remote sensing

Article

DSSM: A Deep Neural Network with Spectrum Separable
Module for Multi-Spectral Remote Sensing Image Segmentation

Hongming Zhu !, Rui Tan 1%, Letong Han ¥, Hongfei Fan (%, Zeju Wang 1, Bowen Du

and Qin Liu!

check for
updates

Citation: Zhu, H.; Tan, R.; Han, L.;
Fan, H.; Wang, Z.; Du, B.; Liu, S.; Liu,
Q. DSSM: A Deep Neural Network
with Spectrum Separable Module for
Multi-Spectral Remote Sensing Image
Segmentation. Remote Sens. 2022, 14,
818. https://doi.org/10.3390/
rs14040818

Academic Editor: Giovanni Poggi

Received: 7 December 2021
Accepted: 31 January 2022
Published: 9 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

12#({) and Sicong Liu 3

School of Software Engineering, Tongji University, 4800 Caoan Road Jiading District, Shanghai 201804, China;
zhu_hongming@tongji.edu.cn (H.Z.); 2031570@tongji.edu.cn (R.T.); 2031543@tongji.edu.cn (L.H.);
fanhongfei@tongji.edu.cn (H.E); 1751926@tongji.edu.cn (Z.W.); gin.liu@tongji.edu.cn (Q.L.)

2 Department of Computer Science, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

School of Geodesy and Geomatics, Tongji University, 1239 Siping Road Yangpu District,

Shanghai 200082, China; sicong.liu@tongji.edu.cn

*  Correspondence: B.Du@Warwick.ac.uk

Abstract: Over the past few years, deep learning algorithms have held immense promise for better
multi-spectral (MS) optical remote sensing image (RSI) analysis. Most of the proposed models, based
on convolutional neural network (CNN) and fully convolutional network (FCN), have been applied
successfully on computer vision images (CVIs). However, there is still a lack of exploration of spectra
correlation in MS RSIs. In this study, a deep neural network with a spectrum separable module
(DSSM) is proposed for semantic segmentation, which enables the utilization of MS characteristics of
RSIs. The experimental results obtained on Zurich and Potsdam datasets prove that the spectrum-
separable module (SSM) extracts more informative spectral features, and the proposed approach
improves the segmentation accuracy without increasing GPU consumption.

Keywords: deep neural network; image segmentation; multi-spectral images; spectrum separable

1. Introduction

With the rapid development of remote sensing (RS) technology, multi-spectral (MS)
images are able to provide increasingly complicated and effective information. As one
of the most significant steps in the interpretation of RSIs, segmentation is a comprehen-
sive research topic that includes computer vision (CV), neural networks and RS fields.
Segmentation tasks in RS generally focus on extracting a specific category, e.g., water,
buildings or cars, or multiple categories all together [1,2]. Today, segmentation for RSIs
plays a significant role in disaster prevention and control, land-use planning, urban sprawl
detection, etc. [3-6].

As deep learning (DL) technology has grown rapidly in recent years, CNNJ[7]- and
FCN[8]-based methods have performed competitively in computer vision image (CVI)
segmentation tasks [9-13], and have outperformed traditional methods in RSI segmenta-
tion [14-19]. The major differences between remote sensing images (RSIs) and CVIs are:

1.  As compared with CVIs, RSIs have two major feature dimensions: spatial features
and spectral features.

2. In the spatial dimension, CVIs generally have a lower resolution and a lower variety
of objects. Correspondingly, the resolution in RSIs is generally hundreds of times
higher than CVIs. Moreover, RSIs have a more complicated spatial distribution, more
diverse object textures, and boundary patterns, and extremely unbalanced object
categories.

3. Inthe spectral dimension, CVIs consist of red, green, and blue spectra (RGB), which
indicate unitary spectrum characteristics. However, aside from visible spectra, such as
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RGB, RSIs contain certain invisible spectra, such as near infrared (NIR), which make
it possible to record a wide variety of object spectrum characteristics.

In recent years, many CNN- and FCN-based RSI segmentation methods have focused
on spatial features by improving the effectiveness of object textures and boundary patterns
and reducing the impact of unbalanced object categories in order to promote segmentation
performance. For example, [14] fused semantic and spatial information and alleviated the
boundary blur by introducing a channel-weighted multi-scale feature module and bound-
ary attention module into ResNet [20]. On the basis of the infrastructure of SegNet [11],
with the help of an attention mechanism, Ref. [15] proposed a lightweight end-to-end
network to automatically enhance the spatial and channel features. The authors of [16]
designed a multi-scale context aggregation network with adaptive spatial pooling, reduced
the spatial information loss during the process of convolution and pooling process, and
promoted the semantic representation capability of feature maps. Moreover, Ref. [17]
added a1 x 1 convolution and full connection (FC) layer into the atrous spatial pyramid
pooling (ASPP) module, which improved the capacity of fusing multi-scale features in
Deeplab. In addition, Ref. [21] proposed balanced cross entropy (BCE) loss to optimize the
training of the segmentation network.

These methods, however, lose sight of the spectral features between RSIs and CVIs.
As regards CVIs, spectra represent simple color characteristics, so it is reasonable that
these spectra share equivalent weights in the convolution units. Correspondingly, the
spectrum is extremely significant and complicated for RSIs. For example, there are various
spectrum-sensitive objects in RSIs, such as water and trees; therefore, it is important to
extract the correlation between spectra. Considering this factor, certain traditional RSI
segmentation algorithms leverage the divergence of objects on a specific spectrum or a
combination of several spectra. For instance, NDVI [22] and NDWI [23] are two typical
object extraction approaches based on spectrum characteristics, and the local spectral
histogram method [18,24] calculates a spectral histogram of each spectrum and obtains the
qualitative discrimination results using the synthesis stage.

