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Summary 1 

During infectious disease outbreaks, inference of summary statistics characterising transmission is essential for 1 

planning interventions. An important metric is the time-dependent reproduction number (𝑅𝑡), which represents 2 

the expected number of secondary cases generated by each infected individual over the course of their 3 

infectious period. The value of 𝑅𝑡 varies during an outbreak due to factors such as varying population immunity 4 

and changes to interventions, including those that affect individuals’ contact networks. While it is possible to 5 

estimate a single population-wide 𝑅𝑡, this may belie differences in transmission between subgroups within the 6 

population. Here, we explore the effects of this heterogeneity on 𝑅𝑡 estimates. Specifically, we consider two 7 

groups of infected hosts: those infected outside the local population (imported cases), and those infected locally 8 

(local cases). We use a Bayesian approach to estimate 𝑅𝑡, made available for others to use via an online tool, 9 

that accounts for differences in the onwards transmission risk from individuals in these groups. Using COVID-10 

19 data from different regions worldwide, we show that different assumptions about the relative transmission 11 

risk between imported and local cases affect 𝑅𝑡 estimates significantly, with implications for interventions. This 12 
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emphasises the need to collect data during outbreaks describing heterogeneities in transmission between 13 

different infected hosts, and to account for these heterogeneities in methods used to estimate 𝑅𝑡. 14 

 15 

 16 

 17 

Main Text 18 

 19 

1. Introduction 20 

 21 

Mathematical and computational models have been used during the COVID-19 pandemic to infer changes in 22 

transmissibility and to plan public health measures [1–7]. An important metric for assessing the effectiveness of 23 

current interventions during outbreaks is the time-dependent reproduction number (𝑅𝑡 – sometimes referred 24 

to informally as the “R number”), which represents the expected number of infections generated by someone 25 

infected at time 𝑡 over the course of their infectious period [8–16]. This quantity varies during an outbreak in 26 

response to factors affecting transmission such as changes in public health measures, varying population 27 

immunity and pathogen evolution. If 𝑅𝑡 remains below one, the number of cases each day will decrease; if 28 

instead 𝑅𝑡 is persistently above one, the outbreak will grow. In the UK, the government has published 29 

estimates of 𝑅𝑡 throughout the COVID-19 pandemic [17] alongside other values such as estimates of the 30 

epidemic growth rate and daily numbers of new cases, hospitalisations and deaths. 31 

 32 

Different formal definitions of 𝑅𝑡 have been proposed, most notably the instantaneous reproduction number 33 

and the case reproduction number [18]. The instantaneous reproduction number represents the expected 34 

number of infections generated (over the course of their infectious period) by someone who is infected at time 35 

𝑡 if transmission conditions do not change in the future (i.e., this quantity is a measure of instantaneous 36 

transmissibility). The case reproduction number, on the other hand, reflects the expected number of infections 37 

generated by someone who is infected at time 𝑡 but accounts for changes in transmissibility that occur after 38 

time 𝑡 (e.g. the subsequent introduction of public health measures). The instantaneous reproduction number 39 

has been proposed as the most appropriate definition to use for real-time inference, as this quantity reflects 40 

current transmissibility and does not require future changes in transmission conditions to be known [11]. For 41 

that reason, we use this definition of 𝑅𝑡 for our analyses in this manuscript. 42 

 43 
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A range of methods have been developed for estimating 𝑅𝑡 from outbreak data [11,12,19,20]. Two common 44 

approaches are the Cori method [8,9] and the Wallinga-Teunis method [21], which involve inferring the value 45 

of 𝑅𝑡 from disease incidence time series (i.e. time series describing the number of new cases every day) and an 46 

estimate of the serial interval distribution (representing the time period between successive cases; specifically, 47 

the difference between the symptom onset times of infectors and infectees). Irrespective of the precise 48 

approach used to infer 𝑅𝑡, estimates can be updated and tracked as additional data become available during 49 

an outbreak. 50 

 51 

Recent developments in the theory of 𝑅𝑡 estimation include accounting for reporting delays [7] and 52 

considering the impacts of temporal changes in the serial interval [22]. Another consideration is the potential 53 

for heterogeneity in 𝑅𝑡 between different subgroups in the population. The COVID-19 pandemic has 54 

highlighted that individuals in different settings (e.g. care homes as opposed to the wider population [23]) or 55 

with different characteristics (e.g. different ages [10,24–26] or vaccination statuses [27,28]) face different risks 56 

of both becoming infected and transmitting the virus. Shortly before the COVID-19 pandemic, the Cori method 57 

was extended to account for differences in the source locations of local and imported cases [9], but with an 58 

assumption that the expected numbers of onwards transmissions from local and imported cases are identical. 59 

With that assumption, that work illustrated that failing to differentiate between local and imported cases can 60 

lead to overestimation of the number of local infections and therefore overestimation of 𝑅𝑡 [9].  61 

 62 

Apart from their different origins, local and imported cases can differ in other ways. The risk of onwards 63 

transmission from an imported case may be different to the risk from a local case [29]. Imported cases may 64 

have visited regions with high case numbers and therefore respond more quickly to early signs of disease, 65 

isolating as soon as symptoms develop. This effect might be especially pronounced when a pathogen has first 66 

arrived in the local host population, when the infection risk may be higher outside the local population than 67 

within it. Imported cases may also be subject to increased testing for infection or pre-emptive home 68 

quarantine following travel, thereby lowering the risk of onwards transmission [30]. On the other hand, 69 

individuals who travel frequently may be likely to have more contacts with others than those who do not, 70 

potentially leading to a higher risk of onwards transmission for imported cases. For example, business 71 

travellers may participate in large numbers of meetings, thereby coming into contact with many other people. 72 

