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A B S T R A C T   

Filtering is the process of defining, recognizing, and correcting flaws in given data so that the 
influence of inaccuracies in input data on subsequent studies is minimized. This paper aims to 
discuss the characteristics of some filtering methods from various topics. Wavelet transform and 
frequency (Fourier) transform are considered for the decomposition methodologies whereas 
descriptive statistics is used for the statistical methodology. The Kalman filter and autoencoder 
neural network are also explored for the predictive methodologies. All the aforementioned 
methodologies are discussed empirically using two metrics of R-squared and mean absolute error. 
This paper aims to study the effectiveness of these filtering techniques in filtering noisy data 
collected from mass flowmeter reading in an unconventional situation i.e., on a tugboat while in 
operation to measure fuel consumption. Finally, the performance of various filtering methods is 
assessed, and their effectiveness in filtering noisy data is compared and discussed. It is found that 
the Haar wavelet transforms, Kalman filter and the descriptive statistics have a better perfor-
mance as compared to their counterparts in filtering out spikes found in the mass flow data.   

1. Introduction 

The evidence of climate change has created issues throughout the world. The main factor of climate change is the increasing level of 
greenhouse gasses in the atmosphere creating a greenhouse effect. One type of greenhouse gasses is carbon dioxide from combustion 
engine emissions (Miller and Spoolman, 2009; Shaftel et al., 2021). 

The negative effect of greenhouse gas in the maritime sector contributes to multiple research initiatives mainly targeting shipping 
vessels. The initiative analyzes various environmental and operating conditions in shipping vessels, to ensure that it operates at op-
timum fuel efficiency when travelling in the international ocean. However, it neglects the micro point of view that harbor craft vessels 
such as tugboats have also contributed significantly to greenhouse gas emissions when burning fuel in assisting the large ocean-going 
shipping vessels in docking operations. for the Singapore sea straits, tugboats alone led to an overall figure of 993 (tons/day) of CO2 

emissions, equivalent to the CO2 emission of 78,793 cars in a single day (of Transportation 2018; Leong et al., 2014). 
Although recording fuel consumption does not directly reduce carbon emission, it is still very much essential for any empirical 

study to begin with. The measurements from the record are useful information to determine if a particular operation is consuming a 
considerable amount of fuel for optimization opportunities (Bialystocki and Konovessis, 2016). One of the major parameters is the fuel 
flow commonly recorded by using the volumetric flow measurement. However, there are weaknesses in volumetric measurement, as 
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marine fuel of certain mass will vary in volume at different temperatures. The effect of volume expansion may be exaggerated in 
tugboat and bunker vessels as these vessels have to carry a considerable amount of fuel, especially around the tropic region where the 
temperature varies widely between night and day. In addition to the volumetric expansion, the accuracy of the fuel measurement is 
also affected by the varying thermal expansion of the fuel. Given the volume and thermal expansion premises, measuring the fuel flow 
by its mass is thus simpler i.e., by having to deal with only one parameter of mass flow rather than two parameters of volume flow and 
temperature. However, noises sometimes occur in mass flowmeter records for vessels as most of the mass flowmeters are designed for 
use in facilities in which vibration is either at a minimum or non-existent at all. Therefore, using a mass flowmeter in a non-stationary 
setting such as tugboats may compromise its performance. One source of compromises is the engine room vibration that disrupts the 
Coriolis effect which the meter uses to make measurements (Raszillier and Durst, 1991; Chiang et al., 2015). 

Another source of compromise is electromagnetic interference due to the presence of electric generators and solenoids in the engine 
room where the mass flowmeters are installed (Kaur et al., 2011). The energized coils from the generators and solenoids may create 
interference to the electromagnetic field used by the Coriolis mass flowmeter in measuring the vibration of the Coriolis effect from the 
fluid flow. Furthermore, in any case, a suspected anomaly is not guaranteed to be an error and if so, the source of the error and means in 
recreating the compromised information have to be sought. 

