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1 | INTRODUCTION

| Saurav Sthapit®® | Hamidreza Jahangir' |

H. Vincent Poor’

Abstract

Advances in edge computing are powering the development and deployment of Internet
of Things (IoT) systems to provide advanced services and resource efficiency. However,
large-scale ToT-based load-altering attacks (LAAs) can seriously impact power grid op-
erations, such as destabilising the grid's control loops. Timely detection and identification
of any compromised nodes are essential to minimise the adverse effects of these attacks
on power grid operations. In this work, two data-driven algorithms are proposed to detect
and identify compromised nodes and the attack parameters of the LAAs. The first
method, based on the Sparse Identification of Nonlinear Dynamics approach, adopts a
sparse regression framework to identify attack parameters that best describe the observed
dynamics. The second method, based on physics-informed neural networks, employs
neural networks to infer the attack parameters from the measurements. Both algorithms
are presented utilising edge computing for deployment over decentralised architectures.
Extensive simulations are performed on IEEE 6-, 14-, and 39-bus systems to verify the
effectiveness of the proposed methods. Numerical results confirm that the proposed
algorithms outperform existing approaches, such as those based on unscented Kalman
filter, support vector machines, and neural networks (NN), and effectively detect and
identify locations of attack in a timely manner.

cyber security can be the main impediment in the widespread
adoption of IoT-enabled electrical appliances.

Critical infrastructures (such as power grids, transportation
systems, and nuclear plants) are subject to unprecedented cyber
attacks against their system operations [1-3]. In particular,
power grids are attractive targets since their disruption can
have severe social and economic consequences. The growing
integration of Internet of Things (IoT)-enabled smart-home
appliances at the consumer end, such as Wi-Fi-enabled air
conditioners, battery storage systems, plug-in-electric vehicles,
and so forth, present a new threat to power grid operations.
These intelligent appliances are already widely prevalent since
they provide convenience to consumers and improve enetrgy
efficiency. In the year 2020, it was assessed that globally, there
are 30 billion IoT-enabled devices [4]. However, due to their
poor security features [5, 6], they may become convenient entry
points for malicious parties to gain access to the system. Thus,

Cyber security of power grids has received widespread
attention in recent years. A significant body of work is dedi-
cated to utility-side cyber attacks and the associated SCADA
system security. In particular, false data injection (FDI) attacks
against power system state estimation have received significant
attention [7-9]. Different from the aforementioned works, this
paper considers cyber attacks that target the end-user con-
sumer devices [10], and their impact on power grid operations.
Unlike utility-side and SCADA assets, end-user devices (such
as JoT-smart home appliances) can be compromised by
adversarial units due to their large numbers, and inefficient
monitoring. Thus, cyber threats targeting demand-side attacks
pose unique challenges to power grid operators.

Sudden and abrupt manipulation of the power grid de-
mand due to large-scale cyber attacks against IoT-smart-home
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appliances (e.g. a Botnet-type attack) can potentially disrupt the
balance between supply and demand and lead to severe effects
on power grid operations. Recent works have quantified their
impact on power grid operations. In particular, [11, 12] showed
that large-scale IoT-based load-altering attacks (LAAs) could
lead to unsafe frequency excursions, subsequently triggering
generator trips and resulting in large-scale blackouts. Moreover,
such attacks can also be used to increase the operational cost of
the power grid [12]. Subsequent work [13] showed that existing
protection mechanisms such as under-frequency load shedding
(UFLS) ate capable of preventing large-scale blackouts.
Nevertheless, LAAs can still partition bulk powert systems and/
or a controlled load-shedding event. Demand-side cyber at-
tacks can also propagate from the distribution grid to the
transmission grid, which can lead to an attack impact over a
larger geographical area [14]. Ospina et al. [15] studied the
feasibility of LAAs under different power grid loading
conditions.

Static LAAs leading to a sudden one-time manipulation
of the demand (as proposed in [11-14]) cannot destabilise the
power grid's frequency control loop. A more severe attack
known as the dynamic LAAs was introduced in [16], which
showed that if the attacker manipulates the load over a period
of time in accordance with the fluctuations of the grid fre-
quencies, the resulting attack can destabilise the frequency
control loop, which can subsequently trigger cascading fail-
ures. An analytical method to understand the impact of
static/dynamic LAAs using the theory of second-otrder
dynamical systems was presented in [17], which was used
to find the locations of nodes from which an attacker can
launch the most impactful LAAs. Subsequent work investi-
gated techniques to enhance the resilience of power grids to
LAAs by improving the security features of a fraction of
smart loads [16, 17], and finding generator operating points
that ensure that no transmission lines are overloaded after
any potential LAAs [18].

Despite the growing number of works on analysing the
impact and improving the resilience of power grids against
LAAs, there is relatively less work on detecting and identifying
such attacks in real-time, which is the main focus of this paper.
Following the onset of an LAA, swift detection and identifi-
cation of the compromised nodes are critical to minimising the
adverse effects and service disruptions. In this work, we focus
specifically on detecting and identifying LLAAs by real-time
monitoring and analysis of the grid's physical signals such as
the voltages, frequencies etc. The growing deployment of
(PMUs) provide
monitoring of these signals. The key advantage of this

phasor-measurement —units fine-grained
approach is that grid operators can leverage existing sensing
infrastructure in the power grid (e.g advanced metering
infrastructure, phasor measurement units etc.), and no major
device upgrades to IoT-enabled electrical appliances (e.g.
enabling encryption/device remote attestation) would be
necessary. Such an approach is particulatly relevant in the
context of IoT-based attacks due to the massive number of
devices and lack of a unified approach to implementing secu-
rity standards.

The task is challenging, however, since well-designed LAAs
can remain undetected by traditional pattern recognition al-
gorithms applied to the load consumption data [19]. Amini
et al. [19] showed that LAAs can, however, be detected by
analysing the system measurements (e.g. load, frequency etc.) in
the frequency domain since LAAs can result in new frequency
components that are non-existent in the original data. The
method was subsequently extended to identifying the location
of the compromised nodes using an optimization-based
framework in [20]. An unscented Kalman filter (UKF)-based
approach to detect and identify the attack parameters was
proposed in [21] in which the attack parameters were
augmented to the power grid's state vatiables and estimated
jointly.

However, a major limitation of existing work (such as
[19, 20]) is that the formulation used is specific to a linear
power system model. While the theory of UKF proposed in
[21] is applicable for non-linear systems, when the power grid
dimensions grow, the number of attack parameters to be
estimated (which in turn depends on the different combina-
tions of nodes that can be attacked as well as the attacket's
chosen parameters) scales much faster than the number of
system state measutrements. Thus, the UKF approach is not
scalable to power grids of large dimensions since the estima-
tion problem becomes under-specified [21]. Moreover, our
results show that the UKF approach cannot track the attack
parameters accurately when the system is highly dynamic.

