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MRS can provide high accuracy in the diagnosis of childhood brain tumours when

combined with machine learning. A feature selection method such as principal com-

ponent analysis is commonly used to reduce the dimensionality of metabolite profiles

prior to classification. However, an alternative approach of identifying the optimal set

of metabolites has not been fully evaluated, possibly due to the challenges of defining

this for a multi-class problem. This study aims to investigate metabolite selection

from in vivo MRS for childhood brain tumour classification. Multi-site 1.5 T and 3 T

Abbreviations: 1H-MRS, proton MRS; AUC, area under the curve; CRLB,, Cramér-Rao lower bound; FWHM, full width at half maximum; LDA, linear discriminant analysis; PCA,, principal

component analysis; ROC, receiver operating characteristic; SMOTE, synthetic minority oversampling technique; SNR, signal-to-noise ratio.
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cohorts of patients with a brain tumour and histological diagnosis of ependymoma,

medulloblastoma and pilocytic astrocytoma were retrospectively evaluated. Dimen-

sionality reduction was undertaken by selecting metabolite concentrations through

multi-class receiver operating characteristics and compared with principal component

analysis. Classification accuracy was determined through leave-one-out and k-fold

cross-validation. Metabolites identified as crucial in tumour classification include

myo-inositol (P < 0.05, AUC¼0:81�0:01), total lipids and macromolecules at

0.9 ppm (P<0.05, AUC¼0:78�0:01) and total creatine (P<0.05,

AUC¼0:77�0:01) for the 1.5 T cohort, and glycine (P<0.05, AUC¼0:79�0:01),

total N-acetylaspartate (P<0.05, AUC¼0:79�0:01) and total choline (P<0.05,

AUC¼0:75�0:01) for the 3 T cohort. Compared with the principal components, the

selected metabolites were able to provide significantly improved discrimination

between the tumours through most classifiers (P<0.05). The highest balanced classi-

fication accuracy determined through leave-one-out cross-validation was 85% for

1.5 T 1H-MRS through support vector machine and 75% for 3 T 1H-MRS through lin-

ear discriminant analysis after oversampling the minority. The study suggests that a

group of crucial metabolites helps to achieve better discrimination between child-

hood brain tumours.

K E YWORD S

childhood brain tumour, machine learning, metabolite concentration, MRS, multi-class
classification, receiver operating characteristics

1 | INTRODUCTION

Primary tumours of the central nervous system are the most common cause of cancer death in childhood.1 Histology and molecular analysis of

tumour specimens obtained at operation provide the definitive diagnosis for most children's brain tumours. However, providing an accurate non-

invasive diagnosis prior to surgery has many advantages for optimal patient management,2 including better informed surgery, earlier planning of

adjuvant treatment and improved discussions with the child and family. Although clinically used to propose radiological diagnosis, structural fea-

tures of tumours provided by conventional imaging have a limited accuracy.3 Metabolites are direct signatures of biochemical activity and their

detection in vivo can improve our understanding of brain tumours in situ.4 Many studies have suggested specified metabolites as biomarkers of

specific processes and types of childhood brain tumour. For instance, total choline, which consists of glycerophosphocholine, phosphocholine and

free choline, is known as a general cancer marker and is associated with tumour aggressiveness and progression.5 Taurine, the naturally occurring

β-aminoacid related to neurodevelopment in infancy, is associated with embryonal tumours.6,7 Lipids and glycine have been identified as valuable

prognostic markers of childhood brain tumours.8–11

Proton MRS (1H-MRS) is a non-invasive tool to investigate the in vivo metabolite profile of tissues in tumours.12 It has been shown to aid

diagnosis and clinical management of childhood brain tumours.13–15 Machine learning provides a computational method to classify brain tumours

by using metabolite profiles and can offer high diagnostic accuracy.16 Prior to use in a machine learning classifier, a feature selection method is

commonly applied to the metabolite profile, to avoid over-fitting by reducing dimensionality. One method that has been commonly used is princi-

pal component analysis (PCA), selecting linear combinations of metabolites ranked by their contribution to the overall variability of the data.17

However, high levels of variability across the whole dataset may not correspond to optimum discrimination between classes, and higher per-

forming methods of feature selection are being sought.18

Feature selection methods including PCA commonly have a complex relationship to the original data. This lack of transparency could be a bar-

rier to clinical adoption, where tumour discrimination based on specific metabolites may be preferred by clinicians and can be supported by asso-

ciation with histological features.19 A feature selection method based on selection of individual metabolites by their ability to discriminate

between classes would potentially provide an intuitive approach to moving from diagnosis using single metabolites to machine learning. Whilst

diagnostic performance is well defined for classification between two classes by the area under a receiver operating characteristic (ROC) curve,
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this is not the case for a multi-class system. Brain tumour classification usually needs to consider more than two potential diagnoses and so multi-

class ROC needs to be investigated in this setting. Here we perform a thorough investigation of the accuracy of individual metabolites as discrimi-

nators between three major children's brain tumour types comparing different approaches to ROC for a multi-class problem. We then use these

approaches to select the best performing metabolites for use in a machine learning classifier. We also compare this approach with feature selec-

tion using PCA, which is chosen as a benchmark, although our aim is not to determine whether metabolite selection is the optimal feature selec-

tion method when compared with all methods currently available.

