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Abstract: The diagnosis and surgical resection using Magnetic Resonance (MR) images in brain
tumors is a challenging task to minimize the neurological defects after surgery owing to the non-
linear nature of the size, shape, and textural variation. Radiologists, clinical experts, and brain
surgeons examine brain MRI scans using the available methods, which are tedious, error-prone, time-
consuming, and still exhibit positional accuracy up to 2–3 mm, which is very high in the case of brain
cells. In this context, we propose an automated Ultra-Light Brain Tumor Detection (UL-BTD) system
based on a novel Ultra-Light Deep Learning Architecture (UL-DLA) for deep features, integrated with
highly distinctive textural features, extracted by Gray Level Co-occurrence Matrix (GLCM). It forms a
Hybrid Feature Space (HFS), which is used for tumor detection using Support Vector Machine (SVM),
culminating in high prediction accuracy and optimum false negatives with limited network size to fit
within the average GPU resources of a modern PC system. The objective of this study is to categorize
multi-class publicly available MRI brain tumor datasets with a minimum time thus real-time tumor
detection can be carried out without compromising accuracy. Our proposed framework includes a
sensitivity analysis of image size, One-versus-All and One-versus-One coding schemes with stringent
efforts to assess the complexity and reliability performance of the proposed system with K-fold
cross-validation as a part of the evaluation protocol. The best generalization achieved using SVM
has an average detection rate of 99.23% (99.18%, 98.86%, and 99.67%), and F-measure of 0.99 (0.99,
0.98, and 0.99) for (glioma, meningioma, and pituitary tumors), respectively. Our results have been
found to improve the state-of-the-art (97.30%) by 2%, indicating that the system exhibits capability
for translation in modern hospitals during real-time surgical brain applications. The method needs
11.69 ms with an accuracy of 99.23% compared to 15 ms achieved by the state-of-the-art to earlier
to detect tumors on a test image without any dedicated hardware providing a route for a desktop
application in brain surgery.
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1. Introduction

The brain, working with billions of cells, is diagnosed as tumorous due to uncontrolled
cell division forming an abnormal colony inside or outside its periphery. It has the world’s
highest morbidity and mortality rates of cancers for adults and children [1]. Brain tumor
origin cannot be marked along with its growth rate. It is broadly identified as primary
or secondary tumors. The former has a rate of 70% of entire brain tumors having origin
inside the brain. The most heinous of these is the primary brain tumor, which is mostly
malignant. Some of the primary brain tumors, namely gliomas (80% of all malignant brain
tumors, only Grade I is benign out of Grades I to IV) [2], meningioma, and pituitary, are
most challenging for their early detection and treatment by physicians. Glioma, initiating
in the glial cells of the brain, is the prevailing one in comparison to the other two types of
tumors. Meningioma, mostly benign [3], is found inside the skull and its origin is in the
membrane covering the spinal cord and the brain. Pituitary tumors are found attached to
the pituitary gland, whose main function is to control the hormone levels in the body. It
can be benign as well as malignant, and its imbalance may lead to vision disturbances.

Presently, Magnetic Resonance Imaging (MRI) is the most common non-invasive
technique preferred by radiologists that can be used for scanning, as minor structural
changes become detectable that are challenging to detect using Computed Tomography
(CT) based imaging. However, tumor type identification is a tedious task with the time
constraint considered during the prediction stage of artificial intelligence-based solutions.
Therefore, a gap is an efficient solution to the intraoperative brain surgery, encountered in
the course of surgery in a timely manner. We have addressed this problem by introducing
an Intelligent Ultra-Light Deep Learning framework.

In clinical imaging, most of the existing work is concerned with the automatic separa-
tion and characterization of tumors in MRI scans. Although numerous attempts were made
for brain tumor detection and resection, every solution is prone to problems compromising
accuracy and other body organs-related issues such as affecting the liver, spleen, kidneys,
etc. The optimization of tumor resection has been achieved by applying multimodal brain
tumor imaging (intraoperative magnetic resonance imaging (iMRI), neuronavigation sys-
tem, intraoperative Raman spectroscopy (iRaman), intraoperative ultrasound (iUS), and
real-time optical fluorescence imaging) when the solution relates to benign and malignant
tumors; it leaves radiologists in an ambiguous situation about the malignant tumor type
due to insufficient details [4,5]. Another problem with using medical imaging repositories
is the limited number of training instances, and the most critical and difficult problem to
tackle is the class imbalance, especially in a multi-class data repository.

The manual analysis of MRI scans is time-consuming for expert radiologists as well as
physicians, especially in complicated cases [6]. The complex cases usually demand radiol-
ogists to compare tumor tissues with contiguous regions, enhancing images to improve
the quality of perception before tumor type categorization. This situation is impractical for
large amounts of data, and the manual techniques are not reproducible. Early brain tumor
detection with high prediction accuracy is the most critical diagnostic step for the patient’s
health [3]. Novel ideas and approaches are highly desirable for prompt and accurate
detection of tumors. In the case of artificial intelligence (AI) with its key enablers, Machine
Learning (ML) and Deep Learning (DL) algorithms, feature extraction shares the key role
in any computer-aided system in radiology as it turns data into useful information. As a
rule of thumb, the features should have a maximum inter-class variance coexistent with a
maximum intra-class correlation between the members of the same class. In recent years,
numerous automated systems have been used to detect brain tumors using MRI scans.
Hsieh et al. [7] classified brain tumors into various types using various methods, namely:
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region-of-interest (ROI) determination; feature extraction; and feature selection followed
by classification. They combined local texture along with global histogram moments and
estimated the effects of gliomas quantitatively using 107 images, 73 low- and 34 high-grade
images (glioma). Sachdeva et al. [8] illustrated a Computer-Aided Diagnosis (CAD) system,
extracting color and textural features of ROIs that were segmented, and used a Genetic
Algorithm (GA) for selecting optimal features. They achieved an accuracy of 91.70% and
94.90% using Genetic Algorithm-based Support Vector Machine (GA-SVM) and GA-based
Artificial Neural Network (GA-ANN), respectively. Cheng et al. [9] used a publicly avail-
able T1-weighted Contrast-Enhanced Magnetic Resonance Images (CE-MRI) dataset [10],
consisting of brain MRI scans having: glioma-; meningioma-; and pituitary-tumors, and
applied three features extraction methods: intensity histogram; bag-of-words (BoW) model;
and Gray Level Co-occurrence Matrix (GLCM). They found that BoW outperforms low-
level feature extraction methods while costing the overall complexity of the model on a
higher side.