To overcome the aforementioned issues, this paper adopts
state-of-the-art data-driven methods for dynamical systems in
order to detect and identify LAAs using real-time monitoring
of the power grid's physical signals, such as frequency/phase
angle measurements monitored by PMUs. The application is
based on the observation is that LAAs lead to a change in the
parameters of the power system's dynamical model [16]. Thus,
the attack detection/identification solving the
following question: given a series of frequency/phase angle
observations over time, what are attack the parameters that
best describe the observed data? We model the problem as one
of data-driven discovery of power grid's non-linear dynamical
equations [22, 23].

We apply two state-of-the-art data-driven methods to solve

involves

the aforementioned problem, namely (i) a Sparse Regression
(SR) algorithm and (ii) a physics-informed neural network
(PINN) algorithm [23]. The SR algorithm is motivated by the
Sparse Identification of Nonlinear Dynamics (SINDy)
approach proposed in [22]. It applies sparse regression to
determine the fewest attack parameters that best describe the
observed measurements. In the context of attack detection/
identification, the rationale for seeking a sparse solution is that
in a real-world scenario, the attacker can likely monitor the
frequency fluctuations and manipulate the load at only a few
nodes in the power grid. In particular, we use the least absolute
shrinkage and selection operator (LASSO) method to obtain a
sparse solution to the LAA detection/identification problem.
The PINN method on the other hand uses deep neural net-
works (DNNs) to approximate both the state of the power grid
(voltage phase angles/frequency) as well as the unknown non-
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linear dynamics. It treats the DNN weights as well as the attack
parameters as variables to obtain the parameters that best
describe the observed dynamics and the mechanisms that
govern the evolution of the observed measurements. In both
the algorithms, the solution to the attack parameter estimation
problem will automatically determine which load buses are
compromised by the attacker and those that are not.
Furthermore, we present a methodology for the implementa-
tion of each method, particularly showing the implementation
utilising edge computing deployed over decentralised archi-
tectures, requiring limited information exchange between the
neighbouring nodes.

We note that there is a growing body of work that applies
ML to detect FDI attacks against power grids. Despite their
effectiveness, they cannot be applied directly to the problem
at hand, since (i) we are interested in both detecting the at-
tacks as well as identifying the attack locations. Existing
works on FDI attack detection (e.g [24-206]) apply binary
classification solutions, that is, classify whether the attack has
occurred or not; they do not localise the attack. Identifying
the attack location requires a multi-class classification
approach. For the problem at hand, such an approach will
exponential complexity, defender
consider every combination of victim nodes that the attacker

have since the must
can target. To overcome this issue, the proposed SR and
PINN algorithms leverage the knowledge of the power grid's
‘physical model’ to infer the attack parameters with a small
amount of training data. (ii) ML techniques applied to the
FDI attack detection problem only consider the steady-state
operation of power grids. In contrast, our work considers
ML algorithms that consider the power grid dynamics and
applies data-driven methods for dynamical systems.

We conduct extensive simulations using benchmark IEEE
bus systems to evaluate the performance of these algorithms in
detecting and identifying LAAs. Our results show that both the
SR and the PINN algorithms are more effective in estimating
the attack parameters as compated to the other benchmark
approaches, including support vector machines (SVM), neural
network (NN), and the UKF approach, especially in systems
that exhibit fast dynamics. Furthermore, both the algorithms
can estimate the attack parameters within a short observation
time window. However, the PINN algorithm does not perform
well on systems exhibiting slow, and oscillatory dynamics since
the training may get stuck in local minima. On the other hand,
the SR algorithm performs reliably well under all system
conditions.

To summarise, the main contributions of this work are as
follows:

® Proposing novel data-driven approaches (SR and PINN) to
detect and localise IoT-based load-altering attacks against
power grids.

® Estimating the static/dynamic attack parameters by moni-
toring the frequency/phase angle dynamics over an obset-
vation time window.

® Verifying the effectiveness of the proposed methods on
slow oscillatory and fast dynamics networks.

® Comparing the performance of the proposed methods with
benchmark techniques, including SVM, NN, and UKF.

The rest of the paper is organised as follows. Section 2.1
introduces the system model; Section 3 describes the SR and
the PINN algorithms. Section 4 includes discussion on prac-
tical aspects as well as a decentralised implementation of the
proposed algorithms. Section 5 describes the simulation results
and Section 6 concludes. The simulation parameters are listed

in Appendix.

2 | PRELIMINARIES

21 | System model

We consider a power grid consisting of a set of
N ={1,...,N} buses. For each node i€ N, the set of
neighbouring nodes is denoted by A;. The buses are divided
into generator buses N and load buses N and
N =NgUN|. The power grid dynamic model is given by
27):

Si=wi,i€Ng (1)

Mo; = —D;w; — wai - Kfél - PF, 1€ NG, (2)

13

DiSi:_Pl‘L_PE7i€NLa (3)

1

where Pf: = ZjeNBi,/ sin((si]-). In the above, §; is the phase
angle deviation at bus i € N, 6 =06;—0;, 1, € N and w;
denotes the rotor frequency deviation at the generator buses
i € Ng. The generator inertia coefficient at bus 7 € Ng is
denoted by M;. The damping coefficients at generator/load
buses are denoted by D; 2 € N B; j is the suscpetance of line Z,
7. Finally, PZL denotes the load at bus 1 € V.

We denote @gom as the grid's nominal frequency, for
example, 50 Hz in Europe or 60 Hz in North America. For
safe operations, the frequency must be maintained within the
safety limits. We denote @y, as the maximum permissible
frequency safety.  Thus,
|@nom — @;] < Omax, Vi € G. We note that in steady state,
w; =0,Viegq.

deviation ~ for  system

2.2 | Load-altering attacks

IoT-enabled end-user appliances often have poor security
features. Several such vulnerabilities have been discovered in
commercial IoT high-wattage appliances. For instance, it has
been shown that Mitsubishi ACs are prone to XML external
entity injection (XXE) vulnerabilities [28, 29]. They can be
exploited to launch denial-of-service (DoS) or privilege esca-
lation (unauthorised access) attacks. In particular, the latter can

be exploited by an external entity (such as an attacker) to
change the operational settings of ACs (e.g. switch ON/OFF
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or change the power settings). Similatly, other IoT power ap-
pliances such as photovoltaic (PV) inverters [30] and electric
vehicle (EV) chargers [31] are also known to have cyber
vulnerabilities.

