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ABSTRACT

Computing a dense subgraph is a fundamental problem in graph

mining, with a diverse set of applications ranging from electronic

commerce to community detection in social networks. In many of

these applications, the underlying context is better modelled as a

weighted hypergraph that keeps evolving with time.

This motivates the problem of maintaining the densest subhyper-

graph of a weighted hypergraph in a dynamic setting, where the

input keeps changing via a sequence of updates (hyperedge in-

sertions/deletions). Previously, the only known algorithm for this

problemwas due to Hu et al. [HWC17]. This algorithmworked only

on unweighted hypergraphs, and had an approximation ratio of

(1 + 𝜖)𝑟2 and an update time of 𝑂 (poly(𝑟, log𝑛)), where 𝑟 denotes
the maximum rank of the input across all the updates.

We obtain a new algorithm for this problem, which works even

when the input hypergraph is weighted. Our algorithm has a signif-

icantly improved (near-optimal) approximation ratio of (1 + 𝜖) that
is independent of 𝑟 , and a similar update time of 𝑂 (poly(𝑟, log𝑛)).
It is the first (1 + 𝜖)-approximation algorithm even for the special

case of weighted simple graphs.

To complement our theoretical analysis, we perform experiments

with our dynamic algorithm on large-scale, real-world data-sets.

Our algorithm significantly outperforms the state of the art [HWC17]

both in terms of accuracy and efficiency.
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1 INTRODUCTION

In the weighted densest subhypergraph (WDSH) problem, we are

given a weighted hypergraph 𝐺 = (𝑉 , 𝐸,𝑤) as input, where 𝑤 :

𝐸 → R+ is a weight function. The density of any subset of vertices

𝑈 ⊆ 𝑉 in𝐺 is defined as 𝜌𝐺 (𝑈 ) := (
∑
𝑒∈𝐸 [𝑈 ] 𝑤𝑒 )/|𝑈 |, where 𝐸 [𝑈 ]

is the set of hyperedges induced by 𝑈 on 𝐺 . The goal is to find a

subset of vertices𝑈 ⊆ 𝑉 in 𝐺 with maximum density.

We consider the dynamic WDSH problem, where the input hyper-

graph 𝐺 keeps changing via a sequence of updates. Each update

either deletes a hyperedge from 𝐺 , or inserts a new hyperedge 𝑒

into 𝐺 and specifies its weight𝑤𝑒 . In this setting, the update time

of an algorithm refers to the time it takes to handle an update in𝐺 .

We want to design an algorithm that maintains a (near-optimal)

densest subhypergraph in 𝐺 with small update time.

The rank of a hyperedge 𝑒 is the number of vertices incident on 𝑒 . The

rank of a hypergraph is the maximum rank among all its hyperedges.

Let 𝑟 denote an upper bound on the rank of of the input hypergraph

throughout the sequence of updates. Let 𝑛 be the number of nodes

and𝑚 be an upper bound on the number of hyperedges over the

sequence of updates. Our main result is summarized below.

Theorem 1.1. (Informal) There is a randomized (1+𝜖)-approximation

algorithm for the dynamic WDSH problem with𝑂 (𝑟2 ·polylog(𝑛,𝑚))
worst case update time, for every sufficiently small constant 𝜖 > 0.

Note that a naive approach for this problem would be to run a

static algorithm from scratch after every update, which leads to

Ω(𝑟 · (𝑛+𝑚)) update time. As 𝑟 is a small constant in most practical

applications, the update time of our dynamic algorithm is exponen-

tially smaller than the update time of this naive approach.

1.1 Perspective and Overview

Computing a dense subgraph is a fundamental primitive in graph

mining [Gol84, LA07, BKV12, TBG
+
13, BBC

+
15, GT15, Tso15, BGP

+
20].

Over the course of past several decades, it has been found to be

useful in a range of different contexts, such as community detec-

tion [CS12] and piggybacking on social networks [GJL
+
13], spam

detection in the web [GKT05], graph compression [FM95], expert

team formation [BGKV14], real-time story identification [AKSS12],

computational biology [SHK
+
10] and electronic commerce [LA07].

There are three features that stand out from this diverse list of appli-

cations and motivate us to study the more general dynamic WDSH

problem. (I) Real-world networks are often dynamic, in the sense

that they change over time. (II) The underlying real-world context

is often easier to capture by making the graph edges weighted. (III)

It is often more beneficial to model the underlying network as a

hypergraph rather than a standard graph.

In order to appreciate the significance of these three features, con-

sider two concrete real-world examples.

Example 1: Real-time story identification. The wide popularity

of social media yields overwhelming activity by millions of users

at all times in the form of, say, tweets, status updates, or blog posts.

These are often related to important current events or stories that

one might seek to identify in real time. For instance, consider the

recent Israel-Palestine conflict in May 2021. After the outbreak of

the conflict, multiple incidents occurred in quick succession that

are important to be promptly identified. An efficient technique for
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real-time story identification is focusing on certain “entities” asso-

ciated with a story, e.g., famous personalities, places, organizations,

products, etc. They consistently appear together in the numerous

posts on the related story. In the example of the Israel-Palestine

conflict, countless online posts have turned up about the several

events, many of which feature the same small set of entities, e.g., Is-

rael, Palestine, Hamas, Gaza, Sheikh Jarrah, and airstrike, or subsets

thereof. This correlation can be leveraged: the set of all possible

real-world entities (which can be billions) represented by nodes,

with an edge connecting each pair iff they appear together in a post,

define a graph that changes dynamically over time; maintaining

a dense subgraph of this network helps us to identify the group

of most strongly-related entities (in the example above, this group

might be {Hamas, Gaza, Sheikh Jarrah, airstrike}), and in turn, the

trending story [AKSS12].

Note the significance of feature (I) here: the number of posts keeps

growing rapidly, thus dynamically modifying the underlying graph.

Further, a large number of posts gets deleted over time. This is often

driven by the proliferation of fake news and its eventual removal

upon detection. Also notice that feature (II) is crucial for this task.

Every minute, millions of entities get mentioned in a small number

of posts. The few entities in the story of interest, however, collec-

tively appear in amassive number of posts. Therefore, to make them

stand out, we can assign to the graph edges weights proportional

to the number of posts they represent. Thus, the densest subgraph

is induced by the union of the entities in the story. Finally, observe

the importance of feature (III) in this context. For a post mentioning

multiple entities, instead of adding an edge between each pair of

them, we can simply include all of them in a single hyperedge. The

standard graph formulation creates a clique among those nodes,

which makes the density of the post proportional to the number

of entities mentioned. This is inaccurate for several applications.

In contrast, having a single hyperedge represent a post removes

this bias. The task of real-time story identification thus reduces to

precisely the dynamic WDSH problem.

Example 2: Trending Topics Identification. Consider the setting

where wewish to identify a set of recently trendy topics in a website

like Stack Overflow.We can model this scenario as a network where

each node corresponds to a tag, and there is a hyperedge containing

a set of nodes iff there is a post with the corresponding set of tags.

The weight of a hyperedge represents the reach of a post, captured

by, say, the number of responses it generates. The set of recently

trendy topics will be given by the set of tags that form the densest

subhypergraph in this network. The network is dynamic: posts

are added very frequently and deletions are caused not only by

their actual removal but also by our interest in only the ones that

appeared (say) within the last few days.

Other applications of the WDSH problem include identifying a

group of researchers with the most impact [HWC17] and analysing

spectral properties of hypergraphs [CLTZ18].

Previous work. Starting with the work of Angel et al. [AKSS12], in

recent years a sequence of papers have dealt with the densest sub-

graph problem in the dynamic setting. Epasto et al. [ELS15] consid-

ered a scenario where the input graph undergoes a sequence of ad-

versarial edge insertions and random edge deletions, and designed

a dynamic (2 + 𝜖)-approximation algorithm with 𝑂 (polylog 𝑛) up-
date time. In the standard (adversarial) fully dynamic setting, Bhat-

tacharya et al. [BHNT15] gave a (4 + 𝜖)-approximation algorithm

with 𝑂 (polylog 𝑛) update time. This latter result was recently im-

proved upon by Sawlani and Wang [SW20], who obtained a (1+ 𝜖)-
approximation algorithm with 𝑂 (polylog 𝑛) update time. All these

results, however, hold only on unweighted simple graphs (i.e., hyper-

graphs with rank 2). Our algorithm, in contrast, works for weighted

rank-𝑟 hypergraphs and is the first (1 + 𝜖)-approximation algo-

rithm with 𝑂 (polylog 𝑛) update time even for the special case of

edge-weighted simple graphs.