The Deep Convolutional Neural Network (DCNN) is often used for analyzing images
with minimum preprocessing. LeCun [11] introduced the deep neural network “lenet” in
text-visual applications. Through state-of-the-art studies, G. Litjens et al. [12] explained
that handcrafted features might be replaced by automatic feature extraction in intensive
learning approaches. Swati et al. [13] claimed 96.15% accuracy for context-based image
retrieval using CNN for CE-MRI dataset with transfer learning for VGG-19 architecture.
He used a strategy to fine-tune the retrieval performance and used Closed-Form Metric
Learning (CFML) to compare the database and query images. Soltaninejad et al. [14] used
the superpixel technique, and their method classified each superpixel. They ensured ro-
bust classification by introducing a number of novel image features extracted from each
superpixel viz. intensity-based, Gabor textons, fractal analysis, and curvatures. The binary
classification, based on tumor and non-tumor classes, was carried out using extremely
randomized trees (ERT) classifier and SVM. Soltaninejad et al. [15] introduced a 3D super-
voxel based learning system for tumor segmentation in multimodal MRI brain images. For
each supervoxel, the extracted first-order intensity statistical features are fed to a random
forest (RF) classifier to categorize each supervoxel into tumor core, edema, and healthy
brain tissue.

Soltaninejad et al. [16] carried out automated segmentation of brain tumors in mul-
timodal MRI images by integrating machine-learned features, using fully convolutional
networks (FCN), and handcrafted features using texton based histograms. They catego-
rized the MRI image voxels into normal tissues and tumors’ parts by using an RF classifier.
Zhang et al. [17] segmented 3DMRI for brain tumors using multiple encoders and im-
proved the feature extraction process. They introduced Categorical Dice (CD) as a loss
function to reduce the volume imbalance problem by setting dissimilar weights for differ-
ent regions simultaneously. Huang et al. [18] proposed a multi-task deep learning system
merging a fusion unit with varying depths for brain tumor segmentation. They used a
distance-transform decoder module for the volumetric network (VNet), sharpening the
segmentation contours and reducing the generation of rough boundaries. Jin et al. [19]
introduced a data segmentation framework for prostate MRI using preprocessed quality
enhanced images, with bicubic interpolation, fed to an improved 3D V-NET (3D PBV-Net)
based on 3D-convolution, resulting in an excellent segmentation relying less on manual seg-
mentation. Similarly, Y. Liu et al. [20] presented a CNN constituted of three sub-networks
(viz. improved ResNet50, feature pyramid attention, and decoder networks) for auto-
mated zonal segmentation of the prostate. In another work, Y. Liu et al. [21] designed a
multiple-scale feature pyramid- and spatial- attentive Bayesian deep learning framework
for zonal segmentation of the prostate with uncertainty estimation. In recent work, Guan
et al. [22] introduced AGSE-VNet for segmentation of 3D-MRI (multimodal) scans and
used a Squeeze and Excite (SE) unit attached to each encoder, with Attention Guide Filter
(AG) mechanism for each decoder exploiting channel-correlation to enhance the useful
information discarding useless details such as noise. In our work, we focused on the
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tumorous region, enhancing some parts of the input data in the image by using runtime
data correlation with static features.

In this work, we propose a novel and Ultra-Light Deep Learning Architecture (UL-
DLA), which extract deep features along with textural features predicting MRI brain
tumors with the help of SVM. The notion is to introduce a light deep learning architecture
with extensive fine-tuning to achieve intraoperative brain surgery support. The paper is
organized as follows: Section 2: Materials and Methods; Section 3: Results and Discussion;
followed by Conclusions.

2. Material and Methods
2.1. Proposed Method

The proposed method (Figure 1) uses dynamic and static features to form a hybrid
feature space (HFS). The notion was to extract dynamic features using an Ultra-Light DL
architecture with accuracy enhanced by textural features viz. GLCM based static features.
The resulting HFS was used to detect brain tumor type using a strong conventional SVM
classifier. The feature extraction follows dataset description and preprocessing, followed
by final model development.
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Figure 1. The proposed Ultra-Light Brain Tumor Detection (UL-BTD) system is based on UL-DLA
and textural features. Diagram (a) shows the entire workflow of the proposed technique {P: Pituitary,
G: Glioma, and M: Meningioma}, whereas diagram (b) shows the phases of the proposed technique
in detail.

2.2. Dataset

We evaluated our system on a publicly available T1-weighted CE-MRI dataset (Table 1)
consisting of 2D-scanned MRI slices, as bitmap (.bmp) file types, for brain tumors: gliomas
(comprising of white matter), meningioma (neighboring to gray matter, cerebrospinal



Appl. Sci. 2022, 12, 3715 5 of 22

fluid, and skull), and pituitary (contiguous to optic chiasma, internal carotid arteries, and
sphenoidal sinus) [10]. It was donated by Nanfang Hospital, Guangzhou, China, and
General Hospital, Tianjin Medical University, China, from 2005 to 2010. The dataset was
imbalanced with a limited number of instances, especially for meningioma, which focused
cohorts’ attention towards its challenging nature. Six rescaled sample MRI images (Figure 2)
depict the variation in columns, intra-class variance, highlighting the challenging nature
that is inherent in this dataset.

Table 1. CE-MRI dataset with 3064 instances (233 patients), 512 × 512 pixels (pixel: 0.49 mm × 0.49 mm).

Tumor Class Patients MRI Scans
Planer Geometry Details

Anatomical Plane Scans Division

Glioma 89 1426

Transverse 494

Coronal 437

Sagittal 495

Meningioma 82 708

Transverse 209

Coronal 268

Sagittal 231

Pituitary 62 930

Transverse 291

Coronal 319

Sagittal 320
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Figure 2. Intra-class variation existing in three different brain tumors for transverse view:
(a,d) Glioma, (b,e) Meningioma, and (c,f) Pituitary tumors’ variation in CE-MRI dataset.