Botnet-type attacks against IoT devices, such as the Mirai
attack that controlled up to 600,000 devices, have been well-
documented [32]. If such attacks are launched against IoT-
enabled electrical appliances, they can significantly disrupt
power grid operations. Assuming that a commercial AC has a
power rating of 2 kW, the exploitation of tens of thousands of
such devices can lead to several megawatts of load alteration,
significantly disrupting the balance between supply and de-
mand. In this work, we do not explicitly model how an attacker
can launch Botnet-type attacks against the power grid. Rather,
inspired by the aforementioned vulnerabilities, we focus on the
impact of such attacks on power grid operations and the
corresponding detection/identification mechanisms. In the
following, we present a model of LAAs in the context of
power grid control loops described in (1)—(3).

Under IoT-based LAAs, the attacker manipulates the sys-
tem load by synchronously switching on or off a large number
of high-wattage devices. Assume that the demand at the load
buses consists of two components PZL =P1~LS —I—PiLV, where
PiL 5 denotes the secure part of the load (i.e. load that cannot be
altered) and PlL " denotes the vulnerable part of the load at
node i€N; We denote the set of victim nodes by
No(SNL),and N, = |N,|, which are the subset of load buses
at which the attacker can manipulate the load. The system load
under LAAs is given by

N
L L s
=D _Kiyo, +ef + P (4)
=1
Herein, €L is a step-change in the load introduced by the

attacker (stanc LAA component) Note € =0ifi & N, The
component Zk c SK & Ok, is the dynamlc LAA component.
Note that to m]ect the dynamic LAA, the attacker must
monitor the frequency fluctuations at a subset of the buses in
the system, @y, k; € S. Herein, S(CN), denotes the set of
sensing buses, that is, buses at which the attacket can monitor
the frequency fluctuations, and k; denotes the index of the jth
sensing bus and § = |§|. KZ 3 denotes attack controller gain
values corresponding to the attack at load bus i € A/} that
follows the frequency at bus kj € S. Note that Kt ik =0, and
therefore, the dynamic LAA component increases the system
load when the frequency falls below the setpoint and vice
versa; this has the opposite effect of arresting the frequency
deviation. Furthermore, we have eff < PZL V and

V—eb)/2.Vie. (5)

ZK ka)"‘"“‘ <

The above limit on the dynamic LAA component can be
explained as follows. The left-hand side of (5) is the maximum

load value that must be altered by the attacker at victim bus
i €V before the frequency at the sensor bus &; exceeds the
safety limit @™, This must be less than the amount of
vulnerable load PL - € (after removing the static LAA
Note that the amount of load that can be
compromised under dynamic LAA must allow for both over

component).

and under frequency fluctuations before the system frequency
exceeds @™ (see [16]). Thus, the right-hand side of (5) is
divided by 2. Under LAA described in (4), the power grid
dynamics noted in (1)—(3) becomes

Si:a)i,iGJ\/G (6)

Ma; = —D,-a)i - wai - K{(Sl - Pf, 1€ NG, (7)

13

S
Dlél:ZKf;k]Cl)k]_elL_PlLs_Pfa ZENLa (8)

=

Equations (6)—(8) jointly describe the power grid dynamics
under LAAs.

2.3 | Impact of LAAs

To illustrate the attack impact, we show the phase angle and
frequency dynamics for the IEEE-6 bus system under LAAs in
Figure 1.

2.3.1 | Static LAAs

First, we consider static LAAs only, thatis, when € # 0, whereas
Kt ik = = 0 (dynamic component). Note that static LAAS only act
as an initial perturbation on the system. Small perturbations
(corresponding to natural load fluctuations in the system) lead to
minor frequency fluctuations, and the generatot's control loops
act quickly to counter the frequency deviation. However, LAAs
that cause large-scale fluctuation in the system frequency can
lead to large frequency fluctuations, leading to unsafe frequency
excursions. An example of frequency fluctuations following a
static LAA of 0.5 pu (base load of 100 MW) is plotted shown in
Figure 1a. Note also from Figure 1a that small-scale load changes
only cause minor frequency deviations.

2.3.2 | Dynamic LAAs

As compared to static LAAs, dynamic LAAs, that is, attacks
with non-zero values of Ki%/e, change the dynamic model of the
system, which can be noted by comparing Equations (3) and
(8). This can alter the system design considerations and
potentially destabilise the grid's frequency control loop. In
Figure 1b, we plot the frequency dynamics for different values
of KiL,/ej for the IEEE-G bus system. As evident, the frequency
control loop destabilises for large values of attack controller
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FIGURE 1 Frequency dynamics under (a) static
large-scale IoT-based load-alteting attacks (LAAs);
(b) dyanmic LAAs for IEEE-6 bus system
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gain (see [17] for more analysis on this parameter). Moreover,
we note that at different values the attack controller gain
generate different patterns of frequency dynamics (more dis-
cussion is provided in Section 5).

3 | DATA-DRIVEN TECHNIQUES FOR
DETECTING AND IDENTIFYING LAAS

This work focuses on detecting and identifying IoT-based LAAs
by real-time monitoring and analysis of the grid's physical signals.
In particular, we assume that the system operator has deployed
PMUs in the power grid, which enables them to monitor the
(@)

voltage phase angles {5 .

and frequency fluctua-
L }ieN,Tzl,A.A,T q Y

. 7 . . .
tions {55 )} , respectively, over a period of time.
ieN =1,....T

Herein, we assume a slotted time system with x® as the value of
the signal x at time slot 7, where the slots are sampled at a time
interval of T, and T'is the total number of time slots. For instance,
according to IEEE /IEC standards, for a 50 Hz system, the PMU
sampling frequency can be between 10 and 100 frames per
second. Therefore, 7 is in the range 10—100 ms [33]. Attack
detection/identification problem involves inferring the param-
eters { K iL,/e] }iev,kjes and €F, i € V by monitoring the power grid

dynamics {657)}. v , and {a)gf)}l N .
ieN =1,..., eN =1,...,

Time (sec)

The overall implementation of the proposed methodology
and its integration into power grid wide-area monitoring sys-
tems (WAMS) is shown in Figure 2. IoT-enabled electrical
appliances are installed and operated by end-users, who typi-
cally lack security hygiene. Moreover, due to their massive
numbers, and the lack of a unified approach to implementing
security standards, IoT-based electrical appliances are insecure
and vulnerable to attacks [5, 6]. In contrast, the PMU networks
that monitor the power grid's physical signals are deployed by
the system operators (e.g. at substations). It is feasible to
deploy advanced security solutions to these systems and ensure
the confidentiality and integrity of the monitored physical
signals. For instance, the IEC 62351 standard provides security
recommendations for different power system communication
protocols, including the widely used IEC 61850 protocol for
PMU/substation communication [34]. Thus, we assume that
the attacker cannot modify the PMU-monitored signals, mak-
ing the proposed data-driven attack detection/identification
particularly suitable for detecting LAAs. In particular, the
proposed approach will localise the buses (i.e. the substations)
that are targeted by the attacker under LAAs. We provide
further details on the integration of the proposed detection
scheme into WAMS in Section 4.

