clients to submit incomplete updates [210] or opt

out of a round [127] without hindering the global aggregation. The study by Wang

et al. [100] takes into account situations where clients may take inconsistent number of

steps and the authors further proposed to mitigate the problem by using normalised

gradients and effective steps.

In most cases, it is the server that is responsible for setting up the training

parameters (or termed hyper-parameters as they are used by the training algorithms).

Realistic systems (e.g., IoT, MEC and crowdsensing) with limited resource budgets

are usually sensitive to the trade-off between model convergence and resource usage.

Therefore, in such circumstances it is imperative to consider the heterogeneity of

devices in performance including and not limited to their data size, computational

power and network throughput. Studies have shown that convergence improvement

can be made through intelligent scheduling and configuring schemes such as adaptive

aggregation frequency control [55] and adaptive (local) batch sizes and learning rates

[89, 211].

Asynchrony

In the context of FL, asynchronous mechanisms are tempting due to the potential

efficiency boost just like they are for traditional distributed learning paradigms. The

main reason why asynchrony is usually thought to be advantageous over synchrony

boils down to the ‘straggler effect’ which means that the overall efficiency of the learning

process is basically decided by the slowest members among the participating clients

[169]. Therefore, it is natural for the researchers to seek asynchronous alternatives

[71, 72, 212, 213] that can release the server from awaiting stragglers.

A representative implementation of asynchronous FL is the FedAsync [71] al-

gorithm which inherits the instant global update mechanism from AsyncSGD ap-

proaches [52, 61, 67]. FedAsync features incremental update with staleness control

at the server-side and proximity operator SGD update at the client side. The concept

of rounds (or epochs as termed in the paper) is kept for evaluating staleness but a

separate thread is used for client selection periodically. The work by Kall and Trabelsi

[115] adopts the FedAsync algorithm for training sensitive code token scanners
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collaboratively in an FL setting. They introduced extra personalisation mechanism to

the local models, namely model interpolation and data interpolation, so as to refine

local models’ performance on local data.

Even though convergence guarantee is provided by Xie et al. [71], asynchronous

approaches are empirically expected to take more update steps than synchronous

FL to achieve the global model’s convergence [43, 55]. Asynchrony may lead to less

stable convergence over non-IID data because of the increased divergence of local

models [101] and consequently brings about more communication costs. Besides,

commonly-used privacy protection techniques such as DP [154, 214] are incompatible

with asynchronous model or gradient uploads [169].

Client selection

As discussed in the research motivation (Section 1.4), client selection is a stage of the

standard FL process and can be key to the optimisation of FL’s efficiency. The random

selection method [12, 47, 55] implicitly assigns equal importance to every client, which

could be problematic from two different perspectives. First, the heterogeneity of

devices in performance directly causes potentially huge difference in local training

speed and consequently brings about the ‘straggler effect’. The slow devices always

have a fixed probability to be selected with the aforementioned random selection

policy and cause a ‘slow round’. Picking (potential) stragglers into a round of training

directly hurts the FL’s efficiency. Second, from the perspective of data heterogeneity,

random selection is susceptible to the ‘model poisoning’ attacks by malicious clients or

clients with low-quality data (e.g., noisy and irrelevant samples) [215]. Also, despite

the quality of device-held data, the statistical heterogeneity of data can lead to large

divergence between some local models and the others, which degrades the efficacy of

model aggregation.

Straggler mitigation is an important topic for realistic environments. A straightfor-

ward solution is to preemptively exclude the potential stragglers in the selection stage

[139]. Chai et al. [169] provide a different view of the problem by grouping clients

into several ‘tiers’ according to their performance level. They proposed a tier-based

solution (TiFL) that performs tier-wise client selection and incorporates a dynamic

mechanism for updating the weights of the tiers based on accuracy evaluation.

Taming the statistical heterogeneity of data has attracted much attention from

researchers in the field of FL. A variety of selection-based approaches are adopted such

66



Chapter 2. Background and Literature Review

as weighted random selection based on data sizes [88], error/loss-oriented selection

policies [159, 162], and Reinforcement Learning (RL) based selection policies [142, 216].

Since each client is bound to a specific local dataset, selecting the ‘right’ clients can

facilitate the convergence of the global model. This can be achieved by involving an

extra set of clients to correct the local updates before aggregation [151], or dynamically

adjusting the participation probability of clients based on the norm of their updates

[122].

FL has a lot of potential as a means of model training in modern crowdsourcing

and crowdsensing systems [217, 218]. In such scenarios, an incentive mechanism

is much needed [78, 79]. Besides, from the standpoint of the task publishers (who

publish the machine learning task over the network and recruit participants), it is of

great importance to dynamically assess the reputation and actual contribution of the

participating devices in the system [179, 219].

Representation exchange

The magic of deep learning is in a sense attributed to the power of representation

learning. It is the ability of the networks to learn multi-level latent representations

that enables deep models to work well on data with complexity [220].

Extensive exploration has been taken from the perspective of how to learn more

useful representations. On this point, most of the efforts were made by the researchers

with interests in maximising the performance of a single model. However, with the

surging need for distributed machine learning, the investigation of representations

as an exchangeable information is still lacking. Note that the representations here

refer to the hidden activations of any (multi-layer) ANNs rather than the specific

distributed (word) representations [221–223] (or termed embeddings) for NLP tasks.

The representations (of data) produced by the deep models can be used to prevent

the local model divergence in FL. Based on this idea, Li et al. [105] proposed (MOON),

a Model-Contrastive Federated Learning framework that rectifies the directions of

local training by constraining the dissimilarity between the representations from local

models. This is realised by introducing the representation similarity between three

types of models (current local model, previous local model and the global model) into

the local loss function. Representations are also useful for building personalised local

models, which will be discussed in the next category — Specialised local models.

Although representation exchange is widely adopted in Federated Transfer Learning
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(FTL), it is barely explored in the context of horizontal FL. As a contribution of this

thesis, Chapter 5 investigates the value of representations and the utilisation thereof

for efficient horizontal FL.

Specialised local models

Specialised local models are a result of running FL for maximising the performance of

local models on individual devices instead of building a generic global model (which

could be a by-product though). They are defined as opposed to the general-purpose

global model and developed for situations where the users want to have unique and

‘strong’ local models customised for their own data.

The motivation of specialisation is well supported by the heterogeneity of local data

[101, 115, 224]. Model personalisation can be very necessary when local performance is

a paramount demand. Tan et al. [225] reviewed the existing approaches to personalised

FL (PFL) and categorise them into data-based methods and model-based methods.

The majority of personalised FL approaches are model-based methods where the local

objectives and update rules are tailored [128, 168, 175, 226], the models are split

to keep local knowledge [104, 129] or the global model is mixed with local models

[108]. Clustering is a promising solution to data heterogeneity [227]. By dynamically

grouping clients into clusters, e.g., based on their model parameters [125, 143, 170] or

their affinity to the cluster models [170], each client is assigned a model that is still

shared (among a group of similar clients) but more fitted to its own data. In addition,

researchers have found the intrinsic association between the personalisation of FL and

emerging ML paradigms such as Knowledge Distillation [106, 228, 229], Multi-Task

Learning (MTL) [76, 176, 228] as well as Model-Agnostic Meta Learning (MAML)

[171].

Extreme conditions

Federated learning is meant for large-scale distributed machine learning, so extreme

conditions should be expected. These conditions include but are not limited to strongly

biased data distribution [109], pervasive data of low quality [3, 230], the existence of

unreliable devices and adversaries (also termed Byzantine machines in the literature)

[116, 119] and extremely limited resources available [229].

Among these performance-affecting conditions, the scarcity of communication-

related resources can be mitigated through various techniques that will be discussed
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later in the Section 2.3.4 Communication in FL systems. Methodologies for addressing

potential adversarial participants will be reviewed in the Section 2.3.5 Privacy and

Security in FL.

2.3.3 Other FL paradigms

The paradigm of horizontal FL covers the majority of use cases from cross-device

learning systems to cross-silo collaborative scenarios [49]. Yet some situations are out

of the scope and require specifically designed learning paradigms.

Vertical Federated Learning (VFL) and Federated Transfer Learning (FTL) are

popular variants that follow the primary principles of FL, namely no raw data exchange,

and have the potential to make great impacts in many industrial applications. Both

VFL and FTL are formally defined and included in the IEEE Standard 3652.1-2020.

Fig. 1.6 in the previous chapter illustrates their difference from the perspective of data

domains.

Vertical FL was developed for training across different feature spaces and has much

in common with some branches of existing ML paradigms including Split Learning

(SL) [104, 141], Multi-View Learning (MVL) [231] and ensemble learning [173, 229].

In the IEEE standard, the paradigm is described in the following extract:

Vertical FML16 refers to building a model in the scenario where data sets

have significant overlaps on the sample space D, but not on the feature

spaces (X2, X2, . . .). In this case, an FML model can be built as if the data

is split and joined vertically. Vertical FML may apply to scenarios where

there are insufficient features or labels to build a high-quality model. (p.17,

IEEE Standard 3652.1-2020)

Comparing to VFL, federated transfer learning targets at more special scenarios

where the goal is to help one of the multiple (usually two) parties establish a model

with the knowledge from the other party/other parties that have a fairly different

set of samples and features with labels. The IEEE standard describes FTL in the

following way:

Federated Transfer Learning (FTL) refers to the federated machine learning

technique designed for application scenarios where data sets have no signi-

ficant overlap on neither the sample space nor the feature space. FTL takes

16Synonymous for Vertical FL
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advantage of transfer learning techniques to exploit reusable knowledge

across different feature domains, and consequently, results in high-quality

FTL models despite small data and weak supervision difficulties. (p.19,

IEEE Standard 3652.1-2020)

Both VFL and FTL have drawn attention from researchers in recent years. Yang

et al. [48] presents a survey on the definitions, workflows and applications of these

FL paradigms. Due to the constraints on loss and gradient encryption, most of

the researches on Vertical FL are mainly confined to relatively simple models (such

as logistic regression) that take the form of an additive combination of the sub-

models’ outputs (i.e., intermediate results produced by the models on different devices)

[48, 232–235]. Only a few stand out and seek to generalise VFL to general-purpose ML

models and loss functions [212, 236], multi-party scenarios [236, 237] or coordinator-

free architectures [233, 234]. Since a common intersection of data entities is usually

needed for both VFL and FTL, entity alignment (also termed Entity Resolution in

the literature) is a vital pre-processing work [233, 238]. Errors (especially cross-class

mismatching) in entity alignment can have a big impact on the models to be learnt

[239]. Compared to VFL, the investigation of FTL is relatively lacking. This is in

some ways due to the inherent similarity between the two paradigms and in most

cases, cross-feature space learning algorithms for VFL can be easily adapted to FTL

scenarios [240, 241].

The pervasive nature of FL also facilitates researches on adapting emerging ma-

chine learning paradigms to the framework. Wu et al. [242] explore the possibilities

of realising personalised FL at the network edge via Federated Transfer Learning,

Federated Meta Learning, Federated Multi-task Learning, Federated Distillation and

data augmentation. Moreover, fully decentralised FL in Peer-to-Peer (P2P) networks

has also become a topic of interest [58–60, 118, 243].

2.3.4 Communication in FL systems

Communication is always reckoned as the bottleneck of networked systems and should

be a primary concern in the design of distributed learning algorithms [244]. FL is of

no exception and the time cost of communication usually plays the main factor in

terms of FL’s efficiency [245, 246].

The most straightforward method for reducing communication cost is payload com-
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pression [247], which can be applied to the transmission of models and model updates

(e.g., accumulated gradients). In the context of FL over a wireless network, the two

most popular compression methods are sparsification and quantisation. Sparsification,

or termed top-k sparsification, refers to a class of compression methods that sparsify

the vector (e.g., a flatten model) by only keeping the k largest entries with all the

rest omitted [86, 148, 248, 249]. Theoretical analysis provided in Stich et al.’s work

[86] proves that sparsification does not degrade the convergence rate of distributed

SGD. Liu et al. [250] further improved the efficacy of sparsification by virtue of a

hierarchical structure.

In contrast to sparsification, quantisation does not change the length of the vector

but instead does a ϕ : R → Fq mapping for every component in the vector. Here

Fq is a finite field with only q elements. Since FL typically works at scale, the error

caused by model or update quantisation is usually controllable whilst the reduction

of traffic is substantial [80, 110, 135]. The compression rate can be further improved

by combining the two methods together [148]. As an alternative option, the number

of parameters to transfer can be reduced by directly splitting the models and having

each client only exchange a part of them with the server [141, 251].

The complexity of optimising the communication in FL boils down to the trade-off

between faster convergence and lower communication costs. When it comes to the

network edge, resource allocation becomes critical [178]. Based on this fact, some

studies seek to find joint solutions to the problems of client selection/scheduling and

network resource allocation [120, 135, 156, 252]. Partial participation is very necessary

in resource-limited edge environments, and it has been proven, both theoretically and

empirically, that precluding some ‘less useful’ updates can save traffic without affecting

convergence [120, 123].

Federated learning is naturally suited for collaborative machine learning over

mobile devices through wireless connections [245, 246, 253]. The advances in wireless

communication technology have facilitated the development of FL in mobile edge

networks [94, 117, 149]. Nonetheless, there is still much to explore for the application

of FL in the 5G era and beyond [252, 254].

2.3.5 Privacy and Security for FL

Privacy and security are two prominent issues in FL systems that have raised increasing

concerns [255]. Conceptually the two terminologies have overlaps with each other, but
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in the context of FL privacy and security are often studied from different perspectives

[256]. In general, privacy issues often refer to the disclosure of user-relevant information

including models, gradients and most importantly, raw data. On the other hand,

security problems in an FL system are usually caused by malicious parties who

intentionally launch attacks against the system to backdoor the global model, slow

down the convergence or achieve other adversarial purposes. In some cases, security

breach can also lead to compromised privacy [124].

The primary concern of privacy is whether the raw data held by participating

users can be reconstructed. A number of studies have raised the alarm by showing

that gradients can be used to recover the raw input of even deep models in both CV

and NLP tasks [257–259]. On the other hand, model poisoning attacks are regarded

as an outstanding security risk in the collaborative training process of FL [155, 215].

Fortunately, a variety of solutions have been developed and the majority of them

root from cryptography [103, 119], masking schemes [124, 154] and Secure Multi-party

Computation (SMC) theories [91].

Among the popular approaches, Homomorphic Encryption (HE) provides the

theoretically most secure solution. However, the ultimate generation of HE, namely

Fully Homomorphic Encryption (FHE) [53], is not very possible to be realised real-

istically. In the context of FL, additive HE schemes are sufficient for the operation

of model/update aggregation [103, 119]. It is also noteworthy that HE is usually

indispensable for VFL and FTL [48].

Secure multi-party computation is a widely adopted framework when it comes

to collaborative computing and machine learning. The primary principle for SMC

is only allowing each party to know the system output and its own input. This

mechanism proves very helpful in a lot of situations where some parties in the system

can be potentially curious about other parties’ ‘secrets’. Some methods have been

developed and applied to FL based on Secret Sharing theories [154, 260]. Another

promising roadmap to privacy-preserving FL is Differential Privacy (DP), which is

a class of methods that use artificial noises to ‘perturb’ models/updates locally and

probabilistically recover the sum at the server side [103, 107]. DP is computationally

lightweight and can be robust to inference-based attacks and failures [91, 121, 126, 132].

Apart from passive defence, some researches resort to proactive detection and preclusion

of malicious or unreliable contributors in the system [138, 261].

In order to achieve a desired level of privacy and/or security, multiple techniques
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can combined in practice [103, 121, 126]. But it is always necessary to account for the

costs and potential impacts (e.g., performance loss) [262].

2.4 Datasets for FL Research

Any design of algorithms and protocols for FL needs to be evaluated under FL

settings. The selection of datasets is pivotal in such benchmarking process. A

straightforward option is to manually partition centralised data into decentralised

shards. For example, popular image classification datasets such as MNIST [263],

CIFAR-10/100 [264] and ImageNet [28] can be used for evaluation after splitting

them by some rules. The partitioning rules determine the data distribution across

the clients. For instance, non-IID settings can be created by forcing class imbalance

for local data [47]. An example of manually partitioned CIFAR datasets based on a

Dirichlet distribution (with the concentration parameter α set to an all-one vector)

can be found in a GitHub repository created by the author at this link: https:

//github.com/wingter562/LEAF_prepartitioned/tree/main/CIFAR_Dirichlet.

A more natural way is to experiment on FL–style datasets (FL datasets for short).

By the time of writing, only a few FL datasets are publicly available, as summarised in

Table 2.2. The ‘Domains’ column gives the number of unique data sources that can be,

for example, writers (for FEMNIST) or twitter users (for Sentiment140). Note that

the last column of Table 2.2 shows the parties who released the partitioned datasets

rather than the original creators of the source data. The source data contributors can

be found in the references given.
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Table 2.2: Public (pre-partitioned) datasets for FL research. Meta-data are retrieved
from the repositories or papers referenced where the source of the data can be found.

Dataset name Task Size Domains Released by
Street-5/20 Object detection 956 5/20 FedAI[265]
Synthetic(α, β) classification 8977 30 Li et al. [88]
FEMNIST Image classification 805,263 3,550 LEAF[266]
Shakespeare Next character pred. 422,615 1,129 LEAF
Sentiment140 Sentiment analysis 1,600,498 660,120 Kaggle, LEAF
Celeba Image classification 200,288 9,343 LEAF
Reddit Language modelling 56,587,343 1,660,820 LEAF
BigQuery Multi-purpose pred. 146,404,765 342,477 StackOverflow
AGNews Text classification 127,600 1,000 FedNLP[180]
20News Text classification 18,842 100 FedNLP
SST2 Text classification 8,742 30 FedNLP
PLONER Sequence Tagging 17,501 50 FedNLP
W-NUT Sequence Tagging 4,681 30 FedNLP
WikiNER Sequence Tagging 286,495 1,000 FedNLP
SQuAD Question Answering 122,325 300 FedNLP
Movie-Dialogs Text generation 221,634 617 FedNLP
CNN/DM Text generation 312,085 100 FedNLP
hERG Regression (Biophy.) 10,572 4 FedGraphNN[13]
QM9 Reg. (Quan. Mech.) 133,885 8 FedGraphNN
ESOL Reg. (Phy. Chem.) 1,128 4 FedGraphNN
FreeSolv Reg. (Phy. Chem.) 642 4 FedGraphNN
Lipophilicity Reg. (Phy. Chem.) 4,200 8 FedGraphNN
BACE Classification (Biophy.) 1,513 4 FedGraphNN
BBBP Classification (Biophy.) 2,039 4 FedGraphNN
SIDER Classification (Physio.) 1,427 4 FedGraphNN
ClinTox Classification (Physio.) 1,478 4 FedGraphNN
Tox21 Classification (Physio.) 7,831 8 FedGraphNN
CIFAR-100 Image classification 60,000 100 FedCV[14]
GLD-23K Image classification 23,080 233 FedCV
PASCAL VOC Image classification 11,355 8/4 FedCV
COCO Image classification 328,000 10 FedCV
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The rapid advances in machine learning techniques are catalysing a broad range of

applications which more or less integrate AI components into user devices to empower

their underlying business logic. As predicted by Gartner, more than 80% of enterprise

IoT projects are expected to have built-in AI components by 2022 [267]. Also, it has

been an emerging trend that users are becoming more sensitive to the data privacy

protection mechanism of AI applications, while their performance, in many cases, is

still expected to be guaranteed in the first place.

As it has been analysed in the previous chapters, decentralised data requires

decentralised machine learning (with privacy protection) whilst the heterogeneity of

data and devices poses great challenges both theoretically and practically. The training

of deep models in such environments has to deal with i) imbalanced and biased data

distribution, where devices may have various volumes data and the distribution of

data may differ from device to device, ii) a massive scale of disparate devices at the

network edge as participants, and iii) heterogeneity and unreliability exhibited by the

participating clients and the communication channels.

3.1 Motivation

Generally, the heterogeneity of FL clients refers to their discrepancy in processing speed

(i.e., how fast a model can be trained) and network throughput (i.e., how long it takes
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to upload/download models). In this work, an extra factor of device heterogeneity

is taken into account, namely, the reliability of devices. It is of great necessity to be

aware that end devices in FL are usually not obligated to participate. Devices such

as mobile phones can be FL clients while running many other applications and they

occasionally opt out or drop out for reasons like low battery or poor network condition.

Most of the recent studies investigate FL over a cluster of heterogeneous but reliable

devices [88, 139, 145, 159]. However, devices such as mobile phones intermittently

dropping out halfway in local training can have a strong impact on the overall efficiency

of an FL system [49]. Unreliable clients can cause:

� ‘Missing’ participants: in each round, the server selects a fraction of clients

randomly to perform local training and expects them to commit their local

training results. However, the number of clients which manage to commit their

results are very uncertain given the unreliable nature of end devices;

� Long wait: To aggregate the local results at the end of each round, FedAvg

has to wait for all selected clients to finish, among which there may be stragglers

while the crashed ones may never respond. Consequently, the global learning

progress is suspended until a timeout threshold is reached ;

� Under-utilisation of clients: With random selection, many capable clients

remain idle even if they are willing to participate and ready to do more training;

� Progress in vain: When not being able to finish local training in time, the

progress made is wasted as the client will be forced to synchronise by the server.

3.2 Contributions

This chapter presents a Semi-Asynchronous Federated Averaging (SAFA) algorithm

enabling fast, lag-tolerant federated optimisation. The algorithm is semi-asynchronous

because a special mechanism is adopted to allow specific clients to work asynchronously

with the others. SAFA takes advantage of several efficiency-boosting features from

asynchronous machine learning approaches (e.g., [268][71]) while making use of a refined

pace control mechanism to mitigate the impact of straggling clients and stale models

(i.e., staleness [71]) on the global learning progress. Moreover, a novel aggregation

algorithm is adopted using a cache structure (in the cloud) to bypass a fraction of
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client updates so as to improve convergence rate at a low cost of communication. The

main contributions of this work are outlined as follows:

� By taking into account the unreliability and heterogeneity of end devices, this

work proposes a Semi-Asynchronous Federated Averaging (SAFA) algorithm to

alleviate the staleness, boost efficiency and better utilise the progress made by

stragglers.

� A simple parameter, lag tolerance, is introduced to flexibly control the behaviour

of SAFA algorithm. The impact of lag tolerance on SAFA is empirically

analysed by observing how it affects the critical metrics such as synchronisation

ratio and version variance.

� Extensive experiments were conducted with several typical machine learning tasks

in multiple FL settings varying from tiny to relatively large-scale environments.

SAFA is evaluated in terms of several important metrics such as model accuracy,

round efficiency and communication cost.

3.3 System Model

In the context of FL, the aim of this work is to solve the global optimisation (i.e.,

empirical risk minimisation) problem as below:

arg min
w∈Rd

1

n

n∑
i=1

ℓ(w;Xi, Yi), (3.1)

where w denotes the parameters of the global model (the number of parameters = d),

ℓ(w;Xi, Yi) represents the loss of the inference on sample (Xi, Yi) made by the model

with w as its parameters. Note that data samples are distributed among disparate

end devices and always remain local. Let U denote a set of N clients, and Dj the

partition of data residing on client j, then the target function can be rewritten as:

arg min
w∈Rd

1

n

N∑
j=1

∑
i∈Dj

ℓ(w;Xi, Yi). (3.2)

Note that the problem definition here is in accordance with [47], but is different

from [71]. Xie et al. [71] define their target function as the average of the average loss

(on local partitions), which is fair at the local partition level but not the case at the
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sample level, because data samples in small local partitions take larger weights in their

target function. For clarity, Table 3.1 lists the symbols frequently used in this chapter.

Table 3.1: List of symbols

Symbol Description
D the complete dataset
n the size of D (i.e., n = |D|)
Di the data partition on client i
ni the size of client i’s local partition
U the set of clients (i.e., end devices)
N total number of clients (i.e., N = |U |)
vi the version of client i’s local model
Uv the set of clients whose model version is v
S the set of selected clients
Sv the set of selected clients of version v
Z the set of crashed clients
Zv the set of crashed clients of version v
X the set of clients that complete local training
Q the set of undrafted clients
Qv the set of undrafted clients of version v
w(t) the global model at round t

w
(t)
k the local model on client k at round t

An important property of end devices is unreliability, which means that they

occasionally drop offline for some reasons such as power outage (or low battery level),

inaccessible network or manual shutdown/opt-out of training. In this work, these

temporarily unavailable states are referred to as crashed. Every client has a certain

probability to crash in each round of training. For clients that stay active and connected

to the central server (throughout a round of training), it is assumed they are always

able to finish the task assigned within a certain period of time (otherwise they are

also reckoned crashed). Without loss of generality, in this work clients are assumed

independent of each other regarding their behaviours.

The population of committed updates should be carefully limited considering a

huge fleet of end devices [49]. McMahan et al. [47] use a parameter C to control the

maximum fraction of clients allowed to participate in one round of training. Moreover,

C serves as the criterion in the FedAvg [47] algorithm by which the server keeps

waiting for selected clients to end a global round. In the proposed approach, this

hyper-parameter is retained but no longer applied as a hard constraint. Instead, the

restriction is relaxed to allow all clients to participate if they are willing to, and enable

the central server to end a round once a C-fraction of updates have been received.

It is notable that the fraction of selected clients (called selection fraction) is not

equivalent to the actual fraction of clients that finish local training and commit their
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models in time. In an unreliable environment, picked clients can crash halfway in their

training progress or fail to upload their trained models. This work defines a metric

termed Effective Update Ratio (EUR) to measure the fraction of effective updates

from the local (i.e., all clients) to the cloud (i.e., central server(s)).

EUR =
|S − S ∩ Z|
|U |

, (3.3)

where S and Z are the sets of picked and crashed clients, respectively. Obviously EUR

is positively correlated with the size of S and negatively correlated with that of Z.

As discussed in Section 1.5, average round length (i.e., the time needed to complete

a round of FL) is one of the key metrics that reflect the efficiency of the FL process.

The length of a federated round can be modelled by considering both local training

time and communication overheads, which is captured by Eq. (3.4).

T = min
{
Tlim, Tdist + max

k
{T down

k + Tup
k + T train

k }
}

(3.4)

where Tlim is the preset upper limit of round length. T train
k , T down

k and Tup
k denote

local training time, model download and upload time for client k, respectively. T down
k

and Tup
k depend on model size and device bandwidth. For client k, its local training

time (i.e., T train
k ) is determined using Eq. (3.5):

T train
k =

|Bk| · E
sk

(3.5)

where E is the number of local epochs and |Bk| is the number of batches for device k.

A client’s performance sk is modelled as the number of batches the client is able to

process per second.

For a federated round, Tdist denotes the server-side overhead for distributing the

global model to the end devices. In this work it is assumed that the server can fully

utilise its bandwidth to send models in parallel via intermediate network elements

[55] to the clients. Thus Tdist depends on the number of model copies to distribute

(denoted by Nsync) and the communication bandwidth of the server (denoted by bw).

Tdist is formulated in Eq. (3.6).

Tdist =
Nsync ·model size

bw
(3.6)
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where the server bandwidth bw is a constant considering that the server and base

stations linked with wired connection. The size of a model is also a constant as FL

does not change the models’ shape.

3.4 SAFA: A Semi-Asynchronous Algorithm for fast

FL

This section details the key designs in SAFA including lag-tolerant model distribu-

tion (Section 3.4.1), post-training client selection (Section 3.4.2) and discriminative

aggregation (Section 3.4.3). These designs enable a semi-asynchronous control over

the clients by allowing specific clients to work asynchronously with the others.

3.4.1 Lag-tolerant Model Distribution

In the federated setting, an important guarantee for the convergence of the global

model is the quality of local models. The quality of a local model depends on whether

local training is sufficient (i.e., training sufficiency) and on the starting model on which

local training is based. Training sufficiency can be achieved by allowing adequate local

iterations (i.e., epochs), while the version control is a non-trivial task. The original

FL algorithm [47] prevents outdated clients with stale models from committing, which

simplifies FL process but also throttles the potential of accelerating convergence.