Recently, researchers have taken into account spectral features in CNN-based methods.
One-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) CNN-based
methods are proposed to model spectral features [25-27]. 1D CNN-based methods exploit
the spectral features by convolving spectrum-dimension vectors for each pixel, which
sacrifice the spatial representation capability [28]. 2D CNN-based methods extract spectral
features in a two-stage manner. Firstly, low-dimensional representations of the spectra are
obtained using dimensionality reduction methods. Then, general CNNs are leveraged to
explore the spatial features [29-31]. Obviously, spectral and spatial features are utilized
in a dissociated manner in 2D CNN-based methods. The convolution kernels in 3D CNN-
based methods are cubic rather than flat, which can be used to easily extract and fuse the
spectral and spatial features [32,33]. On the one hand, only local and low-level spectral
features can be explored in this way. On the other, the order of spectra can limit the feature
extraction capability of 3D kernels. In summary, when tackling RSI segmentation with
DL-based methods, we expect to achieve the high-dimension, abstract, and robust feature
representation wherein spectral and spatial features are effectively integrated, which is
crucial for subsequent classification.

As discussed above, it is worth exploring the integration of traditional methods and
DL-based methods of modeling spectra. Therefore, we proposed a deep neural network
with a spectrum separable module (DSSM) to explore the possibility of enhancing the
capability of extracting spectral features and to improve the segmentation accuracy in MS
RSIs. The source codes are available at https:/ /github.com/RuiTan/DSSM (accessed on 18
January 2022). The main contributions of our work are as follows:

1. A model was designed to realize the self-learning fusion mechanism of MS features
through a depth-separable convolution and attention mechanism, which takes dis-
similar contributions of different spectra and features into account and reduces the
misclassification errors.
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2. On the basis of the above model, an end-to-end MS image segmentation framework
called DSSM was proposed to improve the segmentation ability of all surface elements
in an experimental dataset and to improve the comprehensive segmentation accuracy.

3. A series of experiments were conducted to verify the effectiveness and superiority of
our proposed method. The experimental results provide a new baseline for further
research.

The rest of this article is organized as follows: Section 2 illustrates related work.
In Section 3, the proposed method is described in detail. The effectiveness is analyzed
and compared with various state-of-the-art (SOTA) methods using the Zurich [34] and
Potsdam[35] datasets in Section 4. Finally, Section 5 presents the conclusion.

2. Related Work

In this section, we firstly review the development of image segmentation approaches
in the CV field, including the design of the infrastructure, the principle of various SOTA
methods, and fine-tuning in terms of specific scenarios. Then, the image segmentation
methods in the RS field are reviewed and compared with the proposed algorithms.

Image segmentation, which aims to automatically assign a category to each pixel, is an
active research topic in the field of CV and RS. In the CV field, traditional solutions utilize
the knowledge of digital image processing tools, topology and mathematics to segment
images, which makes it difficult to adequately leverage the color, spatiality, shape, texture,
and boundary features [36,37]. To efficiently integrate these diverse features, certain
methods based on CNNs provide a new strategy with which to analyze and interpret
images [38]. However, the convolution operation, which is the most significant component
of CNN:s, is an irreversible feature extraction process, and, thus, it is hard to obtain the
pixel-level classification results [36]. To solve this problem, with the encoder-decoder
architecture, FCN imposes an upsampling and skip-connection module to retrieve the
feature map in its original size [8]. Consequently, FCN has become the benchmark in the
image segmentation task, and, thus, correlative algorithms are discussed in the following.

Compared with FCN, UNet has a more graceful architecture and a more complicated
skip-connection module, which is able to efficiently fuse multi-scale features [9]. On
the basis of UNet, UNet++ optimizes the skip-connection module with a pruned, deep
supervised subnetwork [10]. PSPNet fuses the multi-scale features through the pyramid
pooling module and combines the structural information using CRF [39], which improves
the segmentation performance [12]. On the basis of the pyramid pooling module, combined
with dilated convolution, Google proposes an ASPP module, which extracts and fuses
multi-scale features more effectively [13,40-42].

In addition to the optimization of network structure, researchers also improved the
convolution units. As regards enhancing the feature extraction capability, the attention
mechanism was introduced to tackle the image processing task and to learn the significant
correlation of multi-channel feature maps [43,44]. Inspired by this idea, we optimized the
feature extraction module to reassign the weight of the feature maps for each spectrum.
Furthermore, to decrease the convolution operation parameters, XCeption proposed depth-
wise separable convolution (DS-CNN), which reduces the dimension of 3D feature maps
and accelerates the speed of training models [45]. On this basis, we conducted the spectrum
separable module (S55M) to decouple the spectral information, which makes it possible to
reassign the weight of spectral feature maps.