The aim of this study is therefore to investigate the use of multi-class ROC for optimizing metabolite selection in the classification of child-

hood brain tumours by 1.5 T and 3 T short echo-time 1H-MRS and compare the classification accuracy against PCA.

2 | METHODS

2.1 | Data acquisition

Patients with a suspected brain tumour were recruited from four sites in England, including Birmingham Children's Hospital, Alder Hey Children's

Hospital Liverpool, Nottingham University Hospitals and Royal Victoria Infirmary Newcastle upon Tyne. Patients presenting with a brain tumour

underwent routine MRI examination before the surgical resection of their tumours, and the diagnoses were made by histology and review at the

local tumour boards. Patient data were collected from October 2004 to December 2019; those with a diagnosis of pilocytic astrocytoma, medullo-

blastoma or ependymoma were included in this analysis. The study was approved by the local research ethics committee (ethics number:

04/MRE04/41).

Structural imaging and 1H-MRS acquisition were performed on multiple scanners, including Siemens Symphony MAGNETOM 1.5 T and

MAGNETOM Verio 3 T (Siemens Healthcare, Erlangen, Germany), GE Signa LX 1.5 T (General Electric Medical Systems, Milwaukee, WI,

United States), and Philips Ingenia 1.5 T, Intera 1.5 T, Achieva 3 T, and X-series 3 T (Philips Medical Systems, Eindhoven, The Netherlands), with

the appropriate software (Siemens, Symphony Magnetom Syngo MR 2004a, MAGNETOM Verio Syngo MR B17; GE, Signa Excite Hd/x 15.0;

Phillips, Ingenia, Intera and Achieva R3.2-5.1). Structural MRI included T1-weighted, T2-weighted and T1-weighted post-contrast sequences as well

as diffusion-weighted imaging. 1H-MRS with water reference acquisition was performed after conventional imaging that included gadolinium

administration by using the point-resolved spectroscopy sequence (field strength 1.5 T or 3 T, head coils or head and neck coils 8-32 channels,

sampling frequency 2000-2500 Hz, chemical shift displacement less than 4% per ppm, echo time 30-46 ms, number of complex points 512 or

2048, pulse repetition time 1500-2000 ms, 128 averages collected from a 20�20�20-80�80�80 mm3 volume of interest). Water suppression

was performed by using chemical shift selective saturation pulses, and no out of volume suppression was used. Volumes of interest were manually

placed to be completely within the tumours according to structural images, with contrast enhancement and low apparent diffusion coefficient

being used as guides where tumours exhibited some heterogeneity.4

2.2 | 1H-MRS quantification and quality control

All 1H-MRS raw data were quantified using TARQUIN (Version 4.3.11),20 which includes phasing, chemical shift calibration and metabolite ampli-

tude estimation. The basis set used for 1H-MRS quantification is a 1H brain full basis set that includes lipid basis signals and macromolecule sig-

nals. The concentrations obtained were normalized based on the sum of all metabolite, lipid and macromolecule concentrations for each case.

Signal-to-noise ratios (SNRs) were calculated with TARQUIN and used to evaluate the level of noise presenting in 1H-MRS. Overall SNR was

defined as the ratio between the maximum amplitude of the spectrum minus the baseline, and twice the root-mean-square of the residual

between 0.2 and 4 ppm. Full width at half maximum (FWHM) was also taken as the value calculated by TARQUIN, and is the width of the

unsuppressed water peak at half its full height.

Quality control was then applied in the following manner. Patient data acquired were initially screened according to the following exclusion

criteria: (1) histological diagnosis was missing; (2) water suppressed signals, water reference signals or structural MR images indicating the 1H-

MRS voxel location were missing; (3) the tumour did not occupy all the 1H-MRS voxel as determined by visual inspection of the voxel location

images produced on the scanner aided by reference to the available image set; (4) spectra showed very poor FWHM (>0.15 ppm, equivalent to

9.6 Hz in 1.5 T and 19.2 Hz in 3 T); (5) spectra showed very poor SNR (<4). For the cases that met these metric-based quality measures, the

TARQUIN-processed frequency domain 1H-MRS of all cases was assessed visually by experienced spectroscopists for general quality features,

namely phasing, fitting, baseline variation and the presence of artefacts.
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2.3 | Metabolite evaluation

Cramér-Rao lower bounds (CRLBs) were used to evaluate the uncertainty of metabolite quantification. Metabolites whose CRLB as a percentage

was greater than 50%, for all cases in both 1.5 T and 3 T cohorts, were excluded. This eliminated alanine, aspartate, γ-aminobutyric acid and pho-

sphatidylethanol from the analysis in both 1.5 T and 3 T cohorts. Multi-class diagnostic performance of individual metabolites, for all tumours,

was evaluated using multi-class ROC.21 The area under the curve (AUC) for a multi-class ROC is defined by

AUCmulti-class ¼ 2
cðc�1Þ

X
AUCbinary ¼ 2

cðc�1Þ
X1

2
ðÂðijjÞþ ÂðjjiÞÞ,

where AUCbinary denotes the AUC of the binary ROC, c denotes the number of classes and ÂðijjÞ denotes the probability that a randomly selected

element of class j will have a lower estimated probability of belonging to class i than a randomly selected element of class i.

