

warwick.ac.uk/lib-publications

Manuscript version: Published Version
The version presented in WRAP is the published version (Version of Record).

Persistent WRAP URL:
http://wrap.warwick.ac.uk/163291

How to cite:
The repository item page linked to above, will contain details on accessing citation guidance
from the publisher.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/163291
mailto:wrap@warwick.ac.uk

© 2022 Harald R"acke

SIAM J. COMPUT. © 2022 Harald R\"acke
Vol. 51, No. 3, pp. 701--722

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER
MANAGEMENT\ast

ANNA ADAMASZEK\dagger , ARTUR CZUMAJ\ddagger , MATTHIAS ENGLERT\ddagger , AND

HARALD R\"ACKE\S

Abstract. We give almost tight bounds for the online reordering buffer management problem
on the uniform metric. Specifically, we present the first nontrivial lower bounds for this problem by
showing that deterministic online algorithms have a competitive ratio of at least \Omega (

\sqrt{}
log k/ log log k)

and randomized online algorithms have a competitive ratio of at least \Omega (log log k), where k denotes
the size of the buffer. We complement this by presenting a deterministic online algorithm for the re-
ordering buffer management problem that obtains a competitive ratio of O(

\surd
log k), almost matching

the lower bound. This improves upon an algorithm by Avigdor-Elgrabli and Rabani that achieves a
competitive ratio of O(log k/ log log k).

Key words. online algorithms, reordering buffers, scheduling

AMS subject classifications. 68Q25, 68W27

DOI. 10.1137/20M1326167

1. Introduction. In the reordering buffer management problem a stream of col-
ored items arrives at a service station and has to be processed. The cost for servicing
the items depends heavily on the processing order: servicing an item with color c,
when the most recently serviced item had color c\prime \not = c, incurs a context switching cost
wc.

In order to reduce the total processing cost, the servicing station is equipped
with a reordering buffer able to store k items. This buffer can be used to reorder the
input sequence in a restricted fashion to construct an output sequence with a lower
processing cost. At each point in time, the buffer contains the first k items of the
input sequence that have not yet been processed. A scheduling strategy has to decide
which item to service next. Upon its decision, the corresponding item is removed from
the buffer and serviced, while the next item from the input sequence takes its place
in the buffer.

This simple and versatile framework has many important applications in areas
like production engineering, computer graphics, storage systems, and information
retrieval, among others [8, 11, 20, 26, 27]. We give two examples.

In the paint shop of a car manufacturing plant, switching colors between two
consecutive cars induces nonnegligible cleaning and setup costs. Therefore, paint
shops are preceded by a reordering buffer (see [20]) to reorder the stream of incoming

\ast Received by the editors March 19, 2020; accepted for publication (in revised form) January 10,
2022; published electronically May 24, 2022. A preliminary version of this paper appeared at the
43rd Annual ACM Symposium on Theory of Computing (STOC 2011) and was part of the first
author's PhD thesis.

https://doi.org/10.1137/20M1326167
Funding: The work is supported by the Engineering and Physical Sciences Research Council

(EPSRC) under grants EP/D063191/1 and EP/F043333/1. The first author is supported by the
Danish Council for Independent Research under a DFF-MOBILEX mobility grant.

\dagger SimCorp, Copenhagen, Denmark (a.m.adamaszek@gmail.com).
\ddagger Department of Computer Science and Centre for Discrete Mathematics and its Applications

(DIMAP), University of Warwick, Coventry CV4 7AL, UK (a.czumaj@warwick.ac.uk, m.englert@
warwick.ac.uk).

\S Department of Computer Science, Technische Universit\"at M\"unchen, Munich, Germany (raecke@
in.tum.de).

701

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/20M1326167
mailto:a.m.adamaszek@gmail.com
mailto:a.czumaj@warwick.ac.uk
mailto:m.englert@warwick.ac.uk
mailto:m.englert@warwick.ac.uk
mailto:raecke@in.tum.de
mailto:raecke@in.tum.de

© 2022 Harald R"acke

702 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

cars into a stream with a lower number of color changes. This setting is modeled by
the reordering buffer framework with uniform costs, i.e., wc = 1 \forall colors c.

In a 3D graphic rendering engine [26], a change in attributes between two con-
secutively rendered polygons slows down the graphics processing unit (GPU), as,
for instance, the shader program needs to be replaced. A reordering buffer can be
included between application and graphics hardware in order to reduce such state
changes. This setting may be modeled by the reordering buffer framework with non-
uniform cost. Nonuniform costs are required as the cost for a state change depends
on the size of the program that has to be loaded.

In this paper we focus on the online version of the reordering buffer management
problem, in which when the buffer becomes full, one has to decide which item to
service next, without knowing the rest of the input sequence. The cost of an online
algorithm is compared to the cost of an optimal offline strategy that knows all items
in the input sequence in advance and may use the buffer of size k to reorder these
items. The worst case ratio between the cost of the online algorithm and the cost of
an optimal offline algorithm is called the competitive ratio. While we focus mainly
on the uniform case our deterministic algorithm and its analysis generalize to the
nonuniform case. The competitive ratio then also depends on \gamma = maxwc/minwc,
the maximum ratio between the context switching cost of any two colors.

1.1. Related work. Table 1 presents an overview of the results for the reorder-
ing buffer management problem.

The reordering buffer management problem was introduced by R\"acke, Sohler, and
Westermann [27], who developed an O(log2 k)-competitive online algorithm for the
version with uniform costs. Englert and Westermann [16] improved the competitive
ratio to O(log k), and their algorithm is also able to handle nonuniform costs with
the same bound. Their proof works in two steps. First, it is shown that an online
algorithm with a buffer of size k is constant competitive w.r.t. an optimal offline
algorithm with a buffer of size k/4. Then, it is shown that an optimal algorithm with
a buffer of size k/4 only loses a logarithmic factor compared to an optimal algorithm
with a buffer of size k.

It was shown in [1] that with this proof technique it is not possible to derive
online algorithms with a competitive ratio o(log k) by presenting an input sequence
where the gap between an optimal algorithm with a buffer of size k/4 and an optimal
algorithm with buffer size k is \Omega (log k). Nevertheless, Avigdor-Elgrabli and Rabani [8]

Table 1
An overview of the results for the reordering buffer management problem. Results presented in

this work are highlighted using bold font. \gamma is defined as maxwc/minwc.

Online competitive ratio Offline

Algorithm

O(log2 k), uniform cost [27]
O(log k) [16]
O(log k/log log k) [8]
\bfitO (

\surd
log \bfitgamma \bfitk), deterministic

O(log log k), randomized, uniform [7]
O((log log k\gamma)2), randomized [5]

O(1)-approx., uniform [6]
O(log log k\gamma)-approx. [21]

Lower
bound

\Omega (
\sqrt{}

log \bfitk /log log \bfitk), deterministic,
uniform
\Omega (log log \bfitk), randomized, uniform

NP-hard, even
for uniform cost [13, 4]

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 703

were able to go beyond the logarithmic threshold by presenting an online algorithm
with a competitive ratio O(log k/ log log k) using LP-based techniques.

After a preliminary version of this paper has been published, randomized ap-
proximation algorithms with much smaller competitive ratios have been presented.
Adamaszek et al. [2] gave a randomized algorithm with a competitive ratio of
O(log log k) for a slightly different model, called a block operation model. Then,
Avigdor-Elgrabli and Rabani [7] presented a randomized algorithm with the same
competitive ratio for the reordering buffer management problem with uniform costs.
These algorithms are based on online primal-dual LP schemes [12]. For the nonuni-
form cost model, the competitive ratio of the randomized algorithm depends on the
ratio between the maximum and the minimum weight [5].

For the offline problem it was shown by Chan et al. [13] and independently by
Asahiro, Kawahara, and Miyano [4] that the problem is NP-hard even for uniform
costs. Avigdor-Elgrabli and Rabani [6] gave a constant factor approximation algo-
rithm for the offline problem with uniform costs. For nonuniform costs, the best-
known approximation factor is O(log log log k\gamma), where \gamma is the ratio between the
maximum and the minimum weight [21, 22].

There also exists a more general version of the problem, where colors correspond
to arbitrary points in a metric space (C, d) and the cost for switching from color
c\prime to color c is the distance d(c\prime , c) between the corresponding points in the metric
space. Englert, R\"acke, and Westermann [15] considered this more general setting, and
they obtained a competitive ratio of O(log2 k log | C|), which has been subsequently
improved to O(log k log | C|) by Englert and R\"acke [14]. Kohler and R\"acke [24] present
an online algorithm with competitive ratio O(log k\gamma) in this model. This is not directly
comparable to the previous results because the parameters log | C| and log \gamma are not
comparable.

Khandekar and Pandit [23] and Gamzu and Segev [19] study the problem where
the colors correspond to points in a line metric. Colors c\prime and c are integer points
on the line, and the cost for switching from c\prime to c is | c\prime - c| . This version of the
problem is motivated by disk scheduling. Khandekar and Pandit [23] give a random-
ized O(log2 n)-competitive online algorithm for n uniformly spaced points on a line.
Gamzu and Segev improve this to competitive ratio O(log n) and show a lower bound
of about 2.1547 on the competitive ratio of deterministic online algorithms on the line.