Most of the methods mentioned above obtained SOTA results on various image data
sets. However, as mentioned before, considering the characteristics and differences be-
tween RSIs and CVIs, fine-tuning and embedding of RS expertise are still needed in RSI
segmentation tasks [25,26,46]. Various researchers have made innovations and optimized
the framework or structure, obtaining good results on certain RS datasets. More specif-
ically, inspired by atrous convolution, an FCN-based method without downsampling is
proposed to obtain and fuse features of different scales [47]. The holistically nested edge
detection method, based on SegNet (HNED-SegNet), realizes RSI segmentation through an
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end-to-end edge detection scheme [48]. Thereafter, Pan proposed a dense pyramid network
to enhance the low information flow between dimensional features by independently pro-
cessing the digital surface model of the image using grouped convolution and connecting
an effective data fusion method [49]. ScasNet, which adopted a coarse-to-fine refinement
strategy, consists of a pre-trained encoder, various self-cascading convolution units, and a
decoder component. It uses a pre-trained encoder to obtain more effective low-dimensional
features, utilizes residual correction for multi-scale feature fusion, and obtained SOTA
results on multiple challenging benchmark data sets [2]. Various researchers improved
the loss function used in network training for the uneven distribution of ground objects of
RSIs, such as focal loss [50] and balanced or weighted cross-entropy loss [21,51].

Furthermore, other researchers focus on fusing spectral and spatial features. More
specifically, spectral features of each pixel are exploited by 1D CNN, which contains five
layers, i.e., an input layer, a 1D convolutional layer, a max-pooling layer, a fully connected
layer, and an output layer [28]. In [29,31,52,53], diversiform strategies are utilized to explore
the effective representation of hyperspectral data in a lower dimension, including principal
components analysis (PCA), 1D CNN, local discriminant embedding (LDE) and fractional
order darwinian particle swarm optimization (FODPSO). A lightweight framework, with
bag-of-features learning, that integrates 2D and 3D CNNSs is proposed to learn the joint
spatial-spectral features in [54]. In [55], a mini-graph convolutional network (miniGCN) is
integrated with a CNN to extract fused spectral and spatial features in an efficient approach.
In contrast, in our work, we focus on exploring the abstract correlation among spectra
rather than finding a specific representation, and we model the spectral information in a
global manner rather than in a local manner as a 3D CNN does.

In summary, beginning with the idea of decoupling spectral features, we built a
spectral separable convolution module, and leveraged the attention mechanism to select
effective features in a self-learning manner. Extensive experiments demonstrated that
our module effectively improved the baseline segmentation accuracy, and the overall
performance achieved SOTA results.

3. Methodology

In this section, we describe the proposed network structure in detail. First, we explain
how the proposed spectral feature extraction strategy module explores the links between
channels in MS images. Secondly, the detailed network structure of the DSSM is illustrated
herein. Finally, the loss function formulation is elaborated.

3.1. Spectrum Separable Module

In this section, we describe the structure and principle of the SSM in detail, focusing
on how SSM can improve the representation of spectral features.

In the sixth paragraph in Section 2, we discussed the shortcomings of CNNs in
processing RSIs, because the inherent channel correlation inherent to CNNs ignores the
different influence capabilities between spectra. Therefore, inspired by the depth-separable
concept of DS-CNN, we proposed the spectrum separable module, as shown in Figure 1.
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Figure 1. Overview of the proposed SSM. The network structure of the SSM is composed of spectrum-
wise convolution, depth-wise attention and point-wise convolution.
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The network structure of the SSM can be divided into three steps: spectrum-wise
convolution, depth-wise attention and point-wise convolution.

3.1.1. Spectrum-Wise Convolution

I e RHXWXAL

In the spectrum-wise convolution step, refers to the input image. I]lf

represents the i-th convolutional block on the j-th spectrum where j € {1,2,3,4} and
i € {1,2,...,n}, and where n is the number of convolutional blocks. Then, for each
convolutional block, we adopt four groups of kernels with 64 kernels in each group.
K;‘ € R9*¢ denotes the k-th kernel in the j-th group where k € {1,2,...,64}. Moreover,
feature map F can be obtained by concatenating all the convolutional results and F}, is
defined to conduct the concatenation operation upon dimension x. Therefore, the i-th value

/ /
in F € RH W x25% ap be indicated as:
F, = F& (F, (Il @ KF)) (1)

Different from DS-CNNs, we removed the constraint on the number of output feature
graphs. We isolated each spectrum, treated them as separate H x W x 1 images, and then
carried out the convolution operation. Since the input has only one channel, there is no
redundant channel correlation. Here, we set the number of convolution kernels per channel
to 64 for comparison with the baseline. By separating the spectrum, we convert one input
into four inputs. Moreover, for each input, the network can learn the feature type required
by each input through backpropagation, which is a capability that CNNs and DS-CNNs do
not have. This approach allows us to obtain the feature maps for each spectrum, and fuse
them together using a concatenation operation to produce the final feature maps.

Since the concatenation operation is conducted for feature fusion, the spectrum-based
feature maps are equally dealt with in the following processes, which can cause a loss of
accuracy. For example, the nearshore water may have a different color from the ordinary
water in the RGB image due to the shallow depth. However, the corresponding pixel values
for the same nearshore water in NIR may not be very different from ordinary water. To
achieve better segmentation accuracy, a trade-off should be made to capture both the texture
features in RGB and the near-infrared features in NIR for the water area. We expected
the proposed network to learn the features based on certain points of focus, and thus an
attention mechanism was utilized in the proposed model.

3.1.2. Depth-Wise Attention

In the first step, we obtained feature map F, which contains a number of channels
representing multiple types of features. By applying the attention mechanism on F, we
enhanced the important features and weakened the unimportant ones. In brief, we gave
each channel the ability to self-learn its weights.

In order to obtain the global feature of a channel, the global average pooling method
(GAP) was adopted to integrate the global information and obtain the compressed feature
graph G € 1 x 1 x 256. This process is represented as Fs;, and then G can be calculated by:

© = )
] Sq ! !/ ] 7

W' x H x=1y=1

Since we want to obtain the weights of a complete channel, GAP is used to integrate
the channel’s internal information. Note that GAP is a relatively simple, but effective,
pooling method to integrate global information. In addition to this, for example, maximum
pooling and random pooling both cause more or less pixel point loss inside the channel, so
we chose GAP.