For general rank-𝑟 hypergraphs, the only dynamic algorithm cur-

rently known in the literature was designed by Hu et al. [HWC17]:

in the fully dynamic setting, their algorithm has an approximation

ratio of (1+ 𝜖)𝑟2 and an amortized update time of𝑂 (poly(𝑟, log𝑛)).
In direct contrast, as summarized in Theorem 1.1, our approxima-

tion ratio is near-optimal (and independent of 𝑟 ), and our update

time guarantee holds in the worst case. Furthermore, our algorithm

works even when the hyperedges in the input hypergraph have

large weights in [1, poly(𝑟, 𝑛)], whereas the algorithm in [HWC17]

needs to assume that the input hypergraph is either unweighted or

has very small weights (in [1, poly(𝑟, log𝑛)]).
Significance of our results.Given this background, let us now em-

phasize three aspects of our result as stated in Theorem 1.1.

First, the approximation ratio of our algorithm can be made arbi-

trarily close to 1, and in particular, it is independent of the rank 𝑟

of the input hypergraph. For example, if 𝑟 = 3, then [HWC17] can

only guarantee that in the worst case, the objective value of the

solution maintained by their algorithm is at least (100/𝑟2)% ≃ 11%

of the optimal objective value. In contrast, for any 𝑟 , we can guar-

antee that the objective value of the solution maintained by our

algorithm is always within ≃ 99% of the optimal objective value. In

fact, since 𝑟 can be, in theory, as large as 𝑛, the improvement over

the approximation ratio is massive.

Second, the update time of our algorithm is 𝑂 (𝑟2 · polylog(𝑛,𝑚)).
Note that any dynamic algorithm for this problem will necessarily

have an update time of Ω(𝑟 ), since it takes Θ(𝑟 ) time to even spec-

ify an update. It is not surprising, therefore, that the update time

of [HWC17] also had a polynomial dependency on 𝑟 . Since 𝑟 is a

small constant in most practical applications, our update time is

essentially 𝑂 (polylog(𝑛,𝑚)) in these settings.

Third, our dynamic algorithm works for weighted graphs, which,

as noted above, are crucial for applications. Throughout the rest

of this paper, we assume that the weight of every hyperedge is a

positive integer. This is without loss of generality: if the weights are

positive real numbers, then we can scale them appropriately and

round them to integers without affecting the approximation factor

(see full version [BBCG21] for details). Finally, if the weights of the

hyperedges are known to be integers in the range [1,𝑊 ], then a

naive approach would be to make𝑤𝑒 copies of every hyperedge 𝑒

when it gets inserted, and maintain a near-optimal solution in the

resulting unweighted hypergraph. This, however, leads to an update

time of Θ(𝑊 ). This is prohibitive when𝑊 is large. In contrast, our

algorithm has polylogarithmic update time for any𝑊 .

Overview of Techniques.We obtain the result stated in Theorem

1.1 in twomajor steps. First, we use randomweight scaling to reduce
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the weighted version of the problem to the unweighted case, while

incurring only a small polylogarithmic overhead in update time

(Section 3). Next, to solve the unweighted version, we extend the

techniques of [SW20] to handle any general hypergraph (Section 4).

Our analysis shows that the approximation factor achieved is 1 + 𝜖
for hypergraphs of any rank 𝑟 and in particular, does not grow

with 𝑟 . See Section 1.2 of the full version of our paper [BBCG21]

for a detailed overview of our techniques.

Overview of Experimental Evaluations. We conduct extensive

experiments to demonstrate the effectiveness of our algorithm in

both fully dynamic and insertion-only settings with weighted and

unweighted hypergraphs. We test our algorithm on several real-

world temporal hypergraph datasets. For the unweighted case, in

both the insertion-only and fully dynamic settings, our algorithm

significantly outperforms the state of the art of [HWC17] both

in terms of accuracy and efficiency. In comparison against an LP

solver for computing the exact solution, our algorithm shows mas-

sive speed-up while incurring less than a few percentage points of

relative error. See Section 5 of this paper (and Sections 1.3 and 5

of the full version [BBCG21]) for a detailed account of our experi-

mental results.

2 PRELIMINARIES AND NOTATIONS

Let us fix the notations that we use throughout the paper. Our input

weighted hypergraph is always a rank-𝑟 hypergraph denoted by

𝐺 = (𝑉 , 𝐸,𝑤), where𝑤 : 𝐸 → N is a weight function.We denote the

number of vertices |𝑉 | and hyperedges |𝐸 | (or an upper bound on

it) by 𝑛 and𝑚 respectively. The maximum weight of a hyperedge in

𝐺 is given by𝑤max (𝐺) := max𝑒∈𝐸 𝑤𝑒 . The multiplicity of an edge

in a multi-hypergraph is its number of copies in the hypergraph.

For a subset of nodes𝑈 ⊆ 𝑉 , denote its density in 𝐺 by 𝜌𝐺 (𝑈 ) :=
(∑𝑒∈𝐸 [𝑈 ] 𝑤𝑒 )/|𝑈 |, where 𝐸 [𝑈 ] is the set of hyperedges induced by
𝑈 on 𝐺 . If the hypergraph is unweighted, then the density of𝑈 is

simply 𝜌𝐺 (𝑈 ) = |𝐸 [𝑈 ] |/|𝑈 |. We denote the maximum density of𝐺

by 𝜌∗ (𝐺) := max𝑈 ⊆𝑉 𝜌𝐺 (𝑈 ). We drop the argument 𝐺 from each

of the above when the hypergraph is clear from the context.

We use the shorthands WDSH and UDSH for weighted and un-

weighted densest subhypergraph respectively. For the dynamic

WDSH and UDSH problems, we get two types of queries: (a) max-

density query, which asks the value of the maximum density over

all subsets of nodes of the hypergraph, and (b) densest-subset query,

which asks for a subset of nodes with the maximum density. We

say an algorithm maintains an 𝛼-approximation (𝛼 > 1) to either

of these problems if it answers every max-density query with a

value that lies in [𝜌∗/𝛼, 𝜌∗] and every densest-subset query with a

subset of nodes whose density lies in [𝜌∗/𝛼, 𝜌∗].
Given any weighted hypergraph𝐺 , we denote its unweighted multi-

hypergraph version by 𝐺unw
, which is obtained by replacing each

edge 𝑒 having weight𝑤𝑒 by𝑤𝑒 many unweighted copies of 𝑒 . Note

that𝐺 and𝐺unw
are equivalent in terms of subset densities.

We say that a statement holds whp (with high probability) if it holds

with probability at least 1 − 1/poly(𝑛).
We use the following version of the Chernoff bound.

Fact 2.1. (Chernoff bound) Let 𝑋 be a sum of mutually independent

indicator random variables. Let 𝜇 and 𝛿 be real numbers such that

E[𝑋 ] ≤ 𝜇 and 0 ≤ 𝛿 ≤ 1. Then, Pr [|𝑋 − 𝜇 | ≥ 𝛿𝜇] ≤ exp

(
−𝜇𝛿2/3

)
.

3 REDUCTION TO UNWEIGHTED CASE

In this section, we show that we can use an algorithm for the

dynamic UDSH problem to obtain one for the dynamic WDSH

problem while incurring only a small increase in the update and

query times.

3.1 Weight Scaling

Given a weighted hypergraph, we want to scale down the weights

to make the max-weight small and simultaneously scale down the

max-density by a known factor so that we can retrieve the original

density value from the scaled one. Since we want to reduce the

problem to the unweighted case, we work with the unweighted

multi-hypergraph versions (see Section 2) of the weighted hyper-

graphs in question. Thus, the maximum edge-weight would corre-

spond to the max-multiplicity of an edge in the unweighted version.