Research has also been done on the maximization version of the problem, where
the costmeasure is the number of color changes that the output sequence saved over the
unordered input sequence. For this version there exist constant factor approximation
algorithms due to Kohrt and Pruhs [25] and Bar-Yehuda and Laserson [9].

The reordering buffer management problem has also been studied in the stochastic
setting [18], in the setting of bicriteria approximation [10], and in the setting of online
algorithms with advice [3]. A more detailed overview of the results can be found in a
recent survey [17].

1.2. Our results. We start by presenting the first nontrivial lower bound on
the competitive ratio of online algorithms for the problem. We show in Theorem 2.6
that any deterministic online algorithm for the reordering buffer management problem
has a competitive ratio of at least \Omega (

\sqrt{}
log k/ log log k) even in the uniform case. For

randomized algorithms we are able to construct a lower bound of \Omega (log log k) (Theo-
rem 2.10). Before this work, no lower bounds were known, and it was quite conceivable
that the existing ``algorithms might actually have a much better competitive ratio than
what was proven about them, possibly even a constant competitive ratio"" [8].

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

704 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

Both our lower bounds can be viewed as constructing a specialized caching in-
stance, in which a page request increases the size of the requested page by some factor.
Then we exploit existing results for caching to obtain lower bounds for such caching
instances and relate these caching instances to our buffering problem.

We complement the lower bound for deterministic algorithms with a determinis-
tic online algorithm whose competitive ratio nearly matches it in the uniform case. We
present a deterministic online algorithm that obtains a competitive ratio of
O(
\sqrt{}
log(k\gamma)) for the nonuniform case in which the ratio between the smallest and

the largest weight of a color is polynomially bounded in k. This improves upon
the result of Avigdor-Elgrabli and Rabani [8] who obtained a competitive ratio of
O(log k/ log log k).

All results for the reordering buffer management problem preceding this work
used very similar algorithms with only subtle differences between them [8, 16, 27].
The differences between the results were mostly based on the analysis. In contrast,
our new result relies on an important modification in the algorithm. In addition to
techniques similar to those used in [8, 16, 27], our algorithm also relies on classifying
colors according to the number of items of the color in the buffer. Then, the algorithm
tries to evict items of a color class that currently occupy a large fraction of the buffer.
We use this algorithmic ingredient to reduce the competitive ratio to O(

\surd
log k) in

our analysis.
This adaption of the algorithm is actually motivated by our lower bound example

for deterministic algorithms. In this example, the natural strategy for the online
algorithm is to free space by removing colors that are similar in the sense that they
roughly occupy the same space inside the buffer. Hence, the insights gained by the
lower bound example directly gives rise to an improved algorithm.

2. Lower bounds. In this section we give lower bounds on the competitive
ratio of online algorithms for the reordering buffer management problem with uniform
costs. We do this by carefully constructing an input sequence \sigma for which any online
algorithm ONL exhibits a large cost, while the optimum algorithm OPT can process
\sigma with a significantly lower cost.

2.1. Preliminaries. We first describe the general scheme for constructing \sigma .
For this we introduce parameters \alpha , d, and Ni, whose precise values will be fixed
later. For simplicity of notation we assume that k is sufficiently large and chosen in
such a way that no rounding issues occur.

2.1.1. The general scheme for constructing \bfitsigma . The input sequence \sigma that
we construct has the property that an optimal algorithm OPT\prime with a buffer of size
(1 + \alpha)k can process \sigma in such a way that the cost of the output sequence equals the
total number of different colors contained in \sigma (i.e., all elements of a single color are
output consecutively). This means OPT\prime is truly optimal for the sequence, and even
increasing the size of the buffer further cannot reduce the cost for processing \sigma .

Later, we will show that an online algorithm with buffer size k will incur a lot
more color changes than OPT\prime , while an optimal offline algorithm with buffer size k
will only have a slightly larger cost than OPT\prime . This implies the lower bounds.

To specify the input sequence \sigma further, we will view the buffer of OPT\prime as
partitioned into d classes C1, . . . , Cd (see Figure 1). Each class Ci can store (1+\alpha)k/d
elements (i.e., each class consists of a 1/d fraction of the buffer space of OPT\prime). We
further partition the buffer of each class Ci into Ni slots, where each slot can store

si =
(1+\alpha)k
dNi

elements (i.e., each slot consists of a 1
Ni

fraction of the buffer space of the

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 705
ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 5

C4C3C2C1

Fig. 1. Partitioning a bu�er space of size (1 + α)k into d classes C1, . . . , Cd (here d = 4).
Each class Ci is further partitioned into Ni slots.

The main property of the input sequence σ will be as follows.168

Whenever OPT′ has to make a color change while processing σ, the bu�er of
OPT

′ looks as follows. Each slot is completely �lled with elements of the same
color, and di�erent slots contain elements of di�erent colors.

169

This means, e.g., that if nc denotes the number of elements with color c at a time170

right before a color change of OPT′, then nc = si for some i ∈ {1, . . . , d}. Because171

of this property it makes sense to refer to the color of a slot as the color that every172

element in the slot has. Note that the color of a slot may change over time, but in173

the following proof the time will always be clear from the context.174

We obtain the above property by constructing the sequence σ as follows. The175

initial (1 + α)k elements of σ �ll up the bu�er of OPT′. They are chosen in such176

way that the invariant is satis�ed right before OPT′ outputs its �rst element, i.e.,177

amongst the �rst (1 + α)k elements of σ there are exactly Ni colors with si elements178

for i = 1, . . . , d. The exact order in which these �rst (1 +α)k elements appear in σ is179

not important, but we assume that elements among them that share the same color180

appear consecutively.181

Further elements in σ are chosen in rounds in the following way. For each round182

we choose a slot zi, i ∈ {1, . . . , d}, from every class (see Figure 2a). We add k + 1183

elements of the color of zd to σ, which will force any algorithm to switch to this color184

at this point. Then, for every i, starting from d − 1 down to 1, we add si+1 − si185

elements of the color of slot zi to σ. Finally, we add s1 elements of a completely new186

color to σ. This �nishes the round.187

The algorithm OPT
′ works as follows. In the beginning of a round it switches to188

the color of slot zd. This frees up space sd in the bu�er, and, hence, OPT′ can hold all189

further elements appearing in the round without requiring any further color changes.190

In order to maintain the main property, we do the following. For i ≤ d − 1, all191

si elements in the slot zi plus the si+1 − si elements with the same color arriving in192

the round are moved to the slot zi+1 (and completely �ll this slot).1 We say that we193

1Observe that the notion of a slot has only been introduced for illustration. Since it is irrelevant

This manuscript is for review purposes only.

Fig. 1. Partitioning a buffer space of size (1+\alpha)k into d classes C1, . . . , Cd (here d = 4). Each
class Ci is further partitioned into Ni slots.

class Ci). The number of slots in a class will be decreasing with the number of the
class, i.e., for i < j we have Ni > Nj .

The main property of the input sequence \sigma will be as follows.

Whenever OPT\prime has to make a color change while processing \sigma , the buffer of
OPT\prime looks as follows. Each slot is completely filled with elements of the same
color, and different slots contain elements of different colors.

This means, e.g., that if nc denotes the number of elements with color c at a time
right before a color change of OPT\prime , then nc = si for some i \in \{ 1, . . . , d\} . Because
of this property it makes sense to refer to the color of a slot as the color that every
element in the slot has. Note that the color of a slot may change over time, but in
the following proof the time will always be clear from the context.

We obtain the above property by constructing the sequence \sigma as follows. The
initial (1 + \alpha)k elements of \sigma fill up the buffer of OPT\prime . They are chosen in such
a way that the invariant is satisfied right before OPT\prime outputs its first element, i.e.,
among the first (1 + \alpha)k elements of \sigma there are exactly Ni colors with si elements
for i = 1, . . . , d. The exact order in which these first (1 +\alpha)k elements appear in \sigma is
not important, but we assume that elements among them that share the same color
appear consecutively.

Further elements in \sigma are chosen in rounds in the following way. For each round
we choose a slot zi, i \in \{ 1, . . . , d\} , from every class (see Figure 2(a)). We add k + 1
elements of the color of zd to \sigma , which will force any algorithm to switch to this color
at this point. Then, for every i, starting from d - 1 down to 1, we add si+1 - si
elements of the color of slot zi to \sigma . Finally, we add s1 elements of a completely new
color to \sigma . This finishes the round.

The algorithm OPT\prime works as follows. In the beginning of a round it switches to
the color of slot zd. This frees up space sd in the buffer, and hence, OPT\prime can hold all
further elements appearing in the round without requiring any further color changes.

