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ABSTRACT
Local differential privacy (LDP) is promising for private stream-

ing data collection and analysis. However, existing few LDP studies

over streams either apply to finite streams only or may suffer from

insufficient protection. This paper investigates this problem by

proposing LDP-IDS, a novel 𝑤-event LDP paradigm to provide

practical privacy guarantee for infinite streams. By constructing a

unified error analysis, we adapt the existing budget division frame-

work in centralized differential privacy (CDP) for LDP-IDS, which

however incurs prohibitive noise and expensive communication

cost. To this end, we propose a novel and extensible framework of

population division and recycling, as well as online adaptive pop-

ulation division algorithms for LDP-IDS. We provide theoretical

guarantees and demonstrate, through extensive discussions, that

our proposed framework not only achieves significant reduction in

utility loss and communication overhead, but also enjoys great com-

patibility for varied analytic tasks and flexibility of incorporating

ideas of many existing stream algorithms. Extensive experiments

on synthetic and real-world datasets validate the high effectiveness,

efficiency, and flexibility of our proposed framework and methods.
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Table 1: Summary of DP research on data streams

Event-level User-level 𝑤-event level
CDP [5–7, 17, 18] [22–24] [29, 43, 48, 49]

LDP [26, 45] [4, 20] Our work

1 INTRODUCTION
Differential privacy (DP) has emerged as the de-facto standard

for privacy protection with rigorous guarantee. DP for streams

has also attracted extensive interests. According to the granularity,

these studies can be broadly classified into three categorizes: event-
level, user-level and𝑤-event privacy. Early researches mainly focus

on event-level privacy for finite streams [5–7, 17, 18] and user-level
privacy for infinite streams [22–24]. However, the former that hides

any single event in streams may be insufficient for users’ coarse-

grained privacy, while the latter that protects any user’s occurrence

in infinite streams is impractical for realistic scenarios [29]. To break

the dilemma,𝑤-event privacy for infinite streams is proposed [29],

which aims to guarantee 𝜖-DP for any time window consisting of

𝑤 consecutive time instances (or timestamps for simplicity). Due

to meaningful protection and applicability, 𝑤-event privacy has

become the research trend and achieved fruitful results [39, 43,

48, 49]. Nonetheless, these studies are based on central/centralized
differential privacy (CDP), which relies on a trusted aggregator (or

server) and is prone to honest-but-curious adversaries.
Recently, local differential privacy (LDP) [13, 14, 28] has demon-

strated a great potential in accomplishing analytic tasks [8, 21, 32,

33, 35, 36, 38, 41, 44, 46, 47, 50, 51], without relying on a trusted

aggregator. Unlike CDP, LDP has the advantage of guaranteeing

massive end users’ privacy locally, and thereby has been success-

fully deployed by many well-known corporations, e.g., Google [21],

Microsoft [12], Apple [11], and Uber [25]. Contemporary studies on

LDP mainly focus on static (non-streaming) data analysis, including

frequency [1, 21, 27, 44] and mean estimation [42, 50]. For evolving

(streaming) data analytics, there are only a little work, including

event-level LDP for infinite streams [26, 45] and user-level LDP for

finite streams [4, 20]. Under event-level privacy, Joseph et al. [26]
propose THRESH, which aims at reducing privacy loss at time slots

with no significant population-wide updates. Despite being com-

patible to infinite streams, event-level LDP lacks consideration of

users’ coarse-grained data. For user-level LDP, Bao et al. [4] present
a correlated Gaussian mechanism CGM via utilizing autocorrela-

tions in streams. However, under the analytic Gaussian mechanism,

https://doi.org/10.1145/3514221.3526190
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CGM achieves only approximate LDP (i.e., (𝜖, 𝛿)-LDP) rather than
pure 𝜖-LDP, and is limited to finite streams only, meaning that the

service has to be restarted periodically for infinite stream scenarios.

Table 1 summarizes DP studies on data streams from both aspects

of privacy granularity and applicable architecture. To the best of

our knowledge, there is no prior work on𝑤-event LDP, which can

persistently provide strong and practical protection for indefinitely

streaming data collection.

In this paper, we propose LDP-IDS, a pure 𝜖-LDP based paradigm

over infinite streams under the framework of𝑤-event privacy. There
are three technical challenges for LDP-IDS:

• No access to raw data. In CDP studies [29], to reduce overall

noise, it is common to mainly update at remarkable timestamps

or assign different budget at different timestamps according to

the sparsity in raw streams. However, this is difficult in LDP

protocols, since the aggregator no longer has access to the raw

data streams, which have to be perturbed at the user’s end locally.

• Utility loss in budget division. Even if some methods can be

formulated to mine the characteristics of raw streams underlying

the LDP perturbed streams, the budget division methodology,

commonly used in CDP, is not efficient in LDP. Compared with

CDP noise, LDP noise is more sensitive to budget division and

perturbation with low LDP budget is much more noisy [44, 47].

• High communication cost. As streaming data generates, mas-

sive users persistently release their perturbed data to the aggre-

gator at each timestamp. That often causes high communication

cost for resource-constrained devices. It is desirable to consider

the communication efficiency in designing LDP mechanisms.

To address the above challenges, we propose LDP-IDS, an LDP

paradigm and corresponding methods for infinite data streams.

Specifically, in this paper, we make the following contributions:

• We first formulate the problem of infinite streaming data col-

lection with LDP, which aims at realizing accurate and efficient

statistical analysis over LDP perturbed streams while providing

meaningful privacy protection (i.e., 𝑤-event LDP) for infinite

streams and not relying on a trusted server (§. 3).

• We construct a unified error analysis for streaming data ana-

lytics with LDP. Based on that, we develop the budget division

framework with theoretical guarantees for achieving LDP over

infinite streams. We present two online adaptive budge division

methods, which allocate budget according to non-deterministic

stream sparsity. Compared to naive methods, the online adaptive

methods can effectively improve data utility (§. 4).

• We propose a novel framework of population division and recy-

cling for LDP-IDS, which achieves significantly higher utility and

less communication overheads (§. 5). To the best of our knowl-

edge, this is the first study on population division-based LDP

for infinite streams. By building an analogy between budget and

population division, we design online adaptive population divi-

sion methods with further performance improvement. Besides,

we discuss the generality and extend the framework to other

state-of-the-art stream algorithms (§. 6).

We implemented all proposed LDP algorithms for streams and

conducted extensive experiment evaluation on both synthetic and

real-world datasets (§. 7). Our experimental results validate that,

compared with the budget division algorithms, population division

and recycling-based algorithms achieve significant reduction in

utility loss, event detection error, and communication overhead.

Furthermore, the proposed framework of online adaptive popula-

tion division for LDP-IDS has demonstrated great compatibility

for varied analytic tasks and high flexibility of incorporating with

existing stream algorithms.

2 PRELIMINARIES
In this section, we first introduce𝑤-event privacy and its CDP

studies. Then, we introduce LDP and frequency oracles.

2.1 𝑤-event Privacy in Centralized Setting
𝑤-event privacy can strike a nice balance between event-level

privacy for infinite streams and user-level privacy for finite streams.

We first give the notion about stream prefix and neighboring
streams. A stream prefix of an infinite series 𝑆 = (𝐷1, 𝐷2, ...) at
timestamp 𝑡 is defined as 𝑆𝑡 = (𝐷1, 𝐷2, ..., 𝐷𝑡 ), where 𝐷𝑖 is a snap-

shot of the stream at 𝑖 . Let 𝑤 be a positive integer, two stream

prefixes 𝑆𝑡 , 𝑆
′
𝑡 are called𝑤-neighboring, if for each 𝑆𝑡 [𝑖], 𝑆 ′𝑡 [𝑖] such

that 𝑖 ∈ [𝑡] and 𝑆𝑡 [𝑖] ≠ 𝑆 ′𝑡 [𝑖], it holds that 𝑆𝑡 [𝑖], 𝑆 ′𝑡 [𝑖] are neighbor-
ing; and for each 𝑆𝑡 [𝑖1], 𝑆𝑡 [𝑖2], 𝑆 ′𝑡 [𝑖1], 𝑆 ′𝑡 [𝑖2] with 𝑖1 ≤ 𝑖2, 𝑆𝑡 [𝑖1] ≠
𝑆 ′𝑡 [𝑖1] and 𝑆𝑡 [𝑖2] ≠ 𝑆 ′𝑡 [𝑖2], it holds that 𝑖2 − 𝑖1 + 1 ≤ 𝑤 .

Definition 2.1 (𝑤-event Privacy [29]). LetM be a mechanism that

takes as input a stream prefix of arbitrary size and O denote the set

of all possible outputs ofM.M satisfies𝑤-event 𝜖-DP (or, simply,

𝑤-event privacy) if for all sets 𝑂 ⊆ O, all 𝑤-neighboring stream

prefixes 𝑆𝑡 , 𝑆
′
𝑡 , and all 𝑡 , Pr[M(𝑆𝑡 ) ∈ 𝑂] ≤ 𝑒𝜖 · Pr[M(𝑆 ′𝑡 ) ∈ 𝑂].

𝑤-event privacy guarantees 𝜖-DP in any sliding window of size

𝑤 . Or, for any𝑤-event private mechanism, 𝜖 can be viewed as the

total available privacy budget in any sliding window of size𝑤 [29].

2.2 Existing Methods with𝑤-event CDP
A naive method is to evenly apply 𝜖/𝑤-DP histogram release

mechanism at every timestamp. Unfortunately, with the increase

of𝑤 , the allocated budget becomes much small, which causes large

perturbation noise at each timestamp. Another simple method is

to release an 𝜖-DP fresh histogram at one timestamp while other

timestamps in a window is directly approximated with this result.

However, the fixed sampling strategy cannot accurately follow the

update patterns in the dynamic stream, thus leading to large errors.

BD (budget distribution) and BA (budget absorption) are bench-

mark adaptive methods for infinite stream release with 𝑤-event

CDP[29]. Both BD and BA can be summarized into three compo-

nents: private dissimilarity calculation, private strategy determina-
tion, and privacy budget allocation. In private dissimilarity calcula-
tion, a dissimilarity 𝑑𝑖𝑠 between the current c𝑡 and the last update c𝑙
is computed and perturbed with some fixed dissimilarity budget 𝜖𝑡,1.
In private strategy determination, some publication budget 𝜖𝑡,2 is
assigned (How to assign is designed in privacy budget allocation) for
potential publication of noisy statistic, which can derive a potential

publication error 𝑒𝑟𝑟 . Then, 𝑑𝑖𝑠 and 𝑒𝑟𝑟 are compared to decide

the private strategy for current release. If 𝑒𝑟𝑟 < 𝑑𝑖𝑠 , publish with

perturbation (i.e., r𝑡 = c𝑡 + ⟨𝐿𝑎𝑝 (1/𝜖𝑡,2)⟩𝑑 ); otherwise, approximate

by the previous release (i.e., r𝑡 = c𝑙 ). In above process, 𝜖𝑡,1 is fixed

for each timestamp, but 𝜖𝑡,2 is assigned based on different rules in



BD and BA. In BD, 𝜖𝑡,2 is distributed in an exponentially decaying

way to the timestamps where a publication is chosen, and reuses

the budget spent in timestamps out of the current sliding window.

While in BA, 𝜖𝑡,2 is uniformly assigned first and then unused budget

is absorbed at timestamps where approximation is chosen.

2.3 Local Differential Privacy (LDP)
In the LDP paradigm,M is a randomized mechanism that per-

turbs each user’s input 𝑣 and sends it to the central aggregator, who

estimates the true aggregate statistics from the perturbed data.