In either situation, an assumption that 𝑅𝑡 is identical for both local cases and imported ones, as made 73 

previously [9], is not always appropriate. 74 
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 75 

In principle, the same disease incidence time series can occur with different divisions of the transmission risk 76 

between local and imported infectors (Fig 1). This has implications for pathogen control, since a scenario with 77 

substantial local transmission requires localised public health measures to disrupt chains of transmission and 78 

prevent spread. In contrast, a scenario with high transmission from imported cases may motivate travel 79 

restrictions to prevent importations. Here, we modify the Cori method to allow local and imported cases to 80 

have unequal risks of generating new infections. We analyse disease incidence time series recorded during the 81 

COVID-19 pandemic in different locations. Our main goal is not to provide a novel methodological approach 82 

for estimating 𝑅𝑡, but rather to explore as simply as possible the potential consequences on estimates of 𝑅𝑡 of 83 

failing to account for differences in the onwards transmission risk from local and imported cases. To allow 84 

other researchers to repeat our analyses for similar data, we provide an open-source Python software library 85 

including a user-friendly web interface (https://sabs-r3-epidemiology.github.io/branchpro). Our research 86 

demonstrates the importance of accounting for differences in the transmission risk between imported and 87 

local cases. More widely, it indicates that careful consideration of heterogeneity in the transmission risk 88 

between population subgroups may be necessary to make robust public health policy decisions. 89 

 90 

 91 

2.  Methods 92 

 93 

2.1  Inference of the time-dependent reproduction number 94 

 95 

We modify the Cori method for estimating 𝑅𝑡 [8,9] to account for differences in the onwards transmission risk 96 

between cases that arise locally compared to those originating elsewhere. In the underlying transmission 97 

model, new cases occur according to a time-varying branching process in which each local case is assumed to 98 

generate 𝑅𝑡 new infections on average, and each imported case is expected to generate 𝜀𝑅𝑡 new infections on 99 

average, where 𝜀 ≥ 0 indicates the relative transmission risk from an imported case compared to a local case. 100 

Here, we assume that 𝑅𝑡 is the instantaneous reproduction number [8,9], representing the expected number of 101 

cases that an individual infected at time 𝑡 is likely to generate over the course of their infection assuming that 102 

future pathogen transmissibility is fixed at the current level. Our focus is on estimating the extent of local 103 

transmission (i.e. the local time-dependent reproduction number [20]) characterised by 𝑅𝑡. As has been 104 

proposed previously [20], the value of 𝑅𝑡 therefore reflects the potential for local transmission of the pathogen 105 

(rather than being an averaged quantity across both local and imported cases). Here, 𝜀 < 1 means that an 106 

https://sabs-r3-epidemiology.github.io/branchpro
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imported case is responsible for fewer infections (on average) than a local case, whereas 𝜀 > 1 indicates that an 107 

imported case generates more infections. 108 

 109 

The total number of new cases arising at timestep 𝑡 can be split according to the sources of infection, 𝐼𝑡 =110 

𝐼𝑡
𝑙𝑜𝑐 + 𝐼𝑡

𝑖𝑚𝑝
, where 𝐼𝑡

𝑙𝑜𝑐 represents the number of new cases who were infected within the local population and 111 

𝐼𝑡
𝑖𝑚𝑝

 represents the number of new cases who were infected elsewhere. The expected number of local cases at 112 

timestep t is then given by 113 

𝐄(𝐼𝑡
𝑙𝑜𝑐|{𝐼𝑘

𝑙𝑜𝑐}𝑘=0
𝑡−1 , {𝐼𝑘

𝑖𝑚𝑝
}𝑘=0

𝑡−1 , 𝜀, 𝑅𝑡 , 𝒘) = 𝑅𝑡 ∑ (𝐼𝑡−𝑠
𝑙𝑜𝑐 +𝑡

𝑠=1 𝜀𝐼𝑡−𝑠
𝑖𝑚𝑝

)𝑤𝑠 . 114 

In this expression, the vector 𝒘 is the (discrete) serial interval distribution with entries 𝑤𝑠 (which characterises 115 

the times between successive cases in a chain of transmission; 𝑤1 is the probability that the serial interval is 116 

one day, 𝑤2 is the probability that the serial interval is two days, and so on). 117 

 118 

We define the transmission potential at timestep 𝑡 to represent the expected number of local cases arising at 119 

timestep 𝑡 if 𝑅𝑡 = 1. Thus, the transmission potential at timestep 𝑡 is given by Λ𝑡(𝒘, 𝜀) = ∑ (𝐼𝑡−𝑠
𝑙𝑜𝑐 +𝑡

𝑠=1 𝜀𝐼𝑡−𝑠
𝑖𝑚𝑝

)𝑤𝑠. 120 

We assume that the number of local cases in timestep 𝑡 is drawn from a Poisson distribution with mean 121 

𝑅𝑡Λ𝑡(𝒘, 𝜀). Hence, the probability of observing the local incidence {𝐼𝑘
𝑙𝑜𝑐}𝑘=𝑡−𝜏

𝑡  over a time window including 𝜏 +122 

1 days (assuming that 𝑅𝑡 is constant during that time window), conditional each day on all previous incidence 123 

data, is given by 124 

𝐏({𝐼𝑘
𝑙𝑜𝑐}𝑘=𝑡−𝜏

𝑡 |{𝐼𝑘
𝑙𝑜𝑐}𝑘=0

𝑡−𝜏−1, {𝐼𝑘
𝑖𝑚𝑝

}𝑘=0
𝑡−1 , 𝜀, 𝑅𝑡 , 𝒘) = ∏

(𝑅𝑡Λ𝑘(𝒘,𝜀))
𝐼𝑘

𝑙𝑜𝑐
exp(−𝑅𝑡Λ𝑘(𝒘,𝜀))

𝐼𝑘
𝑙𝑜𝑐!