Thereafter, two FC layers were adopted to integrate the multi-channel information,
followed by the sigmoid function as the active function with which to generate the weight
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map S that can be applied to the original feature map. Fey is used to denote this operation,
and S can be calculated by:

S = Fx(G) = 0 (FC1(FC2(G))) 3)

It is necessary to use the FC to integrate the channel information here, because each
channel value of G is the result of a GAP based entirely on a single channel. If it is
directly applied to F, the process of obtaining the following T is completely without
backpropagation and training, which makes it impossible to learn the law of channel
enhancement and attenuation through all channel information.

Finally, the obtained weight map was multiplied directly by the channel corresponding
to the original feature map, which is represented by F,,., with which we obtain the
weighted feature map T. At this point, the feature map has acquired the ability to express
the strength and weaknesses of multiple features. T can be expressed as:

T:Fscule(srl:) :Fgo(ijpj) (4)

3.1.3. Point-Wise Convolution

We applied the attention mechanism to a series of features corresponding to each
spectrum, and the convolution kernel of 1 x 1 to integrate the channel correlations. On the
one hand, this enabled it to learn nonlinear relationships between channels, and on the
other hand, it allows it to configure subsequent input dimensions by specifying the number
of convolution kernels.

In Equation (5), | € R1*1%2% refers to the kernels we adopted here, and the final

/ /
feature map O € R XW %64 can be obtained by:

O=JxT )

3.1.4. Computational Cost

To compare the computational cost between standard convolutional layers and DSSM
when the input and output has the same shape, we used the following assumptions:

1.  Both the standard convolutional layer and DSSM take as input a D; x D; x M image
I as input and produce a D; x D; x N feature map F, where D; is the spatial width
and height of a square input image, M is the number of spectra in the input image,
and N is the number of channels in the output feature map.

2. The padding type is the same, which means the spatial size of output feature map
should be the same as that of the input image.

3.  During the execution process of the model, the GPU consumption is mainly de-
termined by the model size under the same conditions. In turn, the model size is
proportional to the number of parameters. Therefore, in this section, the number of
parameters of the module is used to evaluate the computational cost.

Thereafter, in the standard convolutional layer, N convolution kernels of size | are
needed to obtain the feature map, where Dy is the spatial length of the convolution kernel,
and M is the number of the input image spectrum, and N is the number of output channels
as defined previously. Thus, the standard convolution layer has the the computational
cost of :

Cost(CNN) = D; X D; x M x N X Dy x Dy (6)

where the cost is greatly influenced by the shape of the input and output. As we all
know, the coupling between each spectrum leads to the inevitable equality in the standard
convolution.

To solve this problem, SSM was proposed to break the coupling and adopt a 1x1
convolution to integrate the mixed feature map. Here, we need M kernel groups in SSM,
then in each group, N’ convolution kernels K of size Dy x Dy x 1 are designed to obtain
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specific feature map group for each spectrum. Therefore, the computational cost of the first
SSM step is:

Cost;(SSM) = D; x D; x M x N’ x Dy x D @)

These groups are concatenated together, rather than added, to obtain a mixed feature
map. Then, N kernels of size Dy x Dy x 1 are adopted to apply a linear combination of the
mixed feature map to obtain the final feature map. Considering the cost of the above step
together, SSM has the total cost of:

Cost(SSM) = Cost;(SSM) + M x N x N x Dy x Dy 8)

Therefore, we calculate the following ratio by comparing SSM with the standard
convolution:

/ /

Cost(SSM) N n N 9
Cost(CNN) N ' D?

It is noteworthy that when we set N’ = 1 then the cost is the same as that in DS-CNN.
Moreover, when N’ is set to be the same as N, we maintain the dimension of the feature
map. Now, we solely need to focus on the component of %, which is equal to 61*4 in our
implementation, where N and D; are both 64. Hence, the é:omputational cost was only
1.56% more than standard convolutions, but a much improved spectral feature extraction
capability was successfully achieved.

3.2. Network Structure

In order to solve the semantic segmentation problems of MS images, we developed
an end-to-end network framework based on Deeplab. The structure of the framework is
shown in Figure 2.

Depth-wise
Attention
Input Image Prediction

Upsampling

rae

"’.’.»‘.e-‘ 4

Ta S

XCeption ASPP Softmax e ¥*n < 35
sy

EadaliLy

B e BN

N Spectral-wise Point-wise
Conv Conv

Figure 2. Network Structure.

The DSSM is composed of the following steps:

Step 1: Derive a feature map with spectral information

The MS image is used as the model input and can be processed using the SSM, which
results in a feature map with a strong expression ability for spectral information.

Step 2: Feature extraction using XCeption

The feature map is transferred into XCeption for low-dimensional feature extraction.

Step 3: Multi-scale feature extraction using ASPP

The extracted feature map is input into the ASPP module to extract the multi-scale
feature, and the result is concatenated to obtain the high-dimensional feature.

Step 4: Upsampling and concatenating

The high-dimensional feature is firstly upsampled and then concatenated with the low-
dimensional feature. Finally, a simple convolution and upsampling operation is adopted to
return the size of the feature to the input size.

