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Abstract

Sequential decision-making is a central ability of intelligent agents interacting

with an environment, including humans, animals, and animats. When those

agents operate in complex systems, they need to be endowed with automatic

decision-making frameworks quantifying the system uncertainty and the utility

of different actions while allowing them to sequentially update their beliefs

about the environment. When agents also aim at manipulating a system, they

need to understand the data-generating mechanism. This requires accounting

for causality which allows evaluating counterfactual scenarios while increasing

interpretability and generalizability of an algorithm. Sequential causal decision-

making algorithms require an accurate surrogate model for the causal system

and an acquisition function that based on its properties allows selecting actions.

In this thesis, I tackle both components through the Bayesian framework

which enables probabilistic reasoning while handling uncertainty in a principled

manner. I consider Gaussian process (gp) models for both inference and causal

decision-making as they provide a flexible framework capable of capturing a

variety of data distributions.

I first focus on developing scalable gp models incorporating structure in the

likelihood and accounting for complex dependencies in the posteriors. These

are indeed crucial properties of surrogate models used within decision-making

algorithms. Particularly, I investigate models for point data as many real-

world problems involve events and they present significant computational and

methodological challenges. I then study how such models can incorporate causal

structure and can be used to select actions based on cause-effect relationships.

I focus on multi-task gp models, Bayesian Optimization, and Active Learning

and show how they can be generalized to capture causality.
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Chapter 1

Introduction

1.1 Motivation

Sequential decision-making is a central ability of intelligent agents interacting
with an environment, including humans, animals, and animats. Indeed, many
important real-world problems such as systems design, medical treatment selec-
tion, or gene targeting involve deciding under uncertainty while sequentially
updating the beliefs about the environment. For instance, doctors recommend
a sequence of treatments weighting up the benefits, burdens, and risks of the
various options while accounting for uncertainty in the treatment effectiveness
and the patient’s reaction to it. When designing a system, engineers need to
account not only for the business context they operate in but also the environ-
mental context. This includes e.g. the state of the economy or the consumers’
preferences which are uncertain and changing over time. Finally, when studying
human genes, researchers employ biological systems that approximate their
functions as closely as possible and decide which genes to remove or alter in
order to study the effects of specific variants. Therefore, in a wide variety of
domains, agents need to be endowed with automatic decision-making frame-
works quantifying the system uncertainty and the utility of different actions.
When agents also aim at manipulating a system, they need to understand the
underlying data-generating mechanism which requires accounting for causality
and incorporating it within the decision process. This thesis tackles this issue
by developing probabilistic methods for structured inference and sequential
selection of actions in a causal system.

Causality has been discussed by philosophers since the time of Hume [Hume,
2003] and Kant [Kant and Guyer, 1996] and has been studied by researchers in
a variety of different fields e.g. social science [Hedström and Ylikoski, 2010],
psychology [Michotte, 2017] or physics [Frisch, 2014]. Indeed, causal reasoning
has been recognised as a distinctive feature of human beings [Buchsbaum et al.,
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2012; Penn and Povinelli, 2007; Sloman and Lagnado, 2015] and, as recently
discussed by Judea Pearl [Pearl and Mackenzie, 2018], from “the discovery that
certain things cause other things [...] came organized societies, then towns
and cities, and eventually the science and technology-based civilization we
enjoy today. All because we asked a simple question: Why?”. The first formal
mathematical treatment of causal inference in observational studies appeared in
the 1930s in the field of econometrics and can be traced back to Wright [Wright,
1934] and Haavelmo [Haavelmo, 1943]. Over the last thirty years, research
on causal inference in statistics and computer science has thrived. Two main
frameworks, namely the Potential Outcome (po) framework and the work on
Directed Acyclic Graphs (dags), have been adopted to investigate causality.
The po framework [Rubin, 2005] is associated with the work by Donald Rubin
and builds on the research of Ronald Fisher [Fisher, 1936] and Jerzey Neyman
[Splawa-Neyman et al., 1990] on randomized controlled trials. The approach
based on Structural Causal Models (scm) and dags [Pearl, 1995] is instead
associated with the work by Judea Pearl and his collaborators.

While Pearl [2009a] has shown how every assumption in a scm framework
can be translated to its counterpart in the po framework, we can identify some
major differences between the two approaches that led us to adopt Pearl’s
framework. First of all, the object of analysis in the po framework is the
unit-based response variable that is the counterfactual quantity representing
the value that an outcome variable would obtain in a specific experimental unit
had the treatment been set to a certain value. Given the focus on the unit, in
the po framework the causal effects of the variables other than the treatment
and the special variables e.g. instrumental variable are not defined. While
this limits the prior knowledge required by the po framework, in this thesis
we are interested in evaluating and comparing various treatment variables. In
addition, the methods developed within the po literature have mainly focused
on estimating the average effects of binary treatments. This thesis focuses on
settings where the variables are mainly continuous thus we need a framework
that allows us to model and compare not only the causal effects across different
variables but also across a range of interventional levels. Furthermore, the scm

framework uses dags to give clear graphical representations of the assumptions
behind a causal model. Using the graphical representation is particularly useful
when studying the correlation structure among causal effects, as we shall see
in Chapter 7, but also when comparing different populations which might be
associated with partially different graph structures. Finally, the methodologies
developed within the dag literature allow answering causal queries in complex
models characterized by a large number of variables and where scalability might
represent an issue1.

1See Imbens [2020] and Chapter 3 for a comparative discussion of the two approaches.
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Given the centrality of causation in many aspects of human reasoning,
automated decision-making algorithms should encode and reason in terms of
cause-effect relationships, especially when an agent aims at understanding
the data generating mechanism and potentially manipulate it. This would
allow them to evaluate multiple counterfactual scenarios while increasing the
interpretability and generalizability of decision-making algorithms. Various
sequential acausal decision-making algorithms, such as Bayesian Optimization
(bo) [Shahriari et al., 2015], Multi-Armed Bandits (mab) [Slivkin, 2019] and
Reinforcement Learning algorithms (rl) [Kaelbling et al., 1996] have been pro-
posed in the literature with the shared goal of taking decisions based on a belief
state, that is a probabilistic representation of our knowledge about the system2.
All these algorithms are sequential that is decisions are selected over a sequence
of time steps, in rl and mab, or a sequence of function evaluations in bo and
Active Learning (al). There is thus a notion of time encoded in sequential
decision-making algorithms, which is generally treated explicitly through a
time index in rl and mab algorithm and, apart from some exceptions [Nyikosa
et al., 2018], is treated implicitly in bo and al where we generally speak about
trials. Time is also a crucial aspect of causality. Indeed it is sometimes said
that causality can only be discussed when taking into account the notion of
time. Causes are temporally prior to their effects, which is a concept known
as causal asymmetry [Aalen et al., 2012; Peters et al., 2017; Wunsch et al., 2020].

While all these decision-making algorithms are sequential, they deal with
different assumptions in terms of action set, reward function, and the way
in which decisions affect the state of the environment. In mab and rl the
action set is generally discrete and at every step, the agent takes a decision by
maximizing a cumulative reward. In bo the action space is instead continuous
and there are infinitely many arms the agent can select. The surrogate model
is thus a continuous function defined on the action space, modelling the reward
associated with each action and whose correlation structure determines the
correlation structure across the rewards. While in bo and mab the decisions
only affect the rewards, in rl every action also influences the state of the envi-
ronment which evolves over time. bo [Nyikosa et al., 2018] and mab extensions
[Besbes et al., 2014; Wu et al., 2018] have been proposed to deal with dynamic
acausal settings. In addition, causal mab [Bareinboim et al., 2015; Lattimore
et al., 2016; Lee and Bareinboim, 2018] and causal rl [Gershman, 2017; Zhang,
2020; Zhang and Bareinboim, 2016] algorithms have been recently proposed
with the goal of incorporating causal knowledge into the decision process.

2See [Toussaint, 2014] for a discussion on optimal search policies and how they can be
seen as trajectories through belief space.
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Among sequential decision-making frameworks, Bayesian Optimization or
Active Learning have so far lacked a causal counterpart. However, selecting
the action(s) optimizing a target variable or allowing to accurately learn a
set of functions requires considering causal information. As discussed above
for acausal settings, existing causal mab and causal rl algorithms cannot be
straightforwardly applied to solve the problems considered by causal bo or al.
Indeed, as in standard rl, causal rl algorithms focus on finding a policy, that
is a mapping between states and actions, with the final goal of minimizing the
cumulative regret. Apart from some exceptions (e.g. Lattimore et al. [2016]),
cumulative regrets are also considered by causal mab. More importanlty, the
actions space in both causal mab and causal rl is generally discrete. In those
cases agents have to select the intervention variables to manipulate but not the
intervention level.

In general, sequential causal decision-making algorithms can be developed
by considering two different building blocks:

(i) An accurate surrogate model representing the causal system we are inter-
ested in and integrating all available sources of information thus quanti-
fying existing uncertainty. We refer here to epistemic uncertainty that is
the uncertainty representing our current knowledge of the environment
i.e. our belief state.

(ii) An acquisition function that, based on the properties of the surrogate
model e.g. its uncertainty, balances the use of our resources and enables
the selection of actions.

These two building blocks are highly interconnected. An accurate surrogate
model enables the acquisition function to correctly quantify the benefit of
selecting each specific action thus driving the exploration to promising regions.
Vice versa, the actions selected sequentially via the acquisition function lead to
new observations that are used to update the surrogate model decreasing its
uncertainty and leading to more accurate predictions.

This thesis addresses the problem of developing an integrated framework for
accurate estimation and selection of actions in a causal system. I tackle this
problem through the Bayesian framework that allows probabilistic reasoning
while handling uncertainty in a principled manner. More specifically, I consider
Gaussian process (gp) models for both inference and causal decision-making 3.

3Note that resorting to Bayesian approaches for causal inference presents its flaws. For
instance, Hahn et al. [2018] shows how using shrinkage priors for linear regression coefficients
in the context of causal effect estimation might lead to “regularization-induced confounding”.
re
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gps are a Bayesian non-parametric approach4 well suited for building complex
probabilistic models as they are capable of expressing a wide range of modelling
assumptions. Aside from expressivity, gps allow quantifying uncertainty which
is vital for both predictions and decision-making. Finally, gp models can be
used to incorporate complex prior beliefs about a system which might come
in different forms e.g. a causal graph or a multi-task structure. As we will
see later, structured prior distributions enable the integration of different data
sources and are crucial when dealing with complex causal systems where only a
few interventions can be performed. While adopting a Bayesian non-parametric
framework is advantageous in terms of model flexibility, uncertainty estimation,
and prior knowledge incorporation, it often involves computations that are
costly or impossible to solve exactly. Incorporating information from observed
data, that is computing the posterior distribution, is often not possible in
closed-form. This led to the development of many approximation methods
like Markov Chain Monte Carlo algorithms [Brooks et al., 2011] or variational
methods [Beal, 2003] which will be the focus of this thesis.

This thesis investigates two specific research questions: how to develop
scalable probabilistic models for point data that incorporate structure in the
likelihood and posterior distribution and could be thus used as surrogate models ;
why and how to incorporate causality into sequential decision-making algorithms
so as to enable the selection of actions.

I first focus on how to construct flexible and meaningful representations
of the system we are analysing. I develop accurate and scalable gp models
that incorporate complex dependencies in the likelihood and the posterior
distributions. Structure in this context refers to two different aspects. On the
one hand, capturing complex phenomena often requires structured inference as
the posterior distributions for different model variables are highly dependent
and standard mean-field factorisations would not suffice. On the other hand,
structure might need to be incorporated in the likelihood function to account
for cross-correlation across different processes we wish to jointly model. Indeed,
multi-task models lead to improved prediction accuracy, especially in the context
of missing data, and better uncertainty quantification. These are important
features for both inference, as we shall see in Chapter 4, and decision-making,
as discussed in Chapter 7. Particularly, I investigate models for point data as
many real-life observations in fields as diverse as epidemiology, social sciences,
or geology are represented by events. In addition, similarly to what happens for
binary data or outlying observations, models for point data present significant
methodological and computational challenges. Indeed, when non-Gaussian
likelihoods are adopted in the context of gp models, posterior distribution can

4See Wasserman [2006] for an introduction to non-parametric statistics.
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not be computed in closed form and approximation schemes need to be used,
potentially slowing down inference and compromising accuracy.

I then study decision-making algorithms and investigate how, based on
complex surrogate models such as those developed in the first part of the
thesis, an agent can act in a causal system with the final goal of maximizing a
reward. More specifically, this thesis generalises Bayesian Optimization, Active
Learning, and multi-task gp models to deal with causal information. We show
why sequential decision-making algorithms should be equipped with causal
knowledge and how one can develop such frameworks integrating different types
of data. In these settings, we incorporate structure in the surrogate models by
encoding causal information which might come in the form of a causal graph or
as observed interventional data.

1.2 Thesis Structure

The work in this thesis is related to two main areas of research: Gaussian
process models and causal decision-making algorithms. I thus provide two
background chapters and divide the notation into subgroups to aid the reader.
In Chapter 2 I introduce gp regression, gp modulated Poisson point pro-
cesses and the connected scalable inference schemes. Furthermore, I discuss
the advantages and disadvantages of using such probabilistic models. Chap-
ter 3 provides an introduction on causality and the sequential decision-making
framework we mainly focus on in this thesis that is Bayesian Optimization (bo).

The first part of the thesis includes Chapter 4 and Chapter 5 and focuses on
developing models incorporating correlation structure in the likelihood function
(Chapter 4) or in the posterior approximation (Chapter 5). These are indeed
important features of probabilistic models used within decision-making algo-
rithms. By properly quantifying uncertainty, these models allow the acquisition
function constructed based on their properties to efficiently explore different
actions, correctly balancing exploration and exploitation. In addition, the
efficient inference schemes we develop in these chapters enable fast updating
of the posterior distributions and can be thus used when actions are selected
sequentially and posterior updates are not available in closed form.

In the second part of the thesis, I study how probabilistic models, such as
those developed in the first two chapters, can be combined with an acquisition
function to obtain sequential decision-making algorithms. In particular, I
analyse how a causation structure rather than a correlation structure can be
incorporated in gp surrogate models allowing to select actions based on cause-
effect relationships. Chapter 6 and Chapter 8 generalise Bayesian Optimization
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to incorporate causal information both in static and dynamic settings. Chapter 7
links correlation and causation through a causal multi-task formulation that, as
done in Chapter 4, captures the correlation structure across a set of functions
but where each function represents a causal quantity. In turn, this causal
multi-task formulation leads to complex structured posterior distributions, such
as those seen in Chapter 5, thereby significantly improving the performance of
decision-making algorithms such as Bayesian Optimization and Active Learning
when used as a surrogate. Chapter 9 concludes the thesis, summarising the
primary contributions and outlining open research questions and challenges.

1.3 Contributions

I outline the high-level contributions in each core chapter and how they relate to
the central theme of the thesis. More detailed statements on the contributions
can be found in each chapter.

Chapter 4. Efficient Inference in Multi-task Cox Process Models
Chapter 4 considers the problem of accurately modelling point data and general-
izes the log Gaussian Cox process (lgcp) framework to deal with the existence
of multiple correlated processes we wish to jointly model. In this chapter,
we develop a framework in which observations are treated as realizations of
multiple lgcps, whose log intensities are given by linear combinations of latent
functions drawn from gp priors. The combination coefficients are also drawn
from gp and can incorporate additional dependencies. To ensure scalability, we
derive closed-form expressions for the moments of the intensity functions and
propose an efficient variational inference algorithm that is orders of magnitude
faster than competing deterministic and stochastic approximations. We show
how the proposed approach outperforms the benchmarks in multiple problems,
offering the current state of the art in modelling multivariate point processes.

The work in this chapter appeared as: Aglietti, V., Damoulas, T. & Bonilla,
E.V. Efficient inference in multi-task cox process models. In Proceedings of the
22nd International Conference on Artificial Intelligence and Statistics. PMLR,
2019. The acceptance rate for this conference was 32.4% (360 accepted papers
out of 1111 submissions).

Chapter 5. Structured Variational Inference in Continuous Cox
Process Models
Still focusing on point data, this chapter proposes a scalable framework for
accurate inference in a single-task inhomogeneous Poisson process model. Dif-
ferently, from Chapter 4, we model the data with a continuous sigmoidal Cox
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process where the intensity function is given by a gp prior transformed with
a scaled logistic sigmoid function. We present a tractable representation of
the likelihood function through augmentation with a superposition of Poisson
processes. This view enables a structured variational approximation scheme
capturing dependencies across variables in the model. The proposed framework
avoids discretization of the domain, does not require accurate numerical integra-
tion over the input space, and is not limited to gps with squared exponential
kernels. We demonstrate the benefits of this approach on different synthetic
and real-world settings with increasing input dimensionality.

The approach presented in this chapter was published as: Aglietti, V.,
Bonilla, E. V., Damoulas, T., & Cripps, S. Structured variational inference in
continuous cox process models. In Proceedings of the 33rd International Con-
ference on Neural Information Processing System. 2019. The acceptance rate
for this conference was 21.1% (1428 accepted papers out of 6743 submissions).

Chapter 6. Causal Bayesian Optimization
This chapter builds on non-parametric methods and advances the thesis into
causal decision-making. I study the problem of optimizing a variable that is
part of a causal model in which a sequence of interventions can be performed.
We develop an approach which we call Causal Bayesian Optimization (cbo)
and generalizes Bayesian optimization to scenarios where causal information
is available. We combine ideas from causal inference, uncertainty quantifica-
tion, and sequential decision making to improve the ability to reason about
optimal decision-making strategies decreasing the optimization cost while avoid-
ing suboptimal solutions. We develop a gp surrogate model incorporating
different types of data and knowledge of the causal graph via a structured
prior. We discuss how cbo automatically balances two trade-offs: the classical
exploration-exploitation and the new observation-intervention, which emerges
when combining real interventional data with the estimated intervention effects
computed via do-calculus. We demonstrate the practical benefits of this method
in a synthetic setting and in two real-world applications.

This work has been introduced in: Aglietti, V., Xiaoyu, L., Paleyes, A.
& González, J. Causal Bayesian Optimization. In Proceedings of the 23nd
International Conference on Artificial Intelligence and Statistics. PMLR, 2020.
The acceptance rate for this conference was 30.2% (423 accepted papers out of
1400 submissions).

Chapter 7. Multi-task Causal Learning with Gaussian Processes
Causal information is useful not only when optimizing a target variable but,
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more generally, when the goal is to learn a set of functions defined on a causal
graph. In this chapter, we tackle this problem by first studying the correlation
structure of a set of intervention functions. Based on this, we then propose
the first multi-task causal gp model, which we call dag-gp. Constructing
a structured prior based on the causal graph topology, dag-gp allows for
information sharing across continuous interventions and across experiments
on different variables. dag-gp accommodates different assumptions in terms
of data availability and captures the correlation between functions lying in
input spaces of different dimensionality via a well-defined integral operator.
We give theoretical results detailing when and how the dag-gp model can
be formulated depending on the causal graph. We test both the quality of
its predictions and its calibrated uncertainties. We show how, compared to
single-task models, dag-gp achieves the best fitting performance in a variety of
real and synthetic settings. In addition, it helps to select optimal interventions
faster than competing approaches when used within sequential decision-making
frameworks, like active learning and the cbo framework introduced in Chapter 6.

The work in this chapter appeared as: Aglietti, V., Damoulas, T., Álvarez,
M. & González. Multi-task Causal Learning with Gaussian Processes. In Pro-
ceedings of the 34rd International Conference on Neural Information Processing
System. PMLR, 2020. The acceptance rate for this conference was 20.1% (1900
accepted papers out of 9454 submissions).

Chapter 8. Dynamic Causal Bayesian Optimization
While in Chapter 6 we deal with static settings, in various real-world appli-
cations the goal is to identify a sequence of optimal interventions in a causal
dynamical system where both the target variable of interest and the inputs
evolve over time. In this chapter we generalise cbo to deal with these problems
and propose Dynamic Causal Bayesian Optimization (dcbo), a framework
bringing together ideas from causal inference, gp emulation, and dynamic
Bayesian networks. dcbo is useful in scenarios where causal effects in a graph
are changing over time and the agents need to track the optimum over time.
Using a structured gp surrogate model and the acquisition function proposed
in Chapter 6, dcbo identifies a local optimal intervention at every time step by
integrating both observational and past interventional data collected from the
system. We give theoretical results detailing how one can transfer interventional
information across time steps and define a dynamic causal gp model which can
be used to quantify uncertainty and find optimal interventions in practice. We
demonstrate how dcbo identifies optimal interventions faster than competing
approaches in multiple settings and applications.
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The dcbo framework was submitted to the 34rd International Conference
on Neural Information Processing System as: Aglietti, V., Dhir, N., González,
J., & Damoulas, T. Dynamic Causal Bayesian Optimization.
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Chapter 2

Background Part A: Inference

In this chapter, we introduce Gaussian process (gp) models and Poisson point
processes (ppp). In Section 2.1 we discuss Gaussian processes, the sparse
gp approximations, which are often used due to computational reasons, and
introduce variational inference as an approximate inference technique for sparse
gps. In Section 2.3 we introduce Poisson point processes focusing in particular
on Cox processes. We then discuss how gps can be used to model the intensity
function of ppp to obtain a gp modulated ppp model. We conclude with a
discussion of the main advantages and disadvantages of gps based models.

2.1 Gaussian Processes

Many problems in machine learning can be reduced to learning a mapping from
a space of inputs X to a space of outputs Y. In classification, Y is a set of
discrete values, while in regression it is continuous. When adopting a Bayesian
framework, the mapping is represented by a random variable, with our current
state of knowledge represented as its distribution. Inference proceeds by first
defining a prior distribution consistent with our beliefs and then updating it
with observed data using Bayes’ rule. Gaussian processes (gps) are a class
of distributions over functions that can be used for representing prior and
posterior beliefs over mappings [Williams and Rasmussen, 2006]. In the next
few sections, we will review how to manipulate gps priors and posteriors. An
in-depth discussion can be found in Williams and Rasmussen [2006].

A gp is a generalization of the multivariate Gaussian distribution to an
infinite number of dimensions or random variables. More formally:

Definition 2.1. (Gaussian process) A Gaussian process is a collection of
variables, any finite number of which have a joint Gaussian distribution.

A gp is thus a stochastic process that is fully specified by its mean and
covariance functions, m : X → R and k : X × X → R respectively, which can
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Figure 2.1: A visual representation of a gp model in a one-dimensional input
space. Shaded areas give different levels of standard deviations of the predictive
distribution at each input location. Red dots represent observed data points.
Left plots: Samples from the gp prior distribution with m(x) = 0 and an rbf
kernel (top) or a Matérn 3/2 kernel (bottom). Right plots : Samples from the gp
posterior distribution with rbf kernel (top) or a Matérn 3/2 kernel (bottom).

be evaluated at any position of an infinite input domain, e.g. X = R. We write:

f ∼ GP(µ(x), k(x,x′))

m(x) = E[f(x)]

k(x,x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))

]
.

Different assumptions in terms of m(x) and k(x,x′) can be made depending
on the setting considered and the assumptions we want to encode in terms
of differentiability and smoothness of the function we are modelling. In this
thesis we assume m(x) = 0 unless otherwise stated which is a typical choice
in many modelling scenarios. This is not a limitation as the mean of the
posterior distribution is not confined to be zero. In addition, when assuming
a deterministic prior mean function different from zero, one can apply the
usual zero mean gp model to the difference between the observations and
the fixed mean function. Yet there are several reasons why one might wish
to explicitly model a mean function, including model interpretability or to
incorporate additional prior knowledge. We will see some examples in the
second part of this thesis when discussing causal decision-making algorithms.
When m(x) = 0, the gp is described solely by the covariance function for
which different parametric form k(x,x′) = kθ(x,x′), where θ denotes the
kernel hyperparameters, can be assumed. A frequent choice for this function
is represented by the Gaussian Radial Basis Function kernel (rbf) defined as
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krbf(x,x′) = σ2
f exp(− r2

2`2
) with r = ||x − x′||2 being the Euclidean distance

and θ = (σ2
f , `) where ` is called characteristic length-scale and σ2

f is the signal
variance. This covariance function is infinitely differentiable, which means
that a gp with an rbf kernel has mean square derivatives of all orders, and
is thus very smooth. Alternatively, one can choose a Matérn kernel defined
as kmatérn(x,x′) = 2ν−1

Γ(ν)

(√
2νr
`

)ν
Kν

(√
2νr
`

)
with positive hyper-parameters

θ = (ν, `) and where Kν is a modified Bessel function. The hyperparameters
ν controls the smoothness of the resulting function. The smaller ν, the less
smooth the function is. As ν →∞, the Matérn kernel becomes equivalent to
the rbf kernel. When ν = 1/2, the Matérn kernel becomes identical to the
absolute exponential kernel. Important intermediate values are ν = 3/2 for
which the function is once differentiable and ν = 5/2 for which the functions is
twice differentiable. For an overview of useful kernels in machine learning and
gp modelling see Williams and Rasmussen [2006] and Schölkopf et al. [2002].
As an illustration, consider a gp with mean function m(x) = 0 and an rbf

kernel with (σ2
f , `) = (1, 1). We can draw different realizations from this gp

prior distribution on a grid of points X := {x1, . . . , xn} (Fig. 2.1, left column,
top plot). The same can be repeated for a Matérn kernel with (ν, `) = (3/2, 1)

(Fig. 2.1, left column, bottom plot).
In a Bayesian framework, we are usually not primarily interested in drawing

random functions from the prior distribution but aim at incorporating the
knowledge that a set of training data D = (X,y) with X ∈ RN×D and y ∈ RN

provides about the function. In real-world applications, it is typical to assume
that we can only observe noisy measurements y of the true function values
f = f(X), where each output value is generated according to y = f(x) + ε with
ε ∼ N (0, σ2). This induces the following likelihood function:

p(y|f ,X) = N (f(X), σ2I). (2.1)

Assuming additive and independently identically distributed (i.i.d.) Gaussian
noise ε across target values implies a prior covariance for the noisy observations
given by Cov(yp, yq) = k(xp, xq) + σ2δpq with δpq representing a Kronecker
delta which is one if and only if p = q. For the vector y we can write
Cov(y) = Kxx + σ2I where Kxx = K(X,X) denotes the N × N matrix
obtained evaluating the covariance function at all pairs of training point in X.

Inference in a Bayesian framework requires computing the posterior distri-
bution over the latent function f by Bayes’ rule:

p(f |X,y) =
p(y|f ,X)p(f |X)

p(y|X)
. (2.2)

Given the posterior distribution, we can compute the predictive distribution
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for the latent function at a test point x? as:

p(f?|x?,X,y) =

∫
p(f?|x?, f)p(f |X,y)df

and subsequently use this distribution to produce a probabilistic prediction for
the corresponding output y?. When considering a Gaussian likelihood function
(Eq. (2.1)) together with a gp prior, the posterior and predictive distributions
can be computed in closed form as the prior and likelihood form a conjugate
pair. Consider a set of test inputs X? for which the corresponding output values
y? are not observed. We can write the joint distribution of the observed target
values and the function values at the test locations f? = f(X?) under the prior
as:

[
y

f?

]
∼ N

(
0,

[
Kxx + σ2I Kxx?

Kx?x Kx?x?

])

with Kxx? = K(X,X?), Kx?x = K(X?,X), Kx?x? = K(X?,X?) denoting
the covariance matrices induced by evaluating the covariance function at all
pairwise rows of the training inputs X and test inputs X?. Deriving the
conditional distribution of f?|y,X,X? we obtain the key predictive equation
for the Gaussian process regression, see e.g. Williams and Rasmussen [2006]:

f?|y,X,X? ∼ N
(
f̄?,Cov(f?)

)
where (2.3)

f̄? = Kx?x[Kxx + σ2I]−1y, (2.4)

Cov(f?) = Kx?x? −Kx?x[Kxx + σ2I]−1Kxx? . (2.5)

Notice how the variance is the difference between two terms. The first term
Kx?x? is simply the prior covariance computed at the test points. The second
term represents the information that the observations give us about the function
thus reducing its uncertainty. We can compute the predictive distribution for
the test outputs y? by adding σ2I to the expression for Cov(f?). Computing
f̄? and Cov(f?) is computationally expensive when the size of X? is large as
it involves Cholesky decompositions requiring O(N3) time to compute. In
the following section, we will introduce the inducing point approximations
[Quinonero-Candela and Rasmussen, 2005; Titsias, 2009a] which can be used
to scale up the training of a gp model and the computation of the predictive
mean. More recently, several approaches have been proposed to speed up the
computation of the predictive uncertainties and the sampling from predictive
distributions, e.g. Pleiss et al. [2018]; Wilson et al. [2020]. The right column
in Fig. 2.1 shows the sample paths drawn from the posterior gp distributions
obtained with different priors (Fig. 2.1, left column) and a Gaussian likelihood
when a set of training points are observed.
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In gp regression the marginal likelihood p(y|X) of the observed outputs
given the inputs is available in closed form and it is given by:

p(y|X) =

∫
p(y|f ,X)p(f |X)df = N (0,Kxx + σ2I). (2.6)

The term marginal likelihood refers to the marginalization over the function
values f . Following the standard maximum likelihood procedure one can
optimize Eq. (2.6) to find the values of the kernel hyperparameters θ and σ2

improving the fit to the data.
In the regression case, the computation of posterior and predictive distribu-

tions is straightforward as the relevant integrals can be computed analytically.
This is not the case when dealing with non-Gaussian likelihoods. For instance,
in binary classification, the likelihood is given by a product of Bernoulli random
variables which makes the computation of Eq. (2.2) analytically intractable.
The same happens when gps are used to model count data and Poisson distri-
butions appear in the likelihood functions. In these cases we need to resort to
approximate Bayesian methods such as Monte Carlo sampling [Filippone et al.,
2013; Havasi et al., 2018; Neal, 1997; Samo and Roberts, 2016] or Variational
Bayes [Blei et al., 2017; Fox and Roberts, 2012; Frigola et al., 2014; Tran et al.,
2016]. Another well-known problem with gps is scalability. As mentioned
above, computing the posterior distribution requires the inversion of a N ×N
covariance matrix Kxx which implies a computational complexity of O(N3).
However, a variety of sparse approximations have been recently introduced to
deal with the memory and computational limitations of gps. These two aspects,
namely sparse approximations and inference in gp models with non-Gaussian
likelihoods, will be the focus of the next sections.

2.1.1 Sparse Gaussian Processes

Although gps have many desirable properties from a modelling point of view,
they become computationally intractable to manipulate for even moderately
sized datasets. Indeed, posterior inference involves matrix operations costing
O(N3) where N is the number of observations. To overcome this limitation,
several methods have been proposed in the literature, see Liu et al. [2020] for a
review. Scalable gps can be classified into two main categorises. On the one
hand we have approaches that approximate the kernel matrix either by consider-
ing a subset of the training data [Keerthi and Chu, 2006; Lawrence et al., 2003;
Seeger, 2003], or via sparse kernels [Buhmann, 2001; Gneiting, 2002; Melkumyan
and Ramos, 2009] or by resorting to sparse approximations [Hensman et al.,
2013, 2017; Lázaro-Gredilla and Figueiras-Vidal, 2009; Quinonero-Candela and
Rasmussen, 2005; Rossi et al., 2021; Seeger et al., 2003; Smola and Bartlett,
2001; Snelson and Ghahramani, 2005; Titsias, 2009a; Williams and Seeger, 2001;
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Wilson and Nickisch, 2015].
On the other hand several approches focus on local approximations and

divide the data for subspace learning [Gramacy, 2016; Liu et al., 2018; Ras-
mussen and Ghahramani, 2002; Samo and Roberts, 2016; Yuksel et al., 2012].
While in terms of scalability, most of the sparse approximations have the
same training complexity, they can be further sped up through parallel and
distributed computing [Dai et al., 2014; Gal et al., 2014b; Gramacy, 2016].
In addition, the complexity can be futher reduced by exploiting Toeplitz and
Kronecker matrix structure for fast matrix-vector multiplications which in
turns require regularly spaced inducing points [Cunningham et al., 2008; Saatçi,
2012; Wilson and Nickisch, 2015]. In this thesis, we will focus on the inducing
point approximations which are based on the work by Quinonero-Candela and
Rasmussen [2005] and Titsias [2009a].

The key idea of the inducing point approximation is to learn the function
values at a certain numberM � N of input locations that are highly informative
of what the posterior gp is more globally. The additional auxiliary input-output
pairs of variables are denoted by Z and u respectively. Z is a M ×D matrix of
inducing inputs while u ∈ RM gives the vector of corresponding function values
called inducing variables. The original covariance matrix Kxx is replaced with
a low-rank approximation that requires the inversion of the M ×M covariance
matrix computed in the inducing inputs. The key problem of this approach
is the selection of the inducing inputs. These can be constrained to be on a
regular grid covering the input space or to be a subset of the training inputs. A
common approach is to allow the inducing inputs to lie anywhere in the input
domain and determine their location with some form of optimization [Snelson
and Ghahramani, 2005]. Here we consider the case where the inducing inputs
are related to the outputs with the same gp prior as the training inputs and
write an augmented joint prior distribution for f and u as:

[
f

u

]
∼ N

(
0,

[
Kxx Kxz

Kzx Kzz

])

where Kzz is built by evaluating the covariance function on the inducing inputs
Z while Kxz and Kzx represent the cross-covariance matrices between X and
Z. The marginal distribution for the inducing variables can be written as
p(u|Z) = N (0,Kzz) which implies the following conditional gp prior:

p(f |u,X,Z) = N
(
Kxz(Kzz)

−1u,Kxx −AKzx

)

with A = KxzK
−1
zz

where AKzx represents the Nyström approximation of the true covariance Kxx.
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Writing this conditional prior only involves inversion of matrices of dimension
M ×M and integrating out u from the augmented joint prior distribution
we can recover the initial prior distribution for f exactly. While this naive
formulation does not bring any computational benefits [Williams and Seeger,
2001], applying the Woodbury formula we obtain the so called Nyström ap-
proximation [Williams and Seeger, 2001] which reduces the computational
complexity to O(NM2). Alternatively, in order to induce sparsity, one can
consider an approximation q(f |u,X,Z) to the true conditional p(f |u,X,Z).
As noted by Quinonero-Candela and Rasmussen [2005], different sparse ap-
proximations correspond to different assumptions on the covariance term of
q(f |u,X,Z) while maintaining the exact likelihood p(y|f) and prior p(u). Let’s
assume q(f |u,X,Z) = N (Kxz(Kzz)

−1u, Q̃) with Q̃ 6= Kxx −AKzx then the
marginal prior distribution for f is given by q(f |X) =

∫
q(f |u,X,Z)p(u|Z)du =

N (0, Q̃+AKzx). Specific forms of Q̃ allow to use the Woodbury matrix identity
and the matrix determinant lemma1 to obtain expressions that depend on the
inversion of a matrix of size M ×M . Examples are given by the deterministic
training conditional (dtc) approximation [Csató and Opper, 2002; Seeger et al.,
2003] where Q̃ = 0 and the “fully independent training conditional (fitc)”
[Snelson and Ghahramani, 2005] method where Q̃ = AKzx−diag(AKzx−Kxx).

Apart from the methods based on inducing points, recent works [Hartikainen
and Särkkä, 2010; Sarkka and Hartikainen, 2012; Särkkä et al., 2013] have further
scaled spatio-temporal gps by reformulating regression problems as Kalman
filtering and smoothing problems. Interestingly, the formulation proposed
by Hartikainen and Särkkä [2010] is exact for the Matérn class of covariance
functions. Exact solutions not constrained to specific kernel classes have also
been proposed by Wang et al. [2019] and Cutajar et al. [2016]. The former
exploits the Blackbox Matrix-Matrix multiplication [Gardner et al., 2018] while
the latter applies different kernel matrix approximations as preconditioners and
develops a method that can be applied to any likelihood factorizing over the
data points, thus tackling both regression and classification problems.

1Consider an invertible matrix A of size N ×N , two matrices U and V of size N ×M
and W an invertible matrix of size M ×M . We have two following two identities:

• The Woodbury matrix identity:

(A+ UWV T )−1 = A−1 −A−1U(W−1 + V TA−1U−1)V TA−1.

• The matrix determinant lemma:

|A+ UWV T | = |W−1 + V TA−1U ||W ||A|.
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2.1.2 Variational Sparse Gaussian Processes

Focusing an approximation methods based on inducing points, notice how
approximating p(f |u,X,Z) with q(f |u,X,Z) corresponds to modifying the gp

prior [Quinonero-Candela and Rasmussen, 2005; Titsias, 2009a]. The approaches
mentioned above turn the inducing inputs into additional kernel hyperparam-
eters and, while this can increase flexibility when we fit the data, it can also
lead to overfitting when jointly optimizing over all unknown hyperparameters.
To overcome this limitation, Titsias [2009a] proposed a variational method that
jointly selects the inducing inputs and the hyperparameters by maximizing
a lower bound to the exact marginal likelihood. Rather than modifying the
exact gp model, this approach minimizes a distance between the exact gp

posterior and a variational approximation thus turning the inducing inputs Z

into variational parameters. Several works have shown how the inducing point
approximation avoids the undesirable behaviours observed for the fitc method
i.e. overestimation of the marginal likelihood, underestimation of the noise
variance parameter, and inability to recover the true posterior in a large number
of settings [Bauer et al., 2016; Matthews et al., 2016; Matthews, 2017]. In
particular, it correctly identifies good solutions, always improves with additional
inducing inputs, and recovers the true posterior when possible. Before detailing
the variational inducing point approximation, which will be adopted throughout
this thesis for the reasons given above, we introduce variational inference as
an approximate inference method that can be used when the posterior gp

distribution is not available in closed form.

Variational Bayes Given a gp prior distribution (Eq. (4.1)) and a non-
Gaussian likelihood, posterior inference is analytically intractable. Therefore,
we need to resort to approximate inference methods to either get samples from
it or obtain an approximate form. Variational inference (vi) methods [Jordan
et al., 1999] find an approximate posterior distribution by positing a tractable
family of distributions and finding the member of the family that is “closest” to
the true posterior in terms of their Kullback-Leibler divergence. In gp models,
vi seeks to approximate the true posterior p(f |D) with a variational distribution
q(f |νf ) where νf represents the variational parameters and is obtained by
minimizing :

KL(q(f |νf )||p(f |D)) =

∫
q(f |νf ) log

p(f |D)

q(f |νf )
df .

In the following derivations we omit νf to avoid clutter. It is possible to show
that minimizing the Kullback-Leibler (kl) divergence between the approximate
posterior and the true posterior is equivalent to maximizing the log-evidence
lower bound (elbo), which is composed of a kl-term and an expected log-
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likelihood term (ell). We can write:

log p(y) = log

∫
p(y, f)d′f = log

∫
p(y, f)

q(f)

q(f)
d′f

= logEq(f)
[
p(y, f)

q(f)

]
≥ Eq(f)

[
log

p(y, f)

q(f)

]

where p(y) is the marginal likelihood or evidence and the last equation is
derived by applying Jensen’s inequality. The term Lelbo = Eq(f)

[
log p(y,f)

q(f)

]
is

thus a lower bound on the evidence. In addition we can write:

KL(q(f)||p(f |y)) = Eq(f)
[
log

q(f)

p(f |y)

]

= Eq(f)[log q(f)]− Eq(f)
[
log

p(f ,y)

p(y)

]

= Eq(f)[log q(f)]− Eq(f)[log p(f ,y)] + Eq(f)[log p(y)]

= Eq(f)[log p(y)]− Eq(f)
[
log

p(y, f)

q(f)

]

= log p(y)− Lelbo. (2.7)

Therefore, minimizing the kl divergence is equivalent to maximizing the elbo

which is a lower bound on the marginal likelihood. This can be done in closed
form for the conditionally conjugate exponential family (see Blei et al. [2017]
for an example in which the elbo is computed analytically for a mixture of
Gaussians). In this case, coordinate ascent can be used to iteratively update
the variational distribution [Ghahramani and Beal, 2000] for each variable until
convergence. For generic models and arbitrary variational families, there is
no closed-form solution. When the elbo can be evaluated analytically one
can resort to gradient descent methods. However, in complex models, also
computing the required expectations in the elbo expression becomes intractable.
In these settings, one needs to resort to model-specific algorithms [Braun and
McAuliffe, 2010; Jaakkola and Jordan, 1997] or generic algorithms that require
model specific computations [Knowles and Minka, 2011; Paisley et al., 2012].

Alternatively, black-box variational inference (bvi) [Ranganath et al., 2014]
has been proposed as a generic variational inference algorithm for which only
the generative process of the data has to be specified. The main idea of bvi

is to represent the gradient of the elbo as an expectation and to use Monte
Carlo techniques to estimate them. One can thus obtain an unbiased gradient
estimator by sampling from the variational distribution without having to
compute the elbo analytically. While bvi and stochastic gradient descent
make vi applicable to a range of complicated models, they lead to high variance
in the gradient estimators which can, in turn, prevent the convergence of the
algorithm. Reducing these variances is essential for fast convergence of the vi
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scheme and several strategies have been proposed to address this issue, e.g.
control variates [Boyle, 1977], re-parametrization tricks [Rezende et al., 2014]
and Rao-Blackwellization based approaches [Ranganath et al., 2014].

Mean field approximation A key aspect of variational inference is the
chosen family of variational distributions. There exists a trade-off in choos-
ing q(f |νf ) expressive enough to approximate the posterior well, and simple
enough to lead to a tractable approximation. When dealing with several la-
tent variables, a common choice is a fully factorized variational distribution,
also called mean-field distribution. A mean-field approximation assumes that
all latent variables are independent a posteriori, which simplifies derivations.
However, this independence assumption might lead to less accurate results as
it ignores dependencies. This is especially true when the posterior variables are
highly dependent such as in models with hierarchical structure and in point
process models, as we will see in Chapter 5. To avoid this issue, structured
variational distribution can be used to increase expressiveness at the price of a
higher computational cost. Allowing a structured variational distribution to
capture dependencies between latent variables is a modelling choice; different
dependencies may be more or less relevant and depend on the model under
consideration. For example, structured variational inference for Latent Dirichlet
Allocation [Hoffman and Blei, 2015] shows that maintaining global structure
is vital, while structured variational inference for the Beta Bernoulli Process
[Shah et al., 2015] shows that maintaining local structure is more important.

A variational lower bound for the inducing points As mentioned above,
the variational inducing point approach [Titsias, 2009a] turns the inducing
inputs into variational parameters and, instead of modifying the prior on f ,
considers a free posterior q(u|νu) whose variational parameters νu are then
optimized. The approximation is thus made with respect to the true posterior.
This will be the approach adopted throughout this thesis. We consider a joint
approximate posterior distribution defined as:

q(f ,u) = p(f |u)q(u|νu) with q(u|νu) = N (m,S) (2.8)

where νu = {m,S,Z} and p(f |u) = N (KxzK
−1
zz u,Kxx −KxzK

−1
zz Kzx). We

can thus rewrite the variational bound in Eq. (2.7) as:
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KL(q(f ,u|νu)||p(f ,u|y)) = KL(q(f |u)q(u|νu)||p(f ,u|y))

= log p(y)− Eq(f ,u|νu)

[
log

p(y, f ,u)

q(f ,u|νu)

]

= log p(y)− Eq(f ,u|νu)

[
log

p(y|f)p(f |u)p(u)

p(f |u)q(u|νu)

]

= log p(y)− Eq(f ,u|νu)

[
log

p(y|f)p(u)

q(u|νu)

]
.

The evidence lower bound is thus written as Lelbo = Eq(f ,u|νu)

[
log p(y|f)p(u)

q(u|νu)

]

and can be decomposed as the sum of two terms, one giving the expected
log likelihood and one representing the kl divergence between M dimensional
distributions on the inducing inputs u:

Lelbo = Eq(f ,u|νu)

[
log

p(y|f)p(u)

q(u|νu)

]

= Eq(f ,u|νu)[log p(y|f)]−KL(q(u|νu)||p(u))

= Eq(f)[log p(y|f)]
︸ ︷︷ ︸

Lell(νu)

−KL(q(u|νu)||p(u))︸ ︷︷ ︸
Lkl(νu)

. (2.9)

Notice how the N dimensional distributions cancel out in the elbo there-
fore reducing the computational complexity to O(NM2). In addition, when
the likelihood factorizes across the N data points we can write the log like-
lihood term as Eq(f ,u|νu)[log p(y|f)] =

∑N
i=1 Eq(f(xn))[log p(yn|f(xn))] where

q(f) can be derived in closed form from Eq. (2.8) and it is given by q(f) =

N (KzxK
−1
zz m,Kxx −KxzK

−1
zz Kzx + KzxK

−1
zz S(KzxK

−1
zz )T ). The expected log

likelihood term lends itself to stochastic optimization using mini-batches by
sub-sampling the sum over N data points [Hensman et al., 2013]. This makes
the algorithm independent of N and dominated by algebraic operations that
are O(M3) in time, where M is the number of inducing points. Inference is
thus converted into a maximizing problem of the elbo in Eq. (2.9) with respect
to νu using gradient-based optimization methods.

2.2 Multi-task Gaussian Processes

We have so far considered single-task learning settings where, given a set of
input-output training points D, we wish to learn a mapping f : RD → R with
D ∈ N and make predictions on an unseen data-point x?. However, the output
variable does not need to be one dimensional and multiple outputs or tasks
could be considered jointly. Multi-task learning (mtl) is an active research area
in machine learning and has received a lot of attention over the past few years,
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see Caruana [1998] for an early reference and Zhang and Yang [2021] for an
overview. The key idea of mtl is that learning tasks simultaneously and sharing
information across them can lead to improved performance in comparison to
learning the same tasks individually. As we shall see in Chapter 7, mtl is
also useful for decision-making algorithms as it allows exploiting all available
information across correlated processes thus leading to correct uncertainty quan-
tification and, as a consequence, efficient exploration of available actions. In
gp models we consider the mappings fp(x) for p = 1, . . . , P where P gives the
number of tasks and, for each function fp, we might have a different training set
Sp = (Xp,Yp) = (xp,1, yp,1), . . . , (xp,Np , yp,Np) with task-specific cardinality Np.

A variety of multi-task gp models have been proposed in the literature.
Among the most commonly used we find the intrinsic coregionalization model
(icm) [Goovaerts et al., 1997] and the linear model of coregionalization (lcm)
[Goovaerts et al., 1997; Journel and Huijbregts, 1976] that were developed
in the context of geostatistics. In lcm each output is expressed as a linear
combination of independent random functions that are shared across tasks:

fp(x) =

Q∑

q=1

ap,quq(x)

where ap,q are scalar coefficients and the latent function uq(x) has zero mean and
covariance function kq(x,x′). This ensures that the resulting covariance function
expressed jointly over all the outputs, that isK(x,x′) =

∑Q
q=1 Bqkq(x,x

′) where
each Bq is known as coregionalization matrix, is a valid positive definite function.
The icm is a simplified version of lcm where all latent functions are assumed
to have the same covariance function. Conversely, in the semi-parametric latent
factor model (slfm) proposed by Teh et al. [2005a] all functions are assumed
to have a difference covariance structure.