In order to maintain the main property, we do the following. For i \leq d - 1, all
si elements in the slot zi plus the si+1 - si elements with the same color arriving in

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

706 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE
6 ANNA ADAMASZEK, ARTUR CZUMAJ, MATTHIAS ENGLERT, AND HARALD RÄCKE

a) C4C3C2C1

c4

c3

c2

c1

b) C4C3C2C1

c3

c2

c1

c0

Fig. 2. One round of creating the sequence σ. Figure a) shows the chosen slots, and the colors
of the elements that are currently occupying the slots. Figure b) shows how the contents of the bu�er

changes after the round. The sequence has been extended as follows: ck+1
4 cs4−s33 cs3−s22 cs2−s11 cs10 ,

where c0 is the new color introduced in this round.

promote slot zi in class Ci. Finally, the slot z1 holds the s1 elements of the new color194

(see Figure 2b).195

This �nishes the description of the construction of σ up to the selection of the d196

slots for each round. Note that regardless of how we choose these slots, it follows from197

the above discussion that the cost of OPT′ for processing σ is equal to the number of198

di�erent colors in the sequence.199

2.1.2. A sketch of the analysis. From the above description it is clear that200

the cost of OPT′ for processing the sequence σ is equal to the number of di�erent201

colors in the sequence.202

However, the online algorithm ONL and the optimal algorithm OPT only have203

a bu�er of size k. Hence, at any time, these algorithms have already removed at204

least αk elements that are still held by OPT′. Suppose for the time being that these205

algorithms only remove whole slots (remember that we can simply view a slot as a206

set of elements that share the same color).207

Clearly, if for example ONL removed all elements of a slot zi, and this slot is208

promoted, then ONL will have an additional color change that OPT′ does not have.209

Now, if our aim is to maximize the ratio between the cost of ONL and the cost of210

OPT
′, it turns into a caching problem, where in each round the adversary has to pick211

a slot from every class in such a way that she hits many slots that ONL has removed.212

For making this idea work we need to show that213

• it is more or less optimal for ONL to remove whole slots,214

• an adversary can always promote a large number of slots that have been215

removed by ONL, and216

• OPT can handle the resulting input sequence fairly well (as we are not inter-217

ested in the ratio between the cost of OPT′ and ONL, but in the ratio between218

the cost of OPT and ONL).219

2.1.3. The caching framework. In this section we make a formal connection220

of our problem to the caching-related problem hinted at in the above sketch.221

where in the bu�er something is stored, it is also possible to simply view a slot as the set of all
elements of a particular color that are currently stored by OPT′.

This manuscript is for review purposes only.

Fig. 2. One round of creating the sequence \sigma . (a) The chosen slots and the colors of the
elements that are currently occupying the slots. (b) How the contents of the buffer changes after the

round. The sequence has been extended as follows: ck+1
4 cs4 - s3

3 cs3 - s2
2 cs2 - s1

1 cs10 , where c0 is the
new color introduced in this round.

the round are moved to the slot zi+1 (and completely fill this slot).1 We say that we
promote slot zi in class Ci. Finally, the slot z1 holds the s1 elements of the new color
(see Figure 2(b)).

This finishes the description of the construction of \sigma up to the selection of the d
slots for each round. Note that regardless of how we choose these slots, it follows from
the above discussion that the cost of OPT\prime for processing \sigma is equal to the number of
different colors in the sequence.

2.1.2. A sketch of the analysis. From the above description it is clear that
the cost of OPT\prime for processing the sequence \sigma is equal to the number of different
colors in the sequence.

However, the online algorithm ONL and the optimal algorithm OPT only have
a buffer of size k. Hence, at any time, these algorithms have already removed at
least \alpha k elements that are still held by OPT\prime . Suppose for the time being that these
algorithms only remove whole slots (remember that we can simply view a slot as a
set of elements that share the same color).

Clearly, if, for example, ONL removed all elements of a slot zi and this slot is
promoted, then ONL will have an additional color change that OPT\prime does not have.
Now, if our aim is to maximize the ratio between the cost of ONL and the cost of
OPT\prime , it turns into a caching problem, where in each round the adversary has to pick
a slot from every class in such a way that the adversary hits many slots that ONL has
removed.

For making this idea work we need to show that
\bullet it is more or less optimal for ONL to remove whole slots,
\bullet an adversary can always promote a large number of slots that have been
removed by ONL, and

\bullet OPT can handle the resulting input sequence fairly well (as we are not inter-
ested in the ratio between the cost of OPT\prime and ONL but in the ratio between
the cost of OPT and ONL).

1Observe that the notion of a slot has only been introduced for illustration. Since it is irrelevant
where in the buffer something is stored, it is also possible to simply view a slot as the set of all
elements of a particular color that are currently stored by OPT\prime .

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 707

2.1.3. The caching framework. In this section we make a formal connection
of our problem to the caching-related problem hinted at in the above sketch.

We say that an algorithm ALG cleared slot z before round r, if right before the
time ALG reads the first element of round r, there are no elements from the slot z
in the buffer of ALG. This implies that ALG does not hold any elements of the color
of slot z. Define the cost costrALG of an algorithm ALG in round r as the number of
slots promoted in round r that are cleared by ALG (i.e., costrALG corresponds to the
number of cache misses in round r).

A lower bound for ONL. The following lemma gives a lower bound on the cost of
the online algorithm in terms of costrONL.

Lemma 2.1. The total cost of ONL on the generated input sequence \sigma is at least

\sum d

i=1
Ni +

\sum
r
costrONL.

Proof. First observe that we can compute the cost of an algorithm by increasing
its cost by 1 whenever an element arrives whose color is different from the last color
that was appended to the output sequence (called the active output color) and also
different from all colors present in the buffer.

Initially, the first (1 +\alpha)k elements of the input sequence have
\sum d

i=1 Ni different
colors, each of them contributing 1 to the cost of the algorithm.

Then, consider a slot z in class Ci for i \leq d - 1 that is cleared by ONL and
promoted in round r. Since ONL cleared z before round r, ONL does not store any
elements of the color of slot z in its buffer at the beginning of the round. On the
other hand, z is promoted, which means that elements of the color of z appear in \sigma
in round r.

The first k + 1 elements of round r belong to some color c of a slot in class Cd.
After they arrived, the active output color of ONL is c. As the slot z was cleared
by ONL before round r, at the time the first element of the color of z appears in \sigma
in round r, the active output color of ONL has to be different from the color of z.
Therefore, each such slot z contributes 1 to the total cost of ONL, and there are at
least costrONL - 1 such slots, where the - 1 accounts for the slot in class Cd. The cost
of ONL is further increased by one in every round r, because of the single element of
a completely new color appearing in \sigma .

By summing over all rounds and taking the first (1 + \alpha)k elements into account,

it follows that the total cost of ONL is at least
\sum d

i=1 Ni +
\sum

r cost
r
ONL.

An upper bound for OPT. In order to give an analogous upper bound on the cost
of OPT, we will present specific offline algorithms and analyze their cost. In order to
do this analysis in a round-based manner, we further restrict these offline algorithms
in the following way. We require that right before a new round, the algorithm has less
than k - sd elements stored in the buffer. To be more specific, we consider algorithms
that process a round as follows.

1. Right before the first element of the round appears in \sigma , the number of
elements stored in the buffer is reduced to less than k - sd. This is done by
selecting \alpha Ni+1 slots from each class Ci and removing all of the elements in
these slots from the buffer.

2. Let z1, . . . , zd denote the slots that are promoted during the round. The
algorithm outputs every element of the color of slot zd. This includes the
first k+1 elements arriving in the round and also elements of the same color
that may be stored in the buffer.

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

708 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

3. Finally, the algorithm stores all other elements arriving during the round in
the buffer. This is possible since the number of these elements is sd.

In order to satisfy the buffer constraint for the first (1 + \alpha)k elements of the input
sequence, we assume that the algorithm immediately outputs elements from slots that
get cleared from the buffer before the first round.

Lemma 2.2. Given any offline algorithm OFF with the property above, the total
cost of OPT on the generated input sequence \sigma is at most

\sum d

i=1
Ni +

\sum
r
(costrOFF +1) .

Proof. The proof is similar to the proof of Lemma 2.1. Again, we observe that we
can compute the cost of an algorithm by increasing its cost by 1 whenever an element
arrives whose color is different from the last color that was appended to the output
sequence and also different from all colors present in the buffer.

Initially, the first (1 +\alpha)k elements of the input sequence have
\sum d

i=1 Ni different
colors, each of them contributing 1 to the cost of the algorithm OFF. The cost of OFF
also increases by 1 in each round due to the single element of a completely new color
that appears in every round. The sum of all these costs is

\sum d
i=1 Ni +

\sum
r 1.

All further increases in the cost of OFF are caused by a sequence of elements
arriving in some round r that have a color which is not currently present in the buffer
of OFF but which is present in the buffer of OPT\prime . Such a sequence of elements
corresponds to the promotion of a slot zi, where at the time of the promotion, and
therefore also at the time the first element of the round is read from the input, OFF
does not store any elements of the slot in the buffer.

In other words, each such increase in the cost of OFF is caused by a promotion
of a cleared slot in some round r and therefore also contributes 1 to costrOFF. Hence,\sum

r cost
r
OFF is an upper bound on such increases to the cost of OFF.

Observing that the cost of OPT is upper bounded by the cost of OFF completes
the proof.

2.1.4. Choosing parameters. For the remainder we fix the number of classes
as d : - log k/(2 log log k) and the size of a slot in class Ci as si := logi - 1 k. The param-
eter \alpha will be chosen differently depending on whether we want to derive lower bounds
for deterministic or for randomized online algorithms. If we deal with deterministic
algorithms we choose \alpha : -

\sqrt{}
log log k/ log k, otherwise we set \alpha : - (log log k)2/ log k.