3.3. Loss Function

In our proposed framework, the overall loss function can be indicated as:

L= ﬁhce =+ Edice (10)
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3.3.1. Balanced Sparse Softmax Cross Entropy

In image segmentation, there is usually a large deviation in the proportion of pixels of
different categories. To cope with the biased sampling class, we defined a balanced sparse
softmax cross-entropy-based tradeoff strategy.

Assuming that there are S classes of surface object in our dataset, we adopt J €
RHXWXS t4 denote the true label, and ) = {9;,i=1,2,...,S} which means i is the object
category. Moreover, each §; € RF*W is a binary map that only contains 1 and 0, which
represents if the current pixel belongs to the i-th category or not. Similarly, ) € REXWx5 jg
adopted to refer to the prediction map, where Y = {y;,i = 1,2,...,S}. The difference is
that the value of a specific pixel in y; is the probability of the pixel belonging to i-th category.
Following a simple balanced strategy, and balanced sparse softmax cross entropy can be
defined as:

S ||9:log(y;
[-:bce — Z ||]/z %(yl)nl (11)
i=1 t

where || A||; denotes the L1 norm of matrix A and p; can be defined as:

lyi = ill,
Bi=—fi = (12)
Ciallyi =ill,

3.3.2. Dice Coefficient

The dice coefficient is also a commonly used loss function applied in image segmenta-
tion tasks [21], which can be defined as:

2|YY ],

Lo =1— ———J1_
e VI + 2],

(13)

4. Experiment

We designed and conducted three groups of experiments with the following three
objectives:

1.  In order to verify the effectiveness of the proposed DSSM in an MS information
fusion, firstly, we compared the segmentation performance of the baseline framework
based on RGB, NIR, and RGB-NIR inputs to verify whether RGB-NIR contains more
valuable information and improves the performance. Secondly, we compared the
proposed DSSM with the baseline framework based on the same set of RGB-NIR
inputs to evaluate its effectiveness.

2. In order to further verify the validity of the proposed SSM, features from different
levels were visualized and compared to demonstrate that more abstract and effective
features can be extracted from the SSM.

3. Inorder to verify the overall performance of the proposed framework, comparison
experiments were carried out to compare with other SOTA methods.

4.1. Dataset
4.1.1. Data Introduction

In image segmentation tasks, supervised learn-based frameworks generally require
large amounts of data with high quality labels, which are often difficult to obtain. Fortu-
nately, Michele released his self-labeled Zurich dataset in 2015, which includes 20 high-
resolution photos of Zurich, Switzerland with a 0.62-m GSD obtained from a QuickBird
satellite in August 200. Surface objects in this dataset are classified into eight different
categories: road, building, tree, grass, bare soil, water, railway, and swimming pool, and
each object is annotated by a specific color. In order to reflect the real-world distribution,
the number of pixels in various samples is unbalanced, as shown in Figure 3. In addition,
since it was marked manually, these labels are not completely consistent with the real-world
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objects, and there are some errors or missing labels. The data set contains the original
image and the corresponding labels. The original image is an MS image containing four
channels of NIR and RGB, with a 16-bit depth. The 16-bit depth image contains a lot of
colors and subtle differences among those colors that humans cannot recognize, but that
neural networks can easily pick up.

ID Color Label Proportion [ ID Color Label Proportion

1 [ Roads 14.61% | 2 [ Buildings 20.64%
B Trees 9.72% 7.16%
B Bare Soil  0.90% 4.87%

Rails 1.31% 0.13%

~1 Wb W

Figure 3. Example from the Zurich dataset. Class legend with colors and related labels (a); note that
a white background is not considered to be a separate class. Original image (RGB) (b) and its ground
truth (c).

Another dataset we adopted is the Potsdam dataset provided by ISPRS as shown in
Figure 4, which contain 38 images of Potsdam, Germany.

4.1.2. Sampling Strategy

For the Zurich dataset, as the resolution of the source photos ranges from 650 x 650
to 1700 x 1700, random sampling was conducted to take into account the impact of re-
source constraints, training efficiency, training effects, and other factors. The 20 photos
were randomly sampled to produce 20,000 slices, 256 x 256 in size, preserving the maxi-
mum amount of detail and edge information in the original photos. Then, 80% of these
participated in training and validation, and the remaining 20% served as test sets.

4.1.3. Data Augmentation

In order to improve the expression ability of the data and the generalization ability
of the model, we applied a variety of data enhancement methods to the data, including
rotation, flipping, slicing, Gaussian filtering, bilateral filtering, gamma transformation, and
so on. In fact, the random slice method mentioned above, which increases the number of
samples, was also used for data augmentation.
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ID Color Label Proportion | ID Color Label Proportion

Bar 1 44.4 (V] Blll lngS 1 5 . 9 0
-

Trees 5.33% 4 Cars 0.99%

1
3
5 Grass 10.64% | 6 [ ] 2259 4.87%

Figure 4. Example from the Potsdam dataset. Class legend with colors and related labels (a). Original
image (RGB) (b) and its ground truth (c).

4.2. Evaluation Methods

In order to evaluate the effectiveness of the proposed framework, we adopted inter-
section over union (IoU) as an evaluation indicator for a single category of ground objects.
IolU defines the similarity between the predicted area and the ground reality area of the
objects in this set of images. The calculation formula is as follows:

B TP,

where TP, FP, and FN represent the counts of true positive, false positive, and false
negative, respectively, and i refers to the category number. The result of the count is
generally obtained by the confusion matrix between the predicted value and the ground
reality.