2.3. Preprocessing
2.3.1. Intensity Normalization

The MRI scans were linearly normalized between 0 and 1 to approach a coherent inten-
sity range and facilitate deep learning by minimum–maximum normalization as given by:

αnew
i =

(
αold

i −αold
min

αold
max−αold

min

)(
αnew

max − αnew
min

)
+ αnew

min , where αnew
i and αold

i represent normalized and
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original intensity values for the ith pixel, respectively, αold
max and αold

min represent maximum
and minimum original intensity values, respectively, αnew

max = 1 and αnew
min = 0 used to define

maximum and minimum normalized intensity values. The images, resized to 224 × 224,
speed up the training process and address the out-of-memory problem especially when
running on average-GPU price-based portable systems. Figure 3a,b compares images of
the glioma tumor.
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2.3.2. Discrete Wavelets Based Decomposition

We used Discrete Wavelet Transform (DWT) for decomposition to enhance the con-
trast [23]. The level-2 decomposition of Haar wavelet used low (L) and high (H) pass filter
banks, that generate approximation (LL) and details (LH, HL and HH) sub-band images
as shown in Figure 4. We selected LL and diagonal-details (HH) of level-2 followed by
inverse-DWT to level 1 before being merged to DWT image (256 × 256). This transforma-
tion follows downsampling to 224 × 224, to ensure consistency, consequently rejecting LH
and HL matrices with contrast improvement.
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Figure 4. DWT decomposition of MRI scans to obtain high contrast images.

2.3.3. Augmentation

The dataset augmentation, experimented by applying geometric distortions to the
MRI scans, was carried out by applying random variations to the MRI scans consisting of
rotation, reflection, and shear distortions, as detailed in Table 2 [24,25]. We used 3 types
of datasets for experimentation: simple CE-MRI dataset (CE-MRI); WT-based dataset
(WT-CE-MRI); and augmented dataset (A-CE-MRI).
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Table 2. Geometric distortions randomly applied to the dataset.

Type Variation Extreme Value

Rotation
Clockwise −3

Anti-clockwise 3

Reflection
X-Reflection 1

Y-Reflection 1

Shear
X-Shear [−0.05, 0.05]

Y-Shear [−0.05, 0.05]

2.4. Ultra-Light Deep Learning Architecture-Based Feature Extraction

We proposed a specifically designed deep learning architecture for dynamic feature
extraction, which was based on 15 layers, with each image passed through the network
20 epochs for 7 min and 10 s during the training phase, thus that the algorithmic require-
ments were tuned for the least resources with maximum efficiency and computational
overhead, allowing its use to average GPU resources-based machines. It consisted of
4 convolution layers, as shown in Figure 5. The features from the first fully connected
layer (FC1) were extracted to form the HFS. The UL-DLA based on the least number of
layers with extensive fine-tuning culminated in intraoperative surgery support using the
proposed framework. The specific purpose-based lighter CNN architectures were found
to be performing better for tumor classification by avoiding overfitting in comparison to
Inception-v3 and AlexNet [26]. For improved generalization, we used L2-regularization,
along with a dropout layer, to maintain the weights and biases small. The methods and
parameters that need to be initialized for UL-DLA, playing a vital role in achieving its best
overall performance, were determined where some of them were empirically found, and
the selected values, out of the under trial options, are illustrated in Table 3.

Table 3. UL-DLA parameters for dynamic features extraction.

Parameter Methods/Values Under Trail Selection

Initial Learning Rate

Single (0.01, 0.001, 0.002, 0.005, 0.008, 0.009, 0.0002, 0.0001,
0.0003, 0.0004, 0.0005, 0.0007, 0.0008, 0.0009), Piecewise
(Learn rate drop factor: 0.1, 0.2, 0.3, 0.4, 0.5; Learn rate

schedule: 10, 20, 25 epochs)

Single: 0.0001

Epochs (Maximum) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 75, 100 20

Mini Batch (Size) 2, 4, 8, 16, 32 16

Pairs of Conv. Layersand Filter
Stacks 2, 3, 4, 5 4

Kernel Depth (Size of Each
Filter Stack) 4, 8, 16, 32, 64, 128, 256 64, 128, 256

Kernel Size 3 × 3, 5 × 5, and 7 × 7 3 × 3

ReLU 2, 3, 4, 5 4

Pooling Type MaxPool, AvgPool MaxPool (2 × 2)

Fully Connected Layers 1, 2, 3, 4 2

Number of Filter Stacks 2, 3, 4, 5 4

L2-Regularization 0.01, 0.05, 0.001, 0.005, 0.008, 0.0009, 0.0001, 0.0002, 0.0005,
0.0006, 0.0007, 0.0008, 0.0009 0.0005

Solver Name Stochastic Gradient Descent with Momentum (SGDM),
ADAptive Moment estimation (ADAM) SGDM
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Table 3. Cont.

Parameter Methods/Values Under Trail Selection

Momentum (for Sgdm only) 0.80, 0.82, 0.82, 0.85,0.87, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96,
0.97, 0.98, 0.99, 1.00 0.97

Input Image Size 64 × 64, 128 × 128, 224 × 224, 256 × 256 224 × 224

Dropout Layers 1, 2, 3 1

Dropout Rate (%) 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 45, 50, 60 5
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The image matrix was forwarded to the stack of convolution layers. The fully con-
nected layer connects neurons across it and extracts features dynamically. Two fully
connected layers defined in the proposed architecture were: fully connected layers 1 and
2 (FC1: 1024 neurons to capture features from the previously encoded data, and FC2:
3 neurons to capture the decision for most opted tumor category). The SoftMax layer
squashes the non-normalized output of FC2 for multi-class categorization to a probability
distribution for the predicted classes in the range [0, 1]. The probability for the ith class
was determined from a normalized exponential function over C number of classes as given:
Pi =

eOi

∑C
c=1 eOc

where Oi represents ith class activation. The classification layer determines

the Cross-Entropy Loss (CEL) for multi-class categorization cases and predicts the tumor
type. The CEL was based on 2 sets of labels: the actual labels a(x) and the predicted labels
b(x). The loss was given by: H(a, b) = −∑∀ x a(x) log(b(x)). The network training starts
after preprocessing in a feed-forward manner from the input layer to the classification layer.
The cost function C that is minimized with respect to weights W, being updated, during
backpropagation is given by [13]: − 1