Apart from different assumptions on the latent function covariance structure,
all these models involve “instantaneous mixing” [Álvarez et al., 2012] through a
linear weighted sum of independent processes to construct correlated processes.
This means that the output function fp evaluated at x only depends on the
values of the latent functions also evaluated at the same input x. This leads to an
overall kernel function across outputs that has a separable form. An alternative
way to mix the latent functions and induces more complex covariance structures
is given by convolutions. In convolution processes [Álvarez and Lawrence, 2011]
each function is written as the convolution of base processes with a smoothing

22



kernel:

fp(x) =

Q∑

q=1

∫

X
Gp,q(x− z)uq(z)dz + wp(x)

where {wp(x)}Pp=1 and {uq(x)}Qq=1 are independent gps and each kernel Gp,q(x)

is a continuous function, also known as smoothing kernel, with compact support
[Hörmander, 2007] or square-integrable [Higdon, 2002; Ver Hoef and Barry, 1998].
In the latent force model proposed by Álvarez et al. [2009], each smoothing
kernel corresponds to a Green’s function arising from a second order ordinary
differential equation. As we will see in Chapter 7, this formulation is important
when sharing information in a causal setting. Indeed, a multi-task model
for functions defined on a causal graph can be developed by considering a
convolution process with smoothing kernels that can be interpreted as Green’s
functions capturing the graph topology. Notice that the convolution of a gp

is also a gp therefore convolutions have been used to construct a variety of
more complex covariance functions, see Álvarez et al. [2012] for a review on
convolution process and more generally on multi-output gp models.

Finally notice that, while all these methods have been originally developed
in the context of Gaussian likelihood, they have been used as building blocks of
complex probabilistic models for non-Gaussian likelihood [Chai, 2012; Dezfouli
and Bonilla, 2015; Moreno-Muñoz et al., 2018; Skolidis and Sanguinetti, 2011].
In Chapter 4 we will focus on count data and show how multi-output gps can
be used to jointly model different point processes in a spatio-temporal region.

2.3 Poisson Point Processes

Poisson point processes (ppp) are stochastic processes used to model the
distribution of random occurrences of points in a multidimensional space. In
ppp, both the number of points and their locations are modelled as random
variables. This means that a realization of a ppp in a state space S, which
is generally the Euclidean space S = Rm with m ≥ 1 or some subset thereof,
comprises the number N ≥ 0 and the locations x1, . . . ,xn of the points in S.
The realization is denoted by the ordered pair ξ = (N, {x1, . . . ,xn}). Every ppp

is parametrized by a quantity called the intensity which takes different forms
depending on whether the state space S is continuous, discrete, or discrete-
continuous. In this thesis we focus on continuous state spaces and define the
intensity as a non-negative function λ(s) : S → [0,∞). If λ(s) = α for some
constant α ≥ 0 the ppp is said to be homogeneous. Otherwise we have a
non-homogeneous ppp and speak about intensity function which describes the
expected number of points found in any bounded region of some arbitrary
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domain. While the intensity function λ(s) does not need to be continuous, it
needs to satisfy 0 ≤

∫
B λ(s)ds ≤ ∞ for all bounded subsets B ⊆ S. We call

Λ(B) =
∫
B λ(s)ds the intensity measure. More formally, a ppp is defined as:

Definition 2.2. (Poisson point process) A point process X on S is a Poisson
point process with intensity function λ and intensity measure Λ if the following
two properties hold:

• for any B ⊆ S such that Λ(B) <∞, N(B) ∼ Poisson(Λ(B)) that is the
Poisson distribution with mean Λ(B).

• For any n ∈ N and B ⊆ S such that 0 < Λ(B) <∞ we have

XB|N(B) = n ∼ Binomial (B,n, λ(s)/Λ(B))

where Binomial(·) denotes a Binomial Point process [278].

We writeX ∼ Poisson(S, λ). For any bounded B ⊆ S, the intensity function
determines the expected number of points in B that is E[N(B)] = Λ(B). There
are two basic operations for a ppp that will be exploited in this thesis: thinning
and superposition. These are defined as:

Definition 2.3. (Superposition) A disjoint union
⋃∞
i=1Xi of point processes

X1, X2, ... is called a superposition.

Definition 2.4. (Thinning) Let p : S → [0, 1] be a function and X a point
process on S. The point processXthin ⊆ X obtained by including s ∈ X inXthis

with probability p(s), where the point are included or excluded independently
on each other, is said to be an independent thinning of X with retention
probabilities p(s).

2.3.1 Cox processes

The intensity function of a ppp is generally unknown and another stochastic
process is typically used to model it. In this case the process is called Cox
process (cp) [Cox, 1955] and is characterized by the following properties:

• cp1: Λ = {λ(x) : x ∈ S} is a non-negative-valued stochastic process;

• cp2: conditional on the realization λ(x) : x ∈ S the point process is a
non-homogeneous Poisson process with intensity λ(x).

A cp is also called doubly stochastic Poisson process and is defined as:

Definition 2.5. (Cox Process) Denote by Z = {Z(s) : s ∈ S} a non-negative
random field such that with probability one, Z(s) is a locally integrable function.
If X|Z ∼ Poisson(S, Z) then X is said to be a Cox process driven by Z.
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Note that independent thinning of a Cox process results in a new Cox
process. In addition, the moment properties of a Cox process are inherited from
those of the intensity process and are easily derived by conditioning on the
random intensity and exploiting the properties of the Poisson process X|Z. For
example, the intensity of X is equal to the expectation of Z and the covariance
density of the Cox process is equal to the covariance function of Z.

2.3.2 gp modulated Cox processes

Among the variety of approaches adopted in the literature, gps have been
successfully used to model the intensity function of a cp [Adams et al., 2009;
Fernandez et al., 2016; Gunter et al., 2014; López-Lopera et al., 2019; Møller
et al., 1998; Rao and Teh, 2011] as they provide a flexible non-parametric
Bayesian framework. In gp modulated Poisson processes, a gp prior is placed
on a latent function f(x) that is related to the intensity function of the non-
homogeneous Poisson process through a link function g(·). This is usually taken
to be the exponential transformation which results in the Log Gaussian Cox
process [Møller et al., 1998]:

Definition 2.6. (Log Gaussian Cox Process) Let X be a Cox process on
S driven by the intensity λ(·) = exp(f(·)) where f(·) is a gp. Then X is said
to be a Log Gaussian Cox Process (lgcp).

Other link functions frequently considered in the literature are the sigmoidal
transformation which leads to the so-called sigmoidal Gaussian Cox Process
(see, e.g., [Adams et al., 2009]) and the square transformation which leads to
the Permanental Cox Process (see, e.g., [Lloyd et al., 2015]) These models are
computationally challenging as they are doubly intractable [Murray et al., 2006].
Indeed, the posterior distribution on the latent function f can be computed as:

p(f |D) =
p(f) exp(−

∫
X g(f(x))dx)

∏n
i=1 g(f(xi))∫

p(f) exp(−
∫
X g(f(x))dx)

∏n
i=1 g(f(xi))df

. (2.10)

The likelihood function in the numerator involves an integral of the process over
the spatio-temporal domain, which in general cannot be computed analytically.
Computing p(f |D) also requires computing the marginal likelihood in the
denominator which in turn involves a double, generally intractable, integral. In
Chapter 4 and Chapter 5 we will see how variational inference can be used to
derive a scalable inference scheme for gp modulated ppp.

2.4 Why gps?

All the work to follow, both in terms of modelling approaches and sequential
decision-making frameworks, is build upon the power of gps. We will in
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particular spend Chapter 4 and Chapter 5 developing models and associated
inference techniques that showcase the flexibility of gps in capturing the
behaviour of ppp. Chapter 6, 7 and 8 will instead demonstrate how gps allow
to properly quantify uncertainty in a variety of decision-making settings. Before
delving into the core material of this thesis we now discuss the main advantages
and shortcomings of using gps.

2.4.1 Advantages of gps

gp models are well-suited for building complex probabilistic models and se-
quential decision making algorithms. Indeed, we can identify the following
advantages:

• Expressivity. Through the choice of a covariance function, gps can
express a wide range of modeling assumptions. For instance, as mentioned
in Section 2.1, the rbf kernel or the Matérn kernel can be used to
encode different degrees of function smoothness. Traditional gp models
have also been extended to more expressive variants, for example by
considering sophisticated covariance functions [Durrande et al., 2011;
Remes et al., 2017; Wang et al., 2020] or by embedding gps in more
complex probabilistic structures [Damianou and Lawrence, 2013; Snoek
et al., 2014; Ton et al., 2018; Wilson et al., 2011b] able to learn more
powerful representations of the data.

• Tractability. When dealing with Gaussian likelihoods, the posterior
gp distributions and predictive distributions are available in closed form.
This is a rare property for non-parametric models to have and it is
particularly useful in the context of sequential decision-making.

• Uncertainty quantification. Being a Bayesian non-parametric tech-
nique, gps are capable of quantifying uncertainty through Bayesian
inference which is vital for improving regularization. Note that the notion
of uncertainty discussed here is very different from that used in other con-
texts. We refer to epistemic uncertainty, that is uncertainty representing
our personal lack of knowledge about a problem, rather than aleatoric
uncertainty due to inherent stochasticity in the system. Through gps
we can encode prior beliefs about a functional form and propagate the
prior uncertainty when computing posterior distributions. This ensures
correctly large uncertainty estimates in regions with little data avoiding
overconfidence if the model is faced with a prediction task from e.g. a
different input distribution. In addition, uncertainty in the inputs [Titsias
and Lawrence, 2010] and in the kernel hyperparameters [Lalchand and
Rasmussen, 2020] can be accounted for in gp models.
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2.4.2 Limitations of gps

There are several issues which make gps sometimes difficult to use:

• Computational cost. Computing posterior and predictive distributions
require the inversion of N ×N matrices taking O(N3) time. Exact infer-
ence is thus prohibitively slow for more than a few thousand data points.
However, as mentioned above, a variety of sparse gp approximations can
be used to address this problem.

• Approximate inference for non-Gaussian likelihoods. When using
Gaussian likelihood the predictive distribution of a standard gp model is
Gaussian. In various settings, we might want to consider non-Gaussian
likelihoods e.g. to perform classification or in order to be robust to outliers.
This requires approximate inference schemes which might negatively
impact inference accuracy and computational cost.

• Kernel choice and hyperparameters optimization. The expressive-
ness and flexibility of gp stems from the possibility to chose a kernel
function that adapts to the problem at hand. Choosing a kernel is equiv-
alent to learning a useful representation of the inputs and, until recently,
expert elicitation was required to choose the right parametric form. More
recently, automatic kernel selection schemes were proposed with the goal
of automatizing its construction given a dataset and make kernel learning
more generally applicable [Duvenaud et al., 2013; Lloyd et al., 2014].
In addition, given a certain kernel function, the classical approach for
learning the hyperparameters entails maximizing the marginal likelihood
to get fixed point estimates. Extending the Bayesian treatment to hyper-
parameters in a hierarchical framework leads to a posterior which is highly
intractable. In turn, this also renders the predictive posterior intractable
and requires an additional approximate inference scheme. This can once
again slow down inference and reduce prediction accuracy.
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Chapter 3

Background Part B: Sequential
Decision-Making

Sequential decision-making is a central ability of any intelligent agent interacting
with an environment and faced with the problem of choosing a sequence of
actions delivering the highest reward while accounting for uncertainty in the
system. Sequential decision-making has attracted a lot of attention in the
past years and frameworks such as Reinforcement Learning (rl) [Sutton and
Barto, 2018], Multi-Armed Bandits [Lattimore and Szepesvári, 2020], Bayesian
Optimization (bo) [Mockus, 2012] and Active Learning (al) [Settles, 2012]
have been developed with the goal of driving the agent’s exploration and
exploitation of available actions. These methods are dealing with different
assumptions in terms of action space features, environment characteristics, and
reward structure. In this thesis, we will focus on bo and briefly touch on al in
Chapter 7. In this chapter, we review the standard bo framework and introduce
the causal concepts that will be used in the following chapters to extend bo

and multi-task gp models to incorporate causal information.

3.1 Bayesian Optimization

Bayesian optimization (bo) is a sequential decision-making algorithm that
can be used for optimizing an unknown, usually multimodal and expensive to
evaluate function f : X → Y over the input space X :

x? = arg min
x∈X

f(x) (3.1)

where X is often a compact subset of RD but more unusual search spaces that
involve categorical or conditional inputs can be considered. We sometimes refer
to X as action space where each action, e.g. x = 1, corresponds to a different
function evaluation, e.g. f(1), in a bo setting. The unknown function is a
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black-box and it can only be observed via point evaluations which are often
corrupted by noise. The key idea of bo is to use a surrogate model to carry
out the optimization and define a utility function to collect new data points
satisfying some optimality criterion. Using a probabilistic model as a surrogate
allows us to correctly quantify uncertainty. The utility function represents
our design goal which could be the exploration of the function values or could
encourage exploitation of the optimal function values found throughout the
optimization. While different models have being used as a surrogate for bo

e.g. random forests [Hutter et al., 2011], t-processes [Shah et al., 2014] and
neural networks [Snoek et al., 2015], here we will focus on gps as they have
been successfully used in a variety of applications including environmental
monitoring [Marchant and Ramos, 2012], robotics [Martinez-Cantin et al., 2007]
and experimental design [Azimi et al., 2012].

3.1.1 gp surrogate models

In bo, the surrogate model includes the prior distribution that captures our be-
liefs about the behaviour of the unknown objective function and an observation
model that describes the data generating mechanism:

f(x) ∼ GP(m(x), k(x,x′))

y = f(x) + ε, ε ∼ N (0, σ2).

This corresponds to the gp regression discussed in Section 2.1. Given a dataset
D, posterior mean m(x|D) and variance σ2(x|D) can be computed explicitly
similarly to Eq. (2.3) - (2.5). There are two main reasons why gps are popular
surrogate models for bo. Firstly, unlike other non-parametric probabilistic
models, gps require the specification of only a handful of model parameters,
namely the kernel hyperparameters and the mean function parameters if this is
different from zero, rather than the many thousands required for Bayesian neu-
ral networks. Despite that, as mentioned in Section 2.4, gps are flexible models
that can express a wide range of modelling assumptions through the choice
of a covariance function1. Secondly, gps provide well-calibrated uncertainty
estimates. This, coupled with the closed-form predictive distributions that can
be obtained with Gaussian likelihoods, allow the fast and easy evaluation of
acquisition functions.

Note that a variety of kernel functions can be used for k(x,x′). In the
1Based on Ghosal and Roy [2006], it is possible to show that gps based on universal kernels

[Steinwart, 2001] have sample paths which are arbitrarily close to any continuous function.
See van der Wilk et al. [2017] for an interesting discussion on the universal approximation
property for gps.
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following discussion, an rbf kernel is used unless otherwise stated. As in
gp regression, the choice of the kernel function should reflect our beliefs
in terms of function differentiability and smoothness. Importantly, every
kernel function comes with a set of hyperparameters that need to be either
estimated or marginalised. A preponderance of literature on gps addresses
this problem through maximization of the marginal likelihood, ml-II [MacKay,
1999]. Indeed, once the point estimate hyperparameters have been selected,
the posterior distribution over latent function values and hence predictions
can be derived in closed form. However, this approach suffers from two main
issues. On the one hand, the non-convexity of the marginal likelihood implies
that local optima could be found during the optimization. On the other hand,
using point estimates of hyperparameters yields overconfident predictions, by
failing to account for hyperparameters’ uncertainty. Extending the Bayesian
treatment to hyperparameters in a hierarchical framework leads to an intractable
posterior and thus requires resorting to approximate inference methods, see
e.g. Lalchand and Rasmussen [2020] for an example of a fully bayesian gp

regression. Therefore, in this thesis we estimate the kernel hyperparameters by
maximizing the marginal likelihood via the Broyden–Fletcher–Goldfarb–Shanno
(bfgs) algorithm.

3.1.2 Acquisition functions

The posterior parameters of the surrogate model are used by the acquisition
function, whose purpose is to guide the search for the optimum. The acquisition
function α : X → R is defined on the action space, leverages the uncertainty
in the posterior distribution to guide the agents’ exploration, and trades off
exploration and exploitation of actions. At each iteration, one sample is gathered
from f(x) at a location selected by maximizing α(x;D), which is a simpler and
faster optimization procedure compared to the original problem of optimizing
f(x). A variety of acquisition functions have been proposed in the literature (see
[Shahriari et al., 2015] for a review) which are giving rise to distinct sampling
behaviours. The three most popular choices are the Probability of Improvement
(pi) [Kushner, 1964], the Upper Confidence Bound [Cox and John, 1992] and
the Expected Improvement (ei) [Mockus et al., 1978]. The ei will be used in
this thesis as it is simple and readily implementable while offering reasonable
performance in practice2. The ei favours points that are likely to improve
upon the best function value y? observed and, differently from pi, incorporates
the amount of improvement. It corresponds to the expected value of a utility
function that is called the improvement function I(x) = (f(x)−y?)I(f(x) > y?)

2See Wang and de Freitas [2014] for a study of the convergence rate of the ei and a
discussion of its properties.
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and can be written as:

αei(x;D) = E[max(f(x)− y?, 0)]

where the expectation is taken with respect to the distribution of f which is
given by the surrogate model. When the surrogate model is a gp the ei can be
computed in closed form and it is equal to:

αei(x;D) =





(m(x;D)− y?)Φ(Z) + σ(x;D)φ(Z) if σ(x;D) > 0

0 if σ(x;D) = 0

with Z = m(x;D)−y?
σ(x;D) and Φ and φ representing the cdf and pdf of the standard

normal distribution, respectively. It is critical for the acquisition function to
be quick and cheap to evaluate or approximate with respect to the black-box
function f . Indeed, in bo the original problem in Eq. (3.1) is translated into
the problem of optimizing the acquisition function. Clearly, the alternative
optimization must incur a lower computational cost than the maximisation of
the original objective function for bo to be a feasible optimisation strategy. At
step t in the optimization, the next sampling point is determined by:

x?t = argmax
x∈X

α(x;Dt−1)

where Dt−1 denotes the dataset including the function observations collected
during the first t− 1 steps. Fig. 3.1 shows a posterior gp model (left plot) and
the associated ei acquisition function (right plot) after having collected three
data points. Notice how the ei is higher in areas where the uncertainty in the
surrogate model is large (exploration) and/or where the model prediction is
low (exploitation) therefore a minimum is expected. The next optimal value
to collect, which corresponds to the red line in the right plot, is characterized
by a high posterior variance and a low posterior mean therefore it balances
exploration and exploitation.

bo has been extended to support a broad class of common high-cost op-
timization tasks. This includes multi-fidelity settings [McLeod et al., 2017;
Song et al., 2019; Swersky et al., 2013], batch optimization [Alvi et al., 2019;
González et al., 2016a], non-myopic optimization [González et al., 2016b; Jiang
et al., 2020; Yue and Kontar, 2020], dynamic settings [Nyikosa et al., 2018],
constrained problems [Gelbart et al., 2014] and multi-objective optimization
[Wada and Hino, 2019]. Some works have focused on combining bo with more
explorative searches [Ahmed et al., 2016; Falkner et al., 2017] thus yielding
“safe” bo methods or on incorporating derivative information into the algorithm
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Figure 3.1: Left plot: Posterior gp surrogate model for a bo problem where
three data points (red dots) are observed from the true underlying objective
function (black line). The blue line gives the posterior mean while the shaded
areas represent posterior uncertainty (± 1, 2 and 3 standard deviations). Right
plot: ei acquisition function computed based on the posterior parameters
of the gp model on the left. At every step in the optimization, bo selects
x by maximizing the acquisition function αei. Therefore, the next optimal
observation to collect is highlighted in red and corresponds to x = 1.

[Ahmed et al., 2016; Wu et al., 2017].
In addition, various bo algorithms have been proposed to deal with discrete

and highly structured input spaces [Garnett et al., 2010; Moss et al., 2020;
Ru et al., 2020; Wan et al., 2021]. Despite the success of bo across different
applications and problem settings, bo has been generally used to solve problems
of moderate dimension. Several workshops on bo have identified its scaling to
high dimensions as one of the main challenges. Indeed, to ensure that a global
optimum is found, we require good coverage of the input space but, as the
dimensionality increases, the number of evaluations needed to cover it increases
exponentially. Different approaches have been proposed in the literature to
tackle this issue [Chen et al., 2012; Eriksson et al., 2019; Moriconi et al., 2019;
Wan et al., 2021; Wang et al., 2013]. Among these, Wang et al. [2016] develop
an algorithm called bald that uses random embeddings to reduce the problem
dimensionality and can be used when the objective function has low intrinsic
dimensionality. In the following discussion (Chapter 6) we will see how their
idea can be formalized and made explicit by taking a causal perspective on the
optimization problem.

In this thesis, we will extend bo to incorporate causal information. In
particular, we will see how complex surrogates based on gp models, both single-
task (Chapter 6) and multi-task (Chapter 7), can be developed in order to select
interventions to perform in a causal system. Incorporating causal assumptions
reduces the dimensionality of the optimization problem in a principled way
and allows us to integrate different types of data thereby correctly quantifying
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uncertainty. As we shall see in the second part of this thesis, this enables
the development of efficient bo schemes that can be used to optimize target
variables that are part of a causal graph, both in static and dynamic settings
(Chapter 8). Before getting into the details of the causal extension, we will now
review some causal inference concepts and ideas in structural equation models
that will be used in the remainder of this thesis.

3.2 Causality and Decision-Making

As discussed in the introduction, causal reasoning has been recognised as a
central feature of human beings, crucial in many aspects of their thought
processes. Given its centrality, we would like to develop automated decision-
making algorithms that encode and reason in terms of cause-effect relationships,
especially when we aim at understanding a data generating mechanism and po-
tentially manipulate it. Incorporating causal information into decision-making
frameworks would allow us to (i) understand the causes of a certain outcome
thus increasing interpretability; (ii) account for the existence of unobserved
variables in the environment; (iii) compute counterfactual scenario and finally
(iv) improve the generalization capabilities of the algorithm.

3.2.1 Two frameworks for causal inference

While the study of causality can be traced back hundreds of years and was
discussed by philosophers such as Hume or Kant3, two main frameworks have
been adopted in the fields of statistics and machine learning. These are (i) the
Potential Outcome (po) framework, associated with the work by Donald Rubin
[Rubin, 2005], building on the work on randomized controlled trials (rct) from
the 1920s by Ronald Fisher and Jerzey Neyman, and (ii) the work on Directed
Acyclic Graphs (dags), much of it associated with work by Judea Pearl and
his collaborators [Pearl, 2009b].

While Pearl [2009a] has shown how the two frameworks are equivalent, that
is an assumption in one framework can be translated to its counterpart in
the other, we can identify some major differences between the two approaches.
First of all, the two methods differ in the use of graphical representations. In
Pearl’s framework, all assumptions are encoded in a structural causal model
(scm) and the related dag which gives a clear visual representation. dags
provide a graphical tool to represent the causal system underlying a research
question making it easier to interpret and assess the overall model. In the
po framework, causal assumptions (stable unit treatment value, consistency,

3See Section 1.1 for a brief historical overview on causality.
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and ignorability also called unconfoundedness) are expressed in the form of
conditional independence relationships involving counterfactual variables and
are thus difficult to articulate. In addition, while graphical representations
give us a way to check identifiability of causal effects [Tian and Pearl, 2002],
verifying whether the po assumptions are complete, that is they are sufficient
for deriving causal quantities, is challenging.

More importantly, the object of analysis in the po framework is the unit-
based response variable where unit stands for an individual experimental subject.
This is the value that an outcome variable, say Y , would obtain in experimental
unit u, had treatment X been x. Given the focus on the unit, in the po

framework the causal effects of the variables other than the treatment and the
special variables e.g. instrumental variable are not defined. This is a strength of
this framework as we can model the interesting causal effects without knowing
the complete causal graph. In the dags approach, the focus is on the data-
generating mechanism and all causal quantities of interests can be defined
starting from the causal model, whose dag is assumed or discovered from data
[Glymour et al., 2019]. Once a causal model is defined, we can study the causal
effect of any variable and compute any counterfactual scenario. Therefore, to
learn causal relationships among an arbitrary set of variables, Pearl’s framework
is often preferred.

The two frameworks also differ in terms of interpretation of interventions.
The dags approach views the intervention on a variable, e.g. Y , as an operation
that changes its distribution while still keeping it in the scm. The po approach
views the variable Y under an intervention to be a different variable, say YX=x,
loosely connected to Y and remaining unobserved. The problem of inferring
YX=x becomes a missing data problem.

Finally, with respect to the dags literature, primarily concerned with iden-
tification, studies within the po approach literature have focused on estimating
average causal effects of binary treatments. They have thus addressed im-
portant problems regarding study design, estimation and inference leading
to powerful methods such as instrumental variables, difference-in-differences,
regression discontinuity designs and synthetic control methods [Abadie, 2005,
2021; Abadie and Imbens, 2006; Angrist et al., 1996; Heckman and Vytlacil,
2005; Imbens and Lemieux, 2008; Rubin, 1973]. The question of which, how,
and when different causal frameworks should be adopted is still very much
open, we refer the reader to Aliprantis [2015]; Guo et al. [2020]; Imbens [2020]
and [Pearl, 2009a] for interesting discussions on this topic.

Given our interest in understanding data-generating mechanisms while
comparing and evaluating various continuous treatment variables, we adopt
Pearl’s framework in this thesis and review it in the next sections. Indeed,
the dags framework can be used to uncover the underlying data-generating
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processes and compute all causal effects existing in a dags in order to identify
optimal interventions. In addition, the methodologies developed within the
dags literature allow answering causal queries in complex models characterized
by a large number of variables and where scalability might represent an issue.

3.2.2 Structural Causal Models

In order to deal rigorously with questions of causality, we must have a way of
formally setting down our assumptions about the causal relationships behind
observed data. To do so, we introduce the concept of structural causal model
(scm) which is a way of describing the variables relevant to the problem we
are analysing and how they interact with each other, in other words their
data-generating mechanism. More formally we can define a scm as follow:

Definition 3.1. (Structural Causal Model) [Pearl, 2009b]. A structural
causal model M is a four-tuple 〈U,V, F, P (U)〉 where:

• U is a set of background variables, also called exogenous variables, that are
determined by factors outside of the model and are distributed according
to the probability distribution P (U).

• V is a set {V1, V2, . . . , V|V|} of observable variables, also called endogenous
variables, that are determined by variables in the model (i.e., determined
by variables in U ∪V).

• F is a set of functions {f1, f2, . . . , fn} such that each fi is a mapping
from the respective domains of Ui ∪ Pa (Ui) to Vi, where Ui ⊆ U and
Pa (Ui) ⊆ V \ Vi and the entire set F forms a mapping from U to V.
In other words, each {fi ∈ vi ← fi(Pa (ui) , ui) | i = 1, . . . , n}, assigns
a value to Vi that depends on the values of the select set of variables
(Ui ∪ Pa (Ui)).

Every scm is associated with a graphical causal model denoted by G, see
Fig. 3.2 for some examples. A graphical causal model consists of a set of nodes
representing the variables in U and V, and a set of edges between the nodes
representing the functions in F .

While causal inference methods have been developed for both graphical mod-
els with [Bongers et al., 2016; Hyttinen et al., 2012; Koster, 1996; Mooij et al.,
2011, 2013a; Neal, 2000; Pearl and Dechter, 1996; Richardson, 2013; Rothen-
häusler et al., 2015; Spirtes, 1995] and without cycles, here we focus on directed
acyclic graphs (dags). dags are directed graphs which means that all edges are
marked by a single arrowhead on the edge. In addition, they are acyclic thus
they do not contain directed cycles representing mutual causation or feedback
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Figure 3.2: Examples of causal graphs. (a) Causal graph that is not a dag
as it contains a cycle between Z and Y . (b) Valid dag where all variables
are observed. (c) dag with un unobserved confounder between Z and X
represented by a dashed bidirected edge.

processes. For instance, the graph in Fig. 3.2(a) is not a dag as it contains a
cycle between Z and Y . While some of the basic definitions and properties given
for acyclic graphs are also valid for cyclical models (e.g. causal effect definition
given in Definition 3.2 and d-separation property mentioned in Definition 3.2)
[Pearl and Dechter, 1996; Spirtes, 1995], diagrams involving directed cycles or
feedback loops might present additional identification and inference issues. In
particular, the computation of causal effects is generally harder in cyclic models.
Notice however that focusing on dags is not a limitation as cyclic graphs can
be converted in dags by explicitly accounting for time in the graph, similarly
to what has been done to write systems of ordinary differential equations as
structural causal model [Mooij et al., 2013a]. Extending the approaches pre-
sented in this thesis to directed cyclic graphs remains an open research direction.

We will use bidirected edges to denote the existence of unobserved common
causes which are called confounders. These edges will be marked as dashed
edges with two arrowheads (Fig. 3.2(c)). We call a path in G a sequence of
edges (e.g. (W,Z), (Z,X), (X,Y ) in Fig. 3.2(b)) such that each edge starts
with the vertex where the preceding edge ends. If every edge in a path is an
arrow that points from the first to the second vertex of the pair, we have a
directed path. In the following discussion, we will make use of the terminology
of kinship such as parents, children, descendants, ancestors to denote various
relationships in G [Peters et al., 2017, Section 6.1]. In Fig. 3.2(b), for example,
Y has two parents (X and Z), three ancestors (X, Z, and W ), and no children,
while X has no parents (hence, no ancestors) and one child (Y ).

In a fully specified scm with no unobserved confounders, we can represent
the joint distributions of |V| variables with great efficiency. Indeed, for any
model whose graph is acyclic, the joint distribution of the variables in the model
is given by the product of conditional distributions of the form P (child|parents).
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Formally, we write this rule as:

p(x1, x2, . . . , xN ) =
∏

i

p(xi|pai) (3.2)

where pai stands for the values of the parent variables for Xi, and the product∏
i runs over all i = 1, . . . , N . The set pai gives the Markovian parents of Xi.

A causal model that has Markovian parents and for which the factorization
in Eq. (3.2) holds is called a Markovian model. For such models all causal
effects are identifiable; that is they can be estimated consistently from non-
experimental data. Non-Markovian models, such as those involving correlated
errors which may result from unmeasured confounders, permit identification
only under certain conditions [Tian and Pearl, 2002]. In this thesis we focus
on dags for which causal effects are identifiable (see Tian and Pearl [2002] for
identifiability conditions) and in the next section we discuss how, depending on
the assumed causal graph, one can compute causal effects.

3.2.3 Causal Calculus

The ultimate aim of many statistical studies is to predict the effects of inter-
ventions. Randomized controlled trials (rct) are considered the gold standard
for assessing causal effects. Indeed, in rct all factors influencing the outcome
variable of interest Y are controlled and any change in Y must be due to the
variables we are manipulating. In many settings, randomized controlled experi-
ments cannot be performed and only observational studies can be conducted.
In observational studies, variables are simply observed and not controlled. The
difference between rct and observational studies is reflected in the distributions
they allow to estimate. On the one hand, observing a system allows us to collect
observational data and estimate conditional distributions e.g. P (Y |X = x) in
Fig. 3.2(b). On the other hand, intervening in a system allows us to estimate
the interventional distribution P (Y |do (X = x)) which denotes the distribution
of Y when the variable X is intervened and fixed to x. These two might differ
substantially depending on the structure of the causal graph. For instance, in
Fig. 3.2(b), P (Y = y|X = x) reflects the population distribution of Y among
individuals whose X value is observed to be x. Note that X is caused by Z
therefore observing a value of X = x could be due to the value taken by Z
which also affects Y directly. Looking at P (Y = y|X = x) does not allow us to
distinguish between the effect of X and the effect of Z (direct and indirect) on
Y . This can be achieved by computing P (Y = y|do (X = x)) which represents
the population distribution of Y if everyone in the population had their X value
fixed at x independently of other variables in the causal graph. We similarly
write P (Y = y|do (X = x) , Z = z) to denote the conditional probability of
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Y = y, given Z = z, in the distribution created by the intervention do (X = x).
Causal effects are defined via interventional distributions:

Definition 3.2. (Causal effect) Given two disjoint sets of variables, X and
Y , the causal effect of X on Y , denoted as P (y|do (X = x)) is a function from
X to the space of probability distributions on Y . For each realization x of X,
P (y|do (X = x) gives the probability of Y = y induced by deleting from the
connected scm all equations corresponding to variables in X and substituting
X = x in the remaining equations.

In order to compute causal effects, we need a set of rules that allows us
to write do-distributions in terms of conditional distributions that can be
estimated from observational data. These are the so-called rules of do calculus
for which a proof is given in Pearl [1995]. Denote by GX the graph obtained by
deleting from G all arrows pointing to nodes in X. Likewise, we denote by GX
the graph obtained by deleting from G all arrows emerging from nodes in X.
Finally, denote the deletion of both incoming and outgoing arrows by GXX .

Theorem 3.1. (Rules of do calculus) [Pearl, 1995] Let G be the dag

associated with a causal model as defined in Definition 3.1 and let P (·) be
the probability distribution induced by that model. For any disjoint subsets of
variables X, Y , Z and W we have the following:

• Rule 1 (insertion/deletion of observations):

P (Y |do (X = x) , Z,W ) = P (Y |do (X = x) ,W )

if (Y |= Z)|X,W in GX .

• Rule 2 (action/observation exchange):

P (Y |do (X = x) , do (Z = z) ,W ) = P (Y |do (X = x) , Z = z,W )

if (Y |= Z)|X,W in GXZ .

• Rule 3 (insertion/deletion of actions):

P (Y |do (X = x) , do (Z = z) ,W ) = P (Y |do (X = x) ,W )

if (Y |= Z)|X,W in G
XZ(W )

where Z(W ) is the set of Z-nodes that are
not ancestors of any W -node in GX .

See Pearl [1995] for the proof of Theorem 3.1. A causal effect such as e.g.
P (Y |do (X = x)) is identifiable if there exists a finite sequence of transforma-
tions, each conforming to one of the inference rules in Theorem 3.1, that reduces

38



P (Y |do (X = x)) into a standard do-free probability expression involving ob-
served quantities. The do-calculus has been shown to be complete [Huang
and Valtorta, 2006; Shpitser and Pearl, 2006] that means that the three rules
in Theorem 3.1 are sufficient for deriving all identifiable causal effects. Two
specific cases of causal effects computation are given by scenario in which either
the back-door criterion or the front-door criterion are fulfilled.

The back-door criterion Assume we are given a dag together with obser-
vational data for the variables in G and we wish to estimate the effect on Y of
an intervention on X, that is we seek to estimate P (Y |do (X = x)).

Theorem 3.2. (Back-door adjustment formula) If a set of variables Z in
G satisfies the back-door criterion relative to (X,Y ) then the causal effect of X
on Y is identifiable and is given by the formula:

P (Y = y|do (X = x)) =

∫

Z
P (Y = y|X = x, Z = z)P (Z = z)dz

where Z represents the domain of P (Z).

A proof for Theorem 3.2 is given in [Pearl, 2009b]. The back-door criterion
is a simple graphical test that can be applied directly to G in order identify the
set Z:

Definition 3.3. (Back-door criterion) Given an ordered pair of variables
(X,Y ) in a dag, a set of variables Z satisfies the backdoor criterion relative to
(X,Y ) if no node in Z is a descendant of X, and Z blocks every path between
X and Y that contains an arrow into X.

The set Z represents a set of nodes blocking all spurious paths between
X and Y while not modifying the directed paths between X and Y and not
creating additional spurious paths. In other words X d-separates Z and Y

where d -separation is defined as:

Definition 3.4. (d-separation) A path p is said to be d -separated (or
blocked) by a set of nodes Z if and only if:

1. p contains a chain i→ m→ j or a fork i← m→ j such that the middle
node m is in Z, or

2. p contains an inverted fork (or collider) i→ m← j such that the middle
node m is not in Z and such that no descendant of m is in Z.

A set Z is said to d -separate X from Y if and only if Z blocks every path from
a node in X to a node in Y .

Note that Pa(X) always satisfies the backdoor criterion in a dag with no
unobserved confounders. Indeed, every subset of nodes X in a causal graph is
d-separated from the remaining nodes in the dag by Pa(X).
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The front-door criterion An alternative criterion, “the front-door criterion”,
may be applied in cases where we cannot find observed covariates Z satisfying
the back-door conditions. This is useful when the dag contains unobserved
confounders thus it is not possible to condition on their values to block the
back-door paths.

Theorem 3.3. (Front-door adjustment formula) If a set of variables Z in
G satisfies the front-door criterion relative to (X,Y ) then the causal effect of
X on Y is identifiable and is given by the formula:

P (Y = y|do (X = x)) =

∫

Z
P (z|X = x)

∫

X
P (Y = y|X = x′, z)P (X = x′)dzdx′

(3.3)

where Z represents the domain of P (Z).

A proof for Theorem 3.3 was originally given in Pearl [1993]. The front-door
criterion is defined as follow:

Definition 3.5. (Front-door criterion) A set of variables Z is said to satisfy
the front-door criterion relative to an ordered pair of variables (X, Y) if:

• Z intercepts all directed paths from X to Y ;

• There is no back-door path from X to Z;

• All back-door paths from Z to Y are blocked by X.

We conclude this section with a set of examples demonstrating how the
back-door formula, the front-door formula, and more in general the Rules 1-3
of do-calculus can be used to derive causal effects for the dag in Fig. 3.3(a).
Here we are assuming all variables in the dag to be continuous but similar
derivations hold for discrete or dichotomous variables.

Computation of E[Y |do (Z = z)] In order to compute this interventional
distribution notice that X satisfies the back-door criteria for the pair (Z, Y ) as
it blocks all back-door paths from Z to Y . We can thus write:

E[Y |do (Z = z)] =

∫
yp(Y = y|do (Z = z))dy

=

∫ ∫
yp(Y = y|do (Z = z) , x)p(X = x|do (Z = z))dydx.

We now have to reduce the distributions exhibiting do operations to do-free
expressions. Starting with p(Y = y|do (Z = z) , x), notice that we can apply
Rule 2 of do-calculus. Indeed, (Y |= Z)|X in GZ (Fig. 3.3(b)). We can thus
exchange action with observation and write this distribution as p(Y = y|Z =
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Figure 3.3: Example of a dag (a) and the corresponding mutilated graphs used
to derive various interventional distributions.

z, x). Next, note that p(X = x|do (Z = z)) can be simplified resorting to Rule
3 of do-calculus as (X |= Z) in GZ (Fig. 3.3(c)). We can thus write it as the
marginal distribution p(X = x). The complete expression becomes:

E[Y |do (Z = z)] =

∫ ∫
yp(Y = y|Z = z, x)p(X = x)dydx. (3.4)

which correspond to the back-door adjustment formula where the variable to
be manipulated is Z.

Computation of E[Y |do (X = x)] In order to compute this interventional
distribution notice that there exists a back-door path from X to Y that cannot
be blocked by conditioning on observed variables. Indeed, the variable U is an
unobserved confounder. We thus need to resort to the front-door adjustment
formula and exploit the fact that the relationship between X and Z is not
confounded. We start by adding Z to the expression:

E[Y |do (X = x)] =

∫
yp(Y = y|do (X = x))dy

=

∫ ∫
yp(Y = y|do (X = x) , z)p(Z = z|do (X = x))dydz.

Notice that, exploiting Rule 2, we can write p(Y = y|do (X = x) , z) with a
double intervention on both X and Z that is p(Y = y|do (X = x) , do (Z = z)).
Indeed (Y |= Z)|X in GXZ (Fig. 3.3(d)). In addition, by Rule 3 of do calculus,
p(Y = y|do (X = x) , do (Z = z)) = p(Y = y|do (Z = z)) as (Y |= X)|Z in GXZ
(Fig. 3.3(e)). The expression for p(Y = y|do (Z = z)) is given in Eq. (3.4).
Focusing now on p(Z = z|do (X = x)), notice that (Z |= X) in GX (Fig. 3.3(c))
therefore action and observation can be exchanged again to write is a p(Z =

z|X = x). Plugging in these expression we can write the targeted interventional
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distribution as:

E[Y |do (X = x)] =

∫
p(z|X = x)

∫ ∫
yp(Y = y|z, x′)p(X = x′)dydx′dz.

which corresponds to the front-door adjustment formula in Eq. (3.3).
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Part I

Structured Inference of Gaussian
Process Modulated

Cox Processes
In the first part of this thesis, we will focus on developing scalable
modelling frameworks for single-task and multi-task gp modulated
ppp. In the second part, we will then see how these probabilistic
models can be used as crucial building blocks of different decision-
making algorithms. Specifically, in the next two chapters, we will
first look at multi-task settings where the intensities of different
point processes are jointly estimated and their likelihood function is
discretized to allow for tractable inference. The complex correlation
structure existing among the processes will be incorporated via a
linear coregionalization type model where not only the function
but also the mixing weights are Gaussian processes and capture
tasks’ similarities. We will then focus on the discretization issue
and developed a continuous Cox process model that can be used for
accurate predictions in high-dimensional input spaces. The complex
dependencies in the posterior distribution will be retained by the
structured variational inference scheme without compromising on
the accuracy, scalability, and speed of the posterior approximation.
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Chapter 4

Efficient Inference in Multi-task
Cox Process Models

In this chapter we focus on the structured inference problem and consider
the goal of jointly modelling different point processes happening in a given
spatio-temporal domain. Indeed, many problems in urban science and geostatis-
tics are characterized by count or point data observed in a spatio-temporal
region. Crime events, traffic or human population dynamics are some examples.
Furthermore, in many settings, these processes can be strongly correlated. For
example, in a city such as New York (nyc), burglaries can be highly predictive
of other crimes’ occurrences such as robberies and larcenies. These settings are
multi-task problems and our aim is to exploit such dependencies in order to
improve the generalization capabilities of our learning algorithms and correctly
quantify uncertainty.

Point processes in a spatio-temporal region can be modelled as non ho-
mogeneous processes where a space-time varying intensity determines event
occurrences. As mentioned in Section 2.3, a popular modelling approach for
non-homogeneous Poisson point processes (ppps) is given by the log Gaussian
Cox process (lgcp) where the intensity is driven by a Gaussian process (gp).
The flexibility of lgcp comes at the cost of incredibly hard inference challenges
due to its doubly-stochastic nature and the scalability issues of gp models. The
computational problems are exacerbated when considering multiple correlated
tasks and, therefore, the development of new approaches and scalable inference
algorithms for lgcp models remains an active area of research [Coeurjolly et al.,
2017; Cuevas-Pacheco and Møller, 2018; Diggle et al., 2013; Flaxman et al.,
2015, 2019; Hessellund et al., 2020; Johnson et al., 2019; Leininger et al., 2017;
Nasirzadeh et al., 2021; Shirota and Banerjee, 2019; Shirota and Gelfand, 2017;
Simpson et al., 2016a; Taylor et al., 2015].

From a modelling perspective, existing multivariate lgcps or linear core-

44



Figure 4.1: Posterior and predictive distributions, p(N |D) and p(N∗|D) re-
spectively, of the number of burglary events in nyc using a similar analysis as
in Leininger et al. [2017] on the crime dataset (Section 4.4.2) for our model
(mcpm) and icm. The solid line shows the ground truth. Details on the ci
construction are given in Section 4.4.

gionalization model (lcm) variants for point processes have intensities given by
deterministic combinations of latent gps [Diggle et al., 2013; Taylor et al., 2015;
Álvarez et al., 2012]. These approaches fail to propagate uncertainty in the
weights of the linear combination, leading to statistical deficiencies that we aim
at addressing in this chapter. For instance, Fig. 4.1 shows how, by propagating
uncertainty, the approach developed in this chapter, henceforth mcpm, provides
a predictive distribution that contains the counts’ ground truth in its 90%
credible interval (ci). This is not observed for the standard intrinsic coregion-
alization model (icm). From an inference point of view, sampling approaches
have been proposed [Diggle et al., 2013; Taylor et al., 2015] and variational
inference algorithms for models with gp priors and ‘black-box’ likelihoods
have been used [see e.g. Dezfouli and Bonilla, 2015; Matthews et al., 2017].
While sampling approaches have prohibitive computational cost [Shirota and
Gelfand, 2016] and mixing issues [Diggle et al., 2013], generic methods based
on variational inference do not exploit the lgcp likelihood details and, relying
upon Monte Carlo estimates for computing expectations during optimization,
can exhibit slow convergence. In this chapter we address the modelling and
inference limitations of current approaches. More specifically, we make the
following contributions.

Stochastic mixing weights We propose a model, henceforth referred to
as mcpm, that considers correlated count data as realizations of multiple
lgcps, where the log intensities are linear combinations of latent gps and the
combination coefficients are also gps. This provides additional model flexibility
and the ability to propagate uncertainty in a principled way.
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Efficient inference We carry out posterior estimation over both the latent
and the mixing processes using variational inference. Our method is orders of
magnitude faster than competing approaches.

Closed-form expectations in the variational objective We express
the required expectations in the variational inference objective, the so called
evidence lower bound, in terms of moment generating functions (mgfs) of the
log intensities, for which we provide analytical expressions. We thus avoid
Monte Carlo estimates, which are commonplace in modern variational inference
methods and might slow down the convergence of the algorithm.

Experimental comparison and state-of-the-art performance We pro-
vide an experimental comparison between existing multi-task point process
methods. This is important as there are currently two dominant approaches
(based on the lgcp or on the Permanental process), for which there is little
insight on which one performs better and under what settings. Furthermore,
we show that our method provides the best predictive performance on two
large-scale multi-task point process problems with very different spatial cross-
correlation structures.

4.1 The mcpm model

Recall that the lgcp model is an inhomogeneous ppp with a stochastic intensity
function [see e.g. Cox, 1955], where the logarithm of the intensity surface is a
gp. Given a gp f(x) ∼ GP(m(x), κ(x,x′;θ)), the intensity function of a lgcp

model can be written as λ(x) = exp{f(x)}. Conditioned on the realization
of the intensity function, the number of points in an area, say A, is given
by yA|λ(x) ∼ Poisson

(∫
x∈A λ(x)dx

)
. Based on the lgcp model, in the next

section we will introduce a multi-task framework that deals with multiple
correlated point processes happening in the same spatio-temporal region.

4.1.1 Model formulation

We consider learning problems where we are given a dataset D = {(xn,yn)}Nn=1

where xn ∈ RD represents the input and yn ∈ RP gives the event counts
for the P tasks. We aim at learning the latent intensity functions and make
probabilistic predictions of the event counts. Our modelling approach, which
we call mcpm, is characterized by Q latent functions which are uncorrelated a
priori and are drawn from Q zero-mean gps, i.e. fq|θqf ∼ GP(0, k(x,x′;θqf )),
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for q = 1, . . . , Q. Hence, the prior over the N ×Q latent function values f is:

p(f |θqf ) =

Q∏

q=1

p(f•q|θqf ) =

Q∏

q=1

N (f•q; 0,K
q
xx), (4.1)

where θqf is the set of hyper-parameters for the q-th latent function and f•q =

{fq(xn)}Nn=1 denotes the values of latent function q for the observations {xn}Nn=1.
We model tasks’ correlation by linearly combining the above latent functions
with a set of stochastic task-specific mixing weights, W ∈ RP×Q, determining
the contribution of each latent function to the overall lgcp intensity. We
consider two possible prior distributions for W, an independent prior and a
correlated prior given by additional gps.

Prior over weights We assume the mixing weights to be drawn from Q

zero-mean gps:

p(W|θqw) =

Q∏

q=1

p(W•q|θqw) =

Q∏

q=1

N (W•q; 0,K
q
w),

where W•q represents the P weights for the q-th latent function and θqw denotes
the hyper-parameters. For each task, the inputs for the gps on the mixing
weights are given by a set of task descriptors denoted by Hp ∈ RD′ . These
covariates, differently from the inputs of the latent function, are not defined
on the spatio-temporal domain that is they don’t change across locations but
capture tasks’ features at the global level. In the independent scenario, we
assume uncorrelated weights across both tasks and latent functions by making
Kq
w diagonal. Independently on the Kq

w structure, the observations across tasks
are still correlated via the linear mixing of latent random functions.