Moreover, FW IoU was used to evaluate the overall segmentation performance, which
can be calculated as:

ToU; (14)

N
FWIoU =Y p; x IoU; (15)
i=1
where p; refers to the percentage of pixels of the i-th ground object. When calculating the
average loU, FWIolU also took into account the occurrence probability of ground objects,

thus making the evaluation of the segmentation result more accurate.

4.3. Experimental Environments

The proposed architecture is implemented using the Tensorflow library. The hardware
device is a Ubuntu server equipped with four GeForce RTX 2080 Ti GPUs (each has 12 GB of
memory), one Intel 19-9960X CPU and 64 GB of RAM. The detailed hardware configuration
and software requirements are shown in Table 1.



Remote Sens. 2022, 14, 818

11 of 19

Table 1. Hardware configuration and software requirements in our implementation.

Item Version
GPU Four GeForce RTX 2080 Ti, 12 GB
Hardware CPU Intel i9-9960X CPU
RAM 64 GB
Operating System Ubuntu 18.04
CUDA 10.2
Software Python 3.6
Tensorflow 1.14.0

4.4. Comparison of Various Processing Strategies

In the introduction to SSM, we stated that the SSM actually provides a strategy for
fusing different spectra from the input image. The purpose of this section of the experiment
was to verify the effectiveness of the fusion strategy in the SSM. This group of experiments
were conducted on the Zurich and Potsdam datasets.

Before we proposed the SSM, we put forward a hypothesis that different spectra would
show different values on different ground objects. On the basis of this assumption, we
treated each spectrum of the input image as an independent single spectral image. We
convolved them separately, and then we established the nonlinear relationship among the
feature maps generated by all the spectra through 1 x 1 convolution. This enabled the
network to learn which features needed to be learned for each spectrum independently.
In order to assess whether more valuable information is contained in RGB-NIR and the
effectiveness of the SSM, we designed several processing strategies for comparison, which
are as follows:

1. We fed three spectra of red, green, and blue into the baseline (baseline with RGB).
We fed the NIR into the baseline (baseline with NIR).

We fed four spectra into baseline (baseline with RGB-NIR).

We fed all four spectra into the proposed framework (DSSM with RGB-NIR).

In this group of experiments, the Deeplabv3+ network, which is fine-tuned in terms of
cost function and the number of convolutional layers, was adopted as the baseline with
which to compare the DSSM.

Figure 5 shows the segmentation results of the baseline with RGB, the baseline with
NIR, the baseline with RGB-NIR, and the DSSM with RGB-NIR. Figure 5a,b are the original
images and their ground truths. Figure 5c—e refer to the baseline with RGB, the baseline
with NIR and the baseline with RGB-NIR, respectively. Figure 5f represents the DSSM with
RGB-NIR inputs.

As a result of the large receptive field of the original image, the contrast effect of the
whole image is not obvious. Therefore, various small image blocks with a size of 200 x 200
were cut from the original image. These image blocks were selected from certain parts with
extreme differences in segmentation results in typical ground objects.

Firstly, we compared the segmentation differences of different inputs on small isolated
trees, as shown in the yellow box in the first line of Figure 5, where three small isolated trees
are shown. The baseline with RGB and the baseline with NIR strategies lost the ability to
identify small trees, and they roughly identified the area as the background. The RGB-NIR
strategy identified a tree, but its outline is quite different from the ground truth. The
DSSM with the RGB-NIR strategy identified three complete trees. Although the boundary
between the first tree and the second tree is connected, the outline of the two trees can be
seen, and the shape of the identified trees is closer to the ground truth than that of the other
three strategies.

L



Remote Sens. 2022, 14, 818

12 0of 19

B Roads
B Trees
I Bare Soil
Rails
I Buildings
I Grass
Bl Vater

Pools

Figure 5. Comparison of various processing strategies in the Zurich dataset. (a) Original image.
(b) Ground truth. (c) Baseline with RGB. (d) Baseline with NIR. (e) Baseline with RGB-NIR. (f) DSSM
with RGB-NIR.

In the yellow box in the second line of Figure 5, we selected small roads, which are
bridges marked as roads. Curiously, the two strategies, RGB and NIR, were able to coarsely
divide the bridge. However, when they were mixed, i.e., when the RGB-NIR strategy
was used, the recognition ability actually reduced. Their simultaneous use may inhibit
the other’s recognition ability. Of course, the RGB-NIR with DSSM strategy also correctly
divided the bridge.

In the yellow box in the third line of Figure 5, there is a small and shallow swimming
pool. The RGB strategy completely lost the ability to recognize this object, and even
identified the shore of the swimming pool as a road. The baseline with NIR, the baseline
with RGB-NIR and the DSSM with RGB-NIR were all able to identify the swimming pool,
but the predicted contour of the DSSM RGB-NIR was closest to the ground truth.

In the yellow box in the fourth row of Figure 5, there is a road with a shaded area.
Both the baseline with NIR and the baseline with RGB-NIR accurately identified the road
with a shaded area, while the baseline with RGB and the baseline with RGB-NIR consider
that to be the background.

In a previous analysis, we compared four classes in which obvious differences can
be observed with the human eye. Since each image block was only 200 x 200 in size, the
visual effects in most areas using different processing strategies were similar. In Table 2,
IoU and FW IoU of different strategies on each ground object are quantitatively given. It
can be clearly seen from Table 2 that the fusion strategy of the DSSM proposed by us greatly
improved the segmentation effect of each type of ground object. Firstly, the baseline with
RGB-NIR performed better than the baseline with RGB and the baseline with NIR by 1.18%
in terms of FW IoU using the Zurich dataset. However, as compared with the first three
strategies, the DSSM with RGB-NIR consistently outperformed them, registering increased
FW IoUs of approximately 3.47%. Furthermore, the confusion matrix for the prediction
is shown in Figure 6. The wrong classification frequently occurred for the background;
this does not represent an inter-object mistake but a difficulty in distinguishing between
background and non-background objects.
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Table 2. The quantitative results of different processing strategies using the Zurich dataset.