Motivated by the problem, a lag-tolerant model distribution algorithm is presen-

ted which does not always enforce synchronisation (i.e., allows some clients to stay

asynchronous with the others and unsynchronized with the cloud) and is tolerant to

outdated local models (i.e., staleness). The key idea is to develop a better way to get

the stragglers (i.e., clients with stale models) involved in the model aggregation and

leverage their progress for faster federated learning. This work refers stragglers to the

clients who are slow and still conducting local training based on an outdated model.

Normally, the clients are supposed to start epochs of training based on the latest

global model received from the server. However, device crashes or network problems

generate the stragglers inevitably.

With a version-based criterion, SAFA only requires specific clients to retrieve the

latest global model from the server. Before a round of local training starts, the server

classifies all clients into three states (or categories) based on their current versions:
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Up-to-date, deprecated and tolerable, which are defined as follows.

Up-to-date clients: the clients that have completed the previous round of local

training (and submitted models successfully) are reckoned up-to-date at the start of

this round.

Deprecated clients: the clients that still base local training on the models that are

too stale (given a threshold) compared to the version of the global model.

Tolerable clients: the clients that do not base local training on the latest global

model, but the model version they are based on is not too old either. This is a state

that stands between Up-to-date and Deprecated.

SAFA only requires the up-to-date and deprecated clients to synchronise with

the server, while the tolerable clients stay asynchronous with the server. This is

why SAFA is called a semi-asynchronous distributed training scheme. SAFA let

up-to-date clients synchronise with the server in order to prevent model divergence

[47]. Deprecated clients are forced to synchronise so that the global model will not be

poisoned by the seriously outdated local models.

After a round of local training is completed on device, the clients will then be

labeled picked, undrafted or crashed based on the result of client selection in SAFA,

which is a post-training process. The server tags clients with these labels after the

selection quota is met or the round time limit is reached. The picked clients are those

whose local training results in this round are selected to be used in the following

aggregation step. The undrafted clients are those whose local training results are not

selected but still get cached by the server for future use. Crashed clients are those

who fail to finish a round of local training — clients can either opt out or drop offline

intermittently (i.e., any time during training) with a certain probability (which is

referred to as crash probability).

A typical FL process driven by SAFA is shown in Fig. 3.1. This diagram will be

used as an example throughout this chapter to illustrate the FL training process.

In Fig. 3.1 the workflow of SAFA is illustrated with four end devices: clients

A to D, with which the system is to perform several federated rounds of training.

Clients start local training from their local model versioned A0 to D0 (the initial

model version for each round of local training is depicted in the figure by a single

circle with the model version in the middle). After a client completes its local training,

local parameters are updated (depicted by double circles with the model version in

it) and are uploaded to the server (depicted by upwards arrows). The server selects
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Figure 3.1: The diagram of SAFA algorithm showing the interaction between the
cloud and end clients in different states

submitted results only from a portion of clients (50% in this example) to update the

global model. The clients whose updates are selected are tagged as picked clients

(colored green), for example, clients B and C in the 1st round. The selected updates

are placed in a cache structure by the server. The cache maintains the entries of the

latest local models uploaded from the picked clients and will be used for aggregation.

The clients whose results are not selected are undrafted clients (colored blue), e.g.,

client A in round 1 and client B in round 2. Updates from these clients are stored in

the bypass structure to avoid futile work locally. The clients who cannot complete

their local training due to any reason (such as opt-out or network failure) are crashed

clients (highlighted red), such as client D in the 1st round.

Each round ends with a new version of global model (i.e., G1 to G3 in this diagram),

which, at the start of the next round, will be distributed to (i.e., synchronised with)

the up-to-date and deprecated clients. In the first round, for example, A, B and C

successfully complete local training and upload their updates (in spite of A being

undrafted), thus they become up-to-date clients (i.e., tagged up-to-date by the server).

The results of undrafted clients will not be merged into the global model in the

upcoming aggregation step, but may take effect in future rounds via a bypass structure

(squares with dashed lines) that saves these updates temporarily. The bypass will

merge with the cache right after the current aggregation step before the next round
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starts.

In this example, it is assumed the maximum tolerable version lag is 2. In Fig. 3.1,

client D does not manage to finish local training in two rounds. Therefore, it is tagged

deprecated and forced to synchronise with the server, which means client D needs to

replace its stale local model with the latest global model. To decide whether a client’s

model is deprecated, here a simple criterion is adopted based on the difference between

the versions of the global model and the local model, which is called lag tolerance.

Therefore, the deprecated clients are those whose local version lags behind the version

of the global model by more than the specified lag tolerance. Specifically, the proposed

lag-tolerant distribution principle can be formulated as follows:

w
(t)
k =



w(t−1) if k ∈
⋃

v=t−1 Uv, or k ∈
⋃

v<t−τ Uv,

// up-to-date or deprecated clients

w
(t−1)
k if k ∈

⋃
t−τ≤v<t−1 Uv

// tolerable clients

(3.7)

where w(t−1) denotes the latest global model parameters (i.e., the aggregation result

from last round) upon the start of round t, and wk denotes the parameters of client

k’s local model; τ stands for lag tolerance, which is the only parameter for SAFA. The

lag-tolerant model distribution forces the up-to-date and deprecated clients to adopt

the latest global model as the base model for the next round of training, while the

tolerable clients can continue to work on their previous local results. The algorithm

parameter lag tolerance in some ways controls the tradeoff between communication

overhead and the convergence rate of federated optimisation. If it is set too small, the

server may suffer heavy downlink transmission as the portion of deprecated clients

increases. If it is set too large, the convergence of the global model could be unsteady.

The impact of Lag tolerance will be analysed later with empirical studies.

3.4.2 Client Selection

Apparently, the efficiency of federated optimisation is closely associated to the fraction

of picked clients. One may think that we can set C to a large value (e.g., close to 1.0)

and pick as many clients into each round as possible. However, it is neither realistic

nor beneficial to do so. On the one hand, allowing more clients to participate increases

the potential risk of uplink congestion and the communication cost as well. In each
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round, the server may have to wait for more clients among which some may never

respond (because picked clients could crash midway). On the other hand, involving a

large number of updates leads to limited benefit to the global model especially in the

last few rounds before convergence [47].

As mentioned, simply increasing the pick fraction can bring about problems in the

FL context, while the crash of clients is not predictable or controllable (improving

client stability is beyond the scope of this work). As a solution, one can let the central

server collect local updates after local training instead of randomly selecting clients at

the very beginning of a global round. This means the server does not need to wait for

those designated clients for aggregation but is able to execute the aggregation step

once it has received a C-fraction of update. The post-training selection effectively

decouples the server with the selected clients and consequently improves EUR, which

facilitates faster convergence of the federated optimisation. Another advantage of

doing so is a significant boost of round efficiency in the case where clients drop out

with fairly high probability. Based on the outcome of selection (before the aggregation

step is carried out), the server tags the clients with three different labels: crashed,

picked and undrafted. Only picked clients are eligible to update its corresponding cache

entry right before the aggregation conducted by the central server. Undrafted clients

also commit their updates but their updates will bypass the following aggregation.

Considering the ‘selection-ahead-of-training’ scheme used in the synchronous FL

(e.g., FedAvg [47]), its effective update ratio, according to Eq. (3.3), is C(1− |Z|
|U | ).

By contrast, SAFA adopts a ‘selection-after-training’ scheme that theoretically yields

the value of EUR as follows:

EUR =


1−R if C ≥ 1−R,

C if C < 1−R

(3.8)

where C is the selection fraction and R denotes the crash ratio over all the clients (i.e.,

R = |Z|
|U | ). Fig. 3.2 demonstrates how SAFA promotes the effective update ratio in FL.

From Fig. 3.2, one can see a clear improvement of EUR by SAFA, which minimises

the negative impact of clients’ failure. Nevertheless, extremely high crash ratio of

clients will still cause a low value of EUR even with the proposed selection method.

The phenomenon will be analysed later in the experiment section.

As figured out by Bonawitz et al. [12], bias is introduced if each device is equally
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Figure 3.2: An illustration of the client selection policies of FedAvg and SAFA where
the squares represent the full client set U . Note that an extra structure (the bypass
buffer) will be introduced later to further improve the EUR.

likely to participate each round because they differ in performance and network

access privilege. The problem remains despite the client selection method mentioned

above. Therefore, a novel method is further proposed to alleviate the bias using a

compensatory client selection algorithm. The principle is simple — higher priority is

given to those clients that are less involved. In each round the server maintains a list

of IDs of clients that missed the previous round of training, and their updates will be

picked prior to others for the coming aggregation. The pseudo-code of the proposed

selection policy is shown in Algorithm 1.

In the selection, the server stops involving more clients once the quota has been

met, namely a C -fraction of clients have been selected from S(t−1) ∩X(t). Otherwise

the algorithm continues to wait and accept the updates (until a deadline is reached)

from the rest of clients which, in practice, will arrive at the cloud successively.

3.4.3 Discriminative Aggregation

After a round of local training completes, the server has received a collection of updates

from the end devices. Three steps are taken to aggregate local updates. The first step

is the pre-aggregation cache update, which overwrites the corresponding entries (for

storing model parameters) of the selected clients in the cache. In the second step, the
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Algorithm 1: Compensatory First-Come-First-Merge (CFCFM) client selec-
tion

Input : round number t, client set U , last-round picked clients S(t−1),
selecting fraction C, round time limit Tlim

Output : clients to pick S(t)

S(t) = models in the bypass buffer

Q(t) = ∅
quota = C · |U |
while |S(t)| < quota and Tround < Tlim do

Await new updates
w′

k ← update arrives from client k

if k not in S(t−1) then
add k to S(t)

else
add k to Q(t)

end

end

if |S(t)| < quota then
Sort Q(t) by arrival time

q ← quota− |S(t)|
[q]← first q clients in Q(t)

Q(t) ← Q(t) \ [q]

S(t) ← P (t) ∪ [q]

end

return S(t)

updates stored in the cache are aggregated. In the third step, the undrafted updates

(in the bypass buffer) are moved to the cache, which can be used in the next round

of global model aggregation. Since the picked and undrafted updates are treated

in a different manner in the aggregation, it is called the three-step discriminative

aggregation, which is formally formulated as follows:

(1) Pre-aggregation Cache Update:

c
(t)
k =


v
(t)
k if k ∈ S(t),

w(t−1) if k ∈
⋃

v<t−τ U
(t)
v ,

c
(t−1)
k otherwise

(3.9)

where c
(t)
k denotes the k-th entry of the cache structure (see Fig. 3.1), and v

(t)
k denotes

the trained local model at round t. Entries of deprecated clients will be replaced with

the global model w(t−1).

(2) SAFA Aggregation:

w(t) =

N∑
k=1

nk

n
c
(t)
k (3.10)
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(3) Post-aggregation Cache Update:

c
(t+1)
k =


v
(t)
k if k ∈ Q(t),

c
(t)
k otherwise

(3.11)

where S(t), Q(t), and Z(t) denote the sets of picked, undrafted, and crashed clients,

respectively in round t.

For SAFA, there are three cases of changes in the cache after a global around t.

For picked clients, their updates will be kept in the cache after being merged into the

global model. For undrafted clients, the updates will not take effect in this round but

will be carried to the next round by the post-aggregation step. For the crashed clients,

their entries stay unchanged only if they have not been deprecated. Otherwise these

entries will be replaced by the global model (i.e., w(t−1) in Eq. 3.9) to avoid heavy

staleness.

Algorithm 2: Semi-Asynchronous Federated Averaging (SAFA) algorithm

Input :maximum number of rounds r, client set U , local mini-batch size B,
number of local epochs E, learning rate η, lag tolerance τ

Output : finalised global model

Server process: // running on the central server
Initialises client connections
Initialises global model w and the cache
for round t = 1 to r do

Distributes w according to Eq. (3.7) given τ
for each client k in U in parallel do

w′
k = client update(k,w)

end
Collects and selects client updates using CFCFM
Updates cache according to Eq. (3.9)
Performs aggregation and get w using Eq. (3.10)
Updates cache according to Eq. (3.11)

end
return w

Client process: // running on the client k
client update(k,wk):
Bk ← batches from Dk of size B
for epoch e = 1 to E do

for batch b in Bk do
wk = wk − η∇f(wk; b)

end

end
w′

k = wk

return w′
k to the server

The complete workflow of the proposed SAFA algorithm is outlined in Algorithm 2.
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The server orchestrates the process holistically in rounds. At the beginning of each

round, the server first checks the version of clients and distributes the latest global

model in a lag-tolerant manner (see Eq. 3.7) given the parameter τ . Then the server

begins to listen and collects the updates (i.e., trained local model) from clients. Clients

train their native models on local datasets using the gradient descent method. Based

on Algorithm 1, the clients missing the previous round will have the priority to be

selected to meet the preset fraction C. Following the client selection, the server then

executes the three-step discriminative aggregation, which merges all the entries in the

cache into the global model, i.e., w(t), and updates the cache entries of the undrafted

clients.

3.5 Analysis of Lag tolerance

This section analyses the impact of lag tolerance from different perspectives. As

mentioned, this parameter is crucial to the pace control of the SAFA algorithm.

When lag tolerance is small, clients/models become deprecated frequently, resulting

in relatively high cost in model distribution. If it is set to a big value, the server

will be very tolerant to the stragglers, which will probably cause high variance in the

versions of local models and consequently slow down the convergence of the global

model. Thus, this work introduces two holistic metrics: Synchronisation Ratio (SR)

and Version Variance (VV). SR measures the usage of downlink by which the global

model is distributed to the devices. VV is defined based on the version distribution of

local updates. For SAFA,

SRSAFA =
1

rm

r∑
t=1

(|
⋃

v=t−1

U (t)
v |+ |

⋃
v<t−τ

U (t)
v |) (3.12)

where r is the number of global rounds and N is the number of clients. SR is calculated

based on the proposed lag-tolerant distribution rule (Eq. 3.7).

VV SAFA =
1

r

r∑
t=1

var(Vt) (3.13)

where Vt is the version distribution of trained clients at round t, i.e., Vt = {v1, v2, ..., vN}.

Lag tolerance (i.e., τ) varies from 1 to 10 and several groups of FL tests are set

up for a regression task on the Boston Housing dataset. The maximum number of

global rounds is set to 100. Apart from the best loss achieved (i.e., the minimum loss
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by the global model in 100 rounds), this work also presents the statistical results in

the metrics including EUR, SR and VV .

Fig. 3.3(a) draws the best loss of the global model in the FL environment where

the selection fraction C is set to 0.1, 0.5 and 1.0, and the expectation of client drop-out

probability cr is set to 0.3 and 0.7, respectively. Fig. 3.3(b) shows the resulting

synchronisation ratio (SR). Apparently small values of lag tolerance show a clear

advantage in terms of loss. However, the overhead of communication (revealed by SR)

is relatively large in the case where τ is set too small (e.g., 1, 2 or 3). This is expected

because more clients will become deprecated and be forced to synchronise when the

proposed algorithm are less tolerant to the stragglers with stale models.
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Figure 3.3: (a) Best loss achieved by the global model and (b) the synchronisation ratio
over the federated optimisation with SAFA algorithm under different lag tolerance
settings.
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Figure 3.4: (a) Effective Update Ratio (EUR) and (b) Version Variance (VV) over the
federated optimisation with SAFA algorithm under different lag tolerance settings.

There are multiple factors that can affect the best global model one can obtain

by federated learning. This work analyses it based on the effective update ratio

89



Chapter 3. Driving Horizontal FL with Flexible Synchronisation

(EUR) and the variance of version (VV ) under different FL settings — these are two

important metrics that well reflect the quality of the aggregation step, which is vital

for the accuracy of the global model. From Fig. 3.4(a) one can see EUR basically

remains level as the lag tolerance changes, and that EUR depends on both the client

fraction C and the client crash probability cr. When cr is low (e.g., cr = 0.3), EUR is

slightly above the percentage quota of the clients specified by C, which is because of

the contribution by undrafted clients. In the case of a high crash rate (e.g., cr = 0.7),

EUR is restricted at a low level as it is impossible to be higher than E(|U −Z|), which

in theory is equal to 1 − cr, i.e., the portion of clients with successfully committed

updates. In addition, the plot of Version Variance in Fig. 3.4(b) reveals part of the

reason why the quality of the global model degrades when lag tolerance is set too

large (see Fig. 3.3(a)). In general VV increases if SAFA is more tolerant to the

stragglers (i.e., a larger value of τ). It can be further observed from Fig. 3.4(b) that

as τ increases, VV goes up at a much slower rate in relatively stable FL settings (e.g.,

cr = 0.3) than in the extreme settings (e.g., cr = 0.7). Combining Fig. 3.3(a) and

Fig. 3.4(b), a clear correlation between VV and the quality of global model can be

observed especially in an unstable environment where the clients disengage frequently.

Based on the observations, one conclusion can be drawn that a moderate lag

tolerance can largely restrain the loss of the global model below a desired level and

avoid high communication costs (indicated by SR) in sending out the global model.

Therefore it is suggested that lag tolerance be set to 5 rounds in general.

3.6 Bias Analysis

This section theoretically analyses the bias in client selection introduced by the

discrepancy of performance and reliability between clients. Here the bias between two

clients (e.g., clients A and B) refers to the ratio of client A’s chance of contributing

to the global model to client B’s chance. It is worth mentioning that FedAvg also

incurs bias (even though it uses random selection before the training starts) because

the clients drop or opt out with different frequencies.

In the analysis, an extreme case is considered to represent the worst bias between

the clients. In this case, clients A and B are assumed to the most and least capable

clients, respectively. Namely, clients A and B yield the shortest and longest local

training time, respectively. Further, let us assume they behave independently and have
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the probabilities of dropping out in any round of training denoted by crA and crB,

respectively. For the entire set of clients, we assume an overall crash ratio, denoted by

R, which is the expected proportion of clients that drop out in an FL round. At the

r-th round of training, the bias between clients A and B can be represented by:

bias(r) =
P (r)(A)

P (r)(B)
(3.14)

where P (r)(A) (or P (r)(B)) denotes the probability that the local update of client A

(or B) is successfully aggregated in the global aggregation step in round r.

First presented is the analysis of the bias generated by FedAvg, which selects

clients at the beginning of each round and the server will wait for all those selected

clients to submit local updates. The local update of a selected client will always be

aggregated in this round unless this client crashed. Therefore, the bias in FedAvg

only depends on the clients’ crash rates, which can be modeled by:

bias
(r)
FedAvg =

1− crA
1− crB

(3.15)

In SAFA, the situation is different. C percentage of the clients are selected from

all clients that committed their local updates at the end of this round. The bias in

SAFA not only depends on the crash rate, but also on the performance of the clients.

A more powerful client can complete their local training faster and therefore its local

update has a higher chance to be used in a round.

There are two possible cases where a local update can be used in the current round:

i) when a client is selected by the server, its local update will be directly applied in

the current round. This work denotes the probability of this case by P
(r)
D (A); ii) the

local update generated by an undrafted client in last round also has the chance to

be used in the current round through the bypass scheme. The probability that this

case occurs is denoted by P
(r)
S (A). Apparently the two cases are exclusive because a

client’s model in the bypass will not be used if it gets selected. Therefore, P (r)(A) can

be calculated by summing up P
(r)
D (A) and P

(r)
S (A). P (r)(B) is decomposed similarly.

Due to the space limitation, this work only presents the final expressions of P (r)(A)

and P (r)(B) below in this section.

First, three cases need to be considered for client selection in SAFA given the

fraction parameter C and crash ratio R:

case 1 ⇐⇒ C ≥ 1−R
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case 2 ⇐⇒ (1− C)(1−R) ≤ C < 1−R

case 3 ⇐⇒ C < (1− C)(1−R).

Literally, case 1 represents a deficit in client selection (i.e., too many crashes to

fulfil the pick percentage C). Case 3 means that one can meet the selection ratio C

by only selecting the arrived updates from clients not selected last round since they

are prioritised by SAFA. Case 2 stands between cases 1 and 3. Namely, one can meet

the selection ratio C by selecting the prioritised (i.e., last-round undrafted or crashed)

clients first and then other clients who also committed their local updates in this

round. Considering these cases, the following proposition is given:

Proposition 3.1. The probabilities P (r)(A) and P (r)(B) can be formulated respectively

by Eqs. (3.16) and (3.17) given r > 1:

P (r)(A) =


1− crA if case 1,

1− crA if case 2,

σ
(r−1)
A − cr2A otherwise

(3.16)

P (r)(B) =


1− crB if case 1,

σ
(r−1)
B − cr2B if case 2,

1− crB otherwise

(3.17)

where σ
(k)
A = 1− P

(k)
D (A) and σ

(k)
B = 1− P

(k)
D (B).

Proof. By the definitions, P (r)(A) and P (r)(B) can be decomposed as the sum of two

probabilities:

P (r)(A) = P
(r)
D (A) + P

(r)
S (A) (3.18)

P (r)(B) = P
(r)
D (B) + P

(r)
S (B) (3.19)

where P
(r)
D (A) denotes the probability by which the update from client A goes directly

into the cache, and P
(r)
S (A) that client A’s model in the bypass structure goes into the

cache in round r. P
(r)
D (B) and P

(r)
S (B) are defined in a similar way. With the three

cases considered, for client A:
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P
(r)
D (A) =


1− crA if case 1,

1− crA if case 2,

(1− crA)(1− P
(r−1)
D (A)) otherwise

(3.20)

P
(r)
S (A) =


0 if case 1,

0 if case 2,

crA(1− P
(r−1)
D (A)− crA) otherwise

(3.21)

The first two cases in Eqs. (3.20) and (3.21) indicate that client A, once finishing local

training without crash, can always submit its update into the cache (for the upcoming

aggregation). For case 3 (where C < (1−R− C)(1−R) ), the chance for client A to

be directly merged into cache equals to (1− crA)σ
(r−1)
A because two conditions need

to be satisfied: being undrafted/crashed last round and being picked this round. The

situation that client A’s entry in the bypass takes effect in round r (i.e., P
(r)
S (A) in

case 3) only happens when the server ignores client A in both round r− 1 and r while

A actually completed local training at round r − 1.

For client B one can derive that:

P
(r)
D (B) =


1− crB if case 1,

(1− crB)(1− P
(r−1)
D (B)) if case 2,

0 otherwise

(3.22)

P
(r)
S (B) =


0 if case 1,

crB(1− P
(r−1)
D (B)− crB) if case 2,

1− crB otherwise

(3.23)

The analysis for B is a bit more intuitive. In case 1(i.e., C ≥ 1 − R), client B

cannot have any bypass entry available because its update will always be merged into

cache, and in case 2 client B’s entry in bypass takes effect only when it crash this

round and was undrafted last round. In case 3, client B never gets picked (thus no

direct update to cache) because too many prioritized clients are expected in each

round, leaving no chance for B as it is the slowest in local training. But it still has a

chance to contribute via the bypass if it went undrafted in the previous round.
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Considering the recurrence relation of P
(r)
D (A) and P

(r)
D (B) in Eqs. (3.20) and (3.22)

in case 3 and 2 respectively, by resolving it one can derive the following expressions in

terms of r:

P
(r)
D (A) =

(crA − 1)r+1 + 1− crA
crA − 2

, for case 3 (3.24)

P
(r)
D (B) =

(crB − 1)r+1 + 1− crB
crB − 2

, for case 2 (3.25)

Further, by defining σ
(k)
A = 1−P (k)

D (A) and σ
(k)
B = 1−P (k)

D (B), one can reformulate

P
(r)
D (A), P

(r)
S (A), P

(r)
D (B) and P

(r)
S (B) as:

P
(r)
D (A) =


1− crA if case 1,

1− crA if case 2,

(1− crA)σ
(r−1)
A otherwise

(3.26)

P
(r)
S (A) =


0 if case 1,

0 if case 2,

crA(σ
(r−1)
A − crA) otherwise

(3.27)

P
(r)
D (B) =


1− crB if case 1,

(1− crB)σ
(r−1)
B if case 2,

0 otherwise

(3.28)

P
(r)
S (B) =


0 if case 1,

crB(σ
(r−1)
B − crB) if case 2,

1− crB otherwise.

(3.29)

Combining all these results one can derive Eq. (3.16) and Eq. (3.17).

With P
(r)
D (A) and P

(r)
D (B) (see Eqs. 3.20 and 3.22) formulated, one can derive

σ
(k)
A and σ

(k)
B :


σ
(k)
A = 2crA−(crA−1)k+1−3

crA−2 ,

σ
(k)
B = 2crB−(crB−1)k+1−3

crB−2 .

(3.30)
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Therefore, combining Eqs. (3.16), (3.17) and the definition of bias, one can derive

the bias introduced by SAFA in round r (r > 1) as follows:

bias
(r)
SAFA =



1−crA
1−crB

if case 1,

1−crA
σ
(r−1)
B −cr2B

if case 2,

σ
(r−1)
A −cr2A
1−crB

otherwise.

(3.31)

Fig. 3.5 visualises the bias of FedAvg and SAFA as a function of round index r.

In case 1 where all local updates committed by the clients are aggregated, it introduces

a fixed bias of 1−crA
1−crB

, which is the same as FedAvg. In case 2, client B, as the slowest

one, will be picked (once it has committed) by the server as long as it was undrafted

or crashed in the previous round, which effectively reduces the bias to a level below

that of FedAvg. As for case 3, the quota (decided by C) will be fulfilled only with

last-round undrafted or crashed clients. Assuming both A and B missed last round,

client B is disadvantaged because the server is likely to end the round before B finishes

training when the fraction C has been fulfilled by other faster, prioritised clients

(including client A). In all these cases, the bias between A and B converges after a few

rounds once FL starts.
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Figure 3.5: The bias incurred by FedAvg and SAFA (in the circumstances of three
different cases) as a function of federated round index.
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3.7 Experiments

3.7.1 Experimental Setup

The experiments were conducted in a simulation-based, discrete event-driven system

built using Python 3.7 and PyTorch (Build: 1.7.0) on a dual-core (CPU model: Intel

i5-8500) physical machine equipped with Nvidia GeForce GTX 1050Ti graphics card.

The client-side local training logic was implemented under the PyTorch framework

with CUDA (version: 11.1) support. Local training was run sequentially in the

runtime but considered parallel by the server in the discrete-event simulation system.

Fig. 3.6 visualises an FL cycle in the simulated system where experimental statistics

are collected through event processing. End devices were initialised with heterogeneous

performance specifications and heterogeneous local datasets. A star topology was

established for this system. Using a local network setting similar to that in [139], the

average throughputs of the clients and the server are 1.4 Mbps and 10 Gbps, respectively.

The client–server communication was implemented via in-memory tensor exchange.

The server maintains a simulated wall clock and uses the equations provided in the

System Model (Section 3.3) to calculate all the time consumptions. The advantages of

customised simulation over existing libraries/platforms are i) the flexibility in algorithm

design and runtime optimisation, and ii) easy configuration of the environment, models

and result analyser.
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Figure 3.6: Visualisation of the FL cycle in the simulated system.
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The effectiveness of SAFA was evaluated on three typical machine learning tasks.

Task 1 is to fit a regression model on the public Boston Housing dataset1, which

is available in public repositories. Task 2 is to learn a handwritten digit image

classification model implemented using a convolutional neural network (CNN), which

is comprised of two 5×5 convolution layers (the first one with 20 channels and the

second with 50 channels) with 2×2 max pooling, a fully-connected layer with ReLu as

the activation function, and a final softmax output layer. This lightweight CNN is

suitable for end devices with small memory size and is also adopted in the experiment

by [47]. Task 3 is to learn a classification model for detecting network intrusion

given the TCP dump data. For this task, TCP-connection examples are extracted

from the KDD Cup’99 dataset2 and a Support Vector Machine (SVM) is used as the

classification model.

Separate environments were set up for these three learning tasks to investigate

the performance of the proposed algorithm in different FL settings. To simulate the

unreliability of clients, this work sets a crash probability (cr) in each run of test and

assume each client has the equal chance cr to drop out in any round of federated

training. The round length limits Tlim were set differently for the tasks to ensure that

probabilistically 97% of the clients (randomly initialised as per the distribution) will

be able to finish the round if they do not drop out. The details of the experimental

setup are listed in Table 3.2.