Multi-class diagnostic performance was compared with the binary diagnostic performance given by binary and pairwise ROC. For binary prob-

lems, the multi-class ROC was converted into a two-class problem by considering class A and class non-A. In pairwise ROC, two of the three

tumour types were selected, and the other type was ignored. The standard deviation of then AUC was measured through leave-one-out cross-

validation. Metabolites were selected based on the diagnostic ability for the childhood brain tumours in this study derived using multi-class ROC.

2.4 | Tumour classification

The 1H-MRS analysis (Figure 1) and tumour classification were conducted for the 1.5 T and 3 T cohorts separately. By taking account of the

known challenges of measuring certain metabolites with high levels of spectral overlap,22 a group of 14 metabolites was selected to be ranked for

diagnostic ability, including the citrate, glutathione, glycine, lactate, myo-inositol, scyllo-inositol, taurine, total N-acetylaspartate (N-acetylaspartate

and N-acetylaspartylglutamate), total choline (glycerophosphocholine and phosphocholine), total creatine (creatine and phosphocreatine), com-

bined glutamate and glutamine, and total lipids and macromolecules at 0.9 ppm, 1.3 ppm and 2.0 ppm.

Training sets and test sets were sampled from the whole set, with stratification according to tumour types. Features were extracted only from

the training set and for building classifiers. Two methods of feature extraction were individually performed and compared, including PCA and

multi-class ROC. The number of features was determined as the sample size of the minority group minus one. For the method based on PCA, prin-

cipal components were derived by performing PCA on the matrix of all screened metabolites and ranked based on the explained cumulative vari-

ance. For the method of multi-class ROC, metabolites were ranked based on the AUC derived through multi-class ROC. Highly ranked

metabolites or principal components were used as features for tumour classification.

Ependymomas were oversampled by 100% through the adaptive synthetic minority oversampling technique (SMOTE), in order to correct the

skewness and class imbalance of the cohort.23 Linear and non-linear classifiers were applied to evaluate the classification performance, including

linear discriminant analysis (LDA), k-nearest neighbours, naïve Bayes, multinomial log-linear model fitting via a neural network, and support vector

machine with a linear kernel. Discriminant functions derived through LDA and re-substitution were used to show poorly classified cases with low

classification probability. Leave-one-out and k-fold cross-validation was used to determine classification accuracy, where k was determined based

on the size of the minority class. The k-fold cross-validation is usually more accurate,24 but it may lead to poor training sets being selected when

the cohort is small and particularly when the minority class is very small. Both cross-validation methods were therefore performed to achieve

some level of comparability, whilst not selecting a more appropriate method for either cohort. Overall (αoverall) and balanced (αbalanced) classification

accuracies were used to evaluate the classification performance, defined based on the accuracy for each case (αi) as

αoverall ¼ 1
Ncases

XNcases

i¼1

αi , ð1Þ

αbalanced ¼1
3

1
NEP

XNEP

i¼1

αiþ 1
NMB

XNMB

i¼1

αiþ 1
NPA

XNPA

i¼1

αi

 !
: ð2Þ

2.5 | Statistical analysis

A Kruskal-Wallis H test was performed to assess the different quality metrics, the means of metabolite concentrations across the three tumour

types, and the classification accuracy. Statistically significant differences between tumour types or processing methods were determined when
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P < 0.05, P < 0.01, P < 0.001 and P < 0.0001. All algorithms of statistical analysis, feature extraction and machine learning were implemented

using R (Version 3.6.2, R Foundation, Vienna, Austria).

3 | RESULTS

3.1 | Demographics

Diagnostic 1H-MRS was performed on 116 patients on 1.5 T and 73 patients on 3 T MR scanners. Eighty-three (66%) 1.5 T cases and 42 (34%)

3 T cases were enrolled after screening of data availability and quality control assessment (Table 1, Figure 2). Tumours were generally located in

the posterior fossa, but four ependymomas were located supratentorially, including three for 1.5 T and one for 3 T. Ages of patients ranged from

1.8 months to 18 years of age, across the three groups. Forty-seven (57%) of the 1.5 T cases and 18 (43%) of the 3 T cases were male. Histological

subtypes of all tumours were grouped together within each tumour type (Table 2).