Strategy Background Road Bare Soil Tree Water Buildings Grass Rails Pool FW IoU
Baseline with RGB 75.94 79.87 9499 7186 91.65 84.36 84.22 89.34 9096  84.80
Baseline with NIR 75.60 7970 9521 7206 91.11 83.92 8490 89.85 90.88  84.80

Baseline with RGB-NIR 78.09 80.80 9546  75.65 91.05 85.33 86.24 89.21 91.98 8598
DSSM with RGB-NIR 83.18 85.76  96.24  81.27 94.05 88.71 89.95 91.61 94.31 89.45

Background
100,000

Road -

Bare soil -
80,000

Tree -
water 60,000

Buildings -
- 40,000

Grass -
Rails - - 20,000

Pool -

I 1 1 1 1 I 1 I
Background Road Bare soil Tree  Water Buildings Grass  Rails Pool

Figure 6. Confusion matrix for the prediction using the Zurich dataset.

To further verify the efficiency of the DSSM, we also conducted other experiments
using the Potsdam dataset. Figure 7 and Table 3 show the effects of the four strategies
using the Potsdam dataset. The DSSM with RGB-NIR continued to demonstrate a better
segmentation capability than the other three strategies, which increased by 1.92% in terms
of FW IoU.

B B soil
- Trees

Grass

H uicings

Cars

Backgroud

Figure 7. Comparison of various processing strategies in the Potsdam dataset. (a) Original image.
(b) Ground Truth. (c) Baseline with RGB. (d) Baseline with NIR. (e) Baseline with RGB-NIR. (f) DSSM
with RGB-NIR.
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Table 3. The quantitative results of different processing strategies using the Potsdam dataset.

Strategy Bare Soil Building Tree Car Grass Road FW IoU
Baseline with RGB 89.92 6458 73.01 80.63 7880 8321 78.36
Baseline with NIR 85.91 60.53 6829 75.65 7772 7719 7422

Baseline with RGB-NIR ~ 90.13 6772  73.09 8126 7899 8390 79.18
DSSM with RGB-NIR 90.24 71.29  75.63 83.66 81.49 84.31 81.10

In addition to comparing the segmentation accuracy of different strategies, we also
compared the consumption cost of each strategy. As can be seen from Table 4, for the first
three schemes, we maintained the same size and number of convolution kernels in the
baseline. At this point, the number of spectra of the input image only affects the thickness of
the convolution kernel, and we already know from the previous analysis that the thickness
of the convolution kernel in the CNN does not affect the parameters of the model; thus,
their consumption cost remained the same. As compared with the aforementioned three
strategies, the consumption cost of the DSSM with RGB-NIR increased by about 20%.
Considering that this strategy provides a great improvement in segmentation accuracy, we
believe that the increase in consumption is acceptable.

Table 4. Consumption cost of different processing strategies using the Zurich dataset.

Strategy Consumption Cost
Baseline with RGB 8785 MiB
Baseline with NIR 8785 MiB

Baseline with RGB-NIR 8785 MiB
DSSM with RGB-NIR 10,835 MiB

In conclusion, the fusion strategy in our proposed SSM is more effective than that
in those strategies that use the pure CNN to obtain the image feature, and it provides an
acceptable consumption cost. Another interesting fact is that using the RGB-NIR strategy is
sometimes less effective than directly using the NIR strategy, which can be seen in both the
qualitative and quantitative results. In the next section, we discuss why the SSM improves
the segmentation accuracy in more detail.

4.5. Comparison of Features Extracted from Different Levels

In this group of experiments, we assessed the validity of the SSM from another per-
spective. Different levels of features extracted from the baseline and DSSM were visualized
and contrasted. This group of experiments was conducted using the Zurich dataset.

Figure 8 shows the low-level features extracted from the baseline and DSSM, respec-
tively. Figure 8a,b are the original images and their ground truth. Figure 8c shows the
low-level features extracted in the baseline where spectra are convolved in a weight-sharing
manner. Figure 8d—g represent the low-level features explored in DSSM in a spectrum-
separable way. Concentrating on the yellow boxes in Figure 8d-g, different features are
revealed in different spectra. In other words, diversiform characteristics under different
spectra can be captured by the SSM. However, as shown in Figure 8c, differentiation among
objects becomes less distinct due to the weight-sharing strategy.

In Figure 9, we visualize different level of features. Figure 9a,b are the original images
and their ground truth. Figure 9¢,d show the low-level features. They are extracted by
one convolutional layer in the baseline and the SSM, respectively, in the proposed method.
Obviously, as shown in the yellow boxes, fused low-level features in the DSSM provide
a sharper and more legible pattern and information. Figure 9e f illustrate the high-level
features obtained from the ASPP in the baseline and DSSM, respectively. The higher the
level is, the more abstract and unrecognizable the pattern will be. As shown in Figure 9ef,
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although the features are abstract and hard to recognize, high-level features in the DSSM
contain more complicated manifestations.

Figure 8. Comparison of spectral features extracted from the baseline and proposed method using
the Zurich dataset. (a) Original image. (b) Ground truth. (c) Low-level features in the baseline.
(d) Low-level features of the red band in DSSM. (e) Low-level features of the green band in DSSM.
(f) Low-level features of the blue band in DSSM. (g) Low-level features of the NIR band in DSSM.