Likelihood model The likelihood of observing events at locations {xnp}
Np,P
np,p

under P independent inhomogeneous Poisson processes each with rate function
λp(·) is given by

P ({xnp}
Np,P
np=1,p=1|λ) = exp


−

P∑

p=1

∫

τ
λp(x)dx




P∏

p=1

Np∏

np=1

λp(xnp),

where τ is the observation domain, {xnp}
Np,P
np=1,p=1 gives all the events observed

across tasks and λ = {λp}Pp=1. Following a common approach, we introduce
a regular computational grid [Diggle et al., 2013] on the spatial extent and
represent each cell with its centroid. Under mcpm, the likelihood of the observed
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counts Y = {yn}Nn=1 is defined as:

p(Y|f ,W) =
N∏

n=1

P∏

p=1

Poisson (ynp; exp (Wp•fn• + φp)) ,

where ynp denotes the event counts for the p-th task at xn, Wp• represents the Q
weights for the p-th task, fn• denotes the Q latent function values corresponding
to xn, and φp indicates the task-specific offset to the log-mean of the Poisson
process and it is thus a likelihood parameter.

As in the standard lgcp model, introducing a gp prior poses significant
computational challenges during posterior estimation as naïvely, inference
would be dominated by algebraic operations that are cubic in N . To make
inference scalable, we follow the inducing-variable approach proposed by Titsias
[2009b] and further developed by Bonilla et al. [2019]. See Section 2.1.2 for an
introduction on inducing point approximations in gp regression.

We augment our prior over the latent functions in Eq. (4.1) with M under-
lying inducing variables for each latent process. We denote these M inducing
variables for latent process q with u•q and their corresponding inducing inputs
with the M ×D matrix Zq. We will see that major computational gains are
realized when M � N . Hence, we have that the prior distributions for the
inducing variables and the latent functions are:

p(u|θ) =

Q∏

q=1

N (u•q; 0,K
q
zz)

p(f |u,θ) =

Q∏

q=1

N (Kq
xz(K

q
zz)
−1u•q,K

q
xx −AqKq

zx)

where Aq = Kq
xz(K

q
zz)−1, u is the set of all the inducing variables. The

matrices Kq
xx, Kq

xz, Kq
zx and Kq

zz are the covariances induced by evaluating the
corresponding covariance functions at all pairwise rows of the training inputs X

and the inducing inputs Zq. θ = {θqf}
Q
q=1 represents the set of hyper-parameters

for the Q latent functions. Note that integrating out u from the augmented
prior distribution we can exactly recover the initial prior distribution (Eq. (4.1)).

4.2 Inference

Our goal is to estimate the posterior distribution over all latent variables given
the data, i.e. p(f ,u,W|D) which is given by:

p(f ,u,W|D) =
P (Y|f ,u,W)p(f ,u,W)∫ ∫ ∫

P (Y|f ,u,W)p(f ,u,W)dfdudW
.
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The non-Gaussian likelihood P (Y|f ,u,W) makes this posterior analytically
intractable. We thus resort to variational inference [Jordan et al., 1999] in order
to get an approximate posterior. Recall from Section 2.1.2 that variational
inference methods entail considering a tractable family of distributions and
finding the member of this family that is closest to the true posterior. This
is done by minimizing the Kullback-Leiber (kl) divergence between the joint
approximated posterior and the true joint posterior which is equivalent to
maximizing the so-called evidence lower bound, Lelbo.

4.2.1 Variational Distributions

We consider a mean-field approximation scheme and assume a fully factorized
variational distribution defined as:

q(f ,u,W|ν) = p(f |u)

Q∏

q=1

N (mq,Sq)︸ ︷︷ ︸
q(u•q |νuq )

Q∏

q=1

N (ωq,Ωq)︸ ︷︷ ︸
q(W•q |νwq )

(4.2)

where νu = {mq,Sq} and νw = {ωq,Ωq} are the variational parameters.
The choice for this variational distribution, in particular with regards to the
incorporation of the conditional prior p(f |u), is motivated by the work of Titsias
[2009b], and will yield a convenient decomposition of the evidence lower bound
in terms of computational cost. In addition, it will allow scalability to very large
datasets through stochastic optimization. When considering an uncorrelated
prior over the weights, we assume an uncorrelated posterior by forcing Ωq to
be diagonal. Eq. (4.2) fully defines our approximate posterior. With this, we
give details of the variational objective function, i.e. Lelbo, we aim to maximize
with respect to ν = {νu,νw}.

4.2.2 Evidence Lower Bound

Following standard variational inference arguments (see Section 2.1.2), it is
straightforward to show that the evidence lower bound decomposes as the sum
of a kl-divergence term (Lkl) between the approximate posterior and the prior,
and an expected log-likelihood term (Lell), where the expectation is taken with
respect to the approximate posterior. We can write:

Lelbo(ν) = Lkl(ν) + Lell(ν) (4.3)

Lkl(ν) = −KL(q(f ,u,W|ν)‖p(f ,u,W)) (4.4)

Lell(ν) = Eq(f ,u,W|ν)[log p(Y|f ,W)]. (4.5)

We will now show how these terms can be computed given the assumed varia-
tional distribution in Eq. (4.2).

49



uuuq

θθθq

Zmd

fff q

Xnd

λnp wwwq θθθw

Hpd′

ynp

φp

Q

Q

Figure 4.2: Graphical model representation of mcpm with gp prior on W and
tasks’ descriptors Hpd′ . Square nodes denote optimised deterministic variables.

kl-divergence Term The variational distribution given in Eq. (4.2) signifi-
cantly simplifies the computation of Lkl (Eq. (4.4)), where the terms containing
the latent function values f vanish. We can write:

Lkl(ν) = −KL(q(f ,u,W|ν)‖p(f ,u,W))

= −
∫ ∫ ∫

q(f ,u,W|ν) log

(
q(f ,u,W|ν)

p(f ,u,W)

)
dfdudW

= −
∫ ∫ ∫

p(f |u,W,ν)q(u,W|ν) log

(
�����
p(f |u,W)q(u,W|ν)

�����
p(f |u,W)p(u,W)

)
dfdudW

= −
∫ ∫

q(u,W|ν) log

(
q(u,W|ν)

p(u,W)

)
dudW

= −
∫ ∫

q(u|νu)q(W|νw) log

(
q(u|νu)q(W|νw)

p(u,W)

)
dudW. (4.6)

We can further expand Eq. (4.6) to write the kl term as Lkl(ν) = Luent(νu) +

Lucross(νu) + Lwent(νw) + Lwcross(νw). We have:

Lkl(ν) = −
∫ ∫

q(u|νu)q(W|νw) log

(
q(u|νu)q(W|νw)

p(u,W)

)
dudW

= −
∫ ∫

q(u|νu)q(W|νw) [log q(u|νu)q(W|νw)− log p(u)p(W)] dudW

= −
∫
q(u|νu) log q(u|νu)du−

∫
q(W|νw) log q(W|νw)dW

+

∫
q(u|νu) log p(u)du +

∫
q(W|νw) log p(W)dW

The first two terms represent the entropy terms for both u and W respectively.
The last two terms give the negative cross-entropies between the prior distribu-
tions and the variational distributions. Full derivations for all these terms are
given in Appendix A.1. Here we report the final expressions:

Luent(νu) =
1

2

Q∑

q=1

[M log 2π + log |Sq|+M ] ,
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Lucross(νu) =

Q∑

q=1

[
logN (mq; 0,K

q
zz)−

1

2
tr (Kq

zz)
−1Sq

]
,

Lwent(νw) =
1

2

Q∑

q=1

[ P log 2π + log |Ωq|+ P ] ,

Lwcross(νw) =

Q∑

q=1

[
logN (ωq; 0,K

q
w)− 1

2
tr (Kq

w)−1Ωq

]
.

When placing an independent prior and approximate posterior over W, the
terms Lwent and Lwcross get simplified further, significantly reducing the computa-
tional cost when P is large, see Eq. (A.5) and Eq. (A.6) in Appendix A.1.

4.2.3 Moment generating function of log intensities

The mcpm formulation allows to derive a closed form expression for the moments
of the intensity function. The first moment of exp(Wp•fn•) is particularly
important as it can be used to evaluate Lell in closed form thus avoiding
additional Monte Carlo approximations in the evaluation of the elbo. The
t-th moment for the p-th task intensity evaluated at xn, namely E

[
λp(xn)t

]
,

can be written as exp(tφp)E [exp (tWp•fn•)] = exp(tφp)mgfWp•fn•(t) where
mgfWp•fn•(t) denotes the moment generating function of Wp•fn• in t. The
random variable Wp•fn• is the sum of products of independent Gaussians
[Craig, 1936] and its mgf is thus given by:

mgfWp•fn•(t) =

Q∏

q=1

exp
[
tγpqµ̃nq+

1
2

(µ̃2nqK
qp
w +γ2pqK̃

q(n))t2

1−t2Kqp
w K̃q(n)

]

√
1− t2Kqp

w K̃q(n)
, (4.7)

where the expectation is computed with respect to the prior distribution of
Wp• and fn•; γpq is the prior mean of wpq; K̃q(n) denotes the variance of fnq;
and Kqp

w is the variance of wpq. Details about the derivations of Eq. (4.7) are
given in Appendix A.2.

4.2.4 Closed-form Expected Log-Likelihood Term

Despite the additional model complexity introduced by the stochastic nature
of the mixing weights, the expected log-likelihood term Lell (Eq. (4.5)), can
be evaluated in closed form by exploiting the moment generating function
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introduced in Eq. (4.7). Specifically, we have:

Lell(ν) = −
N∑

n=1

P∑

p=1

exp(φp)Eq(fn•)q(Wp•) (exp (Wp•fn•))︸ ︷︷ ︸
MGFWp•fn• (1)

+

N∑

n=1

P∑

p=1

Q∑

q=1

[ynp(ωpqµnq + φp)− log(ynp!)]

where µnq = µq(x
(n)) = Aqmq(x

(n)). See Appendix A.2 for the full derivation
of Lell. The term MGFWp•fn•(1) is computed evaluating Eq. (4.7) at t = 1

given the current variational parameters for q(W) and q(f). A closed-form
expected log-likelihood term significantly speeds up the algorithm achieving
similar performance but 2 times faster than a Monte Carlo approximation on the
crime dataset (Section 4.4.2, see Fig. A.1 and Fig. A.2 in Appendix A.4). In
addition, by providing an analytical expression for Lell, we avoid high-variance
gradient estimates which are often an issue in modern variational inference
methods relying on Monte Carlo estimates.

Algorithm complexity and implementation The time complexity of our
algorithm is dominated by algebraic operations on Kq

zz, which are O(M3), while
the space complexity is dominated by storing Kq

zz, which is O(M2) where M
denotes the number of inducing variables per latent process. Lent and Lcross only
depend on distributions over M dimensional variables thus their computational
complexity is independent of N . In addition, notice how Lell decomposes as a
sum of expectations over individual data points thus stochastic optimization
techniques can be used to evaluate this term making it independent of N .
Finally, the algorithm complexity does not depend on the number of tasks P
but only on the number of latent processes Q thus making it scalable to large
multi-task datasets. We provide an implementation of the algorithm that uses
Tensorflow [Abadi et al., 2016]. Pseudocode is given in Algorithm 1.

4.3 Related work

The approach presented in this chapter relates to other works on (i) multi-task
regression, (ii) models with black-box likelihoods and gp priors, (iii) and other
gp-modulated Poisson processes. In this section, we discuss the studies more
closely related within each group.

Multi-task regression A large proportion of the literature on multi-task
learning methods [Caruana, 1998] with gps has focused on regression problems
[Álvarez and Lawrence, 2011; Alvarez et al., 2010; Bonilla et al., 2007; Gal et al.,
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2014a; Teh et al., 2005b; Wilson et al., 2011a], perhaps due to the additional
challenges posed by complex non-linear non-Gaussian likelihood models. Some
of these methods are reviewed in Álvarez et al. [2012]. Of particular interest to
this paper is the linear coregionalization model (lcm) of which the icm is a
particular instance. It can be shown that the mcpm prior covariance generalizes
the lcm prior. In addition, the two methods differ substantially in terms of
inference, model flexibility, and accuracy, see Appendix A.3 for a discussion on
the links between these approaches. Unlike standard coregionalization methods,
Schmidt and Gelfand [2003] consider a prior over the mixing weights but, unlike
our method, their focus is on regression problems and they carry out posterior
estimation via a costly mcmc procedure.

Black-box likelihood methods Modern advances in variational inference
have allowed the development of generic methods for inference in models with
gp priors and ‘black-box’ likelihoods including lgcps [Dezfouli and Bonilla,
2015; Hensman et al., 2015; Matthews et al., 2017]. While these frameworks
offer the opportunity to prototype new models quickly, they can only handle
deterministic weights and are inefficient. In contrast, we exploit our likelihood
characteristics and derive closed-form mgf expressions for the evaluation of
the ell term. By adjusting the elbo to include the entropy and cross-entropy
terms arising from the stochastic weights and using the closed-form mgf, we
significantly improve the algorithm convergence and efficiency.

Algorithm 1 mcpm

1: Inputs: Dataset D = {xnp ∈ τ, np = 1, . . . , Np,∀p = 1, ..., P} for bounded
region τ where Np denotes the number of events for the p-th task. Number
of latent gps Q. Number of mini-batches b of size B. Learning rate ρ.

2: Output: Optimized hyper-parameters, posterior moments of λ

3: Discretize event locations D in Y ∈ RN×P given the grid size.
4: Initialize: i← 0, η(0) = (θqf ,θ

q
w,φ,νu,νw)

5: repeat
6: {Xtrain ∈ RB×D, Ytrain ∈ RB×P } → get-next-MiniBatch(D)

7: for j=0 to b do
8: maxµµµ Lelbo(η(i)) (Eq. (4.3))
9: η(i) ← η(i−1) − ρ∇ηLelbo(η(i−1))

10: i = i+ 1

11: end for
12: until convergence criterion is met.
13: η∗ ← η(i−1)

14: E
[
λ(x)t

]
= exp(tφ∗)mgfWp•fn•|η∗(t)
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Aside from variational schemes, the integrated nested Laplace approximation
(inla) method [Rue et al., 2009] is a computational less-intensive alternative
to mcmc that allows us to perform approximate Bayesian inference in latent
gp models. While it has been shown to perform well for various Poisson point
process models [Illian et al., 2012a, 2013, 2012b; Rue et al., 2009; Simpson
et al., 2016b], inla uses numerical integration to approximate the marginal
likelihood, which makes it unsuitable for gp models that contain a large number
of hyperparameters. As this is generally the case in multi-task models, in this
work we use variational inference. We are not aware of any work using inla for
multi-task gp modulated Poisson point process thus we identify this direction
as an interesting open problem.

Other GP-modulated Poisson processes Rather than using a gp prior
over the log intensity, different transformations of the latent gps have been
considered as alternatives to model point data. For example, in the Permanental
process, a gp prior is used over the squared root of the intensities [John and
Hensman, 2018; Lian et al., 2015; Lloyd et al., 2015; Lloyd et al., 2016; Walder
and Bishop, 2017]. Similarly, a sigmoidal transformation of the latent gps
was studied by Adams et al. [2009] and used in conjunction with convolution
processes by Gunter et al. [2014]. Permanental and Sigmoidal Cox processes are
very different from lgcp/mcpm both in terms of statistical and computational
properties. There is no conclusive evidence in the literature on which model
provides a better characterisation of point processes and under what conditions.
The mcpm likelihood introduces computational issues in terms of ell evaluation
which in this work are solved by offering a closed-form mgf function. On the
contrary, Permanental processes suffer from important identifiability issues such
as reflection invariance and, together with sigmoidal processes, do not allow
for a closed-form prediction of the intensity function. In order to avoid the
computational issues introduced by different link functions, Samo and Roberts
[2015] place an appropriate finite-dimensional prior on the values of the intensity
function computed at the inducing points. This enables the development of an
mcmc scheme carachterized by a time and memory requirement that is linear
in the data size. Among the inhomogeneous Cox process models, the only two
multi-task frameworks are Gunter et al. [2014] and Lian et al. [mtpp, 2015].
The former suffers from high computational cost due to the use of expensive
mcmc schemes scaling with O(PN3). In addition, while the framework is
developed for an arbitrary number of latent functions, a single latent function
is used in all of the presented experiments. mtpp restricts the input space to
be unidimensional and does not handle missing data. Furthermore, none of
these two methods can handle spatial segregation (Section 4.4.3) through a
shared global mean function or a single latent function.
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Table 4.1: Performance on the missing intervals. mcpm-n and mcpm-gp denote
independent and correlated prior respectively. Lower values of rmse and nlpl
are better. cpu time is given in seconds per epoch.

rmse nlpl
cpu

1 2 3 4 1 2 3 4 time

mcpm-n 38.61 7.86 5.71 4.68 20.99 3.75 3.31 3.02 0.18
mcpm-gp 38.58 7.69 5.70 4.71 20.95 3.70 3.31 3.03 0.25
lgcp 48.17 14.32 11.83 5.38 43.40 8.78 8.98 3.27 0.32
icm 39.07 7.96 7.88 6.03 21.81 3.76 3.77 3.38 0.52

4.4 Experiments

We assess mcpm performance in a variety of settings. First of all, we analyse
mcpm on two synthetic datasets. In the first one, we illustrate the transfer
capabilities in a missing data setting comparing against lgcp and icm. In the
second dataset, we assess the predictive performance against the mtpp model
which cannot handle missing data. We then proceed to model two real-world
datasets that exhibit very different correlation structures. The first one includes
spatially segregated tasks while the second one is characterized by a strong
positive correlation between tasks. Code and data for all the experiments are
provided at https://github.com/VirgiAgl/MCPM.

Baselines We offer results on both complete and incomplete data settings
while comparing against the mlgcp framework proposed by Taylor et al.
[2015], a variational lgcp model [Nguyen and Bonilla, 2014] and a variational
formulation of icm with Poisson likelihood implemented in gpflow [Hensman
et al., 2015; Matthews et al., 2017].

Performance measures We compare the algorithms evaluating the root
mean square error (rmse), the negative log predicted likelihood (nlpl) and the
empirical coverage (ec) of the posterior predictive counts distribution. rmse

and nlpl values for the p-th task are computed as:

rmsep =

√√√√ 1

N

N∑

n=1

(ynp − E(λnp))
2,

nlplp = − 1

S

S∑

s=1

∑N
n=1 log p(ynp|λsnp)

n

where E(λnp) represents the posterior mean estimate for the p-th intensity at xn

and S denotes the number of samples from the variational distributions q(f) and
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Table 4.2: s2 dataset. Performance on the test intervals. mcpm-n and mcpm-
gp denote independent and correlated prior respectively. Lower values of nlpl
are better. cpu time is given in seconds per epoch.

nlpl
cpu

1 2 3 4 5 6 7 8 9 10 time

mcpm-n 1.47 1.46 0.95 0.17 1.30 1.39 1.52 0.70 1.58 0.58 0.03
mcpm-gp 1.52 1.80 0.96 0.13 1.29 1.37 1.61 0.65 1.50 0.76 0.03
mtpp 1.60 3.05 1.13 0.15 1.24 1.44 1.49 1.13 1.70 0.52 5.97

q(W). The ec is constructed by drawing random subregions from the training
(to compute in-sample performance) or the test set (to compute out-of-sample
performance) and evaluating the coverage of the 90% credible interval (ci)
of the posterior (p(N |D)) and predictive (p(N∗|D)) counts distribution for
each subregion B (this metric was previously used by Leininger et al. [2017]).
These are in turn obtained by simulating from N (l)(B) ∼ Poisson(λ(l)(B)) for
l = 1, ..., L with λ(l)(B) denoting the l-th sample from the intensity posterior
and predictive distribution. The presented results consider L = 100 samples but
consistent results were found when changing this value. In terms of subregions
selection, we fix their size, say Z, and randomly select L of them among all the
possible areas of size Z in the training or test set. The empirical coverage is
equal to one when all cis contain the ground truth. Finally, in order to assess
transfer in the 2d experiments, we partition the spatial extent in Z subregions
and create missing data “folds” by combining non-overlapping regions, one for
each task. We repeat the experiment Z times until each task’s overall spatial
extend is covered thus accounting for areas of both high and low intensity.

4.4.1 Synthetic experiments

Synthetic missing data experiment (s1) To illustrate the transfer ca-
pabilities of mcpm we construct four correlated tasks by sampling from a
multivariate point process with final intensities obtained as the linear combi-
nation of two latent functions via task-specific mixing weights (Fig. 4.3). The
final count observations are obtained by adding noise to the Poisson counts
generated through the constructed intensities. When using a coupled prior
over the weights, we consider covariates describing tasks (e.g. minimum and
maximum values) as inputs. mcpm is able to reconstruct the task intensities in
the missing data regions by learning the inter-task correlation and transferring
information across tasks. Importantly, it significantly outperforms competing
approaches for all tasks in terms of ec (see Appendix A.5) and nlpl. In
addition, it has a lower rmse for 3

4 of the tasks (Table 4.1) while being ≈ 3
times faster than icm.
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Figure 4.3: Four related tasks evaluated at 200 evenly spaced points in the
interval [0, 5]. Empty black dots give the observed counts used as training
data and sampled from the true underlying intensities (grey lines). The red
annotations on the x-axis denote the missing data regions which include 50
contiguous observations removed from the training set of each task.

Synthetic comparison to mtpp (s2) To assess the predictive capabilities
of mcpm against mtpp, which cannot handle missing data, we replicate the
synthetic example proposed by Lian et al. [2015] (Section 6.1). We train the
models with the observations in the interval [0, 80] and predict in the interval
[80, 100]. We then construct the predictive counts distribution for both models
by sampling from the posterior intensity distributions. Fig. 4.4 shows how
mcpm better recovers the true model event counts distribution with respect to
mtpp. We found mcpm to outperform mtpp in terms of nlpl, ec and rmse

for 7
10 tasks, see Table 4.2, Fig. 4.4 and Appendix A.5.

4.4.2 Crime events in nyc

In this section, we demonstrate the performance, transfer capabilities, and
scalability of mcpm on a real-world dataset recording seven different types of
crime in nyc. We refer to this dataset with the acronym crime. crime includes
latitude and longitude locations of burglaries (1), felony assaults (2), grand
larcenies (3), grand larcenies of motor vehicle (mv, 4), petit larcenies (5), petit
larcenies of mv (6) and robberies (7) reported in 2016. Crimes location data are
taken from the nyc police department website1 and discretized into a 32×32
regular grid (see first row of Fig. 4.5). Lack of ground truth intensities for real-
data settings typically restricts quantitative measures of generalization. Here
we focus on validating and comparing mcpm from two different perspectives: i)

1https://www1.nyc.gov/site/nypd/stats/crime-statistics.
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Figure 4.4: s2 dataset. Predicted empirical distribution of event counts for two
tasks obtained by sampling from the posterior intensity distributions.

Table 4.3: crime dataset. nlpl performance on the missing regions. cpu time
is given in seconds per epoch. Lower values of nlpl are better. mcpm-n and
mcpm-gp denote independent and correlated prior respectively.

Standardized nlpl (per cell)
cpu

1 2 3 4 5 6 7 time

mcpm-n
0.56 0.91 0.66 1.09 0.85 10.29 0.42 2.85(0.10) (0.27) (0.30) (0.27) (0.52) (2.51) (0.05)

mcpm-gp
0.72 0.75 0.94 1.53 0.57 18.76 0.58 3.11(0.18) (0.18) (0.55) (0.52) (0.19) (8.25) (0.12)

lgcp
9.90 9.32 19.34 5.30 18.18 36.73 9.68 2.87(3.66) (2.41) (11.45) (1.02) (8.65) (4.02) (2.67)

icm
0.87 1.36 0.91 1.19 0.69 12.30 0.93 44.13(0.27) (0.35) (0.45) (0.40) (0.11) (3.02) (0.17)

using complete data so as to assess the quality of the recovered intensities as
well as the computational complexity and scalability gains over mlgcp; and ii)
using missing data so as to validate the transfer capabilities of mcpm when
compared with lgcp and icm.

Complete Data Experiment We first consider a full-data experiment and
we spatially interpolate the crime surfaces running mcpm with Q = 4 latent
functions characterized by Matérn 3/2 kernels. We repeat the experiment with
mlgcp setting the algorithm parameters as suggested by Taylor et al. [2015].
Similar results are obtained with the two methods, see Fig. A.4 in Appendix A.5
for a visualisation of the estimated intensity surfaces. However, mcpm achieves
significant computational gains with respect to mlgcp. A mlgcp run takes ≈
14 hrs while mcpm requires ≈ 2 hrs.

Missing Data Experiment To assess transfer, we keep the same experimen-
tal settings and introduce missing data regions by partitioning the spatial extent
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Table 4.4: crime dataset. In-sample/Out-of-sample 90% ci coverage for the
predicted event counts distributions. Higher values of ec are better. mcpm-n
and mcpm-gp denote independent and correlated prior respectively.

Empirical Coverage (ec)

1 2 3 4 5 6 7

mcpm-n 0.99/0.80 1.00/0.73 0.97/0.71 1.00/0.73 0.98/0.61 1.00/1.00 0.99/0.87
mcpm-gp 1.00/0.87 1.00/0.74 1.00/0.71 1.00/0.95 1.00/0.88 0.80/1.00 1.00/0.85
lgcp 0.86/0.29 0.76/0.20 0.86/0.29 0.82/0.37 0.68/0.25 0.94/0.00 0.83/0.21
icm 0.68/0.73 0.75/0.50 0.64/0.52 0.79/0.65 0.59/0.78 0.93/0.86 0.841/0.64

Figure 4.5: crime dataset. First row: Observed counts for seven different
types of crimes on a 32 × 32 regular grid. The shaded regions represent one
possible configuration of the missing data folds across the seven tasks. Second
row: mcpm estimated intensities when introducing missing data. Third row:
lgcp estimated intensities when introducing missing data.

in 4 subregions as explained above. The shaded regions in Fig. 4.5 represent
one possible configuration of the missing data folds across tasks. Fig. 4.5 shows
how mcpm successfully transfers information across tasks thereby recovering,
for all crime types, the signal in the missing data regions. By exploiting task
similarities, the algorithm outperforms competing approaches in all of the
tasks, in terms of ec (Table 4.4), nlpl (Table 4.3) and rmse (Table A.4 in
Appendix A.5). Finally, mcpm significantly outruns icm in terms of algorithm
efficiency. mcpm-n converges in 1.19 hrs (1500 epochs) on a Intel Core i7-6t00u
cpu (3.40GHz, 8gb of ram) while icm needs 12.26 hrs (1000 epochs).

4.4.3 Bovine Tuberculosis (btb) in Cornwall

We showcase the performance of mcpm on the btb dataset [Diggle et al., 2013;
Taylor et al., 2015] consisting of locations of btb incidents in Cornwall, uk

(period 1989–2002) and covariates measuring cattle density, see first row in
Fig. 4.6. We follow Diggle et al. [2013] and only consider the four most common
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Table 4.5: btb dataset. mcpm-n and mcpm-gp denote independent and
correlated prior respectively. rmse and nlpl with missing data. cpu time in
given in seconds per epoch. Lower values of nlpl are better.

rmse nlpl (per cell)
cpu

gt 9 gt 12 gt 15 gt 20 gt 9 gt 12 gt 15 gt 20 time

mcpm-n
0.83 0.24 0.28 0.29 1.23 0.20 0.33 0.35 7.73(0.15) (0.07) (0.07) (0.10) (0.40) (0.07) (0.11) (0.16)

mcpm-gp
0.81 0.22 0.27 0.27 1.42 0.27 0.41 0.58 7.63(0.14) (0.08) (0.07) (0.09) (0.42) (0.09) (0.14) (0.24)

lgcp
1.37 0.61 0.63 1.24 1.70 0.48 0.72 0.86 8.76(0.33) (0.13) (0.12) (0.56) (0.39) (0.11) (0.17) (0.36)

icm
0.91 0.21 0.32 7.24 1.44 0.18 0.34 0.37 67.06(0.15) (0.07) (0.08) (5.48) (0.40) (0.06) (0.10) (0.14)

Table 4.6: btb dataset. mcpm-n and mcpm-gp denote independent and
correlated prior respectively. In-sample/Out-of-sample 90% ci coverage for the
predicted event counts distributions. Higher values of ec are better.

Empirical Coverage (ec)

gt 9 gt 12 gt 15 gt 20

mcpm-n 0.87/0.92 0.97/0.99 0.93/0.96 0.95/1.00
mcpm-gp 0.93/0.91 0.98/0.98 0.97/0.98 0.97/0.99
lgcp 0.91/0.79 0.97/0.98 0.97/0.97 0.96/0.98
icm 0.90/0.84 0.96/0.98 0.95/0.96 0.96/0.96

btb genotypes (gt: 9, 12, 15 and 20).

Complete Data Experiment We estimate the four btb intensities by fitting
an mcpm with Q = 4 latent functions and Matérn 3/2 kernels. We initialise
the kernel lenghtscales and variances to 1. For direct comparison, we train
the mlgcp model following the grid size, prior, covariance and mcmc settings
specified by Taylor et al. [2015]. We run the mcmc chain for 1 million iterations
with a burn in of 100k and keep 1k thinned steps. Following Diggle et al.
[2013], in Fig. 4.6 we report the probability surfaces computed as πp(x) =

λp(x)/
∑P

p=1 λp(x) where λp(x) is the posterior mean of the intensity for task p
at location x. Estimated intensities surfaces can be found in the supplementary
material (Appendix A.5). The probability surfaces are comparable with both
approaches characterizing well the high and low intensities albeit varying at
the level of smoothness. In terms of computational gains, we note that mlgcp

takes ≈ 30 hours for an interpolation run on the four btb tasks while mcpm

only requires ≈ 8 hrs. The previously reported [Diggle et al., 2013] slow mixing
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Figure 4.6: btb dataset. First row: Observed counts for the four different btb
genotypes on a 64× 64 regular grid. Second row: mcpm estimated conditional
probabilities for the complete data setting. Third row: mlgcp estimated
conditional probabilities for the complete data setting. For moth methods the
estimated intensity surfaces are given in Appendix A.5.

and convergence problems of the chain, even after millions of mcmc iterations,
renders mlgcp problematic for application to large-scale multivariate point
processes. Finally, the built-in assumption of a single common gp latent process
across tasks limits the number and the type of inter-task correlations that we
can identify and model efficiently.

Missing Data Experiment Transfer is evaluated by partitioning the space
into 16 subregions and constructing missing data regions as explained above.
The shaded regions in the first row of Fig. 4.7 represent one such fold of the
missing areas across tasks. We provide average quantitative metrics across
folds for an mcpm with four latent functions, Matérn 3/2 kernels and 30%

of the training inputs as inducing inputs. As in the complete data setting,
we report estimated conditional probabilities in Fig. 4.7 and give additional
results in Appendix A.5. mcpm manages to recover the overall behaviour of
the process in the missing regions showing significant transfer of information
across spatially segregated tasks while avoiding negative transfer in the case
of negative spatial correlation. mcpm outperforms lgcp across all tasks and
achieves better performance than icm on 3

4 of the tasks (see Table 4.5 and
Table 4.6). In addition mcpm exhibits the highest ec both in-sample and
out-of-sample. Finally, mcpm has a significant computational advantage: it
converges in 3.18 hours (1500 epochs) while icm converges in 18.63 hrs (1000
epochs).
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Figure 4.7: btb dataset. First row: Observed counts for the four different btb
genotypes on a 64× 64 regular grid. The shaded areas represent one possible
configuration of the missing data folds across the four tasks. Second row: mcpm
estimated conditional probabilities for the missing data setting. Third row:
mlgcp estimated conditional probabilities for the missing data setting. For
moth methods the estimated intensity surfaces are given in Appendix A.5.

4.5 Conclusions and Discussion

We propose a new multi-task learning framework for modelling correlated count
data based on lgcp models. We consider observations on different tasks as
being drawn from distinct lgcps with correlated intensities determined by
linearly combined gps through task-specific random weights. By considering
stochastic weights, we allow for the incorporation of additional dependencies
across tasks while providing better uncertainty quantification. We derive closed-
form expressions for the moments of the intensity functions and use them to
develop an efficient variational inference scheme that is orders of magnitude
faster than sampling based approaches. We show how mcpm achieves the state
of the art performance on both synthetic and real datasets providing a more
flexible and up to 15 times faster methodology compared to the benchmarks.

Models incorporating correlation structure in the likelihood function, as seen
in this chapter, or in the posterior distribution, as we shall see in Chapter 5, are
particularly useful when used within decision-making algorithms. By properly
quantifying uncertainty, they allow the acquisition function constructed based
on their properties to efficiently explore the actions space, correctly balancing
exploration and exploitation. In addition, the efficient inference scheme devel-
oped in this chapter enables fast updating of the posterior distributions and
can be thus applied when actions are selected sequentially. Interestingly, while
mcpm captures correlation structure, multi-task models can be developed to
capture causation structure. This will be the topic of Chapter 7. In particular,
we will see how correlated functions measuring cause-effect relationships can be
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modelled through a gp multi-task formulation similar to the one introduced here.

mcpm has two main weaknesses. On the one hand, the mixing weights
interpretability is limited. Placing an alternative sparse prior distribution
[Titsias and Lázaro-Gredilla, 2011] on W would induce sparsity and thus act
as a model selection mechanism for Q. A sparse prior would also shed light
on the contribution that each latent process has in determining the intensity
function of different tasks while potentially speeding up the algorithm. On the
other hand, mcpm considers discretized data on a computational grid. While
this significantly simplifies inference, the grid size is an ad-hoc choice and it
might lead to poor approximations, especially in high dimensional settings.
The investigation of alternative prior structure for W remains an open research
direction. We focus on continuous ppp in the next chapter and see how it
is possible to develop a scalable ppp model which avoids the input space
discretization while allowing for a scalable and efficient structured variational
inference scheme.
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Chapter 5

Structured Variational Inference
in Continuous Cox Process
Models

As discussed in the previous chapter, point processes have been effectively
used to model various types of event data ranging from occurrences of diseases
[Diggle et al., 2013; Lloyd et al., 2015] to the location of earthquakes [Marsan
and Lengline, 2008] or crime events [Aglietti et al., 2019; Grubesic and Mack,
2008]. The most commonly adopted class of models for such discrete data are
non-homogeneous Poisson processes and in particular Cox processes [Cox, 1955].
In these, the observed events are assumed to be generated from a Poisson point
process (ppp) whose intensity is stochastic, enabling non-parametric inference
and uncertainty quantification. Gaussian processes (gps) have been used to
model the intensity of a Cox process via a non-linear positive link function.
Typical mappings are the exponential [Diggle et al., 2013; Møller et al., 1998],
the square [Lian et al., 2015; Lloyd et al., 2015] and the sigmoidal [Adams et al.,
2009; Donner and Opper, 2018; Gunter et al., 2014] transformations.

In general, inferring the intensity function of a gp modulated ppp over a
continuous input space X is highly problematic, and different algorithms have
been proposed to deal with this issue depending on the transformation used.
For example, under the exponential transformation, a regular computational
grid is commonly introduced [Diggle et al., 2013]. This is also the approach
adopted in Chapter 4 to construct a multi-task ppp model enabling an efficient
inference scheme. Discretization significantly simplifies inference but also leads
to poor approximations, especially in high-dimensional settings. Increasing
the resolution of the grid improves the approximation but yields computa-
tionally prohibitive algorithms that do not scale, highlighting the well-known
trade-off between statistical performance and computational cost. A variety
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of algorithms have been proposed to deal with a continuous X but they are
computationally expensive [Adams et al., 2009; Gunter et al., 2014], are limited
to simple covariance functions [Lloyd et al., 2015], require accurate numerical
integration over the domain [Donner and Opper, 2018] or do not account for
the model dependencies in the posterior distribution [Donner and Opper, 2018].

Both discretizing the input space and assuming factorized posterior distri-
butions might severely hinder uncertainty quantification. As discussed above
and as we shall see in Chapter 6 and Chapter 7, uncertainty quantification
is a crucial feature of surrogate models used for selecting actions. Proper
uncertainty quantification can be achieved by avoiding likelihood approxima-
tions, retaining posterior dependencies, and accounting for correlation structure
across multiple processes, as done in Chapter 4. In addition, selecting actions
in real-time (or near real-time) requires fast approximation of the posterior
distributions as data are sequentially collected. All these important features will
be tackled in this chapter by proposing an inference framework that addresses
the modelling and inference limitations of existing continuous ppp frameworks.
In particular, we develop a tractable representation of the ppp likelihood via
augmentation with a superposition of ppps. This enables a scalable structured
variational inference algorithm (svi) in the continuous space directly, where
the approximate posterior distribution incorporates dependencies between the
variables of interest. Our specific contributions are as follows.

Scalable inference in the continuous input space The augmentation of
the input space via a process superposition view allows us to develop a scalable
variational inference algorithm that does not require discretization of the inputs
space or accurate numerical integration. With this view, we obtain a joint
likelihood function that is readily normalized, providing a natural regularization
over the latent variables in our model.

Efficient structured posterior estimation We estimate a joint posterior
distribution via an efficient variational inference scheme that captures the
complex variable dependencies in the model while being significantly faster
than sampling approaches.

State-of-the-art performance We offer an extensive experimental eval-
uation that shows the benefits of our approach when compared to various
state-of-the-art inference schemes, alternative link functions, and different
augmentation schemes or representations of the input space X .
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5.1 The stvb framework

In this chapter we consider learning problems where we are given a dataset
of N events D = {xn}Nn=1, where xn is a d-dimensional vector in the compact
space X ⊂ RD. With our framework, which we call stvb, we aim at modelling
these data via a ppp, inferring the latent intensity function λ(x) : X → R+ and
making probabilistic predictions. Notice how, differently from Chapter 4, we
are focusing on a single-task model. The extension of the proposed model to
multi-task settings is an interesting open challenge.

5.1.1 Sigmoidal Gaussian Cox process

Consider a realization ξ = (N, {x1, ...,xn}) of a ppp on X where the points
{x1, ...,xn} are treated as indistinguishable apart from their locations [Daley
and Vere-Jones, 2003]. Conditioned on λ(x), the Cox process likelihood function
evaluated at ξ can be written as:

L(ξ|λ(x)) = exp

(
−
∫

X
λ(x)dx

) N∏

n=1

λ(xn), (5.1)

where the intensity is given by λ(x) = λ?σ(f(x)) with λ? > 0 being an upper-
bound on λ(x), σ(·) denoting the the logistic sigmoid function and f is drawn
from a zero-mean gp prior with covariance function k(x,x′;θ) and hyperpa-
rameters θ, i.e. f |θ ∼ GP(0, k(x,x′;θ)). We will refer to this joint model
as the sigmoidal Gaussian Cox process (sgcp). Notice that, when consider-
ing the tuple (x1, ...,xn) instead of the set {x1, ...,xn}, and thus the event
ξ0 = (N, (x1, ...,xn)), the likelihood function is given by L(ξ0|λ(x)) = L(ξ|λ(x))

N ! .
There are indeed N ! permutations of the events {x1, ...,xn} giving the same
point process realization. When the set {x1, ...,xn} is known, considering
L(ξ|λ(x)) or L(ξ0|λ(x)) does not affect the inference procedure. The same
holds for mcmc algorithms inferring the event locations. In this case, the
factorial term disappears in the computation of the acceptance ratio. However,
as we shall see later, when the event locations are latent variables in a model
and inference proceeds via a variational approximation the difference between
the two likelihoods is essential. Indeed, while L(ξ0|λ(x)) is normalized with
respect to N , one must be cautious when integrating the likelihood in Eq. (5.1)
over sets and bring back the missing N ! factor so as to obtain a proper discrete
probability mass function for N .

Inference in sgcp is doubly intractable, as it requires solving the integral in
Eq. (5.1) and computing the intractable posterior distribution for the latent func-
tion at the N event locations and the bounding intensity, i.e. p(fN , λ

?|{xn}Nn=1),
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which in turns requires computing the marginal likelihood. One way to avoid
the first source on intractability (integral in Eq. (5.1)) is through augmentation
of the input space [Adams et al., 2009; Donner and Opper, 2018], a procedure
that introduces precisely those latent (event) variables that require explicit
normalization during variational inference. We will describe below a process
superposition view of this augmented scheme that allows us to define a proper
distribution over the joint space of observed and latent variables and carry
out posterior estimation via variational inference. By superimposing two ppp

with opposite intensities we obtain a homogeneous ppp and thus avoid the
integration of the gp over X while reducing the integral in Eq. (5.1) to the
computation of the measure of the input space

∫
X dx.

5.1.2 Augmentation via superposition

A very useful property of independent ppps is that their superposition, which is
defined as the combination of events from two processes in a single one, is a ppp,
see Section 2.3 for a formal definition. Consider two ppps with intensities λ(x)

and ν(x) and realisations (N, {x1, ...,xn}) and (K, {y1, ...,yK}) respectively.
The combined event ξR = (R = N +K, {v1, ...,vR}) is a realization of a ppp

with intensity given by (λ(x)+ν(x)) where knowledge of which points originated
from which process is assumed lost. The likelihood for L(ξR|λ(x), ν(x)) can be
thus written as:

∑R
N=0

(
R
N

)∑
PN∈PN

(
exp(−

∫
X λ(x)dx)

N !

∏
r∈PN λ(r)× exp(−

∫
X ν(x)dx)

K!

∏
r∈P cN

ν(r)
)

(5.2)
where PN denotes the collection of all possible partitions of size N , PN repre-
sents an element of PN and P cN is its complement.

Consider now R = N +K to be the total number of events resulting from
thinning [Lewis and Shedler, 1979] where N is the number of observed events
while K is the number of latent events with stochastic locations y1, ...,yK .
We assume that the probability of observing an event is given by σ(f(x))

while the probability for the event to be latent is σ(−f(x)). In addition, let
λ?
∫
X dx be the expected total number of events. We can see the realization

(N +K, (x1, ...,xN ,y1, ...,yK)) as the result of the superposition of two ppps
with intensities λ(x) = λ?σ(f(x)) and ν(x) = λ?σ(−f(x)). Differently from
the standard superposition, we do know which events are observed and which
are latent. In writing the likelihood for (N + K, {x1, ...,xN ,y1, ...,yK}) we
thus do not need to consider all the possible partitions of N . We can write the
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Figure 5.1: Plate diagram representing the posterior distribution accounting for
all model dependencies. The only factorisation we introduce in our variational
posterior (Eq. (5.6)) is given by the dashed line.

likelihood function LN+K
def
= L(N +K, (x1, ...,xN ,y1, ...,yK)) as:

LN+K =
exp(−

∫
X λ(x)dx)

N !

∏

r∈PN

λ(r)× exp(−
∫
X ν(x)dx)

K!

∏

r∈P cN

ν(r)

=
1

N !K!
exp(−λ?

∫

X
dx)(λ?)N+K

N∏

n=1

σ(f(xn))

K∏

k=1

σ(−f(xk)). (5.3)

There is a crucial difference between Eq. (5.3) and the usual likelihood considered
in sgcp. Eq. (5.3) represents a distribution over tuples and thus, as mentioned
above, is properly normalized. In addition, it makes a distinction between the
observed and latent events and it is thus different from Eq. (5.1) written for the
tuple (N +K, {x1, ...,xN ,y1, ...,yK}). We can write the full joint distribution
which is given by L+

N+K
def
= L({xn}Nn=1, {yk}Kk=1,K, f , λ

?|τ,θ) as:

L+
N+K =

(λ?)N+K exp(−λ?
∫
X dx)

N !K!

N∏

n=1

σ(f(xn))
K∏

k=1

σ(−f(yk))× p(f)× p(λ?),

(5.4)
where p(f)

def
= p(fN+K) denotes the joint prior at both {xn}Nn=1 and {yk}Kk=1

and p(λ?) denotes the prior over the upper bound of the intensity function. We
consider a prior distribution for λ? given by p(λ?) = Gamma(a, b) and set the
parameters a and b so that λ? as has mean and standard deviation equal to 2
times and 1 time the intensity we would expect from a homogeneous Poisson
process on X . Notice how the marginal likelihood corresponding to the joint
distribution in Eq. (5.4) can be obtained by integrating out all latent variables.
However, this cannot be derived analytically and the following variational
scheme is derived starting from the full joint distribution.

5.1.3 Scalability via inducing variables

As in standard gp modulated models, the introduction of a gp prior poses
significant computational challenges during posterior estimation as inference
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would be dominated by algebraic operations that are cubic on the number
of observations. In order to make inference scalable, we follow the inducing-
variable approach proposed by Titsias [2009b] and further developed by Bonilla
et al. [2019]. See Section 2.1.2 for a introduction on sparse gp approximations.

We consider an augmented prior p(f ,u) with M underlying inducing vari-
ables denoted by u. The corresponding inducing inputs are given by the M ×D
matrix Z. Major computational gains are realized when M � N + K. The
augmented prior distributions for the inducing variables and the latent functions
are given by:

p(u|θ) = N (0,Kzz)

p(f |u,θ) = N (Kxz(Kzz)
−1u,Kxx −AKzx)

where A = Kxz(Kzz)
−1. The matrices Kxx, Kxz, Kzx and (Kzz)

−1 are
the covariance matrices induced by evaluating the corresponding covariance
functions at all pairwise rows of the event locations {xn,yk}N,Kn=1,k=1 and the
inducing inputs Z.

5.2 Structured Variational Inference

Given the joint distribution in Eq. (5.4), our goal is to estimate the posterior dis-
tribution over all latent variables given the data. i.e. p(f ,u,M, {yk}Kk=1, λ

?|D)

which can be obtained by computing:

p(f ,K, {yk}Kk=1, λ
?|D) =

L+
N+K∫ ∫ ∫ ∫

L+
N+KdfdKd{yk}Kk=1dλ?

(5.5)

and requires integrating out all latent variables from Eq. (5.4). This posterior is
analytically intractable and we approximate it by resorting to variational infer-
ence [Jordan et al., 1999]. Recall from Section 2.1.2 that variational inference
entails defining an approximate posterior q(f ,u,K, {yk}Kk=1, λ

?) and optimizing
the so-called evidence lower bound (elbo) with respect to this distribution. In
sgcp, the gp and the latent variables are highly coupled and breaking their
dependencies would lead to poor approximations, especially in high dimensional
settings. Fig. 5.1 shows the structure of a general posterior distribution for
sgcp without any factorisation assumption.

We consider an approximate posterior distribution that takes dependencies
into account:

q(f ,u,K, {yk}Kk=1, λ
?) = p(f |u)q({yk}Kk=1|K)q(K|u, λ?)q(u)q(λ?). (5.6)
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With respect to the general posterior distribution, the only factorisation we
impose in Eq. (5.6) is in the factor q({yk}Kk=1|K) where we drop the dependency
on f , see dashed line in Fig. 5.1. Additionally we set:

q(u) = N (m,S)

q(λ?) = Gamma(α, β)

q({yk}Kk=1|K) =
K∏

k=1

S∑

s=1

πsNT (µs, σ
2
s ;X )

where NT (·;X ) denotes a truncated Gaussian distribution on X . The factorisa-
tion assumption between f and {yk}Kk=1 can be relaxed by considering a ppp

with intensity λ?σ(−f(x)) as the joint variational distribution q(K, {yk}Kk=1),
which is indeed the true posterior distributions for the number of thinned events
and their locations [Daley and Vere-Jones, 2003].

Considering a fully structured posterior distribution significantly increases
the computational cost of the algorithm as it would require sampling from
the full posterior in the computation of the elbo. The mixture of truncated
Gaussians provides a flexible and computationally advantageous alternative
while satisfying the constraint of being within the domain of interest. More
importantly, we assume:

q(K|u, λ?) = Poisson(η) with

η = λ?
∫

X
σ(−u(x))dx.