𝑡
𝑘=𝑡−𝜏 . 125 

Data describing daily numbers of imported cases enter this expression through Λ𝑡(𝒘, 𝜀). The model therefore 126 

reflects how local cases arise using information about historical numbers of local and imported cases. 127 

 128 

Assuming a gamma distributed prior for 𝑅𝑡, the posterior distribution for 𝑅𝑡 over the time window [𝑡 − 𝜏, 𝑡], 129 

conditional on 𝒘, 𝜀 and the observed incidence data (denoted 𝑝(𝑅𝑡|𝒘, 𝜀, 𝑰≤𝒕) – we represent this by 𝑝(.) rather 130 

than P(.) since the posterior is a continuous probability density function) is also a gamma distribution due to 131 

prior-likelihood conjugacy (see Cori et al. [8] and Thompson et al. [9] for further details). Specifically, 132 

𝑝(𝑅𝑡|𝒘, 𝜀, 𝑰≤𝒕) =  gamma(𝑅𝑡 , 𝛼 + ∑ 𝐼𝑡−𝑘
𝑙𝑜𝑐𝜏

𝑘=0 , 𝛽 + ∑ Λ𝑡−𝑘(𝒘, 𝜀)𝜏
𝑘=0 ), 133 

where, for notational convenience, here and above we have combined the disease incidence data into the 134 

variable 𝑰≤𝒕 = {{𝐼𝑘
𝑙𝑜𝑐}𝑘=0

𝑡 , {𝐼𝑘
𝑖𝑚𝑝

}𝑘=0
𝑡−1 }}. In this expression, the parameters 𝛼 > 0 and 𝛽 > 0 are the shape and rate 135 
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parameters of the gamma prior distribution for 𝑅𝑡. The function gamma(𝑥, 𝑎, 𝑏) corresponds to the probability 136 

density function of a gamma distribution with shape parameter 𝑎 and rate parameter 𝑏, so that 137 

gamma(𝑥, 𝑎, 𝑏) =
𝑏𝑎

Γ(𝑎)
𝑥𝑎−1exp (−𝑏𝑥). 138 

 139 

The inferred posterior, 𝑝(𝑅𝑡|𝒘, 𝜀, 𝑰≤𝒕), is based on local infectees appearing in the incidence data in the 140 

estimation window [𝑡 − 𝜏, 𝑡], infected by local or imported infectors appearing in the incidence data at any 141 

time in [0, 𝑡 − 1]. Estimates of 𝑅𝑡 at successive timesteps are generated by shifting the estimation window by 142 

one timestep and repeating the inference procedure. The purpose of this estimation window (rather than 143 

estimating 𝑅𝑡 based on infectees appearing in the incidence time series on day 𝑡 alone) is to increase the 144 

smoothness of successive 𝑅𝑡 estimates, instead of inferring variations in 𝑅𝑡 due to the inherent randomness in 145 

the epidemiological system (or any other factor affecting the numbers of cases observed each day; for 146 

example, daily fluctuations in the proportion of cases that are reported). This comes at the cost of missing 147 

changes in transmission occurring at a fine temporal resolution [8]. 148 

 149 

2.2 Accounting for uncertainty in the serial interval distribution 150 

 151 

The approach described above involves estimating 𝑅𝑡 using disease incidence time series and an estimate of 152 

the serial interval distribution, accounting for differences in both the source location of infection and onwards 153 

transmission risk between local and imported cases. However, there is often significant uncertainty in the serial 154 

interval distribution. To account for this, we consider a scenario in which there is a set of equally plausible 155 

serial interval distributions, {𝒘(𝒊)}𝑖=1
𝑛 . For a single value of 𝑖, the entries 𝑤𝑠

(𝑖) of the vector 𝒘(𝒊) correspond to 156 

the probability that the serial interval takes the value 𝑠 days, conditional on 𝒘(𝒊) being the true serial interval 157 

distribution. 158 

 159 

In our analyses of COVID-19 data, we use a set of equally plausible serial intervals, {𝒘(𝒊)}𝑖=1
𝑛 , obtained from a 160 

previous study (see below). To account for this uncertainty in the serial interval distribution when estimating 161 

𝑅𝑡, we first estimate 𝑅𝑡 separately for each plausible serial interval distribution, 𝒘(𝒊), giving the conditional 162 

posterior distribution 𝑝(𝑅𝑡|𝒘(𝒊), 𝜀, 𝑰≤𝒕). We then combine these estimates to give a posterior distribution for 𝑅𝑡 163 

accounting for this uncertainty by calculating 164 

𝑝(𝑅𝑡|𝜀, 𝑰<𝒕) =
1

𝑛
∑ 𝑝(𝑅𝑡|𝒘(𝒊), 𝜀, 𝑰≤𝒕)

𝑛

𝑖=1

. 165 
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 166 

2.3. Data and parameterisation 167 

 168 

In our main analyses, we consider five disease incidence time series datasets collected in different locations 169 

during the COVID-19 pandemic. The key feature of these datasets is that information is available which allows 170 

locally originating cases to be differentiated from those infected elsewhere. The datasets are: 171 