Definition 2.2 (Local Differential Privacy). A mechanismM sat-

isfies 𝜖-local differential privacy (i.e., 𝜖-LDP), if and only if, for any

input 𝑣 and 𝑣 ′ in domain 𝐷𝑜𝑚(M) and any 𝑂 in the set of all pos-

sible outputs ofM, we have Pr[M(𝑣) ∈ 𝑂] ≤ 𝑒𝜖 · Pr[M(𝑣 ′) ∈ 𝑂].

LDP ensures the aggregator cannot infer the input with high con-

fidence. As a variant, it inherits the DP properties, including sequen-

tial/parallel composition and post-processing theorems [19][31].

2.4 LDP Protocols for Frequency Estimation
LDP data analyses are commonly built on some frequency oracle

(FO) protocols, which enable frequency estimation of any value 𝑣

in a given domain Ω = {𝜔1, 𝜔2, . . . , 𝜔𝑑 } of size 𝑑 = |Ω | with 𝜖-LDP.
GRR. A common LDP FO protocol is Generalized Randomized

Response (GRR). The idea of GRR method is that with a private data

𝑣 ∈ Ω, each user sends the true value to the central aggregator

with probability 𝑝 = 𝑒𝜖

𝑒𝜖+𝑑−1 , and randomly sends other value in the

candidate set Ω \ {𝑣} with probability 𝑞 = 1

𝑒𝜖+𝑑−1 . The aggregator
estimates the frequency of each distinct item 𝑣 or 𝜔𝑘 ∈ Ω, denoted
as c[𝑘], as follows. It first counts the frequency of 𝜔𝑘 in perturbed

data, which is denoted as c′[𝑘]. Then, assuming 𝑛 is the number

of participant users, the estimated frequency c[𝑘] of 𝜔𝑘 through

GRR protocol can be obtained as cGRR [𝑘] = (c′[𝑘]/𝑛 − 𝑞)/(𝑝 − 𝑞) .
It is shown in [44] that this is an unbiased estimation of the true

frequency, with the variance

Var[cGRR [𝑘]; 𝜖, 𝑛] =
𝑑 − 2 + 𝑒𝜖
𝑛 · (𝑒𝜖 − 1)2

+ c[𝑘] · (𝑑 − 2)
𝑛 · (𝑒𝜖 − 1) (1)

where c[𝑘] is the frequency of 𝜔𝑘 and there is

∑𝑑
𝑘=1

c[𝑘] = 1.

OUE. There is another efficient LDP protocol Optimal Unary
Encoding (OUE), in which an unary encoding is applied before

randomization [51]. This protocol first encodes an input value 𝑣 ∈ Ω
into a binary string of length 𝑑 with the 𝑣-th bit set as 1 and all

other bits as 0. Then OUE applies GRR to each bit, but perturbs 1’s

and 0’s differently, i.e., the bit 1 is perturbed as a coin toss while bit

0 is perturbed with the maximum allowed budget 𝜖 . To estimate the

frequency of 𝑣 ∈ Ω, the aggregator collects all perturbed bit strings
and counts the number of reports (denoted as c′[𝑘]) with the bit

corresponding to 𝑣 set to 1. Then, its unbiased estimation can be

derived as cOUE [𝑘] = 2(c′[𝑘] − 𝑛 · 𝑞)/(1 − 2𝑞) with the variance

Var[cOUE (𝑘); 𝜖, 𝑛] =
4𝑒𝜖

𝑛 · (𝑒𝜖 − 1)2
+ c[𝑘]

𝑛
(2)

Ada. To minimize estimation error, it is proposed to adaptively

choose the above two protocols according to the domain size and

privacy budget. If 𝑑 < 3𝑒𝜖 + 2, GRR is used; otherwise, OUE is
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Figure 1: Histogram release in a streaming setting

adopted. This is referred to as Adaptive FO (Ada). We also adopt it

in our paper for better utility.

Note that, given the domain size 𝑑 and 𝜖 , the variance of FOs is

determined and can all be expressed as a function of parameter 𝜖 and

population 𝑛, as comprehensively analyzed in [10]. For conciseness,

without specifying the FO used, we use 𝑉 (𝜖, 𝑛) to represent the

estimation variance from 𝑛 users with budget 𝜖 . With a different FO,

the communication cost for a single report is different. For example,

the number of communication bits for each report is 𝑂 (log𝑑) for
GRR and 𝑂 (𝑑) for OUE, i.e., at most 𝑂 (𝑑) for Ada.

3 MODELS AND PROBLEM DEFINITION
In this section, we propose LDP-IDS, a novel LDP paradigm for

infinite streams under the framework of𝑤-event privacy.

Data Model. We consider a system consisting of a central server

and 𝑛 distributed users 𝑈 = {𝑢1, . . . , 𝑢𝑛}. At discrete timestamps,

the server collects data over some attributes (e.g., setting prefer-

ence or battery usage of devices) from these users, and conducts

statistical analysis on the collected data continuously. For a cer-

tain attribute, let 𝑣
𝑗
𝑡 represent the report of user 𝑢 𝑗 at timestamp

𝑡 and 𝑣
𝑗
𝑡 come from a domain Ω, which can be either categorical

(e.g, Ω = {𝜔1, 𝜔2, . . . , 𝜔𝑑 } with the cardinality of 𝑑) or numeri-

cal (e.g., Ω = [0, 𝐵] with a maximal differential bound 𝐵). Then,

as time evolves, each user inherently has an infinite data stream

𝑉 𝑗 = (𝑣 𝑗
1
, 𝑣

𝑗

2
, . . .), which is sensitive and prohibited to directly share

with the server. Meanwhile, at every timestamp 𝑡 , the server aims to

obtain and release the estimate r𝑡 of the true aggregate statistics c𝑡
(e.g. histogram shown in Fig. 1) over all 𝑛 users’ data continuously.

Privacy Model. In the LDP setting, instead of reporting 𝑣
𝑗
𝑡 , each

user would send a perturbed representation 𝑣
𝑗
𝑡 (𝜖-LDP (𝜖 > 0) or

nothing (equivalent to 0-LDP) at each timestamp 𝑡 . An Ada-based

local sanitation process at the user-side is shown in Algorithm 1.

Considering the stream infinity, similar to𝑤-event privacy in the

centralized setting, users also wish to adopt a meaningful privacy

paradigm in the LDP setting. We naturally extend the definition of

𝑤-event privacy to the local setting. Before that, we first define the

notion of𝑤-neighboring in the local setting.

Algorithm 1: LocSan (at User-side):
Input: timestamp 𝑡 , budget 𝜖 , domain Ω of size 𝑑

Output: Perturbed report 𝑣
𝑗
𝑡

1 Obtain the current raw report 𝑣
𝑗
𝑡 ;

2 if 𝑑 < 3𝑒𝜖 + 2 then
3 M ← GRR;

4 else
5 M ← OUE;

6 end
7 𝑣

𝑗
𝑡 ← M(𝑣

𝑗
𝑡 , 𝜖,Ω) ;

8 Submit the perturbed report 𝑣
𝑗
𝑡



Definition 3.1 (𝑤-neighboring). Let 𝑉𝑡 and 𝑉 ′𝑡 denote two stream

prefixes over a domain Ω𝑡
. Let𝑤 be a positive integer.𝑉𝑡 and𝑉

′
𝑡 are

𝑤-neighboring, if for each𝑉𝑡 [𝑖1],𝑉𝑡 [𝑖2],𝑉 ′𝑡 [𝑖1],𝑉 ′𝑡 [𝑖2] with 𝑖1 ≤ 𝑖2,

𝑉𝑡 [𝑖1] ≠ 𝑉 ′𝑡 [𝑖1] and 𝑉𝑡 [𝑖2] ≠ 𝑉 ′𝑡 [𝑖2], it holds that 𝑖2 − 𝑖1 + 1 ≤ 𝑤 .

That is to say, if two stream prefixes are 𝑤-neighboring, then

their elements are the same while all their same elements consist of

a window of up to𝑤 timestamps. This is slightly different from the

definition in the central setting.

Definition 3.2 (𝑤-event LDP). LetM be a mechanism that takes

as input stream prefix 𝑉𝑡 = (𝑣1, 𝑣2, . . . , 𝑣𝑡 ) consisting of a single

user’s arbitrary number of consecutive input value 𝑣𝑡 . Also let O be

the set of all possible outputs ofM.M satisfies𝑤-event 𝜖-LDP (i.e.,

𝑤-event LDP) if for any𝑤-neighboring stream prefixes 𝑉𝑡 ,𝑉
′
𝑡 , any

𝑂 ⊆ O and all 𝑡 , it holds that Pr[M(𝑉𝑡 ) ∈ 𝑂] ≤ 𝑒𝜖Pr[M(𝑉 ′𝑡 ) ∈ 𝑂] .

Problem Definition. We consider the following two typical

classes of aggregate statistics over infinite streams.

• Frequency estimation over categorical domain aims to estimate

the frequency histogram c𝑡 = ⟨c𝑡 [1], c𝑡 [2], . . . , c𝑡 [𝑑]⟩ of all
𝑑 possible values over Ω = {𝜔1, 𝜔2, . . . , 𝜔𝑑 }, where c𝑡 [𝑘] =
1

𝑛

∑
𝑗 1{𝑘 |𝑣 𝑗𝑡 =𝜔𝑘 } (𝑘) is the frequency of 𝜔𝑘 ∈ Ω and 1𝑋 (𝑘) is

an indicator function that equals to 1 if 𝑘 ∈ 𝑋 , and 0 otherwise.

• Mean estimation over numerical domain aims to estimate themean

value 𝑐𝑡 =
1

𝑛 𝑣
𝑗
𝑡 over all 𝑛 users’ data 𝑣

𝑗
𝑡 ∈ [0, 𝐵]. Without loss of

generality, we also use c𝑡 = {𝑐𝑡 } with cardinality 𝑑 = 1 to denote

the mean-value statistics.

Since different LDP aggregate statistics are orthogonal and work in

a similar way in the stream setting, we mainly focus on frequency

estimation in the remainder of this paper, and then discuss the

generality and extension to mean estimation in Sec. 6.1.

Therefore, our goal is to design an𝑤-event 𝜖-LDP solution that

helps the server to collect data and release an estimated histogram

r𝑡 = ⟨r𝑡 [1], r𝑡 [2], . . . , r𝑡 [𝑑]⟩ at each timestamp 𝑡 where r𝑡 [𝑘] de-
notes the estimated frequency or mean in the domain. Particularly,

we aim to minimize the average distance between the estimate

sequence R𝑡 = (r1, . . . , r𝑡 ) and the true one C𝑡 = (c1, . . . , c𝑡 ) while
satisfying𝑤-event LDP over infinite data streams.

4 BUDGET DIVISION METHODOLOGY
In this section, we present a budget division-based framework

and several baselines for streaming data collection with LDP.

4.1 Budget Division for LDP
Inspired by the studies in the centralized setting, the following

theorem can be derived to enable a 𝑤-event LDP mechanism to

view 𝜖 as the total privacy budget in any sliding window of size𝑤 ,

and allocate portions of it across timestamps, as shown in Fig. 2(a).

Theorem 4.1. LetM be a mechanism that takes as input stream
prefix 𝑉𝑡 consisting of a single user’s arbitrary number of consec-
utive input value 𝑣𝑖 , i.e., 𝑉𝑡 [𝑖] = 𝑣𝑖 , and outputs a transcript 𝑜 =

(𝑜1, 𝑜2, ..., 𝑜𝑡 ) ∈ 𝑅𝑎𝑛𝑔𝑒 (M). Suppose that we can decomposeM into
𝑡 mechanisms M1,M2, ...,M𝑡 , such that M𝑖 (𝑣𝑖 ) = 𝑜𝑖 , each M𝑖

generates independent randomness and achieves 𝜖𝑖 -LDP. Then,M
satisfies 𝑤-event 𝜖-LDP if for any user and any timestamp 𝑖 ∈ [𝑡],
there is (∑𝑖

𝜏=𝑖−𝑤+1 𝜖𝜏 ) ≤ 𝜖 .

