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Impact of symmetry on ergodic properties of triangular billiards
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Polygonal billiards constitute some of the simplest yet counterintuitive dynamical systems in physics. Even
basic features of the dynamics, such as ergodicity of the microcanonical distribution or the decay of correlations
have not been settled in general. In this Letter, we will highlight the importance of symmetries of the billiard table
for the resulting dynamics. Although typical triangular billiards appear to show correlation decay, symmetric
billiards may not even be ergodic with respect to the uniform distribution in phase space.
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Introduction. The study of complex dynamical behavior
is one of the most vibrant areas of research at the interface
of mathematics, theoretical physics, and their application to
real world phenomena. Although challenges remain, the basic
mechanisms for chaotic dynamics, such as sensitivity, hyper-
bolicity, and correlation decay have by now been identified,
see, e.g., Refs. [1–4]. The next frontier of understanding in dy-
namical systems theory, thus, lies in systems without uniform
hyperbolicity or without exponential decay of correlations
(typically, parabolic systems), an area sometimes referred to
as anomalous dynamics, see, e.g., Refs. [5,6] for typical ref-
erences covering the wide range from rigorous mathematical
approaches to real world applications. Polygonal billiards are
the simplest prototypes of such systems [7] with the mecha-
nisms for the creation of sensitivity or irregular motion poorly
understood to date.

There is a substantial body of mathematical literature, in
particular, for rational billiards, where angles between sides
are rational multiples of π . The wealth of knowledge about
rational billiards is due to the possibility of invoking the ma-
chinery of interval exchange transformations, which makes it
possible to develop computable criteria for various dynamical
properties, such as minimality [8], ergodicity [9], or weak
mixing [10], whereas (strong) mixing and even the occur-
rence of a mixing factor can be excluded by the seminal
result [11]. Polygonal billiards which are weakly mixing have
been described in Ref. [12]. To the best of our knowledge,
the only result concerning general polygonal billiards is the
ergodicity of Lebesgue (Leb.) measure for billiard tables that
are typical in a certain sense [13]. The key method used here
involves sophisticated approximations of general polygons by
polygons with angles which are rational multiples of π . A
constructive example can be found in Ref. [14]. For accessible
reviews giving further insight into this fascinating field see,
e.g., Refs. [15–17].
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Due to the limited mathematical progress for irrational
billiards the analysis in the physics literature has been en-
tirely based on numerical simulations, see, e.g., Refs. [18,19].
Numerical results indicate that irrational billiards are ergodic
with respect to Lebesgue measure, whereas the correlation de-
cay indicates weak and even strong mixing, see Refs. [20,21].
However, as pointed out recently [22] the numerical results
are not fully conclusive. Here we revisit this strand of re-
search and point out another facet of this problem, namely, the
role of symmetry. In the absence of a suitable mathematical
machinery we will resort to an extensive numerical analysis.
Although our analysis may not be fully conclusive, our results
point towards a surprisingly rich dynamical structure, given
that the underlying dynamics looks almost trivial. On one
hand, our analysis reinforces the belief that typical irrational
asymmetric billiards are ergodic and mixing. On the other
hand, ergodicity seems to be questionable for symmetric bil-
liards.

Mixing in general asymmetric triangles. The renewed in-
terest in general billiards with irrational angles was triggered
by Refs. [18,19], which provided numerical evidence for cor-
relation decay in systems without an obvious mechanism such
as sensitivity. This makes polygonal billiards one of the most
challenging mathematical and theoretical subjects of our time.

To begin, we revisit this setup. We consider a triangle with
inner angles α, β, and π − α − β, and we focus on the generic
case with α/π and β/π irrational, and all angles distinct. For
the purpose of our simulation, we take α = π (

√
2 − 1)/4 and

β = π (
√

5 − 1)/4, but the results quoted below do not seem
to depend substantially on these particular values. To capture
the dynamics, we consider the billiard map T which gives the
relation between two subsequent bounces with the boundary.
As usual, we use so-called Birkhoff coordinates (s, p) where
s denotes the position of the bounce measured in terms of the
arclength along the boundary, and p = cos(φ) is the velocity
component of the outgoing ray, tangential to the boundary,
whereas assuming that the particle moves with unit speed.
Using these coordinates the billiard map is area preserving so
that Lebesgue measure in phase space constitutes an invariant
measure of the system.
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FIG. 1. Autocorrelation function of the momentum p on a dou-
ble logarithmic scale for an asymmetric billiard with inner angles
α = π (