3.2 | Quality assessment

Accepted cases in the final cohort showed overall SNR and FWHM as 19 ± 13 and 5 ± 1 Hz for the 1.5 T cohort (Figure 2A), and 16 ± 11 and 7

± 2 Hz for the 3 T cohort (Figure 2B and Table 3). Medulloblastoma cases showed a generally better signal quality than did the other two groups

(P < 0.05). Median CRLB of the metabolites ranged from 18% to 299% for the 1.5 T cohort, and 21% to 247% for the 3 T cohort.

F IGURE 1 Flowchart of the method for performing 1H-MRS analysis
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3.3 | Univariate analysis of metabolites

Average 1H-MRS spectra showed visual differences among the three tumour types (Figure 3). Acquired 1H-MRS showed key metabolites, with

the mean values differing significantly between the three brain tumour types (Tables 4) and having diverse diagnostic ability (Figure 4). The AUC

values of the top four metabolites for the 1.5 T and 3 T cohorts are shown in Figure 5, where multi-class ROC is compared with the various binary

and pairwise ROCs. As expected, some of these metabolites have poor discriminatory ability for specific tumours, reflected in low binary or

pairwise AUC, but the multi-class AUC provides a good reflection of the overall performance for each metabolite. Several metabolites showed

good diagnostic ability (AUC > 0.7) at both of the field strengths. In the 1.5 T cohort (Figure 4A), myo-inositol (Figure 5b) was ranked as the most

discriminatory metabolite, followed by total lipids and macromolecules at 0.9 ppm (Figure 5B), total creatine (Figure 5C) and total

N-acetylaspartate (Figure 5D). In the 3 T cohort (Figure 4B), total N-acetylaspartate (Figure 5E) was ranked as the most discriminatory metabolite,

followed by glycine (Figure 5F), total choline (Figure 5G) and taurine (Figure 5H). Compared with the results of 1.5 T 1H-MRS, several metabolites

showed clearly improved diagnostic ability in the 3 T 1H-MRS, including glycine, total N-acetylaspartate, total choline, taurine, and total lipids and

macromolecules at 2.0 ppm. However, some other metabolites showed decreased diagnostic ability, including combined glutamate and glutamine,

lactate, myo-inositol, total lipids and macromolecules at 0.9 ppm, and total creatine (Figure 4A and 4B).

3.4 | Principal component analysis

The results of PCA showed that similar numbers of principal components accounted for the same proportions of the total variance in metabolite

profiles in the 1.5 T and 3 T 1H-MRS (Figure 4). Four principal components were able to explain around half of the total variance, which is also the

TABLE 1 The multi-site cohorts of 1H-MRS for childhood brain tumours

1.5 T cohort

Ependymomas Medulloblastomas Pilocytic astrocytomas

Total(16%) (37%) (47%)

Initial sample 23 39 54 116

Missing histology 0 1 0 1

Incomplete imaging data 2 4 3 9

Partial volume effects 1 1 3 5

Poor line width 3 0 1 4

Poor SNR 2 0 2 4

Artefacts 2 2 6 10

Final sample 13* 31 39 83

Birmingham (96%) 10 31 39 80

Liverpool (1%) 1 0 0 1

Nottingham (3%) 2 0 0 2

3 T cohort

Ependymomas Medulloblastomas Pilocytic astrocytomas

Total(10%) (40%) (50%)

Initial sample 7 25 41 73

Missing histology 0 2 1 3

Incomplete imaging data 2 4 6 12

Partial volume effects 1 0 4 5

Poor line width 0 0 0 0

Poor SNR 0 0 1 1

Artefacts 0 2 8 10

Final sample 4** 17 21 42

Birmingham (53%) 3 8 11 22

Liverpool (38%) 1 8 7 16

Newcastle (7%) 0 1 2 3

Nottingham (2%) 0 0 1 1

*Three of the 13 ependymomas were located supratentorially.

**One of the four ependymomas was located supratentorially.
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maximum number of principal components allowed to be used in 3 T 1H-MRS before oversampling the minority class (Figure 4C and 4D). Eleven

principal components were able to account for around 95% of the variance and were used in feature extraction for oversampled 1.5 T 1H-MRS

(Figure 4C). Meanwhile, seven principal components were available in oversampled 3 T 1H-MRS, and they were able to explain around 70% of the

total variance (Figure 4D).

3.5 | Classification performance

Classification performance was evaluated using classification accuracy, with a further evaluation of misclassified cases. Poorly classified cases

were compared between the two feature extraction methods (Figures 6). Machine learning showed limited ability in classifying tumours that were

not representative of their diagnostic types. Oversampling for the minority class showed assistance for classifying the ependymomas.