Table 3.2: Experimental setup

Parameter symbol Task 1 Task 2 Task 3
Dataset D Boston MNIST KDDCup99
Number of features d 13 28×28 35
Model w Regression CNN SVM
Dataset size n 506 70k 186k
Number of clients N 5 100 500
Local Data sizes - N (71, 212) N (600, 1802) N (260, 78)
Clients performance sk Randomly generated from Exp(λ = 1.0)
Avg. drop-out prob. cr {0.1, 0.3, 0.5, 0.7}
Participation fraction C {0.1, 0.3, 0.5, 0.7, 1.0}
Max number of rounds R 100 50 100
Round length limit Tlim 830s 5600s 1620s
Number of local epochs E 3 5 5
Mini-batch size B 5 40 100
Learning rate lr 1e-4 1e-3 1e-2

To simulate data imbalance and the heterogeneity in end devices, this work assumes

1https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
2https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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that the size of data partitions (i.e., local data size) follows the Gaussian distribution

N (µ, 0.3µ) where µ = n/N , and that clients’ performance follows the exponential

distribution with λ = 1.0. Here the performance of a client is defined as the number

of batches it can process per second in training. End devices (i.e., clients) may be

unreliable and crash occasionally with a probability of ρk. In the experiment, the

clients are assumed to crash independently with the same probability in any federated

round and set ρk to be cr, i.e. ρk = cr, k = 1, 2, ..., N . The size of each model is set to

10MB considering the compression ratio for neural networks [269].

For comparison, FedAvg [47], FedCS and a fully local training process were

also implemented. FedCS [139] is a refined FL algorithm that estimates the speed

that clients work and filters out some slow clients proactively (at the stage of client

selection) to improve the overall efficiency of FL. The fully local algorithm never

performs the global aggregation until the end of the final round.

3.7.2 Evaluation Results

This section presents the results of experiments and discusses the evaluated FL

algorithms in terms of the quality of the obtained global model (shown in Figs. 3.7, 3.8

and 3.9, with more details in Tables A.1, A.3 and A.5 in Appendix A) as well as

holistic metrics including round efficiency (summarised in Tables 3.4, 3.6 and 3.8),

communication overheads (in Tables 3.5, 3.7 and 3.9) and local resource utilisation

(Tables A.2, A.4 and A.6 in Appendix A).

For different machine learning models, this work defines their accuracy in different

ways, as shown in Table 3.3. In the table, y and ŷ denote the label and the output of

the model, respectively. The function ϕ(·) returns 1 if ŷ matches y, otherwise it returns

0. The loss functions for the three tasks are Mean Square Error (MSE), Negative Log

Likelihood (NLL) and Hinge loss.

Table 3.3: Evaluation metrics for the global model in the three tasks

ML task Loss function Accuracy formulation

Task 1: regression MSE 1− 1
n

∑n
i=1 |

yi−ŷi

max(yi,ŷi)
|

Task 2: image classification NLL 1
n

∑n
i=1 ϕ(yi, ŷi)

Task 3: binary classification Hinge 1
n

∑n
i=1 max(0, sign(yi · ŷi))
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Task 1: Regression

This task aims to learn a regression model on a small group of clients to predict

the median value of a house in the area of Boston Mass. Input features include 13

properties about the estate such as average number of rooms per dwelling and crime

rate. In this experiment, FL was run with every candidate algorithm (i.e., SAFA,

FedAvg, FedCS and fully local training). Their effectiveness is compared in terms

of the achieved accuracy of the global model, round efficiency and communication

overhead.
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Figure 3.7: The loss trace of the global model as the FL process progresses on Task 1
where the client fraction is set to 0.3 and the crash probability is set to 0.1, 0.3 ,0.5
and 0.7 for the four sub-figures (a)-(d), respectively

It can be seen from Fig. 3.7 and Table A.1 (in Appendix A) that SAFA significantly

improves the convergence rate as well as the best accuracy achieved by the global

regression model, especially under settings of unstable environments (i.e., cr ≥ 0.5).

This is mainly attributed to the proposed staleness-tolerant mechanism. Another

advantage of the tolerance to stragglers is the preservation of local training results.

The metric Futility Percentage is used to measure the percentage of local progress

that is wasted due to the model synchronisation forced by the server (FedAvg and

FedCS force the selected clients to overwrite its local model with the latest global

model). Results of SR and futility percentage in Table A.2 show that the wasted
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Table 3.4: Average length of a federated round in secs on Task 1 wherein each algorithm
was tested with varying selection fraction under different environment settings. Round
time limit is set to 830s considering the client performance and data distribution.

Avg. round length (Task 1: regression)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 316.22 489.37 586.90 731.12 808.59
0.3 429.63 652.39 641.40 736.53 832.02
0.5 372.43 495.37 475.14 621.91 676.41
0.7 354.34 405.86 593.10 728.25 661.67

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 207.50 487.47 564.20 656.49 786.96
0.3 336.97 519.58 651.23 401.95 832.02
0.5 186.51 221.46 467.98 621.91 676.41
0.7 195.09 398.81 584.68 393.09 661.67

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 149.69 389.44 540.41 606.48 734.40
0.3 202.44 430.68 583.22 371.77 699.23
0.5 169.33 215.66 408.85 510.85 508.23
0.7 161.81 293.09 402.18 411.06 379.29

Table 3.5: Average model distribution overhead (unit: seconds) on Task 1

Avg. Tdist (Task 1: regression)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.40 0.81 1.21 1.62 2.02
0.3 0.40 0.81 1.21 1.62 2.02
0.5 0.40 0.81 1.21 1.62 2.02
0.7 0.40 0.81 1.21 1.62 2.02

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.33 0.81 1.21 1.62 2.02
0.3 0.40 0.81 1.21 1.31 2.02
0.5 0.33 0.64 1.21 1.62 2.02
0.7 0.33 0.81 1.21 1.29 2.02

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 1.84 1.83 1.80 1.84 1.81
0.3 1.49 1.46 1.43 1.40 1.41
0.5 1.00 1.07 0.96 1.05 1.02
0.7 0.76 0.69 0.77 0.75 0.74
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training progress is reduced by SAFA effectively.

As shown in Tables 3.4 and 3.5, there is not much difference in average round

length and model distribution overhead due to the very limited number of devices

used to run task 1. But one can still observe notable efficiency boost and convergence

speedup by SAFA under the circumstance where the selection fraction C is very

small. With C set to 0.1, SAFA halves the time required to finish a federated round

compared to FedAvg.

Task 2: CNN

The MNIST dataset is divided into N partitions of which the sizes are random variables

(following a Gaussian distribution). The CNN models with randomly initialised weights

were created on 100 clients.

Table 3.6: Average length of a federated round in secs on Task 2 wherein each algorithm
was tested with varying selection fraction under different environment settings. Round
time limit is set to 5600s considering the client performance and data distribution.

Avg. round length (Task 2: CNN)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 3402.55 5557.25 5610.20 5614.28 5620.40
0.3 5410.97 5606.12 5610.20 5614.28 5620.40
0.5 5602.04 5606.12 5610.20 5614.28 5620.40
0.7 5602.04 5606.12 5610.20 5614.28 5620.40

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 1487.96 2133.02 3668.70 1871.65 1982.91
0.3 1261.59 1542.61 3132.86 2349.46 5395.54
0.5 1273.37 1642.59 3025.75 2876.63 3162.02
0.7 1253.74 1969.28 2180.46 4344.88 2530.01

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 198.28 315.33 3703.81 1708.93 1947.90
0.3 206.88 368.01 2691.25 1899.23 2149.23
0.5 203.48 800.64 2573.60 2727.25 2186.67
0.7 241.86 1893.14 1877.30 2619.79 2340.80

As a result, the Fully Local algorithm can finish with an accuracy around 90% on

this classification task with the CNN model, while FedAvg, FedCS and SAFA can

raise that to 96.0% ∼ 98.0% (Table A.3 in Appendix A). SAFA shows a significant

advantage in round efficiency (see Table 3.6) — it is able to achieve up to 27× and

6× speed-up compared to FedAvg and FedCS in an unreliable environment where

clients frequently opt/drop out and only a small fraction (i.e., C = 0.1 or 0.3) of them

are allowed to participate in a round.
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Figure 3.8: The loss trace of the global model as the FL process progresses on Task 2
where the client fraction is set to 0.3 and the crash probability is set to 0.1, 0.3 ,0.5
and 0.7 for the four sub-figures (a)-(d), respectively.

Table 3.7: Average model distribution overhead (unit: seconds) on Task 2

Avg. Tdist (Task 2: CNN)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 2.04 6.12 10.20 14.28 20.40
0.3 2.04 6.12 10.20 14.28 20.40
0.5 2.04 6.12 10.20 14.28 20.40
0.7 2.04 6.12 10.20 14.28 20.40

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 2.04 6.12 10.20 14.14 20.40
0.3 2.02 6.05 10.20 14.13 20.40
0.5 2.04 6.06 10.20 14.28 20.20
0.7 2.04 6.12 10.11 14.28 20.20

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 18.27 18.45 18.26 18.47 18.38
0.3 14.45 14.65 14.48 14.54 14.69
0.5 10.89 10.51 10.70 10.84 10.58
0.7 7.17 7.23 7.55 7.21 7.41
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The average Tdist for SAFA mainly depends on client crash probability (see

Table 3.7), and it remains at a low level with cr ≥ 0.5. In the case where devices are

more reliable in local training (i.e., cr < 0.5), SAFA embraces a greater number of

updates and results in a slightly higher cost (of tens of seconds) during the stage of

model distribution, but the overhead is still acceptable considering the overall length

of a federated round (which could last thousands of seconds, see Table 3.6).

Task 3: SVM

For this task a relatively large data set is used containing 186,480 TCP dump records

including several types of network intrusions. The target is to learn a global SVM

model to recognise malicious connections. The dataset is dispersed onto 500 clients to

perform FL.

Table 3.8: Average length of a federated round in secs on Task 3 wherein each algorithm
was tested with varying selection fraction under different environment settings. Round
time limit is set to 1620s considering the client performance and data distribution.

Avg. round length (Task 3: SVM)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 1640.20 1680.60 1721.00 1761.40 1822.00
0.3 1640.20 1680.60 1721.00 1761.40 1822.00
0.5 1640.20 1680.60 1721.00 1761.40 1822.00
0.7 1640.20 1680.60 1721.00 1761.40 1822.00

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 788.75 1319.17 1607.42 1539.14 1802.09
0.3 685.26 1216.12 1521.82 1617.97 1775.50
0.5 714.73 1229.87 1371.03 1605.23 1821.60
0.7 754.52 1190.44 1526.23 1573.42 1731.65

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 310.70 353.98 1419.29 1514.38 1802.15
0.3 274.03 330.32 1499.79 1559.50 1762.51
0.5 242.93 398.27 1317.91 1476.14 1724.52
0.7 212.52 1187.96 1313.99 1223.72 1690.61

Table A.5 (in Appendix A) shows that FedAvg, FedCS and SAFA can produce

very accurate global models (with the classification accuracy of over 99%) after

convergence. SAFA could incur higher overhead in model distribution (as the SR is

larger for SAFA, see Tables 3.9 and A.6 in some cases). Nevertheless, SAFA still

significantly outperforms FedAvg and FedCS by 7.7× and 3.7×, respectively, in

average round length (see Table 3.8). Its advantage decreases as more clients are set to

engage in training but it is still the most efficient algorithm. In contrast to FedAvg
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Figure 3.9: The loss trace of the global model as the FL process progresses on Task 3,
where the client fraction is set to 0.3 and the crash probability is set to 0.1, 0.3 ,0.5
and 0.7 for the four sub-figures (a)-(d) respectively

Table 3.9: Average model distribution overhead (in seconds) on Task 3

Avg. Tdist (Task 3: SVM)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 20.20 60.60 101.00 141.40 202.00
0.3 20.20 60.60 101.00 141.40 202.00
0.5 20.20 60.60 101.00 141.40 202.00
0.7 20.20 60.60 101.00 141.40 202.00

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 20.20 60.48 100.78 140.79 201.60
0.3 20.11 60.60 100.81 141.09 201.60
0.5 20.13 60.60 100.85 140.84 201.60
0.7 20.20 60.60 100.61 141.14 201.19

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 181.95 182.32 181.49 181.84 182.15
0.3 142.89 141.91 141.95 142.50 142.81
0.5 104.38 104.56 105.34 104.59 104.52
0.7 70.62 70.63 70.55 70.05 70.61
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and FedCS, SAFA capitalises the contribution from straggling clients effectively,

leading to a very small futility percentage (below 4%, see Table A.6 in Appendix A)

on this task, which means that the majority of local training progress can make

contributions to the convergence of the final global model, even in a very unreliable

environment.

3.7.3 Discussion

The experimental results with several tasks including regression and classification

demonstrate the effectiveness of applying the proposed semi-asynchronous algorithm

to FL over unreliable clients. The improvement achieved by SAFA lies in three

factors: i) faster convergence of the global model and a higher accuracy achieved, ii)

significant reduction in average round length, and iii) increased utilisation of local

training progress made by the stragglers. A few interesting phenomena were also

observed in the experiments. First and foremost, this work finds that increasing the

client fraction C may not significantly improve the quality of the global model. For

example, a reasonably high accuracy is obtained by setting C to 0.3 or 0.5 (instead of

1.0) in task 2 in the case of a low crash probability. This in some ways implies that

involving more clients each round could have very limited benefit. In addition, it is

noticed that fully local training without round-wise aggregation is in some cases able

to produce a reasonably good model, e.g., in the cases of Task 1 with C = 0.3 and

Task 3 with C = 0.1 and cr = 0.7. Also, sometimes the synchronous FL algorithm

FedAvg can produce a global model slightly better than the proposed solution in

the case of C = 1.0, i.e., trying to involve all clients in every round. This advantage

is probably brought by the feature that pure synchronisation can avoid the negative

effect from stale models, which amplifies as a larger fraction of clients get involved.

However, it is practically unrealistic to set a big C for FL because communication

could be expensive while the enhancement of the resulting accuracy is very limited

(see Tables A.1, A.3 and A.5 in Appendix A).

3.8 Conclusion

It is very challenging to guarantee the efficiency of FL considering the unreliable nature

of end devices while the cost of device–server communication cannot be neglected.

With the aim of improving the efficiency of federated learning over unreliable end
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devices, a semi-asynchronous algorithm is proposed which incorporates a novel client

selection algorithm decoupling the central server and the selected clients for a reduction

of average round time as well as a lag-tolerant mechanism in model distribution for

tackling the tradeoff between faster convergence and lower communication overhead.

This work also analyses the upper bound of the bias introduced by using SAFA in

FL. The results of experimental evaluation on three typical machine learning tasks

show that the proposed algorithm effectively enhances the round efficiency of federated

optimisation process, improves the quality of the global model and reduces local

resource wastage at a relatively low cost of communication.

Considering the subtle correlation between local models and the global model, a

future plan is to look into the balance between generating the best local models for

end devices and obtaining an optimal global model in the central server. Besides, it is

also necessary to investigate how to further improve federated learning using model

parallelism and compression.
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Chapter 4

Efficient Multi-layer FL in

MEC Systems

The prevalence of Internet of Things (IoT) and Edge Intelligence [270, 271] stimulates

the efforts of pushing the computation to the edge of the network (closer to where

the source of data resides) for faster response and better service quality [272]. With

these two streams of research endeavour, it has been a major trend to empower the

edge devices with AI applications. Mobile Edge Computing (MEC) [273, 274], which

consists of cloud, edge nodes and end devices, is an emerging technology that can

serve as the fundamental architecture for sinking AI to the edge [271] — it is forecast

that the global edge computing market will reach 61.14 billion dollars by 2028 [275].

However, there are still many obstacles when it comes to practical AI scenarios

where the participants of the model training process are end devices such as cell phones,

smart sensors and wearable electronics. Centralised training may not be feasible in

many sensitive scenarios (e.g., clinical diagnosis [276], intelligent surveillance [190] and

typing assistants [15]), whilst distributed training has to be adapted to realistic MEC

systems that are usually comprised of low-spec, unreliable end devices, geographically

distributed edge nodes with moderate performance and relatively low-speed, noisy

communication channels.

107



Chapter 4. Efficient Multi-layer FL in MEC Systems

4.1 Motivation

4.1.1 Scalability

Mobile Edge Computing provides a natural production environment for federated

learning based applications. A number of studies have provided their solutions to such

adaptation. For example, Wang et al. [55] take into account the resource budgets

for edge nodes and proposed a pace control algorithm that adaptively adjusts the

aggregation interval of FL. They adopt a system architecture in which the data reside

on edge nodes, which essentially makes the system still a two-layer FL without utilising

the computing power of end devices. In the wireless edge environment, the joint

optimisation problem of model convergence and communication cost has also been

extensively studied [120, 135, 156]. However, these approaches are confined to the

canonical two-layer FL framework where the system scale is limited to the coverage of

an edge node such as a base station (BS) [94, 149]. From a systematic perspective,

most of the existing solutions are running ‘local-area FL’ despite the fact that the

whole edge layer is actually interconnected via the core network [178]. ‘Local-area FL’

is not the desiderata for large-scale applications but just a partial solution that turns

‘data islands’ into ‘region islands’ (Fig. 4.1). In other words, the lack of scalability is

hindering the utility of FL in MEC circumstances.

End devices

‘Region islands’

Base sta!on

Access network

edge node

Figure 4.1: An illustration of ‘region islands’ caused by ‘local-area FL’.
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4.1.2 Communication Bottleneck

We are witnessing a sharp growth of computational power for end devices (also termed

User Equipments in the literature). An increasing number of mobile phones are now

equipped with high-frequency CPUs and even neural (co-)processors. Most of these

devices are more than capable of running FL applications as clients. On the contrary,

communication resources at the edge hardly suffice as the upgrade of infrastructures

is usually slower than the surge of demands. As a result, communication has become

the bottleneck at the edge [277]. A widely adopted approach to addressing the

communication problem is model (or model update) compression [80, 86, 278]. But

compression often comes at the cost of performance loss and may cause convergence

problems when combined with artificial noise for privacy protection.

Taking advantage of the MEC system is another option. The basis idea is to

leverage the scale of system to ‘cover’ the impact of unreliable local communication.

Liu et al. [279] implemented a hierarchical FL algorithm that utilises the cloud server

and the edge nodes to perform two levels of model aggregation. The algorithm is

a straightforward extension of FedAvg, allowing multiple rounds in the edge layer

before a global aggregation by the cloud. A main problem of the work is that each

pair of interactions (i.e., client–edge and edge–cloud) is tightly coupled. As a result,

the communication bottleneck at the edge is still unsolved (see Fig. 4.2). In addition,

in HierFAVG, edge nodes have to perform multiple rounds of edge-level aggregation

before sending models to the cloud. This significantly postpones the global exchange

of model information and consequently slows down the convergence.

Core network

Edge  node

End devices

Base sta!on

Access network

Bo"leneck

(slow, unreliable)

Figure 4.2: The access network at the edge is usually the bottleneck of FL.
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Considering the drawbacks of the existing solutions in driving FL in the MEC

systems, the aim of this work is to develop a more efficient FL algorithm that enables

fast, robust model training by leveraging the pervasive data at the edge while addressing

the communication bottleneck.

4.2 Hierarchical FL: Benefits and Challenges

Mobile Edge Computing, which incorporates the cloud, edge nodes and end devices,

has shown great potential in bringing data processing closer to the data sources.

Meanwhile, federated learning has emerged as a promising privacy-preserving approach

to facilitating AI applications for user devices. Yet the adaptation of FL to the three-

layer MEC system still needs much exploration. This section analyses the potential

benefits and obstacles.

4.2.1 Benefits

Motivated by the potential of hierarchical FL, this work takes the approach of in-

tegrating the FL framework with the multi-layer architecture of MEC systems. The

expected benefits are:

� Scalability: the reach of FL can be extended to the entire edge layer without

being restricted by the connectivity of any edge nodes.

� Model generalisation: the collaborative training can be performed over an

increased magnitude of devices across multiple cellular regions to achieve better

generalisation of the global model.

� Controllable cost: scaling up the FL framework only incurs a marginal cost of

communication system-wise.

4.2.2 Challenges

It remains a big challenge to optimise the efficiency and effectiveness of FL when it is

integrated with the MEC architecture. The difficulties lie in the following aspects:

� Adaptation: the standard FL is a two-layer framework with a canonical client–

server architecture, but the abstraction of a MEC system consists of three layers

while a practical one can be even more complex.
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� Heterogeneity: extending FL across multiple communication regions may

increase the heterogeneity of devices and make it more challenging for the

collaborative training in FL.

� Resource restrictions: wireless communication resources at the edge are

hardly sufficient and thus the number of active devices within each region are

usually restricted.

In view of the benefits and challenges, the research to be presented in this chapter

focuses on designing a multi-layer FL algorithm for the MEC architecture with flexible

communication and participation mechanisms to enable scalable, system-wise federated

learning while mitigating the unreliability and heterogeneity of end devices.

4.3 Contributions

The main contributions of this work are outlined as follows:

� A novel algorithm (HybridFL) to drive the FL process in the three-layer

architecture of MEC. HybridFL facilitates efficient model exchanges via the

combination of quota-triggered regional aggregation (via the edge layer) and

immediate cloud aggregation.

� A mechanism for mitigating the impact of client drop-out by introducing a

regional slack factor for each edge node (i.e. region) into the client selection step

via a probabilistic estimation method under strong privacy-preserving conditions

that cause clients’ reliability to be unknown.

� Extensive experiments with machine learning tasks (using two public data sets)

for performance evaluation of the proposed HybridFL algorithm. Experimental

results demonstrate significant improvement in average round duration, global

model’s convergence speed and accuracy and the energy consumption of end

devices.
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4.4 Client Reliability Unknown Federated Learning

in MEC

In this section, hierarchical FL in the three-layer MEC system is investigated and a

novel algorithm (HybridFL) is presented for privacy-preserving, efficient federated

learning under the MEC architecture. Fig. 4.3 shows an overview of the proposed

algorithm. This work proposes to leverage the capability of edge nodes to boost

the efficiency of communication and adapt FL to the three-layer hierarchy of MEC

by making the FL process a hybrid of client–edge and edge–cloud collaborations.

Both the unreliability and heterogeneity of end devices are taken into account under

strong privacy conditions. A novel pace control mechanism is adopted as a hybrid of

synchronous (edge–cloud) and asynchronous (client–edge) communication.
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Figure 4.3: A schematic overview of the HybridFL algorithm designed for the MEC
architecture.

4.4.1 System Overview

The proposed three-layer FL framework is depicted in Fig. 4.3 where end devices (e.g.,

mobile phones and IoT equipments) are the clients to perform local training, edge

nodes (e.g., base stations and edge servers) provide wireless access to different regions

of clients, and the cloud acts as a central coordinator that orchestrates the whole FL

process. The two levels of model aggregation are controlled by the ‘aggregation signal’

sent from the cloud based on the information of local models collected by the edge

nodes. In the system, clients are connected to the edge nodes via relatively low-speed
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(typically wireless), shared (therefore noisy) channels, whilst the edge–cloud connection

is more stable (typically through Ethernet) and the bandwidth is typically sufficient.

In this work, the collection of clients connected to an edge node is referred to as a

region. Dr denotes the set of data in region r (note that the data cannot leave their

end devices), i.e., Dr = {Dr,k|∀k ∈ region r}. Without loss of generality, it is assumed

that a client can only connect to a single edge node and that clients are independent

of each other regarding their behaviours. Table 4.1 lists the notations frequently used

in this chapter. Other notations (e.g., the number of clients N , selection fraction C,

etc.) are defined in consistency with those in previous chapters.

Table 4.1: List of symbols

Symbol Description
D the complete dataset
Dr,k the data partition on client k in region r
Dr the (logical) set of data in region r
Nr the number of clients connected to edge node r
M the number of edge nodes (regions)
V the set of edge nodes
Ur the set of clients in region r (|Ur| = Nr)
w parameters of the global model
wr parameters of the model on edge node r
wr,k parameters of the local model on client k
Cr the proportion of clients selected in region r

S
(t)
r the set of selected clients within region r in round t

X(t) the set of all clients (across all regions) that do not drop out in round t

X
(t)
r the set of clients in X(t) belonging to region r

Ψ(t) the set of clients that submit their models in time in round t

Ψ
(t)
r the set of clients in Ψ(t) belonging to region r

Formally, the proposed solution is to solve the following global optimisation problem

at any given round t:

arg min
w

F (w, t) =
∑
k∈U

γ(k, r(k), t)Fk(w) (4.1)

where w denotes the parameters (e.g., weights for neural nets) of the global model

to be optimised, r(k) is the region index for client k, and Fk(w) is local objective for

the training on client k. The coefficient γ(k, r(k), t) is the weight of client k’s model.

Without ambiguity, the abbreviation γ(k, r, t) is used to denote γ(k, r(k), t) for brevity.

The value of γ(k, r, t) depends on the volume of client k’s local data, the joint volume

of data on devices within region r(k) and effective data coverage (EDC) for round t.

The formal definitions of γ(k, r(k), t) and EDC will be presented later.
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The local objective Fk(w) is the average loss on client k’s local dataset:

Fk(w) =
1

|Dr(k),k|
∑

(Xi,Yi)∈Dr(k),k

f(w;Xi, Yi) (4.2)

where f(·) is the loss function and Dr(k),k is the data possessed by client k with r(k)

being its region.

There are eight steps in each round of training using the HybridFL algorithm

to drive FL in the MEC architecture (see Fig. 4.3). These eight steps comprise three

basic stages: model distribution, local training and model aggregation. The stage of

model distribution starts with client selection (step 1, Fig. 4.3), after which the (latest)

global model is distributed over the edge nodes (step 2) and then across all the clients

(step 3). The second stage, local training, is performed on the clients (end devices)

and also includes the steps of model downloading and uploading via the client–edge

connections. Aggregation is the final stage of a round where the local models (selected

and uploaded) are merged into a global model. The proposed algorithm adopts a

hybrid pace control mechanism that allows flexible control over the edge-level (i.e,

regional) model aggregation, which is signified by the cloud.

In the first stage of any FL round, client selection is often performed to ensure

that only a reasonable proportion of clients are engaged in training this round. For

example, the number of selected clients is determined by the proportion C in [12, 47].

As pointed out by Kairouz et al. [49], it is necessary to restrict the participating

population to a small fraction for two reasons. First, it has been shown that involving

an excessive number of clients can hardly benefit the convergence and quality of

the global model [47]. Second, recruiting excessive devices is neither cost-efficient in

communication nor realistic for the end device owners.

Nevertheless, a severe shortage of participants in FL also leads to an inferior global

model, of which the unreliability of end devices is the main cause. These devices

can opt out of any round of local training or drop out occasionally due to various

reasons such as low battery, device failure or network disconnection. Let X
(t)
r denote

the set of clients who are in region r and do not drop out of round t. Then, since

the client may drop-out, manually or unexpectedly, one can expect |X(t)
r | ≤ C ·Nr

and |X(t)| =
∑M

r=1 |X
(t)
r | ≤ C ·N , where C is the desired proportion of clients with

successful model submission (C is preset by the cloud server).

In order to mitigate the shortage of participants caused by drop-out, this work
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introduces C
(t)
r as the region-wise selection proportion into the client selection step

(i.e., step 1 in Fig. 4.3) of the HybridFL training process at the start of each round.

More specifically, an edge node r will determine C
(t)
r and select a fraction of C

(t)
r ·Nr

(instead of C ·Nr) clients randomly before signifying these clients to begin local training

in round t. An ideal value of C
(t)
r should satisfy that: i) the resulting |S(t)

r | should

be large enough so that the stragglers and dropouts have the minimal impact on

round efficiency, and ii) |S(t)
r | should not be too large, otherwise local training on some

devices may be futile because the cloud only accepts a maximum of C ·N clients each

round. The main challenge here is that it is not permitted, for privacy reasons, for

an edge node to probe the state of its clients (including their IDs, aliveness, training

progress, and the number of model updates made by a particular client), which causes

the client’s reliability (i.e., the probability that it drops out in a round) to be unknown

to the edge and the cloud. In view of this, a probabilistic approach is developed in

this work to determine C
(t)
r for each region.

The following sections detail the design of HybridFL, in particular on how this

work introduces regional slack factors into the model distribution stage and how the

proposed algorithm performs the aggregations at the edge- and cloud-level.