2.1.5. An important lemma. We now prove a lemma that shows that in the
beginning of a round the online algorithm has many cleared slots and that these lie in
different classes (so that the adversary can choose many of them). This lemma forms
the basis of our analysis.

We first require a technical claim that essentially states that for our specific choice
of the values of si the online algorithm either has a slot cleared or has stored nearly
all elements of the slot.

Claim 2.3. For a round r and a slot z in a class Ci at least one of the following
is true:

(a) ONL cleared slot z before round r.
(b) The color of slot z is equal to the color of the element that ONL appended to

the output sequence right before reading the first element of round r.
(c) ONL holds at least logi - 1 k - logi - 2 k of the logi - 1 k elements OPT\prime stores in

slot z, right before ONL reads the first element of round r.

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 709

Proof. Consider a slot z in a class Ci. There are only two possible reasons that
z is not cleared (i.e., we are not in case (a)), but ONL does not store all logi - 1 k
elements of z. Either z is the active output color, which means that ONL is in the
process of removing elements from z (case (b)), or some elements of z have been
previously removed by ONL.

In the latter case some elements have arrived after the removal, as otherwise z
would be cleared. However, the last sequence of elements with the color of slot z
was the sequence of length logi - 1 k - logi - 2 k. All these elements must still be in the
buffer of ONL. This means we are in case (c). This proves the claim.

Using the claim, we can now prove the desired bounds on the number of slots
cleared by ONL.

Lemma 2.4. Let \ell i be the number of slots from class Ci cleared by ONL before
round r. The following holds:

(a)
\sum d

i=1 \ell i log
i - 1 k \geq \alpha k

2 .
(b) At least \alpha d/4 of the values \ell i are not 0. In other words, at least \alpha d/4 different

classes contain at least one cleared slot.

Proof. At the beginning of a round there must exist at least \alpha k elements that
ONL has already removed from its buffer while they are still held by OPT\prime .

Due to Claim 2.3, every slot of class Ci that is not cleared by ONL before round
r and whose color is not the active output color of ONL contains at least logi - 1 k -
logi - 2 k elements. Hence, the number of elements that are held by OPT\prime but not by
ONL is at most

logd - 1 k +

d\sum

i=1

(Ni - \ell i) log
i - 2 k +

d\sum

i=1

\ell i log
i - 1 k,

where the first term accounts for the active output color of ONL and the second term
accounts for the possible excess elements of OPT\prime in slots that are not cleared. This,
however, has to be at least \alpha k. We get

\alpha k \leq logd - 1 k +

d\sum

i=1

(Ni - \ell i) log
i - 2 k +

d\sum

i=1

\ell i log
i - 1 k

\leq k

log k
+

(1 + \alpha)k

log k
+

d\sum

i=1

\ell i log
i - 1 k

\leq \alpha k

2
+

d\sum

i=1

\ell i log
i - 1 k,

where the last step follows since (2 + \alpha)k/ log k \leq \alpha k/2 for sufficiently large k. This
implies the first claim.

For the second claim assume that less than \alpha d/4 of the values \ell i are greater than
0. Then we obtain

d\sum

i=1

\ell i log
i - 1 k <

(1 + \alpha)k

d
\cdot \alpha d
4

=
\alpha (1 + \alpha)k

4
\leq \alpha k

2
,

which is a contradiction to the first claim.

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

710 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

10ANNA ADAMASZEK, ARTUR CZUMAJ, MATTHIAS ENGLERT, AND HARALD RÄCKE

this happens very rarely. This choice depends on whether we want to derive lower351

bounds for deterministic or for randomized algorithms.352

2.2. Lower bound for deterministic algorithms. In this section we present353

a lower bound of Ω(
√

log k/log log k) on the competitive ratio of any deterministic354

online algorithm for the reordering bu�er problem. For this section, we de�ne α to355

be
√

log log k/ log k.356

As we consider deterministic algorithms, while constructing the input sequence σ357

we know what will be the exact contents of the bu�er when the algorithm processes358

the input sequence up to the current round.359

For every class Ci, we choose a slot for promotion as follows (see Figure 3).360

If in class Ci there exists a slot cleared by ONL, we choose an arbitrary such
slot to be promoted. Otherwise, we promote the �rst slot of class Ci.

361

a) C4C3C2C1 b) C4C3C2C1

Fig. 3. Constructing a bad input sequence for a deterministic algorithm. Figure a) shows the
slots cleared by ONL (marked in grey). The slots chosen to be promoted are pictured in Figure b).
As there are no cleared slots in classes C1 and C3, the �rst slots of these classes have been chosen.

We present a randomized algorithm RND that processes σ with a bu�er of size362

k and has small expected cost compared to ONL. As in the general outline for our363

o�ine algorithms in the previous section, the algorithm ensures that at the beginning364

of a round at least αNi + 1 slots from class Ci are cleared. More precisely, for each365

class Ci, RND chooses αNi + 1 slots uniformly at random from all but the �rst slot366

in the class. At the beginning of each round, RND removes all elements belonging to367

the selected slots from the bu�er.368

Lemma 2.5. The expected cost of RND in round r is369

O

(√
log log k

log k

)
· costrONL − 1 .370

Proof. Since RND never chooses to evict the �rst slot of a class, this slot is never371

cleared by RND. The probability that a speci�c other slot of a class is cleared is372

(αNi + 1)/(Ni − 1) < 2α. Therefore, the expected cost of RND in round r is at most373

2α costr
ONL

. This is because, due to the way the slots are chosen for promotion, at374

most costr
ONL

slots are promoted that are not the �rst slots of a class.375

This manuscript is for review purposes only.

Fig. 3. Constructing a bad input sequence for a deterministic algorithm. (a) The slots cleared
by ONL (marked in gray). (b) The slots chosen to be promoted. As there are no cleared slots in
classes C1 and C3, the first slots of these classes have been chosen.

In the following sections we describe how to choose the slots to be promoted in
a round in such a way that for ONL many cleared slots are promoted while for OPT
this happens very rarely. This choice depends on whether we want to derive lower
bounds for deterministic or for randomized algorithms.

2.2. Lower bound for deterministic algorithms. In this section we present
a lower bound of \Omega (

\sqrt{}
log k/log log k) on the competitive ratio of any deterministic

online algorithm for the reordering buffer problem. For this section, we define \alpha to
be
\sqrt{}

log log k/ log k.
As we consider deterministic algorithms, while constructing the input sequence \sigma

we know what will be the exact contents of the buffer when the algorithm processes
the input sequence up to the current round.

For every class Ci, we choose a slot for promotion as follows (see Figure 3).

If in class Ci there exists a slot cleared by ONL, we choose an arbitrary such
slot to be promoted. Otherwise, we promote the first slot of class Ci.

We present a randomized algorithm RND that processes \sigma with a buffer of size
k and has small expected cost compared to ONL. As in the general outline for our
offline algorithms in the previous section, the algorithm ensures that at the beginning
of a round at least \alpha Ni + 1 slots from class Ci are cleared. More precisely, for each
class Ci, RND chooses \alpha Ni + 1 slots uniformly at random from all but the first slot
in the class. At the beginning of each round, RND removes all elements belonging to
the selected slots from the buffer.

Lemma 2.5. The expected cost of RND in round r is

O

\Biggl(\sqrt{}
log log k

log k

\Biggr)
\cdot costrONL - 1.

Proof. Since RND never chooses to evict the first slot of a class, this slot is never
cleared by RND. The probability that a specific other slot of a class is cleared is
(\alpha Ni + 1)/(Ni - 1) < 2\alpha . Therefore, the expected cost of RND in round r is at most

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 711

2\alpha costrONL. This is because, due to the way the slots are chosen for promotion, at
most costrONL slots are promoted that are not the first slots of a class.

From Lemma 2.4(b) we know that costrONL \geq \alpha d/4. Now since \alpha = 1/
\surd
2d =\sqrt{}

log log k/ log k, we get that the expected cost of RND is at most 2\alpha \cdot costrONL \leq
10\alpha \cdot costrONL - 1, where the inequality holds since 8\alpha costrONL \geq 2\alpha 2d = 1.

The lemma implies the following theorem.

Theorem 2.6. Any deterministic algorithm for the reordering buffer management

problem has a competitive ratio of \Omega (
\sqrt{}

log k
log log k).

Proof. Clearly, the cost of OPT is at most the expected cost of RND which is, due
to Lemma 2.2 and Lemma 2.5, at most

\sum d
i=1 Ni + O(

\sqrt{}
log log k/ log k)

\sum
r cost

r
ONL.

Due to Lemma 2.1, the cost of ONL is at least
\sum d

i=1 Ni +
\sum

r cost
r
ONL. Therefore,

the competitive ratio tends to \Omega (
\sqrt{}

log k/ log log k) as the number of rounds tends to
infinity.

2.3. Lower bound for randomized algorithms. In this section we provide a
lower bound of \Omega (log log k) on the competitive ratio of any randomized online algo-
rithm for the reordering buffer management problem. For this section, we define \alpha to
be (log log k)2/ log k.

For the analysis in this section, for every class Ci, we choose a slot for promotion
in the following way.

For class Ci choose a slot z in the class uniformly at random. Promote z.

We start by giving a bound on the expected cost of any online algorithm on the
resulting input sequence.

