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Abstract

The average size of connected vertex subsets of a

connected graph generalises a much‐studied parameter

for subtrees of trees. For trees, the possible values of

this parameter are critically affected by the presence or

absence of vertices of degree 2. We answer two ques-

tions of Andrew Vince regarding the effect of degree

constraints on general connected graphs. We give a

new lower bound, and the first nontrivial upper bound,

on the maximum growth rate of the number of con-

nected sets of a cubic graph, and in fact obtain non-

trivial upper bounds for any constant bound on the

maximum degree. We show that the average connected

set density is bounded away from 1 for graphs with no

vertex of degree 2, and generalise a classical result of

Jamison for trees by showing that in order for the

connected set density to approach 1, the proportion of

vertices of degree 2 must approach 1. Finally, we show

that any sequence of graphs with minimum degree

tending to infinity must have connected set density

tending to 1/2.
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1 | INTRODUCTION

Connectedness is perhaps the most fundamental property of a network, and if nodes of a network
may fail then the robust parts of the network, which remain connected even if all other nodes fail,
are of particular interest. In particular, we might ask what a typical such part looks like.

Such questions have a long history when the network is a tree, that is, a minimally con-
nected graph. Here the connected subgraphs are precisely the subtrees. Jamison [6] studied the
average order of a subtree of a fixed tree, and its normalised version, the subtree density, that is,
the average order of a subtree divided by the order of the host tree. He showed that, among host
trees of given order, the subtree density is minimised for the path, where it is just over 1/3. At
the other extreme, the subtree density can be arbitrarily close to 1 for large trees. Meir and
Moon [11] gave asymptotic results on the average value over all trees of a given order.

In both extremal cases, vertices of degree 2 play a fundamental role. Jamison proved that in
order for the subtree density to approach 1, the proportion of vertices of degree 2 in the original
tree must also approach 1. Much more is known about the maximum subtree density among
trees of fixed order, and the possible structure of maximising trees; see recent work by Mol and
Oellermann [12] and by Cambie et al. [1]. In the other direction, Jamison [6] asked whether
any tree without vertices of degree 2 (such trees being sometimes referred to as series‐reduced
trees) must have subtree density exceeding 1/2. This question remained unresolved for over
25 years, until Vince and Wang [17] proved that the subtree density of a series‐reduced tree
must lie between 1/2 and 3/4. Both these bounds are best possible, and the present author [4]
classified the extremal sequences of trees in both cases.

The local subtree density, that of subtrees meeting a specified vertex, is also of interest. Jamison
[6,7] proved that this always exceeds the global density, and in fact showed monotonicity for a
generalisation that interpolates between local and global. Again, vertices of degree 2 play a key role;
Wagner and Wang [18] showed that the local subtree density of a tree at any vertex is at most twice
its subtree density, but for series‐reduced trees the two can differ by at most a constant.

There are at least two natural generalisations of subtree density to the case where the
underlying graph, G, is connected but not necessarily a tree. One is to ask about the average
order of subtrees contained in G, that is, subgraphs which are trees, and define the subtree
density of general graphs exactly as for trees. The other is to ask about connected induced
subgraphs as alluded to above. In other words we say a nonempty set of vertices of G is a
connected set if the subgraph consisting of these vertices and all edges between them is con-
nected, and the connected set density is the normalised average order of the connected sets ofG.
We remark that the profile of the connected sets ofG will typically be very different to that of its
subtrees, since every connected set corresponds to at least one subtree on the same set of
vertices, but larger connected sets typically correspond to a greater number, biassing the
average order of a subtree upwards.