4.4.2 Regional Participation Control

By specifying the regional selection proportion C
(t)
r in round t, this work aims to

involve a fraction of C
(t)
r ·Nr clients in region r and expect that C ·Nr of them do

not drop/opt out, provided that all these clients behave independently and may be

unreliable. Formally, the target of the proposed region-wise selection method can be

formulated as:

E[|X(t)
r |;C(t)∗

r , Nr] = C ·Nr (4.3)

where E[|X(t)
r |;C(t)∗

r , Nr] is the expectation of the number of clients in region r that

do not drop out in round t given that an optimal proportion of clients C
(t)
r = C

(t)∗
r

are selected from Nr (i.e., total number of clients in region r) clients to perform local

training.

Given any selection proportion C
(t)
r , the expectation at the left-hand side of

Eq. (4.3) is equivalent to:
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E[|X(t)
r |;C(t)

r , Nr] =

C(t)
r Nr∑
k=0

k
∑

b∈comb(S
(t)
r ,k)

P (b) (4.4)

where S
(t)
r is the set of clients selected in region r, comb(U, k) is the set of all

combinations for selecting k elements from the set of U , and P (b) is the probability

that the combination b of end devices happen to be those who do not drop out in

round t. Given a combination b ∈ comb(S
(t)
r , k) and let P

(t)
r,i denote the probability

that device i of region r does not drop/opt out in round t, P (b) can be calculated by

Eq. (4.5):

P (b) =
∏
i∈b

P
(t)
r,i ·

∏
i/∈b

(1− P
(t)
r,i ) (4.5)

Therefore, to obtain the optimal client selection proportion C
(t)∗
r one must solve it

from Eq. (4.6) combining Eq. (4.5):

C(t)∗
r Nr∑
k=0

k
∑

b∈comb(S
(t)
r ,k)

P (b) = C ·Nr (4.6)

However, C
(t)∗
r cannot be solved from Eq. (4.6) without a priori knowledge on the

probability P
(t)
r,i (i.e., reliability) of every individual client. In this work a FL scenario

with strong privacy-preserving condition is considered, under which it is prohibited to

acquire the clients’ identifiers and their states [49], i.e., P
(t)
r,i is unknown. In view of

this, this work presents a novel approach to the problem and eventually works out the

optimal value of C
(t)
r for each region r each round t.

Assume that θ
(t)
r is such a probability that after each individual P

(t)
r,i in Eq. (4.5)

is replaced with θ
(t)
r , the resulting expectation of |X(t)

r | remains unchanged. One

can always find such θ
(t)
r because after the replacement, |X(t)

r | of region r fol-

lows the Binomial distribution B(C
(t)
r Nr, θ

(t)
r ) and the expectation of |X(t)

r | (i.e.,

E[|X(t)
r |;C(t)

r , Nr] ∈ [0, C
(t)
r Nr]) is a surjective function of θ

(t)
r ∈ [0, 1]. Now the

right-hand side of Eq. (4.4) can be rewritten as:

E[|X(t)
r |;C(t)

r , Nr] =

C(t)
r Nr∑
k=0

k · P (|X(t)
r | = k)

= C(t)
r Nrθ

(t)
r (4.7)
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where the second equality in Eq. (4.7) holds because |X(t)
r | ∼ B(C

(t)
r Nr, θ

(t)
r ). Note

that in this work, clients are assumed independent of each other regarding their

behaviours.

Combining Eq. (4.7) and the selection target Eq. (4.3):

C(t)
r =

C

θ
(t)
r

if C(t)
r = C(t)∗

r (4.8)

where C is the desired global proportion of clients (specified by the cloud) with

successful model submissions in round t over the entire MEC system; θ
(t)
r defined

in Eq. (4.7) rescales the selection proportion in a region to compensate the client

drop-out in that region. Therefore in this work θ
(t)
r is termed the regional slack factor

(for region r).

Note that θ
(t)
r in Eq. (4.8) cannot be decided arbitrarily, otherwise the optimality

of C
(t)
r is not guaranteed. This is because there is only one optimal value for C

(t)
r

given any distribution of client reliability and the target formulated in Eq. (4.3). In

other words, if one determines C
(t)
r via Eq. (4.8) provided an under-estimated θ

(t)
r ,

the selection proportion C
(t)
r will be too big (i.e., C

(t)
r > C

(t)∗
r ) for region r and

consequently, the target expectation of |X(t)
r | will be higher than the desired level, i.e.,

E[|X(t)
r |;C(t)

r , Nr] > C ·Nr. It is similar for the situation of over-estimated θ
(t)
r .

According to Eq. (4.8), one can determine how many clients are needed in each

region for an upcoming FL round after θ
(t)
r is resolved. In this work, a novel method

is used to estimate θ
(t)
r based on the historical records of model submissions (since

the course of FL is organised in rounds), i.e., how many models are collected by each

region in previous rounds. Note that edge nodes can only count the models they

collected but do not know which client submitted the model.

HybridFL adopts a quota-triggered aggregation mechanism in which the cloud

ends a round once N · C client models have been submitted globally across the MEC

system. As a result, the following holds:

∑
r∈V

|Ψ(t)
r | = min(N · C,

∑
r∈V

|X(t)
r |) (4.9)

where Ψ
(t)
r is the set of clients that submit their models in time in round t (before

the cloud ends a round after collecting N · C models globally) and V is the set of

edge nodes. Note that Ψ
(t)
r ⊆ X

(t)
r because when the cloud ends a round, some clients
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may be still working and have not finished local training. Details of how to determine

the aggregation timing will be introduced later. Formally, a factor q
(t)∗
r is used to

characterise the relation between |Ψ(t)
r | and |X(t)

r |:

|Ψ(t)
r | = |X(t)

r | · q(t)∗r (4.10)

where q
(t)∗
r denotes the percentage of clients in X

(t)
r that submit local models in time

(these clients make up Ψ
(t)
r ). Note that |Ψ(t)

r | is observable as the number of local

models collected by edge node r in round t. However, X
(t)
r is unknown since this work

considers a strong privacy scenario where the edge nodes are not allowed to probe

the state of clients. One can only observe how many clients submitted the updated

models (i.e., |Ψ(t)
r |) but cannot know who have dropped out and who are still working.

Therefore, one can transform Eq. (4.10) into Eq. (4.11) given E[|X(t)
r |;C(t)

r , Nr] ̸= 0,

and then define q
(t)
r in Eq. (4.12).

|Ψ(t)
r | = E[|X(t)

r |;C(t)
r , Nr] · |X(t)

r | · q(t)∗r

E[|X(t)
r |;C(t)

r , Nr]
(4.11)

q(t)r ≜
|X(t)

r | · q(t)∗r

E[|X(t)
r |;C(t)

r , Nr]
(4.12)

From Eqs. (4.11), (4.12) and (4.7), one can derive that:

|Ψ(t)
r | = E[|X(t)

r |;C(t)
r , Nr] · q(t)r

= C(t)
r Nrθ

(t)
r · q(t)r (4.13)

Note that the value of θ
(t)
r needs to be estimated before round t starts so that the

selection proportion C
(t)
r can be determined (as every round begins with the client

selection step). However, Eq. (4.13) cannot be used directly to obtain θ
(t)
r because

Ψ
(t)
r and q

(t)
r are unknown before round t is completed (Note that Ψ

(t)
r is observable

at the end of round t so q
(t)
r can be calculated with |Ψ(t)

r | at round ends by Eq. (4.14)

combining Eqs. (4.12), (4.10) and (4.3) with the assumption that C
(t)
r is the optimal).

q(t)r =
|Ψ(t)

r |
C ·Nr

(4.14)

Therefore this work develops the following practical approach to work out θ
(t)
r by
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exploiting the historical records of the variables observable to edge nodes. More

specifically, edge node r has stored S
(1)
r , S

(2)
r , . . . , S

(t−1)
r , q

(1)
r , q

(2)
r , . . . , q

(t−1)
r and

C
(1)
r , C

(2)
r , . . . , C

(t−1)
r at the start of round t. Also, according to the definition of

θ
(t)
r , it represents a region-wise property. Let us assume θ

(t)
r does not change signi-

ficantly over the course of the FL training. Thus, a constant θ̂
(1..t)
r is used as the

approximation of θ
(t)
r within the time window spanning from round 1 to round t:

θ(i)r ≈ θ̂(1..t)r , ∀i ∈ {1, 2, . . . , t} (4.15)

Replacing θ
(i)
r with θ̂

(1..t)
r in Eq. (4.13) and for round i, ∀i < t,

|S(i)
r |
Nr

≈ C(i)
r q(i)r θ̂(1..t)r , ∀i ∈ {1, 2, . . . , t− 1} (4.16)

Therefore, (4.16) is equivalent to a series of observations (the number of which

is t− 1) sampled from a function in the form of ‘y = ax’ (i.e., |S(i)
r |/Nr and C

(i)
r q

(i)
r

being the y and x of sample i, respectively, and θ̂
(1..t)
r is the coefficient). This work

uses Least Square Estimation (LSE) to fit the value of θ̂
(1..t)
r based on (4.16), which

produces:

θ̂(1..t)r
LSE
=

1

Nr

∑t−1
i=1 C

(i)
r q

(i)
r |S(i)

r |∑t−1
i=1

(
C

(i)
r q

(i)
r

)2 , t > 1. (4.17)

where S
(i)
r , C

(i)
r and q

(i)
r , i = 1, 2, . . . , t− 1 are retrieved from the logs on edge node r.

At the start of round t, one can compute θ̂
(1..t)
r and use it as an estimate of θ

(t)
r , and

then determine region r’s client selection proportion C
(t)
r (defined in Eq. (4.8)) using

Eq. (4.18):

C(t)
r = C ·Nr

∑t−1
i=1

(
C

(i)
r q

(i)
r

)2∑t−1
i=1 C

(i)
r q

(i)
r |S(i)

r |
, t > 1. (4.18)

For t=1 (the 1st round of FL), θ
(t)
r is initialised as a default value (e.g., θ

(1)
r =0.5).

C
(1)
r is initialised to C/θ

(1)
r accordingly. To investigate the effectiveness of the proposed

method in terms of achieving the selection target Eq. (4.3), 20 clients are simulated in

two regions and ran 100 rounds (5 local epochs per round, sufficient for convergence) of

federated learning using HybridFL as the control algorithm and θ
(1)
r is initialised to

0.5. The reliability of clients in training follows the Gaussian distribution N (µ, 0.152)

where µ = E[P
(t)
r,i ] is set to 0.43 and 0.57 for Region 1 and Region 2, respectively.
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Clients also differ in performance which follows N (0.5, 0.12) (cycles/s); The global

selection fraction C is set to 0.3.
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Figure 4.4: The traces of θ
(t)
r , C

(t)
r , q

(t)
r and |X(t)

r |/Nr in a simulation where there are
11 and 9 clients in Region 1 and Region 2, respectively.

From the traces of θ
(t)
r , C

(t)
r , q

(t)
r and |X(t)

r |/Nr in Fig. 4.4, one can observe that

the proposed probabilistic estimation drives θ
(t)
r and C

(t)
r (the first two rows in the

figure) to the convergence at about 40 rounds of FL. Note that θ
(t)
1 and θ

(t)
2 converge to

0.46 and 0.63, which, by the definition, are not necessarily equal to E[P
(t)
r,i ] (recall that

P
(t)
r,i is the reliability of client i in region r) which is set to 0.43 and 0.57 for Region

1 and Region 2 in this example, respectively. Besides, q
(t)
r is defined without using

any knowledge about X
(t)
r , but still produces a close approximation to its true value

q
(t)∗
r = |Ψ(t)

r |/|X(t)
r | (the 3rd row in Fig. 4.4). Consequently, the client participating

ratio in a region, quantified by |X(t)
r |/Nr, is maintained around C = 0.3 (shown in the

last row of Fig. 4.4; the blue dash line represents C = 0.3) after the convergence of

θ
(t)
r and C

(t)
r .

This toy case demonstrates that the proposed method for estimating θ
(t)
r (which

determines C
(t)
r ) is both theoretically and practically feasible for finding the optimal

value of the regional selection proportion that leads to the very expectation of |X(t)
r |

desired by the cloud (see the target Eq. 4.3).
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4.4.3 Two-level Model Aggregation

For coherence with the previous chapters, the notation w(t)(z) denotes the model

in round t at time step z. Note that the time step z keeps counting since the very

beginning of the first round.

In the proposed algorithm (HybridFL), model aggregation is a multi-step stage,

involving both edge- and cloud-level aggregation (see steps 6, 7, 8 and 9 in fig. 4.3). In

HybridFL, once the updated models submitted by the clients across the MEC system

amount to N · C (i.e., |Ψ(t)| =
∑

r∈V |Ψ
(t)
r | reaches N · C), it triggers the cloud to

send the ‘aggregation signal’ to the edge nodes (see step 6, Fig. 4.3). The edge nodes

will then stop waiting for more local models. This quota-triggered regional aggregation

effectively mitigates the impact of the clients which have dropped out or are straggling.

Consequently the round length is expected to be shortened (the experimental results

presented later support this expectation).

The proposed method adopts an immediate cloud aggregation strategy, which

allows the cloud-level model aggregation to be conducted right after the edge-level

aggregation is completed. The rationale behind this strategy is that the cloud-edge

network connection is typically reliable and of low latency. Therefore, it facilitates the

global information exchange and the convergence of the global model by aggregating

the regional models at the cloud level as early as possible after the regional aggregations

are completed at the edge nodes. Fig. 4.5 demonstrates how rounds are orchestrated

in HybridFL.

The cloud keeps monitoring the total number of clients that have submitted their

models each round by listening to the reports of the current value of |Ψ(t)
r | from the

edge nodes. Once the total number of client model submissions reaches the quota

N ·C, the cloud will signify the edge nodes to perform regional aggregation, the result

of which can be formulated as:

w(t)
r =

∑
k∈Ur

|Dr,k|
|Dr|

w
(t)
r,k (4.19)

where w
(t)
r,k is the model on client k in region r and w

(t)
r denotes the resulting regional

model for edge node r in round t. Note that the aggregation involves all client models

in the region, not limited to those who finished local training successfully (see fig. 4.5).

To alleviate model staleness, a cache solution is used in which the local models without

successful update in the current round are replaced with the existing regional model
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Figure 4.5: The workflow of the proposed HybridFL algorithm wherein the cloud
requires two local model submissions (C=0.4 and n=5 in this example) each round to
trigger the model aggregation.

obtained in last round before the aggregation is conducted, i.e., w
(t)
r,k = w

(t−1)
r if

k /∈ Ψ
(t)
r .

The cloud aggregation will be performed immediately after the regional aggregation

to produce the cloud model. Instead of using a constant weight for each regional

model as in the literature [279], the proposed approach adopts a data-oriented weight

averaging strategy by introducing the Effective Data Coverage (EDC) for each region

in every round. EDC quantifies the actual size of data covered in round t’s training

based on Ψ
(t)
r . EDC for region r in round t (denoted by EDC

(t)
r ) is formulated as:

EDC(t)
r =

∑
k∈Ψ

(t)
r

|Dr,k| (4.20)

where Ψ
(t)
r is the set of clients who submitted their models successfully to its regional

edge node. Accordingly, this work further defines EDC for the whole MEC system

(denoted by EDC(t)) as:

EDC(t) =
∑
r∈V

EDC(t)
r . (4.21)

In the model aggregation step at the cloud level, the proposed aggregation method

weights each regional model w
(t)
r based on EDC to characterise its round-wise contri-

bution in producing the global model w(t):
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w(t) =
∑
r∈V

EDC
(t)
r

EDC(t)
w(t)

r . (4.22)

Algorithm 3 presents the pseudo-code of the entire process of FL using the proposed

algorithm.

Algorithm 3: the HybridFL algorithm

Input :maximum number of rounds tmax, local epochs per round τ , desired
proportion C, response time limit Tlim

Output : finalised global model w

// Cloud process: running on the central server
Initialise global model w
quota← C · n
for round t← 1 to tmax do

Distribute w to all the edge nodes
for each edge node r in V in parallel do

Compute C
(t)
r according to Eq. (4.18)

edgeUpdate(r, C
(t)
r , τ)

end
Keep monitoring update count by edge nodes

if |Ψ(t)| ≥ quota or Tlim is reached then
// trigger regional aggregation
Send aggregation signal to all edge nodes
edgeAggregation(r)

end
// cloud aggregation
Update w according to Eq. (4.22)

end
return w

// Edge process: running on edge node r
edgeUpdate(r, Cr, τ):

q ← Cr ·Nr

Q← q randomly selected clients in region r
for each client k in Q in parallel do

clientUpdate(k, r, τ)
Keep reporting update count to the cloud

end

return
edgeAggregation(r):

Compute wr according to Eq. (4.19)
return

// Client process: running on client k
clientUpdate(k, r, τ):

for step e← 1 to τ do
Update wr,k using Gradient Descent method

end

return
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4.4.4 Convergence Analysis

The convergence of the global model by federated learning has been proven for both the

two-layer architecture [55] and the three-layer edge computing systems [279]. However,

since modification is made to the aggregation rules, it is necessary to provide the

convergence analysis with the focus on showing the difference compared to the proof

provided in the existing work.

Since the regional aggregation in HybridFL is followed instantly by the cloud

(global) aggregation, one can mathematically re-formulate the global model w(t) by

combining Eq. (4.19) and Eq. (4.22), which yields Eq. (4.23):

w(t) =
∑
r∈V

EDC
(t)
r

EDC(t)

∑
k∈Ur

|Dr,k|
|Dr|

w
(t)
r,k

=
∑
k∈U

EDCr(k)(t)

EDC(t)

|Dr(k),k|
|Dr(k)|︸ ︷︷ ︸

γ(k,r(k),t)

w
(t)
r(k),k (4.23)

where r(k) stands for the corresponding edge node connected to client k and the

symbol γ(k, r(k), t) represents the weight of client k’s model during the aggregation.

Without ambiguity, in the following content, the abbreviation γ(k, r, t) is used to

denote γ(k, r(k), t) for brevity.

In Eq. (4.23), the first equality represents the two-level aggregation, namely, the

second ’
∑

’ represents the edge-level aggregation while the first ‘
∑

’ represents the

cloud-level aggregation. The second equality in Eq. (4.23) transforms the two ‘
∑

’ into

one. This suggests that the entire aggregation in the proposed three-layer MEC system

is equivalent to the two-layer FL process as shown in [47] with the only difference

lying in weights.

The following content analyses the convergence of the proposed algorithm by

quantifying the upper bound of F (w(t), t)− F (w∗, t), where w∗ denotes the optimal

model parameters for the optimisation target (4.1). Due to space limit, the proof is

presented based on the analysis provided by Wang et al. [55] and extend their Theorems

1 and 2 for the case of the proposed algorithm, which yields the Theorem 4.1 and

Theorem 4.2 in this work, respectively. The following assumption is made to facilitate

the analysis:

Assumption 4.1 (Loss function). Fk(w, t) is convex, ρ-Lipschitz and β-smooth.
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For the loss functions that do not satisfy the assumption above, Wang et al. [55]

still validated the effectiveness of FL in such cases. The assumption implies that

F (w, t) is convex, ρ-Lipschitz and β-smooth with regards to w for any round t, which

can be proven using the triangle inequality based on Eq. (4.1). This work also defines

δk as the upper bound of the divergence between the gradients of Fk(w) and F (w, t),

and δ̄ as the upper limit of δk,∀k ∈ U :

∥∇Fk(w)−∇F (w, t)∥ ≤ δk ≤ δ̄. (4.24)

The following analysis is provided at the level of local update steps. Let z denote

the index of local update steps and the relation between a round index t and the update

time steps in the round follows that z ∈ ((t− 1)τ, tτ ]. To facilitate the analysis, let

w(z) be a virtual global model as the result of aggregating all wr,k(z) after each update.

It is not to be confused with w(t) because w(t) is only visible after the aggregation at

the end of a round. Besides, this work also considers an auxiliary model v(t)(z) learnt

using centralised gradient descent initialised as w(t−1) in the context of round t for

optimising the same target F (w, t). Given z as an update step in round t, w(z) is

defined as:

w(z) =
∑
k∈U

γ(k, r, t)wr,k(z) (4.25)

where wr,k(z) is updated from wr,k(z − 1):

wr,k(z) = wr,k(z − 1)− η∇Fk(wr,k(z − 1)) (4.26)

For v(t)(z) with z ∈ ((t− 1)τ, tτ ], it follows that

v(t)(z) = v(t)(z − 1)− η∇F (v(t)(z − 1), t) (4.27)

The proposed Theorem 4.1 is presented as follows:

Theorem 4.1 (Loss divergence bound). for any step z in round t,

F (w(z), t)− F (v(t)(z), t) ≤ ρh̄(z − (t− 1)τ) (4.28)
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where

h̄(x) ≜
δ̄

β
((ηβ + 1)x − 1)− ηδ̄x (4.29)

Proof. This work bases the proof of Theorem 4.1 on [Lemma 2, [55]]. First let δ(t)

denote the weighted average of δk by γ(k, r, t), which will be used later in the proof:

δ(t) ≜
∑
k∈U

γ(k, r, t)δk

≤
∑
k∈U

γ(k, r, t)δ̄

= δ̄ (4.30)

(because
∑
k∈U

γ(k, r, t) = 1)

where γ(k, r, t) is the abbreviation of γ(k, r(k), t) defined in Eq. (4.23) and δk is defined

in (4.24).

Combining Eq. (4.25) and Eq. (4.26),

w(z)− w(z − 1) = −η
∑
k∈U

γ(k, r, t)∇Fk(wr,k(z − 1)) (4.31)
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From Eq. (4.27) and Eq. (4.31) given any z ∈ ((t− 1)τ, tτ ], one can derive that:

∥w(z)− v(t)(z)∥

= ∥w(z − 1)− η
∑
k∈U

γ(k, r, t)∇Fk(wr,k(z − 1))

− v(t)(z − 1) + η∇F (v(t)(z − 1), t)∥

= ∥w(z − 1)− η
∑
k∈U

γ(k, r, t)∇Fk(wr,k(z − 1))

− v(t)(z − 1) + η
∑
k∈U

γ(k, r, t)∇Fk(v(t)(z − 1))∥

= ∥w(z − 1)− v(t)(z − 1)

− η
∑
k∈U

γ(k, r, t)
(
∇Fk(wr,k(z − 1))−∇Fk(v(t)(z − 1))

)
∥

≤ ∥w(z − 1)− v(t)(z − 1)∥

+ η
∑
k∈U

γ(k, r, t)∥∇Fk(wr,k(z − 1))−∇Fk(v(t)(z − 1))∥

(from triangle inequality). (4.32)

Using the property of the local objective Fk(·), it follows that

∥w(z)− v(t)(z)∥

≤ ∥w(z − 1)− v(t)(z − 1)∥

+ ηβ
∑
k∈U

γ(k, r, t)∥wr,k(z − 1)− v(t)(z − 1)∥

(because Fk(·) is β-smooth)

≤ ∥w(z − 1)− v(t)(z − 1)∥

+ ηβ
∑
k∈U

γ(k, r, t)
δk
β

(
(ηβ + 1)z−1−(t−1)τ − 1

)
(from [Lemma 2, [55])

= ∥w(z − 1)− v(t)(z − 1)∥

+ ηδ(t)
(
(ηβ + 1)z−1−(t−1)τ − 1

)
≤ ∥w(z − 1)− v(t)(z − 1)∥

+ ηδ̄
(
(ηβ + 1)z−1−(t−1)τ − 1

)
(from the definition of δ(t) in (4.30)) (4.33)
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Equivalently,

∥w(z)− v(t)(z)∥ − ∥w(z − 1)− v(t)(z − 1)∥

≤ ηδ̄
(
(ηβ + 1)z−1−(t−1)τ − 1

)
(4.34)

Since w(z) = v(t)(z) when z = (t− 1)τ according to the definition of the auxiliary

model v(t)(z), it is true that ∥w(z) − v(t)(z)∥ = 0 at z = (t − 1)τ . By summing up

(4.34) over z ∈ ((t− 1)τ, tτ ] (i.e., steps in round t), one can derive that:

∥w(z)− v(t)(z)∥

=

z∑
i=(t−1)τ+1

∥w(i)− v(t)(i)∥ − ∥w(i− 1)− v(t)(i− 1)∥

≤ ηδ̄

z∑
i=(t−1)τ+1

(
(ηβ + 1)i−1−(t−1)τ − 1

)

= ηδ̄

z−(t−1)τ∑
j=1

(
(ηβ + 1)j−1 − 1

)
(let j = i− (t− 1)τ)

= ηδ̄
(1− (ηβ + 1)z−(t−1)τ )

−ηβ
− ηδ̄(z − (t− 1)τ)

=
δ̄

β

(
(ηβ + 1)z−(t−1)τ − 1

)
− ηδ̄(z − (t− 1)τ)

= h̄(z − (t− 1)τ) (4.35)

Recall that the target loss function F (w, t) is ρ-Lipschitz (with regard to w) as a

corollary from Assumption 4.1. Using the result above one can further derive that:

F (w(z), t)− F (v(t)(z), t) ≤ ∥F (w(z))− F (v(t)(z))∥

≤ ρ∥w(z)− v(t)(z)∥

≤ ρh̄(z − (t− 1)τ) (4.36)

Theorem 4.1 gives the theoretical difference in loss between the global model w(z)

(by aggregating local models) and the baseline v(t)(z) (learnt on centralised data)
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during the training process in round t. Note that F (w(z), t)− F (v(t)(z), t) ≤ ρh̄(τ) at

z = tτ and h̄(1) = 0. This means that w(z) is equivalent to v(t)(z) if the aggregation

interval τ = 1. Based on Theorem 4.1 and recalling that w(t) = w(t·τ), the convergence

upper bound of w(t) in Theorem 4.2 is given by:

Theorem 4.2 (Convergence upper bound). After t rounds with τ update steps in

each round, the convergence of the global model is guaranteed by:

F (w(t), t)− F (w∗, t) ≤ 1

tτ
(
ωη(1− βη

2 )− ρh̄(τ)
τϵ2

) (4.37)

when the conditions below are satisfied:

1) η ≤ 1
β

2) ωη(1− βη
2 )− ρh̄(τ)

τϵ2 > 0

3) F (v(t)(z), t)− F (w∗, t) ≥ ϵ, ∀z ∈ ((t− 1)τ, tτ ]

4) F (w(t), t)− F (w∗, t) ≥ ϵ

where ϵ > 0, ω ≜ mint
1

∥v(t)((t−1)τ)−w∗∥2 , and h̄(·) is defined in Eq. (4.29).

Condition 1 places a limit on the learning rate η whilst condition 2 guarantees

that the upper bound is a positive value. Conditions 3 and 4 limit the lower bound of

the gap to a positive value ϵ because w(t) is an approximation of w∗ given that the

proposed algorithm performs the aggregation after every τ local epochs and τ > 1.

Theorem 4.2 can be proved based on the conclusion of Theorem 4.1 combined with the

[Lemmas 1, 3 and 4, [55]], and the steps of proof are the same as that provided in [55].

Theorem 4.2 implies that the gap between w(t) and w∗ (the optimum) in terms of

optimising the target loss function narrows as the FL process proceeds, i.e., t increases.

4.5 Experiments

The effectiveness of the proposed HybridFL was evaluated in terms of model con-

vergence speed, round efficiency and the global model’s accuracy. Experiment results

also include the energy consumption of end devices, which is often considered as an

important metric in practice.
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4.5.1 Experimental Setup

For evaluation at scale, a simulated MEC system was built for federated learning

using the same Python-based programming environment introduced in Section 3.7.1,

Chapter 3. The MEC system was established with three types of parties (i.e., the cloud,

edge nodes and end devices) that comprise the three-layer architecture. On-device

training in the FL process was implemented using the PyTorch framework. Each group

of end devices (clients) are managed by and connected to an edge node via wireless

channels, which forms a region, whilst the edge nodes and the cloud are connected

through high-speed Ethernet. Actual model exchange was implemented as in-memory

tensor exchange with a server-side wall clock for simulating time consumptions. All the

clients and their local network are implemented as being unreliable in the simulated

MEC system. The drop-out probability of client k is set as drk, which follows a

Gaussian distribution (see Table 4.2) with its mean value set to E[dr].