Informally, given a weighted hypergraph 𝐺 on 𝑛 vertices, we want

to obtain an unweighted multi-hypergraph 𝐻 such that (a) maxi-

mum multiplicity of an egde in 𝐻 is roughly𝑂 (log𝑛) and (b) given
𝜌∗ (𝐻 ), we can easily obtain an approximate value of 𝜌∗ (𝐺). We

achieve these in Lemmas 3.1 and 3.2 respectively.

Given any weighted hypergraph 𝐺 , we define 𝐺𝑞 as the random

hypergraph obtained by independently sampling each hyperedge

of 𝐺unw
with probability 𝑞.

For a parameter 𝜌 , define 𝑞(𝜌) := min

{
𝑐𝜖−2 · log𝑛

𝜌
, 1

}
for some

large constant 𝑐 and an error parameter 𝜖 > 0.

Our desired multi-hypergraph 𝐻 will be given by 𝐺𝑞 (𝜌) for some

appropriate 𝜌 . The following lemma (proof in the full version

[BBCG21]) shows that themax-multiplicity of𝐻 is indeed small.

Lemma 3.1. For 𝜌 ≥ 𝑤max (𝐺)/𝑟 , let 𝐻 = 𝐺𝑞 (𝜌) . Then, maximum

multiplicity of an edge in 𝐻 is 𝑂 (𝑟𝜖−2 log𝑛) whp.

At the same time, we also need to ensure that we can retrieve

the max-density and a densest subset of 𝐺 from that of 𝐻 . The

next lemma, which follows directly from Theorem 4 of [MPP
+
15],

handles this.

Lemma 3.2. Given a weighted hypergraph 𝐺 = (𝑉 , 𝐸,𝑤), let 𝐻 =

𝐺𝑞 (𝜌) for a parameter 𝜌 . Then, following hold simultaneously whp:

(i) ∀𝑈 ⊆ 𝑉 : 𝜌𝐺 (𝑈 ) ≥ (1 + 𝜖)𝜌 ⇒ 𝜌𝐻 (𝑈 ) ≥ 𝑐𝜖−2 log𝑛
(ii) ∀𝑈 ⊆ 𝑉 : 𝜌𝐺 (𝑈 ) < (1 − 2𝜖)𝜌 ⇒ 𝜌𝐻 (𝑈 ) < (1 − 𝜖)𝑐𝜖−2 log𝑛

It follows from the above lemma that 𝜌∗ (𝐻 ) ≃ 𝑐𝜖−2 log𝑛 iff 𝜌 is very

close to 𝜌∗ (𝐺). We can now make parallel guesses 𝜌 for 𝜌∗ (𝐺) and
find the correct one by identifying the guess that gives the desired

value of 𝜌∗ (𝐻 ). We explain this in detail and prove it formally in

the next section.

3.2 Fully Dynamic Algorithm for WDSH using

UDSH

We handle the unweighted case UDSH and obtain the following

theorem in Section 4.
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Theorem 3.3. Given an unweighted rank-𝑟 (multi-)hypergraph 𝐻 on

𝑛 vertices and at most𝑚 edges withmax-multiplicity at least𝑤★
, there

exists a fully dynamic data structure Udshp that deterministically

maintains a (1+𝜖)-approximation to the densest subhypergraph prob-

lem. The worst-case update time is 𝑂 (max{(64𝑟𝜖−2 log𝑛)/𝑤★, 1} ·
𝑟𝜖−4 log2 𝑛 log𝑚) per edge insertion or deletion. The worst-case query
times for max-density and densest-subset queries are𝑂 (1) and𝑂 (𝛽 +
log𝑛) respectively, where 𝛽 is the output-size.

Here, we describe a way to use the above theorem as a subroutine

to efficiently solve the dynamic WDSH problem. For the input

weighted hypergraph𝐺 , assume that we know the value of𝑤max (𝐺)
and an upper bound𝑚 on the number of hyperedges (across all

updates) in advance.
1
First, we observe the following.

Observation 3.4. In a rank-𝑟 weighted hypergraph𝐺 with at most

𝑚 edges, we have𝑤max (𝐺)/𝑟 ≤ 𝜌∗ (𝐺) ≤ 𝑚𝑤max (𝐺).

Our algorithm for the dynamicWDSHproblem is as follows.

Preprocessing. We keep guesses 𝜌𝑖 = (𝑤max/𝑟 ) (1 + 𝜖)𝑖 for 𝑖 =
0, 1, . . . , ⌈log

1+𝜖 (𝑟𝑚)⌉. Note that by Observation 3.4, these are valid

guesses for 𝜌∗ (𝐺). For each guess 𝜌𝑖 and each 𝑗 ∈ ⌈log
1+𝜖 𝑤max⌉,

we construct a data structure SAMPLE(𝑖, 𝑗) that, when queried,

generates independent samples from the probability distribution

Bin

(
⌊(1 + 𝜖) 𝑗 ⌋, 𝑞(𝜌𝑖 )

)
.
2
Each such data structure can be constructed

in 𝑂 (𝑤max) time so that each query is answered in 𝑂 (1) time

([BP17], Theorem 1.2). Parallel to this, for each 𝑖 , we have a copy of

the data structure for the UDSH problem, given by Udshp(𝑖). The
value of𝑤★

that we set for Udshp(𝑖) is𝑤max (𝐺) · 𝑞(𝜌𝑖 )/2.
Update processing. On insertion of the edge 𝑒 with weight𝑤𝑒 , for

each guess 𝜌𝑖 , query SAMPLE(𝑖, ⌈log
1+𝜖 𝑤𝑒 ⌉) to get a number 𝑠 , and

insert 𝑠 copies of the unweighted edge 𝑒 using the data structure

Udshp(𝑖). Similarly, on deletion of edge 𝑒 , for each 𝑖 , use Udshp(𝑖)
to delete all copies of the edge added during its insertion.

Query processing. Denote the value of maximum density re-

turned by Udshp(𝑖) as 𝜌𝑖 . Let 𝑖∗ be the largest 𝑖 such that 𝜌𝑖 ≥
(1 − 𝜖)𝑐𝜖−2 log𝑛. On a max-density query for the WDSH problem,

we output
1−2𝜖
1+𝜖 · 𝜌𝑖∗ . For the densest-subset query, we output the

densest subset returned by Udshp(𝑖∗).
Correctness. Observe that the hypergraph we feed to Udshp(𝑖) is
𝐺 ′
𝑞 (𝜌𝑖 ) , where 𝐺

′
is the hypergraph obtained by rounding up each

edge weight of 𝐺 to the nearest power of (1 + 𝜖). Thus, 𝜌∗ (𝐺) ≤
𝜌∗ (𝐺 ′) ≤ (1 + 𝜖)𝜌∗ (𝐺).
For simplicity, we write 𝐺 ′

𝑞 (𝜌𝑖 ) as 𝐺
′
𝑖
. Note that the value of 𝑤★

provided to each Udshp(𝑖) satisfies the condition in Theorem 3.3

whp (by the Chernoff bound (Fact 2.1)) since the expected value of

max-multiplicity of𝐺 ′
𝑖
is𝑤max (𝐺)·𝑞(𝜌𝑖 ). By Theorem 3.3, Udshp(𝑖)

returns value 𝜌𝑖 such that

(1 − 𝜖)𝜌∗ (𝐺 ′𝑖 ) ≤ 𝜌𝑖 ≤ 𝜌∗ (𝐺 ′𝑖 ) .