This is indeed the true conditional posterior distribution for the number of
thinned points, see Proposition (3.7) in Moller and Waagepetersen [2003]. Con-
sidering q(K|u, λ?) we thus fully account for the dependency structure existing
among K, u and λ?. Crucially, while in this work we estimate

∫
X σ(−u(x))dx

via a Monte Carlo integral approximation, stvb does not require accurate
estimation of this term. Indeed, differently from the competing techniques,
where the algorithm convergence and the posterior q(f) is directly dependent
on numerical integration, stvb only requires evaluation of the integral during
the optimisation but q(f) and thus λ(x) do not directly depend on its value.
In other words, the quality of the posterior intensity does not depend directly
on how accurate the integral estimation is.
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Table 5.1: Summary of related work.
∫

and
∑

denote continuous and discrete
models respectively. K represents the number of thinned points derived from
the thinning of a ppp. M indicates the number of inducing inputs.

stvb lgcp [191] sgcp [6] Gunter et al. [2014] vbpp [168] Lian et al. [2015] mfvb [64]

Inference svi mcmc mcmc mcmc vi-mf vi-mf vi-mf
O M3 N3 (N +K)3 (N +K)3 NM2 NM2 NM2

λ(x) λ?σ(f(x)) exp(f(x)) λ?σ(f(x)) λ?σ(f(x)) (f(x))2 (f(x))2 λ?σ(f(x))
X

∫ ∑ ∫ ∫ ∫ ∑ ∫

5.2.1 Evidence Lower Bound

Following standard variational inference arguments, it is straightforward to
show that the elbo decomposes as:

Lelbo = N(ψ(α)− log(β))− V α
β
− log(N !) + EQ[K log(λ?)]︸ ︷︷ ︸

T1

−EQ[log(K!)]︸ ︷︷ ︸
T2

+

+
N∑

n=1

Eq(f)[log(σ(f(xn)))] + EQ

[
K∑

k=1

log(σ(−f(yk)))

]

︸ ︷︷ ︸
T3

− Lukl − Lλ
?

kl − LKent︸︷︷︸
T4

−L{yk}
K
k=1

ent︸ ︷︷ ︸
T5

(5.7)

where V =
∫
X dx, ψ(·) is the digamma function and q(f) = N (Am,Kxx −

AKzx + ASA′) . The terms denoted by Ti, i = 1, ..., 5 cannot be computed
analytically. Naïvely, black-box variational inference algorithms could be
used to estimate these terms via Monte Carlo, thus sampling from the full
variational posterior (Eq. (5.6)). This would require sampling f , λ?, K and
{yk}Kk=1 thus slowing down the algorithm while leading to slow convergence.
On the contrary, we exploit the structure of the model and the approximate
posterior to simplify these terms and increase the algorithm efficiency. Denote
µ(u) =

∫
X σ(−u(x))dx, we can write:

T1 = Eq(λ?)[λ
? log(λ?)]Eq(u)[µ(u)] (5.8)

T3 =
α

β
Eq(u)[µ(u)]Eq(f)q(yk)[log(σ(−f(yk)))] (5.9)

T4 =
α

β
Eq(u)[µ(u) [log(µ(u))− 1]] (5.10)

+ Eq(λ?)[λ
? log(λ?)]Eq(u)[µ(u)]− EQ[log(K!)] (5.11)

T5 =
α

β
Eq(yk)[log q(yk)]Eq(u)[µ(u)] (5.12)

Notice how the term −EQ[log(K!)] in T4, which would require further
approximations, appears with opposite sign in T2 and thus cancels out in the
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computation of the elbo in Eq. (5.7). See Appendix B.1 in the supplementary
material for the full derivations.

Eqs. (5.8)–(5.12) give an expression for Lelbo which avoids sampling from
q(K|u, λ?) and q({yk}Kk=1|K) and does not require computing the gp on the
stochastic locations. The remaining expectations are with respect to reparam-
eterizable distributions. We thus avoid the use of score function estimators
which would lead to high-variance gradient estimates. Stochastic optimisation
techniques can be used to evaluate T3 and

∑N
n=1 Eq(f)[log(σ(f(xn)))] thus re-

ducing the computational cost by making it independent of K and N . This
would further reduce the computational complexity of the algorithm to O(M3).
However, when the number of inputs used per mini-batch equals N , the time
complexity becomes O(NM2). In the following experiments, we show how the
proposed structured approach together with these efficient elbo computations
leads to higher predictive performances and better uncertainty quantification.
The presented results do not exploit the computational gains attainable via
stochastic optimisation thus the cpu times and performances are directly
comparable across all methods.

5.3 Related work

We review the more closely related works and, to facilitate comparison, we
provide a summary table of the main differences across them (Table 5.1).

Discretization and numerical integration gp-modulated Poisson point
processes are the gold standard for modelling event data. Performing inference
in these models, e.g. under the exponential transformation has typically required
discretization where the domain is gridded and the intensity function is assumed
to be constant over each grid cell [Brix and Diggle, 2001; Cunningham et al.,
2008; Diggle et al., 2013; Møller et al., 1998]. Alternatively, Lasko [2014]
also considers an exponential link function and performs inference over a
renewal process resorting to numerical integration within a computationally
expensive sampling scheme which scales as O(k3) + O(N) with k denoting
the number of integration points. These methods suffer from poor scaling
with the dimensionality of X and sensitivity to the choice of the discretization
or numerical integration technique. Several approaches have been proposed
to deal with inference in the continuous domain directly by using alternative
transformations along with additional modelling assumptions and computational
tricks or by constraining the gp [López-Lopera et al., 2019].

Alternative link functions One of those alternative transformation is the
squared mapping which leads to the so-called Permanental process [John and
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Hensman, 2018; Lian et al., 2015; Lloyd et al., 2015; Lloyd et al., 2016; Walder
and Bishop, 2017] where the intensity function is given by λ(x) = f2(x).
Although the square transformation enables analytical computation of the
required integrals over X , this only holds for certain standard types of kernels
such as the squared exponential. In addition, Permanental processes suffer
from important identifiability issues such as reflection invariance and lead to
models with “nodal lines” [John and Hensman, 2018].

Another frequently used transformation is the scaled logistic sigmoid func-
tion which leads to the so called sigmoidal Gaussian Cox process (sgcp) where
the intensity function is defined as λ(x) = σ(f(x)) with σ(x) = (1+exp(−x))−1.
This transformation has been used by Adams et al. [2009], which exploits aug-
mentation of the input space via thinning [Lewis and Shedler, 1979] to achieve
tractability. Their proposed inference algorithm is based on Markov chain
Monte Carlo (mcmc), which enables drawing ‘exact’ samples from the posterior
intensity. However, as acknowledged by the authors, it has significant compu-
tational demands making it inapplicable to large datasets. As an extension
to this work, Gunter et al. [2014] introduce the concept of “adaptive thinning”
and propose an expensive mcmc scheme which scales as O(N3). More recently,
Donner and Opper [2018] introduced a neat double augmentation scheme for
sgcp which enables closed-form updates using a mean-field approximation
(vi-mf). However, it requires accurate numerical integration over X , which
makes the performance of the algorithm highly dependent on the number of
integration points.

The framework proposed in this chapter overcomes the limitations of the
mentioned vi-mf and mcmc schemes by proposing a svi framework that takes
into account the complex posterior dependencies while being scalable and
thus applicable to high-dimensional real-world settings. To the best of our
knowledge, this is the first formulation offering a fast structured variational
inference framework for gp modulated Poisson point process models.

5.4 Experiments

We test our algorithm on three 1d synthetic data settings, two 2d real-world
applications and one 3d setting. Code and data for all the experiments are
provided at https://github.com/VirgiAgl/STVB.

Baselines We compare against alternative inference schemes, different link
functions and a different augmentation scheme. In terms of continuous models,
we consider the sampling approach of Adams et al. [2009] (sgcp), a Perma-
nental Point process model by Lloyd et al. [2015] (vbpp) and a mean-field

73



Figure 5.2: Qualitative results on synthetic data. Solid colored lines denote
posterior mean intensities while shaded areas are ± standard deviation.

approximation based on a Pólya-Gamma augmentation proposed by Donner and
Opper [2018] (mfvb). In addition, we compare against a discrete variational
log Gaussian Cox process model based on Nguyen and Bonilla [2014] (lgcp).
Further details about the experimental settings are given in Appendix B.3.

Performance measures We test the algorithms evaluating the l2 norm to
the true intensity function (for the synthetic datasets), the test log-likelihood
(`test) on the test set, and the negative log predicted likelihood (nlpl) on the
training set. In order to assess the model capabilities in terms of uncertainty
quantification, we compute the empirical coverage (ec), i.e. the coverage of the
empirical count distributions obtained by sampling events from the posterior
intensity function. We do that for different credible intervals (ci) on both
the training set, to compute the in-sample distribution p(N |D)), and test set
to compute the out-of-sample distribution p(N∗|D)). Details on the metrics
computation are given in Appendix B.2. For the synthetic data experiments,
we run the algorithms with 10 training datasets each including a different ppp

realization sampled from the ground truth intensity function. For each different
training set, we then evaluate the performance on 10 unseen realizations sampled
again from the ground truth intensity. We compute the mean and the standard
deviation for the presented metrics averaging across the training and test sets.
For the real data settings, we compute the nlpl and in-sample ec on the
observed events. We then test the algorithm computing both `test and out-of-
sample ec on the held-out events. In order to compute the out-of-sample ec we
rescale the intensity function as λtest(x) = λtrain(x)−Ntrain/V +Ntest/V with
V =

∫
X dx. We then sample events from λtest(x) and generate the predicted

count distributions for different seeds.

Synthetic experiments We test our approach using the three toy example
proposed by Adams et al. [2009]:

• λ1(x) = 2 exp(−1/15) + exp(−[(x− 15)/10]2) with x ∈ [0, 50],
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Table 5.2: Average performances on synthetic data across 10 training and 10
test datasets with standard errors in brackets. Our method is denoted by stvb.
Top: Lower values of l2 and nlpl are better. Higher values of `test are better.
Bottom: Out-of-sample ec for different ci, higher values are better.

λ1(x) λ2(x) λ3(x)
cpu

l2 `test nlpl l2 `test nlpl l2 `test nlpl time (s)

stvb
3.44 -1.39 4.71 46.28 56.04 5.62 7.39 153.98 6.41 315.59(1.43) (1.05) (0.51) (9.95) (4.47) (0.72) (2.76) (11.91) (0.64)

mfvb
4.56 -2.84 4.74 44.44 55.35 5.52 8.17 155.08 5.82 0.01(1.43) (1.0) (0.1) (10.7) (4.72) (1.29) (3.43) (10.20) (0.61)

vbpp
9.19 -7.71 8.91 48.15 56.82 5.20 20.54 152.82 8.35 0.44(2.32) (3.31) (1.19) (13.16) (4.42) (1.33) (6.53) (11.43) (2.28)

sgcp
4.22 -1.39 4.21 43.50 55.05 3.77 14.44 165.66 4.78 2764.88(1.88) (1.28) (1.04) (8.69) (1.35) (0.54) (2.97) (2.12) (0.33)

lgcp
67.76 -5.26 26.26 106.74 28.56 15.75 19.24 147.67 10.84 4.74(24.38) (8.84) (8.09) (13.89) (6.88) (3.36) (6.44) (11.76) (1.36)

ec–λ1(x) ec–λ2(x) ec–λ3(x)

30% ci 40% ci 50% ci 30% ci 40% ci 50% ci 30% ci 40% ci 50% ci

stvb
0.81 0.72 0.6 0.91 0.88 0.86 0.99 0.97 0.92
(0.27) (0.27) (0.34) (0.24) (0.23) (0.22) (0.03) (0.09) (0.15)

mfvb
0.76 0.61 0.52 0.89 0.84 0.82 0.97 0.91 0.78
(0.25) (0.28) (0.29) (0.23) (0.29) (0.29) (0.09) (0.14) (0.15)

vbpp
0.75 0.41 0.04 0.76 0.45 0.05 0.83 0.43 0.03
(0.21) (0.25) (0.09) (0.26) (0.26) (0.05) (0.19) (0.14) (0.05)

sgcp
0.39 0.27 0.08 0.64 0.14 0.00 0.49 0.34 0.02
(0.28) (0.22) (0.12) (0.09) (0.05) (0.00) (0.03) (0.07) (0.04)

lgcp
0.08 0.03 0.01 0.04 0.00 0.00 0.99 0.99 0.95
(0.12) (0.09) (0.03) (0.08) (0.00) (0.00) (0.00) (0.12) (0.10)

• λ2(x) = 5sin(x2) + 6 with x ∈ [0, 5],

• λ3(x) piecewise linear through (0, 20), (25, 3), (50, 1), (75, 2.5) and (100, 3)

with x ∈ [0, 100].

For lgcp, we discretize the input space considering a grid cell width of one for
λ1(x) and λ3(x) and of 0.5 for λ2(x). For mfvb we consider 1000 integration
points. In terms of q({yk}Kk=1|K), we set S = 5 but consistent results where
found across different values of this parameter. The results are given in Fig. 5.2
and Table 5.2, where we see that all algorithms recover similar predicted mean
intensities and give roughly comparable performances across all metrics. Out
of all 9 settings and metrics (top section of Table 5.2) our method (stvb)
outperforms competing methods on 3 cases and it is only second to sgcp on 6
cases. However, the cpu time of sgcp is almost an order of magnitude larger
than ours even in these simple low-dimensional problems, making that method
inapplicable to large datasets. This confirms the benefits of having structured
approximate posteriors within a computationally efficient inference algorithm
such as vi. In terms of uncertainty quantification (bottom section of Table 5.2),
our algorithm outperforms all competing approaches for λ1(x) and λ2(x).

2d real data experiments In this section we show the performance of the
algorithm on two 2d real-world datasets. In both cases, we assume independent
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Table 5.3: Average performances on real-data experiments with standard errors
in brackets. ec is computed across 100 replications using different seeds. Higher
`test and ec values are better. Lower nlpl values are better. ec figures are
given as In-sample - Out-of-sample.

Neuronal data

`test[×103] nlpl ec-30% ci ec-40% ci cpu time (s)

stvb
-84.55 10.10 1.00-1.00 0.99-0.56 193.07(16.05) (7.02) (0.00)-(0.00) (0.10)-(0.50)

mfvb
-83.54 10.71 1.00-0.03 0.78-0.00 0.35(4.60) (3.39) (0.00)-(0.17) (0.41)-(0.00)

vbpp
-83.89 11.39 1.00-0.00 0.83-0.00 26.23(12.49) (8.18) (0.00) - (0.00) (0.38)-(0.00)

Taxi data

`test[×106] nlpl [×104] ec-30% ci ec-40% ci cpu time (s)

stvb
-27.96 27.96 0.81-0.37 0.09-0.01 290.34(9.16) (9.16) (0.39)-(0.48) (0.29)-(0.10)

mfvb
-40.8 40.65 0.00-0.00 0.00-0.00 0.24(6.41) (6.41) (0.00)-(0.00) (0.00)-(0.00)

vbpp
-31.32 31.32 0.98-0.00 0.48-0.00 3.62(8.18) (8.18) (0.14)-(0.00) (0.50)-(0.00)

two-dimensional truncated Gaussian distributions for q({yk}Kk=1|K) so that
they factorize across input dimensions. Qualitative and quantitative results are
given in Fig. 5.3, Fig. 5.4 and Table 5.3.

Our first dataset is concerned with neuronal data, where event locations
correspond to the position of a mouse moving in an arena when a recorded cell
fired [Sargolini et al., 2006]. We randomly assign the events to either training
(N = 583) or test (N = 29710) and we run the model using a regular grid
of 10 × 10 inducing inputs. We see that the intensity function recovered by
the three methods varies in terms of smoothness with mfvb estimating the
smoothest λ(x) and vbpp recovering an irregular surface (Fig. 5.3). mfvb gives
slightly better performance in terms of `test but our method (stvb) outperforms
competing approaches in terms of nlpl and ec figures. Remarkably, stvb

contains the true number of test events in the 30% credible intervals for 56% of
the simulations from the posterior intensity (Table 5.3 and Fig. 5.4).

As a second dataset, we consider the Porto taxi dataset1 which contains the
trajectories of 7000 taxi travels in the years 2013/2014 in the city of Porto. As
in Donner and Opper [2018], we consider the pick-up locations as observations
of a ppp and restrict the analysis to events happening within the coordinates
(41.147,−8.58) and (41.18,−8.65). We select N = 1000 events at random as
training set and train the model with 400 inducing points placed on a regular
grid. The test log-likelihood is then computed on the remaining 3401 events. We
see that our method (stvb) outperforms competing methods on all performance

1http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.
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metrics (Table 5.3), recovering an intensity that is smoother than vbpp and
captures more structure compared to mfvb (Fig. 5.3). In terms of uncertainty
quantification, the coverage of p(N∗|D) are the highest for stvb across all ci.
Notice how the irregularity of the vbpp intensity leads to good performance on
the training set but results in a p(N∗|D) which is centered on a significantly
higher number of test events (Fig. 5.4). As expected, the svi approach implies
wider counts distributions compared to the mean-field approximation. This
generally yields better predictive performances in a variety of settings and
especially in higher-dimensional experiments.

Figure 5.3: Real data. The red surfaces represent the posterior mean intensities
inferred with stvb (first column) or the baseline methods (second and third
column). The black dots give the observed events on the two-dimensional input
space. Upper : Neuronal Data. Lower : Taxi Data.

3d real data experiment Finally, we show the performance of the stvb

algorithm on the spatio-temporal Taxi dataset used above where, for each
taxi travel, we consider both the trajectory and the pickup time in seconds.
vbpp does not currently support d > 2 thus we compared stvb to mfvb. We
found stvb to outperform mfvb both in terms of performance metrics and
uncertainty quantification, see Table 5.4 and Fig. 5.5.

5.5 Conclusions and Discussion

In this chapter, we propose a new variational inference framework for esti-
mating the intensity of a continuous sigmoidal Cox process. By considering
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Figure 5.4: Predicted counts distributions for the training set (p(N |D)) and
the test set (p(N∗|D)) on the taxi data (left plots) and the neuronal data
(right plots). The gray line denotes the number of observed events. The red
bars on the x-axis denote breaks in the axis due to the different shifts of the
distributions.

Table 5.4: Average performances on the spatio-temporal Taxi dataset. Standard
errors in brackets. ec is computed across 100 replications using different seeds.
Higher `test and ec are better. Lower nlpl are better. ec figures are given as
In-sample - Out-of-sample.

Spatio-temporal Taxi Data

`test[×107] nlpl[×105] ec-30% ci ec-40% ci cpu time (s)

stvb
-31.26 31.26 1.00-0.00 0.98-0.00 1208.00(10.88) (10.88) (0.00)-(0.00) (0.14)-(0.00)

vbpp
-42.97 42.97 0.00-0.00 0.00-0.00 1.00(9.56) (9.56) (0.00)-(0.00) (0.00)-(0.00)

an augmented input space as the result of the superposition of two ppps, we
derive a scalable and computationally efficient structured variational approxi-
mation. Our framework does not require discretization or accurate numerical
computation of integrals on the input space, it is not limited to specific kernel
functions and properly accounts for the strong dependencies existing across
the latent variables. Through extensive empirical evaluation, we demonstrate
that our method compares favourably against “exact” but computationally
costly mcmc schemes while being almost an order of magnitude faster. More
importantly, our inference scheme outperforms all competing approaches in
terms of uncertainty quantification. The benefit of the proposed scheme and
resulting svi are particularly pronounced on multivariate input settings where
accounting for the highly coupled variables becomes crucial for interpolation
and prediction and methods based on numerical integration fail.

It is possible to identify two major open challenges. Firstly, the integration
of the proposed framework with a multi-task model would make stvb applicable
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Figure 5.5: Predicted counts distributions for the training set (p(N |D)) and
the test set (p(N∗|D)).

to settings such as those analysed in Chapter 4. Secondly, the relaxation of
the factorization assumption between the gp and the latent points. A fully
structured variational inference scheme would further improve the accuracy
performance of the method but would require introducing additional approxi-
mations in the variational objective.

Despite the open research questions mentioned above, the approach devel-
oped in this chapter provides a flexible gp model capable of capturing complex
data distributions while allowing to quantify uncertainty in a principled way.
Retaining structured approximate posteriors while enabling fast scalable infer-
ence are two crucial properties of surrogate models used within decision-making
algorithms. Indeed, models incorporating correlation structure in the likelihood
function, as seen in Chapter 4, or in the posterior approximation, as done
with stvb, allow the acquisition function constructed based on their properties
to efficiently explore the actions space, correctly balancing exploration and
exploitation. In addition, sequential decision-making requires updating the
posterior distributions as actions are performed and data are collected. When
posterior inference is not closed form, as in Poisson point processes, fast approx-
imate inference schemes are essential to allow sequential selection of actions in
“near real-time” or even in real-time. All these important features characterize
the models developed in Chapter 4 and Chapter 5.

In the coming chapters, we will see how probabilistic models, such as those
developed so far, can be combined with an acquisition function to obtain se-
quential decision-making algorithms. In particular, we will see how a causation
structure rather than a correlation structure can be incorporated in gp sur-
rogate models allowing to select actions based on cause-effect relationships.
Interestingly, in Chapter 7, we will link correlation and causation through a
causal multi-task formulation that, as done in Chapter 4, captures the correla-
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tion structure across a set of functions but where each function represents a
causal quantity. In turn, this causal multi-task formulation will lead to complex
structured posterior distributions, such as those seen in this chapter, that will
significantly improve the performance of decision-making algorithms.
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Part II

Causal Sequential
Decision-Making with Gaussian

Processes
Chapter 5 concludes the part of the thesis focusing on structured
models for ppp and connected scalable variational inference schemes.
While this first part studied how to incorporate correlation structure
in the model specification or in the posterior approximation, the
second part will investigate how to integrate a causation structure in
the model specification when a causal graph is available. In addition,
it will link correlation and causation through a causal multi-task
formulation that captures the correlation structure across a set of
causal functions. Specifically, we will study sequential decision-
making algorithms which require two main elements: a surrogate
model and an acquisition function. Similar to those introduced in
the previous chapters, we will construct gp based surrogate models
where the prior distribution reflects a set of causal assumptions.
Indeed, as seen in Chapter 4 and Chapter 5, gps capture a variety
of data distributions and quantify uncertainty in a principled way.
Based on the surrogate models, the acquisition function enables the
agent to select the next action by effectively trading off exploration
and exploitation. In the following chapters, we will generalise
sequential decision-making algorithms to incorporate knowledge
about the causation mechanism existing among input and output
variables. In Chapter 6 we will extend the Bayesian Optimization
framework while in Chapter 7 we will discuss Active Learning
and show how to deal with multi-task causal settings. Finally, in
Chapter 8 we will focus on dynamic scenarios and show how to take
decisions in an evolving causal system.
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Chapter 6

Causal Bayesian Optimization

Sequential decision-making problems in a variety of domains, such as biological
systems, modern industrial processes, or social systems, require implementing
interventions and manipulating variables in order to optimize an outcome of
interest. For instance, in strategic planning, companies need to decide how to
allocate scarce resources across different projects or business units in order to
achieve performance goals. In biology, it is common to change the phenotype
of organisms by acting on individual components of complex gene networks.
This chapter describes how to find such optimal interventions or policies.

Focusing on a specific example, consider a setting in which Y denotes
the crop yield for a specific agricultural product, X denotes soil fumigants,
and Z = {Z1, Z3, Z4} represents the eel-worm population at different times
[Cochran and Cox, 1957]. Given a causal graph [Pearl, 1995] representing the
investigator’s understanding of the major causal influences among the variables
(Fig. 6.1(a)), she aims at finding the highest yielding intervention in a limited
number of seasons and subject to a budget constraint. Each intervention
has a cost which is determined by the number of intervened variables, each
manipulated variable’s cost, and the implemented intervention level.

In order to solve this problem, the investigator could resort to Bayesian
Optimization (bo). As seen in Section 3.1, bo is an efficient heuristic to
optimize objective functions whose evaluations are costly and when no explicit
functional form is available [Jones et al., 1998]. In the setting described above,
bo would model the objective function with a surrogate e.g. a gp model and
would try to find the global optima by making a series of function evaluations
in which all variables are manipulated. bo would thus break the dependency
structure existing among X and Z, potentially leading to suboptimal solutions.
Indeed, as described later in detail, depending on the structural relationships
between variables, intervening on a subgroup might lead to a propagation of
effects in the causal graph and a higher final yield. In addition, intervening on
all variables is cost-ineffective in cases when the same yield can be obtained
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by setting only a subgroup of them. The framework proposed in this chapter
combines bo, Gaussian process modelling (gp), and causal inference, offering
a novel approach for decision making under uncertainty. Probabilistic causal
models are commonly used in disciplines where explicit experimentation may be
difficult such as social science or economics. In particular, the do-calculus [Pearl,
1995] relates observational distributions to interventional ones (see Section 3.2).
It allows predicting the effect of an intervention without explicitly performing
it and by solely using observational data. We develop a model which integrates
observational and interventional data so as to further reduce the uncertainty
around the optimal intervention value and the number of interventions required
to find it. Particularly, we make the following contributions:

Causal Global Optimization We formulate a new class of optimization
problems called Causal Global Optimization (cgo) where the causal structure
existing among the input variables is accounted for in the objective functions.

Causal gp surrogate model We solve cgo problems by combining ideas
from bo and causal calculus. We propose a Gaussian process (gp) surrogate
model, the causal gp, that integrates observational and interventional data via
the definition of a causal prior distribution computed through do-calculus.

Causal acquisition function We propose an acquisition function, the causal
expected improvement (ei), which drives the exploration of different intervention
sets and allows selecting the optimal intervention value for each of them.

Causal Bayesian Optimization algorithm We develop an algorithm,
henceforth named Causal Bayesian Optimization (cbo), that exploits the
topological characteristics of the graph, the causal ei, and the proposed gp

prior to find an optimal intervention. In doing that, it balances the emerging
trade-off between observation and intervention via an ε-greedy policy.

Experimental comparison on true and synthetic causal graphs We
show the benefits of the proposed approach in a variety of experimental settings
featuring different dependency structures, unobserved confounders, and non-
manipulative variables. Additionally, we demonstrate the performance of cbo

when selecting optimal interventions in two real-world settings.

6.1 Problem Setup

We consider a scm as defined in Definition 3.1 of Section 3.2 and the associated
directed causal acyclic graph (dag) denoted by G. Within the complete
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Figure 6.1: Examples of causal graphs. Nodes denote variables, arrows represent
causal effects and dashed edges indicate unobserved confounders. (a): Yield
optimization example. Y is the crop yield, X denotes soil fumigants and
Z represents the eel-worm population. (b): A 200-dimensional optimization
problem with causal intrinsic dimensionality equal to 2.

set of variables in the scm, we distinguish between three different types of
variables: non-manipulative variables C, which cannot be modified, treatment
variables X that can be set to specific values and an output variable Y that
represents the agent’s outcomes of interest. We denote the interventional
distribution for two disjoint sets in V, say X and Y , by P (Y |do (X = x)).
This is the distribution of Y obtained by intervening on X and fixing its
value to x in the data generating mechanism, irrespective of the values of its
parents, and keeping C unchanged. Conversely P (Y|X = x) represents an
observational distribution which only requires “observing” the system. DO and
DI denote observational and interventional datasets respectively. In this work
we assume G to be known. Causal discovery [Glymour et al., 2019] is a complex
topic and analysing what happens when the graph is unknown is left as an
open question. As seen in Section 3.2.3, do-calculus offers a powerful tool
to estimate interventional distributions and causal effects from observational
distributions. If the causal effects are identifiable, we can apply the three rules of
do-calculus to link interventional distributions with observational distributions
which can be approximated with e.g. Monte Carlo estimates. The do-calculus
involves computing integrals which are generally not tractable. When this is
the case, observational data can be used to get a Monte Carlo estimate, e.g.
P̂ (Y|do (X = x)) ≈ P (Y|do (X = x)), which is consistent when the number of
samples drawn from P (V) is sufficiently large.

Causal Global Optimization We define a novel class of global optimization
problems called Causal Global Optimization (cgo). Given G and 〈U,V, F, P (U)〉,
the goal is to select the set of intervention variables X?

s and intervention levels
x?s optimizing the expected target outcomes Y. Formally, the goal is to find:

X?
s,x

?
s = arg min

Xs∈P(X),xs∈D(Xs)
EP (Y|do(Xs=xs))[Y], (6.1)
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Figure 6.2: dag representation of a cgo problem (a) and the dag considered
when using bo (b) to address the same problem. Black nodes represent X while
grey shaded nodes give C. Dashed edges indicate unobserved confounders.

where P(X) is the power set of X, D(Xs) = ×X∈Xs(D(X)) with D(X) de-
noting the interventional domain of X and the expectation is computed ac-
cording to the interventional distribution. For notational convenience, we
denote EP (Y|do(Xs=xs))[Y]

.
= E[Y|do (Xs = xs)] and EP̂ (Y|do(Xs=xs))

[Y]
.
=

Ê[Y|do (Xs = xs)]. The optimal subset of intervention variables Xs belongs
to P(X) which includes the empty set ∅ and X itself. When Xs = ∅, no
intervention is implemented in the system and the target expected values corre-
spond to the observational expected outcomes. When Xs = X, all variables
are intervened upon except for the context variables C that can only be observed.

The problem given in Eq. (6.1) is challenging because of two main reasons.
Firstly, the cardinality of P(X) grows exponentially with |X| and finding the
optimal set requires, in principle, a combinatorial search. Secondly, for every
set Xs ∈ P(X), finding x?s requires evaluating the objective function and thus
implementing multiple interventions in the system at different intervention
levels. In most settings, the number of function evaluations, whose cost is
assumed to be given by some cost function Co(Xs,xs), needs to be kept low.
Given a budget H, we thus want to find the optimal configuration with the
minimal total cost

∑H
h=1Co(Xh,xh).

6.2 Related Work

As mentioned in Section 3.1, there exists an extensive literature on bo algorithms
that can be applied in various settings. Examples include multi-fidelity settings
[McLeod et al., 2017; Song et al., 2019; Swersky et al., 2013], batch optimization
[Alvi et al., 2019; González et al., 2016a], non-myopic optimization [González
et al., 2016b] or dynamic settings [Nyikosa et al., 2018] just to name a few;
see Shahriari et al. [2015] for a review. The same holds for causality. In this
field, research has focused on various directions including but not limited to
learning structural causal models [Goudet et al., 2018; Lucas and Griffiths,
2010; Rubenstein et al., 2017a; Silva and Gramacy, 2010], computing causal
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effects from observational and/or interventional data [Alaa and Van der Schaar,
2017; Hoyer et al., 2008; Kaddour et al., 2021; Kilbertus et al., 2020; Louizos
et al., 2017; Silva, 2016], discovering causal relationships [Chickering, 2002;
Cooper and Yoo, 1999; Hauser and Bühlmann, 2012; Ke et al., 2019; Silva et al.,
2005; Spirtes et al., 2000; Sun et al., 2007; Zheng et al., 2018] and transferring
causal information across environments [Bareinboim and Pearl, 2012, 2013,
2014; Magliacane et al., 2018; Pearl and Bareinboim, 2011; Rojas-Carulla et al.,
2018; Zhang et al., 2013]; see Guo et al. [2020] for a review. The literature on
sequential causal decision-making is instead limited.

As discussed in the introduction, recent works have focused on causal multi-
armed bandit (mab) problems and causal reinforcement learning (rl) settings
where actions or arms correspond to interventions on an arbitrary causal graph
and there exist complex links between the agent’s decisions and the received
rewards. Bareinboim et al. [2015] and Lu et al. [2018] focus on settings with
unobserved confounders. Lee and Bareinboim [2018] identify a set of possibly-
optimal arms that an agent should play in order to maximize its expected reward
in a mab problem. Lee and Bareinboim [2019] extend this work to graphs with
non-manipulable variables. Lattimore et al. [2016] study a specific family of
mab problems called parallel bandit problems. Finally, Ortega and Braun [2014]
focus on causal discovery in Causal mab. In the causal rl literature, Buesing
et al. [2019] leverage structural causal models for counterfactual evaluation of
arbitrary policies on individual off-policy episodes. Foerster et al. [2018] focus
on the multi-agents setting and propose a framework in which each agent learns
from a shaped reward that compares the global reward to the counterfactual
reward received when that agent’s action is replaced with a default action. As
mentioned in Chapter 1, existing causal mab and causal rl algorithms cannot
be straightforwardly applied to solve the problems considered by cbo. Indeed,
causal rl algorithms are characterized by a state variable and focus on finding
an optimal policy, that is a mapping between states and actions, with the final
goal of minimizing the cumulative regret. Apart from some exceptions (e.g.
Lattimore et al. [2016]), cumulative regrets are also considered by causal mab.
As in standard bo, in cbo, we don’t have an explicit notion of state and the
goal is to find the optimum of a function in the lowest number of trials. More
importantly, the actions space in both causal mab and causal rl is generally
discrete. In those cases, agents have to select the intervention variables to
manipulate but not the intervention level. In causal bo, we aim at jointly
identifying both the optimal intervention set and level.
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6.2.1 Connections and Generalizations

Bayesian Optimization The cbo framework can be seen as a generalization
of bo incorporating causal information about the system. Consider the dag

in Fig. 6.2(a). For this dag, the problem in Eq. (6.1) can be solved resorting
to bo and disregarding all causal information. In order to find the optimal
intervention, bo breaks the input variables dependencies (Fig. 6.2(b)) and
intervenes simultaneously on all of them thus setting Xs = X. Therefore,
bo only considers one objective function Y = f(X) corresponding to the full
intervention and places a gp surrogate model p(f) = GP(m, k) on it. As seen
in Section 2.1, given a dataset Dn = {xi, yi}ni=1, the posterior distribution of f
under Gaussian likelihood is also a gp with closed form posterior mean and
variance. This posterior parameters are used to compute an acquisition function
α(x,Dn) which is then numerically optimized to select the next evaluation (see
Section 3.1 for an introduction on bo).

Causal Dimensionality It is well known [Wang et al., 2016] that the perfor-
mance of standard bo algorithms deteriorates in high dimensional problems
as the number of evaluations needed to find the global optimum increases
exponentially with the space dimensionality. Interestingly, knowing the causal
graph allows us to reason about the effective dimensionality of the problem.
We formalize this idea by defining the notion of causal intrinsic dimensionality :

Definition 6.1. (Causal Intrinsic Dimensionality) The causal intrinsic
dimensionality of a causal function EP (Y |do(X=x))[Y ] is given by the number of
parents of the target variable, that is |Pa(Y )|.

For instance, in Fig. 6.2(b) the input space dimensionality is 200. However,
E[Y |do(X1, . . . , X100, Z1, . . . , Z100)] = E[Y |do(X100, Z100)], thusX100 and Z100

are the only two relevant variables and the intrinsic dimensionality of the
problem is two. For the general problem in Eq. (6.1) we have E[Y|do(X)] =

E[Y|do(Pa(Y))]. Related to the concept of causal dimensionality, Wang et al.
[2016] proposed to perform Bayesian optimization in a low-dimensional space
which reflects the intrinsic dimensionality of a function. Provided that the
objective function has low intrinsic dimensionality, Wang et al. [2016] use
random embeddings to reduce the problem dimensionality without knowing
which dimensions are important. This idea can be formalized and made explicit
by taking a causal perspective on the optimization problem. The causal graph
allows to determine not only if the function has low intrinsic dimensionality
but also to identify which dimensions are important.

Causal Bandits There is a significant link between our problem setup and
the settings tackled by causal mab algorithms [Bareinboim et al., 2015]. Causal
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X Z Y

Figure 6.3: Toy example illustrating the elements of cbo. Left : dag, scm and
optimal sets considered by cbo and bo. Right : Objective functions for different
intervention sets. Notice how the intervention function for {X,Z}X is invariant
with respect to X when the value of Z is fixed. Therefore this intervention
set does not need to be explored and the causal intrinsic dimensionality of the
problem reduces to one.

mab algorithms interpret decisions as interventions, target a causal effect
function, and account for complex dependency structures between actions
that are encoded in the causal graph. Indeed, when all intervention variables
X are binary, the cgo setting reduces to the causal mab setting. However,
Eq. (6.1) gives a more general formulation of the problem where variables can
be continuous or categorical and, more importantly, where both the intervention
values and the intervention set need to be jointly determined.

6.3 Methodology

This section details a new methodology, which we call Causal Bayesian Op-
timization, addressing the problem in Eq. (6.1). The building blocks of this
approach are the following:

• an exploration set (Section 6.3.1) determining a set of variables which is
worth intervening on based on the topology of G;

• a surrogate model (Section 6.3.2), called Causal gp model, that enables
the integration of observational and interventional data;

• an acquisition function (Section 6.3.3) solving the exploration/exploitation
trade-off across interventions;

• an ε-greedy policy (Section 6.3.4) solving the observation/intervention
trade-off within every single intervention.
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In this chapter we consider settings where a data set DO = {(vn, yn)}Nn=1 from
an observational study is available and all causal effects in G are identifiable.
Here vn ∈ R|V|, yn ∈ R and the joint distribution follows the conditional
independence assumptions encoded in G.

6.3.1 Selecting the Optimal Exploration Set

A naive approach to find X?
s would be to explore the 2|X| sets in P(X). Albeit

this is a valid strategy, its complexity grows exponentially with |X|. However,
exploiting the rules of do-calculus and the partial orders among subsets, Lee
and Bareinboim [2018] identify invariances in the interventional space and
potentially optimal intervention set which we define below.

Definition 6.2. (Minimal Intervention set (mis)) Given 〈G,Y,X,C〉, a
set of variables Xs ∈ P(X) is said to be a mis if there is no X′s ⊂ Xs such that
E[Y |do (Xs = xs)] = E[Y |do (X′s = x′s)].

We denote by MC
G,Y the set of miss for 〈G,Y,X,C〉 where each mis rep-

resents a set of variables that is worth intervening on. When C = ∅, we use
MG,Y . Incorporating into mis the partial orderedness among subsets of P(X)

we define the so-called pomis.

Definition 6.3. (Possibly-Optimal Minimal Intervention set (pomis))
Given 〈G,Y,X,C〉, let Xs ∈ MC

G,Y . Xs is a pomis if there exists a scm con-
forming to G such that E[Y |do (Xs = x∗)] > ∀W∈MC

G,Y \Xs
E[Y |do (W = w∗)]

where x∗ and w∗ denote the optimal intervention values.

We denote by PC
G,Y the set of pomis for 〈G,Y,X,C〉 where each pomis

represents a variable on which intervening always improves Y with respect
to the remaining elements in MC

G,Y . For completeness, we also use BC
G,Y

to denote the unique set on which bo performs interventions that includes
all manipulative variables X. In Fig. 6.3 we give an example in which
|MG,Y | < |P(X)| and intervening on BG,Y is suboptimal. Indeed, Fig. 6.3 shows
how E[Y |do (X = x) , do (Z = z)] = E[Y |do (Z = z)] and the causal intrinsic
dimensionality of this problem is |Pa(Y )| = 1. In addition, E[Y |do (X = x∗)] >

E[Y |do (Z = z∗)] thus Z is optimal with respect to X and is the only set in
PG,Y . For notational convenience, we refer to the exploration set, which can be
MC
G,Y or PC

G,Y , as es. The choice of the es depends on the causal graph and
the next sections are agnostic to the choice of the es.

6.3.2 Causal gp Model

To integrate experimental and observational data, for each Xs ∈ es, we place
a gp prior on fs(x) = E[Y |do (Xs = x)] with prior mean and kernel function
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computed via do-calculus:

fs(x) ∼ GP(ms(x), ks(x,x
′)) (6.2)

ms(x) = Ê[Y |do (Xs = x)] (6.3)

ks(x,x
′) = kRBF (x,x′) + σs(x)σs(x

′) (6.4)

where σs(x) =

√
V̂(Y |do (Xs = x)) with V̂ representing the variance estimated

from observational data and kRBF representing the radial basis function kernel
defined as kRBF (x,x′) := exp(− ||x−x′||2

2l2
). Fig. 6.4 illustrates the difference

between the posterior gp distribution obtained with a zero mean prior distri-
bution and rbf kernel (lower plot) and with the proposed causal prior (upper
plot). Alternative kernel functions, e.g. a non stationary kernel to capture
the behaviour of the intervention function for X in Fig. 6.3, could be easily
combined with the additional vartiance term. In terms of computations, both
the prior mean function ms(x) and the variance adjustment term σs(x) can be
obtained by estimating the conditional densities required by the do-calculus
using observational data and then approximating the intractable integrals via
Monte Carlo integration. Overall, the causal prior mean function captures the
behaviour of the target function in areas where observational data is available
(crosses at the bottom) despite the lack of interventional data. In addition, the
causal posterior variance is higher in areas where σs(x) is inflated due to the
lack of observations, which enables proper uncertainty quantification around
the causal effects in a system.

However, note that in this work we estimate the kernel hyperparame-
ters from the data by maximizing the marginal likelihood via the Broy-
den–Fletcher–Goldfarb–Shanno (bfgs) algorithm. While this facilitates infer-
ence as posteriors can be derived in closed form, it suffers from two main issues.
On the one hand, using point estimates of hyperparameters yields overconfi-
dent predictions, by failing to account for hyperparameters’ uncertainty. On
the other hand, the non-convexity of the marginal likelihood surface can lead
to poor estimates located at local minima. Multiple starting points for the
hyperparameters optimization should be used to alleviate this issue. Extending
the Bayesian treatment to hyperparameters in a hierarchical framework leads
to intractable posterior and thus requires resorting to approximate inference
methods, see e.g. Lalchand and Rasmussen [2020] for an example of a fully
bayesian gp regression.
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6.3.3 Causal Acquisition Function

For each Xs ∈ es, we define the acquisition function as the expected im-
provement (ei) with respect to the current best observed interventional setting
across all sets in es. Indeed, using the ei as an acquisition function ensures
computational tractability. In addition, the standard ei formulation can be
easily extended to compare improvements over multiple surrogate models. Al-
ternatively, one could develop causal versions of mutual information-based
acquisition functions such as entropy search [Hennig and Schuler, 2012] or max-
value entropy search [Wang and Jegelka, 2017]. However, this would require
defining a distribution over the global optimal input or output which would
significantly complicate derivations.

At every step of the optimization, denote by ys = E[Y |do (Xs = x)] and y?

the optimal value of ys, s = 1, . . . , |es| observed so far. The ei is given by:

eis(x) = Ep(ys)[max(ys − y?, 0)]/Co(Xs,x). (6.5)

Let α1, . . . , α|es| be solutions of the optimization of eis(x) for each set
in es and α? := max{α1, . . . , α|es|}. The best new intervention set is given
by s? = argmaxs∈{1,··· ,|es|} αs. Therefore, the set-value pair to intervene on is
(s?, α?). Fig. 6.5 shows the acquisition functions for es = MC

G,Y in the toy
example. The new intervention is selected by comparing the maxima of the
acquisition functions across interventions (red and back dots).

6.3.4 ε-greedy Policy

For some graph structures, such as the one in Fig. 6.2, the empty set, which
represents the observational case, is part of es. A mechanism in the optimization
process is then needed to observe the system when that is the optimal strategy.
One could take a Bayesian approach and decide whether to observe the system
by reasoning about the values we could observe if this was our selected action. To
do that, we would simulate observations given our current posterior distributions
on the functions in the scm and get an estimate of the expected observational
output. However, if the variances of our current posterior distributions on
the scm functions are large or if our likelihoods for the scm are wrong, we
might end up under exploring the system and observing it for a high number of
trials before revising our functions estimates thus potentially intervening and
realising higher outputs can be achieved by performing interventions. Therefore,
inspired by the ε-greedy policies in rl [Tokic, 2010], we propose an ε-greedy
approach where ε determines the probability of observing the system instead
of intervening. The value of ε, which is a parameter of cbo, can be selected
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Figure 6.4: Posterior gp obtained with two different prior formulations. First
row: Posterior distribution associated to the Causal gp prior which integrates
both the interventional data (red dots) and the observational data (green
crosses). Second row: Posterior distribution associated to a gp prior with zero
mean and rbf kernel. In this case the gp model only considers interventional
data (red dots) thus not capturing the true function in areas where observational
data are available, e.g. the interval [−2, 0].

in several different ways and needs to balance the observation-intervention
trade-off emerging in cbo. On the one hand, collecting observational data
allows to reliably estimate causal effects via do-calculus. On the other hand,
computing consistent causal effects for values outside of the observational range,
requires intervening. The agent needs to find the right combination of the two
actions so as to exploit observational information while intervening in areas
where the uncertainty is higher. Here we define ε as:

ε =
Vol(C(DO))

Vol(×X∈X(D(X)))
× N

Nmax
, (6.6)

where Vol(C(DO)) represents the volume of the convex hull for the observational
data and Vol(×X∈X(D(X))) gives the volume of the interventional domain,
see Fig. 6.6 for a visualization of the convex hull for the example of Fig. 6.3.
Nmax represents the maximum number of observations the agent is willing
to collect and N is the current size of DO. When Vol(C(DO)) is small with
respect to N , the interventional space is bigger than the observational space.
We thus intervene and explore part of the interventional space not covered
by DO. On the contrary, if Vol(C(DO)) is large with respect to N , we obtain
consistent estimates of the causal effects by collecting more observations and
computing them via the do-calculus. We thus observe and update the prior
gp in Eqs. (6.3) - (6.4). Other ε-greedy policies can be formulated in order to

92



solve the trade-off differently. For instance, the agent could define an adaptive
ε which favours observations in the first stages of the optimization procedure
and interventions as N increases. Alternatively, the value of ε could depend on
the agent’s budget and favours interventions when their cost is low. Finding
the optimal ε-greedy policy is left as an open research direction.

Figure 6.5: Toy example. Acquisition functions for the variables in MC
G,Y . Each

surrogate model is associated to an acquisition function. The maxima across
different functions (red and black dots) are compared to select the next function
evaluation. In this plot, the dashed blue line gives the next optimal evaluation
which corresponds to an intervention on X.

6.3.5 The cbo Algorithm

We give the complete cbo algorithm in Algorithm 2. The time complexity of
cbo is dominated by algebraic operations on the kernel matrix ks(x,x′) which
are O(H3) where H denotes the number of function evaluations of the bo

algorithm. The space complexity is also dominated by storing ks(x,x′) which is
O(H2). Both the time and space complexities can be improved by resorting to
inducing point approximations (see Section 2.1.2 for an introduction). Given the
acquisition function and the surrogate model, the theoretical guarantees of cbo

are limited and follow directly from the theoretical properties of do-calculus.
However, one could extend cbo to use a gp-ucb acquisition function for which
a cumulative regret bound has been derived [Srinivas et al., 2012]. Adapting

Figure 6.6: Toy example. Convex hull in the X-Z computed considering the
observational dataset DO represented by the red crosses. The boundaries of the
plot correspond to the interventional domain. The rescaled ratio between the
volume of the convex hull (red shaded area) and the volume of the interventional
domain (white area) gives the ε value used to select observation vs intervention.
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other acquisition functions such as the gp-ucb to the causal setting remains
an interesting open challenge.

6.4 Experiments

We test cbo on two synthetic settings and on two real-world applications
for which a dag is available and can be used as a simulator. We run cbo

to explore both MC
G,Y and PC

G,Y and show how the optimal intervention set,
intervention values, and cost incurred to achieve the optimum change de-
pending on the dag and the scm. For all variables in X and their combina-
tions, we assume to have data from previous interventions which we denote by
DI = {(xi,E

[
Y |do

(
Xi
s = xi

)]
)}N

I
s ,|es|

i=1,s=1. Typically the number of interventional
outputs observed for each set, that is N I

s , is very small and future interventions
are prohibitive to implement. Code and data for all the experiments is provided
at https://github.com/VirgiAgl/CBO.