Significantly improved classification accuracy was obtained by using selected metabolites through multi-class ROC, compared with PCA-based

feature selection (P < 0.01, Figure 7A and 7B). The combination of multi-class ROC and oversampling showed further improved classification accu-

racy (P < 0.01, Figure 7C and 7D). The improvement was seen for both overall and balanced classification accuracy (P < 0.01) and remained signifi-

cant through k-fold cross-validation (P < 0.01, Figure 8). The improvement of classification performance was consistent between different classifiers

in 1.5 T (Supplementary Figures 1 and 3) and 3 T (Supplementary Figures 2 and 4) 1H-MRS, which is validated through leave-one-out cross-

validation (Supplementary Figures 1 and 2) and k-fold cross-validation (Supplementary Figures 3 and 4). Optimal classification accuracy was achieved

through a support vector machine and oversampling for the 1.5 T 1H-MRS as overall accuracy of 88% and balanced accuracy of 85%. At the same

time, LDA and oversampling provided the best classification accuracy for the 3 T 1H-MRS as overall accuracy of 84% and balanced accuracy of 75%.

4 | DISCUSSION

In this study, the role of metabolite selection for optimizing childhood brain tumour classification from 1.5 T and 3 T short echo-time single-voxel
1H-MRS has been investigated. A method of metabolite selection in childhood brain tumour classification through multi-class ROC was presented.

F IGURE 2 Images showing quantification examples with the corresponding baseline under the same scale for the acquired 1.5 T and 3 T 1H-
MRS for childhood brain tumours, an ependymoma case from the 1.5 T cohort (A) and a medulloblastoma cases from the 3 T cohort (B)
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Across the commonly used machine learning methods, this method is able to achieve an improved classification accuracy for the three main

tumour types when compared with the conventional PCA for feature selection. A combination of metabolite selection through multi-class ROC

and oversampling for the minority through SMOTE is able to achieve the optimal classification accuracy, providing an accurate, efficient and

transparent method for the use of metabolites in children's brain tumour diagnosis.

TABLE 2 Demographic and clinical variables of patients

Sample size

1.5 T cohort 3 T cohort

83 42

Site of primary tumours

Ependymomas 13 4

Medulloblastomas 31 17

Pilocytic astrocytomas 39 21

Age in years

At diagnosis

Ependymomas 4.6 ± 5.3 9.2 ± 5.3

Medulloblastomas 6.9 ± 3.5 6.5 ± 4.4

Pilocytic astrocytomas 8.0 ± 3.6 6.3 ± 5.1

At image acquisition

Ependymomas 4.6 ± 5.3 9.3 ± 5.4

Medulloblastomas 6.9 ± 3.5 6.5 ± 4.4

Pilocytic astrocytomas 8.0 ± 3.6 6.3 ± 5.0

Gender

Male 47 18

Ependymomas 5 0

Medulloblastomas 22 10

Pilocytic astrocytomas 20 8

Female 36 24

Ependymomas 6 4

Medulloblastomas 11 7

Pilocytic astrocytomas 19 13

Histological subtypes

Ependymomas

Grade II 7 2

Grade III, anaplastic 6 2

Medulloblastomas

Grade IV, classic 26 17

Grade IV, desmoplastic-nodular 5 0

Pilocytic astrocytomas

Grade I 39 21

TABLE 3 Quality metrics of the accepted 1H-MRS

Overall SNR FWHM (Hz)

1.5 T cohort Ependymomas 21 ± 7 5 ± 1

Medulloblastomas 30 ± 16 4 ± 1

Pilocytic astrocytomas 11 ± 4 5 ± 1

3 T cohort Ependymomas 10 ± 4 7 ± 2

Medulloblastomas 25 ± 12 6 ± 2

Pilocytic astrocytomas 10 ± 3 7 ± 2
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With the focus of the feature selection being the metabolite concentrations, careful consideration of the most appropriate metabolite set is

important. All metabolites in the basis set were initially quantified separately in TARQUIN as part of its standard application. Some metabolites

were then combined. Creatine and phosphocreatine have 1H-MRS signals that almost completely overlap at 1.5 T and 3 T, and we combine them.

Phosphocholine, glycerophosphocholine and free choline all have spectra that are dominated by a singlet around 3 ppm, and whilst potentially

they could be separated by their multiplets between 3 ppm and 4 ppm, these are of low intensity and in tumours this region of the spectrum has

signals from many metabolites, so we decided to combine them. Glycine and myo-inositol differ from the creatine and choline containing metabo-

lite sets in that their molecular structures and spectra are substantially different from each other, and whilst there is significant overlap in the

spectra of the two metabolites, particularly at 1.5 T, this gives the opportunity to quantify them separately. Previous publications on children's

brain tumour 1H-MRS have shown that glycine and myo-inositol can be quantified separately, albeit with limited accuracy, and provide useful

information using LCModel8 and TARQUIN11 with short echo-time point-resolved spectroscopy at 1.5 T. We would expect glycine and myo-

inositol to be quantified more accurately with increasing field strength, since the complex multiplet structure of myo-inositol becomes more evi-

dent, reducing the overlap in the spectra.25

It is important to have some comparison of metabolite selection against a commonly used method, and PCA was chosen, as it has been used

successfully on similar datasets.17 It is an unsupervised learning method with categories of cases not considered, and so is valid for use in highly