(@) ®) © @ © ®

Figure 9. Comparison of spectral features extracted from the baseline and proposed method using the
Zurich dataset. (a) Original image. (b) Ground truth. (c) Low-level features in the baseline. (d) Fused
low-level features in DSSM. (e) High-level features from ASPP in the baseline. (f) High-level features
from ASPP in DSSM.

4.6. Comparison of Other Popular Segmentation Methods

In order to verify the overall performance of the DSSM, we compared the DSSM
with UNet++, DeeplabV3+, HNED-SegNet, ScasNet, and miniGCN using the Zurich
and Potsdam datasets. As discussed in Section 2, UNet++ and DeeplabV3+ are CV-field
methods and HNED-SegNet, ScasNet, and miniGCN are RS-field methods. In order to
obtain more effective results, only the network structure was customized in the experiment
using each method.

As shown in Table 5, the DSSM outperformed the other methods in most surface
elements, and provided a satisfying improvement of 5.78% for trees in terms of IoU. Veg-
etation areas, such as trees, have a similar pattern as other surface elements in a single
spectrum. Through establishing the correlations among spectra, we improved the segmen-
tation efficiency of these areas. However, as a result of the extremely irregular shapes and
the inaccurate labels of trees, the IoU remained lower than the FW IoU. Moreover, the
segmentation accuracy improved by 2.99% for water and pools for the same reason. Other
surface elements improved by 1.53% overall when background and rails were excluded.

Furthermore, the IoU of the DSSM for rails was 1% lower than that of UNet++, because
the multi-level skip-connection structure of UNet++ is more effective on these narrow and
slender surface elements. Overall, the FW IoU is increased by 2.19%, which demonstrates
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that the segmentation accuracy of the DSSM in terms of segmenting MS RSIs is generally
better than that of other SOTA methods.

Table 5. The quantitative results of popular methods using the Zurich dataset.

Strategy Background Road Bare Soil Tree Water Buildings Grass Rails Pool FW IoU
UNet++ 85.97 82.84 95.71 74.47  90.99 86.03 84.25 92.60 9153 87.15
DeeplabV3+ 83.01 83.09 95.96 7549 91.04 86.72 8743 9123 9133 8726
ScasNet 83.04 81.21 95.53 72.73  90.31 85.12 8345 88.89 90.18 85.61
HNED-SegNet 85.43 82.81 95.65 7455 90.98 86.04 8455 90.60 9179  86.93
miniGCN 82.11 80.21 93.53 71.76  90.33 85.66 84.00 8720 9132 85.12
Proposed method 83.18 85.76 96.24 81.27 94.05 88.71 89.95 91.61 9431 89.45

The quantitative results using the Potsdam dataset are shown in Table 6, which are
similar to those using the Zurich dataset. It is worth noting that our method still has a lot
of room for improvement in the results of the buildings. Overall, the FW IoU is increased
by 0.19% compared with the best method, which is HNED-SegNet.

Table 6. The quantitative results of popular methods using the Potsdam dataset.

Strategy Bare Soil Building Tree Car Grass Road FW IoU
UNet++ 79 84.82 7491 87.47 78.87 80.04 80.85
DeeplabV3+ 90.13 67.72 73.09 8126 7899 83.90 79.18
ScasNet 90.04 85.76 7249 8028 7249 83.58 80.77
HNED-SegNet 81.07 83.41 73.85 8572 77.89 83.65 80.93
miniGCN 82.01 83.27 6541 80.58 73.62 80.03 77.49
Proposed method 90.24 71.29 75.63 83.66 81.49 84.31 81.10

Table 7. The comparison of prediction time for a batch of popular methods.

Strategy Prediction Time (ms/batch)
UNet++ 9.31
DeeplabV3+ 10.63
ScasNet 11.63
HNED-SegNet 10.15
miniGCN 12.38
Proposed method 10.85

We also compared the execution time with other methods as shown in Table 7. We
define the unit of execution time as the time it takes for the model to predict each batch.
Model and data loading times have been excluded from the results. In the actual prediction,
each batch contains 64 images of 256 x 256 size. UNet++ takes the shortest time, thanks
to its streamlined network structure. Our method takes about 10.85 ms, which is 1.54 ms
slower than UNet++. The extra time consumption of the proposed method is acceptable
when taking its performance improvement into account.

5. Conclusions

In this paper, we propose a deep-learning based, end-to-end network structure DSSM
for the semantic segmentation of MS optical RSIs. The framework is mainly composed of
an SSM module and a deep neural network.

The SSM is based on a DS-CNN and optimizes the spectral feature extraction strategy.
First, features are independently extracted through spectrum-wise convolution, and then
the importance of each feature is studied using a depth-wise attention module. Finally, a
nonlinear relationship between features is established through point-wise convolution to
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generate the final feature map. These extracted features not only contain spatial information,
but also have a stronger ability to express spectral correlation. We applied the SSM as a
prefeature extraction module in deep neural network. The experimental results show that
the DSSM has a better segmentation capability than other SOTA methods, and provides
an improvement of 2.19% in terms of FW IoU. Moreover, our proposed SSM can be easily
grafted onto other deep-learning-based networks.

In future work, we will focus on transforming the processing techniques proposed in
the SSM into hyper-spectral RSIs, reducing the complexity of the network and consumption
cost, and applying the strategy to other RS tasks, such as change detection.
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