By the definition of 𝑖∗, we have 𝜌𝑖∗ ≥ (1 − 𝜖)𝑐𝜖−2 log𝑛. This
means 𝜌∗ (𝐺 ′

𝑖∗ ) ≥ (1− 𝜖)𝑐𝜖
−2

log𝑛. Then, by Lemma 3.2 (ii), we get

1
These assumptions can be removed with very small increase in update time while

preserving the approximation ratio (details in the full version [BBCG21])

2
Bin(𝑛, 𝑝) is the Binomial distribution with parameters 𝑛 and 𝑝 .

𝜌∗ (𝐺 ′) ≥ (1 − 2𝜖)𝜌𝑖∗ . Therefore, we have

𝜌𝑖∗ ≤
𝜌∗ (𝐺 ′)
1 − 2𝜖 ≤

1 + 𝜖
1 − 2𝜖 · 𝜌

∗ (𝐺) . (1)

Again, note that 𝜌𝑖∗+1 < (1 − 𝜖)𝑐𝜖−2 log𝑚. Hence, 𝜌∗ (𝐺 ′
𝑖∗+1) ≤

𝜌𝑖∗+1/(1 − 𝜖) < 𝑐𝜖−2 log𝑚. Then, by Lemma 3.2 (i), it follows that

𝜌∗ (𝐺 ′) < (1 + 𝜖)𝜌𝑖∗+1 = (1 + 𝜖)2𝜌𝑖∗ . Hence, we have

𝜌𝑖∗ >
𝜌∗ (𝐺 ′)
(1 + 𝜖)2

≥ 𝜌∗ (𝐺)
(1 + 𝜖)2

. (2)

Thus, from eqs. (1) and (2), we get

𝜌∗ (𝐺) ≥ 1 − 2𝜖
1 + 𝜖 · 𝜌𝑖

∗ ≥ 1 − 2𝜖
(1 + 𝜖)3

· 𝜌∗ (𝐺) . (3)

Again, let 𝑈 ∗ be the densest subset returned by Udshp(𝑖∗). By
Lemma 3.2 (ii), we see that

𝜌𝐺′ (𝑈 ∗) ≥ (1 − 2𝜖)𝜌𝑖∗ ≥
1 − 2𝜖
(1 + 𝜖)2

· 𝜌∗ (𝐺)

Therefore, by the definition of 𝐺 ′, we have

𝜌∗ (𝐺) ≥ 𝜌𝐺 (𝑈 ∗) ≥
𝜌𝐺′ (𝑈 ∗)
1 + 𝜖 ≥ 1 − 2𝜖

(1 + 𝜖)3
· 𝜌∗ (𝐺) (4)

Given any 0 < 𝛿 < 1, we set 𝜖 = Θ(𝛿) small enough so that

1−2𝜖
(1+𝜖)3 ≥

1

1+𝛿 . Therefore, by eqs. (3) and (4), the value and the

subset that we return on themax-density and densest-subset queries

respectively are (1 + 𝛿)-approximations to 𝜌∗ (𝐺).
Runtime. As noted before, we feed𝐺 ′

𝑖
to Udshp(𝑖). Fix an 𝑖 . Let 𝜔𝑖

be the max-multiplicity of an edge in𝐺 ′
𝑖
. When a hyperedge of𝐺 is

inserted/deleted, we insert/delete at most 𝜔𝑖 unweighted copies of

that edge to Udshp(𝑖). Therefore, by Theorem 3.3, the worst case

update time for Udshp(𝑖) is 𝑂 (𝜔𝑖 · max{(64𝑟𝜖−2 log𝑛)/𝑤★, 1} ·
𝑟𝜖−4 log2 𝑛 log𝑚). Using the Chernoff bound (Fact 2.1), we have

𝜔𝑖 ≤ 2𝑤max (𝐺) · 𝑞(𝜌𝑖 ) = 4𝑤★
whp. Also, since 𝜌𝑖 ≥ 𝑤max (𝐺)/𝑟

for each 𝑖 , we can apply Lemma 3.1 to get that 𝜔𝑖 = 𝑂 (𝑟𝜖−2 log𝑛).
Hence, the expression simplifies to𝑂 (𝑟𝜖−2 log𝑛·𝑟𝜖−4 log2 𝑛 log𝑚) =
𝑂 (𝑟2𝜖−6 log3 𝑛 log𝑚). Finally, accounting for all the𝑂 (log

1+𝜖 𝑟𝑚) =
𝑂 (𝜖−1 log𝑚) values of 𝑖 , the total update time is𝑂 (𝑟2𝛿−7 log3 𝑛 log2𝑚)
(recall that 𝛿 = Θ(𝜖)). The max-density query for WDSH is an-

swered by binary-searching on the 𝑂 (𝜖−1 log𝑚) copies of Ud-

shp, which gives a query time of 𝑂 (log𝛿−1 + log log𝑚) by Theo-

rem 3.3. Note that the densest-subset query is made only on the

relevant copy 𝑖∗ after we find it, and hence, by Theorem 3.3, it takes

𝑂 (𝛽 + log𝑛) time, where 𝛽 is solution-size. Therefore, we obtain

the following theorem that captures our main result.

Theorem 3.5. (Formal version of Theorem 1.1) Given a weighted rank-

𝑟 hypergraph on 𝑛 vertices and at most𝑚 edges, for any 0 < 𝛿 < 1,

there exists a randomized fully dynamic algorithm that maintains

a (1 + 𝛿)-approximation to the densest subhypergraph problem. The

worst-case update time is 𝑂 (𝑟2𝛿−7 log3 𝑛 log2𝑚) per hyperedge in-
sertion or deletion. The worst-case query times for max-density and

densest-subset queries are 𝑂 (log𝛿−1 + log log𝑚) and 𝑂 (𝛽 + log𝑛)
respectively, where 𝛽 is the output-size. The preprocessing time is

𝑂 (𝑤max𝛿
−2

log𝑚 log𝑤max), where𝑤max is the max-weight of a hy-

peredge.

Now all it remains is to solve the unweighted case and prove Theo-

rem 3.3. We do this in Section 4.
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4 FULLY DYNAMIC ALGORITHM FOR

UDSH

Here, due to limited space, we give a sketch of our algorithm and

analysis for the dynamic UDSH problem and provide the complete

details in the full version [BBCG21].

OurAlgorithmandAnalysis.Weextend the techniques of [SW20]

for the densest subgraph problem and take the primal-dual approach

to solve the UDSH problem. Recall that the input is an unweighted

multi-hypergraph 𝐻 = (𝑉 , 𝐸) and we want to find the approximate

max-density as well as an approximately densest subset of 𝐻 . As

is standard, we associate a variable 𝑥𝑣 ∈ {0, 1} with each vertex 𝑣

and 𝑦𝑒 ∈ {0, 1} with each hyperedge 𝑒 such that 𝑥𝑣 = 1 and 𝑦𝑒 = 1

respectively denote that we include 𝑣 and 𝑒 in the solution subset.

Relaxing the variables, the primal LP for UDSH (Primal(𝐻 )) is given
below. Following notations similar to [SW20], for each vertex𝑢 and

edge 𝑒 , let 𝑓𝑒 (𝑢) and 𝐷 be the dual variables corresponding to con-

straints (5) and (6) respectively. Then, the dual program Dual(𝐻 ) is
as follows.

Primal(𝐻 ) :

max

∑︁
𝑒∈𝐸

𝑦𝑒

s.t. 𝑦𝑒 ≤ 𝑥𝑢 ∀𝑢 ∈ 𝑒 ∀𝑒 ∈ 𝐸
(5)∑︁

𝑣∈𝑉
𝑥𝑣 ≤ 1 (6)

𝑥𝑣, 𝑦𝑒 ≥ 0 ∀𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸
(7)

Dual(𝐻 ) :
min𝐷

s.t.

∑︁
𝑢∈𝑒

𝑓𝑒 (𝑢) ≥ 1 ∀𝑒 ∈ 𝐸 (8)∑︁
𝑒∋𝑣

𝑓𝑒 (𝑣) ≤ 𝐷 ∀𝑣 ∈ 𝑉

(9)

𝑓𝑒 (𝑢) ≥ 0 ∀𝑢 ∈ 𝑒 ∀𝑒 ∈ 𝐸
(10)

Think of 𝑓𝑒 (𝑢) as a “load” that edge 𝑒 puts on node 𝑢. We can thus

interpret Dual(𝐻 ) as a load balancing problem: each hyperedge

needs to distribute a unit load among its vertices such that the

maximum total load on a vertex due to all its incident edges is

minimized. For each 𝑣 ∈ 𝑉 , define ℓ (𝑣) := ∑
𝑒∋𝑣 𝑓𝑒 (𝑣). Note that if

for some feasible solution, some edge 𝑒 assigns 𝑓𝑒 (𝑣) > 0 to some

𝑣 ∈ 𝑒 and ℓ (𝑣) > ℓ (𝑢) for some 𝑢 ∈ 𝑒 \ {𝑣}, then we can “transfer”

some positive load from 𝑓𝑒 (𝑣) to 𝑓𝑒 (𝑢) while maintaining constraint

(8) and without exceeding the objective value. Therefore, we can

always find an optimal solution to Dual(𝐻 ) satisfying the following
“local” property.