√
2 − 1)/4 and β = π (

√
5 − 1)/4. Data have been computed

from a time series of length 230 with ensembles of initial conditions
of different sizes: dark blue (top) N = 1, light blue (second from top)
N = 10, red (third from top) N = 100, yellow (bottom) N = 1000.
For visibility, values have been shifted by a factor of 10−1. The solid
black line indicates a power law decay with exponent −1.4. The inset
displays the dependence of the plateau for a long time as a function
of the ensemble size, measured in terms of the maximum (dark blue
circles), the absolute mean (light blue triangles), and the variance
(red squares). The additional black lines indicate a power law decay
with exponents 1/2 (dashed) and 1 (dashed-dot).

The quantity of interest is the autocorrelation function of
an observable f which is given by

Cf f (n) = 〈 f · f ◦ T n〉μ − 〈 f 〉2
μ, (1)

where 〈· · · 〉μ denotes the average with respect to an invariant
measure μ. Based on rigorous results for rational billiards,
and lacking an obvious mechanism, one would not expect
the correlation function to decay, i.e., the billiard map to be
mixing, see, e.g., Ref. [15]. The best one could hope for is
weak mixing, see Ref. [11], implying that correlation func-
tions do not tend to zero, whereas their absolute Cesaro sum∑N−1

n=0 |Cf f (n)|/N tends to zero as N → ∞. Hence, the results
of Refs. [18,19] came as a slight surprise as the numerical
simulations appeared to indicate that correlations may decay.

For the numerical computation of the correlation function,
we use a standard fast Fourier transform (FFT) approach. We
chop a long time series into shorter pieces, use a Fourier
transform, and the Wiener-Khinchin theorem to compute the
autocorrelation and finally take the ensemble average over
all the pieces. In between, we discount the zero frequency
component to account for the autocovariance. This approach
is able to cope with cases where the invariant density is not
known a priori as the ensemble average, based on a time
series, realizes the physical invariant measure. For the billiard
map considered here, the result of this approach (see Fig. 1)
is numerically identical to a computation using initial condi-
tions sampled uniformly at random, thus, providing further
evidence for the ergodicity of Lebesgue measure.

Mixing requires correlations to decay for all square inte-
grable observables f . In simulations, one can only check very

few observables, and one often insinuates that the findings are
generic. In our case, we have checked a few observables, in-
volving arclength s and momentum p, all revealing essentially
the same properties.

The correlations of p (see Fig. 1) show a power law decay
with a leveling off at long timescales. The large time plateau
value scales with the ensemble size consistent with that for
sums of independent random numbers (see the inset in Fig. 1).
Hence, there is compelling evidence that this leveling off is
caused by sampling errors due to finite sample size. For the
setup of Fig. 1, we observe a power law decay for Cpp(n) with
exponent −1.4. Correlations for a range of other irrational
triangles and observables show the same qualitative behavior,
but the exponent reveals a weak dependence on the observable
and a considerable dependence on the angles of the triangle.

The properties shown in Fig. 1 are typical for simulations
of a larger class of observables and triangles. No major num-
ber theoretic impact of the irrational angle values is visible,
and the simulations give support for mixing in asymmetric
generic irrational triangles. In addition, the same feature can
be found in simple model maps which have been proposed
to exhibit properties of billiard maps [20], see also Ref. [21].
Unfortunately, no basic mechanism, let alone a mathematical
approach, has been identified so far to put the conjecture of
correlation decay in typical triangular billiards on a firm basis.

Ergodicity breaking in isosceles triangles. By the seminal
result of Ref. [13], Lebesgue measure is ergodic for triangular
billiards for a large set of angles when the property being a
large set is measured in topological terms. As indicated by
Ref. [18] and the results of the preceding section, this, in
fact, seems to hold in typical numerical simulations. However,
one has to recall that the question of ergodicity of typical
polygonal billiards is largely unsolved, as, e.g., it is unclear
whether the set of ergodic billiards has positive Lebesgue
measure [7]. Nevertheless, the opinion seems to prevail that
in typical numerical simulations a generic triangular billiard
is ergodic with respect to Lebesgue measure.