Lemma 2.7. For a randomized online algorithm ONL, for an input sequence con-
sisting of R rounds, and for sufficiently large k it holds that

E
\Bigl[\sum

r cost
r
ONL

\Bigr]
\geq R \cdot log log k

8
.

Proof. Let ONL be an arbitrary online algorithm using a buffer of size k. We fix
a round r and analyze E[costrONL]. For a class Ci, let \ell i denote the number of slots
from Ci cleared by ONL before round r. Note that the \ell i's are (dependent) random
variables, but the following holds for any valid fixed choice of values.

According to Lemma 2.4(a) we have
\sum d

i=1 \ell i \cdot logi - 1 k \geq \alpha k/2. If during the
round we promote one of the \ell i cleared slots in Ci, the value of costrONL increases by
one. This happens with probability

\ell i
Ni

= \ell i \cdot
logi - 1 k \cdot d
k(1 + \alpha)

\geq \ell i \cdot logi - 1 k \cdot d

2k
.

Summing this over all classes we obtain E[costrONL] \geq \alpha d/4 = log log k/8. Taking the
sum over all R rounds completes the proof.

Next we need to show that the expected optimal cost on the input sequence is
significantly smaller.

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

712 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

Lemma 2.8. There is an offline algorithm OFF using a buffer of size k such that
for an input sequence consisting of R rounds and for sufficiently large k,

E
\Bigl[\sum

r cost
r
OFF

\Bigr]
\leq 2\alpha

\sum d
i=1 Ni +O(R) .

Proof. We present an offline algorithm OFF using a buffer of size k that has
the desired upper bound on the expected cost. The algorithm ensures that in the
beginning of a round at least \alpha Ni + 1 slots are cleared from every class Ci. This
means that the algorithm has more than \alpha k + logd - 1 k elements removed that are
held by OPT\prime .

For a class Ci, one slot is promoted in each round. Consider the sequence of
slots from Ci that are promoted over all rounds. We partition this sequence into
phases such that each phase contains Ni - \alpha Ni - 1 pairwise different slots. Then,
in the beginning of each phase, i.e., in the beginning of the round in which the first
promotion of the new phase takes place, OFF clears all slots that are not contained in
the phase. Note that due to the definition of a phase, exactly \alpha Ni+1 slots in class Ci

are cleared. Also note that these slots remain cleared during the whole phase, since
none of them are promoted.

Let costrOFF(i) denote the contribution of class Ci to costrOFF; i.e., cost
r
OFF(i) is

1 if a cleared slot in class Ci is promoted in round r and 0 otherwise. Clearly,\sum d
i=1

\sum
r cost

r
OFF(i) =

\sum
r cost

r
OFF. In the following we analyze E[

\sum
r cost

r
OFF(i)] for

i \in \{ 1, . . . , d\} .
Observe that the contribution of one phase to the value of

\sum
r cost

r
OFF(i) is at

most \alpha Ni + 1. Let pi be the total number of phases of class Ci; then we get
E[
\sum

r cost
r
OFF(i)] \leq E[pi](\alpha Ni +1). Let X be the length of a single phase (except the

last phase which may be incomplete and therefore shorter). Clearly,

E[pi] \leq 1 +
1

Pr[X \geq Ni ln(1/\alpha)/4]
\cdot 4R

Ni ln(1/\alpha)
.

If we can show that Pr[X \geq Ni ln(1/\alpha)/4] \geq 1/2, the lemma follows since

E[
\sum

r cost
r
OFF] =

d\sum

i=1

E[
\sum

r cost
r
OFF(i)] \leq

d\sum

i=1

E[pi](\alpha Ni + 1)

\leq
d\sum

i=1

2E[pi]\alpha Ni \leq
d\sum

i=1

\Bigl(
2\alpha Ni +

16R\alpha

ln(1/\alpha)

\Bigr)

\leq 2\alpha

d\sum

i=1

Ni +
16dR\alpha

ln(1/\alpha)
= 2\alpha

d\sum

i=1

Ni +O(R).

Here, the second inequality uses the fact that \alpha Ni \geq 1, which follows from the in-
tegrality of \alpha Ni. The remaining fact required for the proof is encapsulated in the
following claim, which is proven in the appendix.

Claim 2.9. Pr[X \geq Ni ln(1/\alpha)/4] \geq 1/2.

Theorem 2.10. Any online algorithm for the reordering buffer management prob-
lem has competitive ratio at least \Omega (log log k).

Proof. Combining Lemma 2.7 with Lemma 2.1 shows that the expected cost of
an online algorithm ONL on the input sequence consisting of R rounds is at least

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 713

\sum d
i=1 Ni + R \cdot log log k/8. Combining Lemma 2.8 with Lemma 2.2 shows that the

expected cost of OPT on the input sequence consisting of R rounds is at most (2\alpha +

1)
\sum d

i=1 Ni +O(R). Therefore, the competitive ratio is at least

\sum d
i=1 Ni +R \cdot log log k/8

(2\alpha + 1)
\sum d

i=1 Ni +O(R)
.

Letting R tend to infinity gives the theorem.

3. The deterministic upper bound. In this section we present a determin-
istic, O(

\surd
log k\gamma)-competitive online algorithm for the reordering buffer management

problem. The cost for switching to a color c can be described by a weight wc for this
color. We assume without loss of generality that wc \geq 1 \forall colors c.

3.1. The algorithm. Without loss of generality we can assume that an algo-
rithm for the reordering buffer management problem works according to the following
general scheme. In each step the algorithm has an active output color, which is equal
to the color of the last element that was appended to the output sequence. If there
is at least one element with this active color in the buffer, the earliest among these
elements is removed and appended to the output sequence, and the next element
from the input sequence takes its place in the buffer. Otherwise, if there are no
more elements of the active output color in the buffer, the algorithm performs a color
change and chooses a new color (among the colors present in the buffer) to output
next.

Note that the algorithm only has to make a decision if a color change is performed.
Therefore, we describe our algorithm LCC (largest color class) by specifying how the
new output color is chosen when a color change is required. But first, we introduce
some further notation. The ith step of an algorithm is the step in which the algorithm
appends the ith element to the output sequence. The buffer content at step i for an
algorithm ALG is the set of elements in ALG's buffer right before the ith element is
moved to the output. For the analysis we will assume that the buffer always contains
k elements. This may not be true at the end of the input sequence as the algorithm
runs out of elements to fill the buffer. However, this part of the sequence does not
influence our asymptotic bounds.

Let, for a given color c at a given time t, \phi t
c = wc/n

t
c denote the cost-effectiveness

of color c at time t, where nt
c denotes the number of elements of color c that are in

the buffer of LCC at time t. In the following we drop the superscript, as the time step
t will be clear from the context.

For each time step, we partition the colors into classes according to their cost-
effectiveness. For i \in \{ - \lceil log k\rceil , . . . , \lceil log \gamma \rceil \} , the class Ci consists of colors with
cost-effectiveness between 2i and 2i+1. Let d = O(log k\gamma) denote the number of
different classes.

The general idea behind the algorithm is that it aims to remove colors from classes
that occupy a large fraction of the space in the buffer. To this end the algorithm selects
the class that currently occupies the largest space in the buffer (i.e., it contains at least
k
d elements) and marks all colors in this class for eviction (line 6 in Algorithm 3.1).
Whenever a color change is required, one of these marked colors is chosen as the new
output color and unmarked. If there are no marked colors left, the new class that
occupies the largest space is selected, and the process is repeated.

This algorithmic idea is combined with a mechanism that penalizes colors for using
up space in the buffer at the time a color change occurs. This is similar to techniques

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

714 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

Algorithm 3.1 Largest Color Class (LCC)

Output: a new output color

// let nc denote the number of elements with color c in the buffer
1: \forall colors c : tc \leftarrow wc - Pc

nc/k
; t\leftarrow min(\{ tc | color c\} \cup \{ P\});

2: P \leftarrow P - t; \forall colors c : Pc \leftarrow Pc +
nc

k \cdot t
// the above ensures that t is small enough s.t. P \geq 0 and Pc \leq wc \forall c

3: if P = 0 then
4: if no marked color exists then
5: // let Cmax be the class that occupies the largest space in the buffer
6: mark all colors in Cmax

7: end if
// let cm denote an arbitrary marked color

8: P \leftarrow wcm

9: Pcm \leftarrow 0
10: unmark color cm
11: return color cm as the new output color
12: else
13: ca \leftarrow argminc tc // pick color ca such that Pca = wca

14: Pca \leftarrow 0
15: unmark color ca if it was marked
16: return color ca as the new output color
17: end if

used, e.g., in [27, 16, 8], and ensures that colors (in particular colors with a low weight)
do not stay in the buffer for too long, thereby blocking valuable resources.

To realize all this, our algorithm LCC maintains a counter P and additional pen-
alty counters Pc for every color c. LCC also maintains a flag for every color that
indicates if the color is marked. Whenever a color is not in the buffer, its penalty
counter is zero. In particular, in the beginning of the algorithm all penalty coun-
ters, including the counter P , are zero. The formal description of our algorithm for
selecting a new output color is given as Algorithm 3.1.