∀𝑒 ∈ 𝐸 : 𝑓𝑒 (𝑣) > 0⇒ ℓ (𝑣) ≤ ℓ (𝑢) ∀𝑢 ∈ 𝑒 \ {𝑣} (11)

We can verify that property (11) is also sufficient to get a global

optimal solution to Dual(𝐻 ) (see full version [BBCG21]). Next, we

show in Theorem 4.1 (proof deferred to Appendix A) that “ap-

proximately” maintaining property (11) (see const. (14)) gives us

a near-optimal solution to Dual(𝐻 ), i.e., an approximate value of

𝜌∗ (𝐻 ). In this regard, we define a system of equations Dual(𝐻,𝜂)
as follows.

ℓ (𝑣) =
∑︁
𝑒∋𝑣

𝑓𝑒 (𝑣) ∀𝑣 ∈ 𝑉 (12)∑︁
𝑢∈𝑒

𝑓𝑒 (𝑢) = 1 ∀𝑒 ∈ 𝐸 (13)

ℓ (𝑣) ≤ ℓ (𝑢) + 𝜂 ∀𝑢 ∈ 𝑒 \ {𝑣}, ∀𝑒 ∈ 𝐸 : 𝑓𝑒 (𝑣) > 0 (14)

𝑓𝑒 (𝑢) ≥ 0 ∀𝑢 ∈ 𝑒 ∀𝑒 ∈ 𝐸 (15)

Theorem 4.1. Given a feasible solution ⟨ ˆ𝑓 , ℓ̂⟩ to Dual(𝐻,𝜂), we have
𝜌∗ (1 − 𝜀) ≤ 𝐷̂ (1 − 𝜀) < 𝜌∗, where 𝐷̂ = max𝑣 ℓ̂ (𝑣) and 𝜀 =

√︃
8𝜂 log𝑛

𝐷̂
.

By Theorem 4.1, we see that if we can find 𝐷̂ , i.e., a feasible solution

to Dual(𝐻,𝜂), then we can get a (1+𝜖)-approximation to 𝜌∗, where

𝜖 =

√︃
32𝜂 log𝑛

𝐷̂
. This means that given 𝜖 , we initially need to set

𝜂 = 𝜖2𝐷̂
32 log𝑛

. But we do not know the value of 𝐷̂ initially, and in fact,

that’s what we are looking for. However, we shall initially have an

estimate 𝐷 of 𝐷̂ such that 𝐷 ≤ 𝐷̂ ≤ 2𝐷 . We set 𝜂 := 𝜖2𝐷
32 log𝑛

. Since

𝐷 ≤ 𝐷̂ , we get

√︃
8𝜂 log𝑛

𝐷̂
≤ 𝜖

2
, which, by Theorem 4.1, implies a

(1 + 𝜖)-approximation to UDSH. To see how we can identify an

approximate densest subset (not just the value of its density), see

the proof of Theorem 4.1 (Appendix A).

Thus, we focus on finding a feasible solution to Dual(𝐻,𝜂), where
𝜂 = 𝜖2𝐷

32 log𝑛
for a given estimate 𝐷 satisfying 𝐷 ≤ 𝐷̂ ≤ 2𝐷 . Note

that if we have 𝜂 ≥ 1, then we can maintain constraint (14) with

some positive slack while having integer loads on the vertices. This

means that we are allowed to simply assign the unit load of an

edge 𝑒 entirely on some vertex 𝑢 ∈ 𝑒 . Assume that we know a

lower bound 𝑤★
on the max-multiplicity of a hyperedge in the

graph. If 𝑤★ ≥ 64𝑟𝜖−2 log𝑛, then it already implies that 𝜂 ≥ 1

since 𝐷̂ ≥ 𝜌∗ ≥ 64𝜖−2 log𝑛 and hence, 𝐷 ≥ 𝐷̂/2 ≥ 32𝜖−2 log𝑛.
Otherwise, we duplicate each hyperedge ⌈(64𝑟𝜖−2 log𝑛)/𝑤★⌉ times

(hence, this factor appears in the update time of Theorem 3.3), so

that we are ensured that 𝜌∗ ≥ 64𝜖−2 log𝑛, implying 𝜂 ≥ 1 as before.

Once we have 𝜂 ≥ 1 and are allowed to assign the entire load of an

edge on a single node in it, our problem reduces to the following

hypergraph “orientation” problem.

Problem (Hypergraph Orientation). Given an unweighted multi-

hypergraph 𝐻 = (𝑉 , 𝐸) and a parameter 𝜂 ≥ 1, for each edge 𝑒 ∈ 𝐸,
assign a vertex 𝑣 ∈ 𝑒 as its head ℎ(𝑒), such that

∀𝑒 ∈ 𝐸 : ℎ(𝑒) = 𝑣 ⇒ 𝑑𝑖𝑛 (𝑣) ≤ 𝑑𝑖𝑛 (𝑢) + 𝜂 ∀𝑢 ∈ 𝑒 \ {𝑣} (16)

where 𝑑𝑖𝑛 (𝑣) := |{𝑒 ∈ 𝐸 : ℎ(𝑒) = 𝑣}|.
Given a parameter 𝐷 , we construct a data structure HOP(𝐷) that

maintains the “oriented” hypergraph satisfying (16) with𝜂 = 𝜖2𝐷
32 log𝑛

and in turn, solves the UDSH problem. We describe it in detail

in Data Structure 1. The following lemmas (see full version for

proofs) give the correctness and runtime guarantees of the data

structure.

Lemma4.2. After each insertion/deletion, the data structure HOP(𝐷)
maintains constraint (16) with 𝜂 = 𝜖2𝐷

32 log𝑛
.

Lemma 4.3. If 𝐷 ≤ 𝐷̂ , then the operations querysubset and query-

density of HOP(𝐷) return a (1 + 𝜖)-approximation to the densest-

subset and max-density queries respectively.

Lemma 4.4. If 𝐷̂ ≤ 2𝐷 , then the operations insert and delete of

HOP(𝐷) take 𝑂 (𝑟𝜖−4 log2 𝑛) and 𝑂 (𝑟𝜖−2 log𝑛) time respectively.

The operation querydensity takes 𝑂 (1) time and querysubset takes

𝑂 (𝛽 + log𝑛) time, where 𝛽 is the solution-size.

Completing the Algorithm. The above lemmas prove Theo-

rem 3.3 as long as we have an estimate 𝐷 such that 𝐷 ≤ 𝐷̂ ≤ 2𝐷 .
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For this, we keep parallel data structures HOP(𝐷) for 𝑂 (log𝑚)
guesses of 𝐷 in powers of 2. Then, we show that we can maintain

an “active” copy of HOP corresponding to the correct guess, from

which the solution is extracted. Thus, we incur only an 𝑂 (log𝑚)
overhead on the total update time for an edge insertion/deletion.

This part is very similar to Algorithm 3 of [SW20] and we dis-

cuss this in detail in the full version [BBCG21] and formally prove

Theorem 3.3.

5 EXPERIMENTS

In this section, we present extensive experimental evaluations of

our algorithms.We consider weighted and unweighted hypergraphs

in both insertion-only and fully dynamic settings, leading to a total

of four combinations. However, due to space limitations, we discuss

only the fully dynamic setting here and defer the incremental set-

ting to Appendix B. We call our algorithms Udshp and Wdshp for

the unweighted and weighted settings respectively and we compare

their accuracy and efficiency to that of the baseline algorithms. Fur-

thermore, we study the trade-off between accuracy and efficiency

for Udshp and Wdshp.

Table 1: Description of our dataset with the key parameters,

#vertices(𝑛), #hyperedges(𝑚), maximum size (#hyperedges) in the

dynamic setting (𝑚Δ), #rank(𝑟 ).

Dataset 𝑛 𝑚 𝑚Δ 𝑟

dblp-all 2.56M 3.16M 1.99M 449

tag-math-sx 1.6K 558K 21.3K 5

tag-ask-ubuntu 3K 219K 10.4K 5

tag-stack-overflow 50K 12.7M 50.6K 5

dawn 2.5K 834K 11.5K 16

coauth-MAG-geology 1.25M 960K 216.3K 25

Datasets.We collect real-world temporal hypergraphs, as described

below. Table 1 presents a summary of these hypergraphs.

