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Abstract
Akey challenge in building machine learning models for time series prediction is the incompleteness of the datasets.Missing data

can arise for a variety of reasons, including sensor failure and network outages, resulting in datasets that can be missing significant

periods ofmeasurements. Models built using these datasets can therefore be biased.Althoughvariousmethods have been proposed

to handle missing data in many application areas, more air quality missing data prediction requires additional investigation. This

study proposes an autoencoder model with spatiotemporal considerations to estimate missing values in air quality data. The model

consists of one-dimensional convolution layers,making it flexible to cover spatial and temporal behavioursof air contaminants.This

model exploits data fromnearby stations to enhance predictions at the target stationwithmissing data. Thismethod does not require

additional external features, such as weather and climate data. The results show that the proposed method effectively imputes

missingdata for discontinuous and long-interval interrupteddatasets.Compared to univariate imputation techniques (most frequent,

median and mean imputations), our model achieves up to 65% RMSE improvement and 20–40% against multivariate imputation

techniques (decision tree, extra-trees, k-nearest neighbours andBayesian ridge regressors). Imputation performance degradeswhen

neighbouring stations are negatively correlated or weakly correlated.

Keywords Missing data � Air pollutant � Spatiotemporal � Autoencoder � Convolutional layer

1 Introduction

Rising population, urbanisation, economic growth and

industrial expansion have increased air pollution world-

wide [1]. The main causes of air pollution are vehicle

exhaust, industrial emissions, agricultural and natural dis-

asters, such as volcanic eruptions and wildfires. These air

pollutant sources can produce particulate matter (PM),

nitrogen dioxide (NO2), carbon monoxide (CO), ozone

(O3), sulfur dioxide (SO2), among other pollutants [2]. The

effect of air contaminants on the human body differs,

depending on the type of contaminants and the level and

duration of any exposure. It causes negative impacts on

human health and influences socio-economic activi-

ties [3, 4]. Concerning human health, air pollution is

associated with lung cancer [5, 6], cardiovascular dis-

eases [7–9], impaired cognitive function and human emo-

tion [10, 11]. Premature mortality, negative social and

educational outcomes, adverse market liquidity and catas-

trophic climate are the socio-economic aspects triggered by

air pollution [12]. Moreover, around 4.9 million deaths

were attributed to air pollution in 2017 [13].

Measuring air pollution with potential exposures and

health impacts can be more challenging when missing data

occurs. The existence of missing data can influence study

interpretations and conclusions [14] and affect the func-

tioning of air quality-related public services [15]. Missing
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data are a common problem in air pollutant measurement

and other fields such as clinical, energy and traffic [16–18].

The cause of missing data may vary, including sensor

malfunction, sensor sensitivity, power outages, computer

system failure, routine maintenance, human error and other

reasons [19, 20]. Depending on the causes, air pollution

data can be missing either in long-consecutive periods or

short intervals [21]. While routine maintenance and tem-

porary power outages can cause short intervals of missing

data, sensor malfunction and other critical failures can

cause longer gaps in data collection.

According to Rubin, incomplete data are classified

based on their generating mechanisms, namely missing

completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR) [22]. MCAR

occurs when data are genuinely missing as a result of

random events [23]. MCAR assumes that missing values

are a random sample of observed values, which is

restrictive [24]. In MAR, the probability of missingness

may depend on observed data values but not those that

are missing. Under MAR conditions, there is a possibility

to retrieve the missing values from other observed pre-

dictor variables [23, 25]. When the probability of an

observation being missing is dependent on unobserved

values, such as the values of the observation themselves,

this condition is called MNAR [22, 23, 26]. MNAR is

nonignorable missingness and is considered a condition

that yields biased parameter estimates [27]. Missing data

are most often neither MCAR nor MNAR [26]. The

missingness is at least MAR for air quality data. Even

though the air contaminant values are missed for

unknown reasons (i.e. MCAR), most missing values are

caused by explainable circumstances such as routine

maintenance, sensor malfunction and power outa-

ges [23, 28]. Thus, we assume MAR conditions for the

air quality data used in this study.

There are two common ways to handle missing data:

delete the missing parts and impute (substitute) the

missing values [29]. The deletion method can be further

defined as pairwise deletion and listwise deletion. The

pairwise deletion method discards the specific missing

values, whereas the listwise method removes the entire

record even if there is one missing value. The MCAR

assumption allows for the exclusion of incomplete

observations to yield unbiased results. However, a higher

level of missing values may reduce the precision of the

analysis [24]. Moreover, because the nature of pollutant

measurement generates time-series data, the deletion

method could break the data structure, and valuable

information may be lost. Contrary to the deletion method,

the imputation method reconstructs the missing data

based on available information [30].

Reconstruction techniques inspired by machine learning

have been used in recovering corrupted data, one of which

is the denoising autoencoder (DAE) [31]. Standard DAE

and its variants are implemented in many fields, such as

image denoising [32–35], medical signal process-

ing [36, 37] and fault diagnosis [38, 39]. Some works also

utilised DAE for missing data imputation. Gondara

et al. [40] tried to answer the challenge of multiple impu-

tation by employing an overcomplete representation of

DAEs. The proposed method does not need complete

observations for initial training, making it suitable for a

real-life scenario. Abiri et al. [41] demonstrated the

robustness of DAE in recovering a wide range of missing

data for different datasets. Abiri et al. proved that the

proposed stacked DAE outperformed other established

methods, such as K-nearest neighbour (KNN), multiple

imputation by chained equations (MICE), random forest

and mean imputations. Jiang et al. [42] utilised DAE for

imputing the missing traffic flow data and compared three

different architectures composing the DAE, namely stan-

dard (‘‘vanilla’’), convolutional neural network (CNN) and

bidirectional long short-term memory (Bi-LSTM). Jiang

et al. evaluated the proposed model’s test sets with a

general missing rate of 30%. Moreover, splitting traffic

data into weekdays and weekends significantly improved

the model performances.

The following discussions summarise the recent chal-

lenges and breakthroughs in methods for air quality miss-

ing data imputation. First, the problem of missing data

repeatedly occurs in environmental research, and more

studies are required to find effective imputation solutions.

Although various methods have been proposed to handle

missing data in many fields, more studies addressing air

quality missing data prediction are needed [19]. The works

mentioned earlier in this section mainly focus on clinical,

energy, traffic, etc. Second, most of the related studies

focused on a small amount of missing data. Ma et al. stated

that the previous works are applicable for short-interval

missing imputation or consecutive missing value with a

level of missingness less than 30%. This issue was also

mentioned by Alamoodi et al. [43]. Few works investigated

missing data at large percentages (i.e. more than 80%),

either using deletion or imputation. Third, the multiple

imputation method can improve imputation performance

[14]. We consider that implementing multiple imputation

for air quality data is a deserving attempt. Fourth, many

studies demonstrated the robustness of denoising autoen-

coder in recovering noisy data. However, few studies

implemented the denoising autoencoder for missing air

quality data imputation. Finally, even though air pollutants

strongly relate to spatiotemporal characteristics, these

factors are rarely included in predicting the missing values

of air pollution data. The air quality data collected from air
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monitoring stations can hold intensely stochastic spa-

tiotemporal correlations among them [44].

Inspired by the capabilities of the denoising autoencoder

to reconstruct corrupted data, we propose an imputation

method based on the denoising autoencoder. We imple-

ment multiple plausible estimates for specific missing

values. We propose a simple method suitable for both

short-interval and long-interval consecutive missing

imputation and simultaneously offer multiple imputations

to obtain less biased results. We use a convolutional

denoising autoencoder with spatiotemporal considerations

to extract the air pollutant features. The proposed method

takes advantage of data from nearby stations to predict the

missing data in the targeted station. This method does not

need external features like weather and climate data (air

temperature, humidity, wind speed, wind direction, etc.).

Thus, our proposed method involves only the intended

pollutant data from neighbouring stations. We propose a

simple yet promising way to estimate missing values in

real-world applications.

2 Method

2.1 Research framework in general

Our proposed method exploits data from nearby sites to

enhance predictions at the target station with missing data.

When a target station fails to gather pollutant data from the

environment, the neighbouring station data can help to

estimate the current loss of the target site. As illustrated in

Fig. 1, S3 fails to collect data and acts as a target station.

Neighbouring stations S2, S5 and S6 send their data to S3.

The participating neighbouring stations eligible to send

data are chosen based on their coefficient correlations with

the target station. We implement a deep autoencoder model

at S3 and use a one-dimensional convolutional neural

architecture to cover the spatiotemporal behaviour of pol-

lutant data. Based on the collected spatiotemporal data at

target and neighbouring stations, we predict the missing

data at the target station.

Figure 2 shows the general research framework used in

this study. There are seven main blocks, and each block

consists of several tasks. The first block relates to the data

sources used in this work. All data sources used in this

study are available online, and they can be freely down-

loaded and used by adhering to the terms described in the

given licences. A dataset contains different hourly air

pollutant concentrations. Even though the dataset includes

several air contaminants, we selected two attributes as the

targeted pollutants. Ten monitoring stations are involved in

the calculations to acquire the spatial characteristics of air

pollutant data. Moreover, we verified our proposed method

in three different air quality datasets to achieve less biased

results. These are the monitoring of air quality in three

major cities: London, Delhi and Beijing.