Before the algorithm selects a marked color cm as the new output color, it assigns
a value of wcm to a penalty counter P (line 8). In a postprocessing phase (after
outputting all elements of color cm) this penalty is distributed to penalty counters
of individual colors, as follows. The penalty counter P is continuously decreased at
rate 1, while the penalty counters of colors in the buffer are increased at rate nc/k,
where nc denotes the number of elements of color c that are in the buffer (lines 1
and 2). Note that we assume that the buffer is full; hence the rate of decrease of the
P -counter equals the total rate of increase of Pc-counters.

When a counter Pc reaches wc the penalty distribution is interrupted; the Pc-
counter is reset to 0; and the corresponding color c returned as the new output color
(lines 13--16). The penalty distribution resumes when all elements with color c have
been removed and the next color change takes place. The penalty distribution and
the postprocessing phase ends once the P -counter reaches 0.

We note that the algorithm can be significantly simplified for the uniform cost
model, i.e., when all colors c have weight wc = 1. In particular, in this case there
are just classes Ci, i \in \{ - \lceil log k\rceil , . . . , 0\} , where the class - i contains colors that have
roughly 2i elements in the buffer. Further, instead of the more complicated color

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 715

distribution process described above one can simply increase the penalty of a counter
Pc by nc/k. After this, the postprocessing phase removes all colors c with Pc > 1 via
a forced colorchange (instead of interrupting the penalty distribution as described in
the algorithm). However, the analysis for this simplified algorithm would have to be
slightly adapted as now it just fulfills PC \leq 2wc for every color, whereas the above
algorithm gurantees that Pc \leq wc always holds (see Proof of Lemma 3.3).

3.2. The analysis. Let, for a reordering algorithm ALG and an input sequence
\sigma , ALG(\sigma) denote the output sequence generated by ALG on input \sigma . A color-block of
an output sequence is a maximal subsequence of consecutive elements with the same
color. The cost of a color-block of color c is equal to the weight wc of c. The cost
| ALG(\sigma)| of algorithm ALG on input \sigma is defined as the sum of the costs taken over
all color-blocks in the output sequence ALG(\sigma).

For a color-block b we use sstart(b) and send(b) to denote the start index of b and
end index of b, respectively, in the output sequence. This is the same as the time step
when the first and the last element of b is appended to the output sequence.

3.2.1. A few simple cases. In this section we first identify different types of
color-blocks for which we can fairly easily derive a bound on their respective contri-
bution to the cost | LCC(\sigma)| of our online algorithm. In section 3.2.2 we will then
introduce a technique that enables us to handle the remaining color-blocks, as well.

We call a color-block of LCC that is not generated in a postprocessing phase a
normal color-block (these are the color-blocks produced when the algorithm switches
to the respective color in line 11). Other color-blocks are called forced color-blocks (the
ones caused by line 16). The following lemma shows that we can focus our analysis
on normal color-blocks.

Lemma 3.1. The sum of the costs of forced color-blocks is at most the sum of the
costs of normal color-blocks.

Proof. The total cost for forced color-blocks does not exceed the total penalty
that is distributed to colors during the postprocessing phase of normal color-blocks.
The penalty that is distributed during the postprocessing phase of a (normal) color-
block b with color c is equal to wc, i.e., the cost for b. Summing over all normal
color-blocks gives the lemma.

In the following we use OPT to denote an optimal offline algorithm. We say that
an element is online-exclusive in step i if in this step the element is in LCC's buffer
but has already been removed from OPT's buffer. Similarly we call an element opt-
exclusive in step i if it is in OPT's buffer but not in LCC's buffer at this time. Note
that by this definition in every step the number of online-exclusive elements equals
the number of opt-exclusive elements, since the size of LCC's and OPT's buffer is the
same.

We extend the above definition to colors. We say that a color c is online-exclusive
in step i if there exists an element of color c that is online-exclusive. Finally, we say
that a color-block b is online-exclusive if its color is online-exclusive in step sstart(b).
The following lemma derives a bound on the cost of online-exclusive color-blocks.

Lemma 3.2. The cost of LCC for online-exclusive color-blocks is not larger than
| OPT(\sigma)| .

Proof. Let b denote an online-exclusive color-block in LCC(\sigma), let e denote its
first element, and let c be the color of b. Let b\prime denote the color-block of color c that
precedes b. In case b is the first color-block of color c we define send(b

\prime) = - 1 for the

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

716 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

following argument. Note that element e is not yet in the buffer at step send(b
\prime) + 1

as in this case it would be appended to the output sequence in step send(b
\prime) + 1.

Let bopt denote the color-block of OPT that contains the element e. Clearly, this
block ends after step send(b

\prime) + 1 as e only arrives after this step. Since b is online-
exclusive, its first element (i.e., e) is removed from the buffer of OPT before step
sstart(b).

Altogether, we have shown that there exists a color-block bopt in OPT(\sigma) which
has color c and ends in the interval

\bigl(
send(b

\prime) + 1, send(b)
\bigr)
. We match the online-

exclusive block b to bopt. In this way we can match every online-exclusive block to a
unique block in OPT(\sigma) with the same color. This gives the lemma.

Another class of color-blocks for which we can easily derive a bound on the con-
tribution to the cost | LCC(\sigma)| is given by so-called opt-far color-blocks defined as
follows. A normal color-block b from the sequence LCC(\sigma) is called opt-far if during
its post-processing phase the number of online-exclusive elements never drops below
k/
\surd
log k\gamma . This means that throughout the whole postprocessing phase for b the

buffers of LCC and OPT are fairly different. The following lemma derives an upper
bound on the cost of opt-far blocks in an output sequence generated by LCC.

Lemma 3.3. The cost of LCC for opt-far color-blocks is O(
\surd
log k\gamma \cdot | OPT(\sigma)|).

Proof. Fix an opt-far color-block b, and let c denote the color of b. During the
postprocessing phase for b the number of online-exclusive elements is always at least
k/
\surd
log k\gamma . Therefore, at least a 1/

\surd
log k\gamma fraction of the penalty distributed during

the postprocessing phase goes to online-exclusive colors. The total cost for online-
exclusive color-blocks is at least as large as the penalty that these colors receive, since
the penalty of a color c cannot increase beyond its cost wc.

Hence, the total penalty distributed during the postprocessing phases of opt-far
color-blocks is at most

\surd
log k\gamma times the cost for online-exclusive color-blocks. This

in turn is at most as large as | OPT(\sigma)| due to Lemma 3.2. The lemma follows by
observing that the total penalty distributed during post-processing phases of opt-far
color-blocks is equal to the cost of these blocks.

3.2.2. The potential. A crucial ingredient for the proof of the upper bound in
section 3.2.3 is the way we how handle normal color-blocks that are neither online-
exclusive nor opt-far. For this we introduce the notion of potential. The idea is
that, on the one hand, the total potential is bounded by some function in terms
of the optimal cost | OPT(\sigma)| (see Claim 3.4(a)). On the other hand, we will show
that normal color-blocks that are neither opt-exclusive nor opt-far generate a large
potential. This allows us to derive a bound on the contribution of these color-blocks
to the cost | LCC(\sigma)| .

The definition of potential is based on the differences in the buffer between LCC
and OPT. In the following we use \tau j to denote the start index of the jth color-block
of OPT.

For an element e\tau that is appended to the output sequence LCC(\sigma) at time \tau we
define for \tau j > \tau

\varphi (\tau , \tau j) =

\biggl\{
0 if OPT processed e\tau before step \tau j ,

1, otherwise.

\varphi (\tau , \tau j) simply measures whether the element e\tau occupies a slot in OPT's buffer at
time \tau j . We say that element e\tau generates potential wcj \cdot \varphi (\tau , \tau j) for time step \tau j ,
where cj denotes the color of the jth color-block in OPT(\sigma).

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 717

For technical reasons we also introduce a capped potential as follows. We define

\^\varphi (\tau , \tau j) =

\left\{

0
if OPT processed e\tau before step \tau j or at least k/

\surd
log k\gamma

elements e\tau \prime with \tau \prime < \tau have \varphi (\tau \prime , \tau j) = 1,

1, otherwise.

\^\varphi (\tau , \tau j) measures whether the element e\tau is one of the first k/
\surd
log k\gamma elements to

occupy a slot in OPT's buffer at time \tau j , where elements are ordered according to
their appearance in LCC(\sigma). We say that element e\tau generates capped potential wcj \cdot
\^\varphi (\tau , \tau j) for time step \tau j , where cj denotes the color that is processed by OPT at
time \tau j .

We use \^\varphi (\tau) : - \sum j:\tau j>\tau wcj \^\varphi (\tau , \tau j) to denote the total capped potential generated

by the element at position \tau in LCC(\sigma). We define the total capped potential \^\varphi by
\^\varphi : - \sum \tau \^\varphi (\tau).

Claim 3.4. The capped potential fulfills the following properties:
(a) \^\varphi \leq k/

\surd
log k\gamma \cdot | OPT(\sigma)| .

(b) Let \tau < t < \tau j, and assume that the number of online-exclusive elements in
step t is at most k/

\surd
log k\gamma . Then \^\varphi (\tau , \tau j) = \varphi (\tau , \tau j), and hence the capped

potential wcj \cdot \^\varphi (\tau , \tau j) generated by e\tau for \tau j is equal to the potential. In other
words the contribution of e\tau is not capped.