1.  Ontario, Canada (Fig 2a – left).  Incidence data were obtained for the time period from 1 March – 172 

20 April 2020 [31]. Cases were classified as imported if they reported travelling outside Ontario 173 

within 14 days of symptom onset. Cases with unknown recent travel status were assumed to have 174 

been infected locally. 175 

2. New South Wales, Australia (Fig 2a – middle). Incidence data were obtained for the time period 176 

from 1 March – 13 April 2020. Cases were classified as imported if they were reported as “overseas 177 

acquired” in the Australian national COVID-19 database (see [30] for further details). Cases with 178 

unknown origin were assumed to have been infected locally. 179 

3. Victoria, Australia (Fig 2a – right). Details as above for New South Wales. 180 

4. Hong Kong (Fig 4a – left). Incidence data were obtained for the time period from 23 January – 24 181 

March 2020 [32]. Cases were classified as imported if they were listed as “imported case, 182 

confirmed” in the Hong Kong Department of Health COVID-19 database (see [33] for further 183 

details). All other cases were classified as local cases. 184 

5. Hainan Province, China (Fig 4a – right). Incidence data were obtained for the time period from 22 185 

January – 20 February 2020 [34]. Cases were classified as imported if they either reported travel 186 

outside Hainan Province in the 14 days prior to symptom onset or reported any recent travel to a 187 

known COVID-19 outbreak area. All other cases were classified as local cases. 188 

 189 

 190 

We chose to analyse the first three datasets in the main text due to their differing outbreak trajectories in the 191 

time periods considered. Specifically, the Ontario dataset represents a growing outbreak, the New South Wales 192 

dataset represents a full outbreak wave with a large number of imported cases compared to local cases, and 193 

the Victoria dataset represents a full outbreak wave with more local cases than imported ones. We chose to 194 

analyse the fourth and fifth datasets because further information was available from those locations with which 195 
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it was possible to approximate the value of 𝜀. This allowed us to demonstrate inference of 𝑅𝑡 in scenarios in 196 

which the relative transmission risk from imported and local cases is known. 197 

 198 

In addition to our analyses in the main text, we considered datasets from other locations and display similar 199 

analyses in the Supplementary Information (Supplementary Figures 1-6); specifically, we considered COVID-19 200 

disease incidence time series datasets from five other Australian states, New Zealand and Hawaii, and we 201 

considered a disease incidence time series dataset for MERS in Saudi Arabia in 2014-15. The key feature of all 202 

these datasets is that information was available with which to classify cases as either local or imported. In the 203 

analysis of MERS in Saudi Arabia, imported cases were not those who had arrived from a geographically 204 

distinct location. Instead, in that analysis, imported cases were those who were likely to have been infected 205 

directly from the animal reservoir. 206 

 207 

For the serial interval in all our analyses of COVID-19 incidence datasets, we considered an estimate for SARS-208 

CoV-2 obtained by Nishiura et al. [35]. Specifically, those authors fitted a lognormal distribution to data from 209 

known infector-infectee transmission pairs using Markov chain Monte Carlo (MCMC), thereby obtaining a set 210 

of equally plausible possible serial interval distributions. We considered the set of serial interval distributions 211 

obtained by Nishiura et al. [35] using both certain and probable infector-infectee pairs while accounting for 212 

right-truncation (i.e. the possibility that a dataset detailing infector-infectee pairs observed when the outbreak 213 

is growing excludes some transmissions with longer serial intervals that have not yet occurred). For our 214 

inference procedure, we used 𝑛 = 1,000 randomly selected MCMC draws from their analysis, where each draw 215 

characterises a continuous distribution. Since our approach considers the number of new cases each day, we 216 

require a discrete serial interval distribution. We therefore “discretised” the continuous distributions into daily 217 

timesteps using the method described by Cori et al. [8] (see web appendix 11 of that article). The set of 𝑛 =218 

1,000 serial interval distributions used in our analysis (i.e. {𝒘(𝒊)}𝑖=1
𝑛 ) is shown in Supplementary Figure 7. 219 

 220 

We fixed the parameters of the gamma distributed prior for 𝑅𝑡 so that both the mean and standard deviation 221 

were equal to five (to do this, we chose 𝛼 = 1 and 𝛽 = 0.2). The rationale for this choice is that a large standard 222 

deviation ensures that the prior is relatively uninformative, while a high mean ensures that the outbreak is 223 

unlikely to be determined as under control (𝑅𝑡 < 1) unless there is substantial evidence from the data 224 

supporting this conclusion. In all of our analyses of COVID-19 incidence data, 𝑅𝑡 was estimated using a weekly 225 

sliding window, so that 𝜏 = 6 days. In the figures, the posterior distribution for 𝑅𝑡 shown on day 𝑡 is based on a 226 

sliding window that ends on day 𝑡 (i.e. the sliding window [𝑡 − 𝜏, 𝑡]). 227 
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2.4 Correctness and reproducibility of results 229 

 230 

We followed a range of software development practices to guard against coding errors and to ensure code 231 

reusability: these included collaborative coding using Github to manage merging of code via pull requests, unit 232 

testing of functions and classes (with 100% test coverage) and continuous integration testing. To ensure 233 

reproducibility of results, all analyses for this paper can be rerun by cloning our Github repository 234 

(https://github.com/SABS-R3-Epidemiology/transmission-heterogeneity-results) and executed via a single 235 

command from the terminal. 236 

 237 

 238 

 239 

3.  Results 240 

 241 

3.1 Effect of the relative transmission risk on estimates of 𝑅𝑡 242 

 243 

To explore how different assumptions about the relative transmission risk from imported and local cases affect 244 

𝑅𝑡 estimates, we initially applied our method to data from the first three locations described in Methods (Fig 245 

2). We considered three different assumptions about the relative transmission risk. First, we assumed that 246 

imported cases were each expected to generate fewer infections than local cases (𝜀 = 0.25; Fig 2b – blue). 247 