The data pre-processing in the second block is dedicated

to examining the targeted air pollutant coefficient correla-

tion among air monitoring stations. Calculating the coef-

ficient correlation among pollutant concentrations is one of

the main steps conducted in this study. For every target

pollutant, we joined the same pollutant data taken from all

locations into a single data frame and sorted them by the

same hourly timestamp. We then calculated the correlation

coefficient and selected the three highest correlations

between the targeted and neighbouring monitoring stations.

Based on these correlations, the data encompassing spa-

tiotemporal characteristics are determined. The spatial

behaviour is obtained using data from the targeted and

three neighbouring stations (i.e. four monitoring stations in

total). The temporal dependency is acquired by collecting

the current value and its previously 7-hour values (i.e.

8-hour data in total).

The pre-processing procedure in the third block is car-

ried out to make the spatiotemporal features suitable for the

proposed deep learning model. All training and test fea-

tures are normalised to values between 0 and 1, leading to

the data variability reduction [45]. Additional pre-pro-

cessing in this stage includes initialising missing data

because the obtained datasets may contain some missing

features. If missing data exist in the original dataset, only

an unbroken series of data with a minimum of 1 week (168

hours) period is considered for the training set. We did not

remove the remaining data but did not use them during

training. Therefore, there are some chunks of unbroken

data involved as inputs in the training phase. According toFig. 1 Target station exploits data from neighbouring stations to

impute the missing data
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the number of data fragments, the training steps are done in

multiple rounds. This step will maintain the temporal

behaviour of the time-series data. This step maintains the

temporal behaviour of the time-series data. Once we have a

clean dataset, we artificially create random and consecutive

missing data. The artificial missing values are filled with

zeros. The final training and test sets are 3-dimensional

matrices with the size of (n� 8� 4). The integer value of

n indicates the number of training or test sets, 8 denotes the

8-hour observation period, and 4 denotes the number of

features taken from four monitoring stations.

As indicated in the fourth block, we proposed a deep

learning model to handle missing data. In this study, the

proposed model architecture is a convolutional autoen-

coder, meaning that the autoencoder uses convolution

layers as the encoding and decoding parts. The proposed

convolutional autoencoder acts as a denoising model. By

replacing some input features on purpose with zeros, the

input sets can be seen as corrupted data, and the model

learns to reconstruct these corrupted inputs by minimising

the loss function. The training process is shown in the fifth

block of the research framework.

The sixth and seventh blocks of the research framework

are the post-training interpretation and evaluation steps.

The model accepts and yields two-dimensional data, and

thus post-training output interpretations are needed to find

the intended prediction results. This process involves the

aggregation procedure. Finally, some evaluation proce-

dures are taken to examine the trained model, such as

calculating error metrics, testing the model on different

missing rates and locations, and implementing the pro-

posed algorithm on other air quality datasets.

2.2 Description of the datasets

This study uses air quality datasets from three different

cities. A total of 10 stations are selected for each city, and

two pollutants per station are studied. We consider ten

monitoring stations adequate for implementing our algo-

rithm and evaluating its performance. We also vary the

pollutant in each city to demonstrate that our proposed

method can be applied to different pollutants. Some con-

siderations are taken into account when selecting the sta-

tions. Availability of pollution data and measurement

period for all stations are two of our major concerns. We

included stations with at least three years data from the

same period. Furthermore, since our method is based on the

correlation coefficient between stations, we include stations

with varying degrees of correlation.

The first dataset is air pollutant data of London city. The

data were collected using the Openair tool [46]. Openair is

an R package developed by Carslaw and Ropkins to anal-

yse air quality data. For the London city dataset, we focus

on two pollutants: nitrogen dioxide (NO2) and particulate

matter with a diameter of less than 10 lm (PM10). We

selected ten monitoring stations across London and used

data from January 2018 to January 2021.

The second dataset is on India air quality. The dataset

was compiled by Rohan Rao from the Central Pollution

Control Board (CPCB) website and can be downloaded

from Kaggle’s collection [47]. Among many air quality

monitoring stations, we selected ten monitoring stations

across the city Delhi from February 2018 to July 2020. The

chosen pollutants for the Delhi dataset are hourly mea-

surements of NO2 and PM with a diameter of less than

2:5 lm (PM2:5).

The third dataset is Beijing multi-station air quality

provided by Zhang et al. [48], which can be downloaded

from the UCI Machine learning repository page [49]. The

dataset contains hourly pollutant data from January 2013 to

February 2017. We focused on carbon monoxide (CO) and

ozone (O3) data for the Beijing dataset. We selected ten

monitoring stations, namely Aotizhongxin, Changping,

Dingling, Dongsi, Guanyuan, Gucheng, Huairou,

Fig. 2 General description of the research framework for data analysis
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Nongzhanguan, Shunyi and Tiantan. Table 1 summarises

the air quality monitoring stations used in this study.

Tables 2, 3 and 4 show brief descriptive statistics of

London, Delhi and Beijing air quality data. As shown in the

tables, four statistics characteristics are shown, namely

mean, standard deviation and two quartiles. The mean and

standard deviation columns are calculated by excluding the

missing values. Standard deviation measures how observed

values spread from the mean. A low standard deviation in

each station implies that the observed values tend to be

close to the mean, whereas a high standard deviation

indicates that the observed values are spread out over a

broader range from the mean. The quartiles divide the

ordered observed values (i.e. from smallest to largest) into

four parts. The first quartile (25%) is the middle value

between the minimum and the median, whereas the third

quartile (75%) is defined as the middle value between the

median and the maximum.

2.3 Correlation of pollutant data

The same pollutant data from all monitoring stations are

combined, and the coefficient correlation for each pollutant

is calculated. For example, if the PM10 is decided as a

target pollutant, then we collected all PM10 values from all

monitoring stations. Pearson’s correlation is used to find

the relation of pollutant data among monitoring stations.

Pearson’s correlation measures the linear correlation

between two sets of data and can capture the details

between trends of two time-series data [19].

Assume that we have a temporal sequence of specific

pollutant data in the targeted station as St ¼
½st1; st2; st3; . . .; stn�1; s

t
n� and a temporal sequence of the same

pollutant data at a neighbouring station as

Ss ¼ ½ss1; ss2; ss3; . . .; ssn�1; s
s
n�. Note that both St and Ss have

the same time frame ranging from sample 1 to n. Then, the

Pearson’s correlation coefficient between these two series

is described as follows:

rðSt; SsÞ ¼
P

ððsti � ltÞðssi � lsÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðsti � ltÞ

2 Pðssi � lsÞ
2

q ð1Þ

where rðSt; SsÞ denotes the Pearson’s correlation coeffi-

cient between the time series St and Ss, sti and ssi represent

the i-th samples of St and Ss, respectively. Finally, lt ¼
1
n

PN
i¼1 s

t
i and ls ¼ 1

n

PN
i¼1 s

s
i denote the mean values of

time series St and Ss, respectively.

In Eq. 1, the numerator is the covariance, a measure-

ment about how series St and Ss vary together from their

mean value. In the denominator, the equation expresses the

variance of St and Ss. Correlation is a normalised version

of covariance, scaled between -1 to 1 [50]. When r ¼ 1, it

is said that St and Ss are completely positively correlated.

When r ¼ �1, St and Ss are completely negatively corre-

lated. Finally, when r ¼ 0, the linear correlation between

St and Ss is not obvious [51].

Table 1 Dataset used in this

study
London Delhi Beijing

ID Code Station Code Station Code Station

1 CT3 Aldgate school DL02 Anand vihar AOT Aotizhongxin

2 GN5 Trafalgar road DL03 Ashok vihar CHA Changping

3 GR8 Woolwich flyover DL04 Aya nagar DIN Dingling

4 IS2 Holloway road DL07 Mathura Rd. DON Dongsi

5 IS6 Arsenal DL08 DTU Delhi GUA Guanyuan

6 LB5 Bondway intchg. DL10 Dwarka-Sect. 8 GUC Gucheng

7 LW4 Loampit vale DL12 IGI airport HUA Huairou

8 SK6 Elephant & Castle DL13 IHBAS, Delhi NON Nongzhanguan

9 TH001 Millwall park DL14 ITO, Delhi SHU Shunyi

10 TH002 Victoria park DL15 Jahangirpuri TIA Tiantan

Table 2 Descriptive statistics of London monitoring stations

ID NO2 PM10

Mean Std. 25% 75% Mean Std. 25% 75%

1 29.13 0.03 16.01 39.39 18.63 11.39 11.40 23.00

2 38.80 0.39 22.21 52.14 20.53 18.58 12.49 24.86

3 50.47 0.22 30.01 67.12 22.70 14.24 13.34 28.47

4 39.13 0.33 23.62 51.64 19.64 10.88 12.65 23.93

5 23.72 0.01 11.98 31.72 18.74 12.51 11.28 22.55

6 45.73 0.25 28.35 60.18 39.30 28.06 19.32 51.94

7 41.50 0.00 25.03 55.29 19.03 12.54 10.83 23.60

8 28.82 1.16 15.51 38.14 17.34 10.64 10.33 21.61

9 20.94 0.01 8.70 28.91 17.89 12.05 10.60 22.20

10 22.40 0.10 9.25 30.49 17.28 11.56 9.70 21.30
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2.4 Data pre-processing

2.4.1 Spatial characteristics

As depicted in Fig. 2, there are two kinds of pre-processing

phases conducted in this study, i.e. block number 2 and

number 3. The primary purpose of the first pre-processing

phase is to find the pollutant correlations. The pollutant

correlation among monitoring stations is utilised to capture

the spatial characteristic of air contaminants. For each

pollutant, we identified which neighbouring stations have

the closest spatial relationship with the station under

investigation. In other words, we tried to take advantage of

the existing monitoring stations to fill the missing values in

the targeted monitoring station. Choosing different kinds of

air pollutants will vary the correlation coefficients. Thus,

the selected monitoring stations might also differ.