Proof. See Appendix B.1 in [37]. □

By Theorem 4.1, some straightforward LDP budget division ap-

proaches can be summarized to solve the problem defined in Sec. 3.

LDP Budget Uniform Method (LBU). One straightforward

approach is to uniformly assign LDP budget 𝜖 to all𝑤 timestamps

in the sliding windows. At each timestamp, each user reports with

an LDP protocol using the fixed budget 𝜖/𝑤 for satisfying𝑤-event

LDP. Since r𝑡 is an unbiased estimate of c𝑡 , the mean square error

(MSE) between the true stream prefix 𝐶𝑡 = (c1, c2, . . . , c𝑡 ) and the

released one 𝑅𝑡 = (r1, r2, . . . , r𝑡 ), equals to the estimate variance

of r𝑡 , i.e., MSELBU = Var[r𝑡 ; 𝜖/𝑤,𝑛] = 𝑉 (𝜖/𝑤,𝑛). If𝑤 is large, the

budget allocated at each timestamp is small, leading to a large noise.

Communication cost, measured by the number of communication

bits between the users and the server per timestamp, is 𝑂 (𝑛 log𝑑)
for GRR and 𝑂 (𝑛𝑑) for OUE, i.e., at most 𝑂 (𝑛𝑑) for Ada.

LDP Sampling Method (LSP). Each user invests the entire

budget 𝜖 on a single (sampling) timestampwithin the window, while

saving budget for the next𝑤 − 1 timestamps via approximation. At

the last sampling timestamp 𝑙 , the MSE of LSP equals to estimation

variance 𝑉 (𝜖, 𝑛). For non-sampling timestamps, it equals to the

sum of the variance of last release at the sampling timestamp (i.e.,

Var[r𝑙 ] 1), and the variance of true statisics at the current timestamp

𝑡 from that at the last sampling timestamp 𝑙 (i.e., (c𝑡 − c𝑙 )2, which is

data dependent). Therefore, the MSE of LSP in a window of size𝑤

can be calculated as MSELSP = 𝑉 (𝜖, 𝑛) + 1

𝑤

∑𝑤−1
𝑘=1
(c𝑡 − c𝑡+𝑘 )2. An

implicit assumption motives this method is that c𝑡 (or 𝐷𝑡 ) in the

stream does not fluctuate too much. Therefore, for streams with

few changes, LSP may work better by saving up privacy budgets;

otherwise, the estimation error on those skipped timestamps may

become excessively large. Besides budget saving, LSP reduces the

total communication bits per timestamp to 𝑂 (𝑛𝑑/𝑤).
Considering the non-deterministic sparsity in data streams, both

LBU and LSP can not achieve better utility in general cases.

4.2 Adaptive Budget Division Methods
In this subsection, we propose two adaptive methods by con-

structing a unified distortion analysis under LDP.

BD/BA [29] summarized in Sec. 2.2 inspire us that higher utility

can be achieved by adaptively allocating privacy budget in data

streams. However, in the local setting, since the central server

cannot observe individuals’ reports or directly obtain the true c𝑡 ,
the design of such LDP solutions is challenging. In particular, it is

infeasible to accomplish the private dissimilarity calculation or data

publication by adding noise over the true statistics, but we need

to use LDP protocols to do so. However, using an LDP protocol, it

remains unclear how to model the dissimilarity 𝑑𝑖𝑠 and publication
error 𝑒𝑟𝑟 under LDP for empirically optimal strategy determination.

4.2.1 Private dissimilarity estimation. To address the above

challenges, we first redefine the dissimilarity measure 𝑑𝑖𝑠∗ as the
square error between the true statistics c𝑡 of current timestamp and

the previous release r𝑙 , i.e., 𝑑𝑖𝑠∗ = 1

𝑑

∑𝑑
𝑘=1
(c𝑡 [𝑘] − r𝑙 [𝑘])2. Then,

inM𝑡,1, we aim to obtain the dissimilarity 𝑑𝑖𝑠∗ privately, i.e., from
users’ LDP perturbed data using the dissimilarity budget 𝜖𝑡,1.

1
For simplicity, we use Var[r𝑙 ] to denote the average variance over 𝑑 dimensions of

vectorr𝑙 , or Var[r𝑙 ] = 1

𝑑

∑𝑑
𝑘=1

Var(r𝑙 [𝑘 ]) .



Theorem 4.2. Let c𝑡,1 denote the unbiased estimate of c𝑡 from
an 𝜖-LDP mechanism over the perturbed data in M𝑡,1. Then, the
following dissimilarity measure

𝑑𝑖𝑠 =
1

𝑑

∑︁𝑑

𝑘=1
(c𝑡,1 [𝑘] − r𝑙 [𝑘])2 −

1

𝑑

∑︁𝑑

𝑘=1
Var(c𝑡,1 [𝑘]). (3)

is 𝜖-LDP and an unbiased estimation of 𝑑𝑖𝑠∗ above defined.

Proof. See Appendix B.2 in [37]. □

Therefore, the dissimilarity can be calculated from c𝑡,1 while

satisfying 𝜖𝑡,1-LDP. In the left term
1

𝑑

∑𝑑
𝑘=1
(c𝑡,1 [𝑘] − r𝑙 [𝑘])2 of

Eq. (3), c𝑡,1 is obtained from an LDP protocol while r𝑙 is publicly
known. The right term

1

𝑑

∑𝑑
𝑘=1

Var(c𝑡,1 [𝑘]) denoted as 𝑉 (𝜖𝑡,1, 𝑛),
can be estimated from the population 𝑛 and LDP budget 𝜖𝑡,1.

4.2.2 Private strategy determination. The key to choose the

strategy of approximation or publication is to compare the dissim-

ilarity (i.e., the potential approximation error) with the potential

publication error. Considering that LDP protocols and their anal-

ysis are different from those in the CDP setting, the LDP-based

publication error should also be re-formulated.

Here, in the LDP setting, considering that 𝑑𝑖𝑠 defined above is an

𝐿2 distance measure, we propose to use Mean Square Error (MSE)

to measure the potential publication error, denoted as 𝑒𝑟𝑟 . Suppose

c𝑡,2 is the histogram estimated via LDP protocol (e.g., GRR), the

estimation error can be measured as 𝑒𝑟𝑟 = 1

𝑑

∑𝑑
𝑘=1
(c𝑡,2 [𝑘]−c𝑡 [𝑘])2.

Since c𝑡,2 is an unbiased estimation of c𝑡 , i.e., E(c𝑡,2) = c𝑡 , there is

𝑒𝑟𝑟 =
1

𝑑

∑︁𝑑

𝑘=1
Var(c𝑡,2 [𝑘]) (4)

which denotes as 𝑉 (𝜖𝑡,2, 𝑛) and can be calculated from the pop-

ulation 𝑛 and publication budget 𝜖𝑡,2. For example, taking GRR

as an example of the used LDP protocol, it can be written as

𝑒𝑟𝑟 = 1

𝑑

∑𝑑
𝑘=1

Var(c𝑡,2 [𝑘]) = 𝑑−2+𝑒𝜖𝑡,2
𝑛 (𝑒𝜖𝑡,2−1)2 +

𝑑−2
𝑛 (𝑒𝜖𝑡,2−1) . Note that,

𝑒𝑟𝑟 is independent of the true frequency value c[𝑘] in Eq. (1).

Based on above formulations, an empirically optimal strategy at

current timestamp 𝑡 can be determined as follows.

• If 𝑑𝑖𝑠 < 𝑒𝑟𝑟 , the approximation strategy is chosen. For example,

the server can directly publish the last released value without

actual consumption of the publication budget 𝜖𝑡,2.

• Otherwise, the publication strategy is chosen. Each user reports

value via an LDP protocol using the publication budget 𝜖𝑡,2 to

the server, who releases a fresh estimate c.

4.2.3 Privacy budget allocation. From the high level, we evenly

divide the entire budget in a time window, 𝜖 , for two components:

private dissimilarity estimation and private strategy determination.

Therefore, the entire dissimilarity budget and publication budget in

a time window satisfies

∑𝑡
𝑖=𝑡−𝑤+1 𝜖𝑖,1 ≤ 𝜖/2, ∑𝑡

𝑖=𝑡−𝑤+1 𝜖𝑖,2 ≤ 𝜖/2.
In the private dissimilarity estimation, the dissimilarity budget is di-

vided evenly to each timestamp in the time window, i.e., 𝜖𝑖,1 = 𝜖/2𝑤 .

However, we aim to invest the publication budget economically to

the timestamps, which leads to two different methods, LDP budget
distribution (LBD) and LDP budget absorption (LBA).

In LBD, the publication budget is distributed in an exponen-

tially decreasing way to the timestamps where a publication oc-

curs. At each timestamp 𝑡 , before private strategy determination,

the current remaining publication budget is calculated as, 𝜖rm =

𝜖/2 −∑𝑡−1
𝑖=𝑡−𝑤+1 𝜖𝑖,2. Then, half of the remaining publication bud-

get 𝜖rm is assigned as the potential publication budget 𝜖𝑡,2 for the
calculation of potential publication error. If publication strategy is

chosen, 𝜖𝑡,2 is spent, meaning 𝜖𝑡,2 will be removed from the remain-

ing publication budget at the next timestamp. If approximation

occurs, 𝜖𝑡,2 is then not truly used, i.e., 𝜖𝑡,2 = 0. Finally, the publi-

cation budget 𝜖𝑡−𝑤,2 spent in timestamp 𝑡 −𝑤 (𝑡 > 𝑤), out of the
current sliding window is recycled. The pseudocode of LBD can be

referred to Appendix C.1 in [37].

In LBA, the publication budget is uniformly allocated at all times-

tamps and then unused budget is absorbed at timestamps where

the publication strategy is chosen. Initially, the same amount of

potential publication budget, 𝜖/2𝑤 , is evenly assigned to all times-

tamps in a time window. Then, at timestamp 𝑡 , if the approximation

strategy was chosen at previous timestamps, the unused publica-

tion budgets at these timestamps are added to 𝜖𝑡,2; if publication

was chosen previously, it must nullify the same budget from the

succeeding timestamps to ensure the total budget within the active

sliding window does not exceed 𝜖 . The pseudocode of LBA can be

referred to Appendix C.2 in [37].

4.3 Analysis
4.3.1 Privacy Analysis. Both LBD and LBA satisfy𝑤-event LDP.

Theorem 4.3. LBD and LBA satisfy𝑤-event LDP for each user.

Proof. See Appendix B.3 in [37]. □

4.3.2 Utility Analysis. For simplicity, in both LBD and LBA, we
assume there are 𝑚 < 𝑤 publications occur at the timestamps

𝑝1, 𝑝2, ..., 𝑝𝑚 in the window of size𝑤 . Besides, no budget is recycled

from past timestamps outside the window, and each publication

approximates the same number of skipped/nullified publications.

Similar to the analysis of LSP, at any timestamp 𝑡 , if publication

occurs, then the MSE of the release r𝑡 is MSE
pub

= Var[r𝑡 ]; if
approximation is chosen, its MSE equals to the sum of the variance

of last release at timestamp 𝑙 (i.e., Var[r𝑙 ]), and the variance of the

true statisics at the current timestamp 𝑡 from that at timestamp 𝑙

(i.e., (c𝑡 − c𝑙 )2), i.e., MSEapr = Var[r𝑙 ] + (c𝑡 − c𝑙 )2. Then we express

MSE in a whole time window as follows

MSE𝐿𝐵𝐷/𝐿𝐵𝐴 =
1

𝑤


𝑤

𝑚

𝑚∑︁
𝑖=1

Var[r𝑝𝑖 ] +
𝑚∑︁
𝑖=1

𝑝𝑖+1−1∑︁
𝑡=𝑝𝑖

(c𝑡 − c𝑝𝑖 )2
 (5)

where the second term in the bracket solely depends on the under-

lying data and shows the data-dependent characteristics of LBD
and LBA. In the following, we analyze the left term in the bracket.