Proof. The first statement follows from the fact that the capped potential gener-
ated for a time step \tau j cannot exceed k/

\surd
log k\gamma \cdot wcj , where wcj is the cost of OPT

in the step. This holds because of the cap. Since the potential is generated for time
steps \tau j that correspond to color changes by OPT, the statement follows.

Now, assume for contradiction that the second statement does not hold. Since
obviously \^\varphi (\tau , \tau j) \leq \varphi (\tau , \tau j), it must hold that \^\varphi (\tau , \tau j) = 0 and \varphi (\tau , \tau j) = 1. This
means that element e\tau occupies a place in OPT's buffer at time \tau j , but there are at
least k/

\surd
log k\gamma elements e\tau \prime , \tau \prime < \tau < t, that also occupy a place in OPT's buffer

at time \tau j , and therefore e\tau 's contribution is capped. But all these elements are opt-
exclusive at time t. Since at any time step the number of opt-exclusive elements must
be equal to the number of online-exclusive elements, we can conclude that in step t
there are more than k/

\surd
log k\gamma online-exclusive elements. This is a contradiction.

3.2.3. The main theorem.

Theorem 3.5. LCC is a deterministic online algorithm with competitive ratio
O(
\surd
log k\gamma).

Proof. The algorithm LCC marks all colors in a class and then selects an arbitrary
marked color whenever it has to do a normal color change. When no marked colors
are left, it again marks all colors in some class and continues.

We call the time between two marking operations, or after the last marking oper-
ation, a phase. Fix some phase P , and let C denote the set of colors that get marked
in the beginning of the phase. Let, for c \in C, sc denote the number of elements of
color c in LCC's buffer at the time of the marking operation that starts P . Further, let
\phi denote the lower bound on the cost-effectiveness of colors in C, i.e., \phi \leq wc/sc \leq 2\phi
holds \forall colors c \in C. We call a color change normal (forced) if it starts a normal
(forced) color-block in the output sequence LCC(\sigma). In LCC(\sigma) the phase consists of
a consecutive subsequence of elements, starting with an element of a color in C and
ending with the last element of a color-block from the postprocessing phase of the
last normal color change of the phase.

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

718 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

Let cost(P) denote the cost incurred by LCC during the phase. This cost consists
of color changes to colors in C (either normal or forced) and of color changes to colors
not in C (these are forced). Let ncost(P) and fcost(P) denote the cost incurred by
LCC during the phase for normal and forced color changes, respectively. Further, let
ncost : - \sum phase P ncost(P) denote the total normal cost summed over all phases. In
the light of Lemma 3.1 it is sufficient to relate ncost to the optimal cost | OPT(\sigma)| . In
order to do this we distinguish the following cases:

Case 1. The normal cost ncost(P) is at most 9/10 \cdot fcost(P). Let ncostsmall

denote the normal cost summed over all phases P that fulfill this condition, and
let ncostlarge denote the normal cost summed over other phases (i.e., ncostlarge =
ncost - ncostsmall). Then

ncostsmall \leq
9

10

\sum

P

fcost(P) \leq 9

10
ncost =

9

10
(ncostsmall +ncostlarge),

where the second inequality follows from Lemma 3.1. This gives ncostsmall \leq
10 ncostlarge. In the following cases we show that ncostlarge = O(

\surd
log k\gamma \cdot | OPT(\sigma)|).

Then we have that the normal cost ncostsmall generated by phases that fulfill the
condition for Case 1 is O(

\surd
log k\gamma \cdot | OPT(\sigma)|).

Case 2. The cost of OPT during the phase is at least ncost(P)/4. The total
normal cost generated by phases that fulfill this condition is O(| OPT(\sigma)|).

Case 3. The cost of online-exclusive color-blocks generated during the phase is
at least ncost(P)/4. Then we can amortize the normal cost of the phase against the
cost of online-exclusive color-blocks, which in turn can be amortized against the cost
of OPT by Lemma 3.2. This gives that the total normal cost generated by phases
that fulfill the conditions for this case is O(| OPT(\sigma)|).

Case 4. The cost of opt-far color-blocks generated during the phase is at least
ncost(P)/4. Then we can amortize the cost of the phase against the cost of opt-far
color-blocks, which in turn can be amortized against the cost of OPT by Lemma 3.3.

Hence, the total cost for phases that fulfill the conditions for this case isO(
\surd
log k\gamma \cdot

| OPT(\sigma)|).
Case 5. In the following we assume that none of the above cases occurs. This

means there must exist a subset C \prime \subset C of colors marked in the phase P such that
for each color c \in C \prime its first color-block in the phase is

(a) not online-exclusive,
(b) not opt-far, and
(c) not forced.

Further, we have that
(d) elements of colors in C \prime are not appended to the output sequence by OPT

during the phase
(e) and cost(C \prime) \geq 1

10 cost(C),
where we use cost(S) : - \sum c\in S wc for a set S of colors.

To see this we generate C \prime as follows. First take all colors from C (colors initially
marked in the phase), and remove colors among them for which the first color change
is forced (this ensures property (c)). The cost of the remaining set of colors is exactly
ncost(P). Then remove colors for which the first block of the phase is online-exclusive
or opt-far and colors that are requested by OPT during the phase. Since we are not
in Case 2, Case 3, or Case 4, this step can only remove colors with a total cost of
3/4 \cdot ncost(P). After this properties (a), (b), and (d) hold. This gives the set C \prime .

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 719

Property (e) can be seen as follows. By the construction cost(C \prime) \geq ncost(P)/4.
From the fact that Case 1 does not hold we get that ncost(P) \geq 9/10 \cdot fcost(P), and
hence, 2 \cdot ncost(P) \geq 9/10 \cdot cost(P) \geq 9/10 \cdot cost(C). This gives cost(C \prime) \geq 1/10 \cdot cost(C).

Let S denote the set of elements with colors in C \prime that are in LCC's buffer in the
beginning of the phase. We will show that these elements generate a large potential
after the end of the phase. From this it follows that we can amortize the cost of the
phase against | OPT(\sigma)| because of the following argument.

Assume that for some value Z the elements in S generate a potential of at least
Z \cdot cost(C \prime) after time t, where t is the index of the last time step of the phase. Observe
that, according to property (b) above, the (first) color-blocks of colors in C \prime that are
generated during the phase are not opt-far. This means that during the postprocess-
ing phase of each of these blocks, the number of online-exclusive items falls below
k/
\surd
log k\gamma at some point. This means that we can apply Claim 3.4(b) to all elements

in S, which gives that elements in S also generate at least Z \cdot cost(C \prime) \geq Z
10 \cdot cost(C)

capped potential after time t, as their contribution to the potential is not capped.
Claim 3.4(a) tells us that the total capped potential is at most k/

\surd
log k\gamma \cdot

| OPT(\sigma)| . Therefore, the total normal cost generated by phases that fulfill the con-
ditions for Case 5 is O(k

Z
\surd
log k\gamma

) \cdot | OPT(\sigma)| . By showing that elements in S generate

at least Z \cdot cost(C \prime) = \Omega (k
log k\gamma) \cdot cost(C \prime) potential we get that the cost of the phases

satisfying Case 5 is O(
\surd
log k\gamma) \cdot | OPT(\sigma)| .

For completing the analysis of Case 5 it remains to show the above bound on the
potential generated by elements of S. For this, we first show that the cardinality of
the set S is large. We have

| S| =
\sum

c\in C\prime

sc \geq
\sum

c\in C\prime

wc/2\phi \geq
1

20\phi

\sum

c\in C

wc \geq
1

20

\sum

c\in C

sc \geq
k

20d
= \Omega (k/ log k\gamma),

where the first and third inequality follows since \phi \leq wc/sc \leq 2\phi and the second
inequality holds since

\sum
c\in C\prime wc = cost(C \prime) \geq cost(C)/10 \geq \sum c\in C wc/10. The last

inequality follows since the algorithm LCC selects a class that occupies the largest
space in the buffer and hence occupies at least space k/d, where d denotes the num-
ber of classes.

Claim 3.6. Let S denote a set of elements that are opt-exclusive at time t, and
let sc denote the number of elements of color c in S. Assume that there is a value \phi
such that \phi \leq wc

sc
\leq 2\phi holds \forall colors with elements in S. Then the contribution to

the potential by elements from S generated after time t is at least 1
8 | S| \cdot cost(S).

Proof. Let c1, . . . , c\ell denote the colors of the elements in S, ordered according to
the times \tau 1 < \cdot \cdot \cdot < \tau \ell at which the first element of a color is evicted by OPT. Let i
denote the smallest number such that

\sum i
j=1 wcj \geq 1

2 cost(S).
We show that the number of elements with colors ci, . . . , c\ell is large. For any j we

have \phi \leq wcj

scj
\leq 2\phi , and hence cost(S) \geq \phi | S| . Therefore

\sum \ell

j=i
scj \geq

1

2\phi

\sum \ell

j=i
wcj \geq

1

4\phi
cost(S) \geq 1

4
| S| .