Second, we assumed instead that imported cases were each expected to generate more infections than local 248 

cases (𝜀 = 2; Fig 2b – red). Third, we made the standard assumption [9] that the transmission risk from each 249 

local case was identical to the transmission risk from each imported case (𝜀 = 1; Fig 2b – black). These analyses 250 

highlight that different assumed values of 𝜀 lead to different inferred 𝑅𝑡 values. As might be expected, 251 

assuming a larger value of 𝜀 leads to smaller estimated values of 𝑅𝑡, since more transmission is then attributed 252 

to imported cases rather than local cases. 253 

 254 

We then went on to consider the implications for public health policy of differences in the relative 255 

transmissibility of imported and local cases. For the dataset from Ontario (Fig 2a – left), the numbers of local 256 

cases broadly increased throughout the time period considered. A key question in that setting is “Is 𝑅𝑡 > 1?”, 257 

since this determines whether sustained local transmission will occur. If so, fast detection that 𝑅𝑡 > 1 is crucial 258 

https://github.com/SABS-R3-Epidemiology/transmission-heterogeneity-results
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to allow interventions to be introduced quickly to prevent further exponential growth of the outbreak. In the 259 

left panel of Fig 3a, posterior mean estimates of 𝑅𝑡 each day from 8 March – 20 April 2020 are shown for a 260 

range of values of 𝜀. The first date on which the mean estimate of 𝑅𝑡 is above one and remains above one 261 

thereafter is shown for different values of 𝜀 in the left panel of Fig 3b (grey). This indicates that a smaller 262 

assumed value of 𝜀 leads to an earlier conclusion that 𝑅𝑡 is greater than one for this dataset. The proportion of 263 

the period considered for which the mean 𝑅𝑡 estimate is above one also depends on the assumed value of 𝜀 264 

(Fig 3c – left). 265 

 266 

While a policy-maker may choose to strengthen control measures when the mean estimate of 𝑅𝑡 increases 267 

above one, a more risk averse choice could be to conclude that the outbreak is not under control if an upper 268 

percentile of the posterior distribution of 𝑅𝑡 exceeds one. For example, for the Ontario dataset, when 𝜀 = 1.2, 269 

the mean estimate of 𝑅𝑡 is (and remains) above one from 11 April 2020 onwards (Fig 3b – left, grey), whereas 270 

the 97.5th percentile estimate of 𝑅𝑡 remains above one from the earlier date of 23 March 2020 onwards (Fig 3b 271 

– left, green dashed). By using an approach like the one described here, policy-makers can adjust their decision 272 

making according to their chosen level of risk aversion. This simply involves specifying the percentile value of 273 

𝑅𝑡 to track to guide decision making regarding strengthening and relaxing public health measures. 274 

 275 

During the COVID-19 pandemic, public health measures have been relaxed in many regions and countries 276 

when the outbreak has been assessed as being under control. We therefore considered the incidence dataset 277 

from New South Wales and estimated when policy-makers could conclude that 𝑅𝑡 had fallen below one (Fig 3b 278 

– middle). In this scenario, a larger assumed value of 𝜀 led to an earlier date on which 𝑅𝑡 was assessed to be 279 

below one (and remained below one thereafter). In order for policy-makers to be more certain that 𝑅𝑡 is below 280 

one when relaxing restrictions, one possibility is to conclude that 𝑅𝑡 is below one when a high percentile value 281 

of the posterior for 𝑅𝑡 has fallen below one. For example, for this dataset, if the mean estimate of 𝑅𝑡 is 282 

considered and the value 𝜀 = 1.2 is assumed, then 𝑅𝑡 is inferred to fall and remain below one on 15 March 283 

2020 (Fig 3b – middle, grey), whereas if instead the 97.5th percentile estimate of 𝑅𝑡 is considered, then 𝑅𝑡 is 284 

inferred to fall below one on the later date of 19 March 2020 (Fig 3b – middle, green dashed). 285 

 286 

As the final component of these analyses, we considered the disease incidence time series dataset from 287 

Victoria and repeated the analysis that we conducted for the dataset from New South Wales. We found that, if 288 

a high value of 𝜀 is assumed, then the outbreak is inferred to be under control (𝑅𝑡 < 1) for the majority of the 289 

time period under consideration (Fig 3c, right). However, if instead the value of 𝜀 is lower, then 𝑅𝑡 may be 290 
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estimated to be greater than one early in the outbreak. For small values of 𝜀, so that initial estimated values of 291 

𝑅𝑡 are high, the most policy-relevant question may again be to determine when 𝑅𝑡 has fallen below one (Fig 292 

3b – right). 293 

 294 

3.2 Realistic values of the relative transmission risk 295 

 296 

In the analyses presented in Section 3.1, we demonstrated clearly that the assumed relative transmission risk 297 

between imported and local cases affects 𝑅𝑡 estimates, impacting policy-relevant conclusions drawn from 298 

disease incidence time series data. The relative transmission risk may differ between settings. In some 299 

scenarios, it may be possible to inform estimates of 𝜀 with real-world data. Here we provide two examples, in 300 

the context of SARS-CoV-2 transmission in Hong Kong and Hainan Province (the fourth and fifth disease 301 

incidence time series datasets described in Methods). Additional possible approaches for estimating the value 302 

of 𝜀 are described in the Discussion. 303 

 304 

First, we considered the dataset from Hong Kong (Fig 4a – left). A previous study [33] reconstructed the 305 

transmission network of cases in that region (between 23 January 2020 and 8 January 2021; although in 306 

principle a similar analysis could be conducted at a smaller spatial scale for shorter time periods, as would 307 

likely be most useful for early real-time estimation of 𝑅𝑡), inferring the “outdegree” of imported and local 308 

cases. Based on the aggregated data shown in Table 1 of that study, the mean outdegree was 0.74 for 309 

imported cases and 3.68 for local cases, which corresponds to a value of 𝜀 = 0.2.  We therefore compared 310 

estimated values of 𝑅𝑡 for 𝜀 = 0.2 (Fig 4b – left, green) with analogous estimates under the standard 311 

assumption that 𝜀 = 1 (Fig 4b – left, grey). Since a value of 𝜀 = 0.2 leads to less transmission being attributed 312 

to imported infections than when 𝜀 = 1, estimated values of 𝑅𝑡 are higher when 𝜀 = 0.2. In terms of decision 313 

making during an ongoing outbreak, time periods when the mean estimated value of 𝑅𝑡 is greater than one for 314 