In LBD, since the budget is distributed to the𝑚 publications in

an exponentially decreasing way, the budget sequence of 𝜖𝑡,2 is

then 𝜖/4, 𝜖/8, . . . , 𝜖/2𝑚+1. There is
𝑚∑︁
𝑖=1

VarLBD [r𝑝𝑖 ] =
𝑚∑︁
𝑖=1

𝑉 (𝜖/2𝑖+1, 𝑁 ) < 𝑚 ·𝑉 (𝜖/2𝑚+1, 𝑁 ) (6)

where 𝑉 (𝜖, 𝑛) denotes the estimation variance of an FO from 𝑛

users’ LDP data using budget 𝜖 . As we can see, with the increase of

𝑚, the error of LBD would increase dramatically.

In LBA, due to𝑚 publications in the assumption, there are𝑤 −𝑚
approximations. Since each publication approximates the same

number of skipped/nullified publications, there are
𝑤−𝑚
2·𝑚 skipped (



whose budgets are absorbed) and
𝑤−𝑚
2·𝑚 nullified publications in

average. Then, each publication receives those skipped budget

( 𝑤−𝑚
2·𝑚 +1) ·𝜖
2·𝑤 =

(𝑤+𝑚) ·𝜖
4·𝑤 ·𝑚 and incurs MSE of 𝑉 ( 𝑤+𝑚

4·𝑤 ·𝑚 · 𝜖, 𝑛).∑︁𝑚

𝑖=1
VarLBA [r𝑝𝑖 ] =𝑚 ·𝑉 ( 𝑤 +𝑚

4 ·𝑤 ·𝑚 · 𝜖, 𝑁 ) (7)

Compared to LBD, LBA’s error increases with𝑚 more mildly.

4.3.3 Communication Analysis. In both LBD/LBA, each user has to

report twice to the server at publication timestamps and only once

at approximation timestamps. Meanwhile, the server has to instruct

users to publish or approximate at each timestamp. When there are

𝑚 publications in a window of size𝑤 , the number of communication

bits from the users to the server is at most 𝑂 (𝑛𝑑 (1 +𝑚/𝑤)) while
that from the server to the users is at most𝑂 (𝑛 ·min(𝑚,𝑤 −𝑚)/𝑤),
or simply𝑂 (𝑛), per timestamp. Therefore, the total communication

bits per timestamp are 𝑂 (𝑛 · (𝑑 + 𝑑𝑚/𝑤 + 1)).

5 POPULATION DIVISION METHODOLOGY
In this section, we present a novel idea of population division for

LDP over data streams. Then, we propose two population division-

based methods for better utility and communication efficiency.

5.1 Population Division & Recycling for LDP
The budget division framework provides a feasible solution to

infinite streaming data collection with LDP. However, data utility in

LDP scenarios is muchmore sensitive to budget division than that in

CDP. Recall that𝑉 (𝜖, 𝑛) denotes the estimation variance of an LDP

protocol from 𝑛 users with privacy budget 𝜖 . In Eq. (1), with fixed

𝑛,𝑉 (𝜖, 𝑛) is𝑂 ((𝑒𝜖 − 1)−1) in terms of budget 𝜖 . It increases sharply

as the budget assigned to each timestamp becomes small. Recently,

several previous studies [44, 47] indicate that it can achieve much

smaller overall error by partitioning users into groups and using

the entire privacy budget in each group. With the fixed 𝜖 , 𝑉 (𝜖, 𝑛)
is 𝑂 (𝑛−1) in terms of user population 𝑛, which increases much

mildly as 𝑛 becomes small. Hence, it is favorable to divide the

population rather than budget in LDP. However, most studies focus

on population division in a static setting, it remains unclear how

to divide and utilize the given population in an online mode over

infinite stream for achieving better utility.

𝑤-event LDP requires that each user can report with 𝜖-LDP only

once in a time window of size𝑤 . Nonetheless, after𝑤 timestamps,

he/she can report again with the entire 𝜖 LDP budget. In such a way,

we can continue sampling and recycling the users in data collection

to achieve population division over infinite streams. Therefore, we

adopt this idea in streaming data collection with LDP. Intuitively, a

straightforward method can be derived to achieve𝑤-event LDP.

LDP Population Uniform Method (LPU). At the beginning,
the central server uniformly assign the users into𝑤 disjoint groups,

each with roughly 𝑛/𝑤 users
2
. At each timestamp, it requests a

group of users that have never been requested before to report

their value. In a window with𝑤 timestamps, each group of users

will only report once with the entire budget 𝜖 . And after 𝑤 − 1

timestamps, each group users will be requested and report again

for the new sliding window. In this case, any user does not report

2
Precisely, if 𝑛 mod 𝑤 ≠ 0, it may be ⌊𝑛/𝑤 ⌋ for some groups or ⌊𝑛/𝑤 ⌋ + 1 for the
rests. For simplicity, we assume 𝑛/𝑤 for each.
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Figure 2: Budget division vs. Population division

in each sliding window more than once, thus spending no more

than 𝜖-LDP budget. Hence, 𝑤-event LDP is guaranteed for each

user. Fig. 2(b) illustrates the uniform population division method.

Theorem 5.1. Given the same FO protocol GRR or OUE, the MSE
of LPU is smaller than that of LBU, i.e., MSELPU < MSELBU.

Proof. See Appendix B.4 in [37]. □

Note that, since only a portion of users participate in reporting,

the population division methodology can also greatly reduce the

communication cost. In LPU, the number of users upload perturbed

data at each timestamp is only 1/𝑤 of the whole population in

average. Therefore, the communication cost is 1/𝑤 of that in LBU.
LDP Population Sampling Method (LSP). LSP in Sec. 4.1 can

be also seen as a population division method. Particularly, all users

are regarded as to be divided into𝑤 groups, in which, one group

has the whole population and entire budget while the rests have

no user reporting or budget allocation.

However, both LPU and LSP cannot be adaptive to streams with

unknown fluctuations, which still limits their utility.

5.2 Adaptive Population Division Methods
LBD/LBA provides a reference framework that improves the

utility of baseline methods via adaptively assigning privacy bud-

get according to the non-deterministic sparsity in data streams. In

the following, we present two online adaptive population division

methods LPD/LPA, which migrates this idea to the population divi-

sion & recycling framework to further enhance the data utility and

reduce the communication cost.

5.2.1 Overview. For better analogy to LBD/LBA, we still intro-
duce the population division based methods with two sub mecha-

nismsM1 andM2. We first evenly partition the whole population

𝑈 of size 𝑛 into dissimilarity user set 𝑈1 of size |𝑈1 | forM1 and

publication user set𝑈2 of size |𝑈2 | forM2, each with ⌊𝑛/2⌋ users.
Similarly,M1 performs private dissimilarity calculation. Differently,
based on population division framework,M2 accomplishes private
strategies determination and user allocation & recycling.

Private dissimilarity calculation: Sec. 4.2.1 defines the dis-
similarity measure 𝑑𝑖𝑠 in the LDP setting. InM1, at each timestamp

𝑡 , we still aim to estimate the dissimilarity 𝑑𝑖𝑠∗ = 1

𝑑

∑𝑑
𝑘=1
(c𝑡 [𝑘] −

r𝑙 [𝑘])2 based on Eq. (3). Similar to Sec. 4.2.1, we have to first obtain

an unbiased estimation c𝑡,1 from the LDP reports. However, based

on the population division methodology, it can only be obtained

from the LDP reports (using privacy budget 𝜖) of the dissimilarity

users in 𝑈𝑡,1 at timestamp 𝑡 . Particularly, we partition the ⌊𝑛/2⌋



Algorithm 2: LPD (at Server-side)
Input: Population𝑈 of size |𝑈 | = 𝑛, budget 𝜖 , window size 𝑤, domain Ω
Output: Released statistics 𝑅𝑡 = (r1, r2, . . . , r𝑡 , . . .)

1 Initialize available userset𝑈𝐴 = 𝑈 , and r0 = ⟨0, . . . , 0⟩;
2 for each timestamp 𝑡 do

// Sub Mechanism M𝑡,1:
3 Sample users𝑈𝑡,1 from𝑈𝐴 with the size of ⌊𝑛/(2𝑤) ⌋, remove𝑈𝑡,1

from𝑈𝐴 (i.e.,𝑈𝐴 = 𝑈𝐴 \𝑈𝑡,1), and set 𝐷𝑡,1 = ∅;
4 for each user 𝑢 𝑗 ∈ 𝑈𝑡,1 do
5 𝑣

𝑗
𝑡 ← 𝐿𝑜𝑐𝑆𝑎𝑛 (𝑈𝑡,1, 𝑡, 𝜖,Ω) via calling Algorithm 1;

6 end
7 Estimate c𝑡,1 from 𝐷𝑡,1 = {𝑣 𝑗𝑡 |𝑢 𝑗 ∈ 𝑈𝑡,1 } with parameter 𝜖 ;

8 Calculate 𝑑𝑖𝑠 = 1

𝑑

∑𝑑
𝑘=1
(c𝑡,1 [𝑘 ] − r𝑡−1 [𝑘 ])2 − 1

𝑑

∑𝑑
𝑘=1

Var(c𝑡,1 [𝑘 ]) ;
// Sub Mechanism M𝑡,2:

9 Calculate remaining population size 𝑛𝑟𝑚 = 𝑛/2 −∑𝑡−1
𝑖=𝑡−𝑤+1 |𝑈𝑖,2 |;

10 Set number of potential publication users 𝑛𝑝𝑝 = 𝑛𝑟𝑚/2;
11 Calculate potential publication error 𝑒𝑟𝑟 by Eq. (4) with 𝑛 = 𝑛𝑝𝑝 and 𝜖 ;

12 if 𝑑𝑖𝑠 > 𝑒𝑟𝑟 and 𝑛𝑝𝑝 ≥ 𝑢min then
// Publication Strategy

13 Sample a userset𝑈𝑡,2 from𝑈𝐴 with the size of |𝑈𝑡,2 | = 𝑛𝑝𝑝 ,

obtain𝑈𝐴 = 𝑈𝐴 \𝑈𝑡,2 , and set 𝐷𝑡,2 = ∅;
14 for each user 𝑢 𝑗 ∈ 𝑈𝑡,2 do
15 𝑣

𝑗
𝑡 ← 𝐿𝑜𝑐𝑆𝑎𝑛 (𝑈𝑡,2, 𝑡, 𝜖,Ω) via calling Algorithm 1;

16 end
17 Estimate c𝑡,2 from 𝐷𝑡,2 = {𝑣 𝑗𝑡 |𝑢 𝑗 ∈ 𝑈𝑡,2 } with parameter 𝜖 ;

18 return r𝑡 = c𝑡,2 ;
19 else

// Approximation Strategy
20 return r𝑡 = r𝑡−1 .
21 end

// Recycling Users:
22 if 𝑡 ≥ 𝑤 then
23 𝑈𝐴 = 𝑈𝐴 ∪𝑈𝑡−𝑤+1,1 ∪𝑈𝑡−𝑤+1,2 .
24 end
25 end

dissimilarity users over the𝑤 timestamps evenly. That is to say, at

each timestamp 𝑡 , |𝑈𝑡,1 | = ⌊𝑛/(2𝑤)⌋ dissimilarity users report their

value via an LDP mechanism using the entire budget 𝜖 .