Let

St ¼

st1;1 st1;2 . . . st1;n
st2;1 st2;2 . . . st2;n

..

. ..
. . .

. ..
.

stm;1 stm;2 . . . stm;n

2

6
6
6
4

3

7
7
7
5
¼ ðsti;jÞ 2 Rm�n

be a matrix containing m rows of measurement data and n

different pollutants in monitoring station t, where t ranges

from 1 to 10. Therefore, we have a pollutant data collection

from all stations of S1, S2, S3,..., S10. In this case, each row

in matrix St is hourly measurement data. Then, we create a

matrix

J ¼

s11;p s21;p . . . s101;p
st2;p s22;p . . . s102;p

..

. ..
. . .

. ..
.

s1m;p s2m;p . . . s10m;p

2

6
6
6
6
4

3

7
7
7
7
5

as a collection of the same pollutant p taken from all

stations, where p is a single integer value chosen from 1 to

n. The value of p represents the selected column in St. In

this scenario, we assume that all monitoring station data in

the same city have the same column header. Then, we

computed the pairwise correlation of columns in J using

Eq. 1, excluding null/missing values. A graphical repre-

sentation of this process is presented in Fig. 3.

As shown in Fig. 3, we collect the same pollutant for

each monitoring station into a single data frame (or matrix)

to achieve this goal. For example, when we calculate the

Table 3 Descriptive statistics of

Delhi monitoring stations
ID NO2 PM2:5

Mean Std. 25% 75% Mean Std. 25% 75%

1 87.69 61.82 43.95 114.17 131.50 120.90 53.00 168.25

2 41.72 33.26 18.30 56.82 113.49 112.17 40.50 144.42

3 23.78 17.62 13.59 28.12 80.20 77.19 31.88 104.48

4 43.84 44.46 21.51 46.32 105.10 99.32 39.83 133.56

5 37.64 29.88 20.47 46.27 112.83 104.78 42.24 149.25

6 39.68 30.89 19.42 50.60 103.52 96.29 39.00 138.25

7 35.35 36.98 15.68 42.21 82.36 79.66 32.25 104.87

8 43.23 30.40 20.95 58.20 100.63 85.59 45.85 128.57

9 50.24 40.81 23.45 66.17 110.73 94.02 48.75 140.25

10 65.94 49.27 31.68 80.77 128.85 116.22 48.00 172.00

Table 4 Descriptive statistics of

Beijing monitoring stations
ID CO O3

Mean Std. 25% 75% Mean Std. 25% 75%

1 1264.45 1222.01 500 1500 56.45 58.16 8.00 82.00

2 1153.33 1105.00 500 1400 58.22 54.56 16.00 80.00

3 897.89 886.87 300 1100 68.87 54.19 31.00 91.00

4 1326.37 1176.91 600 1700 57.56 58.36 12.00 82.00

5 1265.01 1142.17 500 1600 56.05 57.80 7.00 82.00

6 1310.00 1181.11 600 1600 58.41 57.43 10.00 85.00

7 1013.71 878.00 400 1300 60.06 54.97 18.00 82.00

8 1312.83 1215.52 500 1600 59.07 58.86 10.00 85.00

9 1171.65 1121.10 400 1500 55.54 55.28 10.00 77.00

10 1287.12 1143.32 600 1600 56.44 59.53 8.00 82.00
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correlation of PM10 among stations in the London dataset,

we collected PM10 data from CT3, GN5, GR8, IS2, IS6,

LB5, LW4, SK6, TH001 and TH002 monitoring stations

into a single data frame. Only the targeted pollutant (i.e.

PM10) is selected, and other pollutants are ignored. Before

joining the data, we must ensure that targeted contaminants

from all monitoring stations have the same time frame. We

implemented these procedures using Python programming

with the help of pandas library [52].

Once target pollutants have been collected, the Pear-

son’s correlation calculation can be carried out using Eq. 1.

For each station, we then sorted the correlation coefficients

from the strongest to the weakest. The obtained coefficients

indicate how strong the correlation of the same pollutant

between two monitoring station is. Based on this result, the

number of monitoring stations involved as input of the

proposed model is evaluated. Based on the conducted

experiments, we decided to take three neighbouring sta-

tions along with the target station. Thus, the input sets of

our proposed model will have four columns. We will

explain the process of deciding the number of monitoring

sites in Sect. 3.3.

The second phase of the pre-processing blocks (i.e. the

block number 3 in Fig. 2) is dedicated to capturing the

temporal characteristic of the pollutants, conducting the

perturbation procedure and creating input sets suitable for

the proposed deep learning model.

2.4.2 Temporal characteristics

Besides involving spatial characteristics, this study also

tries to capture the temporal behaviour of the pollutant

data. The temporal behaviour describes the dependency

among pollutants at different times [53]. In this study, we

calculate the autocorrelation coefficient of the contaminant

under investigation using Pearson’s correlation. We com-

puted this correlation between the series of targeted pol-

lutants and its shifted self. Thus, instead of calculating the

correlation between two different time series, the auto-

correlation computes the relation between the same time

series at current and lagged times. Given time-series of

pollutant data at the target station

St ¼ ½st1; st2; st3; . . .; stn�1; s
t
n�, we can rewrite equation 1 to

find the lag-k autocorrelation function as:

rk ¼
Pn

i¼kþ1ððsti � ltÞðsti�k � ltÞÞ
Pn

i¼1ðsti � ltÞ2
ð2Þ

where rk denotes the autocorrelation function, k is lag, sti
and sti�k represent the i-th and lag-k samples of St, and

lt ¼ 1
n

PN
i¼1 s

t
i denote the mean values of time series St.

In this study, we use 8-hour as the length of pollutant

data. This length is obtained by computing the lag-k

autocorrelation. The value of k will determine the size of

input data. As discussed in Sect. 3.2.2, we determine

k ¼ 7. Please note that the value of time lag is started at 0

(or k ¼ 0). The value of k ¼ 7 means that we use 8 data in

total. In other words, to find a single prediction, we use

current and seven previous observed data as the input for

our proposed model. To conclude, by involving the pol-

lutant data from targeted and three other neighbouring

stations (i.e. spatial consideration) and including current

and seven previous data (temporal consideration), the final

input for the proposed deep learning model will have a size

of 8� 4.

2.4.3 Missing data and perturbation procedure

Another pre-processing step carried out in this study is to

handle the initial missing data in the original datasets.

Missing values occur both in the form of discontinuous and

consecutive missing patterns. As our proposed model is

trained in a supervised manner, we have to provide input-

target pairs. The model fits on the given training data

consisting of input and target sets. While deleting missing

data are a straightforward procedure, we avoid this method

as this method can break the data structure, and valuable

information may be lost. To minimise the defect of the

original data structure, we carefully picked the series of

data with a minimum period of one week (168 hours). As

our input sets are comprised of pollutant data from multipleFig. 3 The process of determining the correlation coefficient for

target pollutant
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monitoring stations, the minimum one-week selection is

applied only for the target station. We let the other station

periods comply with the target station period.

Figure 4 illustrates this idea. The shadowed areas indi-

cate the period of the observed pollutant without missing

values, whereas the white strips indicate the missing val-

ues. Based on the target station data, a minimum of 168

hours intervals without missing data were selected. The

same selection periods were also applied to the neigh-

bouring stations to maintain the consistency of the time

frame between monitoring stations. After completing these

steps, the target station will have no missing data. How-

ever, unlike the target station, there is a possibility that

missing values exist in the neighbouring station parts. To

overcome this issue, we filled the missing values with

zeros.

To train the proposed model, we need pairs of input and

target sets. Since the target station data contain no

unknown values, the actual targets for all input sets can be

provided. The perturbation procedure was carried out to

reflect the missing values phenomena and train the pro-

posed model. Some values in input sets were intentionally

removed, and all deleted values were filled with zeros. In

this scenario, the errors were generated in the correct

dataset to evaluate the performance of the proposed

imputation method [54]. Short-interval and long-interval

consecutive missing patterns were applied to the input sets

and let the model adjust its parameters to minimise the loss

function.

For the short-interval perturbation procedure, different

levels of missingness were applied to the input sets. Fol-

lowing the work conducted by Hadeed et al., four missing

rates (i.e. 20%, 40%, 60% and 80% of missing rates) were

set for the target station [25]. While the missing rate was

varied for the target station, a fixed missing rate was

applied to the neighbouring stations during the training and

testing phases of the proposed model. The missing rate of

20% was considered as an error probability for the neigh-

bouring stations [54]. Due to the initial zero imputation

illustrated in Fig. 4, the neighbouring stations will have

more than a 20% missing rate after the perturbation

procedure.