𝜀 = 0.2 and less than one for 𝜀 = 1 may be particularly concerning. In these periods, the outbreak might 315 

erroneously be inferred as being under control if the incorrect assumption that 𝜀 = 1 is made. In the analysis 316 

shown in the left panel of Fig 4b, this is the case for 20.8% of the time period considered. Of course, similarly 317 

to Section 3.1, analogous analyses could be performed based on different percentile estimates of 𝑅𝑡 rather 318 

than the mean estimated value. 319 

 320 
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Second, we considered the dataset from Hainan Province, China. A previous study [34] compared the 321 

epidemiological features of imported and local cases in that province, and found that imported cases tended 322 

to belong to older age groups than local cases. We applied a contact matrix for China [36] to the age 323 

distributions of imported and local cases, and thus estimated the expected number of contacts per day for 324 

imported cases (10.5) and local cases (13.4). To approximate the value of 𝜀, we divided the expected number of 325 

contacts per day for imported cases by the analogous value for local cases, giving 𝜀 = 0.785. We then 326 

compared estimates of 𝑅𝑡 for that more realistic value of 𝜀 = 0.785 (Fig 4b – right, green) to estimates of 𝑅𝑡 327 

under the standard assumption that 𝜀 = 1 (Fig 4b – right, grey). Since a value of 𝜀 = 1 is only slightly larger 328 

than 𝜀 = 0.785, and the data from Hainan Province suggest only limited local transmission, we found that 329 

incorrectly assuming that 𝜀 = 1 did not have a substantial effect on inferred 𝑅𝑡 values for this dataset.  330 

 331 

 332 

4. Discussion 333 

 334 

Summary statistics for tracking pathogen transmissibility are increasingly used during infectious disease 335 

outbreaks to guide decision making. Throughout the COVID-19 pandemic, 𝑅𝑡 has been estimated in regions 336 

and countries worldwide (see e.g. [7]). This metric is useful and straightforward to interpret, corresponding to 337 

the number of individuals that one infected host is expected (on average) to go on to infect. As well as 338 

providing information about whether an outbreak is growing or declining, the value of 𝑅𝑡 can be used to 339 

determine the proportion of transmissions that must be prevented for a growing outbreak to decline. 340 

 341 

In this article, we have presented a modified version of the commonly used Cori method for inferring 𝑅𝑡 [8,9]. 342 

We have accounted for different transmission risks from local and imported cases, rather than assuming that 343 

the transmission risk is identical for individuals in these groups. We provide an accompanying online software 344 

tool for estimating 𝑅𝑡 (https://sabs-r3-epidemiology.github.io/branchpro) where users can upload their own 345 

data (disease incidence time series and an estimate of the serial interval distribution – or multiple equally 346 

plausible serial interval distributions as described in Methods). We have conducted a systematic analysis of the 347 

dependence of inferred 𝑅𝑡 values on the assumed relative transmission risk from an imported case compared 348 

to a local case (𝜀; see Figs 2 and 3). We also considered examples in which it was possible to approximate the 349 

value of 𝜀 from other data sources (Fig 4). In general, larger assumed values of 𝜀 lead to smaller 𝑅𝑡 estimates. 350 

This is important, since assuming an unrealistically high value of 𝜀 may lead to the outbreak being falsely 351 

determined as under control. When an outbreak is ongoing, we have shown that the speed at which local 352 

https://sabs-r3-epidemiology.github.io/branchpro
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transmission can be inferred as being either under control or not depends on the assumed value of 𝜀. This 353 

dependence on 𝜀 demonstrates clearly that whether or not an outbreak is under control cannot always be 354 

inferred accurately from summary statistics that do not account for differences in the transmission risk 355 

between imported and local cases (e.g., the growth rate of overall cases). We have also shown how different 356 

percentile estimates of 𝑅𝑡 can be used to guide decision making, according to the policy-maker’s level of 357 

acceptable risk. 358 

 359 

A previous approach for estimating 𝑅𝑡 allows infectees to have been infected either within or outside the local 360 

population [9]. However, in that framework, an assumption is made that the transmission risk from a local case 361 

is identical to the analogous risk from an imported case. The potential for different transmission risks from 362 

imported and local cases has implications for optimising interventions, since if the risk of transmission is 363 

predominantly from imported cases, then travel restrictions and interventions that prevent transmissions from 364 

imported cases (e.g. quarantine of incoming travellers) may be the optimal interventions. If instead the 365 

transmission risk is highest from local cases, then interventions such as social distancing and face coverings 366 

that reduce transmission from all infected individuals in the population may be necessary. In scenarios in which 367 

a novel pathogen variant is being imported into a new location from somewhere it is already widespread, the 368 

composition of variants causing local and imported cases might affect the relative transmission risk [37], 369 

although we note that in our modelling framework it is only the imported cases themselves that are assumed 370 

to represent a different transmission risk (rather than all infected individuals in a chain of transmission starting 371 

with an imported case). 372 

 373 

A recent, closely related study by Tsang et al. [29] involved estimating independent 𝑅𝑡 values for local and 374 

imported cases throughout an outbreak. A benefit of that approach is that it does not require an assumption 375 

to be made about the relative transmission risk from imported compared to local cases. However, there are 376 

substantial logistical challenges to estimating independent 𝑅𝑡 values for local and imported cases: this requires 377 

local cases who were infected by other local cases to be distinguished from those who were infected by 378 

imported cases. This may be possible either on a small scale or in locations with extensive contact tracing 379 