Both settings have been the focus of much recent work. The study of the subtree density
of a general graph was initiated by Chin et al. [3], and the connected set density by Kroeker
et al. [10]. Both generalisations appear to be much more difficult than the tree case.
The path is believed to minimise both parameters, which would generalise Jamison's initial
result for trees, and this was explicitly conjectured in the case of connected set density
[10,14]. This conjecture was proved only very recently, independently and almost si-
multaneously, first by Vince [16] and second by the present author [5]. For the subtree
density it is still not known, and likewise the subtree density is conjectured to be maximised
by the complete graph, but this is not known. A key difficulty is the lack of monotonicity in
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these parameters under edge addition; see recent work by Cameron and Mol [2], for a
discussion of this. (While they consider subtree density, the same examples show that
monotonicity fails, to the same degree, for connected set density.)

In this paper, we consider exclusively the connected induced subgraph setting. Fix a connected
graph G on n vertices. All graphs considered will be simple, finite and connected, and we shall
frequently assume thatG is nontrivial (i.e., has at least two vertices). A nonempty set ⊆S V G( ) is a
connected set for G if the induced subgraph G S[ ] is connected. Writing Gconn( ) for the set of
connected sets for G, let ≔  N G G( ) conn( ) be the number of these sets, ≔A G N( )

∈  G S( ) S G
−1

conn( ) be their average order, and ≔ ∕D G A G n( ) ( ) be the connected set density.

We consider two questions posed by Andrew Vince [14]. The first concerns the number of
connected sets. Write c G N G( ) = ( )

1

2
n , so that N G c G( ) = (2 ( ))n. Clearly ∕ c G1 2 < ( ) < 1 for

any graph G, and without further restrictions both bounds are best possible, even for trees,
since ∕N P n n o( ) = ( + ) 2 = (1 + (1))n

n2 and N K n o( ) = 2 + − 1 = (2 − (1))n
n n

1, −1
−1 .

Question 1.1 (Vine [14, question 5]). Let 3 be the set of finite connected cubic graphs.
What is ≔ ∈c c Glimsup ( )G3 3

?

Vince gave the lower bound c > 0.7773 , arising from the prisms or circular ladders. We give
an improved lower bound of ∕c > 7 16 > 0.8133

4 .
We also give the the first nontrivial upper bound on c3, that c < 0.97813 . As might be

expected, the upper bound we obtain applies to subcubic graphs (i.e., graphs of maximum
degree at most 3), not just cubic graphs. Our methods also give nontrivial upper bounds on cd,
defined analogously, for each fixed d. However, no weaker bound on the maximum degree can
be sufficient: there exist graph sequences with →c G( ) 1 but with GΔ( ) growing arbitrarily
slowly as a function of  G .

The other question we consider concerns the connected set density D G( ) for graphs with
lower bounds on the degrees.

Question 1.2 (Vince [14, question 8]). Do there exist graphs with minimum degree at
least 3 and connected set density arbitrarily close to 1?

We answer this in the negative, as a consequence of some stronger results. First, we bound
the connected set density of graphs with minimum degree at least 3 away from 1; in fact the
same upper bound applies to graphs with no vertex of degree 2, whether or not vertices of
degree 1 are permitted. Second, we show that in any sequence of graphs with connected set
density tending to 1, the proportion of vertices of degree 2 must tend to 1; this extends a
classical result of Jamison for trees [6]. Finally, we give upper and lower bounds on the density
of graphs with minimum degree at least d, which tend to 1/2 as → ∞d . This complements very
recent work by Vince [15], giving explicit, stronger lower bounds under the more restrictive
assumption of k‐connectivity.
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2 | THE NUMBER OF CONNECTED SETS OF CUBIC
GRAPHS

We first give an improved lower bound on c3. Vince [14, lemma 7.2] showed that the prism
graph, or circular ladder, Πn, satisfies

N n n(Π ) = 1 − 3 + (1 + 2 ) + (1 − 2 ) + 3
(1 + 2 ) − (1 − 2 )

2 2
.n

n n
n n

In particular, N (Π ) ~n
n3 (1 + 2 )

2 2

n

and so, since   nΠ = 2n , we have

≈
→∞

clim (Π ) =
1

2
1 + 2 0.777.

n
n

For ≥n 2, the criss‐cross prismΠn
× is the cubic graph consisting of two cycles v v v… n1 2 2 and

w w w… n1 2 2 together with the edges v wi i+1 for i odd and v wi i−1 for i even; see Figure 1.
The following result gives an exact value for N (Π )n

× provided ≥n 3. For n = 2 we have

≅Π Π2
×

4 and so N (Π ) = 1672
× .