For the long-interval perturbation procedure, a maxi-

mum of 500 hours of consecutive values was removed

from some parts of the correct dataset. The successive

missing periods were varied between 100 and 500 hours.

This procedure was implemented only to the target station,

and we let the neighbouring stations follow the short-in-

terval process described previously. Figure 5 illustrates

input set perturbation patterns for the input sets. It can be

seen that both short- and long-interval missing patterns

were generated only for the data in the target station, and a

minimum of 20% missing rates was applied to all neigh-

bouring stations.

2.4.4 Model input construction

Input sets resulting from the perturbation process are ready

to be normalised. Once the normalisation step is com-

pleted, the model input construction can be performed. The

current missing value is predicted using the current initial

imputation (i.e. we filled the current missing value with

zero) along with the last 7 hours data. As illustrated in

Fig. 6, the dataset contains air pollutant data over a sample

row from t ¼ 1; . . .; T , and the rolling window size is

m. The input sets for the model are obtained by shifting the

pre-processed dataset. We take 8 hours of data and shift the

features by one hour to get the next input set. This process

is similar to the rolling-window scheme. In our case, the

Fig. 4 Implemented method to handle the initial missing data in the

original datasets. A minimum of 168 hours of observed data without

missing values is carefully selected Fig. 5 Illustration of perturbation patterns applied to the dataset
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increment between successive rolling windows is one

period.

The proposed model acts as a denoising tool as the

missing values are intentionally generated from the com-

plete dataset, and the given target is the complete dataset

itself. Thus, our proposed model can be called a denoising

autoencoder [31]. Given the noisy inputs, the autoencoder

model will reconstruct these inputs. Based on this concept,

the imputation of missing values that exist in the given data

is performed.

2.5 Proposed model

2.5.1 Convolutional autoencoder architecture

In this study, a convolutional autoencoder model is pro-

posed to learn the missing patterns from the given cor-

rupted input sets and the provided actual sets. The proposed

model architecture is shown in Fig. 7. The autoencoder

model accepts the collection of input sets in the form of

8� 4 matrices. The individual input comprises four col-

umns of pollutant data, a group of hourly targeted pollutant

concentrations from four monitoring stations, and eight

rows that indicate 8-hour of observed data. We purposely

corrupted the input sets by deleting the actual values and

filling them with zeros to train the model. The input col-

umns represent spatial behaviour, and the rows capture

temporal characteristics of air pollution features.

The autoencoder contains encoder and decoder parts,

and both sections are based on one-dimensional convolu-

tion layers. The encoder is made up of convolution layers,

while the decoder consists of transposed convolution lay-

ers. The proposed model receives only eight values as the

feature’s length, so we need to utilise a small kernel to

obtain more detailed input features. In this case, the kernel

size equal to two is applied to all layers. The kernel’s size

specifies the 1D convolution window operated in each

layer, and it is used to extract the essential input features.

In this model, no padding is implemented in each layer.

As illustrated in Fig. 7, the size of layers in the proposed

model changes, both in height and width. The width of the

following layers is controlled by the number of filters used

in the previous layer. After various experiments, we

determined the number of filters used in the proposed

model, as presented in Table 5. The encoder has different

output filters, from 80 in the first layer to 10 in the fifth

layer. From the latent space, the number of the filter is

expanded from 20 in the sixth layer to 80 in the ninth layer.

Finally, we set the final layer with 8 output filters to get the

equal size of reconstructed inputs (i.e. 8� 4 matrices).

2.5.2 Model configuration and training

The proposed autoencoder model was built using Tensor-

flow CPU version [55] and written in Python. Some pow-

erful Python libraries were also utilised, such as

Keras [56], pandas [52], NumPy [57], scikit-learn[58],

Matplotlib [59] and seaborn [60]. In this work, we used a

local machine powered by Intel� CoreTM i7-8565U CPU (4

core(s), @1.80GHz), 8 GB installed RAM and Windows

10 as the operating system.

After creating the model architecture, we configured the

model for training. We selected Adam [61] as the optimiser

with a learning rate of 0.001. The program computed the

mean squared error (MSE) values between the given target

and prediction during training. MSE was the selected loss

Fig. 6 Extracting input sets from the preprocessed dataset

Fig. 7 The proposed convolutional autoencoder model architecture
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function to optimise the model during training and the

metric to judge the model’s performance. About 75% of

data were used as training sets and the remaining data as

testing sets. We used 32 as the batch size (i.e. number of

samples per gradient update) and implemented an early

stopping method to finish the training. The training process

is terminated when there is no loss score improvement in

three consecutive iterations.

Figure 8 illustrates the training process of the denoising

autoencoder. Define the encoder function fhð�Þ parame-

terised by h ¼ fW; bg, and decoder function g/ð�Þ
parameterised by / ¼ fW0; b0g, where W, W0, b and b0

represent the weight and bias of the encoder and decoder,

respectively. Thus, we define the encoder function as h ¼
fhðxÞ and the decoder function as r ¼ g/ðhÞ, where x is the

input, h is the code representation learning, and r is the

reconstructed input. The perfect condition for model

learning is to set g/ðfhðxÞÞ ¼ x. However, the model can-

not learn perfectly but instead tries to minimise the error

between the actual input and the reconstructed input [62].

Then, for each training set xðiÞ, the parameters h and / are

optimised to minimise the average reconstruction

error [31]:

h�;/� ¼ argmin
h;/

1

n

Xn

i¼1

LðxðiÞ; g/ðfhðxðiÞÞÞÞ ð3Þ

where L is the model loss function. The typical loss func-

tion is squared error Lðx; rÞ ¼ kx� rk2. For the denoising

autoencoder, instead of x, we define ex as the noisy input of

x [62]. Thus, the loss function of the denoising autoencoder

is rewritten as:

Lðh;/Þ ¼ 1

n

Xn

i¼1

ðxðiÞ � g/ðfhðexðiÞÞÞÞ2 ð4Þ

2.5.3 Post-training outputs interpretation

The test sets are fed to the model after the training process

has been completed. The model accepts 8� 4 input sets

and yields outputs of the same size. As the trained values

are scaled into [0,1], the output values must be transformed

back to their original values.

After we undo the scaling of model output, we deter-

mined the single prediction for each hour. As illustrated in

Fig. 9, the autoencoder produces overlapping outputs for a

certain period of prediction. We aggregated the values by

calculating the means of all overlapped output sets to give

a single point estimate. As the targeted results are located

in model outputs’ first columns (target station), we can

calculate the means only for the first columns of the output

sets. These processes are systematically presented in

Algorithm 1 in Appendix A.

2.6 Model evaluation metrics

There are several methods usually used to evaluate the

model performance. In this study, root mean square error

(RMSE) and mean absolute error (MAE) are used, follow-

ing work done by [63]. Another broadly used method to

evaluate model performance in machine learning studies is

Table 5 Layer properties of the

proposed autoencoder model
No. Type Filter Kernel Stride Activation Padding Output

0 Input Layer – – – – – (8,4)

1 1D Convolution 80 2 1 ReLU No (7,80)

2 1D Convolution 50 2 1 ReLU No (6,70)

3 1D Convolution 30 2 1 ReLU No (5,50)

4 1D Convolution 20 2 1 ReLU No (4,30)

5 1D Convolution 10 2 1 ReLU No (3,10)

6 1D Transposed conv. 20 2 1 ReLU No (4,30)

7 1D Transposed conv. 30 2 1 ReLU No (5,50)

8 1D Transposed conv. 50 2 1 ReLU No (6,70)

9 1D Transposed conv. 80 2 1 ReLU No (7,80)

10 1D Transposed conv. 4 2 1 ReLU No (8,4)

Fig. 8 A denoising convolutional autoencoder workflow
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the coefficient of determination (R2 or R-squared). Chicco

et al. [64] suggested implementing R2 for regression task

evaluation as this method is more informative to qualify the

regression results. However, the limitation of R2 arises

when the calculated score is negative. In this case, the

model performance can be arbitrarily worse, but it is

impossible to recognise how bad a machine learning model

performed [65].

Following work conducted by Ma et al. [19], we

implemented a rate of improvement on RMSE (RIR) to

measure the performance of our methods in comparison

with the existing imputation techniques. The RIR is cal-

culated using the following equation:

RIRA;B ¼ RMSEA � RMSEB

RMSEA
� 100% ð5Þ

where RMSEA denotes the RMSE value of the bench-

marked method and RMSEB is the RMSE value of our

proposed method.

In addition to RMSE, MAE, R2 and RIR, in this study,

visual comparisons of actual and imputed data in the forms

of line, bar or box plots were also presented to describe the

model performance more intuitively.

3 Results and discussion

3.1 Distribution of missing periods

As we develop the proposed model for both short-interval

and long-interval consecutive missing patterns, it is

essential to know the nature of the lost patterns. We

counted the duration of all missing patterns in the original

dataset, with results shown in Fig. 10. The figure visualises

the distribution of missing data durations using continuous

probability density curves. The graphs give us an under-

standing of how the missing data durations are distributed.

As shown in Fig. 10, we can conclude that most missing

durations in the London dataset are less than 400 hours.