In particular, we propose physics-informed machine
learning algorithms to detect and identify LAAs. We note that
the problem at hand can be modelled as supervised learning
that learns only based on the training samples and does not rely
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FIGURE 2 Proposed detection framework and integration into wide-
area monitoring systems

on any prior knowledge or the laws of physics. Specifically, one
can train a machine learning classifier that distinguishes be-
tween the system's dynamics under different values of the

L

attack parameters {Kikj ,eiL ,1 € V. However, under

}iev,k] €S
such an approach, identifying the locations and the magnitude
of LAA will be challenging since it will involve a combinatorial
search across nodes of the grid that the attacker may target
(note that this number can potentially be ZMX‘S'). Training
such a classifier would be computationally complex, which
requires a tremendous amount of training data.

On the other hand, if the physical model governing the
system dynamics is known, this knowledge can be incorporated
into the learning, This approach is beneficial when the infer-
ence must be performed with a limited number of samples,
which is the case in our problem, where the identification must
be completed quickly before the system is damaged. Motivated
by these challenges, we propose two state-of-the-art techniques
for data-driven identification of dynamical systems to solve the
LAA detection/identification problem, namely, the SR algo-
rithm and the PINN algorithm. The details are presented next.

3.1 | LAA detection and identification using
SR approach

The SR approach, which is based on the SINDy algorithm
proposed in [22], applies sparse regression to find the attack
parameters that best represent the observed power grid dy-
namics. To formalise the SR framework for detecting and
identifying LAAs, we define the following additional notations.
First, we define éi as

2@ o1 0y (s
jE

Using (9), a discretised version of the load bus dynamics in
(8) over =1, 2, ..., T time slots can be rewritten as

. Kt
o o, -1 7 [Kob
A S o |ieNs (10)
: = : ,LENT.
; D; KL
HET) a)(kT)7 ..,w]i?)’ _1 l,ks
2 €;
0?’_ o ———
i kL

Equation (10) represents the relationship between the
attack parameters le and the load bus dynamics at bus 1 € AV’ L
Note that the system operator can compute the elements of 0;
and Q using the frequency and phase angle measurements
obtained from PMU. Thus, the system operator can estimate
the attack parameters le by solving (10).

At this stage, several comments are in order. First, Equa-
tion (10) is a system of T linear equations with § + 1 unknown
vatiables. In general 7 > § + 1, since PMUs have a high
sampling frequency (e.g. 50 measurement samples per second
[33]). Second, the measurements in 0; and Q are corrupted by
measurement noises. Third, the value of le that solves (10)
may not be unique. For instance, there may be multiple attack
vectors that result in similar dynamics. Thus, we seck to find
the sparsest attack vector le that best explains the dynamics
observed in éi and Q. The rationale is that in a real-world
scenario, the attacker can likely monitor the frequency fluctu-
ations and manipulate the load at only a few nodes in the
power grid. To promote sparsity, we use the LASSO algorithm,
which applies an L1-regularisation term to promote sparsity.
The optimization problem corresponding to the LASSO al-
gorithm is given by [35]

~L . .
k, :argn]gnngzkf—0i||2+x||kf||1, i=1..,V. (11)

2

Herein, ||k||, represents a penalty term that and A > 0 is a
scaling parameter. The overall SR approach is described in
Algorithm 1.

Algorithm 1 Sparse Regression Algorithm

Input: Phase angle data {5(.T) and

(1) * }iGN,rzlw,T

frequency data {w- }
q Y Y JieN =10

Output: Estimates of the static
<@L i=1,.., NL> and dynamic

i
=L . .
(Ki’kj, i=1,.,N,7=1,., S) LAA parameters

1:Monitor phase angle {5(?) and

* }iEN‘r:l‘...,T
(1)

3 } data.
ieN,t=1,.,T

2:From the phase angle data and frequency
(1)
data, compute {6. }
! P . ieN,t=1,.,T
3:Construct the vector and the vector 6 and
the matrix Q from the phase angle and

frequency measurements.

frequency {w

as in (9).
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. ~L
4:Using @ and Q, solve for k; using the LASSO
algorithm.

5:0utput ﬁf, i=1,.,Nz|.

3.2 | Identification based on physics-
informed neural networks

We now describe the PINN framework [23, 36] applied to
detecting/identfying LAAs. PINN incotporates the knowl-
edge of the physical model guiding the observed dynamics to
train a neural network with limited training samples. As in [23],
we incorporate the underlying differential equations as an
additional loss function to solve two different types of prob-
lems. The first problem is the forward problem, which uses
NN to obtain a solution to the differential equations, that is, in
our context, the signals §;(f) and w;(f) that solve (6)—(8) under
LAAs. The second problem that is of more interest to our
work is the inverse problem, in which, given the measurements
and the structure of the differential equations, estimate the

unknown parameters {K;L,k] } and ef-‘ ,1 €V that best

i€V keS
describe the observed data.

The PINN framework accomplishes these two tasks by
defining appropriate loss functions and training a NN to
minimise them. The overall PINN framework is shown in
Figure 3 and we present the details next. First, let @;(t,¢) and
5,(¢, ) be the NN approximations of @;(t) and 5;(¢) as shown
in Figure 3. Herein, ¢ represents the weights of the NN, which
are trained to minimise the following losses:

3.2.1 | Mean-square loss

The first loss term involves the mean square loss between the
observed measurements w;(t) and J;() and their NN approx-
imations, that is,

3.2.2 | Physics based loss
The system dynamics are incorporated as a second loss func-
tion. Specifically, let us define

fU =56 —d,ieNg (13)
f? =Ma; + Do + Ko,
- N (14)
+K;6; + ZBiJSin(éij), i€ Ng,
jeN

BY S L
[P =Disi— Y. Ky dop + ¢ +PF
28
! (15)

+ZBi1/'Sin(gi]'>, ie Ny,
JEN

where in the above, we have dropped the notations showing
the dependency offgl) and fl(-z) on (¢, ¢) and fl@) on (t, ¢, K,
€L) and simplicity. In the above, the derivatives are computed
using NN's automatic differentiation. The physics-based loss
function is then given by

T

L, (p,K' € :% Z(Z (" ¢))2

=1 \ieNg

(16)
+ S )+ <f§3) (r,¢,KL,eL)2>.

iENC iGNL

Input Hidden Hidden Output
layer layer layer layer
Ly
t— Lo
L3
FIGURE 3 Physics-informed neural networks

network showing input output layers and the output
attack parameters
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Note that the above loss function depends both on the NN
weights ¢ and the attack parameters K-, €”.