A substantial amount of numerical results have been
produced for right-angled triangular billiards. A careful ex-
amination of those data, (see, e.g., Ref. [18]) and recent
numerical results [22] cast some doubt on the ergodicity of
Lebesgue measure in these systems. In fact, right-angled bil-
liards are closely related to symmetric billiards if one uses a
Zemlyakov-Katok construction to unfold the billiard dynam-
ics [23]. Hence, we focus here on the symmetric case α = β

and study the ergodic properties of the uniform invariant dis-
tribution by numerical means.

A necessary condition for the ergodicity of the measure μ

is a vanishing Cesaro limit of the correlation function, i.e.,∑N−1
n=0 Cf f (n)/N → 0 as N → ∞. Thus, in order to measure

ergodicity of the uniform distribution we introduce the order
parameter,

�N = 1

N

N−1∑

n=0

〈 f · f ◦ T n〉Leb., (2)

which is well known from solid state physics, measuring spon-
taneous symmetry breaking in phase transitions. If Lebesgue
measure is ergodic then limN→∞ �N = 〈 f 〉2

Leb.. Restricting
to observables with vanishing Lebesgue average, 〈 f 〉Leb. = 0,
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FIG. 2. Order parameter �N , see Eq. (2), on a double-
logarithmic scale for a symmetric triangle (dark blue, solid dark
gray) with α = β = π (

√
5 − 1)/4 and asymmetric triangles with

β = α − πε with ε = 10−3 (dashed light blue), 10−5 (dashed-dot
red), and 10−7 (yellow, solid light gray), along with the right-angled
triangle α = π (

√
5 − 1)/4, β = π/2 (dotted dark blue, gray). The

correlation functions have been computed via a Fourier transform of
time series of length 227. The ensemble average has been computed
using 104 randomly generated initial conditions. The inset shows
1/�N for the symmetric case as a function of N on a double-
logarithmic scale.

one can disprove ergodicity of Lebesgue measure by showing
that �N does not vanish as N → ∞.

For our numerical studies, we use the observable f =
sin(2πs/L) with L as the perimeter of the triangle. This
observable encodes the position on the boundary and has
vanishing Lebesgue average. We consider a symmetric trian-
gle with α = β and compare findings to cases with slightly
distorted symmetry β = α − πε with ε > 0. Our findings do
not substantially depend on the particular value of α. For
numerical evaluation of the correlation in Eq. (2), we use
the FFT-based method described above, now with a uniform
random ensemble of initial conditions.

Figure 2 shows the dependence of the order parameter
on N . For slightly asymmetric triangles, the order parame-
ter tends to zero, and this tendency becomes stronger with
increasing distortion. These findings support ergodicity of
Lebesgue measure in asymmetric cases. In the symmetric
case, results are not fully conclusive. The order parameter has
no clear limit, it may either tend to a finite value or it may
tend towards zero in an extremely slow fashion, see the inset
of Fig. 2. The data support ergodicity breaking of Lebesgue
measure or, at least, point towards a very slow sublogarithmic
timescale which is not amenable to direct simulations. Above
all, the findings for the symmetric case clearly differ from
the asymmetric case where the order parameter algebraically
converges to zero.

In order to shed more light on the ergodicity of Lebesgue
measure, we evaluate the distribution of finite time ergodic
averages

PN (z) = 〈δ(z − p̄N )〉Leb. (3)

where

p̄N = 1

N

N−1∑

n=0

p ◦ T n (4)

FIG. 3. Distribution of the finite time ergodic average of mo-
mentum p, see Eq. (3), on a semilogarithmic scale. Top: symmetric
triangle with α = β = π (

√
5 − 1)/4, middle: distorted symmetric

triangle with β = α − π10−3, bottom: right-angled triangle with
α = π (

√
5 − 1)/4, β = π/2. Top lines (dark blue) correspond to

N = 104, middle lines (light blue) to N = 105, and bottom lines
(red) to N = 106. Data have been computed from a uniform random
ensemble of initial conditions with ensemble size 106. The distribu-
tions have been generated as a histogram with bin size 4 × 10−4. The
insets show the half-width (dark blue circles) and standard deviation
(light blue triangles) for the three values of N , along with the trivial
scaling 1/