The Delhi and Beijing datasets exhibit shorter missing

durations of less than 200 hours. If we observe the peak of

the probability density curve in all datasets, the highest

points commonly occur within 100 hours. We can conclude

that the missing data in all datasets are occupied mainly by

short-interval missing patterns whose periods are less than

approximately one week.

3.2 Evaluation of temporal characteristics

3.2.1 Autocorrelation coefficients of pollutant data

The temporal relationship is evaluated to determine the

length of the input series to be fed to the model. Temporal

behaviours for each monitoring station are assessed based

on obtained Pearson’s autocorrelation coefficient between

the series. We computed the correlation coefficient

Fig. 9 Interpretation of model outputs

Fig. 10 Probability density function of missing data in all stations
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between the actual time series data and their shifted lag-k

hour data. The variable k is an integer number that varies

between 1 and 11. For instance, the value of k ¼ 1 means

that the actual time-series data are shifted 1 hour

backwards.

The autocorrelation coefficients for each city and pol-

lutant are reported in Fig. 11. For k� 11 hours, the auto-

correlation coefficients can vary between 1 (i.e. at k ¼ 0)

and 0. For the London dataset, all monitoring stations

measuring NO2 pollutants have similar autocorrelation

coefficient slopes ranging from 1 to about 0.2. Monitoring

station S1 has the flattest slope, which indicates that S1 has

the strongest relationship among the lagged hours of NO2

pollutants compared to other stations. For PM10 in the same

air quality dataset, the stations S2, S3 and S6 autocorrelation

coefficients plunge to about 0.2 in the first six lagged hours,

whereas other stations coefficients remained above 0.5.

Among these, S2 seems to have the weakest temporal

dependency.

For the Delhi air quality dataset, the PM2:5 autocorre-

lation coefficient slopes are relatively flattered for the same

pollutant, ending between 0.55 and 0.65 at k ¼ 11. Auto-

correlation coefficients for NO2 between monitoring sta-

tions in Delhi degrade more diversely, especially from

k ¼ 3 to k ¼ 11. Station S1 and S8 have exceptional slopes,

which the coefficients tend to increase after k ¼ 7. Less

varied autocorrelation coefficient slopes are shown in

Beijing dataset for both CO and O3 data. However, O3

pollutant coefficients decrease more rapidly compared to

CO coefficients.

3.2.2 Temporal window size determination

We determine the number of pollutants (i.e. the length of

the input set) for the autoencoder model based on the

obtained coefficients shown in Fig. 11. A simple model is

introduced as a base model. The base model is used to

evaluate the temporal and spatial dependencies. Temporal

evaluation determines the number of input set rows,

whereas spatial evaluation defines the number of input

columns. Some other model architectures are then derived

from the base model until we finally decided to use the

model whose properties are presented in Fig. 7 and

Table 5.

Figure 12 shows the proposed base model. The model is

based on autoencoder architecture, similar to the final

model but has shallower hidden layers. For simplicity, the

base architecture model in this study is written as

L140� L230� L320� L430� L540� L6x. The inte-

ger value of x depends on the intended number of output

columns. For the temporal evaluation, we set x ¼ 4, which

means that we use the target station together with three

other neighbouring stations. The term L140 means that the

first layer has 40 output filters. The L140 layer yields 40

columns placed in the second layer, as indicated in Fig. 12.

The sixth layer (i.e. L6x, where x ¼ 4) has four output fil-

ters and forms n� 4 output sets, where n depends on the

input length, kernel and filter size. We set kernel size equal

to 2 and stride equal to 1 for all layers. In addition, no

padding is applied for all layers.

In this experiment, 60% of the total observation are used

as training sets, applied for each station and pollutant. In

addition to training data, the test data are selected based on

Fig. 11 Temporal characteristics of air quality datasets based on their

autocorrelation coefficients

Fig. 12 The proposed base model for temporal and spatial charac-

teristic evaluations
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an unbroken time-series segment with a minimum of 400

hours of consecutive observed values. The target station is

corrupted with a missing rate of 40%, whereas the neigh-

bouring data are lightly corrupted with a missing rate of

20%. To obtain less biased results, we implemented five-

fold cross-validation in the dataset. An example of tem-

poral data evaluation is demonstrated in Table 6. Table 6

shows the results obtained from the London dataset for

NO2 as the target pollutant.

As shown in Table 6, most of the least values on the

average RMSE are obtained from the input sets with lag-7

hours, indicated as bold texts. The lag-7 hours means that

the model accepts eight temporal data as the number of

rows (input length). Setting the number of k ¼ 7, however,

does not improve the RMSE values significantly. For

example, the obtained RMSE at S5 equals 6.28 lg=m3 at

k ¼ 7, improving the RMSE to only about 4% from the

worst result (at k ¼ 10). In general, increasing the number

of temporal data does not improve the model performance

as the temporal correlations of measurement values are

weaker. Weak temporal correlations contribute less

essential features for the autoencoder model. To sum up,

we settled on a window size of 8-time steps for our model.

3.3 Evaluation of spatial characteristics

3.3.1 Correlation coefficients of pollutant data

While autocorrelation defines the temporal relations,

Pearson’s correlation among stations determines spatial

characteristics. Unlike the autocorrelation coefficient that

calculates the correlation between the actual and its shifted

self, Pearson’s correlation coefficients for spatial evalua-

tion are computed between two stations. Pairs of moni-

toring stations are created based on the city and pollutant,

and the correlation coefficients are assessed between all the

pairs. No lagged time is applied for each monitoring station

data as we did in the temporal evaluation.

For example, we report the obtained correlation coeffi-

cients for NO2 and PM10 in London air quality data in

Tables 7 and 8, respectively. The same procedure men-

tioned below was also implemented for Delhi and Beijing

datasets. The correlation coefficients reflect the linear

relationship between station pairs and can be calculated

using Eq. 1. As reported in Table 7, the correlation coef-

ficients among monitoring stations measuring NO2 fall

between 0.49 and 1.00. The paired stations such as S1 � S9,

S4 � S6, S8 � S9 and S5 � S10 have strong correlations for

pollutant NO2. In contrast, the paired stations S3 � S5, S3 �
S7 and S3 � S10 have weaker correlations. The correlation

coefficients between the paired stations measuring PM10 as

presented in Table 8 are more diverse, ranging from 0.27 to

1.00. In all datasets, no negative coefficient was found.

We carefully selected the three neighbouring stations

with the strongest correlation coefficients to the target

station. Sorting from largest to smallest coefficients, we

report the selected neighbouring stations for NO2 and PM10

in Table 9.

3.3.2 Selecting the number of neighbouring stations

This section discusses the procedure for selecting the

number of neighbouring stations involved to form the input

sets for the autoencoder model. In this study, spatial

evaluation determines the number of involved neighbour-

ing stations. Varying the number of neighbouring stations

affects the model input width (i.e. the number of columns).

The columns of the input set consist of the target station

data plus the neighbouring station data. As shown in

Fig. 12, the width of the input set is evaluated from 3 to 6

monitoring stations. We also demonstrate the results of

neighbourhood selection in Delhi and selected PM2:5 as the

Table 6 The average of RMSE
and standard deviation values

after fivefold cross-validation

for NO2 of the London dataset

Test period Lag-k

Start End 7 8 9 10

S1 2020-12-02 2020-12-31 8.56(0.35) 8.93(0.43) 8.71(0.27) 8.87(0.28)

S2 2021-01-12 2021-01-31 14.98(0.25) 15.07(0.34) 14.25(0.43) 14.26(0.64)

S3 2020-12-07 2021-01-26 15.86(0.6) 16.92(0.88) 16.26(0.39) 16.43(0.88)

S4 2021-01-12 2021-01-31 12.96(0.57) 12.86(0.37) 13.17(0.4) 13.02(0.35)

S5 2021-01-12 2021-01-30 6.28(0.19) 6.42(0.39) 6.31(0.34) 6.56(0.11)

S6 2020-12-07 2021-01-06 9.31(0.15) 9.58(0.17) 9.19(0.24) 9.39(0.19)

S7 2021-01-11 2021-01-31 16.29(0.2) 16.32(0.72) 16.23(0.25) 16.11(0.31)

S8 2021-01-08 2021-01-25 8.81(0.46) 8.62(0.29) 9.02(0.51) 8.85(0.24)

S9 2020-12-30 2021-01-31 7.43(0.19) 7.70(0.17) 7.74(0.19) 7.45(0.23)

S10 2020-10-29 2021-01-31 7.38(0.14) 7.54(0.23) 7.39(0.07) 7.4(0.14)

The best results are indicated in bold
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target pollutant. Fivefold cross-validation is also imple-

mented in this step. We maintain the 8 step time window as

determined in Sect. 3.2.2. Thus, we keep this result and

adjust only the number of input columns. Table 10 shows

the effect of involving different numbers of neighbouring

stations on the final predictions.