HybridFL was evaluated on two machine learning tasks: Aerofoil (Task 1) and

MNIST (Task 2). Different MEC environments were configured to test the performance

of HybridFL with different scale of end devices and edge nodes with different data

distribution. The size of data partitions in each end device in Task 1 follows the

Gaussian distribution while in Task 2, it is set to be non-IID by assigning the samples

of class yi, with a probability of 0.75, to the clients with indices k ≡ yi (mod 10).

The evaluation also includes two existing algorithms in recent literature for com-

parison: FedAvg [47] and HierFAVG [279]. FedAvg is the vanilla FL algorithm

proposed by Google for the two-layer client/server architecture. HierFAVG is a

three-layer FL algorithm for Edge Computing systems and adopts a similar training

architecture as the proposed algorithm by introducing the edge layer that performs

the edge-level model aggregation before the global aggregation conducted by the cloud.

HierFAVG has no adaptive control over the flow of models. Both the edge and the

cloud have to await the responses from all the selected clients. The FL training process

driven by these algorithms and HybridFL are compared under the same settings.

The parameters in the experimental setting are listed in Table 4.2.

In this work, a cycle from the stage of model distribution, local training to model

aggregation is called a federated round. Note that the global aggregation is performed

every federated round by FedAvg and the proposed HybridFL, but HierFAVG

performs it after several times of edge-level aggregation (i.e., it runs multiple federated
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Table 4.2: Experimental setup for federated learning and the MEC system. The units
of performance, bandwidth and throughput in the table are GHz, MHz, and Mbps,
respectively.

Setting Symbol Task 1 Task 2
Dataset D Aerofoil MNIST
Number of features d 5 28×28
Model w FFN LeNet-5
Dataset size |D| 1503 70k
Number of clients N 15 500
Number of edge nodes M 3 10
Data distribution - N (100, 302) non-IID, 0.75
Client performance sk N (0.5, 0.12) N (1.0, 0.32)
Client bandwidth bwk N (0.5, 0.12) N (1.0, 0.32)
Signal-noise ratio SNR 1e2 1e2
Drop-out probability drk N (E[dr], 0.052) N (E[dr], 0.052)
Region population Nr N (5.0, 1.52) N (50, 152)
Cloud–edge throughput BR 1e3 1e3
Max number of rounds tmax 600 400
Bits per sample BPS 6*8*8 28*28*1*8
Cycles per bit CPB 300 400
Number of local epochs τ 5 5
Loss function f MSE Loss NLL Loss
Learning rate η 1e-4 1e-3

rounds before a cloud aggregation). The cloud-level aggregation interval (κ2 in [279])

for HierFAVG is set to 10, which is shown to be an optimal setting in their work.

For fair comparison, all the algorithms were run for the same number of (federated)

rounds, denoted by tmax, which also means the same number of total updates because

each client runs the same number of local updates, denoted by τ , before the edge

nodes conduct an edge-level aggregation.

The length of a federated round, denoted by Tround, can be formulated as:

Tround = Tc2e2c + min
{
Tlim, max

k∈S′
{T comm

k + T train
k }

}
(4.38)

where Tlim is the preset limit of response time, which is configured as the time required

by an extremely straggling client to finish its local training and communication with

an average partition size. Given the performance (denoted by sk) and bandwidth

(denoted by bwk) of the clients follow the normal distribution with the mean and

standard deviation being µ and σ, respectively, the performance and bandwidth of

such an extremely straggling client is set to be µ− 3σ.

Note that S′ represents the selected fraction of clients for FedAvg and HierFAVG,

but for HybridFL S′ ≡ Ψ(t) because of the proposed quota-triggered aggregation

mechanism. Tc2e2c is the cloud–edge communication time, which is calculated by
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(4.39). T comm
k and T train

k are the communication time and local training time of client

k, which are calculated by (4.40) and (4.41), respectively.

Tc2e2c = 3× msize ·M
BR

(4.39)

where BR is the bit rate of the cloud–edge connection. The multiplier ‘3’ exists

because the model upload typically spends twice as much time as the model download,

given that uplink bandwidth is typically 50% of the total. The size of the model

(msize) is set to 5 MB and 10 MB for Tasks 1 and 2, respectively. For FedAvg,

Tc2e2c ≡ 0 because it does not involve the edge layer. For the edge–client wireless

network, the effective bit rate is calculated by applying the Shannon theorem to the

corresponding bandwidth bwk,

T comm
k = 3× T download

k = 3× msize

bwk · log(1 + SNR)
(4.40)

T train
k =

|Dr,k| · τ ·BPS · CPB

sk
(4.41)

The numerator in (4.41) quantifies the total number of CPU cycles needed for training

the local partition Dr,k.

Based on (4.40) and (4.41) this work further models the energy consumed by end

device for local training:

Ek = Ecomm
k + Etrain

k

= Ptrans · T comm
k + P base

comps
3
k · T train

k (4.42)

where Ptrans is the power consumption of transmitter and P base
comps

3
k represents the

power for on-device computation based on the frequency power model [280]. Ptrans

and P base
comp are set to 0.5 and 0.7 Watt respectively based on the benchmarking results

reported in [281].

4.5.2 Evaluation Results

The FL process was run in two ways: i) stop the process at a preset maximum

round tmax, and ii) stop when a preset accuracy is achieved for the global model. In
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Table 4.3 and Table 4.4, the results for task 1 and task 2 are presented respectively,

in terms of best model accuracy achieved, average round length (obtained when

stopping at tmax), the number of rounds needed and the total time duration (for

achieving the desired model accuracy). This work also investigates the model conver-

gence by comparing the accuracy traces (Figs. 4.6 and 4.8) for FedAvg, HierFAVG

and HybridFL. Figs. 4.7 and 4.9 show the average energy consumption by end devices.

Task 1: Aerofoil

Aerofoil is a numerical regression task. FL was performed to learn a global Feed-

Forward Network (FFN) model from a small group of clients that possess private aerofoil

self-noise data1. Clients hold different partitions of the data without overlapping and

cannot share the data with each other. This task simulates an industrial scenario

where the production data are proprietary. The size of local partitions follow the

Gaussian distribution specified in Table 4.2.

Table 4.3: Experimental results with Task 1: Aerofoil under different environmental
settings of E[dr] and client selection proportion C.

Stop @tmax

Best Accuracy Round length (sec)
C 0.1 0.3 0.5 0.1 0.3 0.5

E[dr] = 0.1
FedAvg 0.727 0.727 0.727 52.42 73.12 80.73
HierFAVG 0.727 0.726 0.728 51.56 71.90 81.08
HybridFL 0.729 0.727 0.728 37.80 63.80 58.15

E[dr] = 0.3
FedAvg 0.728 0.727 0.727 64.21 83.64 87.90
HierFAVG 0.727 0.728 0.727 66.74 83.24 88.14
HybridFL 0.729 0.728 0.728 38.94 64.83 69.84

E[dr] = 0.6
FedAvg 0.711 0.727 0.728 83.54 89.78 90.39
HierFAVG 0.714 0.727 0.728 81.43 89.91 90.44
HybridFL 0.727 0.728 0.728 65.38 73.23 84.96

Stop @Acc=0.70
Rounds needed Total time (sec)

C 0.1 0.3 0.5 0.1 0.3 0.5

E[dr] = 0.1
FedAvg 238 95 56 12515.1 5585.2 4149.7
HierFAVG 250 80 50 14608.6 4765.8 4285.8
HybridFL 113 75 49 4254.6 3341.4 3143.0

E[dr] = 0.3
FedAvg 376 125 74 25442.2 10674.6 6588.8
HierFAVG 340 130 60 22237.5 12025.9 6132.9
HybridFL 141 77 51 7010.7 4994.9 3711.6

E[dr] = 0.6
FedAvg 598 233 144 50122.4 21141.3 13108.4
HierFAVG 590 230 140 48922.2 21623.3 13565.6
HybridFL 160 66 62 10584.1 4780.4 5488.3

1Airfoil Self-Noise Data Set, UCI. https://archive.ics.uci.edu/ml/datasets/Airfoil+

Self-Noise
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600 FL rounds were run to compare the best accuracy achieved and the average

length of a round. The results are shown in the ‘Stop @tmax’ column of Table 4.3.

We can see that the proposed algorithm effectively shortens the average round length

by 6% to 42% with slight improvements on the global model’s accuracy in most

cases. In Fig. 4.6, we plot the trace of model accuracy over the FL process under

the settings of C ∈ {0.1, 0.3, 0.5} and E[dr] ∈ {0.3, 0.6} (E[dr] = 0.1 is not shown in

the plots due to space limit). From the figure one can observe a solid improvement

in model convergence by HybridFL, especially under unstable MEC circumstances

where end devices drop out frequently. In the setting of E[dr]=0.6 and the selection

proportion C=0.1 (Fig. 4.6(b)), the global model can hardly converge in 600 rounds

using FedAvg or HierFAVG, but reached its optimum in 200 rounds under the

control of the proposed HybridFL algorithm.

The algorithms were also evaluated by specifying a target model accuracy as

the stop criterion to observe the number of rounds needed for convergence and the

total time duration. The results are shown in the ‘Stop @Acc’ column of Table 4.3.

HybridFL requires much fewer rounds and less time to achieve the accuracy target

in Task 1, which yields up to 4× speedup compared to FedAvg and HierFAVG. In

the setting where the clients are mostly unreliable (i.e., E[dr]=0.6), HybridFL can

still achieve very fast convergence, requiring only about 1/3 of the rounds needed by

HierFAVG. Another benefit of fast convergence is energy conservation. Fig. 4.7 shows

the energy consumption of end devices. It can be seen that the proposed algorithm

is most energy consumption friendly to end devices. HybridFL reduces the average

energy usage of end devices by roughly 50% for Task 1 in the case of E[dr] = 0.6 and

C = 0.1.

Task 2: MNIST

For this task the aim is to simulate a scenario in which the image samples are

distributed over a relatively large fleet of end devices and they are not shared among

the devices or allowed to be uploaded to the servers. This is a realistic scenario for

mobile applications that are restricted by the privacy terms. In this experiment, 500

clients and 10 edge nodes were set up for running this task. Besides, to emulate the

statistical heterogeneity of data (i.e., the bias in the data distribution over devices),

samples are assigned to clients by matching data labels with clients’ indices — sample

(Xi, Yi) has a 75% chance to reside on (one of) the clients whose IDs are congruent to
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Figure 4.6: The trace of model accuracy during the FL process in Task 1: Aerofoil
with C =0.1, 0.3 and 0.5. The cloud always keeps the best global model throughout
the process. The drop-out probability of end devices follows the Gaussian distribution
N (E[dr], 0.052).

Figure 4.7: Comparing the energy consumption (Watt hours) of end devices when
running Task 1 (Aerofoil) among FedAvg, HierFAVG and HybridFL. The values
obtained are the average over all the end devices in the MEC system.
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yi modulo 10 (the MNIST data set has 10 classes). This way the data distribution on

each device is far from being IID.

Table 4.4: Experimental results with Task 2: MNIST under different environmental
settings of E[dr] and client selection proportion C.

Stop @tmax

Best Accuracy Round length (sec)
C 0.1 0.3 0.5 0.1 0.3 0.5

E[dr] = 0.1
FedAvg 0.936 0.958 0.962 377.28 378.02 378.02
HierFAVG 0.936 0.958 0.964 377.65 378.26 378.26
HybridFL 0.940 0.959 0.965 63.59 96.55 140.51

E[dr] = 0.3
FedAvg 0.925 0.951 0.962 378.02 378.02 378.02
HierFAVG 0.926 0.954 0.962 378.10 378.26 378.26
HybridFL 0.940 0.959 0.966 109.72 135.96 113.20

E[dr] = 0.6
FedAvg 0.901 0.933 0.950 378.02 378.02 378.02
HierFAVG 0.905 0.941 0.952 378.10 378.26 378.26
HybridFL 0.937 0.960 0.963 37.59 126.15 380.42

Stop @Acc=0.90
Rounds needed Total time (sec)

C 0.1 0.3 0.5 0.1 0.3 0.5

E[dr] = 0.1
FedAvg 200 66 32 75166.3 25327.3 12474.6
HierFAVG 150 40 30 60519.8 18911.3 15128.8
HybridFL 124 41 26 7856.9 3762.9 3730.6

E[dr] = 0.3
FedAvg 230 77 37 87322.3 29485.5 14364.7
HierFAVG 200 60 30 79432.7 26476.5 15128.8
HybridFL 123 41 25 15978.4 7148.9 4867.4

E[dr] = 0.6
FedAvg 376 146 65 142513.1 55568.8 24949.2
HierFAVG 350 100 60 136171.6 41606.9 26476.5
HybridFL 118 41 31 11743.1 7334.8 12171.8

The lightweight convolutional neural net LeNet-5 (consisting of two convolutional

layers with max pooling and three fully connected layers) is used as the model for this

image classification task. Again the FL process was run for a fixed number of rounds

first to observe the best accuracy and round length. The results are shown in the ‘Stop

@tmax’ column in Table 4.4, from which one can see that HybridFL outperformed

FedAvg and HierFAVG in terms of the accuracy of the global model in all cases,

especially when the participating devices are generally unreliable (E[dr] = 0.6). Fig. 4.8

tracks the accuracy of the global model in the training process under the settings of

C= 0.1, 0.3 and 0.5 and E[dr]= 0.3 and 0.6 (E[dr] = 0.1 is not shown in the plots

due to space limit). It can be observed that the convergence of the global model is

improved when using HybridFL as the controlling algorithm. These results suggest

that compared with FedAvg and HierFAVG, HybridFL can achieve the best global

model in the fewest number of federated rounds for Task 2.

The performance of HybridFL is also compared with the baseline algorithms by
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Figure 4.8: The trace of accuracy during the FL process in Task 2: MNIST with
C = 0.1, 0.3 and 0.5. The cloud always keeps the best global model throughout the
process. The drop-out probability of end devices follows the Gaussian distribution
N (E[dr], 0.052).

specifying acc= 0.9 as the convergence target for the global model. The results are

listed in the lower part of Table 4.4. One can observe from the table that HybridFL

significantly reduces the number of rounds and total time needed to achieve the

accuracy target, compared with other two algorithms. For example, HybridFL

achieves a roughly 12× speedup in the case where E[dr]=0.6 and C=0.1, which

represents a situation where the clients may drop out frequently and the participating

fraction is restricted.

Some interesting results were observed in the experiments. In both tasks 1 and

2 with E[dr] = 0.6, the proposed algorithm requires fewer rounds to converge given

C = 0.5 than that with C = 0.3, but the total time consumption for C = 0.5 is longer

(see Tables 4.3 and 4.4). This is because the extremely high drop-out probability (0.6

on average in the cases) of clients makes it almost impossible to engage 50% of them

(given C = 0.5) in training, even with the modulation of the regional slack factors.

This is the case |Ψ(t)| < N · C. In such a case, the edge nodes and the cloud have

to wait until the preset round length limit is reached, and thus the round length is

prolonged. To some extent, this observation explains why it is suggested in literature
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[49] that the selection proportion C should not be set too large.

Figure 4.9: Comparing the average on-device energy (Watt hours) consumed for Task
2: MNIST in local training when using FedAvg, HierFAVG and HybridFL as the
control algorithms. The values obtained are the average over all the end devices in
the MEC system.

Device energy usage can be a key factor that affects the willingness of device owners

to participate in the FL training. Fig. 4.9 shows the average energy consumption of

an end device as a participant in the FL process to achieve the preset accuracy target

0.9 for Task 2. The advantage of HybridFL in energy saving in Task 2 is not as

prominent as in Task 1. Yet HybridFL still managed to retain the on-device energy

usage at the lowest level. This is because it enables much faster convergence (therefore

less total training time for devices) than the baseline algorithms. In practice, the

energy-saving feature of HybridFL can help attract more end devices in each round.

The evaluation of the proposed algorithm (HybridFL) with the two machine

learning tasks under different environment settings demonstrates its effectiveness in

terms of boosting the efficiency of FL, improving the global model’s quality and saving

on-device energy consumption in a three-layer MEC system. The reasons behind

these improvements are three-fold. First, the quota-triggered regional aggregation

in HybridFL effectively prevents the situation where some regions with extremely

unreliable clients slow down the entire FL process. Second, the proposed algorithm

enables each edge node to rescale its regional quota based on its slack factor to improve

the robustness of FL against client drop-out. Third, the cloud (i.e., global) aggregation

is designed to be performed immediately after regional aggregation so that the global
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exchange of the model is made as early as possible.

4.6 Conclusion

Thanks to the ever-increasing capacity of compute, storage and bandwidth at the edge

of network, it has been a prominent trend that more and more end devices are enhanced

by the power of artificial intelligence. Meanwhile, the rising concerns about data

privacy are changing the way we develop machine learning techniques and also reveal

the great potential of using Federated Learning as a promising privacy-preserving

solution. This chapter presents a novel scheme that adapts FL to the mobile edge

computing systems, aiming to improve both efficacy and efficiency. A three-layer FL

algorithm called HybridFL is devised to enable two levels of model aggregation to

boost efficiency and mitigate the impact by the unreliable nature of end devices through

managing client selection in a region-wise manner, which results in a reasonable number

of local updates as desired by the cloud. Extensive experiments demonstrate that

HybridFL significantly improves FL in the MEC system by shortening the average

length of a round, speeding up the convergence of the global model, promoting the

model accuracy and reducing device-side energy consumption.

In the future, the research is planned be extended to more complex system archi-

tectures which have different hierarchies and to diverse FL participants which have

different roles. Also, it is worth investigating how to improve the effectiveness of local

training on each device without breaching the privacy constraints.
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Optimising Horizontal FL

with Learnt Representations

A large proportion of data used for machine learning are often generated outside the

data centres by distributed resources. Federated learning has shown great potential as

a privacy-preserving solution to learning from decentralised data but its performance

is largely affected by the distribution of data (both locally and globally) as well as

data quality.

Much effort has been paid in optimising FL, especially in terms of its efficiency and

efficacy. The existing solutions span a variety of perspectives including communication

[123, 245, 247], update rules [85, 160], flexible aggregation [1, 55], local training

optimisation [88, 230] and client selection [88, 159, 162]. However, little attention has

been paid to the problems caused by the low-quality data on end devices and the

challenge of how to minimise their impact on FL’s efficiency and efficacy. Goetz et

al. [159] proposed a loss-oriented client selection strategy, in which they prioritise the

clients with high loss feedbacks. This strategy has the tendency to select the clients

whose local models yield the higher errors, but it is also likely to favour the clients

with noisy and irrelevant data (i.e., low quality data). Tuor et al. [230] pointed out

that the clients of FL are likely to contain a lot of useless data and only a subset of

them is valuable for the training task. They further propose a data selection method

based on the loss distribution in order to filter out noisy and irrelevant data on local

devices. However, their solution requires a baseline loss distribution produced by a

pre-trained model, which could be difficult to set up without prior knowledge.
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FL features strong privacy protection and allows for learning from decentralised

data without relying on any distributional assumption. However, being completely

data-agnostic can bring about problems.

5.1 Motivation

5.1.1 FL’s Susceptibility to Data Quality

Generally, in each round of FL the server exchanges the model with only a fraction

of clients selected for this round of training (involving too many clients leads to

diminishing gains towards the quality of the global model [85]). The standard FL

implementation (i.e., FedAvg [47]) selects clients randomly, which implies that every

client (and its local data) is considered equally important as they have the same chance

of being selected. However, a common problem of decentralised data sources is the

discrepancy in both data quality and data distribution — a large proportion of

on-device data (e.g., user-generated texts [15] and photos) can be biased and noisy. In

some scenarios, local data may contain irrelevant or even adversarial samples [282][283].

The injection of low-quality or adversarial data is often used to launch model poisoning

attacks against FL [155, 215, 283].
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Figure 5.1: A demonstration of the global model’s convergence under different data
conditions. Detailed setup is given in Section 5.3.1.

For an intuitive demonstration, part of the Preliminary Experiment results is

presented here as shown in Fig. 5.1 (with details provided in the corresponding

Section 5.3.1). The toy experiment is devised to reveal the impact of involving clients
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with low-quality data by running FL over 100 clients with the aim of learning a CNN

model on MNIST using the standard FedAvg algorithm. From the traces one can see

that training over clients with problematic or strongly biased data can compromise

the efficiency and effectiveness of FL, resulting in an inferior global model that takes

more rounds to converge.

Traditional solutions to the problem include local data augmentation [284] and re-

sampling [285]. But these methods are designed to correct the population distribution.

Applying them to local datasets may introduce extra noise [286] and increase the risk

of information leakage [287]. Another naive solution is to directly exclude those clients

with ‘low quality’ data, which, however, is often impractical because i) the quality

of the data depends on the learning task and is difficult to gauge, ii) some noisy or

biased data could be useful to the training at early stages [288], and iii) sometimes

low-quality data are very common across the clients.

5.1.2 Learnt representations can reflect data distribution and

quality

Data representation learning is recognised as a cornerstone on which the success of

modern machine learning (especially deep learning) is built [220]. Representation

learning stems from feature learning methods (e.g., PCA) as a common approach to

extracting useful information and capturing the intrinsic structures behind the data

[289]. The development of deep models (neural networks particularly) further reveals

the importance of data representations. Studies have shown that the ability to learn

high-quality representations is critical to the model performance in many domains

including CV and NLP [221, 290]. The value of representations also lies in the fact

that they characterise the domain and learning task using the model as a medium

[291, 292]. In the context of FL, the similarity of representations are used for refining

the model update rules [105, 236], but the distributional difference of representations

from heterogeneous data is not yet explored. With this motivation, the work to be

presented in this chapter studies the distribution of data presentation and seeks to

use representations as the ‘lens’ to reflect the training value of local data.

Explained from a technical perspective, representations are the result of one or

multiple non-linear transformations of the raw data [220]. For example, deep Neural

Networks (DNNs) hierarchically construct the representations in a layer-wise manner,
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as illustrated in Fig. 5.2.
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Figure 5.2: An illustration of data representations from a Multi-Layer Perceptron
(MLP) and a Convolutional Neural Network (CNN). The CNN architecture is from
[21].

Good representations disentangle the underlying explanatory factors of variation

behind the data and provide useful information for the downstream machine learning

tasks. The utility of learnt representations has led to a diversity of ML paradigms

such as transfer learning, knowledge distillation and split learning. Although a few

studies explore the possibilities of using representations to optimise the efficiency and

efficacy of federated learning, most of these approaches use presentations to connect

split models [293] or are designed for Vertical FL [236] or Federated Transfer Learning

scenarios [240, 241]. Li et al. [105] proposed a model-contrastive FL framework MOON

using the distances between different models’ representations to rectify local training.

MOON is ‘heavy’ because three types of models need to be stored and inference on

each client. More importantly, the method cannot address the poisoning of low-quality

data on some clients.

5.2 Contributions

Motivated by the power of representation learning and the importance of data quality

to FL, the aim of this work is to devise an optimised FL algorithm with robustness to
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low-quality local data from a distributional perspective.

� This work first provides theoretical proofs for the observation that data repres-

entations from neural networks tend to follow Gaussian distribution, based on

which a representation profiling and matching scheme is proposed to enable fast,

low-cost comparison between different representation profiles.

� A novel FL algorithm FedProf is proposed to achieve selective FL through

adaptively adjusting clients’ participation probability based on representation

profile dissimilarities.

� Results of extensive experiments show that FedProf can reduce the number of

communication rounds by up to 77%, shortens the overall training time (up to

4.5× speedup) while increasing the accuracy of the global model by up to 2.5%.

5.3 Preliminary Experiments

This section presents the results of preliminary experiments comprised of two parts.

Part I is a toy experiment of FL with disparate conditions of training data for demon-

strating the impact of low-quality data on FL’s performance. Part II demonstrates

the representations learnt in different machine learning tasks from a distributional

perspective.

5.3.1 Part I: The Impact of Low-quality Data

A main motivation of this work is the susceptibility of FL to the quality of local

training data. This part of experiment reveals this fact using a demonstration of

the global model’s convergence under different data conditions. The resulting plot is

shown in Fig. 5.1. The data points are obtained by running the FL process (using

the standard FedAvg algorithm [47]) with 100 clients to learn a CNN model on the

MNIST dataset, which is partitioned and allocated to clients in four different ways

where the data are 1) original (black line): noiseless and evenly distributed over clients,

2) biased (magenta line): locally class-imbalanced, 3) noisy (blue line): blended with

noise, or 4) biased and noisy (red line). The noise (if applied) covers 65% of the

clients; the dominant class accounts for >50% of the samples for biased local data.

The fraction of selected clients is 0.3 for each round.

144



Chapter 5. Optimising Horizontal FL with Learnt Representations

From the traces one can see that training over clients with problematic or strongly

biased data can compromise the efficiency and effectiveness of FL, resulting in an

inferior global model that takes more rounds to converge. In other words, local training

data’s quality significantly influences the convergence of the global model and its final

accuracy.

5.3.2 Part II: Observations on Data Representations

The research to be presented is inspired by an intriguing finding as follows. During

the training process of a CNN, the representations are recorded during the forward

propagation and it turns out that the outputs of each neuron (before activation) in

the dense layers appear to follow Gaussian distributions. Fig. 5.3 shows the outputs of

several neurons randomly selected from the FC-1 (i.e., the first fully-connected layer)

of a CNN model when being trained on MNIST. The figure displays the outputs of five

randomly selected neurons (namely, #1, #15, #21, #75 and #127 out of 128 neurons

in FC-1 for this example) at the epochs 1, 6 and 10. One can see the distribution

of the neuron output matches the Gaussian distribution well since the first epoch of

training.

Fig. 5.4 shows the data representations from the two hidden layers of a Feed-

Forward Network (FFN) model after training (till convergence) on the Boston Housing

dataset1, with training set and test set representations displayed in different colors.

One can again observe clear Gaussian-like distributional patterns of the neurons’

output (i.e., individual components of the representation). The figure also exhibits

the distributional distances between the representations of the training set (in blue)

and the test set (in orange).

Further experiments show that the learnt representations from non-linear operators

in a deep neural network also tend to follow the Gaussian distribution. As a demon-

stration a ResNet-18 model is trained on the image classification dataset CIFAR-100.

Fig. 5.5 shows the distribution of fused representations (in a channel-wise manner)

extracted from a plain convolution layer and a residual block within the network.

These observations motivate this research to study the distributional property of

data representations and use it as a means to differentiate clients’ value.

1https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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Figure 5.3: An example of training LeNet-5 on MNIST till convergence. After each
epoch the model is evaluated and the pre-activation outputs of each neuron in the
model’s FC-1 layer are collected.

Figure 5.4: An example of training a two-layer FNN on the Boston Housing dataset
till convergence. Depicted here are representations (blue for the training set, orange
for the test set) extracted from the model’s hidden layers in the form of density
histograms.
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Figure 5.5: Fused representations from a standard convolution layer (1st row) and a
residual block (2nd row) of a ResNet-18 model trained for 100 epochs on CIFAR-100.
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5.4 Representation Profiling and Matching

5.4.1 Gaussian Distribution of Representations

In this chapter, a typical cross-device FL setting [49] is considered, where multiple end

devices collaboratively perform local training on their own datasets Di, i = 1, 2, ..., N .

The server owns a validation dataset D∗ for model evaluation. Every dataset is only

accessible to its owner. It is usually unrealistic to profile the raw data. On the one

hand, the raw feature space such as images can be very high-dimensional and the

distribution of samples in each dimension could follow any random pattern, which

makes it difficult to profile. On the other hand, the resulting profiles of local data

need to be sent to the server for comparison, which presents the risk of leaking user

information. Therefore, this work proposes a novel method which leverages the global

model as a medium to profile the latent representations of data.

This work adopts a representation profiling method on the basis of latent repres-

entations of data from the global model. The reasons why it is proposed to exploit

the global model as the medium for data representation profiling are multi-fold. First,

introducing a separate data encoder incurs the extra cost in communication and

training. Second, once properly initialised, the hidden layer(s) of the global model can

act as a natural encoder that maps the raw data to a set of feature embeddings (i.e.,

representations) which become more sensitive to the input data of different qualities

as the global model improves during the FL process. Besides, since the global model is

synchronised with the clients every training round, one can guarantee that an identical

encoder is used for embedding both local data on the clients and the benchmark data

on the server.