imbalanced data, a situation commonly encountered in children's brain tumour classification, since some tumour types are more common than

others. However, the features are ranked by their variability across the whole cohort and highly variable features may not be the best at discrimi-

nating between classes. In contrast, selecting metabolites by their ability to discriminate between the various classes and using these as the fea-

tures for machine learning should improve feature selection, since it is a supervised method. ROC is well defined between pairs of classes, but its

generalization to the multi-class problem is less commonly used in biomedical applications. The multi-class problem can be reduced to a series of

binary problems either by selecting pairs of classes or in a one versus the rest approach. However, this produces multiple metrics for each metab-

olite. This is well illustrated in Figure 5, where it is seen that the binary and pairwise AUC values show considerable variability across the methods.

F IGURE 3 Images showing the average of scaled and baseline-removed spectrum for ependymomas (A, D), medulloblastomas (B, E) and
pilocytic astrocytomas (C, F) in the 1.5 T (A-C) and 3 T (D-F) 1H-MRS cohorts, which are presented as means with standard deviations
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Most metabolites are better at diagnosing some tumours than others; for example, myo-inositol (Figure 5A) is seen as a good discriminator of

ependymomas in the 1.5 T cohort by high binary and pairwise AUC values, but it has a low ability to discriminate between medulloblastomas and

pilocytic astrocytomas on the pairwise ROC. Here we use a single combined multi-class ROC parameter, which is contributed equally by all

tumour groups and removes this challenge to metabolite selection. One advantage of using the metabolites directly as features is that metabolite

concentrations are meaningful in tumour biology and can be compared with recent findings from biopsy studies, which helps to validate their use

as features.26

Metabolites have been identified that are characteristic for specific tumours.17 For instance, previous studies suggested that posterior fossa

pilocytic astrocytomas have significantly altered levels of creatine, choline, glutamate, glutamine and myo-inositol.27,28 Glycine was identified as a

key metabolite for classifying high-grade and low-grade childhood brain tumours.8 These findings correspond to the selected metabolites in our

TABLE 4 Estimated metabolite concentrations of childhood brain tumours

Metabolites

EP

Mean ± SD
(mM)

MB

Mean ± SD
(mM)

PA

Mean ± SD
(mM)

All

Mean ± SD
(mM)

P
EPjMBjPA

1.5 T cohort N = 13 N = 31 N = 39 N = 83

Citrate 0.7 ± 0.3 0.6 ± 0.3 0.4 ± 0.3 0.5 ± 0.3 <0.001 ∗∗

Total choline* 1.9 ± 10 3.3 ± 16 1.1 ± 0.4 2.0 ± 15 <0.001 ∗∗

Total creatine** 3.9 ± 18 2.9 ± 17 0.9 ± 12 2.1 ± 19 <0.001 ∗∗

Glucose 1.2 ± 0.9 0.6 ± 0.9 1.0 ± 0.8 0.9 ± 0.9 0.005 ∗∗

Combined glutamate and glutamine 6.9 ± 24 6.4 ± 25 5.7 ± 22 6.1 ± 24 0.150

Glutathione 0.4 ± 0.5 0.7 ± 0.5 0.3 ± 0.3 0.4 ± 0.4 0.010 ∗∗

Glycine 1.9 ± 35 3.1 ± 25 0.2 ± 0.3 1.5 ± 25 <0.001 ∗∗

Lactate 1.7 ± 17 2.6 ± 16 1.9 ± 11 2.1 ± 14 0.048 ∗

Total lipids and macromolecules at 0.9 ppm 4.3 ± 26 7.4 ± 41 4.0 ± 15 5.3 ± 33 <0.001 ∗∗

Total lipids and macromolecules at 1.3 ppm 14.9 ± 168 20.4 ± 152 7.3 ± 47 13.4 ± 131 <0.001 ∗∗

Total lipids and macromolecules at 2.0 ppm 7.9 ± 21 9.6 ± 31 5.2 ± 19 7.2 ± 32 <0.001 ∗∗