Table 7 Coefficient of

correlation for NO2 in the

London air quality data

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.77 1.00

S3 0.63 0.83 1.00

S4 0.73 0.78 0.82 1.00

S5 0.81 0.73 0.57 0.79 1.00

S6 0.78 0.79 0.79 0.84 0.71 1.00

S7 0.72 0.62 0.49 0.60 0.61 0.70 1.00

S8 0.84 0.67 0.50 0.68 0.84 0.74 0.75 1.00

S9 0.85 0.76 0.54 0.66 0.84 0.71 0.74 0.88 1.00

S10 0.80 0.68 0.49 0.69 0.88 0.66 0.66 0.85 0.85 1.00

Table 8 Coefficient of

correlation for PM10 in the

London air quality data

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.47 1.00

S3 0.57 0.46 1.00

S4 0.76 0.53 0.69 1.00

S5 0.70 0.47 0.55 0.82 1.00

S6 0.35 0.27 0.52 0.45 0.31 1.00

S7 0.75 0.48 0.55 0.76 0.69 0.33 1.00

S8 0.81 0.50 0.60 0.86 0.78 0.34 0.81 1.00

S9 0.77 0.53 0.58 0.82 0.75 0.36 0.80 0.85 1.00

S10 0.77 0.64 0.57 0.83 0.76 0.35 0.77 0.85 0.83 1.00

Table 9 The strongest

correlation coefficient for

neighbouring stations selection

in London air quality data

Target station Strongest corr. coeff. (NO2) Strongest corr. coeff. (PM10)

1st 2nd 3rd 1st 2nd 3rd

S1 S9 S8 S5 S8 S9 S10

S2 S3 S6 S4 S10 S9 S4

S3 S2 S4 S6 S4 S8 S9

S4 S6 S3 S5 S8 S10 S5

S5 S10 S9 S8 S4 S8 S10

S6 S4 S3 S2 S3 S4 S9

S7 S8 S9 S1 S8 S9 S10

S8 S9 S10 S1 S4 S10 S9

S9 S8 S1 S10 S8 S10 S4

S10 S5 S9 S8 S8 S4 S9
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Using three neighbouring stations along with the target

station may improve the performance significantly. For

example, the obtained average RMSE at S1 equals 56.67

lg=m3, improving the RMSE to about 3.8 lg=m3 from the

most degraded results (i.e. five neighbouring stations). In

S3, five neighbouring produces slightly better average

RMSE than others. However, adding further neighbours

does not improve performance and increases computation

load. It can also be inferred that increasing the number of

columns does not help the model learn the input sets’

essential features. Similarly, decreasing the number of

neighbours to two degrades performance. Thus, we use

three neighbouring stations along with the target station in

our model.

3.4 Model architecture evaluation

This section verifies the final model architecture proposed

in this study. From the based model, some other alternative

autoencoder architectures are derived. The proposed

models are created by expanding the base model layers and

adjusting the number of output filters. Kernel and stride are

maintained to have the exact properties with the base

model. Moreover, no padding is applied to all proposed

models.

This section demonstrated the results obtained from air

quality data in Beijing by selecting CO as the target pol-

lutant. As presented in Table 11, we provided six different

autoencoder architectures, labelled as M1, M2, ..., M6. We

set kernel size equal to 2, stride equal to 1, and no padding

is applied for all layers. The base model used to determine

the spatiotemporal characteristics is identified as M1. This

experiment applies 40% and 20% missing rates for target

and neighbouring stations, respectively. Fivefold cross-

validation is also performed. Based on the spatiotemporal

evaluation, the input sets are fixed in the model selection

step to have a size of 8� 4.

Based on the final prediction results obtained from each

model, M6 yields the most accurate imputation results, as

shown in Table 12. Out of 10 monitoring stations, M6

yields the best prediction in six stations. For example, M6

predicts the missing data for S8 with an RMSE value of

240.88 lg=m3. It is about 30% better than the base model

performance, which yields an RMSE value of 346.45

lg=m3. In this study, deeper model architectures give

better predictions. In most cases, the ten-layered models

outperformed the six and eight-layered models. We avoid

using deeper architecture as the length of latent space

(code) will be very small.

3.5 Imputation performance

This study divides imputation performance into two cate-

gories: short-interval with missing rate variations and long-

interval consecutive missing data. In this section, we can-

not discuss imputations for all stations. However, we try to

highlight the essential issues related to our proposed

imputation method.

3.5.1 Short-interval imputation

This study defines the term ‘‘short-interval’’ as a missing

period generated by removing some values in the actual

data with a specific missing rate. The initial random state

will determine which values are removed from the actual

data. It can be set during the programming set. We inten-

tionally deleted the actual data with four different missing

rates (i.e. 20%, 40%, 60% and 80%). Figure 13 shows the

example of a test set missing pattern variation at station S3

in the London dataset. As we can see from the figure, there

Table 10 The average of RMSE
(std. deviation) after fivefold

cross-validation for selecting

the number of involved

neighbouring stations

Test period Number of neighbouring stations

Start End 2 3 4 5

S1 2019-11-03 2019-11-19 59.05(1.23) 56.67(2.52) 59.38(1.09) 60.49(0.83)

S2 2020-03-28 2020-04-19 11.84(0.79) 11.45(0.24) 12.07(1.35) 12.51(1.52)

S3 2020-05-31 2020-06-29 15.19(0.17) 14.98(0.30) 14.87(0.39) 14.80(0.18)

S4 2020-03-07 2020-04-03 18.67(0.71) 18.50(1.01) 21.20(0.48) 20.68(0.36)

S5 2020-04-11 2020-04-29 19.13(0.36) 17.82(0.43) 18.43(0.75) 18.01(0.31)

S6 2020-03-23 2020-05-14 21.41(1.20) 21.74(1.05) 21.25(0.83) 21.09(0.71)

S7 2020-04-22 2020-05-28 21.78(0.57) 21.47(0.53) 21.51(0.58) 21.57(0.78)

S8 2019-03-16 2019-04-03 45.06(1.66) 42.80(0.82) 48.56(3.10) 50.32(2.03)

S9 2019-05-23 2019-06-13 25.49(2.57) 25.68(1.67) 26.23(3.07) 25.42(1.00)

S10 2020-03-29 2020-05-06 15.35(0.49) 15.24(0.83) 15.27(0.63) 14.60(0.46)

The best results are indicated in bold
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are 648 hourly samples of NO2, collected from 20-Feb-

2020 13:00:00 to 20-Mar-2020 00:00:00. The white stripes

indicate the missing values, which we fill with zero. While

the missing rate at the target station is varied, the missing

rate at neighbouring stations is fixed at a level of 20%.

Table 13 shows the selected monitoring stations as

representatives of short-interval imputation. As presented

in the table, we selected two monitoring stations for each

city and covered all pollutants in each dataset. Thus, there

are 12 experiments in total. Table 14 shows the imputation

results in correspondence to the experiment numbers pre-

sented in Table 13. The imputation performances are

evaluated using three different error metrics, i.e. RMSE,

MAE and R2.

Among other monitoring stations, our method is less

effective in imputing the missing values of NO2 pollutants

in Delhi. In this section, let us exclude the discussion of

model performance for NO2 pollutants in Delhi, as it will

be discussed separately in Sect. 3.6. In general, lower

missingness levels yield lower RMSE/MAE values and

higher R2 scores. Due to the physical nature of each pol-

lutant, the RMSE/MAE values may significantly vary. For

example, the values of RMSE/MAE are considerably higher

than PM10. Thus, the R2 score is introduced to see the

performance more intuitively. As shown in Table 14, a

20% missing rate results in R2 scores higher than 0.8 at all

target stations, ranging from 0.80 to 0.95. Our proposed

Table 11 Proposed autoencoder

architectures
Assigned output filters

M1 L140� L230� L320� L430� L540� L64

M2 L150� L240� L330� L420� L530� L640� L750� L84

M3 L150� L240� L330� L420� L510� L620� L730� L840� L950� L104

M4 L180� L270� L350� L430� L510� L630� L750� L870� L980� L104

M5 L175� L260� L345� L430� L515� L630� L745� L860� L975� L104

M6 L180� L250� L330� L420� L510� L620� L730� L850� L980� L104

Table 12 The average RMSE
for deep autoencoder

architecture selection

Test period Autoencoder model

Start End M1 M2 M3 M4 M5 M6

S1 2016-06-14 2016-07-26 207.27 210.33 189.25 191.37 189.56 183.95

S2 2016-09-13 2016-10-19 432.21 431.53 435.73 420.39 437.41 435.33

S3 2016-08-10 2016-09-06 204.86 205.77 191.46 201.56 202.59 199.66

S4 2016-10-18 2016-11-25 395.77 388.99 363.43 369.30 372.26 373.27

S5 2016-08-02 2016-08-29 312.01 305.28 311.99 309.76 298.78 279.61

S6 2016-06-14 2016-07-26 207.27 210.33 189.25 191.37 189.56 183.95

S7 2016-08-04 2016-08-25 216.54 213.53 204.10 199.69 203.75 189.93

S8 2016-10-15 2016-11-08 346.45 329.10 248.19 246.75 241.69 240.88

S9 2016-10-09 2016-10-26 349.76 338.14 287.25 315.04 312.94 302.92

S10 2016-06-25 2016-07-27 187.51 180.91 164.21 171.75 169.32 162.83

The best results are indicated in bold

Fig. 13 Short-interval missing patterns in the test set obtained from

station S3 of London dataset
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method yields satisfying results at this level of missingness.