In view of the noises that are present in the mass flowmeter data, data preprocessing has to be performed prior to the data being 
used for further analysis. The filtering approaches discussed in this paper apply and compare five denoising methods from various 
topics, i.e., wavelet transform, optimal estimation, frequency decomposition, descriptive statistics, and artificial neural network. 
Wavelet transform is an effective method to denoise raw data whose noise is in the form of spikes (Ehrentreich and Sümmchen, 2001). 
Kalman filter (KF) is from the optimal estimation camp that utilises a series of iterations for filtering the subsequent data point using 
information from the previous iteration or data point (Kim and Bang, 2019). The Fourier transform (FT) algorithm transforms the 
signal from the time domain to the frequency domain which is represented as power spectral density (PSD) from which the noise 
frequency is targeted and attenuated (Nussbaumer, 1981). Descriptive statistics supplies the techniques that help to condense large 
datasets by using tables, graphs, and summary measures. Descriptive statistics could be of immense importance because it provides 
efficient and effective methods for summarizing and analyzing information (Mann and Lacke, 2020). Finally, from the machine 
learning camp, this paper also considers the artificial neural network (ANN) which is a form of autoencoder network, as means of 
filtering methodology. 

The result from the application of each method will be evaluated individually using two metrics, i.e. the mean absolute error (MAE) 
and R-square error (R2), and be compared among them to discuss and emphasize the characteristics of each method. 

Fig. 1. Case study vessel, POSH Grace tugboat.  

Table 1 
Vessel specifications.  

Main particulars Value 

Length overall (LOA) 29m 
Displacement 665tonnes 
Maximum speed 12 knots 
Main engines NIIGATA 6L26HLX 
Number of engines 2 
Total BHP 4000BHP 
Type of propulsion Azimuth pod 
Number of propulsors 2  

J. Hadi et al.                                                                                                                                                                                                            



Maritime Transport Research 3 (2022) 100063

3

2. Harbor craft vessel operational data: fuel consumption 

2.1. Operational data 

The operational data were collected from the data acquisition device installed onboard the traditional diesel-powered tugboat as 
shown in Fig. 1. The vessel specifications are given in Table 1. The main operational activity of the tugboat consists of anchoring, 
assisting large vessels in docking, and piloting around the southern sea of Singapore. The purpose of collecting the operational data was 
to conduct a research study on predicting the fuel rate to achieve fuel efficiency through data analytics and neural network modeling 
(Z.Y. Tay et al., 2021; Z.Y. Tay et al., 2021). 

To facilitate the collection of the operational data, two Coriolis mass flowmeters were installed to record the fuel consumption from 
both the port and starboard main engines. The fuel consumption of the auxiliary engines (the electric power generators) is not 
considered in this case study, as it is significantly small compared to the main engines. Auxiliary engines are also highly predictable by 
the number of operational hours, due to their constant rate of fuel consumption. The operational data acquired over a six-month 
duration from April 2020 to September 2020 are used for this case study. Overall, the operational data composed of around 1.2 
million data points were collected at one-second intervals. 

The data collected from the mass flowmeter are prone to inaccuracy or error in the Coriolis effect measurement due to external 
factors. The Coriolis effect causes the fluid to deflect at different angles when passing the curved channel. In addition to the deflection 
angles, the curved channel also oscillates at varying frequencies in the process of determining the mass density of the flowing fluid. As a 
result, both the deflection and oscillation are highly susceptible to vibrations and electromagnetic interferences, thus causing the 
presence of noises in the raw data. It is to note that investigating the source of the noise is not part of the scope of this paper; instead, 
this paper aims to filter out the noise from the recorded mass flow data. The benefit of the filtering approach is that it is a software 
correction that requires only virtual resources. It would require much fewer resources if it were to be compared with hardware 
correction. Hardware correction requires resources for alteration or modification to the physical setup specific to a particular tugboat 
(i.e., rerouting fuel line, vibration reduction/dampening, or electromagnetic shielding). Another benefit of the filtering approach is 
that once established, it applies to other tugboats with similar problems regardless of make and design. It is noted here that the 
collected mass flow data is stored in segments. Each segment length is based on a duration of a job. Hence, each segment may have a 
unique length. 

2.2. Ground truth 

A sample of one segment of the raw data is plotted in Fig. 2. The raw data in blue of Fig. 2 (Problem) shows the noisy fuel rate versus 
time (day hour: minute). The noise is in form of spikes in either up or down direction throughout the segment. Fig. 2 also shows the 
clean data (Truth) and is plotted as the orange curve. The ground truth will be used as a benchmark with which the result of each 
filtering method is evaluated. The evaluation uses two types of key performance index (KPI) and is discussed in the next section. 