The observation presented in the Preliminary Experiments (Part II) empirically

shows clear distributional patterns for the representations learnt by a neural network.

In this section, theoretical proofs are first provided to support the observation that

learnt representations from neural network models tend to follow Gaussian distribution.

Then a novel scheme is presented for profiling data representations and and a measure

called profile dissimilarity is defined for fast and secure representation comparison.

The following definition is made to facilitate the analysis.

Definition 5.1 (The Lyapunov’s condition). A set of random variables {Z1, Z2, . . . , Zv}
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satisfy the Lyapunov’s condition if there exists a δ such that

lim
v→∞

1

s2+δ

v∑
k=1

E
[
|Zk − µk|2+δ

]
= 0, (5.1)

where µk = E[Zk], σ2
k = E[(Zk − µk)2] and s =

√∑v
k=1 σ

2
k.

The Lyapunov’s condition can be intuitively explained as a limit on the overall

variation (with |Zk − µk|2+δ being the (2 + δ)-th moment of Zk) of a set of random

variables.

Regarding the distributional property of data representations from linear operators,

Proposition 5.1 is formally stated as follows.

Proposition 5.1. The representations from linear operators (e.g., a pre-activation

dense layer or a plain convolutional layer) in a neural network tend to follow the

Gaussian distribution if the layer’s weighted inputs satisfy the Lyapunov’s condition.

Without loss of generality, this work provides the proof of Proposition 5.1 for

the pre-activation representations from dense (fully-connected) layers and standard

convolutional layers, respectively. The results can be easily extended to other linear

neural operators.

Dense layers

Proof. Let Ω = {neu1, neu2, ..., neuq} denote a dense layer (with q neurons) of any

neural network model and Hk denote the pre-activation output of neuk in Ω. The

theoretical proof is first provided to support the observation that Hk tends to follow

the Gaussian distribution.

Let χ = Rv denote the input feature space (with v features) and assume the

feature Xi (which is a random variable) follows a certain distribution ζi(µi, σ
2
i ) (not

necessarily Gaussian) with finite mean µi = E[Xi] and variance σ2
i = E[Xi − µi]. For

each neuron neuk, let wk = [wk,1 wk,2 . . . wk,v] denote the neuron’s weight vector, bk

denote the bias, and Zk,i = Xiwk,i denote the i-th weighted input. Let Hk denote the
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output of neuk. During the forward propagation, it follows that:

Hk = XwT
k + bk

=

v∑
i=1

Xiwk,i + bk

=

v∑
i=1

Zk,i + bk. (5.2)

Apparently Zk,i is a random variable because Zk,i = Xiwk,i (where the weights

wk,i are constants during a forward pass), thus Hk is also a random variable according

to Eq. (5.2).

In an ideal situation, the inputs variables X1, X2, . . . , Xv may follow a multivariate

Gaussian distribution, in which case Proposition 5.1 automatically holds due to the

property of multivariate normal distribution that every linear combination of the

components of the random vector (X1, X2, . . . , Xv)T follows a Gaussian distribution

[294]. In other words, Hk = X1wk,1 + X2wk,2 + . . . + Xvwk,v + bk is a normally

distributed variable since wk,i and bk (k = 1, 2, . . . , v) are constants in the forward

propagation. A special case for this condition is that X1, X2, . . . , Xv are independent

on each other and Xi follows a Gaussian distribution N (µi, σ
2
i ) for all i = 1, 2, . . . , v.

In this case, by the definition of Zk,i, it follows that

Zk,i = Xiwk,i ∼ N
(
wk,iµi, (wk,iσi)

2
)
, (5.3)

where Z1, Z2, . . . , Zv are independent on each other. Combining Eqs. (5.2) and (5.3),

one can derive that

Hk ∼ N
( v∑
i=1

wk,iµi + bk,

v∑
i=1

(wk,iσi)
2
)
, (5.4)

For more general cases where X1, X2, . . . , Xv are not necessarily normally dis-

tributed, it is assumed that the weighted inputs Zk,i of the dense layer satisfy the

Lyapunov’s condition (see definition 5.1). As a result, the following holds according

to the Central Limit Theorem (CLT) [295] considering that Xi follows ζi(µi, σ
2
i ):

1

sk

v∑
i=1

(
Zk,i − wk,iµi

) d−→ N (0, 1) (5.5)

where sk =

√∑v
i=1

(
wk,iσi

)2
and N (0, 1) denotes the standard normal distribution.
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Equivalently, for every neuk it follows that

v∑
i=1

Zk,i
d−→ N (

v∑
i=1

wk,iµi, s
2
k) (5.6)

Combining Eqs. (5.2) and (5.6) one can derive that

Hk
d−→ N (

v∑
i=1

wk,iµi + bk, s
2
k), (5.7)

which means that Hk(k = 1, 2, . . . , v) tend to follow Gaussian distributions and proves

Proposition 5.1 for fully-connected layers.

Convolutional layers

Proof. Standard convolution in CNNs is also a linear transformation of the input

feature space and its main difference from dense layers rests on the restricted size

of receptive field. Without loss of generality, this work analyses the representation

(output) of a single kernel. To facilitate the analysis for convolutional layers, let

C denote the number of input channels and K denote the kernel size. For ease of

presentation, a receptive field mapping function Θ(k, i, j) is defined for mapping the

positions (k for channel index, i and j for indices on the same channel) of elements in

the feature map (i.e., the representations) to the input features. For the k-th kernel,

let Wk denote its weight tensor (with Wk,c being the weight matrix for channel c) and

bk its bias.

Given the corresponding input patch XΘ(k,i,j), The element Hk,i,j of the repres-

entations from a convolutional layer can be formulated as:

Hk,i,j =

C∑
c=1

K∑
i′=1

K∑
j′=1

(
XΘ(k,i,j) ◦Wk,c

)
i′,j′

+ bk, (5.8)

where ◦ denotes Hadamard product. The three summations reduce the results of

element-wise product between the input patch and the k-th kernel to the correspond

representation element Hk,i,j in the feature map. For ease of presentation, here the

notation Z
(k)
c,i′,j′ is used to replace

(
XΘ(k,i,j) ◦Wk,c

)
i′,j′

and let ζ(µc,i′,j′ , σ
2
c,i′,j′) be

the distribution that Z
(k)
c,i′,j′ follows. Note that ζ can be any distribution since this

work makes no distributional assumption on Z
(k)
c,i′,j′ .
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With the notations, Eq. (5.8) can be rewritten in a similar form to Eq. (5.2):

Hk,i,j =

C∑
c=1

K∑
i′=1

K∑
j′=1

Z
(k)
c,i′,j′ + bk. (5.9)

Then the condition is used that the random variables Z
(k)
c,i′,j′ satisfy the Lyapunov’s

condition, i.e., there exists a δ such that

lim
C×K2→∞

1

s2+δ

C∑
c=1

K∑
i′=1

K∑
j′=1

E
[
|Z(k)

c,i′,j′ − µc,i′,j′ |2+δ
]

= 0, (5.10)

where s =
√∑C

c=1

∑K
i′=1

∑K
j′=1 σ

2
c,i′,j′ .

Then according to the Lyapunov CLT, the following holds:

Hk,i,j
d−→ N (

∑
c,i′,j′∈Θ(k,i,j)

µc,i′,j′ + bk,
∑

c,i′,j′∈Θ(k,i,j)

σ2
c,i′,j′), (5.11)

which proves Proposition 5.1 for standard convolution layers.

Regarding the distributional property of data representations from non-linear

operators, Proposition 5.2 is formally stated as follows.

Proposition 5.2. The fused representations2 from non-linear operators (e.g., a hidden

layer of LSTM or a residual block of ResNet) in a neural network tend to follow the

Gaussian distribution if the layer’s output elements satisfy the Lyapunov’s condition.

Without loss of generality, this work proves Proposition 5.2 for the fused represent-

ations from the LSTM layer and the residual block of ResNet models, respectively.

The results can be easily extended to other non-linear neural operators.

LSTM

Proof. Long Short-Term Memory (LSTM) models are popular for extracting useful

representations from sequence data for tasks such as speech recognition and language

modelling. Each LSTM layer contains multiple neural units. For the k-th unit, it

takes as input the current input feature vector Xt = (Xt,1, Xt,2, . . .), hidden state

vector Ht−1 and its cell state ct−1,k. The outputs of the unit are its new hidden state

ht,k and cell state ct,k. This work studies the distribution of ht,k. Multiple gates are

2Fused representations refer to the sum of elements in the original representations produced by a
single layer (channel-wise for a residual block).
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adopted in an LSTM unit: it,k, ft,k, gt,k and ot,k respectively denote the input gate,

forget gate, cell gate and output gate of the LSTM unit k at time step t. The update

rules of these gates and the cell state are:

it,k = sigmoid(W(i)k[Ht−1, Xt] + b(i)k),

ft,k = sigmoid(W(f)k[Ht−1, Xt] + b(f)k),

gt,k = tanh(W(g)k[Ht−1, Xt] + b(g)k),

ot,k = sigmoid(W(o)k[Ht−1, Xt] + b(o)k),

ct,k = ft,k · ct−1,k + it,k · gt,k, (5.12)

where the W(i)k, W(f)k, W(g)k and W(o)k are the weight parameters and b(i)k, b(f)k,

b(g)k and b(o)k are the bias parameters for the gates.

The output of the LSTM unit ht,k is calculated as follows:

ht,k = ot,k · tanh(ct,k). (5.13)

Using the final hidden states hT,k (with T being the length of the sequence) as the

elements of the layer-wise representation, one can apply the following layer-wise fusion

to further produce H over all the hT,k in a single LSTM layer:

H =

d∑
k=1

hT,k, (5.14)

where d is the dimension of the LSTM layer. Again, let ζ(µk, σ
2
k) denote the distribution

of hT,k (where the notation T is dropped here since it is typically a fixed parameter).

With {hT,k|k = 1, 2, . . . , d} satisfying the Lyapunov’s condition and by Central Limit

Theorem, H tends to follow the Gaussian distribution:

H
d−→ N (

d∑
i=1

µk,

d∑
i=1

σ2
k), (5.15)

which proves the Proposition 5.2 for layer-wise fused representations from LSTM.

Residual blocks

Proof. Residual blocks are the basic units in the Residual neural network (ResNet)

architecture [296]. A typical residual block contains two convolutional layers with
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batch normalisation (BN) and uses the ReLU activation function. The input of the

whole block is added to the output of the second convolution (after BN) through a skip

connection before the final activation. Since the convolution operators are the same

as it is formulated before, here the notation Ψ(X) is used to denote the sequential

operations of convolution on X followed by BN, i.e., Ψ(X) ≜ BN(Conv(X)). Again,

one can reuse the receptive field mapping Θ(k, i, j) as defined for plain convolution

operations to position the inputs of the residual block corresponding to the element

Zk,i,j in the output representation of the whole residual block.

Let X denote the input of the residual block and Zk,i,j denote an element in the

output tensor of the whole residual block. Then it follows that

Zk,i,j = f
(
Xk,i,j + BN

(
Conv

(
f
(
BN(Conv(XΘ(k,i,j)))

))))
= f

(
Xk,i,j + Ψ

(
f(Ψ(XΘ(k,i,j)))

))
, (5.16)

where f is the activation function (ReLU).

One can perform channel-wise fusion on the representation from the residual block

to produce Hk for the k-th channel:

Hk =

dH∑
i=1

dW∑
j=1

Zk,i,j , (5.17)

where dH and dW are the dimensions of the feature map and k is the channel index.

Let ζ(µk,i,j , σ
2
k,i,j) denote the distribution that Zk,i,j follows. Then one can apply

the Lyapunov’s condition to the representation elements layer-wise, i.e.,

lim
dW×dH→∞

1

s2+δ
k

dH∑
i=1

dW∑
j=1

E
[
|Zk,i,j − µk,i,j |2+δ

]
= 0, (5.18)

where sk =
√∑dH

i=1

∑dW

j=1 σ
2
k,i,j .

With the above condition satisfied, by CLT Hk (the fused representation on channel

k) tends to follow the Gaussian distribution:

Hk
d−→ N (

dH∑
i=1

dW∑
j=1

µk,i,j ,

dH∑
i=1

dW∑
j=1

σ2
k,i,j), (5.19)

which proves the Proposition 5.2 for channel-wise fused representations from any

residual block.
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In practice, the Lyapunov’s condition is typically met for both Propositions when

the model is properly initialised and batch normalisation is applied.

Next section discusses the proposed representation profiling and matching protocol.

5.4.2 Distributional Profiling and Matching

Based on the Gaussian pattern of representations, the proposed approach compresses

the data representations statistically into a compact form called representation profiles.

The profile produced by the global model w on a dataset D, denoted by RP (w,D),

has the following format:

RP (w,D) = {N (µi, σ
2
i )}qi=1, (5.20)

where q is the profile length determined by the dimensionality of the representations.

For example, q is equal to the number of kernels for channel-wise fused representations

from a convolutional layer. The tuple (µi, σ
2
i ) contains the mean and the variance of

the i-th representation element.

the global model

benchmark data

(valida!on set)

a local data set
Dk

D*

local profile

of client k

baseline profile

RPk:=

RP*:=

..
.

..
.

representa!ons

0.12 0.21 -0.03 ...

-0.15 0.11 0.15 ...

-0.10 0.51 0.29...

..
..

..

0.01 -0.41 -0.21...

0.12 0.34 -0.03 ...

0.33 0.10 -0.09 ...

..
..

..

N(0.1, 0.09)

N(0.4, 0.04)

..
..

..

N(μ, σ )

N(-0.3, 0.01)

N(0.2, 0.04)

..
..

..

encode

encode

N(μ, σ )

2

2

Figure 5.6: The proposed representation profiling scheme: the representations of the
data are encoded as a sequence of (µi, σ

2
i ) pairs, where µi and σ2

i are the mean and
the variance, respectively, of an element in the representation vector.

Fig. 5.6 illustrates the workflow of the proposed data representation profiling

scheme. The profiles are generated through the model evaluation, the cost of which

is marginal compared to that of training the model. The profiles generated for the

data on the clients need to be transmitted to the server for the comparison with the
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baseline profile obtained from the benchmark data on the server. The transmission

cost is negligible since the size of a profile (as a sequence of (µ, σ2) pairs) is very small

compared to that of the model (note that the model is updated by a client in every

round and needs to be uploaded to the server). Let RPk denote the local profile from

client k, and RP ∗ denote the baseline profile on the server. The dissimilarity between

RPk and RP ∗, denoted by div(RPk, RP ∗), can be determined by Eq. (5.21):

div(RPk, RP ∗) =
1

q

q∑
i=1

KL(N (k)
i ||N

∗
i ), (5.21)

where KL(·) denotes the Kullback–Leibler (KL) divergence. An advantage of the

proposed profiling scheme is that a much simplified KL divergence formula can be

adopted because the latent representations of FC-1 enjoy the following property (see

Appendix B, [297] for details):

KL(N (k)
i ||N

∗
i ) = log

σ∗
i

σ
(k)
i

+
(σ

(k)
i )2 + (µ

(k)
i − µ∗

i )2

2(σ∗
i )2

, (5.22)

With Eq. (5.22), the KL divergence between two Gaussian distributions can be

computed without calculating any integral, which largely reduces the computation

cost. Besides, the computation of profile dissimilarity can be performed under the Ho-

momorphic Encryption to achieve minimum knowledge disclosure [53] (see Appendix B

for details). The data representation profiles are associated to the global model and

thus change over rounds. Thus the proposed method tags every profile (including both

local and baseline profiles) with the version number of the global model so that profile

comparisons are version-aligned.

5.5 FedProf: Selective FL with Representation Pro-

filing

In this chapter, a typical cross-device FL setting [49] is considered, where multiple end

devices perform local training on their data and the server owns a set of validation data

for model evaluation. Local data are bound to and only accessible to the corresponding

clients. The validation data are used for the round-wise evaluation of the global model

and are only accessible to the server.

This research aims to optimise the global model’s convergence in FL over a large
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group of clients that own the data of diverse quality. Given the client set U(|U | = N),

let Dk denote the local dataset on client k and D∗ the validation set on the server, The

optimisation problem is formulated by (5.23) where the coefficient ρk differentiates

the importance of the local objective functions Fk(w). The global objective implies

a non-uniform mixture of local data distributions and is in a sense similar to the

agnostic learning scenario [209].

arg min
w

F (w) =
∑
k∈U

ρkFk(w), (5.23)

where w is the parameter vector of the global model3. The coefficients {ρk}k∈U add up

to 1. Fk(w) is client k’s local objective function of training based on the loss function

ℓ(·):

Fk(w) =
1

|Dk|
∑

(xi,yi)∈Dk

ℓ(xi, yi;w), (5.24)

The key of the proposed strategy is to score each client by their training value

in each round and adjust the clients’ chance of participation accordingly. Given the

selection fraction C, one can use a weighted random selection method4 to choose a

subset S of N · C participants from the client set U . Let λk denote client k’s weight

in the selection, the value of λk is determined by the dissimilarity between RPk and

RP ∗:

λk = exp
(
− αk · div(RPk, RP ∗)

)
, (5.25)

where RPk and RP ∗ are generated by an identical global model; αk is the preference

factor deciding how biased the strategy needs to be towards client k given its profile

dissimilarity. With αk = 0 for all k = 1, 2, . . . N , our strategy degenerates to random

selection. Each div(RPk, RP ∗) is normalised by the sum Λ =
∑

k∈U λk for converting

to probability.

The scores connect the representation profiling and matching scheme to the design

of the selective client participation strategy adopted in the proposed FL training

algorithm FedProf, which is outlined in Algorithm 4.

Note that only the selected clients are required to update and upload local profiles

in each round. Hence, an initialisation step is added before the start of the first FL

round in order to obtain the initial profiles from the clients and initialise {λk}k∈U

3The global model is a hypothesis hw ∈ H : χ → Y. This work refers to it as w for brevity.
4For example, the random.choices(U, weights, NC) function provided in the Python Standard

Library
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Algorithm 4: the FedProf algorithm

Input :maximum number of rounds Tmax, local iterations per round E,
client set U , client fraction C, validation set D∗;

Output : the global model w

// Server process: running on the server
1 Initialise global model w using a seed
2 v ← 0 // version of the latest global model
3 Broadcast the seed to all clients for identical model initialisation
4 Collect initial profiles {RPk}k∈U from all the clients
5 vk ← 0, ∀k ∈ U
6 Generate initial baseline profile RP ∗(0) on D∗

7 K ← |U | · C
for round T ← 1 to Tmax do

8 Calculate div(RPk(vk), RP ∗(vk)) for each client k
9 Update client scores {λk}k∈U and compute Λ =

∑
k∈U λk

10 S ← Choose K clients by probability distribution {λk

Λ }k∈U

11 Distribute w to the clients in S
for client k in S in parallel do

12 vk ← v, ∀k ∈ S
13 RPk(vk)← updateProfile(k,w, v)
14 wk ← localTraining(k,w,E)

end
15 Collect local profiles from the clients in S
16 Update w via model aggregation
17 v ← T
18 Evaluate w and generate RP ∗(v)

end
19 return w

// Client process: running on client k
updateProfile(k,w, v):

20 Generate RPk on Dk with the global w received
21 Label profile RPk with version number v
22 Return RPk

return
localTraining(k,w,E):

23 wk ← w
for step e← 1 to E do

24 Update wk using gradient-based method

end
25 Return wk

return
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properly. To do so, the server broadcasts a seed to all the clients for generating an

identical initial global model across all clients and generating their first local profiles.

The server needs to take four steps regarding the client selection:

1) Calculate {λk}k∈U according to Eq. (5.25).

2) Select n ·C clients using weighted random selection with λk being client k’s weight.

3) Collect and update local profiles from the selected clients.

4) Update the baseline profile on the server (after global aggregation).

The global model w is updated by aggregating local models at the end of each

round (line 16). The proposed algorithm supports both full aggregation [47][55] and

partial aggregation [85] methods that are adopted in the literature.

The convergence rate of FL algorithms with opportunistic client selection (sampling)

has been extensively studied in the literature [85, 122]. Inspired by [55, 85], Theorem 5.1

is presented to guarantee the convergence of the proposed algorithm. Similar to

[84, 85, 298], it is assumed that {Fk}Nk=1 are L-smooth and µ-strongly convex and

that in expectation, the variance of local stochastic gradients are bounded by ϵ2 and

their squared norms are bounded by G2.

In the following analysis, the notation w(r)(t) is used to denote the model at time

step t in round r. Also, it is defined that w(r) = w(rE) where E is the number

of update steps per round (i.e., aggregation interval). For ease of presentation,

the selected set S is defined for every time step t and S(t) = S(r) holds for all

t ∈ {(r − 1)E, (r − 1)E + 1, . . . , rE} if t is a time step within round r.

Theorem 5.1. Using partial aggregation and our selection strategy that satisfies αk =

− ln(Λρk)
div(RPk,RP∗) , the global model w(t) converges in expectation given an aggregation

interval E ≥ 1 and a decreasing step size (learning rate) ηt = 2
µ(t+γ) .

E
[
F (w(t))

]
− F ∗ ≤ L

(γ + t)

(2(B + C)
µ2

+
γ + 1

2
∆1

)
, (5.26)

where t ∈ TA = {nE|n = 1, 2, . . .}, γ = max{ 8Lµ , E} − 1, B =
∑N

k=1 ρ
2
kϵ

2
k + 6LΓ +

8(E−1)2G2, C = 4
KE2G2, Γ = F ∗−

∑N
k=1 ρkF

∗
k , ∆1 = E∥w̄(1)−w∗∥2, Λ =

∑N
k=1 λk,

and K = |S(t)| = N · C.

The proof of Theorem 5.1 is provided in Appendix C.

158



Chapter 5. Optimising Horizontal FL with Learnt Representations

5.6 Experiments

Extensive experiments were conducted to evaluate fedProf under various FL set-

tings, which cover multiple scales of client population and different machine learning

tasks. Apart from the original FL algorithm FedAvg [47], several state-of-the-art FL

algorithms were reproduced for comparison. For a fair comparison, the algorithms

are grouped by the aggregation method (i.e., full aggregation and partial aggregation)

and configured with the optimal hyper-parameter values following the settings in

their papers (if any). Table 5.1 summarises these FL algorithms in terms of their

aggregation methods and client selection strategies (the algorithms may differ in the

specific rules for updating the global model during the aggregation; see the referenced

papers for details). Note that the proposed algorithm can adapt to both aggregation

methods.

Table 5.1: The implemented FL algorithms for comparison

Algorithm Aggregation method Rule of selection
FedAvg [47] full random
CFCFM [1] full by the order of submission
FedAvg-RP partial(Scheme II, [85]) random
FedProx [88] partial weighted random by data ratio
FedAdam [160] partial with momentum random
AFL [159] partial with momentum by the loss on local data
fedProf (ours) full/partial weighted random by score

This work focuses on optimising the efficiency of FL in terms of the convergence

speed and the final quality of the global model. Therefore, the experiment recorded the

best accuracy of the global model that each algorithm can achieve given a maximum

number of rounds, and also compare the algorithms in terms of the number of

communication rounds, the running time and the energy consumption needed to reach

a target accuracy. For brevity, if not specified the amount of improvement is reported

over FedAvg and FedAvg-RP as the baselines for the full and partial aggregation

groups, respectively.

5.6.1 Experimental Setup

The algorithms were evaluated in a discrete event-driven, simulation-based experi-

mental environment where the FL system was built based on Python and the PyTorch

framework (Build 1.7.0) same as that introduced in Section 3.7.1, Chapter 3. The

relevant system configurations for this work are detailed in Table 5.2. The client–server
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communication was simulated via in-memory tensor exchange wherein the server kept

an event-driven timer to track the time consumptions. The system calculates device

energy consumption using power models. Details regarding the time and energy costs

of local training and communication will be formulated later in this section.

A small-scale task (called S-Task) was first set up to learn a multi-layer feed-forward

network (FFN) model from the sensor data, which are distributed over a relatively

small number of sources, for predicting the carbon monoxide (CO) and nitrogen oxides

(NOx) emissions. Next, a large-scale task (called L-Task) was set up to train a global

model over a large population of user devices (e.g., smart phones) for the recognition

of hand-written digits. In both tasks, each user device possesses the private data and

data sharing is not allowed between any parties. The experiment uses the GasTurbine5

and EMNIST digits6 datasets for the S-Task and L-Task, respectively. The data are

non-IID across the end devices.7 For both tasks, a diversity of noises are introduced

into the local datasets on end devices to simulate the discrepancy in data quality.

Detailed experimental settings are listed in Table 5.2. In the S-Task, the total

population is 50 and the data collected by a proportion of the sensors (i.e., end devices

of this task) are of low-quality: 10% of the sensors have no valid data and 40% of them

produce noisy data. In the L-Task, a relatively large population (1,000 end devices)

was set and the data (from EMNIST digits) spread across the devices with strong

class imbalance — on each device, the dominant class accounts for roughly 60% of

the samples. Besides, many local datasets are of low-quality: the images on 15% of

the clients are irrelevant (valueless for the training of this task), 20% are (Gaussian)

blurred, and 25% are affected by the salt-and-pepper noise (random black and white

dots on the image, density=0.3). For the S-Task, the maximum number of rounds

tmax is set to 100 for both aggregation modes, whilst for the L-Task, it is set to 300

and 50 for the full aggregation and partial aggregation, respectively. The preference

factors for the proposed algorithm are all set to 10. Considering the population of

clients, the setting of selection fraction C is based on the suggested scale of training

participants in [49].

To simulate a realistic FL system that consists of disparate end devices, the clients

are heterogeneous in terms of both performance and communication bandwidth (see

5https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
6https://www.nist.gov/itl/products-and-services/emnist-dataset
7In the S-Task, local datasets are of different sizes that follow a Gaussian distribution. In the

L-Task, local data are largely imbalanced wherein on each client, roughly 60% of its samples have the
same class label.
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Table 5.2). A validation set is kept by the server (as the benchmark data) and is used

for model evaluation.

Table 5.2: Experimental setup.

Setting Symbol S-Task L-Task
Model w MLP CNN
Dataset D GasTurbine EMNIST digits
Total size |D| 36.7k 280k
Validation set size |D∗| 11.0k 40k
Client population N 50 1000
Data distribution - N (514, 1542) non-IID, dc0.6
Noise applied - fake, gaussian fake, blur, s&p
Client spec. (GHz) sk N (0.5, 0.12) N (1.0, 0.12)
Comm. bandwidth (MHz) bwk N (0.5, 0.12) N (1.0, 0.12)
Signal-noise ratio SNR 1e2 1e2
Bits per sample BPS 11*8*8 28*28*1*8
Cycles per bit CPB 300 400
# of local epochs M 2 5
Loss function f MSE Loss NLL Loss
Learning rate η 1e-2 1e-2
lr decay - 0.99 0.99

In each FL round, the server selects a fraction (i.e., C) of clients, distributes the

global model to these clients and waits for them to finish the local training and upload

the models. Given a selected set of clients S, the time duration of an FL round can

be formulated as:

Tround = max
k∈S
{T comm

k + T train
k + TRP

k } (5.27)

where T comm
k and T train

k are the device–server communication time and local training

time, respectively. TRP
k is the time for generating and uploading local profiles (other

algorithms do not have the term TRP
k ).

This work assumes wireless communication between the clients and the server.

T comm
k can be modelled by Eq. (5.28) according to [98], where bwk is the downlink

bandwidth of device k (in MHz); SNR is the Signal-to-Noise Ratio of the communication

channel, which is set to be constant as the end devices, in general, are coordinated by

the base stations for balanced SNR with fairness-based policies; msize is the size of

the model; the model upload time is twice as much as that for model download since

the uplink bandwidth is set as 50% of the downlink bandwidth.
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T comm
k = Tupload

k + T download
k

= 2× T download
k + T download

k

= 3× msize

bwk · log(1 + SNR)
, (5.28)

The T train
k in Eq. (5.27) can be modeled by Eq. (5.29), where sk is the device

performance (in GHz) and the numerator computes the total number of processor

cycles required for processing M epochs of local training on Dk.