Baselines We compare cbo against a standard bo algorithm, in which all
variables are intervened upon, and a cbo version where a standard gp prior
given by p(fs(x)) = GP(0, krbf(x,x′)) is used.

Algorithm 2 cbo

1: Inputs: DO, DI, G, es, number of steps H.
2: Output: X?

s,x
?
s, Ê[Y?|do (X∗s = x?s)]

3: Initialize: Set DI
0 = DI and DO

0 = DO

4: for h=1 to H do
5: Compute ε and sample u ∼ U(0, 1)

6: if ε > u then
7: (Observe)
8: 1. Observe new observations (xh, ch,yh).
9: 2. Augment DO = DO ∪ {(xh, ch,yh)}.

10: 3. Update prior of the causal gp (Eq. (6.2))
11: else
12: (Intervene)
13: 1. Compute eis(x) for each element Xs ∈ es (Eq. (6.5)).
14: 2. Obtain the optimal interventional set-value pair (s?, α?).
15: 3. Intervene on the system.
16: 4. Update posterior of the causal gp.
17: end if
18: end for
19: Return the optimal intervention couple (X?

s,x
?
s) and corresponding output.
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Figure 6.7: Toy example. Convergence of cbo and standard bo across different
initializations of DI . The red line gives the optimal Y ∗ when intervening on
sets in MC

G,Y , PC
G,Y or BC

G,Y . Solid lines give cbo results when using the causal
gp model which is denoted by GP+. Dotted lines correspond to cbo with a
standard gp prior model p(f(xs)) = GP(0, krbf(xs,x

′
s)). See Fig. C.1 in the

supplement for standard deviations.

Performance measures We run cbo with different initializations of DI and
report the average convergence performances together with standard errors. In
the synthetic setting, we consider three different cost configurations: equal unit
cost per node, different fix costs per node, and variable costs per node. The
total cost at each optimization step is computed as the sum of the cost for each
intervened node. We show the results for equal unit cost per node and report
the full comparison in the supplement.

6.4.1 Toy Experiment

We show the convergence results for cbo and competing algorithms for the
toy example described in the text. For this experiment we set N = 100 and
N I
s = 3 for all Xs ∈ es. Given the scm in Fig. 6.3 (left panel), the optimal

configuration is (X?
s , x

?
s) = (Z,−3.20). cbo converges to the optimum faster

than bo which requires intervening on all nodes and it is thus twice more
expensive (Fig. 6.7).

6.4.2 Synthetic Experiment

We test the algorithm on the dag given in Fig. 6.2(a). This dag includes
unobserved confounders, non-manipulative variables and requires to apply
both front-door and back-door adjustment formulas to estimate the causal
effects. We set N I

s = 10 for all Xs ∈ es and test different values of N .
The exploration set for bo is given by BC

G,Y = {B,D,E}, while for cbo

we have MC
G,Y = {∅, {B}, {D}, {E}, {B,D}, {B,E}, {D,E}}, and PC

G,Y =

{∅, {B}, {D}, {E}, {B,D}, {D,E}}. All the intervention sets in MC
G,Y and

PC
G,Y include a maximum of two variables. On the contrary, bo only considers
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Figure 6.8: Synthetic example. Convergence of cbo and bo across different
initialization of DI . The orange line gives the optimal Y ∗ when intervening on
BC
G,Y . The red line gives the optimal Y ∗ when intervening on sets in MC

G,Y or
PC
G,Y . Solid lines give cbo results when using the causal gp model, denoted by
GP+, while dotted lines correspond to cbo with a standard gp prior model.
Shaded areas are ± standard deviation.

interventions on three variables thus increasing the dimensionality of the problem
by one. The scm, the do-calculus computations and further details about this
experiment are given in Appendix C.2 - Appendix C.5.

Fig. 6.8 shows how cbo outperforms standard bo and achieves the best
performance when the causal gp model is used. There are two main reasons why
bo leads to a suboptimal solution. Firstly, notice that the causal effect when in-
tervening on all variables is equal to E[Y |do (B = b) , do (D = d) , do (E = e)] =

E[Y |do (D = d) , do (E = e)]. This means that the same outcome can be
achieved by only intervening on {D,E} at a significantly lower cost. Sec-
ondly, although it may seem counter-intuitive, intervening only on a subset of
variables leads to better outcomes. Manipulating all variables breaks the causal
links between them and blocks the propagation of causal effects in the graph.
In this example, intervening on B,E,D blocks the causal effect of B on Y .
Manipulating only B leads to a propagation of its causal effect through D and E.
Given the scm, E[Y |do(B,= b,D = d,E = e)] < E[Y |do(B,= b,D = d)] for
each b ∈ D(B), d ∈ D(D) and e ∈ D(E). Indeed, setting the level of B makes
D and E take values outside of their interventional domains D(D) and D(E)

thus leading to function values not achievable in bo. Furthermore, the causal
gp prior determines the locations of the function evaluations thus reducing
the number of steps required to find the optimum. As expected, the benefit of
incorporating DO into the prior becomes more evident when N increases. The
optimal configuration for this setting is (X?

s,x
?
s) = ({B,D}, (−5.0, 3.28)).

6.4.3 Example in Ecology

We apply cbo to a large-scale optimization problem in ecology. We consider
the issue of maximizing the net coral ecosystem calcification (nec) in the
Bermuda given a set of environmental variables. The causal graph (Fig. C.3(b)
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in the supplement) is taken from Courtney et al. [2017] and modified so as
to avoid directed cycles. We consider a subset of 5 variables as manipulative,
that is X = {Nut,ΩA, Chlα,ta,dic}, and assume to be able to intervene
contemporaneously on a maximum of 3 variables. Given these assumptions
and the dag, MC

G,Y includes the single variable interventions and all the 2
and 3 variables interventions that can be performed selecting variables in
X. The cardinality of MC

G,Y is thus 25. Notice that the size of BC
G,Y =

{Nut,ΩA, Chlα,ta,dic} is greater than 3 thus bo is not a viable strategy
for this application. We first construct a simulator by fitting a linear scm

with the 50 observations provided by Andersson and Bates [2018]. We then
use the simulator to generate N = 500 observations and N I

s = 1 initial
interventional data points for all Xs ∈ es. We set the interventional domains to
D(Nut) = [−2, 5], D(ΩA) = [2, 4], D(Chlα) = [0.3, 0.4], D(ta) = [2200, 2550]

and D(dic) = [1950, 2150]. We run cbo on MC
G,Y , with and without the causal

gp prior. We found cbo to successfully explore MC
G,Y , especially when the

causal gp prior is used (Fig. 6.9). The optimal intervention for this experiment
is given by (X?

s,x
?
s) = ({ΩA,ta,dic}, (2, 2550, 1950)).

6.4.4 Example in Healthcare

Finally, we apply our method to an example in healthcare. The dag (Fig. C.3(a)
in the supplement) is taken from Thompson [2019] and Ferro et al. [2015] and
is used to model the causal effect of statin drugs on the levels of prostate
specific antigen (psa). Our goal is to minimize psa by intervening on statin
and aspirin usage. DO consists of N = 500 instances sampled from the
simulator while N I

s = 3 for all Xs ∈ es . Given the causal structure, MC
G,Y =

{∅, {aspirin}, {statin}, {aspirin, statin}} while PC
G,Y = {{aspirin, statin}}. We

set the domain D(aspirin) = D(statin) = [0.0, 1.0] and run cbo on both
MC
G,Y and PC

G,Y . We found the optimal intervention to be the couple (X?
s,x

?
s) =

({aspirin, statin}, (0.0, 1.0)) which is consistent with domain knowledge [Algotar
et al., 2010]. This experiment shows how cbo can help doctors, and decision-
makers in general, to find optimal interventions in real-life scenarios based on
simulators and thus avoiding expensive and invasive interventions.

6.5 Conclusions and Discussion

This chapter formalizes the problem of globally optimizing a variable that is
part of a causal model in which a sequence of interventions can be performed.
We propose a Causal Bayesian Optimization (cbo) algorithm which solves
the global optimization problem by exploring a set of potentially optimal sets
defined on a causal graph. This is achieved via a causal expected improvement
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Figure 6.9: nec example. Convergence of cbo across different initialization
of interventional data DI and with and without causal gp prior. The red line
gives the optimal Y ? when intervening on MC

G,Y .

acquisition function and an ε-greedy policy solving the emerging observation-
intervention trade-off together with the well-known exploration-exploitation
trade-off. In addition, we formulate a causal gp model which allows us to
integrate observational and interventional data via the do-calculus and properly
calibrates uncertainty around the causal effects. We show the benefits of the
proposed approach in a variety of settings, both synthetic and real, character-
ized by different causal graph structures. Our results demonstrate how cbo

outperforms bo and reaches the global optimum after a significantly lower
number of optimization steps.

We can identify different cbo limitations. Firstly, cbo requires placing a
different gp on the causal effect of each intervention set we want to explore.
This means that the number of surrogate models becomes prohibitive when the
number of nodes in the causal graph increases. In addition, having multiple
single-task models limits the transfer of information across interventions. We
will address this limitation in Chapter 7 through a multi-task formulation that
allows capturing the correlation structure among different causal effects, similar
to the model formulation we have developed in Chapter 4 in the context of
Poisson point processes. We will see how using a multi-task formulation speeds
up the optimization while reducing the number of causal gps used by cbo.
Another important limitation of cbo is the lack of a time dependency structure
among variables. In real settings, the distribution of both the output and the
input variables might change over time, often in a non-stationary manner, thus
modifying the optimal intervention dynamically, both in terms of intervention
set and intervention value. This aspect will be the focus of Chapter 8. Finally,
cbo assumes full knowledge of the causal graph which is often an unrealistic
assumption in real-world settings. Combining the proposed framework with
a causal discovery algorithm remains an important open problem that we are
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currently investigating in Branchini et al. [2022]. Branchini et al. [2022] offers
a framework for joint optimization and causal discovery that properly accounts
for uncertainty in the graph structure. In addition, it provides an acquisition
function that selects interventions that are useful in jointly identifying the
optimal configuration and the true underlying graph.
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Chapter 7

Multi-task Causal Learning with
Gaussian Processes

As seen in the previous chapter, solving sequential decision-making problems
in a variety of domains such as healthcare, systems biology, or operations
research, often requires experimentation. By performing interventions one
can understand how a system behaves when an action is taken and thus infer
the cause-effect relationships of a phenomenon. Experiments are especially
useful when observational causal inference methods do not provide an accurate
estimation of the causal effects. For instance, in healthcare, drugs are tested
in randomized clinical trials before commercialization. Biologists might want
to understand how genes interact in a cell once one of them is knocked out.
Finally, engineers investigate the impact of design changes on complex physical
systems by conducting experiments on digital twins [Ye et al., 2019]. Experi-
ments in these scenarios are usually expensive, time-consuming, and, especially
for field experiments, they may present ethical issues. Therefore, researchers
generally have to trade-off cost, time, and other practical considerations to de-
cide which experiments to conduct, if any, to learn about the system’s behaviour.

Consider the causal graph in Fig. 7.1 which describes how crop yield Y is
affected by soil fumigants X and the level of eel-worm population at different
times Z = {Z1, Z2, Z3} [Cochran and Cox, 1957; Pearl, 1995]. By performing a
set of experiments, the investigator aims at learning the intervention functions
relating the expected crop yield to each possible intervention set and level.
Naïvely, one could achieve that by modelling each intervention function sepa-
rately. This is indeed the approach taken in cbo (see Chapter 6) where each
causal effect is modelled via a single-task causal gp. Similar to what is seen in
Chapter 4 in the context of Poisson point processes, using single-task models
might decrease the algorithm performance while increasing the computational
complexity of the problem. Indeed, separate single-task models would disregard
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Soil fumigants (X)

Eel-worm
population
t-1 (Z1)

Crop yield (Y )

Eel-worm
population
t+1 (Z3)

Eel-worm
population t
(Z2)

Figure 7.1: dag for the crop yield. Nodes denote variables, arrows represent
causal effects and dashed edges indicate unobserved confounders.

the correlation structure existing among a set of functions, which in Chapter 4
were intensity functions, and here are experimental outputs. In addition, as
discussed in Section 6.5, in cbo the number of required gp models increases
exponentially with the size of the causal graph. Finally, single-task models
disregard the causal information each experiment carries about the yield we
would obtain by performing alternative interventions in the graph. For instance,
observing the yield when running an experiment on the intervention set {X,Z1}
and setting the value to the intervention value {x, z1}, provides information
about the yield we would get from intervening only on X or on {X,Z1, Z2, Z3}.
In this chapter, we study how to jointly model such intervention functions so
as to transfer knowledge across different experimental setups and integrate
observational and interventional data. The model proposed here enables proper
uncertainty quantification of the causal effects thus allowing the definition of
optimal experimental design strategies.

The framework proposed in this chapter combines causal inference with
multi-task learning via Gaussian processes (gp). Probabilistic causal models are
commonly used in disciplines where explicit experimentation may be difficult
and the do-calculus (see Section 3.2.3 for an introduction) enables prediction
of the effect of an intervention without performing the experiment. In the
do-calculus, different intervention functions are modelled individually and there
is no information shared across experiments. Modelling the correlation across
experiments is crucial, especially when the number of observational data points
is limited and experiments on some variables cannot be performed. Multi-
task gp methods have been extensively used to model non-trivial correlations
between outputs (see Chapter 4, Section 2.2 and Álvarez et al. [2012] for a
review). However, to the best of our knowledge, this is the first study focusing
on intervention functions, possibly of different dimensionality, defined on a
causal graph. Particularly, we make the following contributions:
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Theoretical results on multi-task causal model We give theoretical
results detailing when and how a causal multi-task model for the experimental
outputs can be developed depending on the topology of the dag.

dag-gp model Exploiting our theoretical results, we develop a joint proba-
bilistic model for all intervention functions, henceforth named dag-gp, which
flexibly accommodates different assumptions in terms of data availability – both
observational and interventional.

Experimental comparison on different decision-making algorithms
We demonstrate how dag-gp achieves the best fitting performance in a variety of
experimental settings, both synthetic and real, while enabling proper uncertainty
quantification and thus optimal decision making when used within Active
Learning (al) and Bayesian Optimization (bo).

7.1 Problem setup

We consider a scm as defined in Definition 3.1 of Section 3.2 and the associated
directed causal acyclic graph (dag) denoted by G1. Within the complete set of
variables in the scm, we distinguish between two different types of variables:
treatment variables X that can be manipulated and set to specific values and
the output variable Y that represents the agent’s outcome of interest2. As done
in Chapter 6, we denote the interventional distribution for two disjoint sets in
V, say X and Y , as P (Y |do (X = x)). This is the distribution of Y obtained
by intervening on X and fixing its value to x in the data generating mechanism,
irrespective of the values of its parents. The interventional distribution differs
from the observational distribution which is denoted by P (Y |X = x). In this
chapter, we assume the causal effect for X on Y to be identifiable ∀X ∈ P(X)

with P(X) denoting the power set of X. When this is the case (see Galles
and Pearl [1995] for the set of identifiability conditions given a causal graph),
do-calculus allows the estimation of interventional distributions and thus causal
effects from observational distributions [Pearl, 1995]. However, the do-calculus
involves computing integrals which are generally not tractable. When this is
the case, observational data can be used to get a Monte Carlo estimate, e.g.
P̂ (Y|do (X = x)) ≈ P (Y|do (X = x)), which is consistent when the number of
samples drawn from P (V) is sufficiently large.

1In this chapter we assume G to be known. However, one could run a causal discovery
algorithm as a pre-processing step or use interventional data to discriminate among graphs
within the Markov equivalence class.

2This setting can be extended to include non-manipulative variables as done in Chapter 6.
See Lee and Bareinboim [2019] for a definition of such nodes.
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Goal Consider a dag G and the related scm. Define the set of intervention
functions for Y in G as:

T = {ts(x)}|P(X)|
s=1 ts(x) = Ep(Y |do(Xs=x))[Y ] = E[Y |do (Xs = x)] (7.1)

with Xs ∈ P(X) where P(X) is the power set of X minus the empty set3 and x ∈
D(Xs) where D(Xs) = ×X∈XsD(X) with D(X) denoting the interventional
domain of X. Let DO = {xn, yn}Nn=1, with xn ∈ R|X| and yn ∈ R, be an
observational dataset of size N from this scm. Consider an interventional
dataset DI = (XI ,YI) with XI =

⋃
s{xis}

NI
s

i=1 and YI =
⋃
s{yis}

NI
s

i=1 denoting
the intervention levels and the function values observed from previously run
experiments across sets in P(X). N I

s represents the number of experimental
outputs observed for the intervention set Xs. Our goal is to define a joint prior
distribution p(T) and compute the posterior p(T|DI) so as to make probabilistic
predictions for T at some unobserved intervention sets and levels.

7.2 Related work

While there exists an extensive literature on multi-task learning with gps
[Bonilla et al., 2007; Álvarez et al., 2012] and causality [Guo et al., 2020; Pearl,
2009b], the literature on causal multi-task learning and causal decision-making
is very limited. Here we will review the closest works within these two fields.

Causal multi-task models In the causality literature, studies have focused
on observational causal inference and have investigated the problem of transfer-
ring the causal effect of one given variable across environments [Bareinboim
and Pearl, 2012, 2013, 2014; Pearl and Bareinboim, 2011]. Several works have
focused on domain adaptation problems [Magliacane et al., 2018; Rojas-Carulla
et al., 2018; Zhang et al., 2013] where data for a source domain is given, and the
task is to predict the distribution of a target variable in a target domain. Closer
to our work in this chapter, Alaa and Van der Schaar [2017] have developed a
linear coregionalization model for learning the individual treatment effects via
observational data. While Alaa and Van der Schaar [2017] is the first paper
conceptualizing causal inference as a multi-task learning problem, its focus is
on modelling the correlation across intervention levels for a single intervention
function. In addition, the model is developed for a dichotomous intervention
variable. Finally, Lee et al. [2020] studied the problem of the identification
of the causal effect of one intervention set in terms of available observational
and experimental distributions. While one could repeat their procedure for all
possible intervention sets in the causal graph, Lee et al. [2020] does not allow

3We exclude the empty set as it corresponds to the observational distribution t∅(x) = E[Y ].
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to express all causal effects via a shared interventional distribution which is
instead the focus of this chapter.

Differently from these previous works, the framework proposed in this
chapter focuses on transfer within a single environment, across experiments,
and across intervention levels. The set of functions we wish to learn have
continuous input spaces of different dimensionality. Therefore, capturing their
correlation requires placing a probabilistic model over the inputs which enables
mapping between input spaces. The dag, which we assume to be known and is
not available in standard multi-task settings, allows us to define such a model.
Therefore, existing multi-output gp models are not applicable to our problem.

Causal Decision Making Our work is also related to the literature on causal
decision-making. As discussed in the previous chapter, studies in this field have
focused on multi-armed bandit problems [Bareinboim et al., 2015; Lattimore
et al., 2016; Lee and Bareinboim, 2018; Lu et al., 2018] and reinforcement
learning [Buesing et al., 2019; Foerster et al., 2018] settings where arms or
actions correspond to interventions on a dag. More recently, we introduced
Causal Bayesian Optimization (cbo) as a framework to solve the problem of
finding an optimal intervention in a dag by modelling the intervention functions
with gps. As mentioned before, in cbo each function is modelled independently
and their correlation is not accounted for when exploring the intervention space.
The model proposed in this chapter overcomes this limitation by introducing
a multi-task model for experimental outputs. Finally, in the causal literature
there has been a growing interest for experimental design algorithms to learn
causal graphs [Greenewald et al., 2019; Hauser and Bühlmann, 2014; He and
Geng, 2008] or the observational distributions in a graph [Rubenstein et al.,
2017b]. In this chapter, we use our multi-task model within an al framework
so as to efficiently learn the experimental outputs in a causal graph.

7.3 Multi-task learning of intervention functions

In this section we address the following question: can we develop a joint model
for the set of functions T defined in a causal graph and thus transfer information
across experiments?

To answer this question we study the correlation among functions in T

which varies with the topology of the causal graph G. Inspired by previous
works on latent force models [Álvarez et al., 2009], we show how any functions
in T can be written as an integral transformation of some base function f ,
also defined starting from G, via some integral operator Ls such that ts(x) =
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Ls(f)(x), ∀Xs ∈ P(X). We first characterize the latent structure among
experimental outputs and provide an explicit expression for both f and Ls for
each intervention set (Section 7.3.1). Based on the properties of G, we clarify
the conditions for the existence of this function. Exploiting these results, we
detail a new model to learn T which we call the dag-gp model (Section 7.3.2).
In dag-gp, we place a gp prior on the base function f and propagate our
prior assumptions on the remaining part of the graph to analytically derive
a joint distribution of the elements in T. The resulting prior distribution
incorporates the causal structure and enables the integration of observational
and interventional data.

7.3.1 Characterization of the latent structure in a dag

The following results provide a theoretical foundation for the multi-task causal
gp model introduced later. In particular, they characterize when f and Ls

exist and detail how to compute them thus fully characterizing when transfer
across experiments is possible. All proofs are given in Appendix D.

Definition 7.1. Consider a dag G where the treatment variables are denoted
by X. Let L be the set of variables directly confounded with Y , LN be the set
of variables in L that are not colliders4 and I be the set of parents of Y that is
Pa(Y ). For each Xs ∈ P(X) we define the following sets:

• INs = I\(Xs ∩ I) represents the set of variables in I not included in Xs.

• LIs = LN ∩Xs is the set of variables in L which are included in Xs and
are not colliders.

• LNs = LN\LIs is the set of variables in L that are neither included in Xs

nor colliders.

In the following theorem we denote by vNs the values for the variables in the
set INs while l represents the values for the set LN . These values are partitioned
in lNs for LNs and lIs for LIs depending on the set Xs we are considering.

Theorem 7.1. Causal operator. Consider a causal graph G and the related
scm where the output variable and the treatment variables are denoted by Y
and X respectively. Denote by L the set of variables in G that are directly
confounded with Y and let I be the set Pa(Y ). Assume that L does not include
nodes that have both unconfounded incoming and outcoming edges. It is possible
to prove that, ∀Xs ∈ P(X), the intervention function ts(x) : D(Xs)→ R can

4Here we call colliders variables that are such on all paths. This means that they only
have incoming edges. A collider on a path between e.g. X and Y is a variable that is causally
influenced by both X and Y .
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be written as ts(x) = Ls(f)(x) where

Ls(f)(x) =

∫
· · ·
∫
πs(x, (v

N
s , l))f(v, l)dvNs dl, (7.2)

with f(v, l) = E
[
Y |do (I = v) ,LN = l

]
representing a shared latent function

and πs(x, (vNs , l)) = p(lIs|lNs )p(vNs , l
N
s |do (Xs = x)) giving the integrating mea-

sure for the set Xs.

We call Ls(f)(x) the causal operator, (I ∪ LN ) the base set, f(v, l) the base
function and πs(·, ·) the integrating measure of the set Xs. A simple limiting
case arises when the dag does not include variables directly confounded with
Y or L only includes colliders. In this case LN = ∅ and the base function
is included in T that means that one of the intervention function, namely
E[Y |do(Pa(Y ))], is itself the base function. Note that we exclude colliders
from L as conditioning on them could open some causal paths. We instead
include the non-colliders as conditioning on them in the base function blocks
the back-door paths from any intervention set in P(X) to the target variable
via the confounded edge. Theorem 7.1 provides a mechanism to reconstruct
all causal effects emerging from P(X) using the base function as a “driving
force”. In particular, the integrating measures can be seen as Green’s functions
incorporating the dag structure [Álvarez et al., 2009]. Note that, in order to
construct a surrogate model based on the result of Theorem 7.1, one needs to
estimate the integrating measures. Given the identifiability assumption we make
in this work, they can be reduced to do-free expressions and thus estimated
using observational data. While the result in Theorem 7.1 can be further
generalized to select I to be different from Pa(Y ), this choice is particularly
useful due to the following result.

Corollary 7.1. Minimality of I. The smallest set I for which Eq. (7.2)
holds is given by Pa(Y ).

The dimensionality of I, when chosen as Pa(Y ), has properties that have
been previously studied in the literature. In the context of causal optimization, it
corresponds to the so-called causal intrinsic dimensionality defined in Chapter 6,
which refers to the effective dimensionality of the space in which a function is
optimized when causal information is available. In addition, the existence of f
depends on the properties of the nodes in L which also represents the smallest
set for which Eq. (7.2) holds:

Theorem 7.2. Existence of f . If L includes nodes that have both uncon-
founded incoming and outcoming edges the function f does not exist.

Corollary 7.2. Minimality of L. The set L represents the smallest set for
which Eq. (7.2) holds.
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Figure 7.2: Posterior mean and variance for tX(x) in the dag of Fig. 7.4(a)
(without the red edge). For both plots mX(·) and kX(·, ·) give the posterior
mean and standard deviation respectively. Left : Comparison between the dag-
gp model and a single-task gp model (gp). dag-gp captures the behaviour of
tX(x) in areas where DI is not available (see area around x = −2) while reducing
the uncertainty via transfer due to available data for z. Right : Comparison
between dag-gp with the causal prior (dag-gp+) and a standard prior with
zero mean and rbf kernel (dag-gp). In addition to transfer, dag-gp+ captures
the behaviour of tX(x) in areas where DO (black ×) is available (see region
[−2, 0]) while inflating the uncertainty in areas with no observational data.

When f does not exist, full transfer across all functions in T is not possible.
Examples of such settings are given in Fig. 7.4 where the dags with red edges
do not admit a base function. However, these theoretical results can be used
to construct a model for partial transfer across a subset of T. This is further
discussed in Appendix D.2.

7.3.2 The dag-gp model

Based on the theoretical results derived in the previous section we now introduce
our multi-task causal gp model henceforth called the dag-gp model.

Model Likelihood Let DI = (XI ,YI) be the interventional dataset defined
in Section 7.1. Denote by TI the collection of intervention vector-valued
functions computed at XI . Each entry yis in YI , is assumed to be a noisy
observation of the corresponding function ts at xis:

yis = ts(x
i
s) + εis, for s = 1, . . . , |P(X)| and i = 1, . . . , N I

s , (7.3)

with εis ∼ N (0, σ2). In compact form, we can write the joint likelihood function
for the set of observed interventional outputs as p(YI |TI , σ2) = N (TI , σ2I).

Prior distribution on T To define a join prior distribution on the set of
intervention functions, that is p(T), we take the following two steps. First,
we follow the approach adopted in cbo and place a causal prior on f (see
Section 6.3.2 in Chapter 6), the base function of the dag. Second, we propagate
this prior on f through all elements in T via the causal operator in Eq. (7.2)
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to obtain the full prior.

Step 1. Causal prior on the base function. The key idea of the causal prior,
introduced for cbo in Chapter 6, is to use the observational dataset DO and
the do-calculus to construct the prior mean and variance of a gp that is used to
model an intervention function. In this setting, we compute such prior for the
causal effect of the set I on Y while conditioning on LN . The causal prior has
the benefit of carrying causal information but at the expense of requiring DO
to estimate the causal effect. Any sensible prior can be used in this step, so the
availability of DO is not strictly a necessity. However, in this chapter, we stick
to the causal prior since it provides an explicit way of combining experimental
and observational data and, as shown in Chapter 6, it significantly improves
the estimation of the causal effects in a variety of causal graphs.

For simplicity we use b = (v, l) to denote in compact form the values of the
variables in the base set I = v and LN = l. Given our identifiability assumption,
using do-calculus we can compute f̂(b) = f̂(v, l) = Ê[Y |do (I = v) , l] and
σ̂(b) = σ̂(v, l) = V̂[Y |do (I = v) , l]1/2. Here V̂ and Ê represent the variance
and expectation of the causal effects estimated from DO. The causal gp prior
for the base function is thus defined as:

f(b) ∼ GP(m(b),K(b,b′))

m(b) = f̂(b)

k(b,b′) = krbf(b,b′) + σ̂(b)σ̂(b′)

where the term krbf(b,b′) := σ2
f exp(−||b− b′||2/2l2) denotes the radial basis

function (rbf) kernel and is added to provide additional flexibility to the
model. Note that alternative kernel functions, e.g. a non stationary kernel to
capture the behaviour of the intervention function for X in Fig. 7.2, could be
easily combined with the additional vartiance term. As done in Chapter 6, in
this work we estimate the kernel hyperparameters by maximizing the marginal
likelihood via the Broyden–Fletcher–Goldfarb–Shanno (bfgs) algorithm. While
this facilitates inference, it fails to account for hyperparameters’ uncertainty
thus leading to overconfident predictions. In addition, due to the non-convexity
of the marginal likelihood, optimization may not converge to the global maxima.
However, a fully Bayesian approach would lead to intractable posterior and
would thus require resorting to approximate inference methods.

Step 2. Propagating the distribution to all elements in T. In Section 7.3.1
we showed how, ∀Xs ∈ P(X), we have ts(x) = Ls(f)(x) with f given by the
intervention function defined in Theorem 7.1. By linearity of the causal operator,
placing a gp prior on f induces a well-defined joint gp prior distribution on T.
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In particular, for each Xs ∈ P(X), we have:

ts(x) ∼ GP(ms(x), ks(x,x
′))

ms(x) =

∫
· · ·
∫
m(b)πs (x,bs) dbs (7.4)

ks(x,x
′) =

∫
· · ·
∫
K(b,b′)πs (x,bs)πs

(
x′,b′s

)
dbsdb′s. (7.5)

where bs = (vNs , l) is the subset of b including only the v values corre-
sponding to the set INs . Let D be a finite set of inputs for the functions in
T, that is D =

⋃
s,i{xis}. T computed in D follows a multivariate Gaus-

sian distribution that is TD ∼ N (mT(D),KT(D,D)) with KT(D,D) =

(KT(x,x′))x∈D,x′∈D and mT(D) = (mT(x))x∈D. In particular, for two generic
data points xis,x

j
s′ ∈ D with s and s′ denoting two distinct functions we have

mT(xis) = E
[
ts(x

i
s)
]

= ms(x
i
s) and KT(xis,x

j
s′) = Cov[ts(x

i
s), ts′(x

j
s′)].

When computing the covariance function across intervention sets and in-
tervention levels we differentiate between two cases. When both ts and ts′ are
different from f , we have:

Cov[ts(x
i
s), ts′(x

j
s′)] =

∫
· · ·
∫
k(b,b′)πs

(
xis,bs

)
πs′
(
xjs′ ,b

′
s′

)
dbsdb′s′ .

If one of the two functions equals f , in this case the s-th function, this expression
further reduces to:

Cov[ts(x
i
s), ts′(x

j
s′)] =

∫
k(b,b′)πs′

(
xjs′ ,b

′
s′

)
db′s′ .

Note that the integrating measures πs (·, ·) and πs′ (·, ·) allow to compute
the covariance between points that are defined on spaces on possibly different
dimensionality, a scenario that traditional multi-output gp models are unable to
handle. The prior p(T) enables to merge different data types and to account for
the natural correlation structure among interventions defined by the topology
of the dag. For this reason, we call this formulation the dag-gp model. The
parameters in Eqs. (7.4)–(7.5) can be computed in closed form only when
k(b,b′) is an rbf kernel and the integrating measures are assumed to be
Gaussian distributions. In all other cases, one needs to resort to numerical
approximations e.g. Monte Carlo integration in order to compute the parameters
of each ts(x). This is the approach used in this chapter.

Posterior distribution on T: The posterior distribution p(TD|DI) can be
derived analytically via standard gp updates. For any set D the posterior is a
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Figure 7.3: Models for learning the intervention functions T defined on a
dag. The do-calculus allows estimating T when only the observational data is
available. When the interventional data is also available, one can use a single-
task model (denoted by gp) for each intervention function or a joint multi-task
model (denoted by dag-gp) when the base function exists. When both data
types are available one can combine them using the causal gp construction
with parameters represented by m+(·) and k+(·, ·). The resulting single-task
and multi-task models are denoted by gp+ and dag-gp+ respectively.

Gaussian distribution with parameters given by:

p(TD|DI) = N (mT|DI (D),KT|DI (D,D))

mT|DI (D) = mT(D) +KT(D,XI)[KT(XI ,XI) + σ2I](TI −mT(XI))

KT|DI (D,D) = KT(D,D)−KT(D,XI)[KT(XI ,XI) + σ2I]KT(XI , D)

where mT(·) and KT(·, ·) are the prior parameters of the joint distribution on
T obtained by concatenating ms(·) and ks(·, ·) corresponding to the sets Xs

included in D. See Fig. 7.2 for an illustration of the dag-gp model compared to
a single-task gp when used to model the function tX(x) in the dag of Fig. 7.4.
Notice how the dag-gp model captures the behaviour of tX(x) in areas where
neither the observational nor the interventional data is available (left panel).
This is due to the interventional information transferred by the intervention
set {Z}. When the causal prior construction is used, the performance of the
dag-gp model in capturing the target function further improves (right panel).
The time complexity of the algorithm is O(N3) with N denoting the size of
DI . This complexity can be reduced by resorting to sparse gp approximations
e.g. inducing points approximations.

7.4 A helicopter view

In this section, we discuss the links between different model specifications and
clarify which approach should be used depending on the availability of different
data types that is observational DO and interventional data DI . Our goal here
is not to be exhaustive, nor prescriptive, but to help to give some perspective.
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A summary table of the methods is provided in Fig. 7.3.

When interventional data DI is not available, the do-calculus is the only
way to learn T and compute approximate causal effects in a dag. In turn,
this requires observational data DO which is used to estimate the conditional
distributions in the scm. When both data types are not available, learning
T via a probabilistic model is not possible unless the causal effects can be
transported from an alternative population exhibiting the same scm. In this
case, mechanistic models based on physical knowledge of the process under
investigation are the only option.

When instead interventional data DI are available one can consider a single-
task or a multi-task model. If the base function f does not exist, a single gp

model needs to be considered for each intervention function. This can be defined
via a standard prior with zero mean function and rbf kernel, denoted by gp in
the table or integrating observational data via the causal gp prior when these
are available. This option is denoted by gp+ in the table and corresponds to
the surrogate model used for cbo in Chapter 6. Recall that, independently
on the prior construction, with this formulation the experimental information
is not shared across functions and learning T requires intervening on all sets
in P(X). When instead the base function f exists, dag-gp can be used to
transfer interventional information and, depending on DO, also incorporating
observational information a priori. This is the formulation proposed in this
chapter and denoted by dag-gp+ in the table.

7.5 Experiments

This section evaluates the performance of the dag-gp model on two synthetic
settings and on a real world healthcare application (Fig. 7.4). We first learn T

with fixed observational and interventional data (Section 7.5.1) and then use the
dag-gp model to solve active learning (al) (Section 7.5.2) and Causal Bayesian
Optimization (cbo) (Section 7.5.3). Code and data for all the experiments is
provided at https://github.com/VirgiAgl/DAG-GP.

Baselines We run our algorithm both with (dag-gp+) and without (dag-gp)
causal prior and compare against the alternative models described in Fig. 7.3.
Note that we do not compare against alternative multi-task gp models because,
as mentioned in Section 7.2, the models existing in the literature cannot
deal with functions defined on different inputs spaces and thus can not be
straightforwardly applied to our problem.
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Figure 7.4: Examples of dags (in black) for which the base function f exists
and the dag-gp model can be formulated. Shaded nodes give manipulative
variables while empty nodes represent non-manipulative nodes. Y and psa are
the target variables. The red edges, if added, prevent the identification of f
making the transfer via the dag-gp model not possible.

Table 7.1: rmse performances across 10 initializations of DI . See Fig. 7.3 for a
summary on the compared methods. do stands for the do-calculus. N is the
size of DO. Standard errors in brackets.

N = 30 N = 100

dag-gp+ dag-gp gp+ gp do dag-gp+ dag-gp gp+ gp do

dag1
0.46 0.57 0.60 0.77 0.70 0.43 0.57 0.45 0.77 0.52
(0.06) (0.09) (0.2) (0.27) - (0.05) (0.08) (0.05) (0.27) -

dag2
0.44 0.45 0.62 1.26 1.40 0.36 0.41 0.58 1.28 1.41
(0.1) (0.13) (0.10) (0.11) - (0.09) (0.12) (0.07) (0.11) -

dag3
0.05 0.44 0.23 0.89 0.18 0.06 0.44 0.48 0.89 0.23
(0.04) (0.12) (0.03) (0.23) - (0.04) (0.12) (0.06) (0.23) -

Performance measures We run all models with different initialisation of
DI and different sizes of DO. We report the root mean square error (rmse)
performances together with standard errors across replicates. For the al

experiments, we show the rmse evolution as the size of DI increases. For
the cbo experiments we report the convergence performances to the global
optimum.

7.5.1 Learning T from data

We test the algorithm on the dags in Fig. 7.4 and refer to them as (a) dag1,
(b) dag2 and (c) dag3. dag3 is taken from Thompson [2019] and Ferro et al.
[2015] and is used to model the causal effect of statin drugs on the levels of
prostate specific antigen (psa). We consider the nodes {A,C} in dag2 and
{age,bmi, cancer} in dag3 to be non-manipulative. We set the size of the
interventional dataset DI to 5 × |T| for dag1 where |T| = 2, to 3 × |T| for
dag2 where |T| = 6 and to |T| for dag3 where |T| = 3. As expected, gp+

outperforms gp incorporating the information in DO (Table 7.1). Interest-
ingly, gp+ also outperforms dag-gp in dag3 when N = 30 and in dag1 when
N = 100. This depends on the effect that DO has, through its size N and
its coverage of the interventional domains, on both the causal prior and the
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Figure 7.5: al results. Convergence of the rmse performance across functions
in T and across replicates as more experiments are collected. dag-gp+ gives
our algorithm with the causal prior while dag-gp is our algorithm with a
standard prior. # interventions is the number of experiments for each Xs.
Shaded areas give ± standard deviation. See Fig. 7.3 for a summary on the
compared methods.

estimation of the integrating measures. Lower N and coverage imply not only
a less precise estimation of the do-calculus but also a worse estimation of the
integrating measures and thus a lower transfer of information. Higher N and
coverage imply more accurate estimation of the causal prior parameters and
enhanced transfer of information across experiments. In addition, the way in
which DO affects the performance results is specific to the dag structure and
to the distribution of the exogenous variables in the scm which in turn affects
the conditional distribution estimations. Table 7.1 shows how dag-gp+ consis-
tently outperforms all competing methods by successfully integrating different
data sources and transferring interventional information across functions in T.
Differently from competing methods, these results hold across different N and
DI values making dag-gp+ a robust default choice for any application.

7.5.2 dag-gp as surrogate model in Active Learning

We now analyse the effect of using the dag-gp framework as a surrogate model
for al. The goal of al is to design a sequence of function evaluations to perform
in order to learn a target function, or a set of target functions, as quickly as
possible. Denote by D a set of inputs for the functions in T, that is D =

⋃
sDs

with Ds ⊂ D(Xs) and consider a subset A ⊂ D of size k. We would like to
select A, that is select both the functions to be observed and the locations, so
as to maximize the reduction of entropy in the remaining unobserved locations:

A? = argmax
A:|A|=k

H(T(D\A))−H(T(D\A)|T(A)).

where H(·) represents the entropy, T(D\A) denotes the set of functions T

evaluated in D\A and T(D\A)|T(A) gives the distribution for T at (D\A)

given that we have observed T(A). While this problem is np-complete,
Krause et al. [2008] proposed an efficient greedy algorithm providing an
approximation for A?. This algorithm starts with an empty set A = ∅
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Figure 7.6: bo results. Convergence of the cbo algorithm to the global
optimum (E[Y ?|do (Xs = x)]) when our algorithm is used as a surrogate model
with (dag-gp+) and without (dag-gp) the causal prior. See Fig. 7.3 for a
summary of the compared methods. See the supplement for standard deviations
across replicates.

and solves the problem sequentially by selecting, at every step j, a point
xjs = argmax

xjs∈Ds\Aj−1 H(ts(x)|Aj−1)−H(ts(x)|Ds\(Aj−1 ∪ xjs)) where Aj−1

denotes the points collected in the j − 1 steps. Both H(ts(x)|Aj−1) =
1
2 log(2πσ2

xjs|Aj−1
) and H(ts(x)|Ds\(Aj−1 ∪ xjs) = 1

2 log(2πσ2
xjs|Ds\(Aj−1∪xjs)

) do
not depend on the observed T values thus the set A? can be selected before
any function evaluation is collected. In order to select the next intervention
level and set while properly accounting for uncertainty reduction, one can
use a probabilistic model for T and get estimates for the terms σ2

xjs|Aj−1
and

σ2
xjs|Ds\(Aj−1∪xjs)

for every Xs.

We run the al algorithm proposed by Krause et al. [2008] using dag-gp as
a surrogate model and select observations based on the Mutual Information (mi)
criteria extended to a multi-task setting. Fig. 7.5 shows the rmse performances
as more interventional data are collected. Across different N settings, dag-gp+

converges to the lowest rmse performance faster than competing methods by
collecting evaluations in areas where: (i) DO does not provide information
and (ii) the predictive variance is not reduced by the experimental information
transferred from the other interventions. As mentioned before, DO impacts on
the causal prior parameters via the do-calculus computations. When the latter
are less precise, because of lower N or lower coverage of the interventional
domains, the model variances for dag-gp+ or gp+ are inflated. Therefore,
when dag-gp+ or gp+ are used as surrogate models, the interventions are
collected mainly in areas where DO is not observed thus slowing down the
exploration of the interventional domains and the convergence to the minimum
rmse (see Fig. 7.5, dag2, N = 100).

7.5.3 dag-gp as surrogate model in cbo

Finally, we use dag-gp as a surrogate model for the cbo algorithm introduced
in Chapter 6. Note that we only change the surrogate model and keep the
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same ei acquisition function and ε-greedy policy. As in Chapter 6, our choice of
acquisition function is due to its computational tractability and the possibility
to straightforwardly compare improvements over multiple surrogate models.
We leave the development of alternative causal acquisition functions to future
work. Differently from the standard cbo framework, every time we collect
a new data point we update all surrogate models thus sharing interventional
information across causal effects models. We compare dag-gp against the
single-task models used in Chapter 6 both with and without causal gp prior.
Independently on the prior construction, we found dag-gp to significantly
speed up the convergence of cbo to the global optimum (Fig. 7.6) across
different causal graphs. This confirms the benefit of using the dag-gp model
to support decision-makers in finding optimal interventions in real-life scenarios
thus avoiding expensive and invasive interventions.

7.6 Conclusions and Discussion

This chapter addresses the problems of modelling the correlation structure of a
set of intervention functions defined on the dag of a causal model. Similarly to
the model developed in Chapter 4 in the context of Poisson point processes, we
tackle this issue by proposing a multi-task gp framework, called the dag-gp

model, that is inspired by the literature on latent force models (see Section 2.2)
and captures the dag topology via a set of integrating measures. These can be
seen as smoothing kernels in convolutional gp models or Green’s functions in
latent force models. The dag-gp model is based on a theoretical analysis of the
dag structure and allows to share experimental information across interventions
while integrating observational and interventional data via do-calculus. As
seen when comparing single-task and multi-task models in acausal settings
(Chapter 4), we found dag-gp to outperform competing single-task approaches
in terms of fitting performances. In addition, the dag-gp model significantly
increases the performance of sequential causal decision-making algorithms, such
as cbo or al, when used as a surrogate model. This is due to the better
uncertainty quantification we obtain in dag-gp thanks to the transfer of inter-
ventional data which in turn drives the exploration of the action space to more
promising regions.

It remains an intriguing open question to analyse whether the dag-gp

model can be used to transfer experimental information across environments
whose dags are partially different. Developing a joint probabilistic model
for all intervention functions across different systems would allow us to infer
causal effects for environments where no data is available and only mechanistic
models would be used at the moment. In addition, it would allow performing
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experiments in systems where the cost of intervening is lower and then transfer
the results thereby lowering the overall cost of experimentation.
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Chapter 8

Dynamic Causal Bayesian
Optimization

As discussed in the previous chapters, solving decision-making problems in a
variety of domains requires understanding cause-effect relationships in a system.
This can be obtained by experimenting in the system, selecting interventions
based on the Causal Bayesian Optimization (cbo) decision-making framework
introduced in Chapter 6 and, when this is possible, using the dag-gp model of
Chapter 7 as a surrogate. However, both cbo and dag-gp focus on static set-
tings where the variables are treated as i.i.d. over time, and their time evolution
is disregarded. Deciding how to intervene at every point in time is particularly
complex in dynamical systems, due to the evolving nature of causal effects.
For instance, companies need to decide how to allocate scarce resources across
different quarters. Alternatively, in healthcare, doctors need to select an optimal
sequence of treatments over a given time horizon. This chapter describes a
probabilistic framework that can be used to find optimal interventions over time.

Focusing on a specific example, consider a setting in which Yt denotes
the unemployment rate of an economy at time t, Zt is the economic growth
and Xt is the inflation rate. Fig. 8.1(a) depicts the causal graph representing
an agent’s understanding of the causal links between these variables. The
agent aims at determining, at each time step t ∈ {0, 1, 2}, the optimal action
to perform in order to minimize the current unemployment rate Yt while
accounting for the intervention cost. The investigator could frame this setting
as a sequence of global optimization problems and find the solutions by resorting
to cbo. However, cbo does not account for the system’s temporal evolution thus
breaking the time dependency structure existing among variables, see Fig. 8.1(b).
This might lead to sub-optimal solutions, especially in non-stationary scenarios.
The same would happen when using Adaptive Bayesian Optimization [abo,
Nyikosa et al., 2018] which is represented in Fig. 8.1(c) or bo which is given in
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Figure 8.1: dag representation of a dynamic causal global optimisation (dcgo)
problem (a) and the dag considered when using cbo, abo or bo to address
the same problem. Shaded nodes gives observed variables while the arrows
represent causal effects.

Fig. 8.1(d). Indeed, abo captures the time dependency of the objective function
but neither considers the causal structure among inputs nor their temporal
evolution. bo disregards both the temporal and the causal structure. Note
that neither bo nor abo was developed to deal with causal settings. Therefore,
the causal graphs in Fig. 8.1 associated with these two methods only aim at
helping the reader link different existing approaches that are then tested in the
experimental comparison. In other words, the goal of Fig. 8.1 is to give the
reader some perspective of the methods she can adopt when facing the problem
described above and detailed later in the chapter.

Furthermore, the setting we consider in this chapter differs from both rein-
forcement learning (rl) and multi-armed bandits settings (mab). Differently
from mab, we consider interventions on continuous variables where the dynamic
target variable has a non-stationary interventional distribution. In addition,
compared to rl, we do not model the state dynamics explicitly and allow the
agent to perform a number of explorative interventions, which do not change
the underlying state of the system, before selecting the optimal action. We
discuss these points further in Section 8.2.

Dynamic Causal Bayesian Optimization, henceforth referred to as dcbo,
accounts for both the causal relationships among input variables and the
causality between inputs and outputs which might evolve over time. This allows
dcbo to determine e.g. how the level of inflation rate should be manipulated
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in order minimize the unemployment rate at every time step. dcbo integrates
cbo with dynamic Bayesian networks (dbn), offering a novel approach for
decision making under uncertainty within dynamical systems. dbn [Koller
and Friedman, 2009] are commonly used in time-series modelling and carry
dependence assumptions that do not imply causation. Instead, in probabilistic
causal models [Pearl, 2009b], which form the basis for the cbo framework,
graphs are built around causal information and allow us to reason about the
effects of different interventions. By combining cbo with dbns, the methodology
proposed in this chapter finds an optimal sequence of interventions that accounts
for the causal temporal dynamics of the system. In addition, dcbo takes into
account past optimal interventions and transfers this information across time,
thus identifying the optimal intervention faster than competing approaches and
at a lower cost. We make the following contributions:

Dynamic Causal Global Optimization We formulate a new class of opti-
mization problems called Dynamic Causal Global Optimization (dcgo) where
the objective functions account for the temporal causal dynamics among the
variables and generalises the global optimization problem defined in Chapter 6.