N ∑N
t=1 ln

(
p
(
at
∣∣xt)), where N is training samples count,

xt represents the training sample with the actual label at and p(at|xt) is the classification
probability. The minimization of C is carried out by the stochastic gradient descent method
that works in the form of mini-batches of size B (16 images /batch) with 20 epochs to
approximate the entire training set cost. The updated weight for iteration i + 1, Wi+1

L , in
layer L and weight updating is given by: Wi+1

L = Wi
L + ∆Wi+1

L ; ∆Wi+1
L = ρ∆Wi

L − µ ∂Ĉ
∂WL

,
where Ĉ is the mini-batch cost, µ is the learning rate, ρ is the momentum controlling the
influence of the previously updated weights ∆Wi

L. The conversion of 2D-data of serial
convolutional layers to 1D-fully converted layers, also known as flattening, is a vulnerable
step resulting in overfitting in the network.
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2.5. Textural Features

In our proposed UL-BTD framework (Figure 1), another important aspect was the use
of highly discriminative features extracted by grey level co-occurrence matrix (GLCM) that
describes the image texture by computing repeatability of pixel-groups with specific values,
and there is an existence of a definite 2-dimensional relationship in the image. We selected
13 Haralick features in our work, namely: (contrast, correlation, energy, homogeneity,
mean, standard deviation, entropy, rms of image, variance, sum of image all intensities,
smoothness, kurtosis, and skewness) to merge with the UL-DLA features to form HFS with
a total of 1037 features.

2.6. Ultra-Light Brain Tumor Detection System

The UL-BTD system is based on HFS and potential ML algorithms such as SVM, k-NN
and RF classifiers giving a convenient and reliable solution to brain tumor detection with
the least resources and hardware requirements. The use of HFS on SVM for testing the
UL-BTD resulted in the fastest time/image.

The optimization of SVM was achieved through linear, RBF, and polynomial kernels.
We tuned the classification model using k ∈ (1, 3, 5, 7, 9) neighbors with distance metric for
k-NN classifier, whereas adjusting a different set of weak learners in the range [500, 1000]
trees was carried out for the RF classifier. If a point in feature space is an outlier (noise),
this does not influence the decision boundaries markedly as the SVM will just ignore its
effect on the model. SoftMax layer in CNN, however, will include the influence of such a
point, in terms of probability-based computation, in the feature space. In other words, this
results in a relatively reduced error rate using SVM with enhanced recognition capability.

2.7. Performance Measures

Reasonable efforts were carried out to tune the proposed system by standard program-
ming tools using hardware (Laptop Dell G7, Intel® Core™ i7-8750H CPU, 2.20 GHz), 16 GB
RAM, and GPU (NVIDIA GTX-1060 with 6 GB: onboard memory and 1280 CUDA cores).

Quantitative performance measures to evaluate the model include confusion matrix,
true positive (TP), false negative (FN), true negative (TN), false positive (FP), positive pre-
dicted value (PPV) or precision, true positive rate (TPR) also known as recall or sensitivity,
F-measure, and accuracy. F-measure is convincing in case there is a class imbalance.

3. Experimental Results and Discussion
3.1. UL-BTD Framework for Fastest Detection Time/Image Analysis

We compared competitive machine learning classifiers, viz. SVM, k-NN, and RF, using
the HFS-based training, A-CE-MRI dataset, and OvA coding scheme in order to evaluate
the performance of UL-BTD. The robustness and confidence of the system performance
were verified by using 10-fold cross-validation for model selection on potential algorithms
of choice. The results have been illustrated in Table 4, with the best results emphasized for
different ML algorithms. The F-measure was computed, with other metrics, to estimate
the individual and average quantitative performance, including a quantitative graphical
comparison of SVM, k-NN, and RF algorithms, as shown in Figure 6. The best results have
been found to be for SVM (with a polynomial of order 3: P3), with the next best found to be
k-NN (with k = 1).
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Table 4. Quantitative performance comparison of UL-BTD framework for different ML algorithms
using A-CE-MRI dataset with OvA coding scheme (Glioma, Meningioma and Pituitary tumors are
being represented as G, M, and P respectively).

Classifier Param Tumor
Type TP FN FP TPR

(Ind.)
PPV

(Ind.)

F-
Measure

(Ind.)

Acc.
(Ind.)

Acc.
(Avg.)

SVM
kernel

Linear
G 276 9 6 96.84 97.87 0.97 97.55
M 135 7 8 95.07 94.41 0.95 97.55 98.26
P 186 0 2 100.00 98.94 1.00 99.67

RBF
G 278 7 5 97.54 98.23 0.98 98.04
M 136 6 7 95.78 95.11 0.95 97.88 98.58
P 186 0 1 100.00 99.47 1.00 99.83

Ploy-2
G 281 4 9 98.60 96.90 0.98 97.88
M 133 9 4 93.66 97.08 0.95 97.88 98.47
P 185 1 1 99.46 99.46 1.00 99.67

Ploy-3
G 283 2 3 99.30 98.95 0.99 99.18
M 137 5 2 96.48 98.56 0.98 98.86 99.24
P 186 0 2 100.00 98.94 0.99 99.67