Private strategy determination: InM2, the estimated dissimi-

larity 𝑑𝑖𝑠 (or approximation error) inM1 and the potential publica-

tion error 𝑒𝑟𝑟 are compared to empirically choose a better strategy

(i.e., with smaller error) from approximation and publication. 𝑒𝑟𝑟

can be calculated based on the available budget 𝜖 and availabe user

population 𝑛, e.g., according to Eq. (1) in GRR. Under the population

division framework, the budget is fixed as a constant 𝜖 and 𝑒𝑟𝑟 is

mainly determined by the number of potential publication users,

denoted as 𝑛𝑝𝑝 , which can be dynamically assigned in a sliding win-

dow. Since larger 𝑛𝑝𝑝 leads to less 𝑒𝑟𝑟 , we should assign as many

users as possible at each publication timestamp. However, since

any user can only participate once in a window (ensuring𝑤-event

LDP), the allocation of 𝑛𝑝𝑝 at each timestamp and the scheduling of

real publication users𝑈𝑡,2 (|𝑈𝑡,2 | should equal to 𝑛𝑝𝑝 ) at publication
timestamps should be carefully designed.

User allocation & recycling: InM2, with the above transition

from budget division to population division, the adaptive budget

allocation schemes, i.e., budget distribution (in LBD) and budget

absorption (LBA) can be also borrowed for assigning the number

of potential publication users 𝑛𝑝𝑝 . This also leads to two adaptive

population division methods: population distribution LPD and pop-
ulation absorption LPA. Given 𝑛𝑝𝑝 , we can achieve maximized user

utilization in scheduling publication users 𝑈𝑡,2 while ensuring𝑤-

event LDP for each user via a user recylcing process, which reuses

the users assigned in timestamps out of the current sliding window.

5.2.2 LDPPopulationDistribution (LPD). Algorithm 2 presents

the details of LPD. Firstly, for dissimilarity 𝑑𝑖𝑠 calculation inM1

(Lines 3-8), the dissimilarity users 𝑈1 is uniformly divided into𝑤

disjoint groups𝑈𝑡,1 at each timestamp, i.e., |𝑈𝑡,1 | = ⌊𝑛/(2𝑤)⌋. Next
inM2, the remaining number of publication users 𝑛rm is calcu-

lated by removing the already used publication users in the last

𝑤 − 1 timestamps from the total number of publication users 𝑛/2
(Line 9). Then, the number of potential publication users is set as

𝑛𝑝𝑝 = 𝑛rm/2 to calculate a potential publication error 𝑒𝑟𝑟 (Lines

10-11). By comparing 𝑒𝑟𝑟 with 𝑑𝑖𝑠 , the publication or approxima-

tion strategy is decided then (Lines 12-21). In case of too many

publications and 𝑛𝑝𝑝 decays too quickly to have no available user,

a threshold 𝑢min (e.g., 𝑢min = 1) is set (Line 12). Once publication is

chosen, 𝑛𝑝𝑝 new users will be sampled as actual publication users

𝑈𝑡,2 from𝑈𝐴 to accomplish publication (Lines 13-18). Otherwise, r𝑡
is approximated by r𝑡−1, without using 𝑛𝑝𝑝 users (Line 20). Finally,

both the used dissimilarity users and publication users (may be null)
at timestamp 𝑡 −𝑤 + 1, which is falling outside of the next active

window, are recycled as available users𝑈𝐴 (Line 23). The recycling

process ensures each user can contribute again after𝑤 timestamps

while guaranteeing no users participate more than once.

5.2.3 LDP Population Absorption (LPA). Algorithm 3 presents

the details of LPA. The private dissimilarity calculation process of

M𝑡,1 in LPA is the same as that in LPD. InM𝑡,2, the basic idea

is to uniformly allocate users across timestamps then the unused

publication users are absorbed at the timestamps where publication

is chosen. Once a publication occurs at time 𝑙 , the same number of

users must be skipped from the succeeding timestamps to ensure

available users within the active sliding window. So, the number

of timestamps to be nullified 𝑡𝑁 is first calculated based on the

number of publication users at timestamp 𝑙 , and thus skipped with

approximation (Lines 4-6). After that, based on the timestamps

can be absorbed, the number of potential publication users 𝑛𝑝𝑝 is

calculated at each time 𝑡 , which can further derive the potential

publication error 𝑒𝑟𝑟 (Lines 8-10). By comparing 𝑒𝑟𝑟 with 𝑑𝑖𝑠 ,M𝑡,2

decides whether to freshly publish with the potential publication

users (Lines 11-13) or continue to approximate with the last release

(Lines 14-15). Similarly, both the used dissimilarity users and publi-

cation users at timestamp 𝑡 −𝑤 + 1 are finally recycled as available

users𝑈𝐴 , which is the same as LPD (Lines 18).

5.3 Analysis
5.3.1 Privacy Analysis. LPD and LPA satisfy𝑤-event LDP because

each user reports to the server at most once in a time window of

size𝑤 and each report goes through an 𝜖-LDP protocol.

Theorem 5.2. LPD and LPA satisfies𝑤-event LDP for each user.

Proof. See Appendix B.5 in [37]. □

5.3.2 Utility Analysis. With the same assumptions, similar MSE

expression can be obtained as Eq. (5) in Sec. 4.3.2. Then, in LPD,
since the population is distributed to the𝑚 publications in an ex-

ponentially decreasing way, the population alloction sequence of

𝑛𝑡,2 is then 𝑛/4, 𝑛/8, . . . , 𝑛/2𝑚+1. There is∑︁𝑚

𝑖=1
VarLPD [r𝑝𝑖 ] =

∑︁𝑚

𝑖=1
𝑉 (𝜖, 𝑛/2𝑖+1) (8)



Algorithm 3: LPA (at Server-side)
Input: Population𝑈 of size |𝑈 | = 𝑛, budget 𝜖 , window size 𝑤, domain Ω
Output: Released statistics 𝑅𝑡 = (r1, r2, . . . , r𝑡 , . . .)

1 Initialize available userset𝑈𝐴 = 𝑈 , and r0 = ⟨0, . . . , 0⟩, last publication
timestamp 𝑙 = 0, and 𝜖𝑙,2 = 0;

2 for each time 𝑡 do
// Sub Mechanism M𝑡,1:

3 Same as Lines 3-8 in Algorithm 2
// Sub Mechanism M𝑡,2:

4 Calculate timestamps to be nullified 𝑡𝑁 =
|𝑈𝑙,2 |
⌊𝑛/(2𝑤)⌋ − 1;

5 if 𝑡 − 𝑙 ≤ 𝑡𝑁 then
6 return r𝑡 = r𝑡−1 ;
7 else
8 Calculate timestamps can be absorbed 𝑡𝐴 = 𝑡 − (𝑙 + 𝑡𝑁 ) ;
9 Set number of potential publication users

𝑛𝑝𝑝 = ⌊𝑛/(2𝑤) ⌋ ·min(𝑡𝐴, 𝑤) ;
10 Calculate potential publication error 𝑒𝑟𝑟 by Eq. (4);

11 if 𝑑𝑖𝑠 > 𝑒𝑟𝑟 then
// Publication Strategy

12 Same as Lines 13-17 in Algorithm 2
13 return r𝑡 = c𝑡,2 , set 𝑙 = 𝑡 ;
14 else

// Approximation Strategy
15 return r𝑡 = r𝑡−1 .
16 end
17 end
18 // Recycling Users:
19 Same as Lines 22-24 in Algorithm 2
20 end

Therefore, the error of LPD would still increase with𝑚. However,

according to Lemma 5.1, 𝑉 (𝜖, 𝑛/2𝑚+1) < 𝑉 (𝜖/2𝑚+1, 𝑛). That is to
say, LPD can achieve less error than LBD. Similarly, in LPA,∑︁𝑚

𝑖=1
VarLPA [r𝑝𝑖 ] =𝑚 ·𝑉 (𝜖, 𝑤 +𝑚

4 ·𝑤 ·𝑚 · 𝑛) (9)

which is smaller than𝑚 · 𝑉 ( 𝑤+𝑚
4·𝑤 ·𝑚 · 𝜖, 𝑛) in Eq. (7) of the budget

absorption method LBA, given the same assumptions.

5.3.3 Communication Analysis. In LPD, all 𝑚 publications in a

window need

∑𝑚
𝑖=1 (𝑛/2𝑖+1 +𝑛/(2𝑤)) = (

1−(1/2)𝑚
2

+ 𝑚
2𝑤 ) ·𝑛 users to

report and the rest𝑤−𝑚 approximations need
𝑤−𝑚
2𝑤 ·𝑛 users. That is,

for eachwindow, there are ( 1−(1/2)
𝑚

2
+ 𝑚
2𝑤 )·𝑛+

𝑤−𝑚
2𝑤 ·𝑛 = 𝑛(1− 1

2
𝑚+1 )

reports. Meanwhile, the server has to instruct the same number

of users how to report. Therefore, the number of communication

bits is at most 𝑂 (𝑛𝑑 · ( 1𝑤 −
1

𝑤 ·2𝑚+1 )) from users to the server and

𝑂 (𝑛 · ( 1𝑤 −
1

𝑤 ·2𝑚+1 )) from the server to users per timestamp. Hence,

the number of total communication bits per timestamp is at most

𝑂 (𝑛 · (𝑑 +1) · ( 1𝑤 −
1

𝑤 ·2𝑚+1 )). In LPA, all𝑚 publications in a window

need𝑚 · ( 𝑤+𝑚
4·𝑤 ·𝑚 · 𝑛 + 𝑛/(2𝑤)) users to communicate and the rest

timestamps need (𝑤−𝑚) ·𝑛/(2𝑤) users. Similar to LPD, the number

of communication bits between the users and server per timestamp

is atmost𝑂 (𝑛·(𝑑+1)· 1𝑤 [𝑚·(
𝑤+𝑚
4·𝑤 ·𝑚 ·𝑛+𝑛/(2𝑤))+(𝑤−𝑚)·𝑛/(2𝑤)]) =

𝑂 (𝑛 · (𝑑 + 1) · ( 1

2𝑤 +
𝑤+𝑚
4𝑤2
)).

6 EXTENSIONS AND DISCUSSIONS
In this section, we extend our proposed framework of online

adaptive population division and recycling to different analytic

tasks, settings and other existing stream algorithms.

6.1 Extension to Other Tasks and Settings
6.1.1 Mean Estimation for Numerical Domain. Besides frequency
estimation, mean estimation over numerical domain is also a typical

analytic task in LDP. We here adopt the Hybrid Mechanism as the

primitive mean estimation protocol to briefly discuss the extension.

HM. Hybrid Mechanism (HM) [42] is an LDP mean estimation

mechanism, which combines the advantages of Stochastic Rounding

(SR) [15] and Piecewise Mechanism (PM) [42] with the minimum

error. When 𝜖 > 0.61, users use PM (which has the variance of

𝑣2

𝑒𝜖/2−1 +
𝑒𝜖/2+3

3(𝑒𝜖/2−1)2 ) with probability 1 − 𝑒−𝜖/2 and SR (which has

the variance of ( 𝑒𝜖+1𝑒𝜖−1 )
2−𝑣2) with probability 𝑒−𝜖/2. When 𝜖 ≤ 0.61,

only SR will be called. Considering most private values 𝑣 ∈ [−1, 1]
are close to 0 in practice, the worst-case variance of the perturbed

value 𝑣 in HM is written as

Var
∗ [𝑣] =


(
𝑒𝜖 + 1
𝑒𝜖 − 1

)
2

, if 𝜖 ≤ 0.61,

1

𝑒𝜖/2

[(
𝑒𝜖 + 1
𝑒𝜖 − 1

)
2

+ 𝑒𝜖/2 + 3
3(𝑒𝜖/2 − 1)2

]
, if 𝜖 > 0.61.