[29,38], but, in many situations, it is infeasible. In the absence of data with which to estimate 𝑅𝑡 for local and 380 

imported cases independently, and without known changes in the relative transmission risk from imported 381 

compared to local cases, then assuming a constant relative transmission risk between the two types of case as 382 

we have done seems reasonable. To obtain an idea about whether the relative transmission risk (i.e., the 383 
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parameter 𝜀 in our model) is likely to be less than or greater than one, we considered examples in which we 384 

approximated 𝜀 using a reconstructed transmission network and based on the age characteristics of local and 385 

imported cases (Fig 4). In both examples that we considered, the estimated value of 𝜀 was less than one, 386 

suggesting a lower transmission risk from imported cases than from local cases. Other approaches for inferring 387 

𝜀 are also possible. One way to estimate 𝜀 is to analyse data containing both local and imported cases in small-388 

scale settings in which infector-infectee transmission pairs can be identified or estimated, such as household or 389 

contact tracing studies. Another option might be to perform forwards contact tracing on imported cases at a 390 

single stage of the outbreak. If the value of 𝜀𝑅𝑡 can be estimated from the contact tracing data at that stage, 𝜀 391 

could then be estimated from the population-level incidence data. The contribution of imported cases to 392 

transmission is likely to vary by the time in the outbreak and by location [30,39]. In principle, estimates of 𝜀 393 

could be updated based on the latest available contact tracing data. 394 

 395 

In our main analyses, we have considered scenarios in which imported cases are individuals who have been 396 

infected in other geographical locations. However, an imported case may be defined as any case with an 397 

infection source outside the local host population. In the Supplementary Information, we consider an analysis 398 

of MERS cases in Saudi Arabia in 2014-15 (Supplementary Figures 5-6), where cases are likely to have arisen 399 

both via human-to-human transmission and from an animal reservoir (specifically, from dromedary camels 400 

[40]). In that analysis, imported cases are assumed to be those reporting regular contacts with camels. It is 401 

possible that those individuals typically live in less densely populated areas than individuals who do not have 402 

regular contacts with camels, meaning that the relative risk of an imported case transmitting the virus is lower 403 

on average than the analogous risk from a local case. Like our analyses of COVID-19 datasets, our analysis of 404 

the MERS incidence data illustrates that assumptions about the relative transmission risk between local and 405 

imported cases can affect estimates of 𝑅𝑡 and conclusions about whether or not local human-to-human 406 

transmission is under control. 407 

 408 

We also conducted an additional supplementary analysis in which we generated synthetic epidemic datasets 409 

and investigated further the conditions under which mischaracterising the relative transmissibility of imported 410 

and local cases affects estimates of 𝑅𝑡 substantially. Specifically, we generated synthetic data for different 411 

values of 𝜀 and different strengths of local transmission. We calculated the error in estimates of 𝑅𝑡 if the 412 

standard assumption that 𝜀 = 1 is made (Supplementary Figure 8). This suggests that the largest errors occur 413 

when the relative transmissibility of imported (compared to local) cases differs substantially from one, and 414 

when imported cases represent a high proportion of the overall cases observed in the population. 415 
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 416 

In the research that we have presented, we sought to explore the relationship between heterogeneities in the 417 

onwards transmission risk between different groups of infectious individuals and inferred values of 𝑅𝑡. Practical 418 

applications of this approach should consider incorporating additional features into the modelling framework. 419 

An important consideration when assessing pathogen transmissibility during outbreaks is that 𝑅𝑡 represents 420 

the average number of onwards infections over multiple infected individuals and transmission events. 421 

However, different infected individuals may generate very different numbers of infections [10,41–43]. The 422 

potential for super-spreading events at which large numbers of infections occur could be built into the 423 

underlying transmission model and into the resulting 𝑅𝑡 estimates, although it may then be impossible to 424 

generate an analytic expression for the posterior for 𝑅𝑡. We sought to demonstrate the general principle that 425 

population heterogeneity can affect estimates of 𝑅𝑡. To do this as simply as possible, we used a model with 426 

only two different groups of infected hosts (i.e., local and imported cases). However, many different sources of 427 

heterogeneity exist within host populations. For example, there may be substantial differences in the 428 

transmission risk between other subgroups of the population: for example, risk may vary by age [10,24,25] and 429 

vaccination status [27]. Geographically distinct populations could be linked in a transmission model, so that 430 

spatial heterogeneity in 𝑅𝑡 can be explored. In principle, compartmental models can be developed in which a 431 

range of different sources of heterogeneity are included, and 𝑅𝑡 may be estimated using those compartmental 432 

models. It might also be possible to include further sources of heterogeneity in a renewal equation framework 433 

as studied here. These possibilities represent interesting avenues for future research. 434 

 435 

Here, we assumed that the data represent disease incidence time series, and that the serial interval (the time 436 

between successive symptomatic cases in a transmission chain) is always positive. In reality, pre-symptomatic 437 

infections occur, and serial intervals may take negative values [44–46] with infectors developing symptoms 438 

after some of the individuals who they infect. While the assumption of a positive valued serial interval 439 

distribution has been made in many previous studies in which 𝑅𝑡 has been estimated for different pathogens, 440 

this issue can be avoided by using the incidence of infections and the generation time distribution [44,46,47] 441 

rather than the incidence of cases and the serial interval distribution [11]. The subtle difference here is that 442 

incidence time series of cases do not reflect the times at which individuals were first infected, but instead 443 

reflect the times at which individuals were recorded as infected (which occurs after infection, for example when 444 

individuals display symptoms). Use of the incidence of infections and the generation time distribution may 445 

require the incidence of infections to be inferred from the incidence of cases, for example using an assumed 446 
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incubation period distribution and the Richardson-Lucy deconvolution technique [48]. We note that the serial 447 

interval distribution may be different to the generation time distribution (specifically, pre-symptomatic 448 

transmission can lead to shorter serial intervals than generation times [46]). Another potential extension to our 449 

research is incorporation of different serial interval (or generation time) distributions for local and imported 450 

cases [38], particularly given that part of an imported case’s infectious period may occur before they enter the 451 

local population. Reconstructed transmission networks might provide insights into these distributions. 452 