Ploy-4
G 183 102 156 64.21 53.98 0.59 50.39

52.89M 61 81 148 42.96 29.19 0.35 53.36
P 18 168 47 9.68 27.69 0.14 54.93

k-NN
k

1
G 281 4 13 98.60 95.58 0.97 97.23
M 129 13 3 90.85 97.73 0.94 97.39 98.15
P 186 0 1 100.00 99.47 1.00 99.83

3
G 280 5 16 98.25 94.60 0.96 96.56
M 125 17 6 88.03 95.42 0.92 96.25 97.42
P 185 1 1 99.46 99.46 1.00 99.66

5
G 278 7 26 97.54 91.45 0.94 94.55
M 112 30 9 78.87 92.56 0.85 93.62 95.48
P 182 4 6 97.85 96.81 0.97 98.28

7
G 276 9 28 96.84 90.79 0.94 93.85
M 108 34 11 76.06 90.76 0.83 92.62 94.69
P 181 5 9 97.31 95.26 0.96 97.58

9
G 274 11 39 96.14 87.54 0.92 91.68
M 95 47 10 66.90 90.48 0.77 90.63 93.10
P 182 4 13 97.85 93.33 0.96 97.01

RF
Nt

500
G 274 11 6 96.14 97.86 0.97 97.21
M 136 6 12 95.78 91.89 0.94 97.05 97.81
P 183 3 2 98.39 98.92 0.99 99.16

550
G 275 10 7 96.49 97.52 0.97 97.22
M 136 6 10 95.78 93.15 0.94 97.38 97.92
P 183 3 2 98.39 98.92 0.99 99.17

600
G 276 9 6 96.84 97.87 0.97 97.55
M 136 6 9 95.78 93.79 0.95 97.55 98.14
P 184 2 2 98.93 98.93 0.99 99.33

650
G 274 11 7 96.14 97.51 0.97 97.05
M 136 6 9 95.78 93.79 0.95 97.53 97.81
P 183 3 4 98.39 97.86 0.98 98.83

1000
G 275 10 7 96.49 97.52 0.97 97.21
M 134 8 9 94.37 93.71 0.94 97.21 97.81
P 184 2 4 98.93 97.87 0.98 99.00
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The well-known parameters tuned for the k-NN algorithm include k ∈ (1, 3, 5, 7, 9).
Reducing k gets closer to the training data (low bias), and the model becomes dependent
on the particular training samples (high variance). When k = 1 the model is being fit to
the one-nearest point with the model really close to the training data. The predictability
of the model with one-nearest point means the highest possibility of training on noise.
The inherent intra-class variance in the dataset and random reshuffling of mini-batch data
results in an excellent performance. Similarly, in the case of the RF algorithm, the number
of trees (Nt) variation was thoroughly investigated, and results are shown for Nt ∈ (500,
550, 600, 650). The best tumor prediction result is achieved using (Nt = 600) trees. The
RF is based on using high variance and low bias trees, resulting in a low bias and low
variance forest. We need a number of trees that will improve the model’s robustness against
overfitting. The excessive number of trees, accompanied by additional computational cost,
leads to negligible improvement in results if any.

We experimented with SVM using kernel type (Ok) as Linear (L), Radial Basis Function
(RBF), and Polynomial kernels (Po) of order (o) ∈ (2, 3, 4). Higher-order polynomials (o > 3)
were not found competitive. The SVM (polynomial kernel with order 3) achieved outclass
performance among the three competing algorithms. Accuracy of 99.18% was obtained
to categorize glioma, 98.86% for meningioma, and 99.67% for pituitary tumors with an
average accuracy of 99.24% accompanied by a minimum number (seven) of false negatives.
Meningioma tumors are accompanied by a relatively low-performance index, which is
attributed to the fact that it is hardest to discriminate between the two on the basis of their
origin and characteristic features [25].

The visualization of three types of brain tumors using HFS, high-dimensional data, by
a variant of Stochastic Neighborhood Embedding known as “t-SNE” is shown in Figure 7
for the test case as a scatterplot by assigning each feature vector a location in a non-linear
manner to a lower-dimensional (two-dimension) map. It improves visualization by mini-
mizing the central crowding tendency of the points. It may be noted that the discrimination
is affected because of false events, high in Glioma and Meningioma overlapping region and
our system improves discrimination for complex decision hyperplane existing between
three types of tumors. From this point onward, for the rest of the experimentations, except
mentioned otherwise, we integrated SVM into the UL-BTD system.
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3.2. UL-DLA and GLCM Exclusive Analysis

We have tested the usability of our model without the hybrid feature space to ascertain
the effectiveness of the hybrid feature set. In order to confirm that the improvement is not
just from deep features but also textural features, a SoftMax classifier experimentation was
carried out using UL-DLA for 20 epochs based on deep learning features only. To avoid
overfitting in the model, the dropout layer delinks 5% of the neurons for its output and
input functionality (Section 2.3 and Table 3). The quantitative performance corresponding
to three datasets, namely CE-MRI, WT-CE-MRI, and A-CE-MRI is illustrated in Table 5.
The best overall accuracy during the test phase for the SoftMax classifier was found to be
96.882% using A-CE-MRI. The augmentation relieves the class-imbalance problem, thereby
improving the results. Similarly, wavelet transform-based decomposition (WT-CE-MRI)
results were improved due to high contrast in comparison to the plane dataset (CE-MRI).
On the other hand, another experiment was carried out using the GLCM features only with
SVM (polynomial kernel with order 3), and the quantitative results have been illustrated in
Table 6. We observed that the best performance observed was attributed to the A-CE-MRI
dataset with an accuracy of 86.26%. The results were indicative of the fact that textural
or deep features alone were not able to achieve the required accuracy, but it was the
combination of both which was able to achieve the required performance.

Table 5. UL-DLA results using SoftMax classifier for augmented (A-CE-MRI), wavelet transform
based (WT-CE-MRI), and intensity normalized (CE-MRI) images.

Dataset
Type

Tumor
Type TP FN FP TPR PPV F-Measure Acc.

(Ind.)
Acc.

(Avg.)

A-CE-MRI
Glioma 551 19 32 96.67 94.51 0.96 95.82

Meningioma 246 37 19 86.93 92.83 0.90 95.43 96.88
Pituitary 371 1 6 99.73 98.41 0.99 99.40

WT-CE-MRI
Glioma 276 9 17 96.84 94.20 0.96 95.70

Meningioma 118 24 10 83.10 92.19 0.87 94.44 96.15
Pituitary 184 2 8 98.93 95.83 0.97 98.30

CE-MRI
Glioma 272 13 19 95.44 93.47 0.94 94.71

Meningioma 117 25 12 82.39 90.70 0.86 93.93 95.59
Pituitary 184 2 9 98.93 95.34 0.97 98.12
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Table 6. GLCM results using SVM classifier using a polynomial kernel with order 3 (test phase).

Dataset
Type

Tumor
Type TP FN FP TPR PPV F-Measure Acc.

(Ind.)
Acc.

(Avg.)