Theorem 2.1. For ≥n 3 we have N n n(Π ) = 7 + 7 −n
n n× 191

3
−2 16

3
. In particular, since

  nΠ = 4n
× we have →∞ clim (Π ) = 7n n

× 1

2
4 .

Proof. For each i with ≤ ≤i n1 , write V v v w w= { , , , }i i i i i2 −1 2 2 −1 2 and E =i
v v w w{ , }i i i i2 2 +1 2 2 +1 (where we take subscripts modulo n2 ). Fix a set ⊆A V (Π )n

× . We say

A is “good” for Ei if A contains both vertices of at least one edge in Ei, and is “bad” for Ei
otherwise. Whether A is good for Ei depends on ∩A v v w w{ , , , }i i i i2 2 +1 2 2 +1 ; there are
seven choices of this intersection for which A is good for Ei.

Suppose that A is connected, but for some ≠i j we have A is bad for both Ei and Ej.
Since ∪E Ei j separates ∪ ⋯ ∪V Vi j+1 from ∪ ⋯ ∪V Vj i+1 (again, taking subscripts
modulo n2 ), A intersects exactly one of them. It follows that the values of i for which A

intersects Vi form an interval modulo n2 . Further, if A intersects every Vi then it is good

FIGURE 1 The criss‐cross prism Π3
× (the Franklin graph)
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for all but at most one of the Ei, whereas otherwise A is good for Ei if and only if it
intersects both Vi and Vi+1.

Notice that if A is good for Ei for every i, then A is necessarily connected. This is
because for any choice of one edge from each Ei, the vertices of these edges induce a cycle
in Πn

×, and every other vertex is adjacent to a vertex of this cycle. Similarly, taking one
edge from each of E E, …, i1 for ≤i n − 1, the vertices of these edges induce a path, and
every vertex of ∪ ⋯ ∪V Vi2 −1 is adjacent to or on the path, so if A intersects precisely
V V, …, i1 +1 and is good for E E, …, i1 then connectedness of A depends only on how A

intersects v v v w w w{ , , , , , }1 2 3 1 2 3 and v v v w w w{ , , , , , }i i i i i i2 2 +1 2 +2 2 2 +1 2 +2 . In particular, the
intersection with the former cannot be v v w{ , , }2 3 2 or v w w{ , , }2 2 3 , and similarly for the
latter.

It follows that for ≤ ≤i n2 − 2 the number of connected sets which are good for
precisely E E, …, i1 is 4 × 4 × 7 − 2 × 4 × 2 × 7 + 2 × 2 × 7 = 676 × 7i i i i−1 −2 −2. For
i = 1 the two ends are not independent, and there are 95 connected sets. For i n= − 1

we have fewer choices for the ends since we require the set not to be good for En, and
there are 333 × 7n−3 connected sets. Each of these sets corresponds to n connected sets
obtained by rotation. Finally, there are 7n connected sets which are good for all the Ei,
and n13 which are bad for all the Ei (those entirely contained in some Vi). Summing all
these terms gives the required formula. □

Remark. We may likewise calculate the total order of these connected sets, to obtain

( )
( )

D
n n n

n n n
oΠ =

7 − 7 +

4 7 + 7 −
=

5

7
− (1).n

n n

n n

×

3820

3
2 −3 292

9
−3 320

9

191

3
−2 16

3

We omit the details since bounding the connected set density is not the aim of this
section.
Next we prove an upper bound on the number of connected sets of an n‐vertex cubic graph.