Theoretical results on causal dynamic graphs We give theoretical results
demonstrating how interventional information can be transferred across time-
steps depending on the topology of the causal graph. We provide a recursion
formula that can be used to express the causal effects at one time step in terms
of previous causal effects for a general causal graph structure.

Dynamic Causal Bayesian Optimization algorithm Exploiting our
theoretical results, we solve the optimization problem with dcbo. At every
time step, dcbo constructs surrogate models for different intervention sets by
integrating various sources of data while accounting for past interventions.

Experimental comparison across eight different settings We analyse
the performance of dcbo in a variety of settings comparing against cbo,
abo, and bo. Specifically, we compare all methods on three synthetic graphs
specifying alternative stationary and non-stationary structural causal models.
We then evaluate the performances in two real-world settings.

8.1 Problem Setup

We consider a structural causal model (scm) as defined in Definition 3.1 of
Section 3.2 and the associated causal directed acyclic graph (dag) denoted by G1.

1As in the previous chapters, here we assume G to be known. However, one could run a
causal discovery algorithm as a pre-processing step or use interventional data to discriminate
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Within the complete set of variables in the scm, we distinguish between three
different types of variables: treatment variables X that can be manipulated and
set to specific values, non-manipulative variables C, which cannot be modified,
and the output variable Y that represents the agent’s outcome of interest. As
done in Chapter 6 and Chapter 7, we denote the interventional distribution
for two disjoint sets in V, say X and Y , as P (Y |do (X = x)). This is the
distribution of Y obtained by intervening on X and fixing its value to x in
the data generating mechanism, irrespective of the values of its parents. The
interventional distribution differs from the observational distribution which is
denoted by P (Y |X = x). In this chapter, we assume the causal effect for X on Y
to be identifiable ∀X ∈ P(X) with P(X) denoting the power set of X. When this
is the case (see Galles and Pearl [1995] for the set of identifiability conditions
given a causal graph), do-calculus allows the estimation of interventional
distributions and thus causal effects from observational distributions [Pearl,
1995]. However, the do-calculus involves computing integrals which are generally
not tractable. When this is the case, observational data can be used to get
a Monte Carlo estimate, e.g. P̂ (Y|do (X = x)) ≈ P (Y|do (X = x)), which is
consistent when the number of samples drawn from P (V) is sufficiently large.
DO and DI denote observational and interventional datasets respectively.

Causality in time One can encode the existence of causal mechanisms
across time steps by explicitly representing these relationships with edges in
an extended graph denoted by G0:T . For instance, the dag in Fig. 8.1(a) can
be seen as one of the dags in Fig. 8.1(b) propagated in time. The dag in
Fig. 8.1(a) captures both the causal structure existing across time steps and
the causal mechanism within every “time-slice” t [Koller and Friedman, 2009].
Alternatively, in order to reason about interventions that are implemented in a
sequential manner, that is at time t we decide which intervention to perform in
the system at the current time step, we define the following sub-graph Gt and
sub-model Mt:

Definition 8.1. (Sub-scm Mt) Mt is the scm at time step t defined as Mt =

〈U0:t,V0:t,F0:t, P (U0:t)〉 where 0 : t denotes the union of the corresponding
variables or functions up to time t (see Fig. 8.2). V0:t includes X0:t = Xt,
Y0:t = Yt and C0:t = Ct ∪ C0:t−1 ∪ Yt−1 ∪ Xt−1. The functions in F0:t

corresponding to intervened variables are replaced by constant values while the
exogenous variables related to them are excluded from U0:t.

Definition 8.2. (Sub-graph Gt) Gt is the causal graph associated to Mt. In
Gt, the incoming edges in variables intervened at 0 : t− 1 are mutilated while

among graphs within the Markov equivalence class. This is an open challenge.
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intervened variables are represented by deterministic nodes (squares) – see
Fig. 8.2 for an example with t ∈ {0, 1, 2}.
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Figure 8.2: Structural equation models considered by dcbo at every time step
t ∈ {0, 1, 2}. Exogenous noise variables εi are depicted here but are omitted
in the remainder of the paper, to avoid clutter. For every t, Gt is a mutilated
version of Gt−1 reflecting the optimal intervention implemented in the system
at 0 : t − 1 which are represented by squares. The scm functions in F0:t

corresponding to the intervened variables are set to constant values. The
exogenous variables that only relate to the intervened variables are excluded
from Ut. The set of non manipulative variables at every time step denoted
by C0:t is given by the union of the non manipulative variables up to time t,
the previous target variables and the previous manipulative variables that is
{Ct ∪C0:t−1 ∪Yt−1 ∪Xt−1}.

Dynamic Causal Global Optimization (dcgo) The goal of the methodol-
ogy proposed in this chapter is to find a sequence of interventions to implement
in a causal dag so as to optimize a target variable at each time step. Given
Gt and Mt, at every time step t, we wish to optimize Yt by intervening on a
subset of the manipulative variables Xt. The optimal intervention variables
X?
s,t and intervention levels x?s,t are given by:

X?
s,t,x

?
s,t = arg min

Xs,t∈P(Xt)
xs,t∈D(Xs,t)

E[Yt | do (Xs,t = xs,t) ,1t>0 · I0:t−1] (8.1)

where I0:t−1 =
⋃t−1
i=0 do

(
X?
s,i = x?s,i

)
denotes previous interventions, 1t>0 is

the indicator function and P(Xt) is the power set of Xt. D(Xs,t) represents
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the interventional domain of Xs,t. In the sequel we denote the previously
intervened variables by IV0:t−1 =

⋃t−1
i=0 X?

s,i and implemented intervention levels
by IL0:t−1 =

⋃t−1
i=0 x?s,i. The cost of each intervention is given by Co(Xs,t,xs,t).

In order to solve the problem in Eq. (8.1) we make the following assumptions :

Assumptions 1. Denote by G(t) the causal graph including variables at time
t in G0:T and let Y PT

t = Pa (Yt) ∩ Y0:t−1 be the set of variables in G0:T that
are both parents of Yt and targets at previous time step. Let the set Y PNT

t =

Pa (Yt) \Y PT
t be the complement and denote by fYt(·) the functional mapping

for Yt in Mt. We make the following assumptions:

1. Invariance of causal structure: G(t) = G(0), ∀t > 0.

2. Additivity of fYt(·) that is Yt = fYt(Pa (Yt)) + ε with fYt(Pa (Yt)) =

fYY (Y PT
t ) + fNYY (Y PNT

t ) where fYY and fNYY are two generic unknown
functions and ε ∼ N (0, σ2).

3. Absence of unobserved confounders in G0:T .

Assumption (3) implies the absence of unobserved confounders at every time
step. For instance, this is the case in Fig. 8.1(a). Still in the dag of Fig. 8.1(a),
Assumption (2) implies fYt(Pa (Yt)) = fYY (Yt−1)+fNYY (Zt)+εYt , ∀t > 0. Finally,
Assumption (1) implies the existence of the same variables at every time step
and a constant orientation of the edges among them for t > 0.

Challenges The problem given in Eq. (8.1) is challenging for multiple reasons.
As in cbo, finding the optimal intervention involves both exploring P(Xt), which
grows exponentially with |Xt|, and performing costly intervention to select the
optimal level x∗s,t. The time dimension introduces additional challenges. Indeed,
the objective function in Eq. (8.1) changes at every time step depending on
past decisions. The search space at each time step might also evolve depending
on P(Xt). Finally, due to the evolving nature of the system, it is reasonable to
assume that only a few number of interventional data points can be selected
for every t. We thus need to develop an algorithm capable of exploiting and
reusing all information, both interventional and observational, collected over
time. Importantly, in selecting experiments, we need to account for how the
system has been modified by the interventions implemented at previous time
steps so as to speed up the identification of the optimal configuration and keep
the total intervention cost low.

8.2 Related Work

As seen in the previous chapters, there exists an extensive literature on causal
methods focusing on both causal effects estimation and causal discovery methods
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[Guo et al., 2020]. The same holds for the literature on dynamic Bayesian
networks [Murphy, 2002] that have been used to represent rich dependency
structures between variables in a probabilistic model and have been applied
in a variety of settings ranging from gene networks modelling [Perrin et al.,
2003; Zou and Conzen, 2005] to speech analysis [Jain et al., 2012] and other
application areas [Wang et al., 2004; Yao et al., 2008]. The literature on causal
dynamic graphs and optimization of variables within them is instead very
limited. Here we will review the relevant works within the three fields that
are more closely related to the approach introduced in this chapter: dynamic
optimization, causal optimization, and decision-making algorithms.

Dynamic Optimization Optimization in dynamic environments has been
studied in the context of evolutionary algorithms [Fogel et al., 1966; Goldberg
and Smith, 1987]. More recently, other optimization techniques [De et al., 2006;
Pelta et al., 2009; Trojanowski and Wierzchoń, 2009] have been adapted to
dynamic settings, see e.g. Cruz et al. [2011] for a review. Focusing on bo, the
literature on dynamic settings is limited. Azimi et al. [2011] performed batch
bo in a dynamic setting where the batch sizes are dynamically determined.
Bogunovic et al. [2016] introduced a bo algorithm with bandit feedback and
a reward function that varies with time. More recently, Nyikosa et al. [2018]
developed abo, a framework for solving bo on continuous spaces when the
function evolution follows a more complex behaviour than a simple Markov
model. abo treats the inputs as fixed and not as random variables, thereby
disregarding their temporal evolution and, more importantly, breaking their
causal dependencies. In addition, abo requires a slow rate of change of the
objective function so as to gather enough samples to learn the function evolution
over space and time. All these dynamic optimization methods tackle the
dynamic dimension of the problems we address but do not account for the
causal relationships among variables.

Causal Optimization The cbo framework introduced in Chapter 6 focuses
instead on the causal aspect of optimization and solves the problem of finding
an optimal intervention in a dag by modelling the intervention functions
with single gps or using the dag-gp model introduced in Chapter 7. cbo

disregards the existence of a temporal evolution in both the inputs and the
output variable, treating them as i.i.d. overtime. In many practical applications,
the i.i.d. assumption does not provide an adequate description for the data
and different causal methodologies have been adapted to deal with longitudinal
studies [Granger, 1969; Hyttinen et al., 2013; Peters et al., 2013; Pfister et al.,
2019]. While disregarding time significantly simplifies the problem, it prevents
the identification of an optimal intervention at every time step t.
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Bandits, rl and dynamic treatment regimes In the broader decision-
making literature, causal relationships have been considered in the context of
bandits [Bareinboim et al., 2015; Lattimore et al., 2016; Lee and Bareinboim,
2018, 2019] and reinforcement learning [Buesing et al., 2019; Foerster et al.,
2018; Lu et al., 2018; Madumal et al., 2020; Zhang and Bareinboim, 2019a].
In these cases, actions or arms correspond to interventions on a causal graph
where there exist complex links between the agent’s decisions and the received
rewards. While dynamic settings have been considered in acausal bandit al-
gorithms [Besbes et al., 2014; Villar et al., 2015; Wu et al., 2018], causal mab

have focused on static settings. Dynamic settings are instead considered by
rl algorithms and formalized through Markov decision processes (mdp). In
the current formulation, dcbo does not consider a mdp as we do not have a
notion of state and therefore do not require an explicit model of its dynamics.
The system is fully specified by the causal model. As in bo, we focus on
identifying a set of time-indexed optimal actions rather than an optimal policy.
We allow the agent to perform explorative interventions that do not lead to
state transitions. More importantly, differently from both mab and rl, we
allow for the integration of both observational and interventional data. In the
next subsection, we provide an expanded discussion on the links between dcbo,
cbo, and abo. Linking dcbo to the mdps used by causal rl algorithms is a
challenging open problem.

Finally, our work is related to the literature on Dynamic Treatment Regimes
(dtrs). dtrs [Murphy, 2003] provide an attractive framework for identifying
personalized treatments in longitudinal settings. Specifically, dtrs give us a
decision rule that dictates what treatments to provide at each time step given
time-varying covariates and treatments’ history with the final goal of optimizing
a target outcome. These decision rules are also known as adaptive treatment
strategies [Lavori and Dawson, 2000, 2008; Murphy, 2005] or treatment policies
[Lunceford et al., 2002; Wahed and Tsiatis, 2006]. In the causality literature,
Zhang [2020] and Zhang and Bareinboim [2019b] have recently studied the
online learning of optimal dtrs in settings where there exists confounded
observations and we are given a causal diagram representing the underlying
unknown environment. As in rl, but differently from our settings, in dtrs the
goal is to identify the sequence of treatments, also called trajectory, optimizing
a cumulative regret. On the contrary, dcbo is a myopic algorithm that, at each
time step, selects the intervention optimizing the target variable at the current
time step. In addition, being a bo algorithm, it does not learn a policy but
only identifies a set of actions. Extending dcbo to consider a unique outcome
variable possibly delayed in time, but also a cumulative regret function and
non-myopic acquisition functions would further shed light on the connection to
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rl and dtrs.

8.2.1 Connections

The settings we focus on in this chapter differ from those considered by both
cbo and abo. Here we discuss the main differences and highlight the reasons
why dcbo is needed to solve the problem in Eq. (8.1).

cbo algoritm The cbo algorithm can be used to find optimal interventions
to perform in a causal graph so as to optimize a single target node Y . cbo

addresses static settings where variables in G are i.i.d. across time steps, i.e.
p(Vt) = p(V),∀t, and only one static target variable exists. For instance, cbo

can be used to find the optimal intervention for Y in the dag of Fig. 8.1(b).
In order to use cbo for the dag of Fig. 8.1(a), one would need to identify
a unique target among Y0:T , e.g. YT . However, optimizing YT might lead
to chose interventions that are sub-optimal for Y0:T−1 thus not solving the
problem in Eq. (8.1). In addition, to find the optimal intervention for YT ,
cbo explores all interventions in P(X0:T ) which results in a large search space
and requires performing a high number of interventions. This slows down the
convergence of the algorithm and increases the optimization cost. One can
alternatively run cbo T times optimizing Yt at each time step. Doing that
would require re-initializing the surrogate models for the objective functions at
every t and would thus imply losing all the information collected from previous
interventions. Indeed, when optimizing Yt, cbo does not account for how the
previously taken interventions have changed the system again slowing down
the convergence of the algorithm. In order to recursively optimise intermediate
outputs given the previously taken decisions, one needs to resort to dcbo.
By changing the objective function at every time step, incorporating prior
interventional information in the objective function, and limiting the search
space at every time step based on the topology of the G, dcbo addresses the
cbo issues mentioned above making it a framework that can be practically
used for sequential decision-making in a variety of applications.

abo algorithm While cbo tackles the causal dimension of the dcgo problem
but not the temporal dimension, the abo algorithm also addresses dynamic
settings but does not account for the causal relationships among variables,
see Fig. 8.1 for a graphical representation of the relationship between these
methods. As for bo, one could use abo to solve a dcgo problem by breaking
the causal dependencies between the inputs and intervening simultaneously
on all of them thus setting Xs,t = Xt for all t. Additionally, as abo was
originally developed for acausal settings, it considers the inputs as fixed and
not as random variables therefore disregarding their temporal evolution. This
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is reflected in the dag of Fig. 8.1(c) where both the horizontal links between
the inputs and the edges amongst the input variables are missing.

In solving the problem in Eq. (8.1) for the dag in Fig. 8.1(a), bo would
disregard both the temporal dependencies in Y and the input dependencies
(dag in Fig. 8.1(d)) while abo would keep the former but ignore the latter. In
addition, differently from our approach, abo considers a continuous time-space
and places a surrogate model on Yt = f(x, t). f(x, t) is then modelled via a
spatio-temporal gp with a separable kernel. The abo acquisition function for
f(x, t) is then restricted to avoid collecting points in the past or too far ahead in
the future where the gp predictions have high uncertainty. The spatio-temporal
gp allows abo to predict the objective function ahead in time and track the
evolution of the optimum. However, in order for abo to work, the objective
function rate of change over time must be slow enough to gather enough samples
to learn the relationships in space and time. In our discrete time setting this
condition is equivalent to ask that, at every time step, it is possible to perform
different interventions with an underlying true function that does not change.

Note that, also in dcbo, Assumptions 1 imply a certain level of regularity
in the objective functions. For instance, in the dag of Fig. 8.1(a), given that
Pa (Yt) = {Zt, Yt−1},∀t > 0, the objective functions have a constant shape
and are only shifted vertically by the performed interventions. While some
regularity is also required in dcbo, through the causal graph we impose more
structure on the objective function and its input thus lowering the need for
exploration. The more accurate the estimation of the functions in the scm is,
the more we can track the dynamics of the objective function and we can deal
with sharp changes in the objectives.

One additional important difference between abo and dcbo is in the
exploration of different intervention sets. Indeed, by intervening on all variables,
abo can lead to a sub-optimal solution. As mentioned for bo in Chapter 6,
depending on the structural relationships between variables, intervening on
a subgroup might lead to a propagation of effects in the causal graph and a
higher final target. Finally, intervening on all variables is cost-ineffective in
cases when the same target can be obtained by setting only a subgroup of them.
This is particularly true in dynamic settings as the optimal intervention set
might not only be a subset of P(Xt) but might also evolve over time.

8.3 Methodology

In this section, we introduce Dynamic Causal Bayesian Optimization (dcbo),
a novel methodology addressing the problem in Eq. (8.1). We first study the
correlation among objective functions for two consecutive time steps and use
it to derive a recursion formula that, based on the topology of the graph,
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expresses the causal effects at time t as a function of previously implemented
interventions (see square nodes in Fig. 8.2). Exploiting these results, we develop
a new surrogate model for the objective functions that can be used within a cbo

framework to find the optimal sequence of interventions. This model enables
the integration of observational data, interventional data collected at previous
time-steps, and interventional data collected at time t thereby speeding up the
identification of the present optimal intervention.

8.3.1 Characterization of the time structure in a dag with
time dependent variables

The following result provides a theoretical foundation for the dynamic causal
gp model introduced later. In particular, it derives a recursion formula allowing
us to express the objective function at time t as a function of the objective
functions corresponding to the optimal interventions at previous time steps.
The proof is given in Appendix E.1.

Definition 8.3. Consider a dag for time steps 0 to T denoted by G0:T and
the objective function E[Yt | do (Xs,t = xs,t) , I0:t−1] for a generic time step
t ∈ {0, . . . , T}. Denote by Y PT

t = (Pa (Yt) ∩ Y0:t−1) the parents of Yt that are
targets at previous time steps and by Y PNT

t = Pa (Yt) \Y PT
t the remaining

parents. For any Xs,t ∈ P(Xt) and IV0:t−1 ⊆ X0:t−1 we define the following sets:

• XPY
s,t = Xs,t ∩ Pa (Yt) includes the variables in the intervention set Xs,t

that are also parents of Yt.

• IPY
0:t−1 = IV0:t−1 ∩ Pa (Yt) includes the variables in the intervention set
IV0:t−1 that are also parents of Yt.

• W ⊂ Pa (Yt) is a set such that Pa (Yt) = (Pa (Yt)∩Y0:t−1)∪XPY
s,t ∪IPY

0:t−1∪
W . W includes variables that are parents of Yt but are not targets nor
intervened variables.

The values of the sets I0:t−1, XPY
s,t , IPY

0:t−1 and W will be denoted by i, xPY,
iPY and w respectively.

Theorem 8.1. Time operator. Consider a dag G0:T and the related scm

satisfying Assumptions (1). It is possible to prove that, ∀Xs,t ∈ P(Xt), the
intervention function fs,t(x) = E[Yt | do (Xs,t = x) ,1t>0 · I0:t−1] with fs,t(x) :

D(Xs,t)→ R can be written as:

fs,t(x) = fYY (f?) + Ep(w|do(Xs,t=x),i)

[
fNYY (xPY, iPY,w)

]
(8.2)

where f? = {E
[
Yi|do

(
X?
s,i = x?s,i

)
, I0:i−1

]
}Yi∈Y PT

t
that is the set of previously

observed optimal targets that are parents of Yt. fYY denotes the function mapping
Y PT
t to Yt and fNYY represents the function mapping Y PNT

t to Yt.
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Eq. (8.2) reduces to Ep(w|do(Xs,t=x),i)

[
fNYY (xPY, iPY,w)

]
when Yt does not

depend on previous targets. This is the setting considered in cbo (Chapter 6)
that can be thus seen as a particular instance of dcbo. Exploiting Assumptions
(1), it is possible to further expand the second term in Eq. (8.2) to get the
following expression:

Ep(w|do(Xs,t=x),i)

[
fNYY (xPY, iPY,w)

]
= Ep(U0:t)

[
fNYY (xPY, iPY, {C(W )}W∈W)

]

(8.3)

where p(U0:t) is the distribution for the exogenous variables up to time t and
C(W ) is given by:

C(W ) =





fW (uW ,x
PW, iPW) if R = ∅

fW (uW ,x
PW, iPW, r) if R ⊆ Xs,t ∪ IV0:t−1

fW (uW ,x
PW, iPW, C(R)) if R 6⊆ Xs,t ∪ IV0:t−1

where fW represents the functional mapping for W in the sem and uW is
the set of exogenous variables with edges into W . xPW and iPW are the
values corresponding to XPW

s,t and IPW
0:t−1 which in turn represent the subset of

variables in Xs,t and IV0:t−1 that are parents of W . Finally r is the value of
R = Pa (W ) \(XPY

s,t ∪ IPW
0:t−1).

Examples for Eq. (8.2): For the dag in Fig. 8.1(a), at time t = 1 and with
IV0:t−1 = {Z0}, we have E[Y |do (Z1 = z) , I0] = fYY (y?0) + fNYY (z). Indeed in
this case W = ∅, xPY = z and f? = {y?0 = E[Y0|do (Z0 = z0)]}. Still at t = 1

and with IV0:t−1 = {Z0}, the objective function for Xs,t = {X1} can be written
as fYY (y?0) +Ep(z1|do(X1=x),I0)

[
fNYY (z1)

]
as W = {Z1}. All derivations for these

expressions and alternative graphs are given in Appendix E.2.

8.3.2 Restricting the search space

The search space for the problem in Eq. (8.1) grows exponentially with |Xt| thus
slowing down the identification of the optimal intervention when Gt includes
more than a few nodes. Indeed, a naive approach to find X?

s,t at t = 0, . . . , T

would be to explore the 2|Xt| sets in P(Xt) at every t and keep 2|Xt| models
for the objective functions. In the static setting, cbo reduces the search space
by exploiting invariances in the interventional space [Lee and Bareinboim,
2018] to identify a subset of intervention sets M ⊆ P(X) worth exploring (see
Section 6.3.1). In our dynamic setting, the objective functions change at every
time step depending on the previously implemented interventions and one would
need to recompute M at every t. However, it is possible to show that, given
Assumptions (1), the search space remains constant over time. Denote by Mt
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the set M at time t and let M0 represent the set at t = 0 which corresponds to
the exploration set computed in cbo. For t > 0 it is possible to prove that:

Proposition 8.3.1. mis in time. If Assumptions (1) are satisfied, the search
space is constant overtime that is Mt = M0 for t > 0.

A proof is given in Appendix E.3.

8.3.3 Dynamic Causal gp model

Here we introduce the Dynamic Causal gp model that is used as a surrogate
model for the objective functions in Eq. (8.1). The prior parameters are
constructed by exploiting the recursion in Eq. (8.2). At each time step t, the
agent explores the sets in Mt ⊆ P(Xt) by selecting the next intervention to be
the one maximizing a given acquisition function.

Prior Surrogate Model At each time step t and for each Xs,t ∈Mt, we place
a gp prior on the objective function fs,t(x) = E[Yt|do (Xs,t = x) ,1t>0 · I0:t−1].
We construct the prior parameters exploiting the recursive expression given in
Eq. (8.2):

fs,t(x) ∼ GP(ms,t(x), ks,t(x,x
′))

ms,t(x) = E
[
fYY (f?) + Ê[fNYY (xPY, iPY,w)]

]

ks,t(x,x
′) = krbf(x,x′) + σs,t(x)σs,t(x

′)

with σs,t(x) =
√

V[fYY (f?) + Ê[fNYY (xPY, iPY,w)] and krbf(x,x′) representing
the radial basis function kernel. The inner expectation in ms,t(x) is equal
to Êp(w|do(Xs,t=x),i)[f

NY
Y (xPY, iPY,w)] and represents the expected value of

fNYY (xPY, iPY,w) with respect to p(w | do (Xs,t = x) , i) which is estimated
via the do-calculus using observational data. The outer expectation in ms,t(x)

and the variance in σs,t(x) are computed with respect to p(fYY , f
NY
Y ) which

is also estimated using observational data. In this work we model fYY , fNYY

and all functions in the sem by independent gps. However, any alternative
probabilistic model can be used to learn these functions. We give estimation
details for all experiments in Appendix E.4.

Both ms,t(x) and σs,t(x) can be equivalently written by exploiting the
equivalence in Eq. (8.3). In both cases, this prior construction allows the inte-
gration of three different types of data: observational data, interventional data
collected at time t, and the optimal interventional data points collected in the
past. The former is used to estimate the scm model and p(w|do (Xs,t = x) , i)

via the rules of do-calculus. The optimal interventional data points at 0 : t− 1

determine the shift fYY (f?) while the interventional data collected at time t are
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used to update the prior distribution on fs,t(x). Similar prior constructions
were considered in the statistic settings of Chapter 6 and Chapter 7 where only
observational and interventional data at the current (and unique) time step were
used. The additional shift term appears here as there exists a causal dynamic in
the target variables and the objective function is affected by previous decisions.
Fig. E.2 shows a synthetic example in which accounting for the dynamic aspect
in the prior formulation leads to a more accurate gp posterior compared to the
baselines, especially when the optimum location changes across time steps.

Likelihood Let DIs,t = (XI ,YI
s,t) be the set of interventional datapoints

collected for Xs,t with XI being a vector of intervention values and YI
s,t

representing the corresponding vector of observed target values. As in standard
bo we assume each ys,t in YI

s,t to be a noisy observation of the function fs,t(x)

that is ys,t(x) = fs,t(x) + εs,t with εs,t ∼ N (0, σ2) for s ∈ {1, . . . , |Mt|} and
t ∈ {0, . . . , T}. In compact form, the joint likelihood function for DIs,t is
p(YI

s,t | fs,t, σ2) = N (fs,t(X
I), σ2I).

Acquisition Function Given our surrogate models at time t, the agent
selects the interventions to implement resorting to Causal Bayesian Opti-
mization. Recall from Chapter 6 that the agent explores the sets in Mt

and decides where to intervene by maximizing the Causal Expected Improve-
ment (ei). Denote by y?t the optimal observed target value in {YI

s,t}|Mt|
s=1 that

is the optimal observed target across all intervention sets at time t. The
Causal ei is given by eis,t(x) = Ep(ys,t)[max(ys,t − y?t , 0)]/Co(Xs,t,xs,t). Let
α1, . . . , α|Mt| be solutions of the optimization of eis,t(x) for each set in Mt and
α? := max{α1, . . . , α|Mt|}. The next best intervention to explore at time t is
given by s? = argmaxs∈{1,··· ,|Mt|} αs. Therefore, the set-value pair to intervene
on is (s?, α?). At every t, the agents implement H explorative interventions in
the system which are selected by maximizing the Causal ei. Once the budget
H is exhausted, the agent implements what we call the decision intervention
It, that is the optimal intervention found at the current time step, and move
forward to a new optimization at t+ 1 carrying the information in y?0:t−1. The
parameter H determines the level of exploration of the system and acts as a
budget for the cbo algorithm. Its value is determined by the agent and is gen-
erally problem specific. Note that, in settings where H is low, the exploration
of the algorithm at each time step is limited thus the convergence at every t is
not guaranteed when moving to t+ 1. In turn, this affects the optimum value
that the algorithm can reach at every subsequent step, see Appendix E.4.9 for
some experimental results on settings when dcbo is allowed to perform a lower
number of trials.
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Posterior Surrogate Model For any set Xs,t ∈ Mt, the posterior dis-
tribution p(fs,t | DIs,t) can be derived analytically via standard gp updates.
p(fs,t|DIs,t) will also be a gp with parameters ms,t(x | DIs,t) = ms,t(x) +

ks,t(x,X
I)[ks,t(X

I ,XI)+σ2I])(YI
s,t−ms,t(X

I) and ks,t(x,x′ | DIs,t) = ks,t(x,x
′)−

ks,t(x,X
I)[ks,t(X

I ,XI) + σ2I])ks,t(X
I ,x′). We give the complete dcbo algo-

rithm in Algorithm 3. The time complexity of dcbo is dominated by algebraic
operations on ks,t(XI ,XI) which are O(H3) where H denotes the number of
collected interventional data points. The space complexity is O(H2).

Algorithm 3 dcbo

1: Inputs: DO, {DIs,t=0}s∈{0,...,|M0|}, G0:T , H.
2: Output: Optimal intervention path {X?

s,t,x
?
s,t, y

?
t }Tt=1.

3: Initialize: M, DI0 and initial optimal DI? = ∅.
4: for t=1 to T do
5: 1. Initialise dynamic causal gp models using DI?,t−1 if t > 0.
6: 2. Initialise interventional dataset {DIs,t}s∈{0,...,|Mt|}.
7: for h=1 to H do
8: 1. Compute eis,t(x) for each Xs,t ∈Mt.
9: 2. Obtain (s?, α?).

10: 3. Intervene and augment DIs=s?,t.
11: 4. Update posterior for fs=s?,t.
12: end for
13: 3. Return the optimal intervention (X?

s,t,x
?
s,t).

14: 4. Append optimal interventional data DI?,t = DI?,t−1 ∪ ((X?
s,t,x

?
s,t), y

?
t ).

15: end for

X0 X1 X2

Z0 Z1 Z2

Y0 Y1 Y2

W0 W1 W2

(a) Multiv.

X0 X1 X2

Z0 Z1 Z2

Y0 Y1 Y2

(b) Ind.

X0 X1 X2

Z0 Z1 Z2

Y0 Y1 Y2

(c) NonStat.

Figure 8.3: dags used in the experimental sections for the synthetic data.

8.4 Experiments

We evaluate the performance of dcbo in a variety of synthetic and real-
world settings with dags given in Fig. 8.3 and Fig. 8.4. We first run the
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algorithm for a stationary setting where both the graph structure and the sem

do not change over time (Stat.). We then consider a scenario characterised
by increased observation noise (Noisy) for the manipulative variables and a
setting where observational data are missing at some time steps (Miss.). Still
assuming stationarity, we then test the algorithm in a dag where multivariate
interventions are included in Mt (Multiv.). Lastly, we run dcbo for a non-
stationary graph where both the scm and the dag change over time (NonStat.).
To conclude, we use dcbo to optimize the unemployment rate of a closed
economy (Econ.) and to find the optimal intervention in a system of ordinary
differential equations modelling a real predator-prey system (Evol.). All
implementation details are given in the supplement. Code and data for all the
experiments are provided at https://github.com/VirgiAgl/DCBO.

Baselines We compare against the algorithms in Fig. 8.1. Note that, by
constructions, abo and bo intervene on all manipulative variables while dcbo

and cbo explore only Mt at every t. In addition, both dcbo and abo reduce to
cbo and bo at the first time step. We assume the availability of an observational
dataset DO and set a unit intervention cost for all variables.

Performance metric We run all experiments for 10 replicates and show
the average convergence path at every time step. We then compute the values
of a modified “gap” metric across time steps and with standard errors across
replicates. This metric is a modified version of the one used in Huang et al.
[2006] and is defined as:

gt =

(
y(x?s,t)− y(xinit)

y? − y(xinit)
+
H −H(x?s,t)

H

)/(
1 +

H − 1

H

)

where y(·) represents the evaluation of the objective function, y? is the global
minimum, and xinit and x?s,t are the first and best evaluated point, respectively.

The term H−H(x?s,t)

H with H(x?s,t) denoting the number of explorative trials
needed to reach x?s,t captures the speed of the optimization. This term is equal
to zero when the algorithm is not converged and equal to (H − 1)/H when the
algorithm converges at the first trial. We have 0 ≤ gt ≤ 1 with higher values
denoting better performances. For each method, we also show the average
percentage of replicates where the optimal intervention set X?

s,t is identified.

8.4.1 Synthetic Experiments

Stationary dag and sem (Stat.) We run the algorithms for the dag in
Fig. 8.1(a) with T = 3 and N = 10. For t > 0, dcbo converges to the optimal
value faster than competing approaches (see Fig. E.2 in the supplement, right
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Figure 8.4: dags used in the experimental sections for the real data.
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Figure 8.5: Experiment Noisy. Convergence of dcbo and competing methods
across replicates. The dashed black line (- - -) gives the optimal outcome y∗t ,∀t.
Shaded areas are ± one standard deviation.

panel, 3rd row). dcbo identifies the optimal intervention set in 93% of the
replicates (Table 8.2) and reaches the highest average gap metric (Table 8.1).
In this experiment the location of the optimum changes significantly both in
terms of optimal set and intervention value when going from t = 0 to t = 1.
This information is incorporated by dcbo through the prior dependency on
y?0:t−1. In addition, abo performance improves over time as it accumulates
interventional data and uses them to fit the temporal dimension of the surrogate
model. This benefits abo in a stationary settings but might penalise it in non
stationary settings where the objective functions change significantly.

Noisy manipulative variables (Noisy): The benefit of using dcbo be-
comes more apparent when the manipulative variables observations are noisy
while the evolution of the target variable is more accurately detected. In this
case, both the convergence of dcbo and cbo are slowed down by noisy obser-
vations which are diluting the information provided by the do-calculus making
the priors less informative. However, the dcbo prior dependency on y?0:t−1

allows it to correctly identify the shift in the target variable thus improving
the prior accuracy and speeding up the algorithm (Fig. 8.5).

Missing observational data (Miss.) Incorporating dynamic information
in the surrogate model allows us to efficiently optimise a target variable even in
settings where observational data are missing. We consider the dag in Fig. 8.1(a)
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with T = 6, N = 10 for the first three time steps and N = 0 afterwards. dcbo

uses the observational distributions learned with data from the first three time
steps to construct the prior for t > 3. On the contrary, cbo uses the standard
prior for t > 3. In this setting dcbo consistently outperforms cbo at every
time step. However, notice how abo performance improves over time and
outperforms dcbo starting from t = 4 (see Fig. E.3 in the supplement). As
mentioned above, this is due to the ability of abo to learn the time dynamic of
the objective function and exploit all interventional data collected over time to
predict at the next time step. While this benefits abo in stationary settings,
it penalises it in nonstationary settings where the objective functions change
significantly over time (see NonStat. experiment below).

Table 8.1: Average gt across 10 replicates and time steps. See Fig. 8.1 for a
summary of the baselines. Higher values are better. The best result for each
experiment in bold. Standard errors in brackets.

Synthetic data Real data

Stat. Miss. Noisy Multiv. Ind. NonStat. Econ. Evol.

dcbo
0.88 0.84 0.75 0.49 0.48 0.69 0.64 0.67
(0.00) (0.01) (0.00) (0.01) (0.04) (0.00) (0.01) (0.00)

cbo
0.70 0.70 0.51 0.48 0.47 0.61 0.61 0.65
(0.01) (0.02) (0.02) (0.09) (0.07) (0.00) (0.01) (0.00)

abo
0.56 0.49 0.49 0.39 0.54 0.38 0.57 0.48
(0.01) (0.02) (0.04) (0.21) (0.01) (0.02) (0.02) (0.01)

bo
0.54 0.48 0.38 0.35 0.50 0.38 0.50 0.44
(0.02) (0.03) (0.05) (0.08) (0.01) (0.03) (0.01) (0.03)

Multivariate intervention sets (Multiv.) When the optimal intervention
set is multivariate, both dcbo and cbo convergence speed worsen. For instance,
for the dag in Fig. 8.3(a), |M| = 5 thus both cbo and dcbo will have to
perform more explorative interventions before finding the optimum. At the
same time, abo and bo consider interventions only on {Wt, Xt, Zt}, ∀t and
need to explore an even higher intervention space. The performance of all
methods decreases in this case (Table 8.1) but dcbo still identifies the optimal
intervention set in 93% of the replicates (Table 8.2).

Independent manipulative variables (Ind.): Having to explore multiple
intervention sets significantly penalises dcbo and cbo when there is no causal
relationship among manipulative variables which are also the only parents of
the target. This is the case for the dag in Fig. 8.3(b) where the optimal
intervention is {Xt, Zt} at every time step. In this case, exploring M and
propagating uncertainty in the causal prior slows down dcbo convergence
and decreases both its performance (Table 8.1) and capability to identify the
optimal intervention set (Table 8.2).
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Table 8.2: Average % of replicates across time steps for which X?
s,t is identified.

See Fig. 8.1 for a summary of the baselines. Higher values are better. The best
result for each experiment in bold.

Synthetic data Real data

Stat. Miss. Noisy Multiv. Ind. NonStat. Econ. Evol.

dcbo 93.00 58.00 100.00 93.00 93.00 100.00 86.67 33.3
cbo 90.00 85.00 90.00 90.0 90.00 100.00 93.33 33.3
abo 0.00 0.00 0.00 0.00 100.00 0.00 66.67 0.00
bo 0.00 0.00 0.00 0.00 100.00 0.00 66.67 0.00

Non-stationary dag and sem (NonStat.): Finally, dcbo outperforms
all approaches in non-stationary settings where both the dag and the sem

change overtime – see Fig. 8.3(c). Indeed, dcbo can timely incorporate changes
in the system via the dynamic causal prior construction while cbo, bo and
abo need to perform several interventions before accurately learning the new
objective functions and identifying the optimum.

8.4.2 Real experiments

Real-World Economic data (Econ.) We use dcbo to minimize the
unemployment rate Ut of a closed economy. We consider its causal relationships
with economic growth (Gt), inflation rate (Rt) and fiscal policy2 (Tt). Inspired
by the economic example in Huang et al. [2019] we consider the dag in Fig. 8.4(a)
where Rt and Tt are considered manipulative variables we need to intervene
on to minimize log(Ut) at every time step. Time series data for 10 countries3

are used to construct a non parametric simulator and to compute the causal
prior for both dcbo and cbo. dcbo convergences to the optimal intervention
faster than competing approaches (see Table 8.1 and Fig. E.6 in the appendix).
The optimal sequence of interventions found in this experiment is equal to
{(T0, R0) = (9.38,−2.00), (T1, R1) = (0.53, 6.00), (T2) = (0.012)} which is
consistent with domain knowledge.

Planktonic predator-prey community in a chemostat (Evol.) We
investigate a biological system in which two species interact, one as a predator
and the other as prey, with the goal of identifying the intervention reducing
the concentration of dead animals in the chemostat – see Dt in Fig. 8.4(b). We
use the system of ordinary differential equations (ode) given by Blasius et al.
[2020] as our scm and construct the dag by rolling out the temporal variable

2The causality between economic variables is oversimplified in this example thus the
results cannot be used to guide public policy and are only meant to showcase how dcbo can
be used within a real application.

3Data were downloaded from https://www.data.oecd.org/ [Accessed: 01/04/2021].
Details are given in Appendix E.4.7
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dependencies in the ode while removing graph cycles. Observational data are
provided in Blasius et al. [2020] and are use to compute the dynamic causal
prior. dcbo outperforms competing methods in terms of average gap metric
and identifies the optimum faster (Table 8.1). Additional details about this
experiment can be found in Appendix E.4.8.

8.5 Conclusions and Discussion

In this chapter, we consider the problem of finding a sequence of optimal inter-
ventions in a causal graph where causal temporal dependencies exist between
variables. We propose the Dynamic Causal Bayesian Optimization (dcbo)
algorithm which finds the optimal intervention at every time step by interven-
ing in the system according to a causal acquisition function. Importantly, for
each possible intervention, we developed a surrogate model that incorporates
information from previous interventions implemented in the system. This is
constructed by exploiting theoretical results establishing the correlation struc-
ture among objective functions for two consecutive time steps as a function of
the topology of the causal graph. We discuss dcbo performance in a variety of
setting characterized by different dag properties and stationarity assumptions.

Extending our theoretical results to more general dag structures remains
an open problem. In particular, allowing for unobserved confounders and a
changing dag topology within each time step are two important challenges.
Finally, as in the previous two chapters, dcbo assumes full knowledge of the dag.
As mentioned earlier, we tackle this issue in Branchini et al. [2022] by developing
a framework for joint optimization and causal discovery. This method accounts
for uncertainty in the graph structure via a structured surrogate model similar
to those seen so far and offers an acquisition function capable of selecting
interventions that are useful in jointly identifying the optimal intervention and
the true underlying graph.
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Chapter 9

Conclusions and Future Work

This thesis addressed the problem of developing an integrated framework for
accurate estimation and selection of actions in a causal system. The problem was
tackled through the Bayesian framework which allows probabilistic reasoning
while handling uncertainty in a principled manner. We considered Gaussian
process (gp) models for both inference and causal decision-making and answered
two specific research questions within the higher-level goal:

• how to develop scalable probabilistic models for point data that incorpo-
rate structure in the model likelihood and posterior and can be thus used
as surrogate models;

• why and how to incorporate causality into sequential decision-making
algorithms so as to enable the selection of actions.

We first focused on how to construct flexible and meaningful representations
of a system. Particularly, we investigated models for point data as many real-
world problems involve events and these types of models present significant
methodological and computational challenges. We then studied decision-making
algorithms and investigated how, based on complex surrogate models such as
those developed in the first part of the thesis, an agent can select actions to
perform in a causal system. More specifically, we generalised Bayesian Opti-
mization (bo), Active Learning (al), and multi-task gp models to deal with
causal information. We showed why sequential decision-making algorithms
should be equipped with causal knowledge and how one can develop such
frameworks integrating different types of data.

More specifically, in Chapter 4 and Chapter 5 we proposed two novel gp

modulated Poisson point processes (ppp). Chapter 4 tackled the issue of devel-
oping a multi-task model capable of capturing the correlation across different
processes while correctly quantifying uncertainty in the presence of missing data.
The proposed framework allowed the development of an efficient variational
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inference algorithm that is orders of magnitude faster than competing methods
and offers the current state-of-the-art performance in modelling multivariate
point processes. Still focusing on ppp, Chapter 5 investigated the problem
of developing a continuous model that avoids further approximation in the
likelihood function and captures the existence of highly dependent variables
a-posteriori. Exploiting the properties of the superposition of ppps, in this
chapter we developed a structured variational approximation scheme in the con-
tinuous space directly that, avoiding the need for accurate numerical integration
over the input space, can be used for problems with higher input dimensionality.
The approaches developed in these chapters provided flexible gp models capable
of capturing complex data distributions, quantifying uncertainty in a principled
way, and enabling fast approximate inference. These are all crucial properties
of surrogate models used within decision-making algorithms.

In the second part of the thesis, we studied how probabilistic models, such
as those developed in Chapter 4 and Chapter 5, can be combined with an acqui-
sition function to obtain sequential decision-making algorithms. We saw how a
causation structure rather than a correlation structure can be incorporated in
gp surrogate models allowing us to select actions based on cause-effect relation-
ships. In particular, we developed a causal formulation for bo (Chapter 6 and
Chapter 8), al (Chapter 7) and multi-task gp models (Chapter 7). Chapter 6
offered the first Causal Bayesian Optimization (cbo) framework solving the
problem of finding an optimal intervention when there exist causal relationships
between the inputs and the output of a target function. Chapter 7 extended
multi-task gp models to capture the correlation across functions defined on
a causal graph and characterised by different input dimensionality. Using
multi-task causal gp models we improved the performance of both al and the
proposed cbo algorithm thus further demonstrating the benefit of using an
accurate surrogate model that properly quantifies uncertainty over unknown
functions when selecting actions. Finally, Chapter 8 extended cbo to deal with
dynamical systems allowing for the selection of a sequence of optimal actions
implemented over time. The Dynamic Causal Bayesian Optimization (dcbo)
framework generalised the problem of causal global optimization introduced in
Chapter 6 to settings where causal effects evolve over time. The performance
of dcbo in several stationary and non-stationary scenarios demonstrated his
flexibility and applicability to various real-world problems.

9.1 Future Research Directions

There are a variety of directions in which future work could build upon the
ideas introduced in this thesis.
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A good starting point for extending the model developed in Chapter 4
would be to consider different prior distributions for the mixing weights of the
latent functions. For instance, sparse prior constructions would induce a model
selection mechanism for the number of latent functions and increase the model
interpretability. While the discretization problem of the model proposed in
Chapter 4 has been addressed in Chapter 5, the framework in Chapter 5 can
only be used for a single task. Extending it to deal with a higher number of
tasks remains an open challenge together with the relaxation of the factorization
assumption introduced in the approximate posterior distribution.

Multiple open research directions steam from the chapters included in
the second part of this thesis. Firstly, there are many other variants of bo

that were not tackled in this thesis and could be extended to integrate causal
information. For instance, multi-objective bo could be used to jointly maximize
different interventional functions or deal with multi-dimensional outputs. An
alternative direction would be to extend the framework in Chapter 8 to be non-
myopic. Indeed, the current formulation selects actions based on the highest
one-step ahead reward. A non-myopic causal bo would be particularly useful
in dynamical systems where interventions performed at one time step affect the
rewards an agent can obtain at future time steps. Extending dcbo to use a
non-myopic acquisition function such as the one proposed in González et al.
[2016b] or Jiang et al. [2020] would allow the algorithm to select interventions
in terms of multiple-steps ahead reward thus avoiding potential sub-optimal
solutions. This direction would require a further study on the connections
between different sequential causal decision-making algorithms such as causal
Reinforcement Learning, causal Bandits, cbo, and dcbo. For instance, one
could link dcbo to causal rl by writing the expected utility in the form of a
Bellman equation (as done for non-myopic bo in Jiang et al. [2020]).

Extending causal decision-making frameworks to deal with discrete outputs
and more generally non-Gaussian likelihoods is another important challenge.
When dealing with non-Gaussian likelihoods, posterior inference is not closed-
form and sequential approximation schemes need to be used to update the
surrogate models and select actions. For instance, sequential variational schemes
could be used within cbo or dcbo to select interventions minimizing the crime
counts analysed in Chapter 4 or maximizing the number of taxi trips considered
in Chapter 5. Further work is required to combine Poisson point process
models, both single-task and multi-task, with bo or al. Another open question
is the extension of these frameworks to deal with data coming from different
populations which are potentially associated with different graph structures.
Specifically, how can we exploit the intervention functions learned for one
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graph to infer those defined on an alternative graph and characterised by a
different structural causal model? Last but not least, all the proposed causal
decision-making algorithms are based on the assumption of full knowledge of
the causal graph. This is often unrealistic, especially in real-world applications.
Extending the proposed frameworks to account for uncertainty in the causal
structure is a challenging open problem that we are currently investigating in
Branchini et al. [2022] and we briefly introduce it here.