√
N (dashed).

denotes the average of momentum. Properties of the distri-
bution (3) may help to identify different ergodic components
of the system. Numerical results in the cases of symmet-
ric and distorted asymmetric triangles are shown in Fig. 3.
The distorted asymmetric triangle shows scaling of the dis-
tribution according to large deviation theory with PN (z) ∼
exp[−Nφ(z)] where the maximum and variance follow a law
of large numbers with exponential tails. Again, the symmetric
triangle is vastly different: The distribution (3) shows almost
no scaling with N . This could point towards a flat nonequi-
librium potential, and many ergodic components which the
uniform distribution is composed of.
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FIG. 4. Ergodic averages, see Eq. (4), on a semilogarithmic
scale, for a symmetric triangle with α = β = π (

√
5 − 1)/4 (dark

blue, dark gray), distorted triangle with β = α − π10−7 (red,
midgray), and a right-angled triangle with α = π (

√
5 − 1)/4, β =

π/2 (yellow, light gray) for fixed initial condition (s0, p0) =
(0.5, 0.64).

In order to illustrate the strange ergodic behavior of
symmetric triangular billiards we finally evaluate the ac-
tual pointwise convergence of individual ergodic averages,
see Eq. (4), for a given initial value (s0, p0). Figure 4
shows the convergence of the ergodic average of momentum.
For an asymmetric or slightly distorted billiard, one finds
convergence of the ergodic average to the analytic value
〈p〉Leb. = 0, in line with ergodicity of the uniform distribution.
In stark contrast, in the symmetric case, ergodic averages may
not even converge and a meandering on exponentially long
timescales appears to prevail.

Conclusion. We have provided compelling numerical evi-
dence that the symmetry of triangular billiards plays a crucial
role for the ergodic properties of the dynamics. Although
for typical irrational triangles, correlations with respect to
Lebesgue measure appear to decay, the uniform distribution
does not even appear to be ergodic in isosceles irrational
triangles.

The role of symmetry can be convincingly demonstrated
when comparing results from a symmetric triangle with a
corresponding right-angled triangle. If one unfolds the dy-
namics of a right-angled triangle at one of the catheti, one
obtains the dynamics in a symmetric triangle with an almost
two-to-one correspondence between the orbits of both sys-
tems [23]. Although there is no obvious relation between the
ergodic properties of both systems, one would expect that
the dynamics in both triangles is closely related. However,
if we perform the preceding simulations for a right-angled
triangle, then the signatures of a nonergodic Lebesgue mea-
sure seem to disappear as already reported in Ref. [18] where
evidence for weak mixing has been found. No anomalous
dependence in the convergence of ergodic averages seem to
be visible (see Fig. 4), the order parameter scales in a normal
way (see Fig. 2) and the distribution of finite time averages
shows a scaling which is broadly in line with the behavior
in asymmetric triangles (see Fig. 3). Hence, at least, the pro-
nounced anomalous behavior of the symmetric case does not
show up in the corresponding right-angled triangle, and the
strange relaxation behavior can be attributed to the symmetry
of the system since a very closely related asymmetric case
does not share such a feature.

At first glance, the difference between the dynamics in
symmetric and right-angled triangles is rather striking. The
Zemlyakov-Katok unfolding alluded to earlier maps each or-
bit of the symmetric triangle as well as its mirror image to an
orbit of the corresponding right-angled triangle. Furthermore,
time averages of symmetric observables in the symmetric
triangle are also mapped onto time averages of orbits in the
right-angled triangle. However, this two-to-one mapping can-
not be easily inverted. Although it is numerically possible
to reconstruct orbits and averages of the symmetric triangle
from orbits of the right-angled triangle, the corresponding
procedure requires tracking the entire orbit (except, perhaps,
for observables respecting the symmetry of the triangle). As
the dynamics in polygonal billiards exhibits long-time cor-
relations, this construction does not yield ordinary ergodic
averages, and, hence, the dynamics in both cases may differ
for observables not respecting the symmetry of the underlying
triangle, as, e.g., for the data in Fig. 4. Furthermore, even
the existence of a one-to-one mapping between orbits of two
given dynamical systems, or, more precisely, a topological
conjugacy, does not entail any relation between ergodic prop-
erties and time averages of the two systems. As an example,
Ref. [24] shows that the tent map with constant slope, constant
invariant density, and fast correlation decay is conjugate to the
Farey map (see, e.g., [25] for the explicit calculation) which
has a marginally unstable fixed point, displays intermittency
and ageing [26] and does not even have a well-defined invari-
ant density. Hence, there is no a priori internal contradiction
that ergodic properties in symmetric triangles may substan-
tially differ from those in right-angled triangles.