Note that ∕c G N G S( ) = ( ) 2 = ( connected)nn n , where S is a subset of V G( ) chosen uni-
formly at random, that is, each vertex is independently chosen to be in S with probability 1/2.
(Recall that we do not consider ∅ to be a connected set, although it is a possible choice of S.)
Our approach will be to bound this probability by I S( ( ) = 0) where I S( ) is the number of
isolated vertices in the subgraph induced by S. Since there are n connected sets which induce
an isolated vertex, but there are at least ∕e G e G( )( ( ) − 13) 2 four‐vertex sets which are not
connected but have no isolated vertex, we have ≤S I S( connected) ( ( ) = 0) for ≥n 10.

We will bound this probability by revealing vertices one‐by‐one in an adaptive order. To
that end, we first prove a general lemma which applies to similar revelation processes.

Lemma 2.2. Suppose X is a fixed random variable which takes nonnegative integer
values, is absolutely bounded and satisfies X( = 0) < 1. Let X , …1 be a sequence of
independent copies of X , and let pn be the probability that we have ≥ X ni

k
i=1 before

X = 0k . Then p z= Θ( )n
n− , where z is the unique positive solution of z( ) =X

X1 + ( = 0).
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Proof. Write A for the event that we have ≥ X ni
k

i=1 before X = 0k . Suppose that the
maximum possible value of X is r . Then, for every ≥n r , we have A X( = 0) = 01 and

A X i p( = ) = n i1 − for each i > 0, giving p X i p= ( = )n i
r

n i=1 − . (Here we take p = 10 .)
Existence and uniqueness of z follow since the probability generating function is

continuous, strictly increasing, unbounded, and takes the value ≤ X1 1 + ( = 0) at 1.
Set q z p=n

n
n for each n, and note that q > 0n . Let ≤c q= min i r i1 0 < and ≤c q= max i r i2 0 < .

We show by induction that ≤ ≤c q cn1 2 for all n; this is true by definition for n r< . If
≥n r we have q X i z q= ( = )n i

r i
n i=1 − ; by the induction hypothesis

≤ ≤ c X i z q c X i z( = ) ( = ) .
i

r
i

n
i

r
i

1

=1

2

=1

The result follows since, by choice of z, we have  X i z z( = ) = ( ) −i
r i X
=1

X( = 0) = 1. □

We wish to apply this in a setting where the variables Xi are not necessarily independent or
identically distributed, but in some sense X gives the worst‐case distribution. We make this
precise in the following corollary.

Corollary 2.3. Suppose that X is as above, and X , …1 is a sequence of random variables
with the following properties: X1 is absolutely bounded with X( = 0) < 11 ; and for each
≥k 2 we have  ≤X Xk k st−1 , where k−1 is the σ‐algebra generated by X X, …, k1 −1. Then,

defined as above, p O z= ( )n
n− .

Proof. Let p′n be the probability that ≥ X ni
k

i=2 before X = 0i for some ≤ ≤i k2 (i.e.,
the equivalent probability for the process starting with X2 rather than X1). For n at least
the maximum value of X1, we obtain pn as the weighted average of p′n i− for a constant set
of values of i. Thus it is sufficient to show p O z′ = ( )n

n− . The stochastic dominance
condition implies that we may couple each Xk for ≥k 2 with a variable X′k such that

≤X X′k k and X X′ =k k
d

−1 ; clearly we may do this without introducing additional
dependence, meaning that X′, …2 are independent. Now if ≥ X ni

k
i=2 before X = 0i for

some ≤ ≤i k2 then clearly the same applies to the X ′i , and so Lemma 2.2 applied to the
latter gives an upper bound on p′n. □

For ≥d 2 let d
− be the family of connected graphs with all degrees at most d.

Theorem 2.4. We have ≤ ≤∈c c G ylimsup ( )d G dd
− , where y < 1d is the unique positive

root of y y2 − 2 + 1 − 2 = 0d d d d d+1 2 −1 2 −2 .