3.2.3 | Sparsity-promoting loss

As noted before, we are interested in sparse solutions to the
attack parameter estimation problem. Thus, in the PINN
framework, we also add the sparsity promoting term in the loss
function given by

Ly (k") = a (IR, + 11", ). (17)

. . =L ~L
where, @ is the scaling factor and ||[K ||, and ||€” ||, ate the 1-
norm of the vectors consisting of all the attack parameters.
The NN is trained using the observed measurements

{51(»7)} and {551)} as follows:
€N z=1,...,T ieN z=1,....,T

P weg min 11 (9) + L (¢, KE,€5) + Ly (KL).
K e

Note that when the sum of these two losses is minimised,
we ensure three criteria: (i) the output of the NN replicates the

observed system dynamics, (ii) / 51), f 52), and f £3> are close to
zero, which in turn implies that 6 7-8 are satisfied, and (iii) the
obtained solution is sparse. This implies the estimated attack
parameters that best fit the observed data. The overall PINN
approach is described in Algorithm 2.

3.3 | Comparison with black-box machine
learning algorithms

As noted before, the SR and PINN algorithms are examples of
the so-called ‘physics-informed’ ML algorithms. Alternately,
one may also use ‘black-box” ML algorithms (e.g. support
vector machines or neural networks) that are purely data-
driven and do not use the knowledge of the underlying
physical models. We now clarify the difference between the two
approaches in the context of detection and identification of
IoT-enabled LAAs.

Note that both the SR and the PINN algorithms do not
require ‘offline’ training, The data monitored in real-time can
be directly fed as inputs to Algorithms 1 and 2 to generate
estimates of the attack parameters. In contrast, the black-box
ML algorithms require offline training, which can be very
data-intensive, especially for the considered case of IoT-based
LAAs. In particular, we must train the ML model with
training data corresponding to LAAs at different nodes (note
that there can be 2V
considering multi-point attacks). Moreover, the attack pa-

combinations of victim nodes,

rameters at the victim nodes can also have different magni-
Thus,
combinations will be computationally complex and will

tudes. training ML models considering many
require a tremendous amount of training data. In Section 5.4,

we provide a numerical comparison of the proposed

algorithms with SVM and NN trained using black-box
training techniques. We observe that the accuracy of
training depends heavily on the range and the amount of the
training data. To find more details about SVM and NN, see

[37].

Algorithm 2 PINN Algorithm

Input: Phase angle data {5(.T and

() ’ >}ieNﬁf:1v,.,T

frequency data {wv }
d Y * ieN,t=1,.,T

Output: Estimates of the static
(@L i=1,.., NL) and dynamic

i
<%ikj’ i=1,.,N,7i=1,.., S) attack parameters

Parameters: Neural Network Parameters ¢
l:Setup neural network with parameter ® and
unknown attack parameters

(Kikj, i=1,.,N,7=1,.., S) as TensorFlow

variables as shown in Figure 3.

2:Use auto-gradient to calculate the
derivatives of the phase angle and
frequency data.

3:Setup loss functions Ly (¢), L, (¢, K*, €°)
and ILs; (K”) defined in Sections 3.2.1 to
3.2.3.

4:Monitor phase angle {5@} and
ieN,t=1,.,T
frequency data {wm}
d Y * ieN,t=1,.,T

5:Use the collected data to train the neural
network.
6:0utput the attack parameters

~L . .
Ki,kj7l = 1,...,NL,_7 = 17...75.

4 | DISCUSSION AND
IMPLEMENTATION

In this section, we present a discussion on some practical as-
pects of the proposed algorithms.

4.1 | Differentiating attacks from natural
load fluctuations

Note that the power system is naturally dynamic, that is, the
frequency/phase angle fluctuations occur due to natural load
changes. Thus, the grid operator will need a mechanism to
differentiate these natural variations from LAAs. There are two
important differences between natural load fluctuations and an
LAA: (i) for static LAAs, €Z»L will have a large value (to cause
unsafe frequency excursions, please see Figure 1a) (i) for dy-
namic LAAs, the attack controller gain parameter KZ»L_]» will be
non-zero and positive. Note that this is designed to work in an
opposite manner to the generator's governor control (that



LAKSHMINARAYANA ET AL.

arrests deviations), that is, the dynamic LAA decreases the load
when the frequency is increasing (about the setpoint), and LAA
increases the load when the frequency is decreasing (below the
setpoint) [16].

In general, the operator can adopt the following procedure
to differentiate natural load fluctuations to attacks. (i) Imple-
ment the SR or PINN algorithm periodically to infer eiL and

R ~L
Kl-LJ- values from the observed data. (i) If ef #0and K; ,; =0,

then, compare EZL against a threshold value, which is computed
based on the historical or forecasted value of the load fluctu-
ations. If it exceeds the threshold, raise an attack alert. (iii) If

~L

K; ;> 0, compare against a threshold (around zero). If it ex-

ceeds the threshold, raise an attack alert.

4.2 | Implementing the methods
This section highlights the implementation aspects of the SR
and PINN algorithms. The proposed algorithms can be
straightforwardly integrated into existing wide-area monitoring
systems (WAMS). The hierarchical structure of the WAMS
network is shown in Figure 2. PMUs installed at the substation
monitor the phase angle/frequency measurements and send
these measurements to a phasor data concentrator (PDC) and
subsequently to a control centre (CC). The proposed algo-
rithms can be implemented in a centralised (at the CC) or
decentralised manner. Since they are not significantly resource-
intensive, both the SR and PINN algorithms can be imple-
mented at the edge, either at a local phasor data concentrator
(PDC) or at individual substations with limited information
exchange between the nodes. This allows efficient response
and detection, more control over data flows, and therefore
enhanced security, privacy and data handling. We elaborate the
method in the following.

Recall that the SR algorithm involves solving (11) for every
victim node ¢ € V to determine k;. This in tutn requites the
following signals at each node 7 € V: (i) §; (i) {5]- }j > and (i)

{a)kj }k]‘ES' Note that (i) can be monitored locally at individual

substations, and (ii) only requires information exchange with
the neighbouring nodes of node i, that is, j € ;. On the other
hand, (iii) requires information exchange from all the potential
nodes at which the attacker can sense the grid frequency. In
practice, due to the attacket's limited capabilities, these nodes
are likely to be restricted to nodes that belong to the same
control area or those that are connected to the same PDC.
Thus, the SR algorithm can be implemented locally with
limited information exchange.