T train
k =

M · |Dk| ·BPS · CPB

sk
, (5.29)

TRP
k consists of two parts: TRPgen

k for local model evaluation (to generate the

profiles of Dk) and TRPup
k for uploading the profile. TRP

k can be modeled as:

TRP
k = TRPgen

k + TRPup
k

=
1

M
T train
k +

RPsize
1
2bwk · log(1 + SNR)

, (5.30)

where TRPgen
k is estimated as the time cost of one epoch of local training; TRPup

k is

computed in a similar way to the calculation of T comm
k in Eq. (5.28) (where the uplink

bandwidth is set as one half of the total bwk); RPsize is the size of a profile, which is

equal to 4× 2× q = 8× q (four bytes for each floating point number) according to the

definition of profile in (5.20).

This work models the energy consumption of the end devices in FL by mainly

considering the energy consumption of the transmitters for communication (Eq. 5.31)

and on-device computation for local training (Eq. 5.32). For the proposed algorithm,

there is an extra energy cost for generating and uploading profiles (Eq. 5.33).

Ecomm
k = Ptrans · T comm

k (5.31)

Etrain
k = Pfs

3
k · T train

k (5.32)

ERP
k = Ptrans · TRPup

k + Pfs
3
k · T

RPgen
k , (5.33)

where Pfs
3
k is a simplified computation power consumption model [299] and Pf is
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the power of a baseline processor. Ptrans is the transmitter’s power. The experiment

sets Ptrans and Pf to 0.5 and 0.7 Watts respectively based on the benchmarking data

provided in [281]. Thus the energy consumed by client k to participate in one round

of FL is formulated as (ERP
k only applies to the proposed algorithm):

Ek = Ecomm
k + Etrain

k + ERP
k . (5.34)

5.6.2 Evaluation Results

The performance of fedProf algorithm was evaluated in terms of the effectiveness

and efficiency in establishing a global model for the two tasks. Results for FedAvg and

five other state-of-the-art algorithms are incorporated for comparison (see Table 5.1).

The effectiveness of a algorithm is measured by the best model accuracy that the

algorithm can achieve, whilst the efficiency is evaluated by setting an accuracy goal

for the convergence of the global model and is assessed from multiple perspectives

including the number of rounds needed, the amount of time required and the device

energy consumed for achieving the target accuracy. Tables 5.3 and 5.4 summarise the

results. Figs. 5.7, 5.8, 5.9 and 5.10 plot the traces of the accuracy in the round-wise

evaluation of the global model.

0 20 40 60 80 100

Communication rounds

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

A
c
c
u

ra
c
y

Full aggregation, C=0.2

FedAvg

CFCFM

ours

0 20 40 60 80 100

Communication rounds

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

A
c
c
u

ra
c
y

Full aggregation, C=0.3

FedAvg

CFCFM

ours

Figure 5.7: The traces of evaluation accuracy of the global model through 100 rounds
using the full-aggregation algorithms in the S-Task.

1) Convergence in different aggregation modes: First evaluated is algorithm per-

formance by comparing the convergence of the global model using different aggregation

methods. From Figs. 5.7, 5.8, 5.9 and 5.10, one can observe that partial aggrega-

tion facilitates faster convergence of the global model than full aggregation, which
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Table 5.3: The results of running the S-Task; the FL process for the S-Task is run in
two ways: i) running for tmax rounds (plotting the best accuracy achieved), and ii)
running the process until the global model reaches the targeted accuracy (0.8 for the
S-Task). The tested algorithms are grouped by aggregation method.

Full aggregation
C=0.2

Best accuracy
For accuracy@0.8

Rounds needed Total time (s) Energy (Wh)
FedAvg 0.805 56 2869.66 2.87
CFCFM 0.806 39 1230.81 1.61

Ours 0.824 16 803.74 0.80
C=0.3

Best accuracy
For accuracy@0.8

Rounds needed Total time (s) Energy (Wh)
FedAvg 0.806 52 3160.01 4.12
CFCFM 0.802 42 1495.34 2.91

Ours 0.827 12 701.18 0.94

Partial aggregation
C=0.2

Best accuracy
For accuracy@0.8

Rounds needed Total time (s) Energy (Wh)
FedAvg-RP 0.819 13 735.48 0.71

FedProx 0.821 16 899.93 0.79
FedAdam 0.818 8 438.20 0.42

AFL 0.816 6 313.81 0.30
Ours 0.844 5 283.76 0.27

C=0.3

Best accuracy
For accuracy@0.8

Rounds needed Total time (s) Energy (Wh)
FedAvg-RP 0.817 8 466.90 0.64

FedProx 0.810 16 841.65 1.08
FedAdam 0.819 12 667.00 0.94

AFL 0.813 6 298.81 0.42
Ours 0.841 4 235.22 0.35
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Figure 5.8: The traces of evaluation accuracy of the global model through 100 rounds
using the partial-aggregation algorithms in the S-Task.
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Table 5.4: The results of the L-Task; the FL process for the L-Task is run in two ways:
i) running for tmax rounds (plotting the best accuracy achieved), and ii) running the
process until the global model reaches the targeted accuracy (0.9 for the L-Task). The
algorithms are grouped by aggregation method.

Full aggregation
C=0.05

Best accuracy
For accuracy@0.9

Rounds needed Total time (s) Energy (Wh)
FedAvg 0.906 213 10407.30 60.01
CFCFM 0.923 251 8645.17 61.37

Ours 0.926 98 4846.15 28.22
Full aggregation

C=0.1

Best accuracy
For accuracy@0.9

Rounds needed Total time (s) Energy (Wh)
FedAvg 0.929 76 3894.26 43.16
CFCFM 0.932 75 2675.56 37.62

Ours 0.945 45 2295.03 25.98

Partial aggregation
C=0.05

Best accuracy
For accuracy@0.9

Rounds needed Total time (s) Energy (Wh)
FedAvg-RP 0.937 12 572.90 3.29

FedProx 0.936 13 640.01 3.58
FedAdam 0.940 12 599.96 3.47

AFL 0.952 10 479.73 2.73
Ours 0.962 8 383.94 2.26

Partial aggregation
C=0.1

Best accuracy
For accuracy@0.9

Rounds needed Total time (s) Energy (Wh)
FedAvg-RP 0.938 12 603.94 6.57

FedProx 0.942 11 559.16 5.91
FedAdam 0.939 12 608.85 6.76

AFL 0.944 9 476.62 5.26
Ours 0.962 8 413.16 4.64
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is consistent with the observations by [85]. The difference in convergence speed is

especially obvious in the L-Task where partial aggregation requires significantly fewer

communication rounds to reach 90% accuracy. FedProf algorithm yields the fastest

convergence in both groups of comparison for both tasks because limiting the contribu-

tion from clients with low-quality data benefits the global model for both aggregation

methods.
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Figure 5.9: The traces of evaluation accuracy of the global model through 300 rounds
using the full-aggregation algorithms in the L-Task.
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Figure 5.10: The traces of evaluation accuracy of the global model through 50 rounds
using the partial aggregation algorithms in the L-Task.

2) Best accuracy of the global model: Through the federated learning process, the

global model is evaluated each round on the server. The best global model obtained

thus far is kept on the server. In case where the global model obtained in the current

round is inferior to the best one, the inferior model is discarded. The second column

of Tables 5.3 and 5.4 compares the best accuracy the global model can reach given

a sufficient number of rounds in training. FedProf algorithm achieves up to 2.5%

accuracy improvement when compared against the baselines (FedAvg and FedAvg-
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RP). The AFL algorithm uses a loss-oriented client selection strategy, which shows the

closest performance to the proposed algorithm in the L-Task but the worst accuracy

in the S-Task.

3) Total communication rounds for convergence: The number of communication

rounds required for convergence is a key indicator to the efficiency of FL. The presented

experiment recorded this metric by setting an accuracy objective (0.8 and 0.9 for

the S-Task and L-Task, respectively) for the algorithms in the training process to

compare their efficiency, as summarised in Tables 5.3 and 5.4. In the S-Task, the

proposed algorithm takes less than half the communication rounds required by other

algorithms in most cases. In the L-Task, the global model converges slowly using full

aggregation with C=0.05; The proposed algorithm reaches 90% accuracy within 100

rounds whilst FedAvg and CFCFM need more than 200. In this case, fedProf also

achieves approximately 7% higher accuracy at round 50 compared to FedAvg and

CFCFM. Partial aggregation algorithms turn out to be much more efficient in terms

of convergence, which also implies significant less communication costs for the global

model to converge. FedAvg-RP needs at least 8 rounds to reach the accuracy target

for the S-Task and 12 rounds for the L-Task, whilst the proposed algorithm reduces

the numbers to 5 and 8, respectively.

4) Total time needed for convergence: The overall time consumption is tightly

coupled with the number of communication rounds for convergence, but it also reflects

the actual time cost for each round of training (which includes local training and

model transmission). The fourth column of Tables 5.3 and 5.4 gives the total time

consumed by each algorithm to achieve the preset accuracy of the global model. One

can see that algorithms requiring more rounds to converge typically take longer to

reach the accuracy target except the case of CFCFM, which priorities the clients

that work faster. Using FedAvg as the baseline, CFCFM accelerates the training

process by 2.1× whist the proposed algorithm provides a 4.5× speedup in terms of

achieving the target accuracy (S-Task, C=0.3). fedProf also has a clear advantage

over FedAvg-RP, FedProx and FedAdam in the partial aggregation group where

it shows a 2.6× speedup over FedAvg-RP in the S-Task with C=0.2.

5) Device-side energy consumption: A main concern for the end devices, as the

participants of FL, is their power usage in both local training and communication.

The analysis is presented from a holistic perspective by evaluating the total energy

consumption (in Watt hours) across all of the clients. The results are summarised
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in Tables 5.3 and 5.4. It is obvious that device-side energy consumption is closely

associated to the total number of communication rounds and the total time span

until the convergence. Algorithms using the full aggregation method have slower

convergence and thus generate higher energy cost on the devices. For example, with a

small selection fraction C=0.05 in the L-Task, FedAvg and CFCFM both consumed

over 60 Wh to reach the accuracy mark. In this case, the proposed algorithm manages

to reduce the energy consumption by more than a half (28.22 Wh). With the partial

aggregation mode, the total energy consumption is cut down by up to 62% using

the proposed algorithm (S-Task, C = 0.2). Considering all the cases, the proposed

algorithm manages to achieve the target accuracy with the least cost, resulting in a

reduction of device energy consumption by 29% ∼ 53%.
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Figure 5.11: Total counts by client of participation (i.e., being selected) in S-Task. For
clarity, clients are indexed according to their local data quality.

6) Differentiated participation with FedProf: The proposed FedProf dynamically

adjusts each client’s probability of being selected. In this way some clients participate

at a largely reduced rate if the algorithm reports a high divergence between their

local representation profiles and the baseline profile, which means that their local

data are very likely to be low-quality. Fig. 5.11 reflects the preference of the proposed

selection strategy in S-Task with C=0.2; one can observe that clients with useless

samples or noisy data get significantly less involved (<10 on average). Fig. 5.12 gives
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Figure 5.12: Total counts by client of participation (i.e., being selected) in L-Task.
For clarity, clients are indexed according to their local data quality.

the participation counts by client in the L-Task. In this task, the proposed algorithm

also effectively limits (basically excludes) the clients who are training on image data

of poor quality (i.e., irrelevant or severely blurred), whereas the clients with noisy

images (blended with moderate salt-and-pepper noise) are selected with a reduced

probability as compared to those with normal data. A potential issue of having the

preference towards some of the devices is about fairness. Nonetheless, one can apply

the proposed algorithm together with an incentive mechanism (e.g., [77]) to address

the issue.

5.7 Conclusion

Federated learning provides a privacy-preserving approach to decentralised training

but the low-quality data on end devices could significantly affect the convergence and

the quality of the global model that the system aims to build. In this work, a novel

FL algorithm fedProf is proposed to address the issue without violating the data

locality restriction of FL. The basic idea is to discriminate clients by their local data

and the key designs of the proposed algorithm are i) a data representation profiling

and matching protocols for encoding the hidden data representation with the global
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model and computing dissimilarities between the local profiles from devices and the

baseline profiles on the server, and ii) a client selection strategy that adaptively adjusts

clients’ participating chance based on profile dissimilarities. Results of comprehensive

experiments under various FL settings show that the proposed algorithm significantly

improves the global model’s quality and reduces the costs for the global model’s

convergence.

The future plan of study will be focused on methods for optimising local training

by means of acquiring more comprehensive knowledge on local data distribution.
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Chapter 6

Conclusions and Future Work

This thesis presents a comprehensive study of the emerging federated learning frame-

work with focuses on the approaches to efficient horizontal FL. The problem background

and research motivations are first introduced in support of the necessity of this research.

Three novel solutions to the efficiency optimisation of horizontal FL are then presented

with extensive experimental evaluation results.

This chapter concludes the whole thesis by summarising the key content of the work

presented with the emphasis on the research contributions made. Open challenges in

the development of realistic FL systems are then discussed. Finally, light will be cast

on several prospective research directions to provide an outlook for future study.

6.1 Summary of the Thesis

The first part of the thesis introduces the background of the emerging FL framework,

elaborates the research motivation and defines the efficiency metrics for FL. The

second chapter formulates the federated optimisation problem and gives important

preliminaries including a theoretical analysis that reveals the impacts of ‘data islands’

on distributed gradient-based training and the core value of FL (which is listed as one

of the key conclusions at the end of this section). Chapter 2 presents a comprehensive

literature review that basically covers the entire research spectrum of FL as well as

a survey on open platforms, developed systems and representative applications. As

the body of this thesis, Chapters 3, 4 and 5 correspond to three threads of research

by the author, where each of the three chapters presents one novel approach to the

optimisation of horizontal FL in terms of efficiency.

171



Chapter 6. Conclusions and Future Work

The main contributions (and the key conclusions associated) are summarised

as follows:

1. A theoretical analysis (Section 2.1.2) on the consequences of the ‘data islands’

problem for gradient-based training. The analysis provides case-by-case results

of the gradient divergence caused by training on decentralised data. Based on

the analytical results, two key conclusions are drawn:

� Over non-IID data across the clients, distributed training using

SGD cannot guarantee an unbiased estimate of the centralised

model trained on centralised data even with the gradients up-

loaded and aggregated every update step.

� FL is essentially a multi-step SGD paradigm with more flexibility

in the number of steps, batch size as well as the optimisation

algorithm for local update. The key idea behind FL is relaxing the

gradient divergence in local training in exchange for significantly

improved communication efficiency.

2. A semi-asynchronous FL algorithm SAFA to address the problems in federated

learning such as low round efficiency and poor convergence rate over unreliable

devices. Novel designs are introduced in the steps of model distribution, client

selection and global aggregation to mitigate the impacts of stragglers, crashes

and model staleness in order to boost efficiency and improve the quality of

the global model. Extensive experiments were conducted with typical machine

learning tasks. The results demonstrate that the proposed algorithm is effective

in terms of shortening federated round duration, reducing local resource wastage

and improving the accuracy of the global model at an acceptable communication

cost. This research also leads to an important insight:

� Beneath the design of any synchronous or asynchronous FL al-

gorithms is the trade-off between convergence speed and com-

munication cost. Although researchers keep adding tricks to the

bag for better convergence guarantees, the core value of FL as

a communication-efficient machine learning framework should

always be considered as the primary principle in algorithm design.

3. A multi-layer federated learning algorithm, namely HybridFL, designed for the
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Mobile Edge Computing architecture. HybridFL adopts two levels (the edge

level and the cloud level) of model aggregation enacting different aggregation

strategies to enable scalable FL at the network edge. In order to mitigate strag-

glers and end device drop-out, controlling variables called regional slack factors

are introduced into the stage of client selection performed on the edge nodes

using a probabilistic approach without identifying or probing the state of end

devices (whose reliability is unknown). The effectiveness of the proposed solution

is demonstrated and convergence analysis is also provided. Results of extensive

experiments with machine learning tasks at multiple system scales show that

HybridFL improves the FL training process significantly in terms of shortening

the federated round length, speeding up the global model’s convergence (by up

to 12×) and reducing end device energy consumption (by up to 58%). Through

reviewing the relevant studies and the observations obtained in the research, the

following conclusion is made:

� The pervasive computing power and data at the network edge

provide a natural greenhouse for the applications of federated

learning, yet most of the existing approaches are constrained

by the canonical two-layer system architecture and suffer poor

scalability in the MEC environment. The presented work shows

the possibilities of efficiency improvement for FL from the archi-

tectural prospective.

4. A novel algorithm named FedProf for optimising the efficiency and efficacy of

FL under the circumstances where a large proportion of the clients are probably

in possession of low-quality data that are biased, noisy or even irrelevant. Model

updates from these low-value clients could significantly slow down the convergence

of the global model and also compromise its quality. The key of the proposed

approach is a data representation profiling and matching protocol that uses the

global model to dynamically profile latent data representations, which allows

for low-cost, lightweight representation profile matching. By matching local

profiles from clients against a baseline profile on the server, client participation

probabilities are dynamically adjusted so as to mitigate the impact of the clients

with low-quality data on the training process. Results of extensive experiments

on public datasets using various FL settings demonstrates the effectiveness of
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FedProf in reducing the number of communication rounds and overall time for

convergence and improving the accuracy of the final global model. The outcome

of this research inspires the conclusion below:

� Federated learning maximises its utility when it comes to deep

models and difficult learning tasks. The latent representations

from the model provide useful information for optimising the

FL process given a colossal volume of data (though they are

decentralised) and the complexity of intrinsic data structure (e.g.,

images and sentences). The presented work finds a link between

the representation distribution and the training value of local

data.

6.2 Challenges for Industrial Practice

A relatively comprehensive survey is provided in Chapter 2 (Section 2.2) for the

development and deployment of federated learning in the industry. Conceptually,

the federated learning framework opens a door to the development of data-driven AI

applications that rely on sensitive data. The broad technical spectrum of FL provides

great opportunities for research but also poses vast engineering challenges to the design

and development of any realistic FL system. Rapid advances have been made in the

research centred around FL. However, it is also true that more efforts need to be paid

to narrow the gap between what FL can provide in the papers and what FL can actually

bring to our industry and society in the real world.

To benefit from research outcomes and push FL to a stage of maturity for com-

mercial applications, a number of open challenges stand out as follows.

Algorithm Reproduction

The advantages of the open platforms such as FATE and FedML are drawing increasing

attention from both researchers and developers. They usually provide a suite of

libraries (typically python-based) that support the functionality of an FL system.

Many of them also incorporate preset system configurations, pre-defined models and

pre-partitioned datasets.

On the one hand, these out-of-the-box features well facilitate agile development

of prototype systems and applications based on the generic FL logic. On the other
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hand, by constantly adding new modules and new features, these platforms are

making themselves increasingly bulky and complicated, which inevitably brings about

problems including bugs, redundant functions, poor backward compatibility and over-

encapsulation. For algorithm reproduction, users have to deal with system-related,

data-related and model-related configurations and spend much time on figuring out

which APIs are useful and how they work. This can turn out to be a disadvantage

of these platforms for researchers who prioritise fast algorithm reproduction and

validation — a self-built simulation can be much handier in some cases. This also in

some ways explains why most of the existing research work was not carried out on open

FL platforms. For example, the proposed SAFA algorithm requires model versioning,

crash detection/round timer and flexible control over the synchronisation process,

whilst FedProf demands extraction of data representations (as intermediate results of

model inference), statistical compression and non-model information exchange. These

algorithmic mechanisms are non-generic (e.g., representation extraction is intrusive)

and thus hard to be realised using the basic APIs provided by these platforms.

Through investigating the existing libraries and platforms, one can recognise the

trade-off between flexibility and usability in the design of APIs. For platform and

system developers, it is extremely challenging to devise a fine hierarchy of APIs

that cover high-level abstractions (e.g., for application developers who want low-code

implementation) and low-level fundamental operations (e.g., for researchers who want

flexibility) at the same time. In spite of that, it is also the users’ responsibility to

understand their needs (industry oriented or research oriented) before making their

choice.

The Necessity of FL

The core value of FL rests on the federation of data, i.e., the performance gain (for

the model to build) from the knowledge provided by a multitude of datasets. The

advantage of FL over independent training (i.e., training with local data only) is

obvious in most of the cases where each local dataset is hardly big enough for the

learning task — this is the basic assumption made by the majority of FL research

though it may not be mentioned explicitly. However, it should not be ignored that

there are also situations where the adoption of FL is (almost) pointless. First, the

difficulty of the learning tasks matters a lot. When every local dataset is large and

informative enough to support independent training and yield a strong model (though
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it could be little bit stronger if trained collaboratively), federated training turns out

to be unnecessary as the performance gain can hardly make up the cost (unless every

0.01% accuracy improvement is vital). On the other hand, the efficacy of FL also

diminishes over extremely non-IID data, which means that local datasets exhibit a

strong discrepancy in data distribution and could even be contradictory. In this case,

the global model in FL may work poorly on any client and thus turns out to be

valueless from the client’s standpoint.

Therefore, it is very necessary to evaluate whether FL is really needed over the

‘local only’ solution especially when the finalised global model is expected to benefit

the clients realistically.

Device Heterogeneity

Devices are more heterogeneous than they are assumed in the papers. Taking mobile

phones as an example, they are different in models, OS and OS versions, hardware

specifications and battery levels whilst they also differ in active hours, charging periods

and network accessibility and bandwidth due to the different behaviour patterns of

the device owners. Device heterogeneity poses a great challenge to the development of

FL systems. From the algorithmic standpoint, studies (including the work presented

in this thesis) have shown that the degree of device heterogeneity has a strong impact

on the convergence of the global model [137, 139]. From the engineering standpoint,

it definitely puts a heavy burden on the client-side application development to be

compatible to a diversity of device models, multiple ML frameworks and different

operating systems.

Certain mechanisms are also needed to ensure the model exchange is really secure

on the channel and the local training does not overload user devices.

Privacy and Security

As figured out in the literature [49, 255, 256], privacy and security always need to

be concerned in any realistic FL system. Although privacy protection features have

been incorporated in the majority of the open FL platforms (as discussed in Section

2.2.1), the cost of these techniques for secure multi-party computation (SMC) is

never negligible. For example, homomorphic encryption (HE) typically involves a

significant amount of extra computation when doing the calculation in the ciphertext
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space. Artificial noise-based methods like Differential Privacy (DP) incurs extra

communication between the client and the server and usually require the participation

fraction to be big enough for noise neutralisation. The adoption of privacy-preserving

schemes are usually unavoidable, hence the computation cost should be taken into

account as well as their potential impact on the model performance.

In addition, recent research has revealed FL’s vulnerability to adversarial clients

[283] which attempt to manipulate the global model with data poisoning [155] or

model poisoning [215] and dishonest clients who intend to breach the privacy hedge by

means of data reconstruction [259, 262] or membership inference [91, 121]. Therefore,

the risk of being attacked by potentially malicious clients needs to be considered in

the design and maintenance of public FL systems.

Incentive Mechanisms

Most of the existing FL algorithms in the literature rely on an ideal collaboration of

honest and selfless clients. ‘Honesty’ refers to the intention of the participants, as

discussed in the previous Privacy and Security topic, whilst ‘selflessness’ implies that

the clients totally follow the server’s coordination to perform local training regardless

of its own gain. Simply said, clients are assumed to be free labours. But this is

apparently unrealistic in many application scenarios where the devices are more often

than not self-interested. On this point, the way how FL needs to be organised is similar

to crowdsourcing where participants are recruited and they get rewarded for their

contribution. The design of incentive mechanisms can be helpful for scale-sensitive FL

applications in such situations [78, 78, 217].

While incentives can attract more devices to participate, a certain reputation

mechanism can make the FL system more resilient to ‘unwanted’ clients. Also termed

Byzantine machines in the literature, some individual clients tend to be stragglers or

exhibit suspicious intentions. These low-quality clients are very likely to slow down

the overall training process or increase the risk of model manipulation. To address the

problem, certain mechanisms such as contribution measurement (e.g., [219, 300]) and

reputation management (e.g., [179]) are indispensable for FL systems deployed in a

potentially unfriendly environment.
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6.3 Future Work

Whilst federated learning provides a promising roadmap to learning from geographically

decentralised data without compromising the privacy of data owners, it remains a

big challenge when it comes to optimising the efficiency of horizontal FL considering

the complexity of distributed systems (especially at scale), the diversity and difficulty

of machine learning tasks and the range of associated problems both technically

and societally. The research presented in this thesis provides algorithmic approaches

towards efficient horizontal FL, yet there is still a lot to explore in this direction.

Future research work by the author is expected to cover a number of different aspects

as below.

Federated loss functions for addressing or mitigating local data bias

and imbalance. Loss function design is vital to the performance of any machine

learning task that adopts gradient-based training methods. A loss function serves

as the objective of model training and determines the optimisation direction in the

model parameter space given a set of data. The choice of loss function directly affects

the convergence property [4]. However, the role of loss function is overlooked in the

majority of researches on FL even though the improvement of loss design (e.g., Focal

Loss [301] and CBLoss [286]) has been proven very effective in standalone training.

Considering the potentially strong data heterogeneity in many FL applications, it is

of great necessity to study how to improve the performance of FL (in convergence

rate and global model accuracy) by means of loss adaptation for more effective local

training. A few steps have been taken by previous studies on personalised FL, where

the common trick is adding a proximal term to the local loss function so as to reduce

global–local model divergence and produce accurate local models. As an alternative,

data-aware or data-sensitive loss adaptation may be a better option for achieving a

stronger global consensus model; how to design such loss functions over the ‘data

islands’ leaves a lot to desire.

A comprehensive investigation of the utility of FL and the contribution

measures for clients under varied distribution of data. The framework of FL

(especially horizontal FL) is so advocated that the actual gains from using federated

learning rather than local-only training are hardly investigated. It is reasonable to raise

the doubt because running hundreds of rounds of FL is not a cost-friendly solution in

most scenarios and thus it is definitely necessary to evaluate if it is worth the cost. The
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utility of FL can be gauged through comparison between the final global model and a

baseline model from purely local training or non-collaborative training with almost

no communication. For example, one or a few models solely trained by the clients or

an aggregated model via ‘one-shot averaging’ [229] can be used as the baseline. It is

possible that, under certain data distributions (e.g., almost IID and with sufficient

local data), the gains of FL tend to be marginal. Another intriguing line of research is

on how to measure the contributions of participating clients. Existing solutions based

on data deletion and the Shapley value [219, 300] are fine-grained but extremely costly.

Nonetheless, improvements have been made by taking advantage of the progressive

process of FL [97]. Motivated by theses studies and considering the importance of

profit allocation in realistic FL systems, lightweight contribution measuring schemes

will be a focus in the future.

Developing more flexible FL frameworks, training algorithms and com-

munication protocols for generalised network topologies. The prevalence of

federated learning is in a large part credited to the prevailing use of the client–server

communication model. The star topology is communication-efficient and easy to

manage from the central server’s perspective. Indeed, this centralised topology is

the natural choice for horizontal FL because it provides consistency with the least

communication cost. Despite the fact, there are still some situations where the net-

work topology does not have an eligible central node. A cross-silo scenario can be an

example of such situation where multiple organisations want to collaborate via FL but

none of them has the full trust to become an aggregator. Some research efforts have

been taken towards federated learning in a Peer-to-Peer (P2P) fashion [59, 243] where

nodes in the network communicate with each other without a central coordinator. The

Gossip protocol is a common choice in such topologies whilst more possibilities, e.g.,

duplication, segmentation [58] and grouping can be explored on top of that.

Though theoretical guarantee is provided by some studies [58, 60, 118], it is still

unclear how much the heterogeneity impacts the model performance on different

workers. Heterogeneous connectivity and adjacency between the nodes also need to be

considered in the future work for fully decentralised FL algorithms.
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Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies

for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

193



Bibliography

[131] Davy Preuveneers, Vera Rimmer, Ilias Tsingenopoulos, Jan Spooren, Wouter

Joosen, and Elisabeth Ilie-Zudor. Chained anomaly detection models for feder-

ated learning: An intrusion detection case study. Applied Sciences, 8(12):2663,

2018.

[132] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated

learning: A client level perspective. arXiv preprint arXiv:1712.07557, 2017.