Proof. It is sufficient to show that I S O y( ( ) = 0) = ( )d
n , where ∈G d

− has n vertices

and S is a uniformly random subset of V G( )n . We bound this probability by revealing
whether or not vertices are in S one by one, stopping if we have revealed that some vertex
is in while all its neighbours are out or if we have revealed enough to know that no such
vertex exists. We mark a vertex as “safe” if either it is known to be out or it has a
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neighbour which is known to be in; we say that a vertex is “unsafe” if it has not yet been
marked safe.

We reveal vertices in stages according to the following strategy. At the start of each
stage, if all vertices are safe, end the process with success. Otherwise choose an unsafe
vertex v, and if possible choose a v with at least one safe neighbour. By connectivity, this
is possible provided there is a safe vertex, which will be the case in every stage except the
first. If v has r > 0 unrevealed neighbours, let them be w w, …, r1 . We will ensure that at
the start of each stage all revealed vertices will be marked safe, so that our choice of v is
necessarily unrevealed.

First reveal v; if it is not in S, mark v safe and move on to the next stage. If v is in S,
mark all its neighbours as safe and reveal w w, …, r1 one by one; if any of these is in S, stop
revealing immediately, mark its neighbours as safe, and proceed to the next stage. If none
of them are in S (including the case r = 0), then v is isolated, so end the process with
failure. Note that if we proceed to the next stage, the only vertices revealed to be in S

during this stage are v and the last wi to be revealed, both of which are now safe.
Writing Xi for the number of vertices marked as safe in stage i, but setting X = 0i if stage i

ends in failure, this process succeeds if and only if  X n=i
k

i=1 before the first time X = 0k .
Note that in each stage, no matter what has previously happened so long as we have not yet
ended the process, with probability 1/2 we reveal ∉v S and have X = 1i ; with probability
∕(1 2) r1+ we end the process with failure; and with the remaining probability we mark as safe

all of w w, …, r1 and any neighbours of some wj not previously marked as safe (including v).
In this final case we have ≤X d2 − 1i except possibly in the first stage where we have
≤X d21 . Since ≤r d it follows that  ≤X Xi i st−1 for each ≥i 2, where








X

d

=

0 with probability

1 with probability ;

2 − 1 with probability .

1

2

1

2

2 − 1

2

d

d

d

+1

+1

Thus Corollary 2.3 applies with z being the unique positive root of z2 +d

z(2 − 1) = 2d d d2 −1 +1; since the LHS is clearly smaller for ≤z 1 we have z > 1. This
implies the required result since setting y z= d

−1 in this equation gives y y= d. □

Computation of y3, together with Theorem 2.1, gives the following bounds.

Corollary 2.5. We have c0.813 < < 0.97813 .

Finally, we note that no upper bound on the degree of a regular graph that is weaker than a
constant bound is sufficient to give a global bound on c G( ).

Proposition 2.6. For any function f n ω( ) = (1), there are graphsGn of order n which are
d‐regular for ≤d f n( ) with →c G( ) 1n . Also, for any fixed ≥d 3 there are d‐regular graphs
of every sufficiently large even order satisfying D G ε d( ) > 1 − ( ), where →ε d( ) 0 as
→ ∞d .
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Proof. Note that Cn
k (i.e., the graph obtained from the cycle v v v… n1 2 by adding edges

≤ v v i j k{ : − }i j and ≤ v v n i j k{ : + − }i j ) is a k2 ‐regular graph with n vertices and
contains a connected dominating set S of order at most ∕n k2 consisting of

≡v i k{ : 1 (mod )}i . Any superset of S is also connected, and so ≥ ∕N C( ) 2n
k n n k− 2 ,

giving ≥ ∕c C o( ) 1 2 = 1 − (1)n
k k2 provided k ω= (1), and we can choose such k k n= ( )

with ≤k f n( ). This also proves the second statement for even d. Similarly, the Cartesian
product □C Kn

k
2 is a k2 + 1‐regular graph on n2 vertices with a connected dominating

set of order at most ∕n k, extending the proof to odd d. □

3 | BOUNDING THE CONNECTED SET DENSITY AWAY
FROM 1

In this section, we turn our attention to Question 1.2, which asks for an upper bound on the
connected set density for graphs with minimum degree at least 3. Our approach is in some
sense complementary to that of Section 2, since our upper bound on the connected set density
will follow from a lower bound on c G( ). We first need some straightforward inequalities.