9.2 Active Research Direction

As mentioned above, the causal decision-making frameworks proposed in this
thesis are based on the assumption of full knowledge of the causal graph which
is often unrealistic. In Branchini et al. [2022] we focus on cbo and develop a
framework for joint optimization and causal discovery that properly accounts
for uncertainty in the graph structure. In particular, we further generalise
the optimization problem defined in Chapter 6 and extended in Chapter 7 to
settings where the uncertainty on the graph structure is represented by a prior
distribution. Specifically, in Branchini et al. [2022], we aim at identifying the
interventional variables and values (X?

s, and x?s) optimizing the target while
learning the underlying true causal graph, denoted by G. Using the notation
adopted Chapter 6, we can formally write this goal as:





X?
s,x

?
s = arg min

Xs∈P(X),x∈D(Xs)
E[Y | do (Xs = x) , G = G]

P (G | DI) ∝ p(DI |G)P (G)

where DI represents the interventional dataset. Even when restricting the
attention to a limited number of potential graphs, solving this optimization
problem is challenging. Indeed, similarly to the settings discussed in this thesis,
evaluating E[Y | do (Xs = x) ,G] requires intervening in the system at a cost
and observing its output. In addition, every time we intervene in the system
we need to update P (G | DI) which might be computationally challenging. We
thus want to carefully select the interventions in such a way that we identify the
optimum faster. In turn, this requires properly accounting for uncertainty in
the graph structure. We solve the problem by developing a structured surrogate
model, similar to those seen so far, where the prior distribution is a modified
version of the causal gp prior defined in Chapter 6 and used for both the
dag-gp model and the dcbo framework.

For each set Xs we place a gp prior on fs(x) = E[Y | do (Xs = x) ,G] and
construct an empirical Bayes prior that incorporates the current belief about
the graph together with the observational and interventional data. Specifically
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we have fs(x) ∼ GP(ms(x), ks(x,x
′)) with ms(x) = Ê[Y | do (Xs = x)] and

ks(x,x
′) = krbf(x,x′) + V̂[Y | do (Xs = x)]. More importantly, the mean

function ms(x) approximates fs(x) and is computed by accounting for the
uncertainty in G:

Ê[Y | do (Xs = x)] = EP (G)

[
Ep̂(Y |do(Xs=x),G)[Y ]

]

=
∑

g∈RG

∫
Y p̂(Y | do (Xs = x) , G = g)P (G = g)dY

where RG denotes the support of the distribution onG and the interventional
distribution p̂(Y | do (Xs = x) , G = g) can be reduced to do-free expression
through the rules of do-calculus. Differently from the approaches seen in this
thesis, we use the interventional dataset DI to update not only the surrogate
models on the interventional outputs but also the prior distribution on G so as
to compute P (G|DI). In turn, this requires defining a prior and a likelihood
function for the graph and computing P (G|DI) which could present significant
computational challenges. Updating P (G|DI) affects the prior construction
for the surrogate model and consequently the convergence of the algorithm.
In order to select appropriate interventions, both in terms of variable and
value and for both causal discovery and causal global optimization, we develop
an entropy-based acquisition function. Inspired by Wang and Jegelka [2017],
we define a joint distribution for the graph structure and the optimal target
value and we aim at reducing its uncertainty. Notice that here the optimal
target value is defined across different intervention sets, potentially of different
dimensionality, and different graph structures. We thus factorise the joint
distribution into the distributions for the optimal target value associated to
each intervention set. This allows us to write a mixture distribution where
each component is equivalent to the distribution targeted by Wang and Jegelka
[2017] and the weights are probability reflecting our current belief about the
best intervention set. These probability terms are similar to those used to
represent the current belief about the best arm to pull in a mab setting. Using
this acquisition function and jointly solving the two problems, global optimiza-
tion and causal discovery, would enable the application of causal sequential
decision-making algorithms to various settings where the causal graph is not
known, and assuming a wrong causal graph would prevent the identification of
the optimal intervention.

Addressing the unknown causal graph settings together with all the impor-
tant research questions mentioned above would ultimately lead to an integrated
framework for accurate estimation and sequential decision-making in a causal
system.
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Appendix A

Supplementary Material for
mcpm

A.1 Derivation of the KL-divergence Term

The kl-divergence terms composing the elbo can be written as Lkl(ν) =

Luent(νu) + Lucross(νu) + Lwent(νw) + Lwcross(νw) where each term is given by:

Lucross(νu) =

Q∑

q=1

[
logN (mq; 0,K

q
zz)−

1

2
tr (Kq

zz)
−1Sq

]
(A.1)

Luent(νu) =
1

2

Q∑

q=1

[M log 2π + log |Sq|+M ] (A.2)

Lwcross(νw) =

Q∑

q=1

[
logN (ωq; 0,K

q
w)− 1

2
tr (Kq

w)−1Ωq

]
(A.3)

Lwent(νw) =
1

2

Q∑

q=1

[ P log 2π + log |Ωq|+ P ] , (A.4)

When placing an independent prior and approximate posterior over W, the
terms Lwent and Lwcross get simplified further, reducing the computational cost
significantly when a large number of tasks is considered. Here we derive
the expressions for Eqs. (A.1)–(A.4). The negative cross-entropy term for u

(Eq. (A.1)) is given by:

Lucross(νu) = Eq(u|νu)[log p(u)] =

∫
q(u|νu) log p(u)du

=

Q∑

q=1

∫
q(u•q|νu) log p(u•q)du•q
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=

Q∑

q=1

[N (u•q; mq,Sq) logN (u•q; 0,K
q
zz)]

=

Q∑

q=1

[
logN (mq; 0,K

q
zz)−

1

2
tr (Kq

zz)
−1Sq

]
.

The entropy term for u (Eq. (A.2)) is given by:

Luent(νu) = −Eq(u|νu)[log q(u|νu)] = −
∫
q(u|νu) log q(u|νu)du

= −
Q∑

q=1

∫
q(u•q|νu) log q(u•q|νu)du•q

= −
Q∑

q=1

∫
N (u•q; mq,Sq) logN (u•q; mq,Sq)du•q

= −
Q∑

q=1

[
N (mq; mq,Sq)−

1

2
tr (Sq)

−1Sq

]

=
1

2

Q∑

q=1

[M log 2π + log |Sq|+M ] .

When placing a coupled prior on the mixing weights, the negative cross-
entropy term for W (Eq. (A.3)) is given by:

Lwcross(νw) = Eq(W|νw)[log p(W)] =

∫
q(W|νw) log p(W)dW

=

Q∑

q=1

∫
q(W•q|νw) log p(W•q)dW•q

=

Q∑

q=1

∫
N (ωq,Ωq) logN (0,Kq

w))dW•q

=

Q∑

q=1

[
logN (ωq; 0,K

q
w)− 1

2
tr (Kq

w)−1Ωq

]
.

The entropy term for W (Eq. (A.4)) is given by:

Lwent(νw) = −
∫
q(W|νw) log q(W|νw)dW

= −
Q∑

q=1

∫
N (W•q;ωq,Ωq)logN (W•q;ωq,Ωq)dW•q
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= −
Q∑

q=1

[
N (ωq;ωq,Ωq)−

1

2
tr (Ωq)

−1Ωq

]

=
1

2

Q∑

q=1

[P log 2π + log |Ωq|+ P ] .

When placing an independent prior and approximate posterior over W, the
terms Lwent and Lwcross get further simplified as follow:

Lwent(νw) = −
∫
q(W|νw) log q(W|νw)dW

= −
Q∑

q=1

P∑

p=1

∫
N (ωpq,Ωpq)logN (ωpq,Ωpq)dwpq

=
1

2

Q∑

q=1

P∑

p=1

[log 2π + log Ωpq + 1] , (A.5)

Lwcross(νw) =

∫
q(W|νw) log p(W)dW

=

Q∑

q=1

P∑

p=1

∫
q(wpq|νw) log p(wpq)dwpq

=

Q∑

q=1

P∑

p=1

∫
N (ωpq,Ωpq) logN (0, σ2

pq)dwpq

=

Q∑

q=1

P∑

p=1

[
logN (ωpq; 0,Ωpq)−

Ωpq

2σ2
pq

]
, (A.6)

where Ωpq represents the p-th diagonal term of Ωq.

A.2 Closed form evaluation of Lell

The mcpm model formulation allows deriving a closed-form expression for the
moments of the intensity function. Here we provide details about the derivations
and obtain an expression for the first moment of exp(Wp•fn•) which is used
in the closed-form evaluation of Lell. In order to compute the moments of λ,
we can exploit the moment generating function (mgf) of the product of two
normal random variables. Denote by X and Y two independent and normally
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distributed random variables. The variable Z = XY has mgfZ(t) defined as:

mgfZ(t) =
exp

[
tµXµY +1/2(µ2Y σ

2
X+µ2Xσ

2
Y )t2

1−t2σ2
Xσ

2
Y

]

√
1− t2σ2

Xσ
2
Y

. (A.7)

Now define the random variable V =
∑Q

q=1XqYq whereXq |= Yq,∀q,Xq |= Xq′ ,
∀q, q′ and Yq |= Y ′q′ , ∀q, q′. Given these assumptions, the mgf for V is de-
fined as the product of Q mgf of the form given in Eq. (A.7). We have
mgfV (t) =

∏Q
q=1 mgfZq(t). This implies that:

E(λp) = E [exp(Wp•fn•)] = mgfV (1) (A.8)

where Xq = ωpq and Yq = fnq. Exploiting Eq. (A.8) we can derive a closed
form expression for Lell:

Eq(f),q(W) [log(p(Y|f ,W))] =

= −
N∑

n=1

P∑

p=1

E [exp(Wp•fn• + φp) + ynplog(exp(Wp•fn• + φp)

+logΓ(ynp + 1)]

=
N∑

n=1

P∑

p=1

E [−exp(Wp•fn• + φp)ynpWp•fn• + ynpφp

+logΓ(ynp + 1)]

= −
N∑

n=1

P∑

p=1

E [exp(Wp•fn• + φp)] +
N∑

n=1

P∑

p=1

[ynpE(Wp•fn•)+

+ynpφp + logΓ(ynp + 1)]

= −
N∑

n=1

P∑

p=1

exp(φp)mgfV (1)+

N∑

n=1

P∑

p=1

Q∑

q=1

(ynpωpqµq(xn) + ynpφp + logΓ(ynp + 1)) (A.9)

Given the moments of q(Wp•) and q(fn•) we can write:

Eq(fn•)q(Wp•) [exp(Wp•fn•)] =

Q∏

q=1

exp
[
ωpqµnq+1/2(µ2nqΩpq+ω

2
pqΣ

q
nn)

1−ΩpqΣ
q
nn

]

√
1− ΩpqΣ

q
nn

(A.10)

Defining δX = µX/σX in Eq. (A.7) we can rewrite mgfZ(t) as:
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mgfZ(t) =

exp


 tµXµY +1/2(µ2Y σ

2
X+µ2Xσ

2
Y )t2

1−t2
µ2
X
σ2
Y

δ2
X




√
1− t2 µ

2
Xσ

2
Y

δ2X

(A.11)

As δX increases, mgfZ(t) converges to the form:

mgfZ(t) = exp
[
tµXµY + 1/2(µ2

Y σ
2
X + µ2

Xσ
2
Y )t2

]
(A.12)

which is the mgf of a Gaussian distribution with mean and variance given by
µXµY and µ2

Y σ
2
X + µ2

Xσ
2
Y respectively [Seijas-Macías and Oliveira, 2012]. This

implies that for increasing values of δXq the sum of the products of Gaussians
tends to a Gaussian distribution.

A.3 Relationship to existing literature

As mentioned in Appendix A.2, when Ωq → 0, Wp•fn• converges to a Gaussian
distribution. Depending on the number of latent gps included in the model (Q)
and the moments of q(Wp•), mcpm will thus converge either to an icm (or lcm)
or to a mlgcp or to an lgcp. When Q 6= P , we have logλp(x(n)) =

∑Q
q=1 ωpqfn•

for each n and p. We can thus write:

lim
Kw→0

Cov(logλp(x), logλp′(x′)) =
∑

q,q′

ωpqωp′q′Cov(f•q, f•q′) =
∑

q,q′

ωpqωp′q′︸ ︷︷ ︸
Bq

K̃
q

xx′

where we have exploited the independence assumption between f•q and f•q′

for q 6= q′. When Q = P + 1 and WP×(P+1) = [IP 1P ], the intensity for
each task is determined by the (P + 1)-th common gp and by the p-th task
specific gp. We thus recover the mlgcp formulation. Finally, when Q = P

and WP×P = IP , the intensity for each task is determined only by the p-th
task specific gp. We thus recover the lgcp formulation. We summarize these
results in the following theorem:

Theorem A.1. mcpm generalizes icm, mlgcp and lgcp. As Cov(wpq, wp′q′)→
0,∀p, q, p′, q′, for Q 6= P we have λ̂mcpm → λ̂icm (or a λ̂mcpm → λ̂lcm depending
on the assumed covariance functions for the latent gps) where the intensity
parameters are jointly determined by the moments of f and W:

lim
Cov(wpq ,wp′q′ )→0

∀p,q,p′,q′

Cov(logλp(x), logλp′(x′)) =

Q∑

q=1

γpqγp′q′︸ ︷︷ ︸
Bq(p,p′)

K̃
q

xx′

where Bq ∈ RP×P is known as coregionalisation matrix. For Q = P + 1 and
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WP×(P+1) = [IP 1P ] we have λ̂mcpm → λ̂mlgcp. Finally, for Q = P and
WP×P = IP we have λ̂mcpm → λ̂lgcp.

When considering the task descriptors h, we can view the log intensity as a
function of the joint space of input features and task descriptors i.e. log λ(x,h).
It is possible to show that under our independence prior assumption between
weights (W) and latent functions (f), the prior covariance over the log intensities
(evaluated at inputs x and x′ and tasks p and p′) is given by:

Cov[log λp(x), λp′(x
′)] =

Q∑

q=1

κqw(hp,hp
′
)κqf (x,x′)

where hp denotes the p-th task descriptors. At the observed data {X,H},
assuming a regular grid, the mcpm prior covariance over the log intensities is
Cov[logλλλ(X), logλλλ(X)] =

∑Q
q=1 Kq

w ⊗Kq
f . This is effectively the lcm prior

with Kq
w denoting the coregionalization matrix. Importantly, the two methods

differ substantially in terms of inference. While in lcm a point estimate of
Kq
w is generally obtained, mcpm proceeds by optimizing the hyperparameters

for Kq
w and doing full posterior estimation for both W and f . By adopting a

process view on W, we increase the model flexibility and accuracy by capturing
additional correlations across tasks while being able to generalize over unseen
task descriptors. Finally, by considering our priors and approximate posteriors
over W and f separately, instead of a single joint prior over the log intensities,
we can exploit state-of-the-art inducing variable approximations [Titsias, 2009b]
over each W•q and f•q separately, instead of dealing with a sum of Q Kronecker
products for which there is not an efficient decomposition when Q > 2 [Rakitsch
et al., 2013].

A.4 Algorithmic efficiency

Evaluating Lell in closed form, we are able to significanlty speed up the algorithm
by getting rid of the Monte Carlo approximations in the elbo evaluations, see
Fig. A.1 and Fig. A.2.
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Figure A.1: Synthetic data. Monte Carlo approximation vs. closed form
evaluation of Lell. Left: Negative elbo values over time. Right: nlpl values
for one task over time. S denotes the number of samples used in the Monte
Carlo evaluation.

Figure A.2: crime data. Monte Carlo approximation vs. closed form evaluation
of Lell. Left: Negative elbo values over time. Right: nlpl values for one
task over time. S denotes the number of samples used in the Monte Carlo
evaluation.

A.5 Additional experimental results

Synthetic experiments We report additional performance metrics for the
two synthetic experiments included in the text. Table A.1 gives the coverage
numbers for the first synthetic experiment (s1) while Table A.2 and Table A.3
display the rmse and coverage performances for the second synthetic dataset
(s2). Finally, Fig. A.3 gives the predicted counts distributions for s2.

Crime data experiments We report the rmse values for mcpm and compet-
ing models on the crime dataset (Table A.4). In Fig. A.4 and Fig. A.5 we give
the estimated intensities and conditional probabilities for the crime complete
data experiment. Finally, in Fig. A.6 we show the conditional probabilities for
the missing data experiment.
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Table A.1: s1 dataset. In-sample/Out-of-sample 90% ci coverage for the
predicted event counts distributions.

Empirical Coverage (ec)

1 2 3 4

mcpm-n 0.80/0.12 0.99/0.58 0.92/0.57 0.94/0.83
mcpm-gp 0.95/0.19 0.72/0.67 1.00/0.78 0.92/0.75
icm 0.75/0.03 0.66/0.60 0.62/0.50 0.93/0.42

Table A.2: s2 dataset. rmse performance when making predictions on the
interval [80, 100].

rmse

1 2 3 4 5 6 7 8 9 10

mcpm-n 1.10 1.15 0.89 0.17 0.95 0.99 1.10 0.63 1.50 0.55
mcpm-gp 1.15 1.43 0.91 0.13 0.94 0.97 1.19 0.58 1.43 0.70
mtpp 1.20 1.70 1.12 0.17 0.91 1.05 1.05 1.11 1.61 0.49

BTB data experiments In Fig. A.9 we show the estimated conditional
probabilities on the origin color scale used by Diggle et al. [2013]. In Fig. A.7
we give the estimated intensity surfaces for the complete data experiment.
Finally, in Fig. A.8 we show the estimated intensity surfaces for the missing
data experiment.

Figure A.3: Predicted empirical distributions of event counts in [80, 100] for s2.
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Figure A.4: crime dataset. Estimated intensity surface with mcpm (first row)
and mlgcp (second row). The color scale used is given in Fig. (5).

Figure A.5: crime dataset. Estimated conditional probabilities in the complete
data setting. Row 1: mcpm Row 2: mlgcp.

Figure A.6: crime dataset. Estimated conditional probabilities when introduc-
ing missing data regions. Row 1: mcpm Row 2: lgcp.

Figure A.7: Estimated intensity sur-
faces in the complete data setting.
First row: Training data. Second row:
mcpm Third row: mlgcp

Figure A.8: Estimated intensity sur-
faces in the missing data (shaded re-
gions) setting. First row: Training data.
Second row: mcpm Third row: icm

150



Table A.3: s2 dataset. In-sample/Out-of-sample 90% ci coverage for the
predicted event counts distributions.

Empirical Coverage

1 2 3 4 5 6 7 8 9 10

mcpm-n 1.00/1.00 1.00/1.00 0.95/0.99 0.66/1.00 1.00/0.86 0.97/1.00 0.99/1.00 0.88/1.00 0.92/0.95 1.00/1.00
mcpm-gp 0.99/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 0.99/1.00 1.00/1.00 1.00/1.00 1.00/1.00
mtpp 0.77/0.77 0.82/0.73 0.86/1.00 0.93/1.00 0.75/0.83 0.96/0.84 0.78/0.54 0.99/1.00 0.66/0.88 0.74/0.95

Table A.4: crime dataset. Performance on the missing regions. Standard
errors in parentheses.

Standardized rmse

1 2 3 4 5 6 7

mcpm
1.74 2.91 3.00 2.75 3.57 11.70 1.54
(0.42) (1.06) (1.22) (0.82) (1.99) (2.32) (0.29)

mcpm-gp
1.71 1.91 3.40 2.96 2.00 12.18 1.62
(0.39) (0.33) (1.80) (1.03) (0.47) (2.76) (0.33)

lgcp
5.16 4.68 8.93 3.09 7.69 36.96 5.19
(1.81) (0.99) (5.22) (0.50) (3.68) (5.43) (1.21)

icm
3.36 3.64 3.70 2.97 3.05 12.36 2.82
(1.04) (0.83) (1.89) (1.22) (0.97) (1.99) (0.62)

Figure A.9: mlgcp- btb dataset. Estimated conditional probabilities plotted
on the color scale used by Diggle et al. [2013] and Taylor et al. [2015]. The first
plots corresponds to gt 9, the second to gt 12, the third to gt 15 and the
fourth to gt 20.
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Appendix B

Supplementary Material for
stvb

B.1 elbo derivations

Here we derive the expressions given in Eq. (5.7) and Eqs. (5.8)–(5.12). Starting
with Eq. (5.7), the evidence lower bound (Lelbo) can be written as:

Lelbo = EQ
[
log

[
p({xn}Nn=1, {yk}Kk=1,K, f ,u, λ

?|τ,θ)

p(f |u)q({yk}Kk=1|K)q(K|u, λ?)q(u)q(λ?)

]]

= EQ
[
log p({xn}Nn=1, {yk}Kk=1,K,u, λ

?|τ,θ)
]

− EQ
[
log q({yk}Kk=1|K)q(K|u, λ?)q(u)q(λ?)

]

= EQ

[
(N +K) log(λ?)− λ?µ(τ)− log(K!)− log(N !) +

N∑

n=1

log(σ(f(xn)))

]

+ EQ

[
K∑

k=1

log(σ(−f(yk))) + log(p(u)) + log(p(λ?))

]

− EQ
[
log(q(u))− log(q(K|u, λ?))− log(q(λ?))− log(q({yk}Kk=1|K))

]

= N(ψ(α)− log(β))− V α
β
− log(logN !) + EQ[K log(λ?)]︸ ︷︷ ︸

T1

−EQ[logK!]︸ ︷︷ ︸
T2

+

+

N∑

n=1

Eq(u)[log(σ(f(xn)))] + EQ

[
K∑

k=1

log(σ(−f(yk)))

]

︸ ︷︷ ︸
T3

+

−KL(q(u)||p(u))−KL(q(λ?)||p(λ?))
− EQ[log q(K|u, λ?)]︸ ︷︷ ︸

T4

−EQ
[
log q({yk}Kk=1|K)

]
︸ ︷︷ ︸

T5

Let’s now focus on the terms Ti for i = 1, ..., 5.
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The term T1 (Eq. (5.8)) is given by:

T1 = Eq(u)q(λ?)

[
Eq(K|u,λ?)[K log(λ?)]

]

= Eq(u)q(λ?)

[
log(λ?)Eq(K|u,λ?)[K]

]

= Eq(u)q(λ?)

[
log(λ?)λ?

∫

τ
σ(−u(x))dx

]

= Eq(λ?)[λ
? log(λ?)]Eq(u)[µ(u)]

The term T3 (Eq. (5.9)) is given by:

T3 = Eq(f)q(u)q(yk)q(λ?)

[
Eq(K|f ,yk)

[
K∑

k=1

log(σ(−f(yk)))

]]

= Eq(f)q(u)q(yk)q(λ?)

[
log(σ(−f(yk)))Eq(K|f ,yk)

[
K∑

k=1

1

]]

= Eq(f)q(u)q(yk)[log(σ(−f(yk)))λ
?µ(u)]

=
α

β
Eq(u)[µ(u)]Eq(f)q(yk)[log(σ(−f(yk)))]

The term T4 (Eq. (5.10)) is given by:

T4 = EQ[−λ?µ(u)] + EQ[K log(λ?µ(u))]− EQ[logK!]

= −α
β
Eq(u)[µ(u)] + Eq(λ?)q(u)[λ

? log(λ?)µ(u) + λ?µ(u) log(µ(u))]+

− EQ[logK!]

= −α
β
Eq(u)[µ(u)] + Eq(λ?)[λ

? log(λ?)]Eq(u)[µ(u)]+

+
α

β
Eq(u)[µ(u) log(µ(u))]− EQ[log(K!)]

Finally, the term T5 (Eq. (5.12)) is given by:

T5 = EQ

[
K∑

k=1

log q(yk)

]
= Eq(u,λ?,K)

[
K∑

k=1

Eq(yk)[log q(yk)]

]

= Eq(u,λ?,K)[K]Eq(yk)[log q(yk)]

= Eq(u)q(λ?)[λ
?µ(u)]Eq(yk)[log q(yk)]

=
α

β
Eq(yk)[log q(yk)]Eq(u)[µ(u)]

Notice how the last term in T4 that is −EQ[log(K!)], appears with opposite
sign in T2 = EQ[log(K!)]. This term is thus cancelling out in the computation
of the elbo.
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B.2 Performance metrics

We test the algorithms evaluating the l2 norm to the true intensity function
(in the synthetic settings), the test log likelihood (`test) on the test set and the
negative log predicted likelihood (nlpl) on the training set. The l2 metric is
computed as follow:

l2 =

∫

X
(λ(x)− λ̄(x))2dx (B.1)

where λ(x) is the true intensity function, λ̄(x) is the posterior mean intensity
and the integral is evaluated numerically. The `test values are given by:

`test = Eq(λ?)q(f)

[
log

[
exp

(
−
∫

X
λ(x)dx

) ∏

x∈Dtest

λ(x)

]]
(B.2)

where again the integral is computed via numerical integration. The nlpl

metric is computed as:

nlpl = − 1

S

S∑

s=1

log p(Ntrain|
∫

X
λs(x)d(x)) (B.3)

where S denotes the number of samples from the variational distributions q(f)

and q(λ?). Finally, the ec is computed by evaluating the coverage of the cis of
the posterior (p(N |D)) and predictive (p(N∗|D)) distributions. To construct
the empirical count distribution we sample from the variational distributions
q(f) and q(W), obtain samples of λ(x) and simulate the number of events N
or N∗ from Poisson(λ?

∫
X σ(f(x))dx).

B.3 Additional experimental results

For all comparisons we consider a gp with squared-exponential covariance
function with equally set hyperparameters. Denote by θi = (l, σ2

f ) the values
of the hyperameters for the kernel function K(x,x′) on λi(x) where l indicates
the lenghtscale. For the synthetic experiments we set:

• θ1 = (10, 1)

• θ2 = (0.25, 1)

• θ3 = (15, 1)

For the real-world settings we set the following kernel hyperparameters:

• θneuronal data = (10, 1)

• θtaxi data = (0.3, 1)
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Table B.1: λ1(x) - ec performance on training and test dataset. Higher values
are better. Standard errors in brackets.

λ1(x) - In-sample ec λ1(x) - Out-of-sample ec

10% ci 20% ci 30% ci 40% ci 50% ci 10% ci 20% ci 30% ci 40% ci 50% ci

stvb 1.00 1.00 1.00 1.00 1.00 0.96 0.88 0.81 0.72 0.60
(0.00) (0.00) (0.00) (0.00) (0.00) (0.24) (0.24) (0.23) (0.29) (0.29)

mfvb 1.00 1.00 1.00 1.00 1.00 0.95 0.80 0.76 0.61 0.52
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

vbpp 1.00 1.00 1.00 1.00 0.10 1.00 0.97 0.75 0.41 0.04
(0.00) (0.00) (0.00) (0.00) (0.30) (0.00) (0.05) (0.21) (0.25) (0.09)

sgcp 1.00 1.00 1.00 1.00 0.60 0.75 0.60 0.39 0.27 0.08
(0.00) (0.00) (0.00) (0.00) (0.49) (0.29) (0.33) (0.28) (0.22) (0.12)

lgcp 0.70 0.00 0.00 0.00 0.00 0.48 0.22 0.08 0.03 0.01
(0.46) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table B.2: λ2(x) - ec performance on training and test dataset. Higher values
are better. Standard errors in brackets.

λ2(x) - In-sample ec λ2(x) - Out-of-sample ec

10% ci 20% ci 30% ci 40% ci 50% ci 10% ci 20% ci 30% ci 40% ci 50% ci
stvb 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.91 0.88 0.86

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.09) (0.24) (0.23) (0.22)
mfvb 1.00 1.00 1.00 1.00 1.00 0.92 0.92 0.89 0.84 0.82

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
vbpp 1.00 1.00 1.00 1.00 0.10 0.92 0.86 0.76 0.45 0.05

(0.00) (0.00) (0.00) (0.00) (0.30) (0.24) (0.23) (0.26) (0.26) (0.05)
sgcp 1.00 0.90 0.70 0.40 0.30 0.90 0.90 0.64 0.14 0.00

(0.00) (0.30) (0.46) (0.49) (0.46) (0.00) (0.00) (0.09) (0.05) (0.00)
lgcp 0.10 0.00 0.00 0.00 0.00 0.80 0.22 0.04 0.00 0.00

(0.30) (0.00) (0.00) (0.00) (0.00) (0.24) (0.16) (0.08) (0.00) (0.00)

Synthetic data experiments In Table B.1, Table B.2 and Table B.3 we
report the values of ec for different cis and on both the training and test set.

Real data experiments In Table B.4 we report the values of ec for different
cis and on both the training and test set.
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Table B.3: λ3(x) - ec performance on training and test dataset. Higher values
are better. Standard errors in brackets.

λ3(x) - In-sample ec λ3(x) - Out-of-sample ec

10% ci 20% ci 30% ci 40% ci 50% ci 10% ci 20% ci 30% ci 40% ci 50% ci
stvb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.92

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.12)
mfvb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.91 0.78

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
vbpp 1.00 1.00 1.00 1.00 0.10 0.97 0.94 0.83 0.43 0.03

(0.00) (0.00) (0.00) (0.00) (0.30) (0.09) (0.15) (0.19) (0.14) (0.05)
sgcp 0.80 0.70 0.50 0.40 0.00 0.82 0.54 0.49 0.34 0.02

(0.40) (0.46) (0.50) (0.49) (0.00) (0.12) (0.05) (0.03) (0.07) (0.04)
lgcp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table B.4: Real data. Values are given as In-sample - Out-of-sample ec. Mean
and standard errors (in parenthesis) are computed across different seeds.

Neuronal data

10% ec 20% ec 30% ec 40% ec 50%ec

stvb
1.00-1.00 1.00-1.00 1.00-1.00 0.99-0.56 0.01- 0.00

(0.00)-(0.00) (0.00)- (0.00) (0.00)-(0.00) (0.10)-(0.50) (0.10)-(0.00)

mfvb
1.00-1.00 1.00-0.62 1.00-0.03 0.78-0.00 0.00 - 0.00

(0.00) - (0.00) (0.00)-(0.49) (0.00)-(0.17) (0.41)-(0.00) (0.00) - (0.00)

vbpp
1.00-0.53 1.00-0.00 1.00-0.00 0.83-0.00 0.01-0.00

(0.00)-(0.50) (0.00)- (0.00) (0.00)- (0.00) (0.38)-(0.00) (0.10)-(0.00)

Taxi data

10% ec 20%ec 30% ec 40% ec 50% ec

stvb
1.00-1.00 1.00-1.00 0.81-0.37 0.09-0.01 0.00-0.00

(0.00)-(0.00) (0.00)-(0.00) (0.39)-(0.48) (0.29)-(0.10) (0.00)-(0.00)

mfvb
0.49-0.93 0.00-0.13 0.00-0.00 0.00-0.00 0.00-0.00

(0.50)-(0.26) (0.00)-(0.34) (0.00)-(0.00) (0.00)-(0.00) (0.00)-(0.00)

vbpp
1.00-0.00 1.00-0.00 0.98-0.00 0.48-0.00 0.00- 0.00

(0.00)- (0.00) (0.00)-(0.00) (0.14)-(0.00) (0.50)-(0.00) (0.00)-(0.00)
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Appendix C

Supplementary Material for cbo

C.1 Do-calculus derivations for the toy experiment

In this section we derive the do-calculus expressions for all interventions one
can implement in the dag of Fig. 6.3 (left).

p(y|do(X = x)) = p(y|X = x) by (Y |= X) in GX

p(y|do(Z = z)) = p(y|Z = z) by (Y |= Z) in GZ

p(y|do(X = x), do(Z = z)) = p(y|do(Z = z)) by (Y |= X|Z) in GXZ

C.2 Do-calculus derivations for the synthetic
experiment

In this section we derive the do-calculus expressions for all interventions one
can implement in the dag of Fig. 6.2 (a).

p(y|do(B = b)) =

∫
p(y|c, do(B = b))p(c|B = b)dc

=

∫
p(y|do(C = c), do(B = b))p(C = c|B = b)dc

by (Y |= C|B) in GBC
=

∫
p(y|do(C = c))p(c|B = b)dc by (Y |= B|C) in GBC

=

∫
p(y|b′, do(C = c))p(b′|do(C = c))p(c|B = b)db′dc

=

∫
p(y|b′, C = c)p(b′)p(c|B = b)db′dc by (Y |= C|B) in GBC
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p(y|do(D = d)) =

∫
p(y|c, do(D = d))p(c|do(D = d))dc

=

∫
p(y|c,D = d)p(c)dc by (Y |= D|C) in GD

p(y|do(E = e)) =

∫
p(y|a, c, do(E = e))p(a, c|do(E = e))dadc

=

∫
p(y|a, c, E = e)p(a)p(c)dadc by (Y |= E|A,C) in GE

p(y|do(B = b), do(D = d)) =

∫
p(y|do(B = b), c, do(D = d))p(c|do(B = b), do(D = d))dc

=

∫
p(y|do(B = b), do(C = c), do(D = d))p(c|B = b)dc

by (Y |= C|B,D) in GCBD
=

∫
p(y|do(C = c), do(D = d))p(c|B = b)dc

by (Y |= B|C,D) in GBCD
=

∫
p(y|b′, do(C = c), do(D = d))

× p(b′|do(C = c), do(D = d))p(c|B = b)dcdb′

=

∫
p(y|b′, C = c, do(D = d))p(b′)p(c|B = b)dcdb′

by (Y |= C|B,D) in GBDC
=

∫
p(y|b′, C = c,D = d)p(b′)p(c|B = b)dcdb′

by (Y |= D|B,C) in GD

p(y|do(D = d), do(E = e)) =

∫
p(y|a, c, do(D = d), do(E = e))

× p(a, c|do(D = d), do(E = e))dadc

=

∫
p(y|a, c,D = d,E = e)p(a)p(c)dadc

by (Y |= (D,E)|A,C) in GDE
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p(y|do(B = b), do(E = e)) =

∫
p(y|do(B = b), c, do(E = e))p(c|B = b)dc

=

∫
p(y|do(B = b), do(C = c), do(E = e))p(c|B = b)dc

by (Y |= C|B,E) in GBEC
=

∫
p(y|do(C = c), do(E = e))p(c|B = b)dc

by (Y |= B|C,E) in GCEB
=

∫
p(y|do(C = c), do(E = e), b′)

× p(b′|do(C = c), do(E = e))p(c|B = b)db′dc

=

∫
p(y|C = c, do(E = e), b′)p(b′)p(c|B = b)db′dc

by (Y |= C|B,E) in GEC
=

∫
p(y|a,C = c, do(E = e), b′)p(a|C = c, do(E = e), b′)

× p(b′)p(c|B = b)db′dcda

=

∫
p(y|a, b′, C = c, E = e)p(a)p(b′)p(c|B = b)db′dcda

by (Y |= E|A,B,C) in GE

p(y|do(B = b), do(D = d), do(E = e)) = p(y|do(D = d), do(E = e))

by (Y |= B|D,E) in GDEB

C.3 scm for the synthetic experiment

The scm for the synthetic example in Section 6.4.2 is given by:

A = U1 + εA

B = U2 + εB

C = exp(−B) + εC

D = exp(−C)/10.+ εD

E = cos(A) + C/10 + εE

Y = cos(D) + sin(E) + U1 + U2εy

U1 = εY A U2 = εY B
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Figure C.1: Toy example. Convergence of cbo and standard bo across different
initializations of DI . The red line gives the optimal Y ∗ when intervening on
sets in MC

G,Y , PC
G,Y or BC

G,Y . Solid lines give cbo results when using the causal
gp model which is denoted by GP+. Dotted line correspond to cbo with a
standard gp prior model p(f(xs)) = GP(0, krbf(xs,x

′
s)). Shaded areas are ±

standard deviation.

with εi ∼ N (0, 1) for i ∈ {A,B,C,D,E, Y A, Y B}.

C.4 Cost configurations

Denote by Co(X,x) the cost of intervening on node X at the value x. For
the toy example (Section 6.4.1) and the real-data examples (Section 6.4.3 and
Section 6.4.4) we consider fix unit cost across nodes. For the synthetic example
(Section 6.4.2) we consider three possible cost configurations: equal fix costs
across nodes, different fix costs across nodes and variable costs across nodes.
These are set to:

1. Fix equal costs: Co(B, b) = Co(D, d) = Co(E, e) = 1.

2. Fix different costs: Co(B, b) = 10, Co(D, d) = 5 and Co(E, e) = 20.

3. Variable costs: Co(B, b) = 10 + |b|, Co(D, d) = 5 + |d| and Co(E, e) =

20 + |e|.

C.5 Additional synthetic results

Fig. C.1 shows the results for the toy experiment in Section 6.4.1 across different
initialization of DI . Fig. C.2 shows the results for the synthetic experiment in
Section 6.4.2 across different cost structures and values of N .

C.6 Example in Healthcare

The dag describing the causal relationships between statin drugs and psa

[Ferro et al., 2015; Thompson, 2019] is given in Fig. C.3(a) while the scm for
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Figure C.2: Synthetic example. Convergence of cbo and standard bo. The
orange line gives the optimal Y ∗ when intervening on BC

G,Y . The red line gives
the optimal Y ∗ when intervening on sets in MC

G,Y or PC
G,Y . Solid lines give cbo

results when using the causal gp model which is denoted by GP+. Dotted line
correspond to cbo with a standard gp prior model. Upper left : option (2) in
§C.4, N = 100. lower left : option (3) in §C.4, N = 100. Upper right : option
(2) in §C.4, N = 300. Lower right : option (3) in §C.4, N = 300.

this example is:

age = U(55, 75)

bmi = N (27.0− 0.01× age, 0.7)

aspirin = σ(−8.0 + 0.10× age + 0.03× bmi)

statin = σ(−13.0 + 0.10× age + 0.20× bmi)

cancer = σ(2.2− 0.05× age + 0.01× bmi− 0.04× statin + 0.02× aspirin)

Y = N (6.8 + 0.04× age− 0.15× bmi− 0.60× statin

+ 0.55× aspirin + 1.00× cancer, 0.4)

where U(a, b) denotes a uniform random variable with parameters a and b,
N (m, s) represents a normal random variable with mean m and standard
deviation s and σ denotes the sigmoidal function computed as σ(x) = 1

1+e−x .
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Figure C.3: (a): Causal graph of psa level. Shaded nodes represent variables
which can be intervened while empty nodes represent non-manipulative variables.
The target variable is psa. (b): dag of nec level. Shaded nodes represent
manipulative variables. Empty nodes represent non-manipulative variables.
The target variable is nec.

C.7 Example in Ecology

The dag describing the causal relationships between a set of environmental
variables and nec [Courtney et al., 2017] is given in Fig. C.3(b). The variables
included in the dag are the following:

• Chlα: sea surface chlorophyll a;

• Sal: sea surface salinity;

• ta: seawater total alkalinity;

• dic: seawater dissolved inorganic carbon;

• PCO2 : seawater PCO2 ;

• Tem: bottom temperature;

• nec: net ecosystem calcification;

• Light: bottom light levels;

• Nut: PC1 of NH4, NiO2+NiO3, SiO4;

• pHSW : seawater pH;

• ΩA: seawater saturation with respect to aragonite.

See Andersson and Bates [2018] for more details about the included variables.
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Appendix D

Supplementary Material for
dag-gp

D.1 Proofs of theorems and corollaries

In this section we give the proofs for the theoretical results in Chapter 7.

D.1.1 Proof of Theorem 7.1

Proof. Consider a generic Xs ∈ P(X). vIs and vNs denote the values for the
sets IIs and INs respectively. l = (lIs ∪ lNs ) represents the values for the set LN ,
lNs is the value of LNs and lIs gives the value for LIs. Notice that we can write the
intervention on Xs, that is do (Xs = x), as do

(
IIs = vIs

)
∪ do

(
Xs\IIs = x\vIs

)
.

Any function ts(x) ∈ T can be written as:

ts(x) = E[Y |do (Xs = x)]

=

∫
· · ·
∫

E
[
Y |do

(
IIs = vIs

)
, do

(
Xs\IIs = x\vIs

)
, INs = vNs ,L

N
s = lNs

]
×

× p(vNs , lNs |do (Xs = x))dvNs dlNs

=

∫
· · ·
∫

E
[
Y |do

(
IIs = vIs

)
, do

(
Xs\IIs = x\vIs

)
, do

(
INs = vNs

)
,LNs = lNs

]
×

× p(vNs , lNs |do (Xs = x))dvNs dlNs by Y |= INs |Xs,L
N
s in GXsINs

(D.1)

=

∫
· · ·
∫

E
[
Y |do

(
IIs = vIs

)
, do

(
INs = vNs

)
,LN = lNs

]
×

× p(vNs , lNs |do (Xs = x))dvNs dlNs (D.2)

by Y |= (Xs\IIs)|I,LNs in G
I(Xs\IIs)(LNs )
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=

∫
· · ·
∫

E
[
Y |do (I = v) ,LNs = lNs

]
p(vNs , l

N
s |do (Xs = x))dvNs dlNs

=

∫
· · ·
∫

E
[
Y |do (I = v) ,LNs = lNs ,L

I
s = lIs

]
×

× p(lIs|do (I = v) ,LNs = lNs )p(vNs , l
N
s |do (Xs = x))dvNs dlNs dlIs

=

∫
· · ·
∫

E
[
Y |do (I = v) ,LN = l

]
p(lIs|LNs = lNs )

× p(vNs , lNs |do (Xs = x))dvNs dlNs dlIs by LIs |= I|LNs in GI (D.3)

=

∫
· · ·
∫

E
[
Y |do (I = v) ,LN = l

]
p(lIs|lNs )p(vNs , l

N
s |do (Xs = x))dvNs dl

=

∫
· · ·
∫
f(v, l)p(lIs|lNs )p(vNs , l

N
s |do (Xs = x))dvNs dl (D.4)

where Eq. (D.1) follows from Rule 2 of do-calculus while Eq. (D.2) and Eq. (D.3)
follow from Rule 3 of do-calculus [Pearl, 2009b]. Eq. (D.4) gives the causal
operator.

D.1.2 Proof of Corollary 7.1

Proof. Suppose there exists another set A, different from Pa(Y ) and defined as
A = Pa(Y )\Pa(Y )i, where Pa(Y )i represents a single variable in Pa(Y ), such
that Eq. (7.2) holds for every set Xs. This means that A blocks the front-door
paths from all Xs ∈ P(X) to Y . That is, A also blocks the directed path from
Pa(Y ) ∈ P(X) to Y thus including descendants of Pa(Y ) which are ancestors
of Y . This contradicts the definition of a parent as a variable connected to Y
through a direct arrow. The same reasoning hold for every set non containing
all parents of Y thus Pa(Y ) is the smallest set such that Eq. (7.2) holds.

D.1.3 Proof of Theorem 7.2

Proof. Suppose that L includes a node, say Li, that has both an incoming and
an outcoming unconfounded edge. The unconfounded incoming edge implies
the existence of a set Xs for which Li is a collider on the confounded path
from Xs to Y . At the same time, the unconfounded outcoming edge implies
the existence of a set Xs′ such that Li is an ancestor that we need to condition
on in order to block the back-door paths from Xs′ to Y . Consequently, the
conditions Y |= INs |Xs,L

N
s in GXsINs

and Y |= (Xs\IIs)|I,LNs in G
I(Xs\IIs)(LNs )

in Theorem 7.1 cannot hold, at the same time, for both Xs and Xs′ . Indeed,
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these independence conditions would be verified for Xs when excluding Li
from LN while they would be verified for Xs′ when Li is included in LN . The
same reasoning hold for every node in L having both incoming and outcoming
unconfounded edges. Therefore, if G has one of such node, it is not possible to
find a set L such that Eq. (7.2) holds from all Xs ∈ P(X).

D.1.4 Proof of Corollary 7.2

Proof. Suppose there exists another set A, different from L and defined as
A = L\Li where Li ∈ P(X) denotes a single variable in L that is not a
collider. The set A need to be such that Y |= (Xs\IIs)|I,AN

s in G
I(Xs\IIs)(AN

s )

∀Xs in P(X). Consider Xs = Li and notice that the back door path from Li

to Y is not blocked by conditioning on I or AN
s . Therefore Y 6⊥⊥ (Xs\IIs)|I,AN

s

in G
I(Xs\IIs)(AN

s )
and A is not a valid set. The same reasoning holds for every

set not containing all confounders of Y thus L is the minimal set for L.

D.2 Partial transfer

The conditions in Theorem 7.1 allow for full transfer across all intervention
functions in T. As shown in Theorem 7.2, this might not be possible when
a subset L′ ⊂ L includes nodes directly confounded with Y and with both
unconfounded incoming and outcoming edges. However, we might still be
interested in transferring information across a subset T′ ⊂ T which includes
functions defined on P(X)′ ⊂ P(X). P(X)′ is defined by excluding from P(X)

those intervention sets including variables that have outcoming edges pointing
into L′ making the conditions in Theorem 7.1 satisfied for all sets in P(X)′.
For instance, consider Fig. 7.4(b) with the red edge where A is a confounded
node that has both unconfounded incoming and outcoming edges. To block
the path E ← A L9999K Y we need to condition on A. However, conditioning
on A opens the path F → A L9999K Y making it impossible to define a base
function. We can thus focus on a subset T′ in which all functions including
L′ = {A} as an intervention variable have been excluded. This is equivalent to
doing full transfer in Fig. 7.4(b) with no incoming red edge in A.

D.3 Advantages of using the Causal operator

The causal operator allows us to write any ts(x) as an integral transformation of
f . The integrating measure, which differs across Xs, captures the dependency
structure between the base set and the intervention set and can be reduced
to do-free operations via do-calculus. Notice how, given our identifiability
assumptions, all functions in T can also be computed by simply applying the

165



rules of do-calculus when observational data are available. However, writing
the functions via Ls(f)(x) has several advantages:

• it allows to identify the correlation structure across functions and exploit
it to derive a multi-task probabilistic model. In turn, this enables the
sharing of experimental information across causal effects;

• it allows to learn those intervention functions for which we cannot run
experiments or for which only observational data is available via transfer
of experimental information from correlated tasks;

• it allows to efficiently learn the set T when P(X) is large. Indeed, the
sharing of interventional data reduces the total number of interventions
one needs to implement in order to learn all causal effects.

All these aspects are crucial when we have limited observational data or we
cannot run experiments on some intervention sets or the cardinality of P(X)

is large. In the last case, specifying a model for each individual intervention
function would not only be computationally expensive but might also lead to
inconsistent prior specification across functions. Through the causal operator,
we can model a system by only making one single assumption on f which is
then propagated in the causal graph. When an intervention is performed, the
information is propagated in the graph through the base function which links
the different interventional functions. Finally, using f we avoid the specification
of the correlation structure across every pair of intervention functions which
would result in a combinatorial problem.

D.4 Single-task models for intervention functions

With single-task model we refer to the idea of placing an individual probabilistic
model on the intervention function corresponding to each set in P(X). For
each Xs ∈ P(X) we have:

ts(x) ∼ GP(m(x),K(x,x′))

Depending on the availability of DO, one can decide to set the prior parameters
to standard value, e.g. m(x) = 0 andK(x,x′) = Krbf(x,x′) or adopt the causal
prior construction introduced in Chapter 6. In both cases, the experimental
information is not shared across functions and learning T requires intervening
on all sets in P(X).
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D.5 Active learning with dag-gp

In Section 7.5.2 we have seen how, in order to select the next intervention
level and intervention set within an al algorithm while properly accounting for
uncertainty reduction, one can use the dag-gp+ model for T. In this case, for
every Xs and at every step j, both variance terms used in the mutual infor-
mation computations that is σ2

xjs|Aj−1
and σ2

xjs|Ds\(Aj−1∪xjs)
, which correspond

to the variance terms of the kernel on T, are determined by observational and
interventional data across all experiments. Therefore, both gp+ and dag-gp+

avoid collecting data points in areas where the causal gp prior is already pro-
viding information thus making the posterior mean equal to the true function.
gp+ is spreading the function evaluations on the remaining part of the input
space collecting data points across the complete input space. On the contrary,
dag-gp+ drives the data points to be collected where neither observational
nor interventional information can be transferred for the remaining tasks thus
focusing on the border of the input space. Using dag-gp+ as a surrogate for
al is thus crucial when designing optimal experiments as it allows to account
for the uncertainty reduction obtained by transferring interventional data.