The PINN algorithm can be also be implemented in a
decentralised manner. In particular, each substation can locally
solve the following optimization problem to determine kF.

d)j, EZL = argquILlL1(¢,‘) + L, (¢l-, kZL) + Ls (kf), (18)

As noted in the case of the SR algorithm, all the signals
required to solve (18) can be obtained locally with limited in-
formation exchange between nodes of the same control area.

5 | SIMULATIONS

In this section, we present simulations to show the effective-
ness of the proposed approaches.

5.1 | Simulation settings and methodology

5.1.1 | Bus systems
The proposed algorithms are tested using the IEEE 6-, 14-,
and 39-bus systems. The power grid topological data is ob-
tained from the MATPOWER simulator. For the IEEE 39-bus
system, N ={30,...,39},|Ng|=10 and N ={1,...,
29}, IV L] =29. We assume S =N and V = N. Thus, in
our simulation setup, the attack parameter identification in-
estimating  [N'g| X [INz| =290  values  of
K: veV,seS For the IEEE 14-bus  system,
Ne=1{1,2,3,6,8},Ng| =5 and [N'| =9. Finally, for the
IEEE 6-bus system, N'¢ = {1,2,3},|[Ng| =3 and |N.| = 3.
More details on the simulation parameters used in the case
studies are listed in the Appendix.

volves

5.1.2 | Algorithm implementation and settings

We implement 5 algorithms in total—(i) SR (ii) PINN (iii)
SVM (iv) NN, and (v) UKFE The details are as follows: (i)
The SR algorithm is implemented using the Lasso function
in MATLAB. (ii) The PINN algorithm is implemented using
Tensorflow. We use a multi-layer perceptron for PINN
with three hidden layers, each with 50 neurons. We use
automatic differentiation to calculate the gradients. The NN
is trained using the limited memory Broyden—Fletcher—
Goldfarb—Shanno algorithm (LBFGS) optimizer (similar to
[23]), as it is better suited when the training samples are
limited. (i) SVM is implemented in MATLAB using
Gaussian kernel function. (iv) NN is also implemented in
MATLAB. For NN, three multi-layer perceptrons with 10
neurons for cach layer is considered. To avoid over-fitting
problems, the cross-validation technique and the ReLU
activation function are also implemented. (v) Finally, UKF is
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implemented using unscentedKalmanFilter ~function in

MATLAB.

5.1.3 | Generating training/testing data

In order to generate the dataset corresponding to power grid
signals under LAA, we simulate the differential Equations in
(6)—(8) using the ode-45 function of MATLAB.

For brevity, we only present details from the IEEE-39 bus
system (the settings for the other bus system can be found in the
Appendix). In this bus system, the node pair (v, s) = (19, 33)
corresponds to the least-effort LAA [17]. Thus, for single-point
attacks, we set K{‘()‘B to a non-zero value (to be specified sub-
sequently) and rest of the values of K. 7L/.5 to be zero. We consider
two sets of generation parameters for each test case as listed in
the Appendix. The frequency/phase angle dynamics of the
IEEE 39-bus system corresponding to the two sets of parame-
ters are shown in Figure 4. We refer to the parameter set Al as
Jast dynamics, in which the frequency deviates away from the
setpoint of 50 Hz relatively quickly within a few oscillation cycles.
It can be observed that the oscillations are relatively smooth. The
attack parameter in this case is set to K{‘%B = 18. We refer to
parameters set B1 as slow oscillatory dynamics, in which we
observe several cycles of oscillations before the frequency de-
viates away from the setpoint of 50 Hz. The attack parameter in
this case is set to Kf()ﬁ = 25. For both cases, we set €19 = 0.1 pu.
To generate noisy data (as inputs to the algorithms), we add
Gaussian noise to the frequency and the phase angle waveforms
(obtained by solving (1)—(3)), whose standard deviation is set to
0.01 pu. We assume PMU sampling frequency of 50 measure-
ments per second. Hence, the number of measurements
involved in the training process is 50 7, where 7 is the mea-
surement time window (specified subsequently).

As explained in Section 3.3, SR and PINN are physics-
‘offline
training’. Thus, the data generated using the procedure stated

informed ML algorithms that do not require

above can be directly fed as inputs to the algorithm for
inferring the attack parameters. The SVM and NN approaches
on the other hand are ‘black-box” ML algorithms that require
‘offline training; In the offline data generation procedure, 2000
samples, based on two features, §; and w;, i € N'g, with 100

FIGURE 4 Frequency dynamics under DLLAAs for the IEEE-39 bus
system. Top figure: Fast dynamics (System parameters A) with Kfe..% =18.
Bottom figure: Slow oscillatory dynamics (System parameters B) with
Kf()ﬁ = 25. The horizontal lines indicate the safety limit of 2 Hz

time-steps, are generated for each victim bus N ,(CN1). To
incorporate diversity in the offline-training data, both the
location of the sensing bus/victim bus V, S(CN') as well as
the dynamic attack parameter KqLM are varied between a certain
range. As noted in Section 3.3, the range of K];‘S considered in
the offline training data is critical to the performance of SVM
and NN. To illustrate these effects, we consider two different
ranges, (i) (1.2-23.4) and (i) (0.8-32.4) and discuss the
dependence of this parameter in Section 5.4.

5.1.4 | Algorithm evaluation metrics

Attack detection and identification algorithms in the context of
LAAs must have two characteristics (i) the targeted node(s) and
the corresponding attack parameter(s) must be identified
correctly, and (ii) for the nodes that are not targeted by the
attacker, the estimated value of must be close to zero. Since our
objective is not only finding the attack locations, but also
determining the attack parameters, we evaluate the algorithm
performance in terms of two metrics. The first, given by

~L
nm = <K£ﬁs - Kv,s) /K[;,w

where v and s are the actual victim and sensing buses
respectively (at which the attack is injected to generate the
frequency and phase angle dynamics). The second metric is
given by

=i 3, (KR

veVseS

that is, the mean-square error of the estimated attack param-
eters at nodes that are not targeted by the attacker. Note that a
low value of #; indicates high precision in estimating the
correct attack parameters (true positive), where as a high value
indicates that the attack is not detected accurately (false
negative). Similatly, a low value of #, indicates that the nodes
not targeted by the attacker are not identified as attacked nodes
(true negative), where as a high value indicates large number of
false positives.

5.2 | Simulation results

We present the simulation results next. Once again, for brevity,
the simulation results from the IEEE-39 bus system are pre-
sented as plots and other results from other bus systems are
presented in a tabular form.