A-CE-MRI
Glioma 233 52 258 81.75 80.90 0.81 82.11

86.26Meningioma 85 57 406 59.86 59.86 0.60 81.16
Pituitary 173 13 318 93.01 94.54 0.94 95.53

WT-CE-MRI
Glioma 245 40 223 85.96 73.35 0.79 78.39

83.36Meningioma 59 83 409 41.55 59.60 0.49 79.19
Pituitary 164 22 304 88.17 91.11 0.90 92.49

CE-MRI
Glioma 197 88 264 69.12 84.55 0.76 78.80

82.40Meningioma 107 35 354 75.35 51.94 0.61 77.48
Pituitary 157 29 304 84.41 90.23 0.87 90.93

3.3. Effect of Image Size on Tumor Prediction

We carried out experimentation for measuring the quantitative performance of the
UL-BTD framework for numerous input image sizes as illustrated in Table 7. The training
for dynamic features was carried out using the A-CE-MRI dataset for 20 epochs, OvA as
the coding scheme, and SVM with the polynomial kernel (P3). Performance increases from
64 × 64 to 224 × 224 image matrix and then drops again. The best detection rate was found
to be 99.24%. In the case of smaller sizes, information was lost due to downsampling,
whereas for larger image sizes (256 × 256), overfitting takes place and needs tuning by
changing the dropout rate and activation function.

The visual representation of UL-DLA training time, excluding SVM, gives an ap-
proximation of the performance variation of the proposed methodology with image size
(Figure 8). The optimum image size has been found to be 224 × 224, costing relatively more
time compared to the smaller image size.
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Table 7. Analysis of input layer size on the proposed model using SVM in the test phase (A-CE-MRI
dataset, OvA coding scheme, and polynomial kernel (P3)).

Input
Layer

Tumor
Type TP FN FP TPR

(Ind.)
PPV

(Ind.)
F-Measure

(Ind.)
Acc.

(Ind.)
Acc.

(Avg.)

64 × 64
Glioma 277 8 14 97.19 95.19 0.96 96.38

Meningioma 125 17 9 88.03 93.28 0.91 95.75 97.04
Pituitary 184 2 4 98.93 97.87 0.98 98.99

128 × 128
Glioma 282 3 10 98.95 96.58 0.98 97.86

Meningioma 127 15 4 89.44 96.95 0.93 96.90 97.92
Pituitary 185 1 5 99.46 97.37 0.98 99.00

224 × 224
Glioma 283 2 3 99.30 98.95 0.99 99.18

Meningioma 137 5 2 96.48 98.56 0.98 98.86 99.24
Pituitary 186 0 2 100.00 98.94 0.99 99.67

256 × 256
Glioma 278 7 13 97.54 95.53 0.97 96.73

Meningioma 127 15 7 89.44 94.78 0.92 96.41 97.60
Pituitary 186 0 2 100.00 98.94 1.00 99.66

3.4. Sensitivity Analysis of Coding Schemes: OvA and OvO

The multi-classification task can be performed using either of the coding schemes:
One-versus-All (OvA) or One-versus-One (OvO). We experimented with both schemes
without augmentation, and the results of both are given in Table 8. We found that the
OvO scheme performs better than OvA with deep-layered architecture that starts from
scratch. The reverse has been found true otherwise, i.e., the OvA performs better for the
multi-class cases when used with pre-trained CNN architecture (transfer learning). When
the proposed system starts from scratch with the OvA scheme, the results have been found
slightly lacking than OvO, which is in agreement with [27].

Table 8. Comparison of coding schemes: (OvA and OvO) for performance analysis without aug-
mentation (G, M, and P represent glioma, meningioma, and pituitary tumors, respectively, using
224 × 224 image size).

Multi-Class
Scheme

Tumor
Type TP FN FP TPR

(Ind.)
PPV

(Ind.)
F-Measure

(Ind.)
Acc.

(Ind.)
Acc.

(Avg.)

OvA
Glioma 277 8 7 97.19 97.54 0.97 97.55

Meningioma 134 8 8 94.37 94.37 0.94 97.39 98.26
Pituitary 186 0 1 100.00 99.47 1.00 99.83

OvO
G-M 279 6 13 97.89 95.55 96.71 95.55
M-P 142 0 0 100.00 100.00 100.00 100.00 98.45
G-P 285 0 1 100.00 99.65 99.82 99.79

3.5. Reliability Performance and Complexity Analysis of Proposed Model

The reliability performance of the proposed system was validated for 20 consecutive
runs as shown in Figure 9, with an accuracy (avg.) as (98.46 ± 0.28). We compared the
proposed UL-BTD system with the two best-known, as illustrated in Table 10, for the light
architecture category using the CE-MRI dataset. Our proposed system has set the new
standard by 1.89 to 2.16% accuracy increase, using 18 layers (15 layers when extracting
features) of deep architecture with 20 epochs. Additionally, the size of the network was
limited to fit within average GPU price hardware resources available for PC category
systems. The complexity of the UL-DLA was introduced as a lighter architecture with
a lesser number of layers, and SVM was evaluated using Windows 10 Education with a
PC machine. Two factors that have been considered for test samples constituting 20% of
A-CE-MRI are shown in Table 9, namely tumor detection time per image and GPU memory
usage [28]. It is obvious that SVM is a bit costlier as compared to the UL-DLA as a classifier
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and takes relatively more time during the test phase. The increased performance, due to
generalization improvement, of a multi-class tumor classification system using SVM, is
worth making a sacrifice for this minor penalty. The generalization improvement firstly
is due to the use of textural features, and secondly due to the replacement of the SoftMax
classifier with a sophisticated SVM-based model.

Table 9. Comparison of SVM and CNN in terms of complexity for 613 test images (20% of the dataset).

Comparison Basis UL-DLA SVM (HFS)

Tumor detection time/image (ms) 7.96 11.69

Memory usage (GPU, GB) 2.1 2.8

The overall reduced prediction time with no beatable accuracy per image for brain
tumor classification indicates that it has the potential to act as a real-time tool during
neurosurgery for accurate delineation of tumor margin using desktop computers [5,25].
The post-operative condition depends on the exposure of the tumor position; therefore,
surgical support at a low cost is highly demanding especially for avoiding a second surgical
attempt [4,29–31]. A comparison of numerous existing techniques for intraoperative brain
surgery has been illustrated in Table 11. The iMRI scans along with UL-BTD Framework,
can be used for tumor margin resections during real-time surgery.
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Table 11. Comparison of different intraoperative neurosurgical navigation systems with the
proposed method.