Publication datasets.We consider two publication datasets: DBLP [dbl]

andMicrosoft Academic Graph (MAG)with the geology tag [SSS
+
15,

BAS
+
18]

3
. We encode each author as a vertex and each publication

as a hyperedge with the publication year serving as the timestamp.

In the fully dynamic case, we maintain a sliding window of 10 years,

by removing hyperedges that are older than 10 years. We treat mul-

tiple papers by the same set of authors as a single hyperedge and

report densest subgraph at the end of each year.

Tag datasets.We consider 3 tag datasets: math exchange [BAS
+
18]

3
,

stack-overflow [BAS
+
18]

3
, and ask-ubuntu [BAS

+
18]

3
. In each of

these datasets, a vertex corresponds to a tag, and a hyperedge

corresponds to a set of tags on a post or a question in the respective

website. In the fully dynamic model, we maintain a sliding window

of 3 months. In both insertion only and dynamic settings, we report

the densest subgraph at an interval of 3 months.

DrugAbuseWarning Network(DAWN) dataset.This dataset
3
is gener-

ated from the national health surveillance system that records drug

abuse related events leading to an emergency hospital visit across

USA [BAS
+
18]. We construct a hypergraph where the vertices are

the drugs and a hyperedge corresponds to a combination of drugs

3
Source: https://www.cs.cornell.edu/~arb/data/

taken together at the time of abuse. We maintain the most recent 3

months records in fully dynamic and insertion only settings and

report the maximum density at an interval of 3 months.

Weighted Datasets. Each of the datasets described above are

unweighted. We are not aware of any publicly available weighted

temporal hypergraphs. For our weighted settings, we transform

the unweighted temporal hypergraph into a weighted temporal

hypergraph by the following process. For each edge, we assign it an

integer weight sampled uniformly at random from [1, 100].
Implementation Details. The implementation details of our algo-

rithm are given in Data Structure 1.
4
In implementing Algorithm 8,

we consider all potential subsets 𝐵 by ignoring the condition on

line 3, and report the subset with the largest density among these

choices. We implement all algorithms in C++ and all experiments

are run on a workstation with 256 GB memory and Intel Xeon(R)

2.20 GHz processor running Ubuntu 20 operating system.

Baseline Algorithms.We consider two main baselines algorithms.

(1) The first one is an exact algorithm, denoted as Exact, that

computes the exact value of the densest subhypergraph at every re-

porting interval of the dataset. We use google OR-Tools to implement

an LP based solver for the densest subhypergraph [HWC17, PF].

(2) Second one is the dynamic algorithm for maintaining densest

subhypergraph by Hu et al. [HWC17]; we call it HWC. It takes 𝜖𝐻 as

an input accuracy parameter and produces a (1+𝜖𝐻 )𝑟 and (1+𝜖𝐻 )𝑟2-
approximate densest subhypergraph in the insertion only and fully

dynamic model respectively. For the weighted hypergraphs we

modify the HWC implementation – each edge with weight𝑤𝑒 is

processed by creating𝑤𝑒 many copies of that edge.

Parameter Settings. Both HWC and our algorithms Udshp and

Wdshp take an accuracy parameter 𝜖 as an input. However, it is

important to note that the accuracy parameter 𝜖 for both the algo-

rithms are not directly comparable. Udshp or Wdshp guarantees

to maintain a (1 + 𝜖)-approximate solution in both insertion only

and fully dynamic settings, whereas HWC maintains (1 + 𝜖)𝑟 and
(1 + 𝜖)𝑟2 approximate solutions for insertion and fully dynamic

settings respectively. Thus, for a fair comparison between the algo-

rithms, we run Udshp (or Wdshp) and HWC with different values

of 𝜖 such that their accuracy is comparable. We use 𝜖𝐻 to denote

the parameter for HWC to make this distinction clear. For various

settings and datasets, we use different parameters and specify them

in the corresponding plots. We emphasize here that the motivation

behind the choices of the parameters is to compare the update time

of Udshp and Wdshp to that of HWC while ensuring that Udshp

and Wdshp has better accuracy than that of HWC. We restrict our

focus to the small approximation error regime.

Accuracy and Efficiency Metrics. To measure the accuracy of

Udshp, Wdshp, and HWC, we use relative error percentage with

respect to Exact. It is defined as
|𝜌 (Alg,𝑡 )−𝜌 (Exact,𝑡 ) |

𝜌 (Exact,𝑡 ) ×100%, where
𝜌 (𝑋, 𝑡) is the density estimate by algorithm𝑋 at time interval 𝑡 . We

also compute the average relative error of an algorithm by taking

the average of the relative errors over all the reporting intervals. For

measuring efficiency we compare the average wall-clock time taken

over the operations during each reporting interval and also overall

4
Our code is available (anonymously): Link to Code Repo

https://www.cs.cornell.edu/~arb/data/
https://drive.google.com/drive/folders/1JOepPhEaHP8nlbf8wm0D7J5gw7o_ydMh?usp=sharing
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Figure 1: Accuracy and Efficiency Comparison for Unweighted Dynamic Hypergraphs: The top row shows the relative error in the reported

maximum density by Udshp and HWC with respect to Exact when run with the specified parameters. The bottom row plots the average

update time taken by Udshp, HWC, and Exact for each reporting intervals. For each dataset (column), the parameter settings are identical.
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Figure 2: Accuracy and Efficiency Comparison for Weighted Dynamic Hypergraphs: The top row shows the relative error in the reported

maximum density by Wdshp and HWC with respect to Exact when run with the specified parameters. The bottom row plots the average

update time taken by Wdshp, HWC, and Exact for each reporting intervals. For each dataset (column), the parameter settings are identical.
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Figure 3: Average Accuracy and Efficiency Comparison: In Figure 3a, on the left, we plot the average relative error of Udshp and HWC over all

the reporting intervals for each dataset, and on the right, we compare the average update time of Udshp, HWC, and Exact over the entire

duration. In Figure 3b, we give analogous plots comparing Wdshp with HWC and Exact.

average time (taken over all reporting intervals) as an efficiency

comparison metric.

5.1 Fully Dynamic Case

In this section, we consider the fully dynamic setting where the

hyperedges can be both inserted and deleted. We perform experi-

ments for hypergraphs with unweighted as well as weighted edges.
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Figure 4: Accuracy vs Efficiency Trade-off: In Figure 4a, we give trade-offs for Udshp for Unweighted Dynamic Hypergraphs: On the left, we

plot the average update time for different settings of 𝜖 . In the middle and right, we show the effect of 𝜖 on the average relative error and

maximum relative error (over the reporting intervals). In Figure 4b, we give analogous trade-off plots for Wdshp.

For both the cases, we first compare the accuracy and the efficiency

of our algorithm against the baselines. And then we analyze the

accuracy vs efficiency trade-off of Udshp and Wdshp.

Unweighted Hypergraphs: We first discuss our findings for the

unweighted case.

Accuracy and Efficiency Comparison. In Figure 1, we compare

the accuracy and efficiency of Udshp against the baselines for the

unweighted hypergraphs. In the top row, we compare the accuracy

of Udshp and HWC in terms of relative error percentage with

respect to Exact. In the bottom row, we plot the average time taken

per operation by Exact, Udshp, and HWC during each reporting

interval. For each dataset, the parameters are identical for the top

row and bottom row plots. We reiterate that the input parameters

for Udshp and HWC are chosen to compare Udshp and HWC

in the low relative error regime. We highlight our main findings

below.