5.2.1 | Single-point attacks

We examine the effectiveness of the SR and PINN methods in
detecting the DLLAAs and compare their performance with the
SVM, NN and UKF methods.



LAKSHMINARAYANA ET AL.

1

SR PINN
+ 02+ — ]
02 T 1 N
| 0.18 .
\ 0.16 .
0.15 ‘ 1 0.14 1
0.12 .
8 8
5 04t {5 017 ]
0.08 .
\ T 0.06 .
0.05F | 1
0.04 , .
0.02 f Q 4
L] L
ol 1 ] ot 1
12 14 16 12 14 16
Time (s) Time (s)

SVM NN
+ + +
+ 0.35 1
2 . 4
+ 03+ ]
157 1 025t 1
N I 5 02f * |
—~ + =
Hooqt + jea
T o= 0.15 | 1
F % + +
+
+ 0.1} ]
051 T+t 1 T T
g T o+ 0.05 g + g
JHoi BLE
12 14 16 12 14 16
Time (s) Time (s)

FIGURE 5 Attack parameter estimation error #; (boxplots) for fast dynamics (12 — 16 s, System parameters A) with Kf‘),“ﬂ =18

The parameter estimation accuracy #; (boxplots) for the
IEEE-39 bus system with fast dynamic parameters is shown in
Figure 5 for the SR, PINN, SVM, and NN algorithms,
respectively. The results are plotted for different observation
time windows. The attack parameter estimation is repeated 100
times, where the measurements differ due to the noise reali-
zation. Furthermore, for the range of the dynamic attack
parameter in the training data for SVM and NN algorithms, we
consider (i) (1.2-23.4) (see Section 5.4 for more discussion on
this).

Fast Dynamics: It can be observed that the SR method
can estimate the dynamic attack parameters more accurately
compared to PINN, SVM, and NN for fast dynamics before
the system dynamics breach the safety limits. As expected, the
attack parameters can be estimated with greater accuracy when
the observation time window is larger, due to the availability of
more data.

Slow Oscillatory Dynamics: The SR algorithm achieves
high precision for slow-oscillatory dynamics as well. However,
we observed that other benchmark algorithms have a large
error in inferring the attack parameters in this simulation
setting. Accordingly, for this simulation setup, only SR results
are presented in Figure 6, and other benchmarks, which have
more than 50% error are neglected.

To further investigate the poor performance PINN, SVM
and NN algorithms for slow oscillatory dynamics, we investi-
gate their online training procedure. For brevity, we only pre-
sent the result for PINN. As illustrated in Figure 7, which
presents the overall loss as a function of the training epochs,
while in the case of fast dynamics, the error is minimized over
several training epochs (47,000 epochs) and reaches a very low

value, for slow oscillatory dynamics, the training terminates
relatively quickly (640 epochs) since the loss does not decrease
further. We conjecture this is because the system with slow
dynamics has several oscillatory cycles (see Figure 4) and the
training process may be potentially stuck at local minima. In
contrast, for the system with fast dynamics, the oscillatory
cycles are relatively smooth and conducive to training the NN.
Thus, the PINN algorithm is not suited for attack detection/
identification for systems with slow dynamics.

Further, we also enlist the overall mean-square error of
attack parameter estimation (#7,) in Table 1. A similar trend as
the previous result is observed, that is, while the SR, PINN,
SVM, and NN algorithms achieve good performance for the
system with fast dynamics. However, for slow dynamics, only
the SR algorithm achieves satisfactory performance. In
particulat, the low value of 7, indicates that the value of Kés
for nodes that are not targeted by the attacker are close to zero.
The error for the PINN, SVM and NN algorithms under slow
oscillatory dynamics is very high; hence we do not include
them in Table 1.

Finally, we also compare the UKF approach for attack
parameter estimation in Table 1 (last column). It can be
observed that while UKF method performs well in the case of
slow dynamics, it is unable to do so in the case of fast dy-
namics. This is because UKF is a sequential algorithm, and
hence, it is unable to capture the effect of rapid fluctuations in
the system dynamics over a relatively short period of time. The
poor performance of UKF can also be observed by noting the
value of 1, in Table 2 (IEEE-39 bus, corresponding to fast
dynamics), where we observe an error of 48% in estimating the
value of the attack parameter.
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5.3 | Simulation results for different bus
systems

To verify the effectiveness of the proposed methods in different
bus systems, the results from IEEE 6-, 14-, 39-bus systems are
presented for fast dynamic parameters. The dynamic attack pa-
rameters are considered as K{;_l =0.8, Ké1 =11.3 and

KE, ., =18, for IEEE 6-,14-, 39- bus systems, respectively. The
numerical results, which present the 7, and 7, values, are shown
in Table 2. The findings confirm the effectiveness of the SR
method against other benchmarks in all cases. As shown in Ta-
ble 2, the #7; and 7, values for the SR method are in range (0.028—
0.060) and (0.011-0.038), respectively, while larger error values
are observed for other benchmark algorithms.
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5.4 | Multi-point attacks

We also consider simulations with multi-point attacks (multiple

victim buses). We only present results for the case of fast dy-
namics (due to the difficulties in training the other algorithms

TABLE 1 Mean-square error of attack parameter estimation (1,) for
IEEE-39 bus system with single-point attack. Kﬁ)& = 18 for fast dynamics
(Parameters A) with (7'= 15 s) and Kfom = 25 for slow oscillatory dynamics
(Parameters B) with (7'= 40 s)

Metric SR PINN SVM NN UKF

Fast dynamics 1 0.011 0.08 1.350 0.097 0.44

Slow oscillatory dynamics 7, 0.1 - - - 0.08

Abbreviations: NN, neural networks; PINN, physics-informed neural networks; SR,
Sparse Regtession; SVM, suppott vector machines; UCFE, unscented Kalman filter.

TABLE 2 Simulation results for different case studies under single-
point attacks for fast dynamic parameters

Metric SR PINN SVM NN UKF
IEEE 6-Bus system 14 0.028  0.07 0.219  0.097 0.47
12 0.038  0.092 1.178 0.808 2.13
IEEE 14-Bus system 14 0.06 0.064 0.168 0.103  0.49
2 0.0151  0.075 2355  0.962 3.18
IEEE 39-Bus system 14 0.04 0.08 0.073 0.086 0.48
12 0.011  0.085 1.350 0.097 0.44

Abbreviations: NN, neural networks; PINN, physics-informed neural networks; SR,
Sparse Regression; SVM, support vector machines; UCF, unscented Kalman filter.
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for slow-oscillatory dynamics, as mentioned in Section 5.2).
The attack parameters in this case are given by
Kf5733 =4, ngﬁ =14, K§0_33 = 4. Once again, the parameters
are chosen to represent a system that is stable without attacks,
but unstable due to the LAAs. The accuracy results for the
different attack parameters are plotted in Figure 8 considering
an observation time widow of 7'= 16 s. We observe that both
SR and PINN algorithms produce reliable estimates within the
considered observation time window.