Technique Translation Source Utility Drawbacks

Compatible
with Neuro
Navigation

System

Intraoperative
Fluorescence Imaging

(iFI)

Optical fluorescence
imaging is based on the

accumulation of
fluorescence optical

contrast media at the
desired ROI

In vivo assistance
during surgery [33]

The limited resolution,
quantification, depth of
penetration 5 mm, and

availability of targeted contrast
agents with a high

signal-to-back-ground ratio
(SBR) [34]

√

Intraoperative
Ultrasound Imaging

(IoUS)

IoUS uses
high-frequency sound
waves as the viewing

source to form the
image

Integrated to the
neuro-navigation

system with accuracy
1.40 ± 0.45 mm

(arithmetic mean) [35]

Image quality subject to
interoperation variability
motion artifacts, and low

image resolution restricts it for
deep tumors [36]

√

Intraoperative Raman
Spectroscopy (iRS)

RS is based on light
interaction within a
material between its

chemical bonds

Intraoperative
label-free molecular

information [5] with an
accuracy of 1 mm [37]

WHO says that its accuracy,
sensitivity, and specificity are

lower than 60% for grade
invasive cancer cells in the

normal brain or between grade
3 and 4 gliomas

√

Hyperspectral Imaging
(HSI)

HSI is finding the
spectrum for each pixel
in the image of a scene

[38]

Image-guided surgery
using an intraoperative
visualization system for
delineation of the brain

tumor [39]

Penetration of depth, as well as
real-time detection of tumors,

is a challenge

√

Intraoperative Magnetic
Resonance Imaging

(iMRI)

MRI is based on
protons’ density

distribution in the brain

It controls brain shift
during resection of

non-fluorescing
gliomas (~1 h) [4,40]

Low magnetic field strength,
contrast agents have their own

problems and need more
research for FDA approved

and optimized contrast agents

√

Optical Coherence
Tomography (OCT)

OCT is based on the
detection of light

backscattered by a
tissue [41]

It provides
micrometer-scale

resolution with quick
volumetric imaging

[42]

Using ionizing radiation much
sensitive to the brain

√

UL-BTD Framework

Deep learning-based
solution using artificial

intelligence (AI) and
iMRI scans

Real-time brain tumor
surgical resection

support, can be used
with desktop

Only need artificial
intelligence (AI) and iMRI

scans, no drawback

√

3.6. Comparison with State-of-the-Art

The results of the performance comparison are summarized in Table 12 using the
CE-MRI dataset. Due to the unavailability of the same split as used by other researchers,
we have used (80:20)% split in addition to 10 fold (90:10)% for limited experimentation.
Anaraki et al. [43] used a stochastic algorithm resulting in an accuracy of 94.20%, indi-
cating that a more exhaustive GA-based parametric search for CNN was required. Paul
et al. [44] used two CNN layers, with a uniform filter stack depth of 64 kernels in each layer
and attained 91.43% accuracy. Afshar et al. [45] used extra input of tumor boundaries to
improve the results by illustrating a capsule network (CapsNets) for brain tumor classifi-
cation and reached an accuracy level of 89.56%. Kurup et al. [46] demonstrated the role
of data preprocessing techniques to improve the CapsNets architecture for brain tumor
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classification with a classification accuracy of 92.60%. Gumaei et al. [47] introduced a brain
tumor classification approach having three main steps: first, brain images’ transformation;
second, salient features extraction; and finally, brain tumors’ classification using Regu-
larized Extreme Learning Machine (RELM) and achieved an accuracy of 94.23%. Sultan
et al. [6] proposed a CNN-based model using data augmentation and claimed an accuracy
of 96.13%. Recently, Masood et al. [48] proposed a transfer learning-based customized Mask
Region-Convolution Neural Network (Mask R-CNN) with a DenseNet-41 backbone archi-
tecture for classification and segmentation of brain tumors and achieved a classification
accuracy of 98.34%. However, their approach was based on transfer learning, computa-
tionally intensive, and used a much larger network. Díaz-Pernas et al. [32] introduced a
DCNN that included a multiscale approach for brain tumor segmentation and classification
using different processing pathways with data augmentation by elastic transformation and
achieved an accuracy of 97.30% using 80 epochs. The classification function counts the
tumor type prediction for every pixel and considers the highest value to be the predicted
tumor type.

Some researchers used the same dataset using transfer learning, where the pre-trained
networks were used to classify the system by changing the number of neurons in the last
fully connected layer [13,49,50]. Similarly, some cohorts modified this dataset while others
processed only the tumor region in an image [9,24,45,51]. In recent work, Kaplan et al. [52]
achieved an accuracy of 95.56% using nLBP and αLBP features. A specifically designed
solution using DCNN is simpler and faster than the pre-trained networks and do not
require high-performance computing machines. VGG-16, a very deep architecture having
44 layers requires dedicated hardware for real-time performance and it is pre-trained on
a huge dataset, namely ImageNet (more than one million instances) [53], using powerful
computing machines for the categorization of 1000 object classes. Rehman et al. [50]
augmented the brain tumor dataset and used transfer learning. He achieved the best
result of 98.69% with VGG-16 pre-trained architecture using a stochastic gradient descent
approach. Similarly, Kutlu and Avcı [51] achieved 98.60% accuracy by using 100 tumor
images in the transverse plane for each class, with a training to test ratio of (70:30)%,
using CE-MRI variant and pre-trained AlexNet. The details need to be explored for the
results in case the entire dataset is used along with its generalization capability. Similarly,
the methodologies requiring regions of interest, although computationally less expensive,
require a dedicated panel of experts for marking the regions to work on a regular basis.

Table 12. Comparison with other studies for brain tumor categorization using CE-MRI dataset.

Model/Study
Reference

k-Fold Cross-
Validation/Dataset

Partitioning

Augmentation/
Smote

Classification
Technique

Precision
(%Avg.)

Recall
(%Avg.)

F-Score
(%Avg.)

Accuracy
(%Avg.)