myo-inositol 9.6 ± 57 1.7 ± 17 2.0 ± 18 3.1 ± 39 <0.001 ∗∗

total N-acetylaspartate*** 1.2 ± 0.9 0.9 ± 0.7 1.3 ± 0.8 1.2 ± 0.8 0.067

scyllo-inositol 0.2 ± 0.3 0.3 ± 0.4 0.1 ± 0.1 0.2 ± 0.3 <0.001 ∗∗

Taurine 1.8 ± 16 3.1 ± 27 0.8 ± 11 1.8 ± 22 <0.001 ∗∗

3 T cohort N¼4 N¼ 17 N¼21 N¼42

Citrate 0.5 ± 0.6 0.7 ± 0.3 0.4 ± 0.3 0.5 ± 0.4 0.080

Total choline 1.3 ± 0.4 4.5 ± 37 1.7 ± 0.9 2.8 ± 28 <0.001 ∗∗

Total creatine 1.9 ± 11 4.4 ± 28 3.1 ± 22 3.5 ± 25 0.027 ∗

Glucose 0.9 ± 0.3 1.5 ± 12 0.6 ± 0.7 1.0 ± 0.1 0.110

Combined glutamate and glutamine 3.5 ± 0.1 4.8 ± 38 5.1 ± 36 4.8 ± 35 0.590

Glutathione 0.9 ± 0.3 2.2 ± 21 0.9 ± 0.8 1.4 ± 15 0.002 ∗∗

Glycine 1.2 ± 0.8 3.9 ± 23 0.9 ± 15 2.2 ± 23 <0.001 ∗∗

Lactate 1.7 ± 0.8 2.2 ± 19 0.9 ± 11 1.5 ± 15 0.016 ∗

Total lipids and macromolecules at 0.9 ppm 3.6 ± 13 6.4 ± 62 5.0 ± 57 5.4 ± 56 0.050 ∗

Total lipids and macromolecules at 1.3 ppm 13.3 ± 108 23.0 ± 183 10.3 ± 109 15.7 ± 153 <0.001 ∗∗

Total lipids and macromolecules at 2.0 ppm 6.2 ± 22 8.7 ± 41 6.8 ± 37 7.5 ± 38 0.076

myo-inositol 2.9 ± 24 2.7 ± 26 3.0 ± 39 2.9 ± 32 0.970

total N-acetylaspartate 1.0 ± 0.5 1.2 ± 11 1.9 ± 11 1.6 ± 11 0.008 ∗∗

scyllo-inositol 0.0 0.4 ± 0.7 0.1 ± 0.3 0.2 ± 0.5 0.012 ∗

Taurine 1.0 ± 0.7 5.7 ± 46 1.1 ± 0.3 3.0 ± 0.5 <0.001 ∗∗

Metabolite concentrations prior to normalization are shown above. P values were calculated using non-parametric Kruskal-Wallis H test between

ependymomas (EP), medulloblastomas (MB) and pilocytic astrocytomas (PA). Significance of differences for metabolite concentrations between the three

tumour types is identified as *P < 0.05 and **P < 0.01. For the metabolite combinations, total choline includes glycerophosphocholine and phosphocholine,

total creatine includes creatine and phosphocreatine and total N-acetylaspartate includes N-acetylaspartate and N-acetylaspartylglutamate.
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F IGURE 4 Ranking of metabolites (A, B) and explained variance (C, D) of the 1.5 T (A, C) and 3 T (B, D) 1H-MRS cohorts. Abbreviations: Cit,
citrate; Glc, glucose; Glth, glutathione; Glx, combined glutamate and glutamine; Gly, glycine; Lac, lactate; mI, myo-inositol; tCho, total choline; tCr,
total creatine; tNAA, total N-acetylaspartate; sI, scyllo-inositol; Tau, taurine; tLM0.9/tLM1.3/tLM2.0, total lipids and macromolecules at
0.9/1.3/2.0 ppm

F IGURE 5 Diagnostic ability of top four metabolites determined from the 1.5 T (A-D) and 3 T (E-H) 1H-MRS cohorts. The AUC is given as
mean and standard deviation, derived by using binary, multi-class and pairwise ROC. Abbreviations: LM, lipids and macromolecules; BX, binary
tumour X against non-X; M, multi-class; PXY, pairwise tumour X against tumour Y; E, ependymomas; M, medulloblastomas; P, pilocytic
astrocytomas
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results. However, some metabolites were found to be less useful for discriminating between certain tumour types. For instance, total lipids and

macromolecules at 0.9 ppm performed well in discriminating between ependymomas and pilocytic astrocytomas but were less useful for identify-

ing medulloblastomas (Figure 5B). This finding demonstrated the benefits of selecting key metabolites for tumour classification.

F IGURE 6 Two-dimensional scatter plots showing the classification performance through re-substitution and Nminority � 1 principal
components (A, B, E, F) or metabolites (C, D, G, H) for the 1.5 T (A-D) and 3 T (E-H) 1H-MRS, also comparing the non-oversampled (A, C, E, G) and
oversampled (B, D, F, H) cohorts, where uncertainly classified cases are shown as transparent, with the contrast indicating the probability of
classification. Abbreviations: DF, discriminant function; mROC, multi-class receiver operating characteristic

F IGURE 7 Images showing the classification accuracy determined through multinomial log-linear model fitting via neural networks and leave-
one-out cross-validation, for non-oversampled (A, B) and oversampled (C, D) 1.5 T (A, C) and 3 T (B, D) 1H-MRS through SMOTE, where both
overall and balanced classification accuracy are compared and significance is marked as * (P < 0.05) and **** (P < 0.0001). Abbreviations: ns, not
significant
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Comparing the metabolite selection from the 1.5 T and 3 T cohorts, a small group of metabolites showed useful discriminators at both

field strengths, including total N-acetylaspartate, total choline, and total lipids and macromolecules at 1.3 ppm. In this study, glycine was

suggested as the most discriminatory biomarker for classification from the 3 T cohort, whereas myo-inositol was more important in the