As stated in Section 3.3, the performance of the black-box
machine learning algorithm such as SVM and NN relies on the
range of the training data considered during the offline training
phase. The simulation results also investigate this claim using
two different case studies with different dynamic attack
parameter ranges (i) (1.2-23.4) and (i) (0.8-32.4). The
outcome of the simulations is presented in Figures 9 and 10.
The results illustrate that by increasing the range of the dy-
namic attack parameters considered in the training data
(Figure 10), the prediction accuracy decreases. This is expected
since a lower range (of the attack parameters) in the training
data set implies more points around the actual attack parameter
used by the attacker, and hence, better prediction accuracy
(conversely, lower accuracy for higher range). However, the
operator has no way of having prior knowledge of the actual
attack parameter that will be used by the attacker. Thus, they
must consider a large range of the attack parameters in the
training data set (otherwise, they may risk misclassifying the
attack completely). Thus, black-box machine learning methods
have a high dependency on the input data structure. However,
in the proposed methods in this study, especially in SR, we do
not have these of limitations, which confirms that SR can be a
good solution for a wide range of system parameters.

PINN
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Attack parameter estimation accuracy #7; (boxplots) for multi-point attacks with 7= 16 s. Attack parameters: Kﬁ.’}} =4, Kﬁ).}} =18, Kéo,ss =4
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parameters range considered in the offline-training procedure is (0.8-32.4)

5.5 | Execution times

Finally, we also enlist the execution times of the SR, PINN;
SVM, and NN algorithms. The simulations are conducted on a
Windows PC with Intel Xeon(R) CPU E5-2630 v3 @ 2.40 GHz
processor, RAM:24 GB GPU NVIDIA K80. For the PINN
algorithm, we consider two training regimes. First, train from
scratch, in which the NN weights are randomly initialised and
trained with the observed data. In the second method, the NN

weights ate pre-trained with the phase angle/frequency mea-
surements with no attacks. Then during the online phase, the
NN weights are initialised with the pre-trained weights and fine-
tuned with the real-time measurements (with attack). The results
are tabulated in Table 3 averaged over 100 runs. It can be noted
that the SR algorithm takes significantly less time to execute
compared to the PINN, algorithm. This is because the PINN
involves training a NN over several epochs, which is computa-
tionally complex. The pre-training reduces the computational
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TABLE 3 Execution times for the SR and PINN algorithms

Method Execution time (s)
SR 4.84

PINN 4071

SVM 27.13

NN 69.15

Abbreviations: NN, neural networks; PINN, physics-informed neural networks; SR,
Sparse Regtession; SVM, suppott vector machines; UCFE, unscented Kalman filter.

5

time of the PINN algorithm. On the other hand, SR follows the
LASSO method which is computationally much simpler. Thus,
in addition to being broadly applicable over a wide range of
system parameters, the SR method also has an additional
advantage of quick execution in comparison with PINN, SVM,
and NN algorithms, thus minimising the system downtime.

6 | CONCLUSIONS

This study proposes data-driven algorithms to detect and
identify IoT-enabled LAAs against power grids. To this end, a
system identification problem is investigated, in which the attack
parameters that best describe the observed dynamics are esti-
mated from the measurements. Two physics-informed ML al-
gorithms, namely, SR and PINN are proposed, that estimate the
attack parameters from the observed data. Their performance is
tested extensively using different test systems, including IEEE
6-, 14- and 39-bus systems. Other benchmark approaches,
including SVM, NN and UKTF;, are also investigated to verify the
effectiveness of the proposed methods. The numerical results
confirm that the proposed data-driven algorithms outperform
other benchmark techniques. SR method presents high preci-
sion in estimating dynamic attack parameters in single and multi-
point attacks with about 3% error on average for fast and slow
dynamics. However, the PINN algorithm does not perform well
for systems with slow dynamics due to difficulties in training the
neural network. The main advantage of SR and PINN compared
to fully data-driven algorithms, such as SVM and NN, is that
their performance is not dependent on the offline training data
structure. Future work includes (i) an extension to multi-area
frequency control and optimal placement of PMUs to ensure
reliable attack parameter estimation, (ii) machine learning al-
gorithms to differentiate LAAs from generic faults in the sys-
tem, and (iii) development of a co-simulation platform capable
of emulating/simulating the cyber layer and simulating the
physical layer (power gtid).
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APPENDIX

Simulation parameters

System Al: Fast dynamics for IEEE 39-bus system

My =2.3186; M : My = 2.6419; My : Myy = 2.4862.
K — KP) = [1;0.45;0.45;0.1;0.5; 0.4; 0.3; 0.2; 0.4; 0.5];
Kl =0.6,Yi€ Ng;D; =2,Yi € Ng; D; = 0.01,¥i € N'p;

System B1: Slow oscillatory dynamics for IEEE 39-bus

system

M, =2.3186; My : My = 2.6419; My : My, = 2.4862.
K — KP = [100; 45; 45; 10; 50; 40; 30; 20; 40; 50);
Kl =60,Yi€ Ng;D; =2,Yi € Ng; D; = 0.01,Yi € N;

System A2: Fast dynamics for IEEE 14-bus system

M; — Ms = [0.125;0.034; 0.016; 0.010; 0.015];
D, — Ds = [0.125;0.068; 0.032; 0.068; 0.072];
K — KP =[0.02;0.09;0.03;0.03; 0.08];

K — KT =10.35;0.40; 0.35; 0.35; 0.40];

D; =0.01,Yie Ny;

System B2: Slow oscillatory dynamics for IEEE 14-bus

system

M, — M = [0.125;0.034; 0.016; 0.010; 0.015];
D, — Ds = [0.125; 0.068; 0.032; 0.068; 0.072];
KY — KT =[2;9;3;3;8];

K! — KT = [35;40; 35; 35; 40);

D; =0.01,Vi € Np;

System A3: Fast dynamics for IEEE 6-bus system

My — My = [1.25;1.25;1.25];

Dy — D; = [0.125;0.125; 0.125];
K — KP =[0.02;0.09;0.03);
K — K = [0.35;0.40; 0.35];

D; =0.01,Vie Np;

System B3: Slow oscillatory dynamics for IEEE 6-bus

system

M, — My =[1.25;1.25;1.25];

Dy — D3 = [0.125;0.125; 0.125];
KP — KP =[2;9;3];

K} — KL = [35;40; 35];

D; =0.01,Vie Np;
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