 453 

More broadly, we note that 𝑅𝑡 is only one summary statistic for tracking changes in transmission during an 454 

infectious disease outbreak. This metric does not provide information about the speed of the outbreak, which 455 

is better measured by the growth rate of cases [49,50]. Furthermore, current incidence of cases, 456 

hospitalisations and deaths are also key inputs to policy decisions. For example, an outbreak with 𝑅𝑡 close to 457 

one is likely to have more detrimental impacts if case numbers are high compared to if case numbers are low. 458 

Nonetheless, 𝑅𝑡 has been useful for guiding interventions during the COVID-19 pandemic, in combination with 459 

these other statistics. We therefore contend that studies that improve understanding of the impacts of factors 460 

affecting 𝑅𝑡 estimates, such as heterogeneity in the onwards transmission risk between different infectious 461 

hosts, are valuable and an important component of preparedness for future outbreaks. 462 

 463 

Additional Information 464 

Data Accessibility 465 

The user-friendly web interface for estimating 𝑅𝑡 while accounting for different transmission risks from local and 466 

imported cases can be found at https://sabs-r3-epidemiology.github.io/branchpro. All data and computing 467 

scripts required to reproduce the results presented here are available at https://github.com/SABS-R3-468 

Epidemiology/transmission-heterogeneity-results. The source code of the branchpro Python package, which we 469 

developed to perform the inference presented in this article, is available at https://github.com/SABS-R3-470 

Epidemiology/branchpro. No restrictions exist on data availability. 471 
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Figures 595 

 596 

Figure 1. A disease incidence time series dataset can be generated by different combinations of transmission risks from 597 

imported and local cases. In the first scenario (bottom left), observed cases are mostly due to infections by imported cases, 598 

whereas in the second scenario (bottom right) observed cases are mostly due to infections by local cases. In the bottom 599 

panels, red arrows represent infections generated by imported cases and black arrows represent infections generated by 600 

local cases. An individual who is infected by an imported case is classified as a local case, since they have themselves been 601 

infected locally. Despite the same overall incidence, the two scenarios shown correspond to different risks of sustained 602 

local transmission (the risk of sustained local transmission is higher in the second scenario – bottom right), with 603 

implications for public health measures. 604 
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Figure 2. Inference of the local reproduction number (𝑅𝑡) under different assumptions about the relative transmission risk 607 

from imported and local cases. (a) The COVID-19 incidence time series datasets used in our main analyses, for Ontario 608 

(left), New South Wales (centre) and Victoria (right). Black bars represent the daily numbers of local cases, and pink bars 609 

represent the daily numbers of imported cases. (b) Inferred 𝑅𝑡 values for different assumed values of the relative 610 

transmission risk from an imported cases compared to a local case (𝜀). The grey horizontal line represents the threshold 611 

𝑅𝑡 = 1, and shaded regions represent the 95% central credible interval of the 𝑅𝑡 estimates. 612 
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 615 

Figure 3. Implications of differences in the assumed relative transmission risk from imported and local cases on policy-616 

making. (a) Inferred mean 𝑅𝑡 values for different values of the relative transmissibility of imported cases compared to local 617 

cases (𝜀). (b) Dates on which the estimated values of 𝑅𝑡 cross policy-relevant thresholds (in scenarios where the thresholds 618 

are crossed at some stage in the outbreak; otherwise dates are not plotted). For Ontario (left), the date shown represents 619 

the first date when the estimated 𝑅𝑡 value is above one and remains above one for the remainder of the time period 620 

considered (until 20 April 2020). This represents the first date when the outbreak is not inferred to be under control for the 621 

remainder of the time period. For New South Wales (centre) and Victoria (right), the date shown represents the first date 622 

on which the estimated 𝑅𝑡 value is below one and remains so for the remainder of the time period considered (until 13 623 

April 2020). This represents the first date on which the outbreak could be concluded as being under control for the 624 

remainder of the time period. (c) The proportion of the time periods considered for which the inferred 𝑅𝑡 values are above 625 

one (so the outbreak is not inferred to be under control). In b and c, results are shown for the mean values of the posterior 626 

for 𝑅𝑡 (grey), and well as for the 2.5th (yellow dotted) and 97.5th (green dotted) percentile values of the posterior for 𝑅𝑡 627 

(which span the 95% central credible interval). 628 
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Figure 4. Inference of the local reproduction number (𝑅𝑡) for estimated values of the relative transmission risk from 631 

imported and local cases. (a) The COVID-19 incidence time series datasets used in our main analyses, for Hong Kong (left) 632 

and Hainan Province, China (right). Black bars represent the daily numbers of local cases, and pink bars represent the daily 633 

numbers of imported cases. (b) Inferred 𝑅𝑡 values for different assumed values of the relative transmission risk from an 634 

imported cases compared to a local case (𝜀), for Hong Kong (left) and Hainan Province (right). The grey horizontal line 635 

represents the threshold 𝑅𝑡 = 1, and shaded regions represent the 95% central credible interval of the 𝑅𝑡 estimates. The 636 

values 𝜀 = 0.2 for Hong Kong and 𝜀 = 0.785 for Hainan were estimated from alternative data sources, as described in the 637 

text. 638 
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