We observe that for smaller hypergraphs (DAWN, tag-math-sx), Ud-
shp and HWC achieve impressive accuracy, however Udshp is

consistently more than 10x faster than HWC. In fact, HWC is sev-

eral times slower compared to Exact. On the other hand, Udshp is

3x-5x times faster compared to Exact. As the sizes of the hyper-

graphs increase, Exact gets much slower compared to Udshp and

HWC as LP solvers are known to have scaling issues.
5
For larger

datasets, Udshp maintains a clear edge in terms of accuracy over

HWC even when their update times are almost identical or better

for Udshp, as demonstrated by the last three columns. To quan-

tify the gain further, in Figure 3a, we compare the performance of

Udshp against HWC and Exact in terms of average relative error

and average update time, where the average is taken over all the

reporting intervals. We make several interesting observations. (1)

Udshp is 3x-5x faster than Exact for small hypergraphs; the gain

is massive (10x-15x) for larger graphs. (2) Compared against HWC,

the avg. update time for Udshp can be 10x-12x smaller (DAWN and
tag-math-sx) while maintaining almost the same average relative

error of less than 1%. (3) At the other end of the spectrum, for

almost the same average update time, Udshp can offer 55%-90%

improvement in accuracy over HWC (Coauth-MAG and DBLP-All).
(4) HWC performs worse than Exact for smaller datasets, being

slower by 3x-5x factors (DAWN and tag-math-sx).

5
Note that, although tag-stack-overflow hypergraph has overall more edges than

Coauth-MAG, the reporting interval for the latter is much longer than the former. Thus

at any given interval, the latter contains more edges leading to larger update times.

Accuracy vs Efficiency trade offs for Udshp. In Figure 4a we plot

average update time, and average and max relative error for Udshp

for different values of 𝜖 . The max relative error is the maximum

of the relative error over all the reporting intervals. As expected,

when 𝜖 decreases, the update time increases and the average and

maximum relative error incurred by Udshp decreases.

We observe that for the hypergraphs with high density values

(Ω(log𝑛)), e.g., DAWN, tag-math-sx, tag-stack-overflow, the av-
erage and maximum relative errors are quite low (< 2 − 5%). Thus,
we recommend using Udshp with larger values of 𝜖 (like 𝜖 = 1) for

them. Note that reduction in update time is quite dramatic (∼8x)
when increasing 𝜖 from 0.5 to 1.0 for these graphs. For the hyper-

graphs with low density values (𝑜 (log𝑛)) the relative errors can go

well above 30%−40% for larger values of 𝜖 . Thus, we recommend us-

ing Udshp with smaller values of 𝜖 (like 𝜖 = 0.3) for more accurate

solutions, as for hypergraphs like Coauth-MAG, reducing 𝜖 from 1.0

to 0.5 reduces the average relative error from 70% to 30% (albeit at

the cost of a 3-fold increase in average update time).

Weighted Hypergraphs: For the weighted case in Figure 2, we

consider similar settings as in Figure 1. In the top row, we compare

the relative error percentage of Wdshp and HWC, and the bottom

row, shows the average update times of Wdshp, HWC, and Exact

with same parameters (for each hypergraph). For a detailed dis-

cussion on the accuracy and efficiency comparison and tradeoffs,

please refer to the full version [BBCG21].
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Data Structure 1: The algorithms for HOP(𝐷) that solves the hypergraph orientation problem

Input: Unweighted hypergraph 𝐻 = (𝑉 , 𝐸), parameters 𝜖, 𝐷

𝑛 ← |𝑉 |

𝜂 ← 𝜖2𝐷
32 log𝑛

Indegrees← Balanced binary search tree for {𝑑𝑖𝑛 (𝑣) : 𝑣 ∈ 𝑉 }

Each hyperedge 𝑒 maintains a list of vertices that it contains and

has a pointer ℎ(𝑒) to the head vertex.

Each vertex 𝑣 maintains the following data structures:

• 𝑑𝑖𝑛 (𝑣): Number of hyperedges 𝑒 such that ℎ(𝑒) = 𝑣

• In(𝑣): List of hyperedges (labels only) where 𝑣 is the head
• Out(𝑣): Max-priority queue of {𝑒 ∈ 𝐸 : ℎ(𝑒) ≠ 𝑣}, indexed by

𝑑
(𝑣)
𝑖𝑛
(ℎ(𝑒))

• 𝑑
(𝑣)
𝑖𝑛
(𝑢) (∀𝑒 ∈ Out(𝑣) ∀𝑢 ∈ 𝑒): 𝑑𝑖𝑛 (𝑢) from 𝑣 ’s perspective

Algorithm 1 rotate(𝑒, 𝑣)
1: 𝑧 ← ℎ (𝑒)
2: remove 𝑒 from In(𝑧)
3: remove 𝑒 from Out(𝑢) for each 𝑢 ∈ 𝑒 \ {𝑧 }
4: ℎ (𝑒) ← 𝑣; add 𝑒 to In(𝑣)
5: add 𝑒 to Out(𝑢) for each 𝑢 ∈ 𝑒 \ {𝑣 }

Algorithm 2 tightinedge(𝑣)
1: for 𝑒 ∈ {next 4𝑑𝑖𝑛 (𝑣)/𝜂 edges in In(𝑣) } do
2: 𝑢 ← argmin𝑧∈𝑒 𝑑𝑖𝑛 (𝑧)
3: if 𝑑𝑖𝑛 (𝑢) ≤ 𝑑𝑖𝑛 (𝑣) − 𝜂/2 then
4: return 𝑒

5: return null

Algorithm 3 insert(𝑒)
1: 𝑣 ← argmin𝑧∈𝑒 𝑑𝑖𝑛 (𝑧)
2: ℎ (𝑒) ← 𝑣

3: add 𝑒 to In(𝑣)
4: add 𝑒 to Out(𝑢) for each 𝑢 ∈ 𝑒 \ {𝑣 }
5: while tightinedge(𝑣) ≠ null do

6: 𝑓 ← tightinedge(𝑣)
7: 𝑣 ← argmin𝑧∈𝑓 𝑑𝑖𝑛 (𝑧) ; rotate(𝑓 , 𝑣)
8: increment(𝑣)

Algorithm 4 increment(𝑣)
1: 𝑑𝑖𝑛 (𝑣) ← 𝑑𝑖𝑛 (𝑣) + 1
2: Update 𝑑𝑖𝑛 (𝑣) in Indegrees

3: for 𝑒 ∈ {next 4𝑑𝑖𝑛 (𝑣)/𝜂 edges in In(𝑣) } do
4: for 𝑢 ∈ 𝑒 do

5: 𝑑
(𝑢)
𝑖𝑛
(𝑣) ← 𝑑𝑖𝑛 (𝑣)

Algorithm 5 tightoutedge(𝑣)
1: 𝑒 ← Out(𝑣) .max

2: if 𝑑
(𝑣)
𝑖𝑛
(ℎ (𝑒)) ≥ 𝑑𝑖𝑛 (𝑣) + 𝜂/2 then

3: return 𝑒

4: return null

Algorithm 6 delete(𝑒)
1: 𝑣 ← ℎ (𝑒)
2: remove 𝑒 from In(𝑣)
3: remove 𝑒 from Out(𝑢) for each 𝑢 ∈ 𝑒 \ {𝑣 }
4: while tightoutedge(𝑣) ≠ null do

5: 𝑓 ← tightoutedge(𝑣) ; 𝑧 ← ℎ (𝑓 )
6: rotate(𝑓 , 𝑣) ; 𝑣 ← 𝑧

7: decrement(𝑣)

Algorithm 7 decrement(𝑣)
1: 𝑑𝑖𝑛 (𝑣) ← 𝑑𝑖𝑛 (𝑣) − 1
2: Update 𝑑𝑖𝑛 (𝑣) in Indegrees

3: for 𝑒 ∈ {next 4𝑑𝑖𝑛 (𝑣)/𝜂 edges in In(𝑣) } do
4: for 𝑢 ∈ 𝑒 do

5: 𝑑
(𝑢)
𝑖𝑛
(𝑣) ← 𝑑𝑖𝑛 (𝑣)

Algorithm 8 densestsubset(𝛾)
1: 𝐷̂ ← Indegrees.max; 𝐴← {𝑣 : 𝑑𝑖𝑛 (𝑣) ≥ 𝐷̂ }
2: 𝐵 ← {𝑣 : 𝑑𝑖𝑛 (𝑣) ≥ 𝐷̂ − 𝜂 }
3: while |𝐵 |/ |𝐴 | ≥ 1 + 𝛾 do

4: 𝐷̂ ← 𝐷̂ − 𝜂; 𝐴← 𝐵

5: 𝐵 ← {𝑣 : 𝑑𝑖𝑛 (𝑣) ≥ 𝐷̂ − 𝜂 }
6: return 𝐵

Algorithm 9qerysubset()

1: 𝐷̂ ← Indegrees.max; 𝛾 ←
√︃
2𝜂 log𝑛/𝐷̂

2: return densestsubset(𝛾 )

Algorithm 10qerydensity()
1: return (Indegrees.max)· (1 − 𝜖

2
)

A MISSING PROOF

Proof of Theorem 4.1. Since ⟨ ˆ𝑓 , ℓ̂⟩ is a feasible solution to

Dual(𝐻,𝜂), we see that ⟨ ˆ𝑓 , 𝐷̂⟩ is a feasible solution to Dual(𝐻 ).
Since 𝜌∗ is an optimal solution to Dual(𝐻 ), we have 𝐷̂ ≥ 𝜌∗ and
the left inequality follows.