During data collection (logging), irregularities were found at regular intervals. Logging at regular intervals is known as pooling 
mode. The irregularities are similar to the plot shown as the Problem in Fig. 2. Simultaneously, while using other logging modes which 
are event-based, it is discovered that there are invalid measurements during the second-pooling interval. The invalid measurement 
appears as a saturated number that is visually recognizable. Hence, the presence of invalid measurements invalidates other valid 
measurements in an interval. To generate the Truth in Fig. 2, the logging must be performed in event-based mode, and the invalid 
measurements removed and the valid measurements resampled to the pooling interval. 

Fig. 2. Plot of Raw Data & Ground Truth.  
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During deployment, data logging in pooling mode is preferred over event-based mode. Within an interval, multiple events may 
present that trigger the creation of multiple entries per interval. This may create an overly large amount of data that burdens 
computing devices on the tugboat as large data requires more resources to record as well as to process. 

2.3. Key performance index (KPI) 

This sub-section discusses the two KPIs (also referred to as metrics), i.e., the MAE and R2, that will be used to assess the performance 
of each denoising method. 

2.3.1. Mean absolute error (MAE) 
The MAE score is calculated as the average of the absolute error values, as the name suggests. 

MAE =
1
n
∑n

i=1
|yi − ŷi | (1)  

where n is the number of data points, yi is the i-th value of ground truth, and ŷi is the i-th denoised value. As MAE is the measurement of 
error, the lower the MAE metric the higher the prediction accuracy is. The ideal MAE value is zero (Chai and Draxler, 2014). 

2.3.2. R-Squared (R2 score) 
In computing the R2 score as indicated by (4), the maximum score of 1.0 is subtracted with RSS (2) over TSS (3) where RSS is the 

residual sum of squared error whereas TSS is the total sum of squared difference of the Truth data point (yi) from its mean (y). Here, an 
error is defined as the difference in Truth data point yi and denoised data point ŷi . 

R2 score uses the fluctuation of the valid data points to dynamically scale the effect of errors. In the case of extreme fluctuation 
throughout the entire data points (n), TSS will become very high. A very high TSS reduces the importance of RSS as far as R2 is 
concerned. This is usually true when the valid data points themselves are noise-like. 

The ideal R2 score is when every ŷi is equal to yi, regardless of how fluctuative or flat the data points are. In such a case, RSS is zero 
and the R2 score is at the maximum of 1.0. A Higher R2 score indicates better metrics. Therefore, the R2 is very useful to calculate the 
similarity between two sets of values (Mittlböck and Heinzl, 2001) where the R2 emphasizes more on accuracy than precision. 

RSS =
∑n

i=1
(yi − ŷi)

2 (2)  

TSS =
∑n

i=1
(yi − y)2 (3)  

R2 = 1 −
RSS
TSS

(4)  

3. Methodology 

This section explains five filtering methodologies from various topics, i.e., the Haar wavelet transform (HWT), Kalman filter (KF), 
Fourier transform (FT), descriptive statistics denoising (DSD) and artificial neural network (ANN). 

Fig. 3. Haar Wavelet.  
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3.1. Haar wavelet transform 

The Haar wavelet transform is one of the simplest wavelet transforms (Stanković and Falkowski, 2003). Due to its simplicity, it is 
computationally less demanding. Despite its simplicity, it has an orthogonal property to decompose a signal sequence into transform 
elements for denoising (Luisier et al., 2009). The mathematical representation of the Haar Wavelet is expressed in (5), and the Haar 
wavelet is shown in Fig. 3. 

h(t)= {

1 0 ≤ t <
1
2
,

− 1
1
2
≤ t < 1,

0 otherwise.

(5) 

In the HWT, the length of the data points to be transformed is determined by the power of 2 (i.e., 0, 1, 2, 4, 8, 16 and so on). The 
length of the transform is the same as the original signal. The transform representation consists of one average value and the detail 
elements at various levels. The number of detail levels is determined by the power (exponent) of the length of the original signal. E.g., 
in the case of signal length of 8, there are 3 levels of details (i.e., 8 = 23), and the level of details is indexed from 0. 