[9] 5-fold
√

SVM + BoW × × × 91.14

[44] 5-fold; 10-fold
√

CNN × × × 91.43

[45] × ×
Capsule

Networks
(CapsNet)

× × × 89.56

[46] 5-fold × CapsNet 92.67 94.67 93.33 92.60

[6] 68% training and
32% in test

√
CNN 96.06 94.43 × 96.13

[43] 5-fold
√

GA based CNN × × × 94.20

[47]
5-fold; 70%

training and 30%
in test

×
Hybrid

PCA-NGIST +
RELM

× × × 94.23
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Table 12. Cont.

Model/Study
Reference

k-Fold Cross-
Validation/Dataset

Partitioning

Augmentation/
Smote

Classification
Technique

Precision
(%Avg.)

Recall
(%Avg.)

F-Score
(%Avg.)

Accuracy
(%Avg.)

[52] 10-fold × nLBP + k-NN × × × 95.56

[25] 5-fold; 10-fold
√

CNN 95.79 96.51 96.11 96.56

[32] 5-fold; 10-fold
√

Multi-scale CNN × 96.67 × 97.30

Proposed
framework

10-fold; 5 fold for
limited

experiments

√ UL-DLA +
GLCM + SVM

(UL-BTD system)
97.07 97.30 97.20 99.24

Good discriminating features exploiting diversity between the competing classes is the
source of high prediction accuracy and low false negatives. These results demonstrate that
the proposed UL-BTD framework outperforms state-of-the-art techniques for brain tumor
classification problems. The proposed method has the highest detection rates of (99.18%,
98.86%, and 99.67%), and F-measure of (0.99, 0.97, and 0.99) for glioma, meningioma, and
pituitary tumors, respectively. The reason for this lies in the preprocessed images fed to
the UL-DLA for extracting dynamic features using GLCM based extremely discriminant
features and then fine-tuned SVM for the brain tumor prediction system. No preprocessing
of tumor region or segmentation is required rather, the rescaled images are directly used for
feature extraction. The low prediction time per test image (11.69 ms) makes it suitable as a
portable algorithm in developing countries on low-budget conventional PCs. Due to its low
detection time, it can be used during surgical procedures for the detection of tumors [54] as
the finely tuned algorithms require fewer resources for their implementation.

3.7. Contribution and Implications

We presented an intelligent Ultra-Light Deep Learning Architecture (UL-DLA) to
represent learning-based features along with textural features predicting MRI brain tumor
type with the help of SVM. The main focus of the framework is to support intraoperative
brain surgery support by reducing the overall time to the prediction stage (Section 3.4).
The Discrete Wavelet Transforms (DWT) based analysis of MRI images was carried out for
contrast enhancement and downsampling of 512 × 512-sized MRI images. The challenging
MRI dataset of brain tumors suffered from variations in class sizes. The class imbalance
was addressed by using multi-facet augmentation. The sensitivity analysis of different
classifiers for the proposed framework concluded that SVM classified better than the k-
NN and RF, as well as the SoftMax classifier. The input MRI scans’ analysis established
224 × 224 sized images as the optimum choice. As far as the choice of coding schemes is
concerned, out of the two multi-class coding schemes (i.e., One-Versus-One (OvO) and
One-Versus-All (OvA)), OvO was found better than OvA for the proposed framework.
The complexity analysis of the proposed system laid down a simple deep learning-based
automated system with an overall prediction time of 11.69 ms per MRI test image compared
to 15 ms per image reported by [14]. A comparison with recent techniques, using the same
dataset, was presented for performance analysis, including transfer learning and fine-tuned
architectures in the concluding section.

Our study has some limitations suggested as future research directions. First, the
proposed framework needs the general clinical trial in the second phase for resolving the
patients’ data as the second opinion in addition to the expert opinion. Second, the prediction
phase or decision making in deep learning-based strategies is complex and opaque where
accuracy massively depends on huge parametric space using efficient algorithms. From
the XAI point of view [55,56], the proposed deep learning architecture, UL-DLA, may be
analyzed with a transparent white-box for multimodal and multi-center data fusion.
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4. Conclusions

In this article, we propose an Ultra-Light DL framework for features extraction forming
HFS with textural features for brain tumors’ detection and resections T1-weighted CE-MRI
images, based on 233 patients across the transverse, coronal, and sagittal planes with
3064 instances of three types of brain tumors: (glioma, meningioma, and pituitary). In the
case of brain tumors, early detection and its automated classification is of prime importance
and is still considered an open challenge to date. The tumor position, its relationship with its
contiguous cells, its texture, and numerous perimeters affecting the MRI scans are some of
the major highlights complicating its detection. Radiologists’ manual scanning procedure,
although tedious, especially when the number of scans is enormous, is the only path to
success. The salient features of this work include that it has achieved the outclass prediction
accuracy with minimum false negatives for modern PC category average GPU-usage facility,
with only 20 epochs to extract dynamic features using UL-DLA with a minimum number
of diligently tuned layers and exploiting textural features to identify pair-wise contiguous
pixel relationships causing improved discrimination identified through SVM classifier.
The proposed methodology does not require any preprocessing or segmentation of the
tumor region. The details related to assessing the complexity and reliability performance
of the proposed system have also been carried out. To the best of our knowledge in the
literature, the test results using the proposed method have the highest detection rate of
99.24% (99.18%, 98.86%, and 99.67%), and F-measure of 0.99 (0.99, 0.98, and 0.99) with
7 FNs for glioma, meningioma, and pituitary tumors, respectively. Our results have been
found to be 2% better than the previously best known 97.30% in the PC desktop category
system, indicating that our proposed system is highly capable of increasing diagnostic
assistance to brain tumor radiologists. We strongly recommend the proposed system to act
as a second opinion to the radiologists and clinical experts for this highly effective decision
support system for the early diagnosis of the vulnerable population against brain tumors.
The UL-BTD system has a low computational cost, with 11.69 ms detection-time per image,
using even a modern PC system having average GPU resources. The proposed method has
the potential use in brain tumor real-time surgery with a reduced amount of time (22.07%
less) in comparison to the state-of-the-art earlier to detect a tumor without any dedicated
hardware providing a route for a desktop application in brain surgery.
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