At 40% and 60% of missing levels, our proposed model

can maintain its performance by giving R2 scores between

0.72 and 0.94. At the level of 80%, more errors of impu-

tation decrease the R2 scores from 0.64 in experiment no. 1

to 0.93 in experiment no.2. For the selected test period,

predicting the missing values of PM2:5 at S2 in Delhi (i.e.

experiment no. 6) gives the best imputation with R2 scores

higher than 0.9 at all levels of missingness.

With the help of existing neighbouring stations, though

prediction errors are inevitable, the proposed autoencoder

can learn the input feature and fill the missing values

effectively. Even when the target station data are severely

corrupted, the proposed model and method can achieve the

desired results, as shown in most monitoring stations in

Table 14. To sum up, we conclude that our method can

produce satisfactory accuracies for short-interval of miss-

ing imputation.

3.5.2 Long-interval consecutive imputation

Unlike the short-interval method that generates missing

values based on a specific random state, the long-interval

consecutive process removes all data at the target station

for a specific period. To this end, we set the 400 hours as a

minimum missing period. Figure 14 shows a test set pat-

tern of long-interval missing values applied to S8 (Non-

gzhanguan) of the Beijing dataset. The set consists of 514

Table 13 Properties of short-

interval imputation experiment
No. City Station Pollutant Train period Test period

Start End Start End

1 London S3 NO2 2018-01-01 2019-10-21 2020-02-20 2020-03-20

2 London S3 PM10 2018-01-01 2019-11-18 2020-03-23 2020-04-20

3 London S7 NO2 2018-01-01 2019-09-29 2020-09-23 2020-10-13

4 London S7 PM10 2018-01-01 2019-11-23 2020-11-03 2020-12-01

5 Delhi S2 NO2 2018-02-05 2019-07-25 2020-05-31 2020-07-01

6 Delhi S2 PM2:5 2018-02-03 2019-07-17 2019-08-28 2019-10-27

7 Delhi S7 NO2 2018-02-05 2019-07-10 2019-11-21 2019-12-14

8 Delhi S7 PM2:5 2018-02-05 2019-07-16 2020-02-10 2020-04-22

9 Beijing S1 CO 2013-03-03 2015-08-28 2016-11-11 2016-12-27

10 Beijing S1 O3 2013-03-03 2015-08-04 2016-12-10 2016-12-27

11 Beijing S6 CO 2013-01-03 2015-09-13 2016-06-14 2016-07-26

12 Beijing S6 O3 2013-01-03 2015-08-16 2016-06-14 2016-07-26

Table 14 Performance metrics of short-interval imputation for all experiments described in Table 13

Missing rate Err. metrics Experiment no.

1 2 3 4 5 6 7 8 9 10 11 12

20% RMSE 7.83 5.92 5.24 5.57 7.32 15.49 38.72 16.71 471.88 8.91 92.25 15.17

MAE 5.99 3.97 3.87 3.90 4.07 9.14 22.94 10.81 296.36 3.93 71.97 10.78

R2 0.85 0.81 0.89 0.83 0.44 0.95 0.80 0.85 0.93 0.81 0.89 0.95

40% RMSE 8.51 6.09 5.33 8.63 6.49 16.53 50.26 17.75 559.37 7.56 98.87 18.06

MAE 6.62 4.08 4.05 4.69 4.11 9.36 28.63 11.10 354.90 3.85 77.51 13.13

R2 0.81 0.79 0.88 0.79 0.52 0.94 0.72 0.83 0.91 0.86 0.88 0.93

60% RMSE 10.24 6.93 6.37 8.64 8.14 16.29 69.85 17.85 663.89 7.61 124.59 22.18

MAE 7.74 4.67 4.99 5.17 4.68 9.55 40.04 11.42 421.72 4.19 93.15 16.66

R2 0.74 0.73 0.83 0.80 0.39 0.94 0.49 0.84 0.88 0.85 0.81 0.90

80% RMSE 12.05 7.85 8.19 10.89 8.20 16.42 76.93 18.84 778.34 7.95 149.01 26.59

MAE 9.21 5.53 6.47 5.77 4.78 9.98 45.75 12.31 514.88 4.76 111.02 20.43

R2 0.64 0.65 0.72 0.75 0.39 0.93 0.31 0.83 0.83 0.84 0.73 0.86
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hourly samples, taken from 23-Sep-2016 05:00:00 to

14-Oct-2016 14:00:00. As we can see from the figure, the

values at the target set are entirely missing and filled with

zeros. A 20% of missingness level is applied to all neigh-

bouring stations. As no values can be obtained from the

target station, the autoencoder predicts the missing values

entirely based on the existing adjacent data.

There are six experiments conducted to represent long-

interval consecutive imputation scenarios, as shown in

Table 15. We select one station in each city, and each

station covers all pollutant types. Station S5, S6 and S8

represent the London, Delhi and Beijing datasets, respec-

tively. Table 15 also shows the error metrics as the results

of the long-interval imputation for specific missing periods.

For a minimum of 400 hours (about 17 days) of missing

data, our model can impute the missing values with very

satisfying results, with some of them yield R2 scores of

0.90 and higher. However, among the experiments, the S6

station of Delhi measuring NO2 produces the lowest R2

score. The same results are shown in the short-interval

imputation, where predicting NO2 in Delhi consistently

yielded the lowest performance. We observed that stations

with low correlation coefficients might affect the imputa-

tion performance. We will discuss this issue separately in

Sect. 3.6.

Figure 15 shows the plots between actual and imputed

values for the experiments presented in Table 15. Fol-

lowing work done by [66, 67], the plots also show the 95%

confidence interval. In this study, the interval is obtained

by adding and subtracting two times of RMSE from the

imputed values. Implementing the RMSE value to form the

confidence interval gives a better summary than standard

deviation and can be directly helpful in assessing the

uncertainty of the imputed values [65]. From Figure 15, we

can observe that the imputed values can track the dynamics

of actual values. The current neighbour values can help the

autoencoder model recognise the missing values at the

target station effectively. We are confident that only 5% of

imputed values fall outside the shaded interval areas.

3.6 Effect of correlation level

We observed the possibility of coefficient correlation levels

among paired stations affecting the performance of our

proposed method. We now focus on stations measuring

NO2 in Delhi, which contribute to poor estimations for both

short- and long-interval imputations. The Delhi dataset’s

coefficient correlations of NO2 and PM10 are shown in

Tables 16 and 17. The minimum coefficient for NO2 is

0.01, which is obtained from the pair of S3 � S6. The

correlation between S3 and S10 even contributes a negative

value. Excluding the pair between stations themself, the

maximum coefficient correlation of NO2 is only 0.65,

calculated from S2 � S6. In the same city, monitoring sta-

tions measuring PM10 yield much stronger correlation

coefficients. Computed from the pairs of S3 � S8 and

S3 � S10, the minimum coefficient is 0.67, whereas the pair

of S1 � S2 contributes the maximum coefficient of 0.90.

Very low coefficient correlation among stations results

in highly biased imputation values. We studied these

phenomena after conducting various experiments, some of

which are shown in Fig. 16. The figure depicts the scatter

plots between the actual and imputed NO2 and PM2:5 at S
5

of the Delhi dataset. The experiments are set for a short-

interval missing scenario with 20% and 40% missing rates.

For NO2, the test period started on 06-Apr-2020 at

04:00:00 and ended on 29-Apr-2020 at 23:00:00. The

period from 22-Feb-2020 at 19:00:00 to 11-Mar-2020 at

14:00:00 is selected for PM2:5. As shown in the figure, the

imputation results of the two pollutants are considerably

different, even the experiments are conducted at the same

monitoring station. While the PM2:5 imputation results are

relatively close to the diagonal line, the missing estima-

tions for NO2 are more scattered.

Station S5 and three neighbouring stations (S7, S8, and

S2) form the input set of NO2 pollutants. The S5� S7,

S5� S8 and S5� S7 pairs have correlation coefficients of

0.38, 0.37 and 0.35, respectively. These values are low

correlations. For PM2:5 pollutants, the input sets are formed

by the joint stations S5, S2, S10 and S1. The computed

correlation coefficients for S5 � S2, S5 � S10 and S5 � S1

are 0.90, 0.88 and 0.86, respectively. These coefficients are

much stronger. Low correlations affect the input values by

causing the sets to look more randomised. This results in

neighbouring station data that does not contribute enough

knowledge to the model. Figure 17 illustrates this issue

more intuitively. The figure shows the first input set fed to

the model with 40% missing rate for both NO2 and PM2:5.

As we can see from the figure, the reconstructed input of

NO2 is less accurate than the reconstructed input of PM2:5.

It is obvious that the effect of weak correlation causes a
Fig. 14 Long-interval missing patterns in the test set obtained from

station S8 of Beijing dataset
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Table 15 Results of long-

interval consecutive imputation
No. City Station Pollutant Start End RMSE MAE R2

1 London S5 NO2 2021-01-12 2021-01-30 5.840 4.371 0.845

2 London S5 PM10 2020-11-10 2020-12-27 3.57 2.29 0.79

3 Delhi S6 NO2 2020-05-14 2020-06-12 12.16 8.56 0.47

4 Delhi S6 PM2:5 2019-09-29 2019-11-20 49.99 31.44 0.90

5 Beijing S8 CO 2016-03-25 2016-04-20 132.91 96.81 0.95

6 Beijing S8 O3 2016-09-23 2016-10-14 13.91 8.29 0.92

Fig. 15 Plot of long-interval

missing imputation between

actual and imputed values along

with 95% confidence intervals.