D.6 Bayesian Optimization with dag-gp

The goal of bo is to optimize a function that is costly to evaluate and for
which an explicit functional form is not available by making a series of function
evaluations. In Chapter 6 we introduced the cbo algorithm which solves
the problem of finding an optimal intervention in a dag. cbo optimizes a
target node by accounting for the causal relationship between the inputs and
placing a single-task gp model on the intervention functions. By modelling
these functions independently, cbo does not account for their correlation when
exploring the intervention space. For each Xs ∈ P(X) we have:

ts(x) = E[Y |do (Xs = x)]

ts(x) ∼ GP(m+(x),K+(x,x′)) (D.5)

where m+(x) and K+(x,x′) are the casual prior parameters. It is possible
to improve cbo by considering dag-gp+ as the surrogate model. For each
Xs ∈ P(X), instead of considering a single-task gp model as in Eq. (D.5),
one can use ts(x) ∼ GP(ms(x),Ks(x,x

′)) with ms(x) and Ks(x,x
′) being the

parameters computed as in Eq. (7.4) and Eq. (7.5) in the main paper. This
allows cbo to correctly place the next function evaluations thus significantly
speeding up the convergence to the global optimum both with and without the
causal prior.
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D.7 Additional Experimental Results

Implementation details For all experiments, we assume Gaussian distri-
butions for both the integrating measures and the conditional distributions in
the dags. We optimize the parameters via maximum likelihood estimation.
We generate the observational data by sampling from the sems given below.
In order to generate interventional data, we sample from a modified version
of the scm where the functional relationship corresponding to the intervened
variable is substituted with a constant value. This is equivalent to sampling
from the mutilated graph. We compute the integrals in Eq. (7.4) and Eq. (7.5)
via Monte-Carlo integration with 1000 samples. Finally, we fix the variance
in the likelihood of Eq. (7.3) and fix the kernel hyper-parameters for both the
rbf and causal kernel to standard values (l = 1, σ2

f = 1). Optimizing these
parameters might potentially lead to improved performances and is left as an
open problem.

Additional results In Table D.1 we report the fitting performances for both
the synthetic examples and the health-care application across intervention
functions and replicates when N = 500. In the following subsections we give

Table D.1: rmse with N = 500

dag-gp+ dag-gp gp+ gp do-calculus

dag1
0.48 0.57 0.60 0.77 0.55
(0.07) (0.08) (0.15) (0.27) -

dag3
0.50 0.42 0.58 1.26 2.87
(0.11) (0.13) (0.10) (0.11) -

dag4
0.09 0.44 0.54 0.89 0.22
(0.05) (0.12) (0.08) (0.23) -

additional do-calculus derivations and scm details for all dags in Fig. 7.4.

D.7.1 dag1

Do-calculus derivations For dag1 in Fig. 7.4(a) without the red edge
we have I = {Z} and L = ∅. The base function is thus given by f =

E[Y |do (Z = z)]. In this section we give the expressions for the functions in
T and show each of them can be written as a transformation of f with the
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corresponding integrating measure. Notice that in this case f ∈ T.

E[Y |do (X = x)] =

∫
E[Y |do (X = x) , z]p(z|do (X = x))dz

=

∫
E[Y |do (X = x) , do (Z = z)]p(z|do (X = x))dz

by Y |= Z|X in GBXZ
=

∫
E[Y |do (Z = z)]p(z|do (X = x))dz

by Y |= X|Z in GXZ
=

∫
f(z)p(z|do (X = x))dz

with p(z|do (X = x)) = p(z|X = x).

E[Y |do (Z = z)] = f(z).

E[Y |do (X = x) , do (Z = z)] = E[Y |do (Z = z)] = f(z)

by Y |= X|Z in GXZ

scm:

X = εX

Z = exp(−X) + εZ

Y = cos(Z)− exp(−Z/20) + εY

with εX ∼ N (0, 1), εZ ∼ N (0, 1) and εY ∼ N (0, 1). We consider the following
interventional domains:

• D(X) = [−5, 5]

• D(Z) = [−5, 20]

D.7.2 dag2

Do-calculus derivations For dag2 in Fig. 7.4(b) without the red edge we
consider {A,C} to be non-manipulative. We have I = {D,E} and L = {A,B}.
The base function is thus given by f = E[Y |do (D = d) , do (E = e) , a, b]. In
this section we give the expressions for all the functions in T and show each of
them can be written as a transformation of f with the corresponding integrating
measure.
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Intervention sets of size 1

E[Y |do (D = d)] =

∫
E[Y |do (D = d) , e, a, b]p(a, b, e|do (D = d))dadbde

=

∫
E[Y |do (D = d) , do (E = e) , a, b]p(a, b, e|do (D = d))dadbde

by Y |= E|D,A,B in GDE
=

∫
f(d, e, a, b)p(a, b, e|do (D = d))dadbde

with p(a, b, e|do (D = d)) = p(a)p(b)p(e|a, b).

E[Y |do (E = e)] =

∫
E[Y |do (E = e) , d, a, b]p(d, a, b|do (E = e))dadbds

=

∫
E[Y |do (E = e) , do (D = d) , a, b]p(d, a, b|do (E = e))dadbdd

by Y |= D|E,A,B in GED
=

∫
f(d, e, a, b)p(d, a, b|do (E = e))dadbdd

with p(d, a, b|do (E = e)) = p(a)p(b)p(d|b).

E[Y |do (B = b)] =

∫
E[Y |do (B = b) , d, e, a]p(d, e, a|do (B = b))dddeda

=

∫
E[Y |do (B = b) , do (D = d) , do (E = e) , a]×

× p(d, e, a|do (B = b))dddeda by Y |= D,E|B,A in GBDE
=

∫
E[Y |do (D = d) , do (E = e) , a]p(d, e, a|do (B = b))dddeda

by Y |= B|D,E,A in GBDE
=

∫
E
[
Y |do (D = d) , do (E = e) , a, b′

]
p(b′)×

× p(d, e, a|do (B = b))dddedadb′

=

∫
f(d, e, a, b′)p(b′)p(d, e, a|do (B = b))dddedadb′

with p(b′)p(d, e, a|do (B = b)) = p(b′)p(a)p(d|e, a,B = b)p(e|a,B = b).

Intervention sets of size 2

E[Y |do (D = d) , do (E = e)] =

∫
E[Y |a, b, do (D = d) , do (E = e)]×

× p(a, b|do (D = d) , do (E = e))dadb

=

∫
f(d, e, a, b)p(a, b|do (D = d) , do (E = e))dadb
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with p(a, b|do (D = d) , do (E = e)) = p(a)p(b).

E[Y |do (B = b) , do (D = d)] =

∫
E[Y |do (B = b) , do (D = d) , a, e]×

× p(a, e|do (B = b) , do (D = d))dade

=

∫
E[Y |do (B = b) , do (D = d) , a, do (E = e)]×

× p(a, e|do (B = b) , do (D = d))dade

by Y |= E|A,B,D in GBDE
=

∫
E[Y |do (D = d) , do (E = e) , a]×

× p(a, e|do (B = b) , do (D = d))dade

by Y |= B|A,D,E in GBDE
=

∫
E
[
Y |do (D = d) , do (E = e) , a, b′

]
p(b′)×

× p(a, e|do (B = b) , do (D = d))dadb′de

with p(b′)p(a, e|do (B = b) , do (D = d)) = p(b′)p(a)p(e|a,B = b).

E[Y |do (B = b) , do (E = e)] =

∫
E[Y |do (B = b) , do (E = e) , a, d]×

× p(a, d|do (B = b) , do (E = e))dadd

=

∫
E[Y |do (B = b) , do (E = e) , a, do (D = d)]×

× p(a, d|do (B = b) , do (E = e))dadd

by Y |= D|A,B,E in GBED
=

∫
E[Y |do (D = d) , do (E = e) , a]×

× p(a, d|do (B = b) , do (E = e))dadd

by Y |= B|A,D,E in GBDE
=

∫
E
[
Y |do (D = d) , do (E = e) , a, b′

]
p(b′)×

× p(a, d|do (B = b) , do (E = e))dadb′dd

=

∫
f(d, e, a, b′)p(b′)p(a, d|do (B = b) , do (E = e))dadb′dd

with p(b′)p(a, d|do (B = b) , do (E = e)) = p(b′)p(a)p(d|B = b).
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Intervention sets of size 3

E[Y |do (B = b) , do (D = d) , do (E = e)] = E[Y |do (D = d) , do (E = e)]

by (Y |= B|D,E in GDEB)

scm:

U1 = εY A

U2 = εY B

A = U1 + εA

B = U2 + εB

C = exp(−B) + εC

D = exp(−C)/10.+ εD

E = cos(A) + C/10 + εE

Y = cos(D) + sin(E) + U1 + U2 + εY

with εi ∼ N (0, 1), ∀i ∈ {Y A, Y B,A,B,C,D,E, Y }. We consider the follow-
ing interventional domains:

• D(B) = [−3, 4]

• D(D) = [−3, 3]

• D(E) = [−3, 3]

D.7.3 dag3

Do-calculus derivations For dag3 in Fig. 7.4(c) we consider the variables
{age,bmi, cancer} to be non-manipulative. We have no unobserved confounder
thus L = ∅ and I = {aspirin, statin, age,bmi, cancer}. In this section we give
the expressions for all the functions in T and show each of them can be written
as a transformation of f with the corresponding integrating measure.

E[Y |do (aspirin = x)] =

∫
· · ·
∫
f(aspirin, statin, age,bmi, cancer)×

× p(statin, age,bmi, cancer|do (aspirin = x))dstatin×
× dagedbmidcancer

where the distribution p(statin, age,bmi, cancer|do (aspirin = x)) can be factor-
ized as the product p(cancer|age,bmi, aspirin, aspirin) × p(statin|age,bmi) ×
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p(bmi|age)× p(age).

E[Y |do (statin = x)] =

∫
· · ·
∫
f(aspirin, statin, age,bmi, cancer)×

× p(aspirin, age,bmi, cancer|do (statin = x))×
× daspirindagedbmidcancer

where the distribution p(aspirin, age,bmi, cancer|do (statin = x)) can be factor-
ized as the product p(cancer|age,bmi, aspirin, aspirin)× p(aspirin|age,bmi)×
p(bmi|age)× p(age). Finally we have:

E[Y |do(aspirin = x, statin = z)] =

∫
· · ·
∫
f(aspirin, statin, age,bmi, cancer)×

× p(age,bmi, cancer|do (aspirin = x) ,

do (statin = z))×
× dagedbmidcancer

where the distribution p(age,bmi, cancer|do (aspirin = x) , do (statin = z)) can
be factorized as the product p(cancer|age,bmi, aspirin, aspirin)× p(bmi|age)×
p(age).

scm:

age = U(55, 75)

bmi = N (27.0− 0.01× age, 0.7)

aspirin = σ(−8.0 + 0.10× age + 0.03× bmi)

statin = σ(−13.0 + 0.10× age + 0.20× bmi)

cancer = σ(2.2− 0.05× age + 0.01× bmi− 0.04× statin + 0.02× aspirin)

Y = N (6.8 + 0.04× age− 0.15× bmi− 0.60× statin

+ 0.55× aspirin + 1.00× cancer, 0.4)

We consider the following interventional domains:

• D(aspirin) = [0, 1]

• D(statin) = [0, 1]
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Appendix E

Supplementary Material for
dcbo

E.1 Characterization of the time structure in a dag
with time dependent variables

In this section we give the proof for Theorem 8.1 in the main text. Consider the
objective function E[Yt|do (Xs,t = xs,t) , I0:t−1] and define the following sets:

• Pa (Yt) = Y PT
t ∪Y PNT

t with Y PT
t = Pa (Yt)∩Y0:t−1 denoting the parents

of Yt that are target variables at previous time steps and Y PNT
t =

Pa (Yt) \Y PT
t including the parents of Yt that are not target variables.

• For any set Xs,t ∈ P(Xt), XPY
s,t = Xs,t ∩ Pa (Yt) includes the variables

in Xs,t that are parents of Yt while XNPY
s,t = Xs,t\XPY

s,t so that Xs,t =

XPY
s,t ∪XNPY

s,t .

• For any set IV0:t−1 ⊆ X0:t−1, IPY
0:t−1 = IV0:t−1∩Pa (Yt) includes the variables

in IV0:t−1 that are parents of Yt and INPY
0:t−1 = IV0:t−1\IPY

0:t−1 so that IV0:t−1 =

IPY
0:t−1 ∪ INPY

0:t−1 .

• For any two sets Xs,t ∈ Pa (Yt) and IV0:t−1 ⊆ X0:t−1, W is a set such that
Pa (Yt) = Y PT

t ∪XPY
s,t ∪ IPY

0:t−1 ∪W. This means that W includes those
variables that are parents of Yt but are nor target at previous time steps
nor intervened variables.

In the following proof the values of IV0:t−1, XPY
s,t , IPY

0:t−1 and W are denoted
by i, xPY, iPY and w respectively. The values of Y PT

t , XNPY
s,t and INPY

0:t−1 are
instead represented by yPT

t , xNPY and iNPY. Finally, fYY and fNYY are the
functions in the sem for Yt (see Assumptions (1) in the main text).
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Proof of Theorem 8.1 Under Assumptions (1) we can write the objective
function fs,t(xs,t) = E[Yt|do (Xs,t = xs,t) , I0:t−1] as:

fs,t(xs,t) =

∫
ytp(yt|do (Xs,t = xs,t) , I0:t−1)dyt

=

∫
· · ·
∫
ytp(yt|do

(
XPY
s,t = xPY) , do

(
XNPY
s,t = xNPY) ,

IPY
0:t−1, I

NPY
0:t−1 ,y

PT
t ,w)×

× p(yPT
t ,w|do (Xs,t = xs,t) , I0:t−1)dytdyPT

t dw

=
/
Rule 2 and Rule 1 of do-calculus

/

=

∫
· · ·
∫
ytp(yt|do

(
XPY
s,t = xPY) , IPY

0:t−1,y
PT
t ,w)

× p(yPT
t ,w|do (Xs,t = xs,t) , I0:t−1)dytdyPT

t dw

(E.1)

=

∫
· · ·
∫

E
[
Yt|do

(
XPY
s,t = xPY) , IPY

0:t−1,y
PT
t ,w

]

× p(yPT
t ,w|do (Xs,t = xs,t) , I0:t−1)dyPT

t dw

=
/
Assumption (2)

/

=

∫
· · ·
∫
fYY (yPT

t ) + fNYY (xPY, iPY,w)

× p(yPT
t ,w|do (Xs,t = xs,t) , I0:t−1)dyPT

t dw (E.2)

=

∫
· · ·
∫
fYY (yPT

t )p(yPT
t ,w|do (Xs,t = xs,t) , I0:t−1)dyPT

t dw

+

∫
· · ·
∫
fNYY (xPY, iPY,w)×

× p(yPT
t ,w|do (Xs,t = xs,t) , I0:t−1)dyPT

t dw

=

∫
fYY (yPT

t )p(yPT
t |do (Xs,t = xs,t) , I0:t−1)dyPT

t

+

∫
fNYY (xPY, iPY,w)p(w|do (Xs,t = xs,t) , I0:t−1)dw

=
/
Time assumption

/
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=

∫
fYY (yPT

t )p(yPT
t |I0:t−1)dyPT

t (E.3)

+

∫
fNYY (xPY, iPY,w)p(w|do (Xs,t = xs,t) , I0:t−1)dw (E.4)

=
/
Observed interventions

/

= fYY (f?) +

∫
fNYY (xPY, iPY,w)p(w|do (Xs,t = xs,t) , I0:t−1)dw (E.5)

= fYY (f?) + Ep(w|do(Xs,t=xs,t),I0:t−1)

[
fNYY (xPY, iPY,w)

]
(E.6)

with f? = {E
[
Yi|do

(
X?
s,i = x?s,i

)
, I0:i−1

]
}Yi∈Y PT

t
denoting the values of

Y PT
t corresponding to the optimal interventions implemented at previous time

steps. Eq. (E.1) follows from Rule 2 of the do-calculus where Yt |= (XNPY
s,t ∪

INPY
0:t−1)|XPY

s,t , I
PY
0:t−1,W, Y PT

t in G
XPY
s,t ,I

PY
0:t−1X

NPY
s,t ,INPY

0:t−1
and Rule 1 of the do-

calculus where Yt |= (XNPY
s,t ∪ INPY

0:t−1)|XPY
s,t , I

PY
0:t−1,W, Y PT

t in G
XPY
s,t ,I

PY
0:t−1

.

Eq. (E.2) follows from the second assumption in Assumptions (Assumptions 1)
in the main text. Eq. (E.4) follows from Y PT

t |= Xs,t as interventions at time t
cannot affect variables at time steps 0 : t−1. Finally, noticing that p(yPT

t |I0:t−1)

is the distribution targeted when optimizing the objective function at previous
time steps, one can obtain the final expression in Eq. (E.6).

�

The derivations above show how the objective function at time t is given by
the expected value of the output of the functional relationship fNYY where the
expectation is taken with respect to the variables that are not intervened on.
This expectation is then shifted to account for the interventions implemented
in the system at previous time steps that are affecting the target variable
through fYY . Notice that, given our assumption on the absence of unobserved
confounders, the distribution p(w|do (Xs,t = xs,t) , I0:t−1) can be further sim-
plified by conditioning on the variables in G that are on the back-door path
between (Xs,t, I0:t−1) and Yt and are not colliders. When the variable Yt does
not depend on the previous target nodes, the function fYY does not exist and
Eq. (E.6) reduces to

Ep(w|do(Xs,t=xs,t),I0:t−1)

[
fNYY (xPY, iPY,w)

]
. (E.7)

In this case, previous interventions impact the target variable at time t by
changing the distributions of the parents of Yt that are not intervened but the
information in f? is lost.

Eq. (E.6) can be further manipulated to reduce the second term to a do-
free expression. Instead of applying the rules of do-calculus, one can expand
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p(w|do (Xs,t = xs,t) , I0:t−1) by further conditioning on the parents of W that
are not in (Xs,t ∪ I0:t−1). In this case, w in fNYY (xPY, iPY,w) is replaced by
the functions {fW (·)}W∈W in the sem corresponding to the variables in W and
computed in w. This leads to a partial composition of fNYY with {fW (·)}W∈W
and can be repeated recursively until the set of variables with respect to which
we are taking the expectation is a subset of Xs,t or IV0:t−1 thus making the
distribution a delta function. For instance, when W ⊂ Xs,t in Eq. (E.6), we
have p(w|do (Xs,t = xs,t) , I0:t−1) = δ(w = xW)) where xW are the values in
xs,t corresponding to the variables in W. Therefore, Eq. (E.6) reduces to
fYY (f?) + fNYY (xPY, iPY,xW).

For a genericW ∈W 6⊆ (Xs,t∪IV0:t−1), denote by XPW
s,t and IPW

0:t−1 the subset
of variables in Xs,t and I0:t−1 that are parents of W with corresponding values
xPW and iPW. Let R = Pa (W ) \(XPW

s,t ∪ IPW
0:t−1) and r be the corresponding

value. We can define the C(·) function as:

C(W ) =





fW (uW ,x
PW, iPW) if R = ∅

fW (uW ,x
PW, iPW, r) if R ⊆ Xs,t ∪ IV0:t−1

fW (uW ,x
PW, iPW, C(R)) if R 6⊆ Xs,t ∪ IV0:t−1

(E.8)

with uW representing the exogenous variables with edges into W and fW denot-
ing the functional mapping for W in the scm. Note that if R = ∅ and XPW

s,t

and IPW
0:t−1 are also empty then fW (uW ,x

PW, iPW) reduces to fW (uW ). The
same holds for the other cases that is fW (uW ,x

PW, iPW, r) = fW (uW , r) and
fW (uW ,x

PW, iPW, C(R)) = fW (uW , C(R)) when XPW
s,t , I

PW
0:t−1 = ∅. Exploit-

ing Eq. (E.8) we can rewrite Eq. (E.6) as:

E[Yt|do (Xs,t = xs,t) , I0:t−1] = fYY (f?) + Ep(U0:t)

[
fNYY (xPY, iPY, {C(W )}W∈W)

]

(E.9)

The distribution p(U0:t) can be further simplified to consider only the exogenous
variables with outgoing edges into the variables on the directed paths between
Xs,t and Y PNT

t and between IV0:t−1 and Y PNT
t . Notice how the second term

in Eq. (E.9) propagates the interventions, both at the present and past time
steps, through the scm so as to express the parents of the target variable as
a function of the intervened values. The expected target is then obtained as
the propagation of the intervened variables and intervened targets through the
function fYt in the scm.
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E.2 Example of derivations

Next we show how one can use Theorem 8.1 to derive some of the objective
functions used by dcbo for the dags in Fig. E.1.

· · ·

· · ·

X0

· · ·

Z0

X1

Z1

XT

ZT

Y0 Y1 YT

(a) dag 1

· · ·

· · ·

X0

· · ·

Z0

X1

Z1

XT

ZT

Y0 Y1 YT

(b) dag 2

Figure E.1: Dynamic Bayesian networks with different topologies. (a) shows
a dag in which (per time-slice) the manipulative variable X flows through Z,
whereas in (b) the manipulative variables are independent of each other (note
the direction of the vertical edges).

Derivations for dag 1 in Fig. E.1(a) Consider the dag in Fig. E.1(a)
and assume that the optimal intervention implemented at time t = 0 is given
by I0 = do (Z0 = z?0) and gives a target value of y?0. At t = 1 the target
variable is Y1, Y PT

t = {Y0} and Y PNT
t = {Z1}. Given I0 we have IPY

0:t−1 = ∅
and INPY

0:t−1 = Z0. We can write the objective functions by noticing that, for
Xs,1 = {Z1} we have XPY

s,t = {Z1}, XNPY
s,t = ∅ and W = ∅, while for

Xs,1 = {X1} we have XPY
s,t = ∅, XNPY

s,t = {X1} and W = {Z1}. We do not
compute the objective function for Xs,1 = {X1, Z1} as this is equal to the
function for Xs,1 = {Z1}. Starting with Xs,1 = {Z1} we have:

E[Y1|do (Z1 = z) , I0] =

∫
y1p(y1|do (Z1 = z) , I0)dy1

=

∫ ∫
y1p(y1|y0, do (Z1 = z) , I0)×

× p(y0|do (Z1 = z) , I0)dy1dy0

=

∫
E[Y1|y0, do (Z1 = z)]p(y0|do (Z1 = z) , I0)dy0

=

∫
[fYY (y0) + fNYY (z)]p(y0|I0)dy0

=

∫
fYY (y0)p(y0|I0)dy0 + fNYY (z)

= fYY (y?0) + fNYY (z)

Notice that here XPY
s,t = {Z1}, IPY

0:t−1 = ∅ and W = ∅. Therefore we have
Ep(w|do(Xs,t=xs,t),I0:t−1)

[
fNYY (xPY, iPY,w)

]
= fNYY (z). The objective function
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for Xs,1 = {X1} can be written as:

E[Y1|do (X1 = x) , I0] =

∫
y1p(y1|do (X1 = x) , I0)dy1

=

∫ ∫ ∫
y1p(y1|y0, z1, do (X1 = x) , I0)×

× p(y0, z1|do (X1 = x) , I0)dy1dy0dz1

=

∫ ∫ ∫
y1p(y1|y0, z1)p(y0, z1|do (X1 = x) , I0)dy1dy0dz1

=

∫ ∫
E[Y1|y0, z1]p(y0, z1|do (X1 = x) , I0)dy0dz1

=

∫ ∫
[fYY (y0) + fNYY (z1)]p(y0, z1|do (X1 = x) , I0)dy0dz1

=

∫ ∫
fYY (y0)p(y0, z1|do (X1 = x) , I0)dy0dz1

+

∫ ∫
fNYY (z1)p(y0, z1|do (X1 = x) , I0)dy0dz1

=

∫
fYY (y0)p(y0|I0)dy0 +

∫ ∫
fNYY (z1)p(z1|do (X1 = x) , I0)dz1

= fYY (y?0) +

∫
fNYY (z1)p(z1|do (X1 = x) , I0)dz1

(E.10)

In this case XPY
s,t = ∅, IPY

0:t−1 = ∅ and W = {Z1} thus we have:

Ep(w|do(Xs,t=xs,t),I0:t−1)

[
fNYY (xPY, iPY,w)

]
= Ep(z1|do(X1=x),I0)

[
fNYY (z1)

]
.

(E.11)
We can further expand Eq. (E.10) noticing that in this case W = {Z1} 6⊆
{X1, Z0} but XPW

s,t = {X1}, IPW0:t−1 = {Z0} and R = ∅. Therefore we have
C(Z1) = fZ1(εZ1 , x1, z1) and Eq. (E.10) becomes:

E[Y |do (X1 = x) , I0] = fYY (y?0) +

∫
fNYY (z1)p(z1|do (X1 = x) , I0)dz1

= fYY (y?0) +

∫ ∫
fNYY (z1)p(z1|εZ1 , do (X1 = x) , I0)×

× p(εZ1 |do (X1 = x) , I0)dz1dεZ1

= fYY (y?0) +

∫ ∫
fNYY (z1)δ(z1 = fZ1(εZ1 , x, z

?
0))p(εZ1)dz1dεZ1

= fYY (y?0) + Ep(εZ1
)

[
fNYY (fZ1(εZ1 , x, z

?
0))
]
.

Derivations for dag 2 in Fig. E.1(b) Next we consider the dag in
Fig. E.1b and assume that the optimal interventions implemented at time
t = 0 and t = 1 are given by I0 = do (X0 = x?0) and I1 = do (Z1 = z?1).
The optimal target values associated with these two interventions are given
by y?0 and y?1 respectively. We are interested in computing two objective

179



functions: E[Y2|do (X2 = x2) , I0, I1] and E[Y2|do (Z2 = z2) , I0, I1]. In this case
yPT
t = {Y1}, Y PNT

t = {X2, Z2}, IPY
0:t−1 = ∅ and INPY

0:t−1 = {X0, Z1}. Starting
from E[Y2|do (X2 = x2) , I0, I1], when Xs,2 = {X2} we have XPY

s,t = {X2},
XNPY
s,t = ∅ and W = {Z2}. We can write:

E[Y2|do (X2 = x2) , I0, I1] =

∫
y2p(y2|do (X2 = x2) , I0, I1)dy2

=

∫ ∫ ∫
y2p(y2|y1, z2, do (X2 = x2) , I0, I1)×

× p(y1, z2|do (X2 = x2) , I0, I1)dy2dy1dz2

=

∫ ∫ ∫
y2p(y2|y1, z2, do (X2 = x2))×

× p(y1, z2|do (X2 = x2) , I0, I1)dy2dy1dz2

=

∫ ∫
E[Y2|y1, z2, do (X2 = x2)]×

× p(y1, z2|do (X2 = x2) , I0, I1)dy1dz2

=

∫ ∫
[fYY (y1) + fNYY (x2, z2)]p(y1, z2|do (X2 = x2) , I0, I1)dy1dz2

=

∫ ∫
fYY (y1)p(y1, z2|do (X2 = x2) , I0, I1)dy1dz2

+

∫ ∫
fNYY (x2, z2)p(y1, z2|do (X2 = x2) , I0, I1)dy1dz2

=

∫
fYY (y1)p(y1|I0, I1)dy1 +

∫
fNYY (x2, z2)p(z2|do (X2 = x2) , I0, I1)dz2

= fYY (y?1) +

∫
fNYY (x2, z2)p(z2|I1)dz2

= fYY (y?1) + Ep(εZ2
)

[
fNYY (x2, fZ2(z?1 , εZ2))

]

Next we compute E[Y2|do (Z2 = z2) , I0, I1] by noticing that, when Xs,2 = {Z2},
we have XPY

s,t = {Z2}, XNPY
s,t = ∅ and W = {X2}. In this case we have:

E[Y2|do (Z2 = z2) , I0, I1] =

∫
y2p(y2|do (Z2 = z2) , I0, I1)dy2

=

∫ ∫ ∫
y2p(y2|y1, x2, do (Z2 = z2) , I0, I1)×

× p(y1, x2|do (Z2 = z2) , I0, I1)dy2dy1dx2

=

∫ ∫ ∫
y2p(y2|y1, x2, do (Z2 = z2))×

× p(y1, x2|do (Z2 = z2) , I0, I1)dy2dy1dx2

=

∫ ∫
E[Y2|y1, x2, do (Z2 = z2)]×

× p(y1, x2|do (Z2 = z2) , I0, I1)dy1dx2
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=

∫ ∫
[fYY (y1) + fNYY (x2, z2)]×

× p(y1, x2|do (Z2 = z2) , I0, I1)dy1dx2

=

∫
fYY (y1)p(y1|I0, I1)dy1

+

∫
fNYY (x2, z2)p(x2|do (Z2 = z2) , I0, I1)dx2

= fYY (y?1) +

∫
fNYY (x2, z2)p(x2|do (Z2 = z2) , I0, I1)dx2 (E.12)

Let’s now focus on Eq. (E.12). Here W = {X2} 6⊆ {Z2, X0, Z1}, XPW
s,t = ∅,

IPW
0:t−1 = ∅ and R = {X1}. Therefore we have C(X2) = fX2(εX2 , C(R))

as R 6⊆ {Z2, X0, Z1}. We thus need to compute C(R) = C(X1). When
W = X1, XPW

s,t = ∅ but IPW0:t−1 = {X0} and R = ∅. We can thus write
C(X2) = fX2(εX2 , fX1(εX1 , x0)) and replace it in Eq. (E.12) to get:

E[Y2|do (Z2 = z2) , I0, I1] = fYY (y?1) + Ep(εX2
)p(εX1

)

[
fNYY (fX2(εX2 , fX1(εX1 , x0)), z2)

]
.

E.3 Reducing the search space

In this section we give the proof for Proposition 8.3.1 in the main text. Denote
by Mt ⊆ P(Xt) the set of miss at time t and let St = P(Xt)\Mt include
the sets that are not mis. For any set Xs,t ∈ St, we denote the superflu-
ous variables by Ss,t. These are the variables not needed in the computa-
tion of the objective functions. In other words, these are those variables
for which E[Yt|do (Xs,t = xs,t) , I0:t−1] = E

[
Yt|do

(
X′s,t = x′s,t

)
, I0:t−1

]
where

X′s,t = Xt\Ss,t. Given the initial set of miss at time t = 0 represented by M0

we have:

Proof of Proposition 8.3.1 Consider a generic set Xs,t ∈ St. The cor-
responding objective function fs,t(xs,t) = E[Yt|do (Xs,t = xs,t) , I0:t−1] can be
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written as:

fs,t(xs,t) = E
[
Yt|do

(
X′s,t = x′s,t

)
, do (Ss,t = ss,t) , I0:t−1

]

=

∫
E
[
Yt|do

(
X′s,t = x′s,t

)
, do (Ss,t = ss,t) , I0:t−1,V0:t−1\I0:t−1

]

× p(V0:t−1\I0:t−1|do
(
X′s,t = x′s,t

)
, do (Ss,t = ss,t) , I0:t−1)dV0:t−1

=

∫
E
[
Yt|do

(
X′s,t = x′s,t

)
, I0:t−1,V0:t−1\I0:t−1

]
(E.13)

× p(V0:t−1\I0:t−1|do
(
X′s,t = x′s,t

)
, I0:t−1)dV0:t−1

= E
[
Yt|do

(
X′s,t = x′s,t

)
, I0:t−1

]
(E.14)

where Eq. (E.13) can be obtained by Rule 3 of the do-calculus noticing that
Yt |= Ss,t|X′s,t, I0:t−1,V0:t−1\I0:t−1 in G

Ss,t,I0:t−1,X′s,t
. This is due to the fact that

Ss,t does not have back door paths to Yt in GSs,t,I0:t−1,X′s,t
and its front door

paths to Yt in GSs,t,I0:t−1,X′s,t
are blocked by X′s,t. Indeed, Ss,t cannot have

outgoing edges to variables in 0 : t − 1 and the front door paths to Yt going
through variables at time t are blocked by definition of a mis set by X′s,t in
Gt = G, ∀t.

�

E.4 Additional experimental details and results

In this section, we give additional experimental details associated with the
experiments discussed in Section 8.4 of the main text.

E.4.1 Stationary dag and scm (Stat.)

The scm used for the experiment denoted by Stat. is given by:

Xt = Xt−11t>0 + εX

Zt = exp(−Xt) + Zt−11t>0 + εZ

Yt = cos(Zt)− exp(−Zt/20) + Yt−11t>0 + εY

where εi ∼ N (0, 1) for i ∈ {X,Z, Y } and 1t>0 represent an indicator function
that is equal to one t > 0 and zero otherwise. We run this experiment 10 times
by setting T = 3, N = 10, D(Xt) = {−5.0, 5.0} and D(Zt) = {−5.0, 20.0}.
Notice that, given the dag in Fig. E.2 (left panel), we have Mt = {{Xt}, {Zt}}.
The right panel of Fig. E.2 shows the true objective functions together with
the optimal intervention per time step (1st row), the dynamic causal gp model
for the intervention on Z (2nd row) and the convergence of the dcbo algorithm
to the optimum (3rd row). Notice how the location of the optimum changes
significantly both in terms of optimal set and intervention value when going from
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t = 0 to t = 1. dcbo quickly identifies the optimum via the prior dependency
on y?0:t−1.
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Figure E.2: Stationary synthetic experiment (Stat.). Left panel : G0:T and
sem. Right panel, 1st row : Objective functions for the sets in M = {{Z}, {X}}.
Right panel, 2nd row : Posterior gp obtained when using the dynamic causal gp
construction vs alternative models. Right panel, 3rd row : Convergence of dcbo
and alternative models to the true optimum (red line) across 10 replicates.
Shaded areas give ± one standard deviation.

E.4.2 Noisy manipulative variables (Noisy)

The scm used for the experiment denoted by Noisy is given by:

Xt = Xt−11t>0 + εX

Zt = exp(−Xt) + Zt−11t>0 + εZ

Yt = cos(Zt)− exp(−Zt/20) + Yt−11t>0 + εY

where, differently from before, we have εY ∼ N (0, 1) and εi ∼ N (2, 4) for
i ∈ {X,Z}. We keep the remaining parameters equal to the previous experiment.
This means T = 3, N = 10, D(Xt) = {−5.0, 5.0} and D(Zt) = {−5.0, 20.0}.

E.4.3 Missing observational data (Miss.)

For this experiment we use the same scm of the experiment denoted by Stat.

However, we set T = 6, N = 10 for the first three time steps, and N = 0

afterwards. Fig. E.3 shows the convergence paths for this experiment. In this
setting dcbo consistently outperforms cbo at every time step. However, notice
how the abo performance improves over time. This is due to the ability of abo

to learn the time dynamic of the objective function and exploit all interventional
data collected over time to predict at the next time step.
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Figure E.3: Experiment Miss. Convergence of dcbo and competing methods
across replicates. The red line gives the optimal y∗t ,∀t. Shaded areas are ±
standard deviation.
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Figure E.4: Experiment Multiv. Convergence of dcbo and competing methods
across replicates. The red line gives the optimal y∗t ,∀t. Shaded areas are ±
standard deviation.

E.4.4 Multivariate intervention sets (Multiv.)

The scm used for the experiment denoted by Multiv. is given by:

Wt = εW

Xt = −Xt−11t>0 + εX

Zt = sin(Wt)− Zt−11t>0 + εZ

Yt = −2 ∗ exp(−(Xt − 1)2)− exp(−(Xt + 1)2)− (Zt − 1)2

− Z2
T + cos(Zt ∗ Yt−1)− Yt−11t>0 + εY

where εi ∼ N (0, 1) for i ∈ {X,Z,W, Y }. We set T = 3, N = 500, D(Xt) =

{−5.0, 5.0}, D(Zt) = {−5.0, 20.0} and D(Wt) = {−3.0, 3.0}. Notice that here
dcbo and cbo explore the set Mt = {{Xt}, {Zt}, {Xt, Zt}} while bo and
abo intervene on {Xt, Zt,Wt}. Fig. E.4 shows the convergence paths for this
experiment.
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Figure E.5: Experiment Ind. Convergence of dcbo and competing methods
across replicates. The red line gives the optimal y∗t ,∀t. Shaded areas are ±
standard deviation.

E.4.5 Independent manipulative variables (Ind.)

The scm used for the experiment denoted by Ind. is given by:

Xt = −Xt−11t>0 + εX

Zt = −Zt−11t>0 + εZ

Yt = −2 ∗ exp(−(Xt − 1)2)− exp(−(Xt + 1)2)− (Zt − 1)2

− Z2
T + cos(Zt ∗ Yt−1)− Yt−11t>0 + εY

where εi ∼ N (0, 1) for i ∈ {X,Z, Y }. We set T = 3, N = 10, D(Xt) =

{−5.0, 5.0} and D(Zt) = {−5.0, 20.0}. Notice that here dcbo and cbo explore
the set Mt = {{Xt}, {Zt}, {Xt, Zt}} while bo and abo intervene on {Xt, Zt}.
In this case, exploring Mt and propagating uncertainty in the causal prior slows
down dcbo convergence, see Fig. E.5.

E.4.6 Non-stationary dag and sem (NonStat.)

The scm used for this experiment is more complex than the others due to the
fact that both the dag and the scm are non-stationary. We have:





f(t) if t = 0

g(t) if t = 1

h(t) if t = 2

where

f(t) =





Xt = εX

Zt = Xt + εZ

Yt =
√
|36− (Zt − 1)2|+ 1 + εY
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g(t) =





Xt = Xt−1 + εX

Zt = − Xt
Xt−1

+ Zt−1 + εZ

Yt = Zt cos(Ztπ)− Yt−1 + εY

h(t) =





Xt = Xt−1 + εX

Zt = Xt + Zt−1 + εZ

Yt = Zt − Yt−1 − Zt−1 + εY

with εi ∼ N (0, 1) for i ∈ {X,Z, Y }. We set T = 3, N = 10, D(Xt) =

{−5.0, 5.0} and D(Zt) = {−5.0, 20.0}. Notice that here dcbo and cbo explore
the set Mt = {{Xt}, {Zt}, {Xt, Zt}} while bo and abo intervene on {Xt, Zt}.

E.4.7 Real-World Economic data (Econ.)

We obtain an observational dataset by extracting the following indicators from
the oecd data portal (https://data.oecd.org/):

• gdp = gdp in milion of US dollars.

• cpi = annual growth of inflation measured by consumer price index cpi.

• taxrev = tax revenues measured as a percentage of gdp.

• hur = unemployment rate as measured by the numbers of unemployed
people as a percentage of the labour force.

We manipulate these indicators to get the nodes in the dag of Fig. 8.4(a).
We define the following variables:

Ut = log(hurt)

Tt =
taxrevt ∗ gdpt − taxrevt−1 ∗ gdpt−1

taxrevt−1 ∗ gdpt−1

Gt =
gdpt − gdpt−1

gdpt−1

It = cpit

For this analysis we consider the annual data for the period 2000 - 2019 and for
10 countries that are Australia, Canada, France, Germany, Italy, Japan, Korea,
Mexico, Turkey, Great Britain and the United States of America. We fit the
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following scm:

Tt = fT (t) + εT

It = fI(t) + εI

Gt = fG(Tt, It) + εG

Ut = fU (Gt, It) + εU

by placing gps on all functions fi(·), i ∈ {T, I,G, U}. This scm is then used to
generate interventional data and compute the values of y?t , t = 2010, . . . , 2012.
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Figure E.6: Experiment Econ. Convergence of dcbo and competing methods
across replicates. The black line gives the optimal y∗t ,∀t. Shaded areas are ±
one standard deviation.

We run the optimization algorithm for 10 times and plot the convergence
path for dcbo and competing models (Fig. E.6). While all method perform
similarly at t = 2010 and t = 2011, dcbo outperforms competing approaches
at t = 2012. On average (Table 8.1) dcbo finds the optimal intervention faster.

E.4.8 Planktonic predator–prey community in a chemostat
(Evol.)

This experiment is based on the work by Blasius et al. [2020] in which they
perform microcosm experiments in a chemostat to investigate a biological
systems where two species interact, one as a predator and the other as prey.
We use their system of ode, which describes a stage-structured predator–prey
community in a chemostat, and their experimental data collected in vitro as
DO1 . The dag (Fig. E.7(c)) and scm (Eq. (E.21)) are constructed from the
system of ode by rolling out the temporal variable dependencies, see [Bongers
and Mooij, 2018; Hansen et al., 2014; Mooij et al., 2013b; Peters et al., 2020]
for a review on how to interpret differential equations as causal models. The
original rolled-out dag (Fig. E.7(b)) is modified to remove graph cycles and
simplify the causal dependencies on the phytoplankton (predator) concentration.
The final dag is given in Fig. E.7(c). We use dcbo to identify the optimal
intervention to reduce the concentration of dead animals in the chemostat – Dt

in Fig. E.7(c). The following variables are included in the dag (we omit the
1We use data-files C1.csv, C2.csv, C3.csv, C4.csv from the original publication [Bla-

sius et al., 2020] – available here: https://figshare.com/articles/dataset/Time_series_
of_long-term_experimental_predator-prey_cycles/10045976/1 [Accessed: 01/04/21].
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(c) Second DAG approximation.

Figure E.7: dags representing the causal dependencies in the stage-structured
predator–prey community in a chemostat. The nodes of the graph represent
the concentrations of the different chemostat compounds at different discrete
time points, where time is moving from left to right. (a) shows the variable
dependencies as described in the original system of ode – notice the presence
of self-loops and cycles. (b) shows a first approximation to a corresponding
causal graph, where the ode has been ‘rolled’ out in time – note the absence
of self-loops and cycles. (c) shows a second approximation to the original ode
dynamics but this time removing two parent dependencies from Pt.

time subscript):

• Nin = Nitrogen concentration in the external medium

• N = Nitrogen (prey) concentration

• P = Phytoplankton (predator) concentration

• J = Predator juvenile concentration

• A = Predator adult concentration

• E = Predator egg concentration

• D = Dead animal concentration
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We fit the following scm, based on the dag in Fig. E.7(c):

Nin,t = εNin (E.15)

Nt = fN (Nin,t, Nt−1, Pt−1) + εN (E.16)

Pt = fP (Nt, Pt−1) + εP (E.17)

Jt = fJ(Pt, Jt−1, At−1) + εJ (E.18)

At = fA(Pt, At−1) + εA (E.19)

Et = fE(Pt, At, Et−1) + εE (E.20)

Dt = fD(Jt, At, Dt−1) + εD (E.21)

by placing gps on all functions {fi(·) | i ∈ {Nin, N, P,E, J,A,D}}. This
sem is then used to generate interventional data and compute the values of
the optimal target variable {d?t | t = 0, 1, 2}. Further, {εj ∼ N (0, 1) | j ∈
{Nin, N, P,E, J,A,D}}. We set T = 3, N = 4 and let the manipulative
variables be Nin,t, Jt and At. Intervention domains are given by:

D(Nin,t) = [40.0, 160.0]

D(Jt) = [0.0, 20.0]

D(At) = [0.0, 100.0]

Notice that dcbo and cbo explore the set

Mt = {{Nin,t}, {Jt}, {At}, {Nin,t, Jt}, {Nin,t, At}, {Jt, At}, {Nin,t, Jt, At}}

while bo and abo will only intervene on {Nin,t, Jt, At}. The optimal sequence
of interventions is given by {{J0, A0}, {M1}, {M2}}. Results are shown in
Fig. E.8.
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Figure E.8: Experiment Evol. with maximum number of trials H = 20.
Convergence of dcbo and competing methods across replicates. The black line
gives the optimal y∗t ,∀t. Shaded areas are ± one standard deviation.

E.4.9 Results without convergence

We repeat all experiments in the chapter allowing the algorithms to perform
a lower number of trials at every time step. This means that, for t > 0,
when moving to the next time step the convergence of the algorithm at the
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previous step is not guaranteed. In turn, this affects the optimum value that
the algorithm can reach at subsequent steps. Results are given in Table E.1
and Table E.2. The convergence paths for dcbo and competing methods are
given in Fig. E.9 to Fig. E.13.

Table E.1: Average modified gap measure (10 replicates) across time steps
and for different experiments. See Fig. 8.1 for a summary of the compared
methods. Higher values are better. The best result for each experiment is
bolded. Standard errors in brackets.

Synthetic data Real data

Stat. Miss. Noisy Multiv. Ind. NonStat. Econ. Evol.

dcbo
0.88 0.72 0.73 0.49 0.47 0.47 0.40 0.67
(0.00) (0.07) (0.00) (0.00) (0.05) (0.00) (0.04) (0.00)

cbo
0.57 0.51 0.67 0.47 0.48 0.47 0.41 0.65
(0.02) (0.09) (0.01) (0.04) (0.04) (0.00) (0.04) (0.00)

abo
0.43 0.45 0.42 0.40 0.50 0.41 0.38 0.47
(0.06) (0.04) (0.06) (0.05) (0.00) (0.03) (0.04) (0.01)

bo
0.42 0.41 0.41 0.38 0.50 0.40 0.40 0.46
(0.06) (0.05) (0.07) (0.07) (0.01) (0.04) (0.04) (0.03)

Table E.2: Average percentage of replicates across time steps and for different
experiments for which the optimal intervention set is identified. See Fig. 8.1
for a summary of the compared methods. Higher values are better. The best
result for each experiment is bolded.

Synthetic data Real data

Stat. Miss. Noisy Multiv. Ind. NonStat. Econ. Evol.

dcbo 90.0 70.00 93.00 93.33 96.67 66.67 73.33 33.33
cbo 76.67 63.33 76.67 86.67 93.33 33.33 80.00 33.33
abo 0.00 0.00 0.00 0.00 100.00 0.00 66.67 0.00
bo 0.00 0.00 0.00 0.00 100.00 0.00 66.67 0.00
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Figure E.9: Experiment Stat. with maximum number of trials H = 30.
Convergence of dcbo and competing methods across replicates. The black line
gives the optimal y∗t ,∀t. Shaded areas are ± one standard deviation.

E.4.10 Results over multiple datasets and replicates

Finally, we repeat all experiments in the main paper by running dcbo and
competing methods across 10 different observational dataset sampled from the
scm given above. Results are given in Table E.3.
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Figure E.10: Experiment Miss. with maximum number of trials H = 30.
Convergence of dcbo and competing methods across replicates. The black line
gives the optimal y∗t ,∀t. Shaded areas are ± one standard deviation.
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Figure E.11: Experiment Noisy. with maximum number of trials H = 30.
Convergence of dcbo and competing methods across replicates. The black line
gives the optimal y∗t ,∀t. Shaded areas are ± one standard deviation.
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Figure E.12: Experiment Ind. with maximum number of trials H = 30.
Convergence of dcbo and competing methods across replicates. The black line
gives the optimal y∗t ,∀t. Shaded areas are ± one standard deviation.
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Figure E.13: Experiment Multiv. with maximum number of trials H = 30.
Convergence of dcbo and competing methods across replicates. The black line
gives the optimal y∗t ,∀t. Shaded areas are ± one standard deviation.
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Table E.3: Average modified gap measure across 10 observational datasets and
10 replicates. Results are average figures across time steps. See Fig. 8.1 for a
summary of the compared methods. Higher values are better. The best result
for each experiment is bolded. Standard errors in brackets.

Synthetic data

Stat. Miss. Noisy Multiv. Ind. NonStat.

dcbo
0.83 0.82 0.82 0.48 0.46 0.63
(0.06) (0.05) (0.05) (0.02) (0.03) (0.06)

cbo
0.80 0.68 0.74 0.48 0.47 0.64
(0.05) (0.04) (0.09) (0.01) (0.02) (0.04)

abo
0.47 0.49 0.47 0.45 0.48 0.38
(0.01) (0.00) (0.01) (0.08) (0.00) (0.01)

bo
0.47 0.47 0.47 0.40 0.50 0.38
(0.01) (0.01) (0.01) (0.07) (0.00) (0.01)
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