(10)

The variance of the mean estimate 𝑐 = 1

𝑛

∑𝑛
𝑗=1 𝑣

𝑗
(𝑣 𝑗 denotes the

output of 𝑗-th user), can be computed as Var[𝑐] = 1

𝑛2

∑𝑛
𝑗=1 Var[𝑣

𝑗 ].
Such a variance calculation contains true values 𝑣 𝑗 , we can sim-

ply approximate it as Var[𝑐] = 1

𝑛Var
∗ [𝑣] . Then, the above HM

mechanism can be embedded to the LDP-IDS framework for mean

estimation over infinite streams with LDP. Particularly, on the users’

side, each user adopts HM at each timestamp and reports to the

server. Receiving the reports, the server estimates a dissimilarity

𝑑𝑖𝑠 over the last released mean value, compares it with the potential

error 𝑒𝑟𝑟 , and determines whether to perturb or approximate. Both

adaptive budget and population division methods can be developed.

6.1.2 Dealing with Large Domain. For real-world streams, the do-

main is often large in size 𝑑 (categorical data) or has a large nu-

merical bound 𝐵 for a mapped range [0, 𝐵] (numerical data). For

categorical data, we can properly bin the domain to limit its size.

For continuous domains, it is also effective to clip the bound as the

upper bound can be rarely large but most data items are far smaller

than it. One straightforward method is to simply truncate the do-

main by a fixed threshold (e.g., using the 99.5-th percentile [34]).

The state-of-the-art method ToPL [45] caches a period of reports

to privately find the optimal threshold by minimizing the overall

estimation errors, and then uses this threshold in the later sequence.

This idea can be borrowed in our algorithms for dealing with large

domains. Note that, we are using a flat setting, which is differ-

ent from the hierarchical one in [45]. Given a threshold \ , the

expected square error of mean estimation should be simply mod-

eled as Var(c) + (∑\<𝑘<𝐵 𝑓 𝑘 · (𝑘 − \ ))2 where Var(c) denotes the
variance of the estimated statistic c and 𝑓 𝑘 denotes the estimated

frequency of value 𝑘 . To estimate an optimal \ , the expression can

be minimized from a period of cached reports.

6.2 Extension to Other Stream Methods
Our LDP-IDS framework can be also extended to various exist-

ing streaming algorithms, including event-level private PeGaSus
[7], user-level private FAST [23], and𝑤-event private algorithms

DSAT𝑤 [30] and RescueDP [43], with consideration of LDP error

analysis and some additional efforts in parameter adaptation. Due to

space limitations, their details are described in [37]. Here, we briefly

discuss the high level ideas of adapting DSAT𝑤 and RescueDP.



Algorithm 4: LP-DSAT𝑤
Input: Population𝑈 of size 𝑛, budget 𝜖 , window size 𝑤, cutoff point𝐶 , PID

controller parameters \ , parameter 𝜎 , prior threshold𝑇
Output: Released statistics 𝑅𝑡 = (r1, r2, . . . , r𝑡 , . . .)

1 Initialize available userset𝑈𝐴 = 𝑈 , 𝑛1 = 𝛽𝑛, and 𝑛2 = (1 − 𝛽)𝑛,𝑇1 = 𝑇 ;

2 for each timestamp 𝑡 do
3 𝑛𝑟𝑚 = 𝑛2 −

∑𝑡−1
𝑖=𝑡−𝑤+1 |𝑈𝑖,2 |;

4 if 𝑛𝑟𝑚 ≤ 0 then
5 return r𝑡 = r𝑡−1 ;
6 else

// Distance computation:
7 Sample users𝑈𝑡,1 from𝑈𝐴 with the size of ⌊𝑛1/𝐶 ⌋, remove𝑈𝑡,1

from𝑈𝐴 , i.e.,𝑈𝐴 = 𝑈𝐴 \𝑈𝑡,1 , set 𝐷𝑡,1 = ∅;
8 Same as Lines 4-8 in Algorithm 2

9 Compute 𝑐𝑜𝑢𝑛𝑡 =

∑𝑡−1
𝑖=𝑡−𝑤+1 |𝑈𝑖,2 |
⌊𝑛

2
/𝐶⌋ ;

// PID Controller-based Adaptive Threshold Control:

10 Compute 𝐸𝑡 =
�� 𝑐𝑜𝑢𝑛𝑡

𝑡
− 𝐶

𝑤

��
, 𝑒𝑡 =

|𝐸𝑡 −𝜎 |
𝜎

, 𝑢𝑡 = PID(𝑒𝑡 ;\ ) ;
11 if 𝑐𝑜𝑢𝑛𝑡

𝑡
− 𝐶

𝑤
< 0 then

12 𝑇𝑡 = max{0,𝑇𝑡 −𝑢𝑡 };
13 else
14 𝑇𝑡 = min{2,𝑇𝑡 +𝑢𝑡 }
15 end
16 if 𝑑𝑖𝑠 ≥ 𝑇𝑡 then

// Perturbation
17 Sample users𝑈𝑡,2 from𝑈𝐴 with the size of ⌊𝑛2/𝐶 ⌋, remove

𝑈𝑡,2 from𝑈𝐴 , i.e.,𝑈𝐴 = 𝑈𝐴 \𝑈𝑡,2 , set 𝐷𝑡,2 = ∅;
18 Same as Lines 4-8 in Algorithm 2
19 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1, 𝑙 = 𝑡 ;
20 return 𝑟𝑡 = 𝑐𝑡,2 .
21 else
22 return 𝑟𝑡 = 𝑟𝑡−1 .
23 end
24 end
25 Same as Lines 22-24 in Algorithm 2
26 end

DSAT𝑤 is a𝑤-event private CDP algorithm for continuous his-

togram release [30]. It also adopts the framework of perturbation or

approximation but assumes that there are totally 𝐶 < 𝑤 sampling

timestamps in a time window of size𝑤 . In DSAT𝑤 , the dissimilarity

is also computed, but compared with a changeable threshold𝑇𝑡 . The

intuition is, if there are many sampling (i.e., perturbation) times-

tamps, the threshold is increased to reduce sampling frequency;

otherwise, it is decreased. Based on our proposed LDP-IDS frame-

work, both budget and population division-based LDP variants

(denoted as LB-DSAT𝑤 and LP-DSAT𝑤 respectively) of DSAT𝑤 can

be derived. We briefly discuss LP-DSAT𝑤 (shown in Algorithm 4)

as follows. Initially, the total population is divided into dissimilarity

population and publication population, which are set as 𝑛1 and 𝑛2,

respectively. And the initial threshold 𝑇1 = 𝑇 is set based on some

prior knowledge. At each time 𝑡 , LP-DSAT𝑤 first calculates the

remaining publication population 𝑛𝑟𝑚 (Line 3). If no publication

population left, it directly approximates as the last release (Lines

4-5). Otherwise, it samples a user set𝑈𝑡,1 of population ⌊𝑛1/𝐶⌋ from
𝑈𝐴 to report values with 𝜖-LDP, from which, a dissimilarity (dis-

tance) 𝑑𝑖𝑠 can be derived (Lines 6-8). Then, the number of published

timestamps is counted according to the used publication popula-

tion (Line 9). Based on the difference 𝐸𝑡 between current sampling

frequency 𝑐𝑜𝑢𝑛𝑡/𝑡 and the expected one 𝐶/𝑤 , a PID error 𝑒𝑡 is fed

into a PID controller with parameter \ to compute an update 𝑢𝑡

(Line 10). The threshold 𝑇𝑡 is then increased or decreased accord-

ingly (Lines 11-15). After that, 𝑑𝑖𝑠 is compared with 𝑇𝑡 to choose

between publication and approximation. If a publication occurs, a

new user set 𝑈𝑡,2 of population ⌊𝑛2/𝐶⌋ is sampled to report with

Algorithm 5: LP-RescueDP
Input: Population𝑈 of size 𝑛, budget 𝜖 , window size 𝑤, maximum user

allocation 𝑛𝑚𝑎𝑥 , maximum allocation portion 𝑝𝑚𝑎𝑥 , scale factor 𝜙
Output: Released statistics 𝑅𝑡 = (r1, r2, . . . , r𝑡 , . . .)

1 Initialize available userset𝑈𝐴 = 𝑈 ;

2 for each timestamp 𝑡 do
3 Obtain a prior estimate c̃𝑡 via KF-Prediction;

4 if 𝑡 is not a sampling timestamp then
5 return r𝑡 = r𝑡−1
6 else

// Adaptive Population Allocation
7 Calculate the number of available users 𝑛𝐴 = 𝑛 −∑𝑡−1

𝑘=𝑡−𝑤+1 𝑛𝑘 ;
8 Obtain the portion 𝑝 =min(𝜙 · ln(𝐼 + 1), 𝑝𝑚𝑎𝑥 ) and the number

of allocated users 𝑛𝑡 =min( ⌊𝑝 · 𝑛𝐴 ⌋, 𝑛𝑚𝑎𝑥 ) ;
// LDP Perturbation

9 Sample a userset𝑈𝑡 from𝑈𝐴 with the size of 𝑛𝑡 ,𝑈𝐴 = 𝑈𝐴 −𝑈𝑡 ,

set 𝐷𝑡 = ∅;
10 for each user 𝑢 𝑗 ∈ 𝑈𝑡 do
11 𝑣

𝑗
𝑡 ← 𝐿𝑜𝑐𝑆𝑎𝑛 (𝑈𝑡 , 𝑡, 𝜖,Ω) via calling Algorithm 1;

12 end
13 Estimate c𝑡 from 𝐷𝑡 = {𝑣 𝑗𝑡 |𝑢 𝑗 ∈ 𝑈𝑡 } with parameter 𝜖 ;

// Kalman Filtering
14 Obtain a posterior estimate ĉ𝑡 via KF-Correction;

// Adaptive Sampling
15 Calculate the feedback error 𝐸𝑡 = |ĉ𝑡 − r𝑙 | and PID error 𝛿 ;
16 Determine the new sampling interval

𝐼𝑡 = max( [1, 𝐼𝑙 + \ (1 − (𝛿/Var[c𝑡 ])2) ]) and set 𝑙 = 𝑡 ;
17 return r𝑡 = ĉ𝑡 .
18 end
19 if 𝑡 ≥ 𝑤 then

// Recycling Users
20 𝑈𝐴 = 𝑈𝐴 ∪𝑈𝑡−𝑤+1 ;
21 end
22 end

𝜖-LDP (Lines 16-18). Similar to LPD/LPA, the used users 𝑈𝑡−𝑤+1,1
and𝑈𝑡−𝑤+1,2 at timestamp 𝑡 −𝑤 + 1 are recycled (Line 25).

RescueDP [43] represents a 𝑤-event private mechanism for

real-time spatio-temporal data release. It consists of several com-

ponents: dynamic grouping, adaptive sampling, Kalman filter, and

adaptive budget allocation. The dynamic grouping strategy deals

with high dimensional streams, which is beyond the scope of this

paper. The adaptive sampling strategy leverages a PID controller to

dynamically adjust the sampling frequency. The filter component

assumes the perturbation error in stream approximately follows a

Gaussian distribution N(0, 𝑅) and exploits a Kalman filter to min-

imize noise in real-time. The adaptive budget allocation assigns

budget in a logarithmic decaying way while satisfying 𝑤-event

privacy. As a budget division CDP algorithm, RescueDP, can be eas-

ily transferred to both budget and population division-based LDP

variants (denoted as LB-RescueDP and LP-RescueDP respectively).