The properties of each figure are

shown in Table 15
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Table 16 Coefficient of

correlation among stations

measuring NO2 in Delhi air

quality data

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.41 1.00

S3 0.04 0.07 1.00

S4 0.14 0.32 - 0.03 1.00

S5 0.24 0.35 0.13 0.16 1.00

S6 0.35 0.65 0.01 0.27 0.30 1.00

S7 0.12 0.26 0.05 0.29 0.38 0.24 1.00

S8 0.50 0.58 0.06 0.33 0.37 0.55 0.26 1.00

S9 0.32 0.21 0.09 0.00 0.02 0.22 0.07 0.29 1.00

S10 0.33 0.49 - 0.24 0.34 0.27 0.55 0.30 0.48 0.12 1.00

Table 17 Coefficient of

correlation among stations

measuring PM2:5 in Delhi air

quality data

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 1.00

S2 0.90 1.00

S3 0.71 0.72 1.00

S4 0.86 0.84 0.72 1.00

S5 0.86 0.90 0.69 0.81 1.00

S6 0.81 0.84 0.71 0.81 0.84 1.00

S7 0.82 0.84 0.76 0.82 0.83 0.87 1.00

S8 0.83 0.82 0.67 0.75 0.76 0.71 0.74 1.00

S9 0.85 0.85 0.73 0.82 0.81 0.79 0.80 0.79 1.00

S10 0.85 0.89 0.67 0.81 0.88 0.82 0.78 0.76 0.80 1.00

R²=0.57 R²=0.50

R²=0.92 R²=0.91

Fig. 16 Scatter plot of short-

interval imputation at station S5,
with 20% and 40% of

missingness levels
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significant difference of contained values among columns

in the input set, making it difficult for the model to estimate

the missing parts.

3.7 Comparison with other methods

This section verifies the effectiveness of our proposed

model in comparison with the existing methods. In this

study, univariate and multivariate imputation methods are

introduced. Imputing missing values using the univariate

method is based only on the existing values in that feature

dimension. In contrast, the multivariate imputation tries to

utilise the non-missing data in the entire feature dimensions

to estimate the missing values. The selected univariate

imputations are most frequent, median and mean. Four

estimators are used for multivariate imputation: Bayesian

ridge, decision tree, extra-trees and k-nearest neighbours.

We demonstrated the effectiveness of our proposed

model against other methods for all monitoring stations. In

total, we conducted 60 experiments to cover different

cities, stations and pollutants in our datasets. For the

London dataset, the training data for NO2 and PM10 are

from January 2018 to around October 2019, whereas the

test sets are taken from several unbroken segments from

around November 2019 to January 2021. We combined

short- and long-intervals perturbation procedures for the

training and test sets. The perturbation step removes about

45% of the target training set and 50% of the test set. To

obtain less biased results, we implemented fivefold cross-

validation in the dataset.

For all pollutant data in the Delhi dataset (i.e. NO2 and

PM2:5), the training period is from February 2018 to mid-

July 2019, whereas the test period starts in July 2019 and

ends in July 2020. The same perturbation procedures as the

London dataset are applied for Delhi data, resulting in

missing rates of about 45% and 60% for training and test

sets in the target station. Pollutant CO and O3 in Beijing

monitoring stations are treated in the same way. The

training data are selected from March 2013 to around

September 2015, whereas the training data are chosen from

September 2015 to February 2017. The missing values in

the target station for training and test steps are maintained

at the rate of 45% and 50%, respectively. The bar charts to

visualise the proportion of the RMSE values obtained from

each method are shown in Fig. 18.

Figure 18 presents the performance of our proposed

model and seven commonly seen imputation methods and

contains the following abbreviations: Most (most frequent

imputation), Med (median imputation), Mean (mean

imputation), DecT (decision tree regressor), ExT (extra-

trees regressor), KNN (k-nearest neighbours regressor),

BaR (Bayesian ridge regressor) and Aut� (proposed

autoencoder). The proposed autoencoder charts are indi-

cated with black-filled areas.

As we can see from the figure, the univariate imputation

using statistic properties (most frequent, median and mean)

yields the most inaccurate imputation results. Compared to

the univariate, the multivariate imputation techniques

return significantly lower imputation errors. Our proposed

method outperforms other methods for all stations and

pollutants except for Delhi monitoring stations measuring

NO2. Out of ten stations, other methods yield slightly better

performance in three monitoring stations (i.e. S3, S5 and

S9). As discussed in the previous section, weak correlations

among stations lower our proposed method performance.

Figure 19 shows the rate of improvement on RMSE

(RIR). Positive RIR values indicate that our proposed

model outperforms other methods. In contrast, negative

RIR values imply other models have better performance

than ours. Compared to the most frequent, median and

mean imputations, our proposed autoencoder model can

(a)

(b)

Fig. 17 Example of input and output sets retrieval before and after

denoising process in Delhi station S5: (a) retrieval of NO2 and (b)

retrieval of PM2:5
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significantly improve the RMSE values, ranging from 50 to

80 per cent in most cases. Our proposed method also

contributes positive RIR values for Bayesian ridge, deci-

sion tree, extra-trees and k-nearest neighbours imputation

methods, mainly improving between 10% and 50%. For

Delhi measuring NO2, our proposed method contributes six

negative RIR values; half of them occur in station S5. In

monitoring S5, mean, median and kNN imputations per-

form better than our proposed model, marginally improv-

ing 6.46%, 0.87% and 1.15% of RIR values, respectively.

Out of six negative RIR values, half of them are caused by

median imputation. Median imputation contributes the

lowest RMSE for monitoring station S9, about 17% better

than our proposed model.

To acquire global knowledge, we calculated the average

RIR values of each imputation method from all stations and

pollutants. The results are summarised in Table 18. Our

model outperforms the univariate imputations, improving

the average RIR from around 50 to 65 per cent. For mul-

tivariate imputation, the average RIR improvement range is

from about 20 to 40%.

Fig. 18 Performance

comparison of the proposed

model against commonly used

methods
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4 Conclusions

Missing values are common real-world scenarios with

collected data. Due to many factors, every measurement

system can face this issue, and some of them may suffer

from losing critical data. The existence of missing data can

influence the study interpretations and affect the function-

ing of air quality-related public services. A strategy to

overcome missing data needs to be addressed by proposing

an imputation method. Moreover, understanding the spa-

tiotemporal characteristics of air pollutant data can

improve the robustness of air quality missing data

imputation.

This study has tried to address the challenges of

implementing a suitable method for air quality missing data

imputation. Inspired by the capabilities of the denoising

autoencoder to reconstruct the corrupted data, we proposed

an imputation method that exploits both temporal and

spatial data to improve imputation accuracy. We deter-

mined an ideal temporal window size of 8-time steps and a

spatial combination of 3 neighbouring stations to provide

an 8� 4 input set to the model. The aggregation of the

input sets is performed to obtain a single prediction at a

specific time. In this study, two imputation scenarios are

conducted, namely short-interval imputation and long-in-

terval consecutive imputation. For the short-interval

imputation, some levels of missingness are introduced (i.e.

20%, 40%, 60% and 80%). However, all data in a specific

period are removed during the long-interval imputation

steps.

Results show that our proposed method and model give

satisfying imputation results with R2 � 0:6, even when the

data in the target station are entirely missing. Degraded

imputation performances arises when among stations are

weekly correlated. Low correlation coefficients compose

more irregular input values, making our proposed autoen-

coder model unable to recover noisy inputs. Compared to

univariate imputation techniques, our model improves up

to 65% of average RIR and 20% - 40% against the multi-

variate imputation techniques.

Fig. 19 Performance

comparison of the proposed

model against commonly used

methods

Table 18 Average of RIR values calculated from all stations

Method Average of RIR ðexisting; proposedÞð%Þ

Most frequent 65.21

Mean 55.14

Median 54.33

Decision tree 41.69

Extra-trees 30.66

k-nearest neighbours 25.45

Bayesian ridge 20.82

Proposed autoencoder 0.00
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Appendix A

Algorithm for post-training model outputs
interpretation

As shown in Algorithm 1, the test sets X are fed to the

model (row 1), resulting in a 3-dimension prediction set Y

with a size of (n, 8, 4), where n is the number of test sets

fed to the model. The prediction set Y must be scaled back

to their original values, resulting in a matrix YY (row 2).

To minimise the computing process, we selected only the

target station predictions. The target station prediction

values are obtained by extracting the first column of each

output set (row 3). This process results in a 2D matrix YY

with a size of (n, 8). Next, the following row is right-

shifted one step from the previous row (rows 8:10), pro-

vided that there is a sparse matrix A appropriate to handle

this rolling scheme (rows 4:6). The sums of each column

are computed to get a single row matrix S (row: 11). As the

matrix S is obtained from different layers of overlapped

values (see Fig. 6), the divisors of each element in S are

varied (rows 14:21). For the first seven elements of S,

divisors are increased from 1 to 7, whereas for the last

seven elements, divisors are decreased from 7 to 1. All

values between the seven first and seven last elements of S

are equally divided by 8.
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