Each element e of a color in \{ ci, . . . , c\ell \} generates potential wcj at time \tau j
for 1 \leq j \leq i. The contribution of e to the potential generated after time t is
therefore at least

\sum i
j=1 wcj \geq 1

2 cost(S). As the number of elements with color in

\{ ci, . . . , c\ell \} is at least 1
4 | S| , the potential generated by them after time t is at least

1
8 | S| \cdot cost(S).

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

720 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

Applying the claim with t being the last step of the phase gives that the elements
from S generate potential \Omega (k

log k\gamma) \cdot cost(C \prime) after the end of the phase. This finishes
the analysis of Case 5.

The above cases show that the contribution of all phases to the cost of LCC is
O(
\surd
log k\gamma) \cdot | OPT(\sigma)| . This gives the theorem.

Appendix A. Proof of Claim 2.9. The analysis of the random variable X
is based on a straightforward coupon collector--type argument and is included for
completeness.

Claim 2.9. Pr[X \geq Ni ln(1/\alpha)/4] \geq 1/2.

Proof. Consider a phase, and let Xj be the number of rounds between the pro-
motion of the (j - 1)th distinct slot and the jth distinct slot. Then X = X1 +X2 +
\cdot \cdot \cdot + XNi - \alpha Ni - 1. The variable Xj has value \ell with probability (j - 1

Ni
)\ell - 1 \cdot Ni - j+1

Ni

for any integer \ell \geq 1. We have

E[Xj] =
Ni

Ni - j + 1
, E[X2

j] =
(Ni + j - 1)Ni

(Ni - j + 1)2
, and

Var[Xj] = E[X2
j] - E[Xj]

2 =
(j - 1)Ni

(Ni - j + 1)2
.

We get

E[X] =
Ni

Ni
+

Ni

Ni - 1
+ \cdot \cdot \cdot + Ni

\alpha Ni + 1
 - 1

= Ni(HNi
 - H\alpha Ni

) - 1

\geq Ni \cdot lnNi - Ni \cdot (ln(\alpha Ni) + 1) - 1

= Ni ln(1/\alpha) - (Ni + 1) \geq Ni ln(1/\alpha)/2,

where the first inequality uses the fact that ln a < Ha \leq ln a + 1 for a \geq 1 and the
second inequality holds for sufficiently small \alpha (i.e., for sufficiently large k).

From Chebyshev's inequality we get

Pr
\bigl[
X \leq Ni ln(1/\alpha)/4

\bigr]

\leq Pr
\bigl[
| X - E[X]| \geq Ni ln(1/\alpha)/4

\bigr]

\leq 16

N2
i ln2(1/\alpha)

\cdot Var[X]

=
16

N2
i ln2(1/\alpha)

\cdot
(1 - \alpha)Ni\sum

j=1

Var[Xj]

\leq 16

ln2(1/\alpha)
\cdot
(1 - \alpha)Ni\sum

j=1

1

(Ni - j + 1)2

\leq 16

ln2(1/\alpha)
\cdot

\infty \sum

j=1

1

j2
\leq 32

ln2(1/\alpha)
\leq 1

2
,

where the third step follows since the Xj 's are independent and the last step follows
for sufficiently small \alpha .

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

ALMOST TIGHT BOUNDS FOR REORDERING BUFFER MANAGEMENT 721

REFERENCES

[1] A. Aboud, Correlation Clustering with Penalties and Approximating the Reordering Buffer
Management Problem, Master's thesis, The Technion --- Israel Institute of Technology,
2008.

[2] A. Adamaszek, A. Czumaj, M. Englert, and H. R\"acke, Optimal online buffer scheduling
for block devices, in Proceedings of the 44th ACM Symposium on Theory of Computing
(STOC), 2012, pp. 589--598.

[3] A. Adamaszek, M. P. Renault, A. Ros\'en, and R. van Stee, Reordering buffer management
with advice, J. Sched., 20 (2016), pp. 423--442.

[4] Y. Asahiro, K. Kawahara, and E. Miyano, NP-hardness of the sorting buffer problem on
the uniform metric, Discrete Appl. Math., 160 (2012), pp. 1453--1464.

[5] N. Avigdor-Elgrabli, S. Im, B. Moseley, and Y. Rabani, On the randomized competitive
ratio of reordering buffer management with non-uniform costs, in Proceedings of the 42nd
International Colloquium on Automata, Languages and Programming (ICALP), Part I,
2015, pp. 78--90.

[6] N. Avigdor-Elgrabli and Y. Rabani, A constant factor approximation algorithm for reorder-
ing buffer management, in Proceedings of the 24th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2013, pp. 973--984.

[7] N. Avigdor-Elgrabli and Y. Rabani, An optimal randomized online algorithm for reorder-
ing buffer management, in Proceedings of the 54th IEEE Symposium on Foundations of
Computer Science (FOCS), 2013, pp. 1--10.

[8] N. Avigdor-Elgrabli and Y. Rabani, An improved competitive algorithm for reordering buf-
fer management, ACM Trans. Algorithms, 11 (2015), 35.

[9] R. Bar-Yehuda and J. Laserson, Exploiting locality: Approximating sorting buffers, J. Dis-
crete Algorithms, 5 (2007), pp. 729--738.

[10] S. Barman, S. Chawla, and S. Umboh, A bicriteria approximation for the reordering buffer
problem, in Proceedings of the 20th European Symposium on Algorithms (ESA), 2012,
pp. 157--168.

[11] D. Blandford and G. Blelloch, Index compression through document reordering, in Pro-
ceedings of the Data Compression Conference (DCC), 2002, pp. 342--351.

[12] N. Buchbinder and J. Naor, The design of competitive online algorithms via a primal-dual
approach, Found. Trends Theor. Comput. Sci., 3 (2009), pp. 93--263.

[13] H. Chan, N. Megow, R. Sitters, and R. van Stee, A note on sorting buffers offline, Theor.
Comput. Sci., 423 (2012), pp. 11--18.

[14] M. Englert and H. R\"acke, Reordering buffers with logarithmic diameter dependency for
trees, in Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA),
2017, pp. 1224--1234.

[15] M. Englert, H. R\"acke, and M. Westermann, Reordering buffers for general metric spaces,
Theory Comput., 6 (2010), pp. 27--46.

[16] M. Englert and M. Westermann, Reordering buffer management for non-uniform cost mod-
els, in Proceedings of the 32nd International Colloquium on Automata, Languages and
Programming (ICALP), 2005, pp. 627--638.

[17] M. Englert and M. Westermann, Scheduling with a reordering buffer, in Encyclopedia of
Algorithms, Springer, New York, 2016, pp. 1905--1910.

[18] H. Esfandiari, M. Hajiaghayi, M. R. Khani, V. Liaghat, H. Mahini, and H. R\"acke, Online
stochastic reordering buffer scheduling, in Proceedings of the 41st International Colloquium
on Automata, Languages and Programming (ICALP), Part I, 2014, pp. 465--476.

[19] I. Gamzu and D. Segev, Improved online algorithms for the sorting buffer problem on line
metrics, ACM Trans. Algorithms, 6 (2009), 15.

[20] K. Gutenschwager, S. Spiekermann, and S. Vo{\ss}, A sequential ordering problem in auto-
motive paint shops, Int. J. Prod. Res., 42 (2004), pp. 1865--1878.

[21] S. Im and B. Moseley, New approximations for reordering buffer management, in Proceed-
ings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014, pp. 1093--
1111.

[22] S. Im and B. Moseley, Weighted reordering buffer improved via variants of knapsack covering
inequalities, in Proceedings of the 42nd International Colloquium on Automata, Languages
and Programming (ICALP), 2015, pp. 737--748.

[23] R. Khandekar and V. Pandit, Online and offline algorithms for the sorting buffers problem
on the line metric, J. Discrete Algorithms, 8 (2010), pp. 24--35.

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

© 2022 Harald R"acke

722 ADAMASZEK, CZUMAJ, ENGLERT, AND R\"ACKE

[24] M. Kohler and H. R\"acke, Reordering buffer management with a logarithmic guarantee in
general metric spaces, in Proceedings of the 44th International Colloquium on Automata,
Languages and Programming (ICALP), Leibniz International Proceedings in Informatics
80, 2017, 33.

[25] J. S. Kohrt and K. Pruhs, A constant factor approximation algorithm for sorting buffers, in
Proceedings of the 6th Latin American Symposium on Theoretical Informatics (LATIN),
2004, pp. 193--202.

[26] J. Krokowski, H. R\"acke, C. Sohler, and M. Westermann, Reducing state changes with a
pipeline buffer, in Proceedings of the 9th International Fall Workshop Vision, Modeling,
and Visualization (VMV), 2004, pp. 217--224.

[27] H. R\"acke, C. Sohler, and M. Westermann, Online scheduling for sorting buffers, in Pro-
ceedings of the 10th European Symposium on Algorithms (ESA), 2002, pp. 820--832.

D
ow

nl
oa

de
d

05
/3

0/
22

 to
 3

5.
17

6.
47

.6
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Related work
	Our results

	Lower bounds
	Preliminaries
	The general scheme for constructing
	A sketch of the analysis
	The caching framework
	Choosing parameters
	An important lemma

	Lower bound for deterministic algorithms
	Lower bound for randomized algorithms

	The deterministic upper bound
	The algorithm
	The analysis
	A few simple cases
	The potential
	The main theorem

	Appendix A. Proof of Claim 4
	References