We mainly describe the latter (shown in Algorithm 5). At each

timestamp, it first obtains a prior estimate c̃𝑡 (e.g., approximating

as the last release) (Line 3). If it is not a sampling timestamp, c̃𝑡 is
directly released (Lines 4-5); otherwise, some users are sampled to

report and derive a fresh estimate with 𝜖-LDP. Particularly, it first

calculates the remaining available population𝑛𝑟 = 𝑛−∑𝑡−1
𝑘=𝑡−𝑤+1 𝑛𝑘

(Line 7). Then, it assigns the remaining population to the sampling

timestamps in a logarithmic decaying way, meanwhile limiting

the maximum population allocated at each time (Line 8). With the

assigned population 𝑛𝑡 , LP-RescueDP randomly samples a user set

from 𝑈𝐴 to report values with 𝜖-LDP, from which, it can derive an

estimate c𝑡 (Lines 9-13). Next, the Kalman filter produces a poste-

rior estimate via combining the prior estimate c̃𝑡 and the derived

c𝑡 (Line 14). To make Kalman filter effectively eliminate noise in



the stream, the parameter 𝑅 can be empirically set as the populatio

division-based estimate variance 𝑅 ∝ 𝑉 (𝜖, 𝑛/𝑚). The sampling in-

terval is dynamically adjusted according to the distance between

the released results 𝐸𝑡 = |r𝑡 − r𝑙 |, which is transformed as a PID

error 𝛿 for computing the new sampling interval (Lines 15-16).

7 PERFORMANCE EVALUATION
In this section, we conducted extensive experiments to evaluate

the performance of our proposed framework and algorithms.

7.1 Experimental Setup
7.1.1 Synthetic Datasets. We synthesized binary streams with

different sequence models. Given a probability process model 𝑝𝑡 =

𝑓 (𝑡), the length of time𝑇 , and user population 𝑛, we first generated

a probability sequence (𝑝1, 𝑝2, . . . , 𝑝𝑇 ) with𝑇 timestamps. Then, at

each timestamp 𝑡 , we randomly chose a portion of 𝑝𝑡 users from

the total 𝑛 users to set their true report value 𝑣
𝑗
𝑡 as 1, and the rest

as 0. The following typical sequence patterns were used.

LNS is a linear process 𝑝𝑡 = 𝑝𝑡−1+N(0, 𝑄), where 𝑝0 = 0.05 and

N(0, 𝑄) is Gaussian noise with the standard variance

√
𝑄 = 0.0025.

Sin is a sequence composed by a sine curve 𝑝𝑡 = 𝐴𝑠𝑖𝑛(𝑏𝑡) +ℎ with

𝐴 = 0.05, 𝑏 = 0.01 and ℎ = 0.075. Log is a series with the logistic

model 𝑝𝑡 = 𝐴/(1 + 𝑒−𝑏𝑡 ) where 𝐴 = 0.25 and 𝑏 = 0.01. For mean

estimation over continuous domain, we further synthesized the

real-valued versions of above datasets (denoted as LNS-Con, Sin-
Con, and Log-Con respectively) by sampling random numbers

following a Gassuian distributionN(𝑝𝑡 , 𝜎2) with the mean of 𝑝𝑡 in

above discrete data generation and standard variance of 𝜎 = 10.

Without specifying, we used above models and default parame-

ters to generate synthetic binary streams with 800 timestamps of

200, 000 users. To demonstrate the varying fluctuations, we set 𝑛

fixed but changed the parameters𝑄 in LNS and 𝑏 in Sin respectively
to obtain different datasets. To demonstrate the varying popula-

tions, we used the probability sequences generated with the default

parameters above, but performed different number of sampling

processes to obtain datasets with different population 𝑛.

7.1.2 Real-world Datasets. To evaluate practical performance,

the following non-binary real-world datasets were also used.

For frequency estimation over categorical domains, Taxi3 con-
tains the taxi trajectories during the period of Feb. 2 to Feb. 8, 2008

within Beijing. We obtain 𝑁 = 10, 357 data streams for each taxi

by extracting 𝑇 = 886 timestamps (each at 10-minute level) and

partitioning area into 5 grids, i.e., 𝑑 = 5. Foursquare4 includes
check-ins of Foursquare users from Apr. 2012 to Sep. 2013 over 77

countries, each record including time, place and user ID. We trans-

form it into 𝑁 = 266, 909 data streams with the length of 𝑇 = 447

timestamps, each represents a user’s check-in sequence over 𝑑 = 77

countries. Taobao5 contains the AD click logs of 1.14 million cus-

tomers and a total of 12,973 categorizes at Taobao. For simplicity,

we grouped the AD commodities into 𝑑 = 117 categorizes. Then,

we extracted 𝑁 = 1, 023, 154 customers’ click streams, where each

item corresponds to the categorize of the user’s last click during

3
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-

sample/

4
https://sites.google.com/site/yangdingqi/home/foursquare-dataset

5
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

each minute in one day, i.e., 𝑇 = 1440 timestamps. For mean esti-

mation over numerical domains, we obtained the labeled price of

each AD commodities in Taobao, which is referred to as Taobao-
Price. It has the maximal value of 1, 188, 429 and the percentiles

𝑝99.9 = 2, 232.54, 𝑝99.5 = 650.44, 𝑝99 = 411.79, and 𝑝98 = 189.90.

7.1.3 Compared Algorithms. We compared the following algo-

rithms. All are implemented using Matlab 2020.

Framework Non-adaptive allocation Adaptive allocation
Uniform Sampling Distribution Absorption

Budget LBU LSP
LBD LBA

Population LPU
LPD

(Algorithm 2)

LPA
(Algorithm 3)

LBU (Sec. 4.1) and LPU (Sec. 5.1) are baseline methods that uni-

formly divide budget and population, respectively. LSP (Sec. 4.1

and 5.1) invests the entire budget and users at sampling timestamps

with fixed interval. LBD/ LBA (Sec. 4.2.3) and LPD/LPA (Secs. 5.2.2

and 5.2.3) adaptively allocate budget and population via two dif-

ferent schemes. In above algorithms, besides frequency estimation

over categorical domains, we also validated the mean estimation

mechanism HM for numerical domains. Finally, we implemented

the prototypes of other stream algorithms discussed in Sec. 6.2.

All experiments were conducted on a PC with an Intel Core

i5-6300HQ 3.20GHz and 16GB memory.

7.1.4 Performance Metrics. We evaluated the algorithm per-

formance in terms of data utility, event monitoring efficiency, and

communication efficiency. The utility was measured as the mean
relative error (MRE) between the released and true statistics. The

event monitoring efficiency was measured as the ratio that, from

perturbed reports, the server successfully detects extreme events,

i.e., the statistics of which are greater than a given threshold. Consid-

ering different stream length, communication efficiency is measured

by the time average number of communication bits per user.

7.2 Experimental Results
7.2.1 Overall Utility. Fig. 3 shows the accuracy of all 𝑤-event

LDP methods on all datasets, with different 𝜖 . Overall, the error of

all methods decreases with 𝜖 , which shows the tradeoff between

data utility and privacy. Besides, the population division-based

methods significantly outperform budget-division ones with much

smaller MRE. LBD/LBA generally shows smaller error than the

straightforward method of LBU. This is because LBD/LBA can

utilize temporal correlations in data streams to reduce the privacy

budget consumption rate. The advantage of LPD/LPA is clearer

as noise does not increase dramatically when the population is

divided. Although LSP achieves even smaller error than LPD/LPA,
its performance varies dramatically across datasets.

Fig. 4 shows the accuracy of all 𝑤-event LDP methods, with

different window size𝑤 , on all datasets. The MRE of all methods

increases with 𝑤 , since less budget or users will be allocated to

each timestamp. For budget division methods, with the increasing

𝑤 , LBD distributes budget in an exponentially decaying way and

allocates very small budget for the newest timestamp in the window,

thus causing large estimation error. LBA avoids this issue and well

adapts to data fluctuations. For population divisionmethods, despite

the similar trends, LPD manages to achieve smaller MRE than LPU

https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56


 0.1 

 0.5 

 1.0 
LBU LBD LBA

0.5 1 1.5 2 2.5

0.05

 0.1 

0.15

 0.2 M
R

E

LSP LPU LPD LPA

(a) LNS

 0.1 

 0.5 

 1.0 
LBU LBD LBA

0.5 1 1.5 2 2.5

0.05

 0.1 

0.15

 0.2 

M
R

E

LSP LPU LPD LPA

(b) Sin

0.02

0.09

0.16
LBU LBD LBA

0.5 1 1.5 2 2.5

0.02

0.04M
R

E

LSP LPU LPD LPA

(c) Log

0.2

1.2

2.2
LBU LBD LBA

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6M
R

E

LSP LPU LPD LPA

(d) Taxi

0.1

0.5

1.0
LBU LBD LBA

0.5 1 1.5 2 2.5

0.1

0.2

M
R

E

LSP LPU LPD LPA

(e) Foursquare

0

1

2 LBU LBD LBA

0.5 1 1.5 2 2.5
0

0.5M
R

E

LSP LPU LPD LPA

(f) Taobao
Figure 3: Data utility with different 𝜖 (𝑤 = 20)
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Figure 4: Data utility with different 𝑤 (𝜖 = 1)
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Figure 5: ROC Curve for Event Monitoring (𝜖 = 1, 𝑤 = 50)

while LPA performs even much better. Besides, as shown, with large

𝑤 , LPD/LPA gains more prominent advantages.

7.2.2 Event Monitoring Efficiency. Besides the overall distance
metric of MRE, event monitoring is commonly used in streams to

detect whether the estimate at each timestamp is larger than a given

threshold 𝛿 . Fig. 5 displays the ROC curves for detecting above-

threshold points on all six dataset. On synthetic binary datasets

LNS, Sin, Log, 𝛿 was directly set as 0.75 × (max(c) − min(c)) +
min(c). On other three non-binary real-world datasets, we mon-

itored the mean-value 𝒄mean of the histogram 𝒄𝑡 and 𝛿 was set

as 0.75 × (max(cmean) − min(cmean)) + min(cmean). Overall, the
population division methods perform better than the budget divi-

sion method LBA, as they can achieve higher accuracy in above-

threshold value detection. Despite varying on different datasets,

LPD and LPA in general outperform the other three methods. Al-

though LSP manages to have much smaller MRE in Figs. 3 and

4, it generally performs the worst on most datasets as too many

approximations hinder its efficiency in detecting real-time changes.

7.2.3 Effect of Dataset Parameters. To demonstrate the impact

of dataset parameters on utility, we changed population𝑛, and noise

variance 𝑄 and period parameter 𝑏 in the synthetic datasets LNS
and Sin respectively. Note that, while varying the population size

𝑛, we kept the frequency fixed. As shown in Figs. 6(a) and 6(b), the

MRE of all methods decreases with𝑛. This is because that, enlarging

𝑛 while fixing the frequency leads to better estimation accuracy.