Lemma 3.1. For ∈n + and ∈ ∕α (1 2, 1), set  ⊆ ≥ S n S αn= { [ ] : }α . Then we have

  α

α
α α<

2 − 1
( (1 − ) ) ,α

α α n− −1

and the average order of elements of α is less than αn + 1 +
α α

α

(1− )

(2 − 1)2 .

Proof. Write  k αn= , so that  ⋯  ( ) ( ) ( )= + + +α
n

k

n

k

n

n+ 1
. Note that for each ≥j 0

we have







 


 


 


 



 


n

k j

n

k

n k i

k i

n

k

n k

k+
=

− − + 1

+
<

−
.

i

j j

=1

Since n k k− < we have


≥

  

 


 


 


 


 


n

k

n k

k

n

k

k

k n
<

−
=

2 −
.α

j

j

0

Similarly, the total order of all sets in α is

≥

   





   


 


 


 




  

 




k S j
n

k j
k S

n

k
j
n k

k

k S
n

k

k n k

k n

+
+

< +
−

= +
( − )

(2 − )
.

α

j

n k

α

j

j

α

=0

−

0

2
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Consequently, since ≥  ( )Sα
n

k
, the average order of all these sets is below k +

k n k

k n

( − )

(2 − )2 .

Note that for ∕ ≤n x n2 < , the expression x n x

x n

( − )

(2 − )2
is decreasing in x , and since ≥k αn, we

have ≤
k n k

k n

α α

α

( − )

(2 − )

(1− )

(2 − 1)2 2 . Since also k αn< + 1, the average order of sets in α is less than

αn + 1 +
α α

α

(1− )

(2 − 1)2 , as required.

To complete the bound on  α , note that Stirling's approximations imply

≤ ∕ ∕ ≤


 


n

k
k n k n α α( ) (1 − ) ( (1 − ) )k k n α α n− − − −1

and that ≤
k

k n

α

α2 − 2 − 1
. □

We now give a general upper bound on D G( ) in terms of c G( ).

Theorem 3.2. Fix ∈ ∕c (1 2, 1) and let Gn be an n‐vertex graph with ≥c G c( )n . Then
≤D G α o( ) + (1)n and ≥D G α o( ) 1 − − (1)n , where α α c= ( ) is the unique value in

∕(1 2, 1) satisfying α α c(1 − ) = 2α α− −1 .

Proof. Since ≥c G c( )n , the graphGn has at least c(2 )n connected sets. The average order of
these sets is at most that of the c(2 )n largest subsets ofV G( )n . Fix α α α″ > ′ > . By choice of
α we have α α c′ ′(1 − ′) ′ < 2α α− −1 and so Lemma 3.1 gives   c

′
< (2 )α

n for n sufficiently
large. Consequently the c(2 )n largest subsets ofV G( )n consist of 

′α
together with some other

smaller subsets, so have smaller average order than 
′α
. Also, again by Lemma 3.1, the

average order of sets in 
′α
is less than α n″ for n sufficiently large. Consequently, for any

α α″ > we have D G α( ) < ″n for n sufficiently large, that is, ≤D G α o( ) + (1)n . Repeating
the argument for the c(2 )n smallest sets, noting that the sets of size at most α n(1 − ′) are the
complements of sets in 

′α
, gives the corresponding lower bound. □

We combine this with known results that give lower bounds on the number of connected
sets. Vince observed [13] that if G has a spanning tree with ℓ leaves then ≥N G( ) 2ℓ, since any
set containing all internal vertices of the spanning tree is necessarily connected, and used a
result of Kleitman and West [9] (which they attribute to Linial and Sturtevant) that any
n‐vertex graph with minimum degree at least 3 has a spanning tree with at least ∕n2 + 4 leaves
to give an exponential lower bound on N G( ). We use the following extension of Kleitman and
West's result due to Karpov [8].