Define 𝑆𝑖 := {𝑣 : ℓ̂ (𝑣) ≥ 𝐷̂ − 𝜂𝑖} for 𝑖 ≥ 0. For some parameter

0 < 𝛾 < 1, let 𝑘 be the maximal number such that |𝑆𝑖 | ≥ (1+𝛾) |𝑆𝑖−1 |
for all 𝑖 ∈ [𝑘]. Thus, |𝑆𝑘+1 | < (1 + 𝛾) |𝑆𝑘 |.
For an edge 𝑒 incident on 𝑣 ∈ 𝑆𝑘 , consider 𝑢 ∈ 𝑒 \ {𝑣}. We have

𝑢 ∉ 𝑆𝑘+1 ⇒ ℓ̂ (𝑢) < 𝐷̂ − 𝜂 (𝑘 + 1) ≤ ℓ̂ (𝑣) − 𝜂 ⇒ ˆ𝑓𝑒 (𝑣) = 0

where the last implication is by (14). Hence, we get the following.

Observation A.1. For 𝑣 ∈ 𝑆𝑘 , we have
∑
𝑒∋𝑣 ˆ𝑓𝑒 (𝑣) =

∑
𝑒∋𝑣:

𝑒⊆𝑆𝑘+1
ˆ𝑓𝑒 (𝑣).

We try to get a lower bound on 𝜌 (𝑆𝑘+1). We see that

(𝐷̂−𝜂𝑘) |𝑆𝑘 | ≤
∑︁
𝑣∈𝑆𝑘

ℓ̂ (𝑣) =
∑︁
𝑣∈𝑆𝑘

∑︁
𝑒∋𝑣

ˆ𝑓𝑒 (𝑣) =
∑︁
𝑣∈𝑆𝑘

∑︁
𝑒∋𝑣:

𝑒⊆𝑆𝑘+1

ˆ𝑓𝑒 (𝑣)

≤
∑︁

𝑣∈𝑆𝑘+1

∑︁
𝑒∋𝑣:

𝑒⊆𝑆𝑘+1

ˆ𝑓𝑒 (𝑣) =
∑︁

𝑒⊆𝑆𝑘+1

∑︁
𝑣∈𝑒

ˆ𝑓𝑒 (𝑣) = |𝐸 (𝑆𝑘+1) | .

The second equality follows by Obs. A.1 and the last one by (13).

Therefore, by definition of 𝑘 , we get

𝜌 (𝑆𝑘+1) =
|𝐸 (𝑆𝑘+1) |
|𝑆𝑘+1 |

≥ (𝐷̂ − 𝜂𝑘) |𝑆𝑘 ||𝑆𝑘+1 |
>

𝐷̂ − 𝜂𝑘
1 + 𝛾 > (𝐷̂−𝜂𝑘) (1−𝛾) .

Again, since |𝑆𝑘 | ≥ (1 + 𝛾)𝑘 |𝑆0 | ≥ (1 + 𝛾)𝑘 , we have 𝑘 ≤
log

1+𝛾 |𝑆𝑘 | ≤ log
1+𝛾 𝑛 ≤ 2 log𝑛/𝛾 . Therefore, we have

𝜌 (𝑆𝑘+1) >
(
𝐷̂ − 2𝜂 log𝑛

𝛾

)
(1 − 𝛾) = 𝐷̂

(
1 − 2𝜂 log𝑛

𝛾𝐷̂

)
(1 − 𝛾) .
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Figure 5: Accuracy and Efficiency Comparison for Unweighted Insertion-only Hypergraphs: The top row shows the relative error in the

maximum density by Udshp and HWC with respect to Exact when run with the specified parameters. The bottom row plots the average

update time taken by Udshp, HWC, and Exact for each reporting intervals. For each dataset (column), the parameter settings are identical.

We set 𝛾 so as to maximize the RHS. Clearly, it is maximized when

𝛾 =
2𝜂 log𝑛

𝛾𝐷̂
, and so, we set 𝛾 :=

√︃
2𝜂 log𝑛

𝐷̂
. Hence, we get

𝜌∗ ≥ 𝜌 (𝑆𝑘+1) > 𝐷̂ (1 − 𝛾)2 > 𝐷̂ (1− 2𝛾) = 𝐷̂
©­«1 −

√︄
8𝜂 log𝑛

𝐷̂

ª®¬ . □
B EXPERIMENTS: INSERT-ONLY CASE

Here, we give an account of our experiments for the insert-only set-

ting with unweighted hyperedges. We defer the discussion on the

weighted incremental setting to the full version [BBCG21].
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Figure 6: Avg. Accuracy and Efficiency Comparison for Unweighted

Incremental Setting: On the left, we plot avg. relative err. of Udshp

and HWC, and on the right, we compare the avg. update time of

Udshp, HWC, and Exact. (Average is taken over the entire duration)
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Figure 7: Accuracy vs Efficiency Trade-off for Unweighted Incremen-

tal Hypergraphs (Udshp): We plot the avg. update time (left), avg.

relative err. (middle), and max. relative err. (right) over the reporting

intervals for different settings of 𝜖 .

Accuracy and Efficiency Comparison. In Figure 5 top row we

compare the accuracy of Udshp and HWC with respect to Exact.

And in the bottom row, we plot the average time taken per opera-

tion by Exact, Udshp, and HWC during each reporting interval.

To further quantify the gain of Udshp, in Figure 6, we compare

the performance of Udshp against HWC and Exact in terms of

average relative error and average update time. We highlight some

of our main findings below.

(1) Performance of HWC fluctuates quite a lot over time as evident

from the saw-tooth behaviour in the relative error and the update

time curves for HWC in Figure 5. Thus, even if the average case

update time for HWC is low, the worst-case update time could be

very high. In contrast, Udshp exhibits a much more stable behavior

over time, making it more suitable for practical use. Note that this is

consistent with the theoretical results for the respective algorithms

since HWC only guarantees small amortized update time while

Udshp guarantees small worst-case update time.

(2) For the first four datasets, on average Udshp has 70% better

accuracy while being 2x-4x faster (on average) compared to HWC

( Figure 6). For the largest dataset Coauth-MAG, HWC indeed has an

edge over Udshp in terms of average update time while both incur-

ring comparable loss in accuracy ( Figure 6). However, as we noted

before, the saw-tooth behavior of HWC implies a higher worst-case

update time for HWC compared to Udshp ( Figure 5).

(3) Exact performs extremely poorly in the incremental settings,

as one would expect. The sizes of the hypergraphs are much larger

compared to the dynamic settings, making Exact extremely un-

suitable for any practical purpose.

Accuracy vs Efficiency trade offs. As similar to that in the dy-

namic setting, in Figure 7, we analyze the change in the average

update time and the average and max relative error for Udshp for dif-

ferent values of 𝜖 ∈ {1.0, 0.7, 0.5}. We observe that even if the

update time is sensitive to change in 𝜖 , the average and maxi-

mum relative error for all the high density (Ω(log𝑛)) hypergraphs
(DAWN, tag-ask-ubuntu, tag-math-sx, tag-stack-overflow) is
low (< 10%). And thus we recommend, using Udshpwith high value

of 𝜖 (like 𝜖 = 1) for these hypergraphs. On the other hand for the low

density (𝑜 (log𝑛)) hypergraphs (like Coauth-MAG), we recommend

using Udshp with low value of 𝜖 (like 𝜖 = 0.5 or 0.3).
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