Figs. 6(c) and 6(d) show the MRE on LNS with different 𝑄 and

Sin with different 𝑏, respectively. On LNS, the MRE of all methods

increases with 𝑄 , which measures the fluctuation in streams. This

result verifies that these data-dependent methods perform better

on streams with few changes. Although LSP manages to have the

smallest error when the variance is small (i.e.,

√
𝑄 = 0.001, 0.002), it

grows fast and surpasses LPD and LPA with the increase of 𝑄 . LPD
and LPA induce much smaller error, and perform slightly worse

than LPU when the variance is large. Note that, 𝑏 also represents

data fluctuations and larger 𝑏 means larger fluctuations. Similar

conclusions can be obtained from the results on Sin.
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Figure 6: Effect of parameters 𝑛,𝑄,𝑏 on MRE (𝜖 = 1, 𝑤 = 20)
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Figure 7: Average #. of Communication Bits Per User (LNS)

7.2.4 Communication Efficiency. Fig. 7 compares the average

number of communication bits per user in different methods, with



different parameters on LNS. As shown, communication bits in pop-

ulation division methods are significantly less than those in budget

division methods, since only a small portion of users contribute

data at each timestamp. Fig. 7(a) depicts the impact of population

𝑛. For both adaptive methods LBD/LBA and LPD/LPA, the commu-

nication bits become slightly less as 𝑛 increases. This is because

that, in the synthesized dataset with the same distribution, with the

increase of 𝑛, publication will incur more LDP noise and occur in-

frequently. Fig. 7(b) shows the impact of data variance 𝑄 . Similarly,

𝑄 has no impact on data-independent methods LBU and LSP. How-
ever, with the increase of 𝑄 , data-dependent methods LBD/LBA
and LPD/LPA incur slightly more bits as they would increase publi-

cation frequency streams with more fluctuations. Fig. 7(c) presents

the communication bits wrt. 𝜖 . Budget division methods nearly

keep the same as a slight increase of 𝜖 has limited impact. However,

population division methods increase with 𝜖 since the publication

error would become smaller and more publications would be cho-

sen in the adaptive methods. Fig. 7(d) shows the communication

bits wrt.𝑤 . LBU keeps unchanged while LBD/LBA shows a slight

decrease. This is because the publication noise increases with𝑤 and

approximation is more favorable. All population methods decrease

with𝑤 because the sampling ratio of each user drops with𝑤 .

Table 2 further compares the average #. of communication bits

per user among different methods and datasets. The population divi-

sion methods manage to have much less communication overhead.

Data-adaptive methods LPD and LPA further reduce the commu-

nication cost via exploiting the sparsity in data streams. The scale

of bit number is different among datasets as different frenquency

oracles are adaptively chosen based on parameters 𝑑 and 𝜖 . All

above results are consistent with the analysis in Sec. 4.3.3 and 5.3.3.

Table 2: Time Average #. of Communication Bits Per User
𝜖 = 1, 𝑤 = 20

Synthetic Real-world
LNS Sinusoidal Logistic Taxi Foursquare Taobao

B
LBU 1.0000 1.0000 1.0000 3.0000 77.0000 118.0000

LBD 1.5585 1.5516 1.5572 4.2195 102.5540 146.0972

LBA 1.3410 1.3380 1.3284 3.8126 93.4408 136.9553

P

LSP 0.1000 0.1000 0.1000 0.2032 4.0208 6.0602

LPU 0.1000 0.1000 0.1000 0.1998 3.9000 5.9496

LPD 0.0912 0.0913 0.0915 0.1870 3.7815 5.5106

LPA 0.0804 0.0806 0.0803 0.1651 3.5701 4.7819

𝜖 = 2, 𝑤 = 20
Synthetic Real-world

LNS Sinusoidal Logistic Taxi Foursquare Taobao

B
LBU 1.0000 1.0000 1.0000 3.0000 77.0000 118.0000

LBD 1.5500 1.5410 1.5540 4.2810 102.9946 144.9437

LBA 1.3540 1.3580 1.3368 3.8030 93.3017 136.7143

P

LSP 0.1000 0.1000 0.1000 0.2032 3.9431 6.0602

LPU 0.1000 0.1000 0.1000 0.1998 3.9000 5.9496

LPD 0.0934 0.0933 0.0937 0.1917 3.8728 5.5243

LPA 0.0825 0.0828 0.0822 0.1746 3.8277 4.7802

𝜖 = 2, 𝑤 = 40
Synthetic Real-world

LNS Sinusoidal Logistic Taxi Foursquare Taobao

B
LBU 1.0000 1.0000 1.0000 3.0000 77.0000 118.0000

LBD 1.5420 1.5268 1.4832 4.1953 99.4699 145.3741

LBA 1.3395 1.3656 1.3148 3.7991 92.6292 136.4044

P

LSP 0.0500 0.0500 0.0500 0.1038 2.0048 3.0301

LPU 0.0500 0.0500 0.0500 0.0999 1.9500 2.9748

LPD 0.0485 0.0484 0.0490 0.0987 1.9454 2.8806

LPA 0.0410 0.0411 0.0414 0.0863 1.8943 2.3986

B and P refer to budget division and population division, respectively.

7.2.5 Varying Budget Portion. Fig. 8 shows the performance of

data-adaptive methods when shifting the budget between two sub-

mechanisms. Specifically, we set 𝛽 portion of budget or population

forM𝑖,1 and the rest 1− 𝛽 available forM𝑖,2. Note that, for simplic-

ity, we set 𝛽 = 0.5 as the default value in our algorithm description.

In general, LBD and LPD have a concave pattern when varying 𝛽

from 0.1 to 0.9, albeit having different minimum point. Roughly, in

most cases, they have the minimal error around 𝛽 = 0.5. LBA and

LPA generally have an increasing trend with 𝛽 . This is because that,

with the increase of 𝛽 , there will be many nullified timestamps in

M𝑖,2, which causes the waste of budget or population invested in

M𝑖,1. For smaller error, we can set a small 𝛽 . However, as shown,

the error is still much close to that around 𝛽 = 0.5.
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Figure 8: Varying budget allocation portion 𝛽 (𝜖 = 1, 𝑤 = 20)

7.2.6 Mean Estimation over Numerical Domain. We next val-

idate the algorithm performance, particularly mean estimation, on

numerical domains. We used HM as the primitive LDP protocol.

Considering the large but sparse numerical domains, Fig. 9 first

shows the impact of domain truncation on dataset Taobao-price
with different thresholds, which are represented by different per-

centiles. As shown, without clipping (\ = 𝑝100), all the population

division algorithms have extravagant error on mean estimation.

With the decrease of the clipping threshold, i.e. from 𝑝100 to 𝑝98,

the estimation error can be reduced by a factor of 4 orders of mag-

nitude. However, as shown in Fig. 9(d), for larger 𝜖 (e.g., 𝜖 ≥ 1.0),

the estimation error (0.74 ∼ 0.76) becomes larger than those (0.6 ∼
0.7) in Fig. 9(c). This illustrates that, with further reduced threshold

in domain truncation, the estimation error becomes larger again

and harms the utility. And, there exists an optimal threshold.
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Fig. 10 demonstrates the impact of parameters on mean esti-

mation accuracy. Figs. 10(a) and 10(b) show the impact of data

fluctuations on two synthetic datasets LNS-Con and Sin-Con with

small domains. Both figures show very similar trends as Figs. 6(c)

and 6(d). Figs. 10(c) and 10(d) show the mean estimation accuracy

on dataset Taobao-Price with a large domain size. Particularly, we

borrowed the idea of optimal threshold clipping in [45] and trun-

cated its domain first. Since domain truncation is orthogonal to

our online adaptive methods, the trends are similar to those in

the frequency estimation and the population division methods still

show significantly less error than the budget division ones.

7.2.7 Extension to Other Stream Algorithms. Fig. 11 demon-

strates the results of extending other existing online adaptive algo-

rithms in our LDP-IDS framework. As discussed in Sec. 6.2, these

algorithms are all adapted into the 𝑤-event LDP setting via both

budget division (denoted as LB-*) and population division (denoted
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Figure 10: Mean Estimation (threshold truncation, 𝜖 = 1, 𝑤 = 20)

as LP-*). The detailed algorithm descriptions and their parameter

setups are shown in Appendix C and D.1 in [37] respectively. Note

that, these algorithms originally focus on slightly different aggre-

gates (e.g., histogram in DSAT while count in the rest). For simple

and fair comparison, these extended LDP algorithms are mainly

evaluated based on frequency estimation over binary streams. Both

Taxi and Taobao are binarized to include real-word stream patterns.

As shown, all the population division versions can significantly

reduce the overall error, compared to the budget division versions.

Compared to the proposed algorithms LBA/LPA (without manually

set parameters), these adapted algorithms may achieve higher accu-

racy with some parameter tuning. Nonetheless, in the population

division methods, the differences are much smaller.

Figure 11: Performance of All Stream Algorithms (𝜖 = 1, 𝑤 = 30)

7.2.8 Summary. We briefly summarize the above results as fol-

lows. (1) The analytic tasks (frequency and mean estimation) are

orthogonal to and can be adapted into the stream algorithms in

this paper. (2) Overall, population division methods (LPD/LPA, LSP,
LPU), always perform much better than their budget division com-

petitors (LBD/LBA, LBU) in the LDP setting. (3) In real-time event

detection scenarios, both data-adaptive population division meth-

ods are superior than sampling-based (LSP) and uniform methods

(LPU). (4) For larger window𝑤 or smaller budget 𝜖 , it is better to

choose absorption methods (LBA/LPA) than distribution methods

(LBD/LPD). (5) For streams with small fluctuations, data-adaptive

methods (LPD/LPA, LBD/LBA) are better than sampling (LSP) and
uniform methods (LPU, LBU). (6) The population division frame-

work has great compatibility for various LDP protocols and flexi-

bility of incorporating ideas in existing stream algorithms.

8 RELATEDWORK
Centralized Differential Privacy (CDP) [16] on streams originally

focuses on two notions: event-level DP [5–7, 18] and user-level

DP [18, 23]. The former is usually insufficient for privacy protec-

tion while the latter can only be achieved on a finite stream [23]. To

address the dilemma, [29] proposes a notion of𝑤-event DP for infi-

nite streams, which ensures 𝜖-DP for any time window including

𝑤 consecutive timestamps. Based on a sliding window methodol-

ogy, they further propose two methods satisfying𝑤-event privacy,

Budget Distribution (BD) and Budget Absorption (BA) to effectively

allocate privacy budget considering that the statistics on streams

may not change significantly in successive timestamps [43].

LDP also suffers from low utility in the streaming setting [3,

40]. To this end, early studies adopt a simple memoization step to

provide longitudinal LDP guarantee [2, 3, 21]. Later, many CDP

algorithms have been extended to the LDP setting. [26] and [45]

focus on event-level LDP for data streams. [4] proposes an (𝜖, 𝛿)

user-level LDP algorithm for finite streaming data collection using

the analytic Gaussian mechanism, which focuses on approximate

DP and has to renew privacy budget periodically. [48] proposes

a pattern-aware stream data collection mechanism with a metric

based𝑤-event LDP, which is not directly comparable to our work.

More importantly, all these approaches enforce LDP over streams

via traditional budget division methodology in CDP, which causes

severe utility loss as reporting with low LDP budget is rather noisy.

Recently, several LDP studies [9, 33, 44] have shown that one

can partition users to answer multiple questions with LDP, which

still satisfy the same LDP under the parallel composition but can

achieve much higher accuracy than splitting privacy budget and

adopting the sequential composition. In the finite study [20], each

user randomly reports with the entire budget on the nodes at a fixed

level of the binary tree. However, users are allocated in advance for

a fixed time interval but not on-the-fly for infinite streams. Despite

these pioneering studies, the idea of population division cannot

be directly extended to infinite streams with LDP. Detailed related

work can be referred to Appendix A in [37].

9 CONCLUSION
We propose LDP-IDS, a locally privacy-preserving paradigm for

infinite streaming data collection and analysis. We first formalize

the problem of 𝑤-event LDP for infinite streams and formulate

the budget division methodology. By constructing a unified error

analysis in LDP, we present two adaptive budget division meth-

ods for LDP-IDS with enhanced utility, which considers the non-

deterministic sparsity in streams. More importantly, we propose a

novel population division and recycling framework for LDP-IDS,

and two corresponding data-adaptive population division methods,

which can achieve significant utility improvement and communi-

cation reduction. In addition, we extend our proposed framework

to different analytic tasks, settings and other existing stream algo-

rithms. Through extensive theoretical analysis and experiments

with real-world datasets, we demonstrate that our proposed frame-

work and methods not only have superior performance in terms

of data utlility, practical event monitoring and communication effi-

ciency, but also enjoy great compatibility and flexibility.
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