Fig. 4 shows an example of a signal in blue being transformed into a set of decomposed green signals (transform). This is done by 
using the HWT given in (5) that involves a repeat process of computing the mean of pair sum and mean pair of difference at various 
levels to finally produce the filtered signal in the green cell. 

In Fig. 4, the cells in red are the sum of pair averages while the cells in yellow are the difference of pair averages from the block 
above them. 

E.g. 8 – 4 – 8 – 4 is derived from 

9 + 7
2

3 + 5
2

6 + 10
2

2 + 6
2  

while 1 – 1 – 2 – 2 is derived from 

9 − 7
2

3 − 5
2

6 − 10
2

2 − 6
2 

Mathematically, the transformation (T) could be carried out by applying the dot product of Haar Matrix (H) with the signal (S) 
(Zhang, 2019). 

Fig. 4. Haar Transform/Decomposition.  
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H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
1/8 1/8 1/8 1/8 − 1/8 − 1/8 − 1/8 − 1/8
1/4 1/4 − 1/4 − 1/4 0 0 0 0
0 0 0 0 1/4 1/4 − 1/4 − 1/4

1/2 − 1/2 0 0 0 0 0 0
0 0 1/2 − 1/2 0 0 0 0
0 0 0 0 − 1/2 1/2 0 0
0 0 0 0 0 0 1/2 − 1/2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

9
7
3
5
6
10
2
6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T = H ⋅ S = [ 6 0 2 2 1 − 1 − 2 − 2 ]
T 

The last level of detail component (d2 green cell in Fig. 4) is exclusively the mean of difference. Hence, the last level of detail 
component (d2 in this case) which makes up the half end of the transform output, holds the most information on the fluctuation/noise 
in the signal. On the other hand, the other detail levels have a combination of the mean of sum and the mean of difference. The closer 
the detail element is to the average element (a0), the least information of fluctuation it holds. 

Hence, to control the fluctuation, an Attenuation Matrix (A) given in (6) is applied to the transformed signal. By tuning the 
attenuation factor (f), the aggressiveness of attenuation of noise is made possible. Fig. 5 shows the values of A at various attenuation 
factors (f). The idea is to apply the highest reducing factor to the last level of detail component, and decrease towards the average. Note 
that the average component should not be altered as it holds the essential trend information. 

A =
[

1
/
20f 1

/
21f 1

/
22f 1

/
22f 1

/
23f 1

/
23f 1

/
23f 1

/
23f

]T (6) 

A dot product of the Haar matrix (H) with the signal (S) produces the transform (T). The transform is attenuated by applying the 
element-wise product with A (Horn, 1990). Finally, it is inverse transformed back (dot product with H− 1) to the signal domain as a 
denoised signal (SA). 

SA = H− 1 ⋅ (T ∘ A) = H− 1 ⋅ [(H ⋅ S) ∘ A] (7) 

Fig. 6(a) shows the comparison of T for example in Fig. 4, with and without the application of A. Fig. 6(b) compares S with SA. The 
higher the attenuation factor f , the closer to average (a0) the SA is. 

It is to note that the example shown in Figs. 5, 6 and 7 uses a signal that is of 8 elements length. In the Results and Discussion section 
(Section 4), the signal length is referred to as the subset window size (subset size) at various lengths. 

3.2. Kalman filter 

Kalman filter (KF) uses a series of iterations to perform the filtering. Each data point requires one iteration prior to moving to a 
subsequent data point for another iteration. The subsequent iteration requires information in form of covariance coefficients as well as 
a prior from the previous one – a method used by KF to gain insight from the previous iteration to denoise the current one. 

Each iteration consists of three stages: prediction, estimation and update. Fig. 7 shows the Kalman filter (KF) algorithm diagram (R. 
Labbe, 2018) for one iteration, where the objective is to reach a new estimation (xt). 

Prediction: 

Fig. 5. Comparison of different attenuation factors from (6).  
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xt = F ⋅ xt− 1 (8) 

Fig. 6. Comparisons of (a) Original vs attenuated transform, (b) Original vs denoised/attenuated signal.  