[133] Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H Vincent Poor,

and Shuguang Cui. A joint learning and communications framework for federated

learning over wireless networks. IEEE Transactions on Wireless Communications,

20(1):269–283, 2020.

[134] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Françoise Beaufays. Fed-

erated learning of out-of-vocabulary words. arXiv preprint arXiv:1903.10635,

2019.

[135] Mingzhe Chen, Nir Shlezinger, H Vincent Poor, Yonina C Eldar, and Shuguang

Cui. Communication-efficient federated learning. Proceedings of the National

Academy of Sciences, 118(17), 2021.
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Pattnaik. Ibm power9 and cognitive computing. IBM Journal of Research and

Development, 62(4/5):10–1, 2018.
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H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark

for federated settings. arXiv preprint arXiv:1812.01097, 2018.

[267] Chris Pemberton. 3 ai trends for enterprise computing. Gart-

ner, Oct. 5 2017. URL https://www.gartner.com/smarterwithgartner/

3-ai-trends-for-enterprise-computing/.

[268] Inci M Baytas, Ming Yan, Anil K Jain, and Jiayu Zhou. Asynchronous multi-task

learning. In 2016 IEEE 16th International Conference on Data Mining (ICDM),

pages 11–20. IEEE, 2016.

[269] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149, 2015.

[270] En Li, Zhi Zhou, and Xu Chen. Edge intelligence: On-demand deep learning

model co-inference with device-edge synergy. In Proceedings of the 2018 Workshop

on Mobile Edge Communications, pages 31–36, 2018.

207

http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.gartner.com/smarterwithgartner/3-ai-trends-for-enterprise-computing/
https://www.gartner.com/smarterwithgartner/3-ai-trends-for-enterprise-computing/


Bibliography

[271] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar,

and Albert Y Zomaya. Edge intelligence: The confluence of edge computing and

artificial intelligence. IEEE Internet of Things Journal, 7(8):7457–7469, 2020.

[272] Qianyu Meng, Kun Wang, Xiaoming He, and Minyi Guo. Qoe-driven big data

management in pervasive edge computing environment. Big Data Mining and

Analytics, 1(3):222–233, 2018.

[273] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.

A survey on mobile edge computing: The communication perspective. IEEE

Communications Surveys & Tutorials, 19(4):2322–2358, 2017.

[274] Pavel Mach and Zdenek Becvar. Mobile edge computing: A survey on architecture

and computation offloading. IEEE Communications Surveys & Tutorials, 19(3):

1628–1656, 2017.

[275] Edge computing market growth & trends. Grand View Research,

May 2021. URL https://www.grandviewresearch.com/press-release/

global-edge-computing-market.

[276] Ying Yu, Min Li, Liangliang Liu, Yaohang Li, and Jianxin Wang. Clinical big

data and deep learning: Applications, challenges, and future outlooks. Big Data

Mining and Analytics, 2(4):288–305, 2019.

[277] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge

intelligence: Paving the last mile of artificial intelligence with edge computing.

Proceedings of the IEEE, 107(8):1738–1762, 2019.
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Appendix A

Supplementary Results for

SAFA

The following are the supplementary statistics as part of the experimental evaluation

presented in Chapter 3.

Table A.1: Best accuracy of the global model on Task 1

Best accuracy (Task 1: regression)
Fully local

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.6154 0.6308 0.5820 0.5423 0.5270
0.3 0.5806 0.6363 0.6145 0.5843 0.5443
0.5 0.5180 0.6043 0.6276 0.6181 0.5978
0.7 0.4443 0.5480 0.6327 0.6409 0.6361

FedAvg
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.6055 0.6413 0.6411 0.6417 0.6424
0.3 0.6117 0.6418 0.6415 0.6419 0.6418
0.5 0.4432 0.6164 0.6421 0.6419 0.6413
0.7 0.3763 0.5576 0.6283 0.6413 0.6418

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.6109 0.6415 0.6412 0.6417 0.6423
0.3 0.6077 0.6417 0.6416 0.6420 0.6418
0.5 0.4097 0.6073 0.6423 0.6418 0.6413
0.7 0.2882 0.5999 0.6297 0.6293 0.6418

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.6419 0.6414 0.6413 0.6417 0.6423
0.3 0.6426 0.6419 0.6416 0.6417 0.6419
0.5 0.6423 0.6415 0.6422 0.6419 0.6415
0.7 0.6402 0.6422 0.6417 0.6412 0.6420
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Appendix A. Supplementary Results for SAFA

Table A.2: Synchronization Ratio and futility percentage on Task 1

SR / futility percentage (Task 1: regression)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.100/0.04 0.300/0.03 0.500/0.05 0.700/0.06 1.000/0.06
0.3 0.100/0.09 0.300/0.14 0.500/0.14 0.700/0.17 1.000/0.16
0.5 0.100/0.26 0.300/0.27 0.500/0.27 0.700/0.23 1.000/0.25
0.7 0.100/0.33 0.300/0.36 0.500/0.31 0.700/0.38 1.000/0.35

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.080/0.21 0.300/0.07 0.500/0.04 0.700/0.04 1.000/0.06
0.3 0.100/0.17 0.300/0.12 0.500/0.14 0.648/0.32 1.000/0.16
0.5 0.079/0.39 0.234/0.41 0.500/0.28 0.700/0.25 1.000/0.25
0.7 0.078/0.49 0.300/0.33 0.500/0.35 0.644/0.51 1.000/0.35

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.910/0.00 0.894/0.00 0.900/0.00 0.906/0.00 0.882/0.00
0.3 0.722/0.00 0.714/0.00 0.716/0.01 0.678/0.00 0.700/0.00
0.5 0.498/0.02 0.502/0.01 0.470/0.00 0.536/0.01 0.506/0.01
0.7 0.368/0.04 0.346/0.02 0.362/0.03 0.342/0.04 0.354/0.03

Table A.3: Best accuracy of the global model on Task 2

best accuracy (Task 2: CNN)
Fully local

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.8849 0.9066 0.9026 0.9131 0.9019
0.3 0.8909 0.8932 0.8937 0.8909 0.9126
0.5 0.8649 0.8898 0.9021 0.8932 0.9081
0.7 0.8518 0.8956 0.9026 0.8959 0.9093

FedAvg
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9407 0.9664 0.9738 0.9766 0.9796
0.3 0.9326 0.9640 0.9705 0.9745 0.9755
0.5 0.9178 0.9532 0.9652 0.9696 0.9738
0.7 0.8818 0.9452 0.9534 0.9591 0.9672

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9423 0.9666 0.9732 0.9762 0.9791
0.3 0.9328 0.9626 0.9702 0.9741 0.9765
0.5 0.9232 0.9529 0.9650 0.9699 0.9321
0.7 0.8962 0.9434 0.9546 0.9599 0.9673

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9748 0.9746 0.9764 0.9779 0.9787
0.3 0.9698 0.9696 0.9727 0.9753 0.9781
0.5 0.9658 0.9672 0.9686 0.9697 0.9714
0.7 0.9604 0.9632 0.9652 0.9603 0.9645
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Table A.4: Synchronization Ratio and futility percentage on Task 2

SR / futility percentage (Task 2: CNN)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.100/0.03 0.300/0.04 0.500/0.05 0.700/0.05 1.000/0.05
0.3 0.100/0.16 0.300/0.15 0.500/0.14 0.700/0.15 1.000/0.15
0.5 0.100/0.24 0.300/0.24 0.500/0.25 0.700/0.22 1.000/0.26
0.7 0.100/0.36 0.300/0.36 0.500/0.35 0.700/0.35 1.000/0.35

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.092/0.04 0.300/0.05 0.500/0.06 0.693/0.06 1.00/00.05
0.3 0.099/0.16 0.296/0.16 0.500/0.15 0.692/0.15 1.000/0.16
0.5 0.100/0.23 0.297/0.28 0.500/0.25 0.700/0.25 0.990/0.25
0.7 0.100/0.33 0.300/0.33 0.495/0.35 0.700/0.36 0.990/0.36

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.896/0.00 0.902/0.00 0.891/0.00 0.900/0.00 0.894/0.00
0.3 0.704/0.00 0.710/0.00 0.704/0.00 0.707/0.00 0.709/0.00
0.5 0.524/0.01 0.517/0.01 0.521/0.01 0.521/0.01 0.509/0.01
0.7 0.341/0.04 0.351/0.04 0.359/0.04 0.342/0.04 0.350/0.04

Table A.5: Best accuracy of the global model on Task 3

best accuracy (Task 3: SVM)
Fully local

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.7793 0.6603 0.6307 0.6307 0.6307
0.3 0.7477 0.6363 0.6307 0.6307 0.6307
0.5 0.8419 0.6859 0.6339 0.6307 0.6307
0.7 0.9530 0.7886 0.6673 0.6491 0.6442

FedAvg
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9935 0.9942 0.9962 0.9992 0.9992
0.3 0.9961 0.9961 0.9962 0.9963 0.9992
0.5 0.9961 0.9960 0.9961 0.9962 0.9963
0.7 0.9961 0.9961 0.9961 0.9957 0.9962

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9959 0.9962 0.9961 0.9991 0.9993
0.3 0.9961 0.9961 0.9962 0.9963 0.9992
0.5 0.9961 0.9962 0.9959 0.9962 0.9962
0.7 0.9961 0.9776 0.9960 0.9960 0.9960

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.9962 0.9961 0.9962 0.9992 0.9992
0.3 0.9960 0.9961 0.9962 0.9991 0.9991
0.5 0.9959 0.9961 0.9962 0.9961 0.9962
0.7 0.9960 0.9934 0.9961 0.9958 0.9960
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Table A.6: Synchronization Ratio and futility percentage on Task 3

SR / futility percentage (Task 3: SVM)
FedAvg

cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.100/0.05 0.300/0.05 0.500/0.05 0.700/0.05 1.000/0.05
0.3 0.100/0.15 0.300/0.15 0.500/0.15 0.700/0.15 1.000/0.15
0.5 0.100/0.25 0.300/0.25 0.500/0.25 0.700/0.25 1.000/0.25
0.7 0.100/0.35 0.300/0.35 0.500/0.35 0.700/0.35 1.000/0.35

FedCS
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.100/0.05 0.299/0.05 0.499/0.05 0.697/0.05 0.998/0.05
0.3 0.099/0.15 0.300/0.15 0.499/0.15 0.698/0.15 0.998/0.15
0.5 0.099/0.24 0.300/0.25 0.499/0.25 0.697/0.25 0.998/0.25
0.7 0.100/0.36 0.300/0.35 0.498/0.36 0.699/0.36 0.996/0.36

SAFA
cr C = 0.1 C = 0.3 C = 0.5 C = 0.7 C = 1.0
0.1 0.901/0.00 0.900/0.00 0.900/0.00 0.901/0.00 0.901/0.00
0.3 0.703/0.00 0.700/0.00 0.701/0.00 0.702/0.00 0.703/0.00
0.5 0.512/0.01 0.514/0.01 0.516/0.01 0.513/0.01 0.512/0.01
0.7 0.345/0.04 0.343/0.04 0.344/0.04 0.342/0.04 0.344/0.04

214



Appendix B

Homomorphic Encryption for

FedProf

The proposed representation profiling and matching scheme encodes the latent rep-

resentations of data into a list of distribution parameters, namely RP (w,D) =

{(µi, σ
2
i )|i = 1, 2, . . . , q} where q is the dimension of FC-1. Theoretically, the in-

formation leakage (in terms of the data in D) by exposing RP (w,D) is very limited

and it is basically impossible to reconstruct the samples in D given RP (w,D). Non-

etheless, Homomorphic Encryption (HE) can be applied to the footprints (both locally

and on the server) so as to guarantee zero knowledge disclosure while still allowing

profile matching under the encryption. The following content gives details on how to

encrypt a representation profile and compute profile dissimilarity under Homomorphic

Encryption (HE).

To calculate (5.21) and (5.22) under encryption, a client needs to encrypt (denoted

as [[·]]) every single µi and σ2
i in its profile RP (w,D) locally before upload whereas

the server does the same for its RP ∗(w,D∗). Therefore, according to Eq. (5.22), it

follows that

[[KL(N (k)
i ||N

∗
i )]] =

1

2
log[[(σ∗

i )2]]− 1

2
log[[(σ

(k)
i )2]]− [[

1

2
]]

+
([[(σ

(k)
i )2]] + ([[µ

(k)
i ]]− [[µ∗

i ]])2

2[[(σ∗
i )2]]

, (B.1)

where the first two terms on the right-hand side require logarithm operation on the

ciphertext. However, this may not be very practical because most HE schemes are
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designed for basic arithmetic operations on the ciphertext. Thus it is also necessary to

consider the situation where HE scheme at hand only provides additive and multiplic-

ative homomorphisms [53]. In this case, to avoid the logarithm operation, the client

needs to keep every σ2
i in RP ∗(w,Di) as plaintext and only encrypts µi, likewise for

the server. As a result, the KL divergence can be computed under encryption as:

[[KL(N (k)
i ||N

∗
i )]] =

[[1

2
log(

σ∗
i

σ
(k)
i

)2 +
1

2
(
σ
(k)
i

σ∗
i

)2 − 1

2

]]
+

1

2(σ∗
i )2

([[µ
(k)
i ]]− [[µ∗

i ]])2 (B.2)

where the first term on the right-hand side is encrypted after calculation with plaintext

values (σk
i )2 and (σ∗)2 whereas the second term requires multiple operations based on

the ciphertext values [[µk
i ]] and [[µ∗]].

Now, in either case, one can compute profile dissimilarity under encryption by

summing up all the KL divergence values in ciphertext:

[[div(RPk, RP ∗)]] =
1

q

q∑
i=1

[[KL(N (k)
i ||N

∗
i )]]

(B.3)
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Appendix C

Convergence Analysis for

FedProf

In this section the proof of the proposed Theorem 4.1 is provided. The analysis is

mainly based on the results provided by ref. [85].Several notations are first introduced

to facilitate the analysis.

C.1 Notations

Let U (|U | = N) denote the full set of clients and S(t) (|S(t)| = K) denote the set

of clients selected for participating. Let wk(t) denote the local model on client k at

time step t. An auxiliary sequence vk(t) is defined for each client to represent the

immediate local model after a local SGD update. Note that vk(t) is updated from

vk(t− 1) with learning rate ηt−1:

vk(t) = wk(t− 1)− ηt−1∇Fk(wk(t− 1), ξk,t−1), (C.1)

where ∇Fk(wk(t− 1), ξk,t−1) is the stochastic gradient computed over a batch of data

ξk,t−1 drawn from Dk with regard to wk(t− 1).

This work also defines two virtual sequences v̄(t) =
∑N

k=1 ρkvk(t) and w̄(t) =

Aggregate({vk(t)}S(t)
k=1) for every time step t (Note that the actual global model w(t)

is only updated at the aggregation steps TA = {E, 2E, 3E, . . .}). Given an aggregation

interval E ≥ 1, the analysis is provided for the partial aggregation rule that yields
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w̄(t) as:

w̄(t) =
1

K

∑
k∈S(t)

vk(t), (C.2)

where S(t) (|S(t)| = K) is the selected set of clients for the round ⌈ t
E ⌉ that contains

step t. At the aggregation steps TA, w(t) is equal to w̄(t), i.e., w(t) = w̄(t) if t ∈ TA.

To facilitate the analysis, it is assumed that each client always performs model

update (and synchronization) to produce vk(t) and v̄(t) (but obviously it does not

affect the resulting w̄ and w for k /∈ S(t)).

wk(t) =


vk(t), if t /∈ TA

w̄(t), if t ∈ TA

(C.3)

For ease of presentation, two virtual gradient sequences are defined: ḡ(t) =∑N
k=1 ρk∇Fk(wk(t)) and g(t) =

∑N
k=1 ρk∇Fk(wk(t), ξk,t). Thus it follows that E[g(t)] =

ḡ(t) and v̄(t) = w̄(t− 1)− ηt−1g(t− 1).

C.2 Assumptions

Four assumptions are made to support the analysis of convergence. Assumptions

C.1 and C.2 are standard in the literature [55, 85, 162] defining the convexity and

smoothness properties of the objective functions. Assumptions C.3 and C.4 bound

the variance of the local stochastic gradients and their squared norms in expectation,

respectively. These two assumptions are also made in refs. [85].

Assumption C.1. F1, F2, . . . , FN are L-smooth, i.e., for any k ∈ U , x and y:

Fk(y) ≤ Fk(x) + (y − x)T∇Fk(x) + L
2 ∥y − x∥22

It is obvious that the global objective F is also L-smooth as a linear combination

of F1, F2, . . . , FN with ρ1, ρ2, . . . , ρN being the weights.

Assumption C.2. F1, F2, . . . , FN are µ-strongly convex, i.e., for all k ∈ U and any

x, y: Fk(y) ≥ Fk(x) + (y − x)T∇Fk(x) + µ
2 ∥y − x∥22

Assumption C.3. The variance of local stochastic gradients on each device is bounded:

For all k ∈ U , E∥∇Fk(wk(t), ξt,k)− Fk(wk(t))∥2 ≤ ϵ2

Assumption C.4. The squared norm of local stochastic gradients on each device is

bounded: For all k ∈ U , E∥∇Fk(wk(t), ξt,k)∥2 ≤ G2
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C.3 Key Lemmas

To facilitate the proof of the main theorem, several key lemmas are first presented.

Lemma C.1 (Result of one SGD step). Under Assumptions C.1 and C.2 and with

ηt <
1
4L , for any t it holds true that

E∥v̄(t+1)−w∗∥2 ≤ (1−ηtµ)E∥w̄(t)−w∗∥2+η2tE∥gt−ḡt∥2+6Lη2t Γ+2E
[ N∑
k=1

ρk∥wk(t)−w̄(t)∥2
]
,

(C.4)

where Γ = F ∗ −
∑N

k=1 ρkF
∗
k .

Lemma C.2 (Gradient variance bound). Under Assumption C.3, one can derive that

E∥gt − ḡt∥2 ≤
N∑

k=1

ρ2kϵ
2
k. (C.5)

Lemma C.3 (Bounded divergence of wk(t)). Assume Assumption C.4 holds and a

non-increasing step size ηt s.t. ηt ≤ 2ηt+E for all t = 1, 2, . . ., it follows that

E
[ N∑
k=1

ρk∥wk(t)− w̄(t)∥2
]
≤ 4η2t (E − 1)2G2. (C.6)

Lemmas C.1, C.2 and C.3 hold for both full and partial participation and are

independent of the client selection strategy (See ref. [85] for their proofs). This

following content is focused on opportunistic client selection.

Let qk denotes the probability that client k gets selected. Given the optimal

preference factors αk for k = 1, 2, . . . N that satisfy αk = − ln(Λρk)
div(RPk,RP∗) , we have

qk = λk

Λ = ρk according to Eq. (5.25). The next two lemmas give important properties

of the aggregated model w̄ as a result of partial participation and non-uniform client

selection/sampling.

Lemma C.4 (Unbiased aggregation). For any aggregation step t ∈ TA and with

qk = ρk in the selection of S(t), it follows that

ES(t)[w̄(t)] = v̄(t). (C.7)
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Proof. First, a key observation given by ref. [85] is presented as an important trick to

handle the randomness caused by client selection with probability distribution {qk}Nk=1.

By taking the expectation over S(t), it follows that

ES(t)

∑
k∈S(t)

Xk = KES(t)[Xk] = K

N∑
k=1

qkXk. (C.8)

Let qk = ρk, take the expectation of w̄(t) over S(t) and notice that v̄(t) =
∑

k∈U ρkvk(t):

ES(t)[w̄(t)] = ES(t)

[ 1

K

∑
k∈S(t)

vk(t)
]

=
1

K
ES(t)

[ ∑
k∈S(t)

[vk(t)
]

=
1

K
KES(t)[vk(t)]

=
∑
k∈U

qkvk(t)

= v̄(t).

Lemma C.5 (Bounded variance of w̄(t)). For any aggregation step t ∈ TA and with

a non-increasing step size ηt s.t. ηt ≤ 2ηt+E−1, it follows that

ES(t)∥w̄(t)− v̄(t)∥2 ≤ 4

K
η2t−1E

2G2. (C.9)

Proof. First, one can prove that vk(t) is an unbiased estimate of v̄(t) for any k:

ES(t)[vk(t)] =
∑
k∈U

qkvk(t) = v̄(t). (C.10)
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Then by the aggregation rule w̄(t) = 1
K

∑
k∈S(t) vk(t), it follows that

ES(t)∥w̄(t)− v̄(t)∥2 =
1

K2
ES(t)∥Kw̄(t)−Kv̄(t)∥2

=
1

K2
ES(t)∥

∑
k∈S(t)

vk(t)−
K∑

k=1

v̄(t)∥2

=
1

K2
ES(t)∥

∑
k∈S(t)

(
vk(t)− v̄(t)

)
∥2

=
1

K2

(
ES(t)

∑
k∈S(t)

∥vk(t)− v̄(t)∥2

+ ES(t)

∑
i,j∈S(t),i̸=j

⟨vi(t)− v̄(t), vj(t)− v̄(t)⟩

︸ ︷︷ ︸
=0

)
, (C.11)

where the second term on the RHS of (C.11) equals zero because {vk(t)}k∈U are

independent and unbiased (see Eq. C.10). Further, by noticing t−E ∈ TA (because

t ∈ TA) which implies that wk(t − E) = w̄(t − E) since the last communication, it

follows that

ES(t)∥w̄(t)− v̄(t)∥2 =
1

K2
ES(t)

∑
k∈S(t)

∥vk(t)− v̄(t)∥2

=
1

K2
KES(t)∥vk(t)− v̄(t)∥2

=
1

K
ES(t)∥

(
vk(t)− w̄(t− E)

)
−
(
v̄(t)− w̄(t− E)

)
∥2

≤ 1

K
ES(t)∥vk(t)− w̄(t− E)∥2, (C.12)

where the last inequality results from E[vk(t)− w̄(t−E)] = v̄(t)− w̄(t−E) and that

E∥X − EX∥2 ≤ E∥X∥2. Further,

ES(t)∥w̄(t)− v̄(t)∥2 ≤ 1

K
ES(t)∥vk(t)− w̄(t− E)∥2

=
1

K

N∑
k=1

qkES(t)∥vk(t)− w̄(t− E)∥2

=
1

K

N∑
k=1

qk ES(t)∥
t−1∑

i=t−E

ηi∇Fk(wk(i), ξk,i)∥2︸ ︷︷ ︸
Z1

. (C.13)

Let im = arg maxi ∥∇Fk

(
wk(i), ξk,i

)
∥, i ∈ [t−E, t− 1]. By using the Cauchy-Schwarz

inequality, Assumption C.4 and choosing a non-increasing ηt s.t. ηt ≤ 2ηt+E−1, it
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follows that

Z1 = ES(t)∥
t−1∑

i=t−E

ηi∇Fk(wk(i), ξk,i)∥2

=

t−1∑
i=t−E

t−1∑
j=t−E

ES(t)⟨ηi∇Fk

(
wk(i), ξk,i

)
, ηj∇Fk

(
wk(j), ξk,j

)
⟩

≤
t−1∑

i=t−E

t−1∑
j=t−E

ES(t)

[
∥ηi∇Fk

(
wk(i), ξk,i

)
∥ · ∥ηj∇Fk

(
wk(j), ξk,j

)
∥
]

≤
t−1∑

i=t−E

t−1∑
j=t−E

ηiηj · ES(t)∥∇Fk

(
wk(im), ξk,im

)
∥2

≤
t−1∑

i=t−E

t−1∑
j=t−E

η2t−E · ES(t)∥∇Fk

(
wk(im), ξk,im

)
∥2

≤ 4η2t−1E
2G2. (C.14)

Plug Z1 back into (C.13) and notice that
∑N

k=1 qk = 1,

ES(t)∥w̄(t)− v̄(t)∥2 ≤ 1

K

N∑
k=1

qk4η2tE
2G2

=
4

K
η2t−1E

2G2.

C.4 Proof of Theorem 5.1

Proof. By taking expectation of ∥w̄(t)− w∗∥2, it follows that:

E∥w̄(t)− w∗∥2 = E∥w̄(t)− v̄(t) + v̄(t)− w∗∥2

= E∥w̄(t)− v̄(t)∥2︸ ︷︷ ︸
A1

+E∥v̄(t)− w∗∥2︸ ︷︷ ︸
A2

+E⟨w̄(t)− v̄(t), v̄(t)− w∗⟩︸ ︷︷ ︸
A3

(C.15)

where A3 vanishes because w̄(t) is an unbiased estimate of v̄(t) by first taking expect-

ation over S(t) (Lemma C.4).
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To bound A2 for t ∈ TA, Lemma C.1 is applied:

A2 = E∥v̄(t)− w∗∥2 ≤ (1− ηt−1µ)E∥w̄(t− 1)− w∗∥2 + η2t−1E∥gt−1 − ḡt−1∥2︸ ︷︷ ︸
B1

+ 6Lη2t−1Γ + E
[ N∑
k=1

ρk∥wk(t− 1)− w̄(t− 1)∥2
]

︸ ︷︷ ︸
B2

. (C.16)

Then Lemmas C.2 and C.3 are applied to bound B1 and B2 respectively, which yields:

A2 = E∥v̄(t)− w∗∥2 ≤ (1− ηt−1µ)E∥w̄(t− 1)− w∗∥2 + η2t−1B, (C.17)

where B =
∑N

k=1 ρ
2
kϵ

2
k + 6LΓ + 8(E − 1)2G2.

To bound A1, one can first take expectation over S(t) and apply Lemma C.5 where

the upper bound actually eliminates both sources of randomness. Thus, it follows that

A1 = E∥w̄(t)− v̄(t)∥2 ≤ 4

K
η2t−1E

2G2 (C.18)

Let C = 4
KE2G2 and plug A1 and A2 back into (C.15):

E∥w̄(t)− w∗∥2 ≤ (1− ηt−1µ)ES(t)∥w̄(t− 1)− w∗∥2 + η2t−1(B + C). (C.19)

Equivalently, let ∆t = E∥w̄(t)− w∗∥2, then the following recurrence relation holds for

any t ≥ 1:

∆t ≤ (1− ηt−1µ)∆t−1 + η2t−1(B + C). (C.20)

One can prove by induction that ∆t ≤ ν
γ+t where ν = max

{
β2(B+C)
βµ−1 , (γ + 1)∆1

}
using an aggregation interval E ≥ 1 and a diminishing step size ηt = β

t+γ for some

β > 1
µ and γ > 0 such that η1 ≤ min{ 1µ ,

1
4L} and ηt ≤ 2ηt+E .

First, for t = 1 the conclusion holds that ∆1 ≤ ν
γ+1 given the conditions. Then by
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assuming it holds for some t, one can derive from (C.20) that

∆t+1 ≤ (1− ηtµ)∆t + η2t (B + C)

≤
(

1− βµ

t + γ

) ν

γ + t
+
( β

t + γ

)2

(B + C)

=
t + γ − 1

(t + γ)2
ν +

[β2(B + C)
(t + γ)2

− βµ− 1

(t + γ)2
ν
]

︸ ︷︷ ︸
≥0

≤ t + γ − 1

(t + γ)2
ν

≤ t + γ − 1

(t + γ)2 − 1
ν

=
ν

t + γ + 1
, (C.21)

which proves the conclusion ∆t ≤ ν
γ+t for any t ≥ 1.

Then by the smoothness of the objective function F , it follows that

E[F (w̄(t))]− F ∗ ≤ L

2
E∥w̄(t)− w∗∥2

=
L

2
∆t ≤

L

2

ν

γ + t
. (C.22)

Specifically, by choosing β = 2
µ (i.e., ηt = 2

µ(γ+t) ), γ = max{ 8Lµ , E} − 1 , it follows

that

ν = max
{β2(B + C)

βµ− 1
, (γ + 1)∆1

}
≤ β2(B + C)

βµ− 1
+ (γ + 1)∆1

=
4(B + C)

µ2
+ (γ + 1)∆1. (C.23)

By definition, it is always true that w(t) = w̄(t) at the aggregation steps. Therefore,

for t ∈ TA:

E[F (w(t))]− F ∗ ≤ L

2

ν

γ + t

=
L

(γ + t)

(2(B + C)
µ2

+
γ + 1

2
∆1

)
.
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