Theorem 3.3 (Karpov [8]). If a graphG has s vertices with degree 1 or 3 and t vertices with
degree at least 4, then G has a spanning tree with at least ∕ ∕ ∕ s t4 + 3 + 3 2 leaves.

Theorem 3.3, together with the above observation, immediately gives an affirmative answer
to [13, conjecture 1], that any graph family where the proportion of vertices of degree at least 3
is bounded away from 0 has an exponential lower bound on N G( ), that is, c G( ) is bounded
away from 1/2. It also gives the following bound for graphs with no vertex of degree 2; notice
that in this case we can dispose of the o (1) term entirely.
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Theorem 3.4. Any nontrivial connected graph G with no vertex of degree 2 satisfies
∕D G α( ) < (2 ) < 0.95831−3 4 .

Proof. Let G have n vertices; we may assume ≥n 4 since ∕D K( ) = 2 32 . For ease of

notation write ∕α α= (2 )−3 4 ; note that α0.95 < < 1 and so < 1.1
α

α2 − 1
and < 0.1

α α

α

(1− )

2 − 1
.

By Theorem 3.3 there is a collection 1 of at least ∕ ∕ 2 n 4+3 2 connected sets of average
order at least ∕n7 8. Let 2 be all other connected sets of G, and suppose that

∕D G α( ) > (2 )−3 4 , that is,



 ∕ ∕∈
∕ ∕

∕ ∕


 

 
 

S n
α

+ 2 × 7 8

+ 2
> .

S
n

n

4+3 2

2
4+3 2

2 (1)

Note that if (1) holds, then it still holds after adding a set of size at least αn to 2 or
after deleting a set of size less than αn from 2. Thus we must also have



 ∕ ∕∈
∕ ∕

∕ ∕


 

 
 

S n
α

+ 2 × 7 8

+ 2
> .

S
n

α
n

4+3 2

4+3 2

α

Now by Lemma 3.1 and choice of α we have  ∕ ≤ ∕∈    S n S α n( + 1.1 )S αα
and

≤ ∕ S 1.1 × 2α
n 4. Consequently we must have ∕ ∕α n α1.1( + 1.1 ) + 2 × 7 8 > (1.1 + 2 )m m ,

where ∕ ∕ ∕ m n n= 4 + 3 2 − 4, which is false for every ≥n 4. □

Note in the proof above that we start from a large group 1 of connected sets with average
order about ∕n7 8, and 7/8 is much less than the upper bound on D G( ) we obtain. However, the
fact that the connected sets contain a large subcollection of small average size does not im-
mediately help us, since for any fixed ε > 0 the family of subsets of order at least

∕∕α ε n( (2 ) − 2)−3 4 is exponentially larger than 1, and so for n sufficiently large there is a
collection of subsets containing 1 but with average order exceeding α ε n( − ) .

This analysis does not take into account any structural properties of the collection of all
connected sets; it is clearly not possible for these sets and no others to be connected. One might
therefore be tempted to conjecture that if an n‐vertex graph G has a spanning tree with at least
Ln leaves for some constant L then ≤ ∕D G L o( ) 1 − 2 + (1); that is, the connected sets we
construct from this tree are asymptotically at least as large as the remaining connected sets.
However, the following example shows that this is not the case.

Proposition 3.5. For each n divisible by 6 there is an n‐vertex graph Hn containing a
spanning tree with ∕n 2 + 2 leaves but for which ∕ ∕D H o( ) = 41 54 − (1) = 3 4 +n

∕ o1 108 − (1).