The potential nonergodicity of Lebesgue measure has been
pointed out recently [22] without making any reference to
the underlying symmetry of the system. The importance of
symmetry is also mirrored by a toy map modeling billiard dy-
namics [20]. This model shows features similar to our findings
when cases with and without symmetry are compared. Finally,
symmetry turns out to be relevant when rational billiards are
considered, and where better analytical insight can be gained.
Although the uniform distribution is not ergodic in these
cases, one observes very slow convergence of ergodic aver-
ages when isosceles rational triangles with large denominators
are investigated. All in all, these findings support the claimed
dichotomy between symmetric and asymmetric billiards.

The matter turns out to be much more complex when com-
paring the numerical findings with the few existing rigorous
results. The author of Ref. [14] provides an explicit con-
struction of certain irrational billiards with ergodic Lebesgue
measure, and these cases may cover certain symmetric bil-
liards as well. However, the numerical values for the angles
have rather peculiar number theoretic properties, and, hence,
these values may not typically be encountered in actual nu-
merical simulations. Therefore, these rigorous results may not
be in conflict with our numerical findings. The situation is
comparable to the seminal statement in Ref. [13] that typi-
cal irrational billiards have an ergodic uniform distribution.
Here, typicality is understood in a topological sense, but it
remains an open problem whether this means that such an-
gles constitute a set of positive Lebesgue measure [7], let
alone of full measure. Even though the question of ergodicity
of the uniform distribution in isosceles triangular billiards
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cannot be answered currently, the stark difference of the
relaxation dynamics and timescales in symmetric and asym-
metric billiards is beyond any doubt a distinctive effect of the
symmetry.

This still leaves us with the question of what mechanism
may be at work producing the strange dynamical signatures
in isosceles triangular billiards. One may take some inspira-
tion from interval exchange transformations, a class of maps
which occur in the study of rational billiards but which also
capture properties of general parabolic dynamical systems.
The explicit construction given in Ref. [27] results in maps
which are minimal, i.e., every orbit is dense but which have
more than one ergodic invariant density. This counterintuitive
property points to a strange dynamics where dense orbits meet
the different ergodic components, resulting in an exponen-
tial proliferation of the relaxation process. The exponential
proliferation of quasistationary periods for the time averages
visible in Fig. 4 is also known from ageing dynamics. This
phenomenon is remarkably similar to that found in stable het-
eroclinic networks [28–30] where the dynamics is dominated
by exponentially increasing sticking times to saddle points. In
these cases, symmetry plays a crucial role as well. Polygonal
billiards lack an obvious hyperbolic structure which under-
lies the heteroclinic switching between hyperbolic saddles.
However, there exists analogous phenomena in simple one-
dimensional doubly intermittent maps [31]. These rigorous

studies emphasize again that topological features, such as
dense orbits do not exclude the occurrence of strange ergodic
behavior which resembles ageing dynamics and which is visi-
ble in symmetric triangular billiards (see Fig. 4). Even though
we are currently lacking a deeper analytical understanding
for the phenomena occurring in symmetric billiards, let alone
a rigorous account, the analogies just outlined may point
towards a sophisticated heteroclinic mechanism causing the
ageing dynamics in certain symmetric triangular billiards. On
a related note, the role of symmetry in preventing mixing
(and that of asymmetry in causing it) has been proven for
typical minimal locally Hamiltonian flows, see Ref. [32] and
references therein.

Without doubt, the apparent simplicity of polygonal bil-
liards belies the fact that their dynamics is counterintuitive
and their study a major challenge with correlation decay and
ergodicity wide open questions. They may serve as a testing
ground for contemporary approaches in dynamical systems
theory, and may well develop into a new paradigm for com-
plex dynamical behavior.
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