1.5 T cohort. This may be a result of glycine being more accurately discriminated from myo-inositol at 3 T than at 1.5 T, as these metabo-

lites have very similar chemical shifts. There are also some other metabolites showing increased diagnostic ability from the 1.5 T to the 3 T

cohort, including scyllo-inositol and taurine. Again, this could be due to the more accurate metabolite estimation in higher field-strength

scanning. There are also some other metabolites performing with a varied diagnostic ability dependent on the field strength, such as com-

bined glutamate and glutamine in the 3 T cohort and citrate in the 1.5 T cohort. Some metabolites are easier to quantify with 1H-MRS at

3 T than at 1.5 T due to J-coupling effects reducing spectral overlap; however, there are some metabolites that have different diagnostic

abilities at the two field strengths not readily explained by this. We note that T1 and T2 values vary between metabolites and with field

strength, which will affect quantification.29

The ROC was originally proposed for binary classification problems as applied to radiology research.30 Its implementation for multi-class

classification is still being debated. Our cohort contains imbalanced data, due to the rareness of ependymomas, which makes the problem

even more complicated. The multi-class ROC method, employed here, converges with the binary ROC when the problem is converted from

multiple to two classes. After evaluating the performance of ROC in binary, pairwise and multi-class evaluation, the results of multi-class

ROC performed like a combination of binary and pairwise evaluations, making it ideal for situations where there are multiple classes.

Metabolite selection was used in the current study in combination with number of machine learning classifiers. Whilst the list of classifiers

was not exhaustive, major types were included and the purpose was to show the robustness of metabolite selection across a range of classifiers

rather than to determine the optimum method. Some insight can be gained from the differences in the results between them. Taking the differ-

ence between SVM and LDA as an example, SVM would allow the boundary to be specified more precisely in regions where two classes have

neighbours that are very close, while LDA provides a straight boundary, which may work poorly for neighbouring cases. This may well explain

why SVM outperforms LDA in the 1.5 T dataset, which has several neighbouring cases from different tumour types. In the 3 T dataset, the small

number of ependymomas have disparate metabolite profiles, which overlap other tumour types, leading to poor performance of all machine learn-

ing methods for this class.

The limitations of this study include the relatively small cohort sizes, particularly at 3 T, and the challenges in quantifying metabolites

from 1H-MRS acquired clinically at multiple centres. The cohorts used in the 1.5 T and 3 T analyses are different; indeed, they are mutually

exclusive and caution should be exercised in any comparison of results between the two cohorts. The data are also acquired from multiple

centres with some variation in protocol, which will lead to variability in the data. Many confounders may be present in addition to the

effects of field strength. We have given some detail for both the patients and the methods to aid comparison. One factor that is worthy

of comment is that the cohorts have somewhat different median ages, and it is known that tumour molecular subtype has an incidence

that depends on age. Since it is known that molecular subtypes can have different 1H-MRS, this is a potential confounder.31 The SNR is

not better in the 3 T compared with the 1.5 T cohort, as might have been expected, because a smaller voxel size is commonly used in the

3 T acquisition to reduce the partial volume effects even after increasing the number of excitations. In addition, the small number of

ependymomas in the 3 T cohort leads to the balanced classification accuracy being a rather unstable measure of accuracy, with a large

F IGURE 8 Images showing the classification accuracy determined through multinomial log-linear model fitting via neural networks and k-fold

cross-validation, for non-oversampled (A, B) and oversampled (C, D) 1.5 T (A, C) and 3 T (B, D) 1H-MRS through SMOTE, where both overall and
balanced classification accuracy are compared and significance is marked as * (P < 0.05) and ** (P < 0.01)
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reduction in its value if just one case is misclassified. Including supratentorial ependymomas to increase the number of these tumours also

makes this class more diverse in biology and probably in metabolite profile. This combination of factors probably explains the poorer accu-

racy of classifications for the 3 T than the 1.5 T cohort.

Many metabolites might be highly interrelated through their biochemical pathways, but the relationships between metabolites have not been

considered in the current study. Where significant correlation between metabolites is established, this could be used to reduce the number of

metabolites required to achieve high classification accuracy. Future work to improve the accuracy of metabolite determination particularly for

metabolites present at lower concentrations will be important.

5 | CONCLUSION

Metabolite selection provides an effective method of feature selection for childhood brain tumour classification from 1H single-voxel MRS, com-

paring favourably to the classic method of PCA. The technique has the advantage of identifying the key discriminatory metabolites, thereby bridg-

ing transparently from diagnosis based on single metabolites to machine learning, making it attractive for clinical and biomedical uses. Multi-class

ROCs is the preferred implementation for metabolite selection in situations where there are more than two diagnoses that need to be discrimi-

nated, since it provides a single metric for each metabolite combined with high accuracy.
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