Fig. 7. Kalman filter algorithm diagram.  
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Pt = Pt− 1 + Q (9) 

Estimation: 

K = Pt ⋅ (Pt + R)− 1 (10)  

y = z − xt (11)  

xt = xt + K ⋅ y (12) 

Update: 

Pt+1 = Pt ⋅ (1 − K) (13) 

KF algorithm starts with prediction to generate a prior (xt) from state transition (F) and the previous posterior (xt− 1), as also 
denoted by (8). F is a linear function, usually represented in a matrix. However, in this example, F is statically set as a scalar of 1.0, i.e., 
there is a 100% likelihood that the current state (prediction) does not change from the previous state. Concurrently in the prediction 
stage, the covariance (Pt) is calculated from the previous covariance (Pt− 1) and process uncertainty (Q), as shown in (9). 

Both xt and Pt from the prediction stage are used in the estimation stage to generate Kalman gain/scaling (K) and residual (y). In 
(10), K is in a factor of Pt , and is derived from measurement uncertainty (R). In the case where R is a positive number, K scales Pt down, 
and vice versa. y according to (11) is a simple difference between measurement/observation (z) and xt which was derived from 
prediction. Eventually, the new estimate (xt) is a linear function of y, with K being the gradient and xt being the offset as shown in (12). 

Finally, a new covariance coefficient (Pt+1) is calculated. In (13), Pt+1 is calculated from Pt that is factored by (1 − K). The next 
iteration starting from the prediction stage will take place for as long as there is a new observation (z). Pt+1 will be used as Pt and xt will 
be used as xt− 1 in the next iteration. In a typical implementation, the Kalman filter uses a measurement function (H) which is a linear 
function to convert the state into a measurement (Laaraiedh, 2012). For simplicity, this paper drops H by asserting an assumption that 
H is a static scalar of 1. 

Fig. 8 shows the series of observations that has a characteristic of an upward trend and ripples riding on top of the trend. KF al-
gorithm manages to reduce the ripples to a less erratic extent while maintaining the trend. This is similar to the smoothening effect. The 
smoothening effect could be used to denoise noisy signals (that have noise in form of spikes as shown in Fig. 2). This paper uses the 
filterpy software with the Kalman filter sub-module to process the denoising (R. Labbe, 2018). 

3.3. Fourier transform 

Similar to the Haar wavelet transform, the Fourier transform allows the filtering of noisy signals from the raw data by altering the 
transform. Fig. 9 shows sample segment #2 with the spikes representing the high-frequency noisy signal. It is not immediately obvious 
at which high frequencies the noises are. However, the high-frequency elements can be discriminately reduced in a controlled way. A 
window could be applied to the frequency response. The two example types of windows that could be used to reduce high-frequency 
signals while keeping the low-frequency signals are shown in Fig. 10 (Huang et al., 2011). Also shown in Fig. 10 is the various Gaussian 
and exponential windows with varying width, i.e., standard deviation (σ or std) for Gaussian window wg(n) and tau or τ for Exponential 

Fig. 8. Kalman filter on test data.  
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Fig. 9. Application of FFT to time-series noisy signal (left) to obtain its frequency response (right).  
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Fig. 10. Comparison of Gaussian and Exponential windows for FFT.  
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Fig. 11. Frequency response comparison after applying windows.  
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Fig. 12. Comparison of denoising from different configurations from two window types.  
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window we(n). 

wg(n) = e
− 1

2

(
n
σ

)2

(14)  

Fig. 13. Comparison of window statistics by number of noises. Relative tolerance = 5%, and absolute tolerance = 0.005.  
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we(n) = e− |n− center|/τ (15) 

Eqs. (14) and (15) are the equations for Gaussian and exponential windows respectively, where the narrowness of each window’s 
center region is determined by σ and τ. The small σ and τ (value = 13) produce narrower center regions if compared with (value =
1013). Fig. 11 shows windows of various σ and τ. The windowing application multiplies the frequency response of Fourier transform to 
a window element-wise. Afterwards, by performing the inverse transform, the frequency response is transformed back to the time- 
series response. As shown in Fig. 12, narrow Gaussian and exponential windows remove more noise. However, applying the Four-
ier transform scales the entire signal. This is due to the period of the transformation being set as one whole segment. It is noted that 
Fig. 12 is for demonstration purposes only. In the Results and Discussion section (Section 4), the period is reduced to a much smaller 
size and is referred to as subsset size. 