Proof. Let H be the graph with vertex set u v w x y z{ , , , , , } and edge set
uv vw vx vy vz ux xy yz zw{ , , , , , , , , }, and let Hn be the graph consisting of ∕n 6 copies of H
linked cyclically, with an edge from each copy of w to the next copy of u; see Figure 2.
Here there is a spanning tree with ∕n 2 + 2 leaves (a section of which is shown in bold);
however, we may argue as in Theorem 2.1 to estimate D G( ). For a connected set
⊆S V H( )n and a given copy of H in Hn, we say S is good for that copy if the restriction of

S to that copy contains a u‐w path. Note that there are nine different ways S can be good
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for a copy, since it can intersect that copy in u x y z w{ , , , , } or any subset containing
u v w{ , , }. If S is bad for two copies of H then S intersects at most one of the components
left when these copies are removed. Consequently if S is good for k copies then these
copies form an interval, and there are nΘ(9 )k connected sets which are good for exactly k
copies. It follows that almost all connected sets are good for almost all copies, and since
the connected sets which are good for a given copy intersect that copy in 41/9 vertices on
average, this gives the desired result. □

We can also show that many vertices of degree 2 are required for high connected set density,
which generalises a result of Jamison [6, theorem 6.2] for trees.

Theorem 3.6. If Gn is a sequence of nontrivial connected graphs such that →G 1n then
∕ → v G G( ) 1n n2 , where v G( )n2 is the number of vertices of degree 2.

Proof. Suppose not, so that there is such a sequence with  v G x G( ) <n n2 for some x < 1;
since →D G( ) 1n and each Gn is nontrivial we have → ∞ Gn . Theorem 3.3 gives a
spanning tree with at least ∕ x G(1 − ) 3n leaves, and so ≥ ∕∕c G( ) 2 > 1 2n

x−( +2) 3 .
Theorem 3.2 therefore implies ≤ ∕D G α o( ) (2 ) + (1)n

x−( +2) 3 , a contradiction. □

Finally, we consider the effect of increasing the minimum degree.

Theorem 3.7. If Gn is a sequence of connected graphs with → ∞δ G( )n then
→ ∕D G( ) 1 2n .

Proof. Suppose not, and take such a sequence with D G x( ) >n for some ∕x > 1 2 (the
low‐density case where D G x( ) < 1 −n is similar). Choose c < 1 such that
∕ α c x1 2 < ( ) < ; this is possible since α α(1 − )α α− −1 is bounded away from 2 if
≤ ≤x α 1. By Theorem 3.2, we must have c G c( ) <n for  Gn sufficiently large, and in

particular if ≥δ G k( )n 1 for some fixed k1.
However, by [9, theorem 5], there is some constant k2 such that for ≥k k2 any graphG

with minimum degree at least k has a spanning tree with at least  ( ) G1 − 3
k

k

log leaves.

As a consequence such a graph has c G( ) > 2−3
k

k

log

. For ≥k k3 we have c2 >−3
k

k

log

, and for
n sufficiently large ≥δ G k k k( ) max{ , , }n 1 2 3 , giving a contradiction. □

FIGURE 2 Part of an n‐vertex graph having a spanning tree with more than ∕n 2 leaves but having
connected set density ∕ ∕ o3 4 + 1 108 − (1)
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4 | OPEN PROBLEMS

This study leaves several natural open problems. First, to improve either of the bounds obtained
on c3. In particular, is the criss‐cross prism asymptotically optimal? Concerning the corre-
sponding quantity for d‐regular graphs, cd, we know by Proposition 2.6 that →c 1d as → ∞d ,
but how quickly does cd approach 1?

Second, we might ask about the corresponding upper bounds on D G( ). What is the
asymptotic maximum density ∈ D Glimsup ( )G 3

? Does the answer change if we consider graphs

of minimum degree 3, rather than 3‐regular graphs? The best known lower bound for either
case is 5/6: Vince [14, theorem 3.1] evaluated the connected set density of the necklace graphs
precisely, and this is ∕ o5 6 − (1). Note that this is greater than the corresponding upper bound
for series‐reduced trees.

Finally, we turn to lower bounds. Here we expect graphs of minimum degree 3 to satisfy the
same lower bound as series‐reduced trees, that ≥ ∕D G( ) 1 2; this was conjectured by Vince [14,
conjecture 7].
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