3.4. Descriptive statistics denoising 

Descriptive statistics summarize the dataset into a set of new measures. One measure indicates central tendency, such as mean and 
median, while another indicates dispersion or spread, such as percentiles and standard deviation. Descriptive statistics denoising 
(DSD) aims to utilize these descriptive measures (Fisher and Marshall, 2009). The descriptive measures help make anomalies stand out 
in a pattern. A simple condition could be determined and applied to rule out the anomalies. 

One set of descriptive measures over the entire dataset could become an oversimplification. By doing so, the entire dataset is 
reduced to one set of descriptive measures such as mean, median, minimum, maximum, standard deviation, etc. which is not too useful 
as far as denoising is concerned. Descriptive measures for a subset (a window) of the dataset at an adaptive interval could produce more 
useful information (Suoranta and Estola, 1991). The information is in the form of a sequence of descriptive measures sets instead of just 
one set of values. This paper, nonetheless, focuses on a regular window at regular intervals (or stride) instead of an adaptive one. The 
sequence of descriptive measures could be separated into different tables by the number of suspected noises. 

The suspected noise in the subset (or window) is detected by the use of tolerance. To locate a suspected noise, each data point in a 
particular window is compared with the next one for its difference, represented as a percentage. The percentage is qualified by a 
relative tolerance. In addition to relative tolerance, absolute tolerance must also be used. It is because, for a point whose value is zero, 
any number relative to zero is the number itself. Hence, by using relative tolerance alone, the tolerance must be set near 100% which is 
not very effective. These tolerances aim to determine if the subsequent data point is a discontinuity. Once discontinuity is determined, 
it is suspected as noise. 

The subsets (windows) are grouped by the number of suspected noises. Fig. 13 plots the groups by n-noise into the series of n- 
window (x-axis) and the descriptive measures/statistics, i.e., mean, percentiles (25%, 75%), median (50% percentile), minimum 
(min), maximum (max), and standard deviation (std). To produce Fig. 13, the relative tolerance is 5% and the absolute tolerance is 
0.005. In Fig. 13(a), which shows that the suspected noise is zero, the mean and median (50%) are very close to the ground truth. This 
indicates that both relative and absolute tolerances values are doing a good job in separating good data points from noisy data points. 
Otherwise, if relatively high fluctuation appears at n-noise = 0, more stringent tolerances must be applied. However, if the number of 
data points at n-noise = 0 is too sparse (data points are further apart as shown in Fig. 13(b)), the tolerances could have been set too 
stringent. It has resulted in non-noise data points being suspected as noise. The determination of tolerance requires an intuitive 
judgement or experience. 

With insight from Fig. 13, a conditional threshold on one or more statistics can be set. The conditional threshold functions as a rule 
that accepts windows in which the number of suspected noises is zero. Fig. 14 uses the results from Fig. 13(a) where the std threshold is 

Fig. 14. The zero noise window statistics with threshold.  
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set at 0.005. The statistic which is used as a conditional threshold is not constricted to standard deviation only. Other statistics, such as 
median, could be used (Justusson, 1981). Nonetheless, in the sample case, the std threshold is the most convenient way to apply a 
conditional threshold. Refer to Fig. 14. All the std (pink) values fall under the std threshold of 0.005. 

All windows in the signal (or noisy data) are defined as Sw by (16), with v being the total number of windows. The data points in any 
window are defined as Si by (17), with j being the total number of data points in any window. Hence, each of Si is a member of Sw. In 
(18), a particular window is accepted as is, if the standard deviation in the particular window σw satisfies the condition by the threshold 

Fig. 15. Results prior to mitigation and interpolation. (a) Denoised signal before mitigation and interpolation. (b) The zoomed-in perspective of (a) 
in orange dashed rectangle. Red arrows point to the gaps of discarded windows. 
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Fig. 16. The comparison between problem, denoised, and solution.  
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γ. Otherwise, the window is discarded altogether, creating an undefined period in the denoised signal. 

(Sw)
v
w=1 = (S1, S2, S3,…, Sv) (16)  

(Si)
j
i=1 = (S1, S2, S3,…, Si) (17)  

Si= {
Si, σw ≤ γ

undefined, σw > γ (18) 

The effect of undefined periods is discarded windows appearing as gaps (x-axis), as shown in Fig. 15. To mitigate these gaps, the 
DSD is to perform point-wise qualification (as opposed to window-wise qualification up to this point). In (19) and (20), α and β are the 
lower and higher limits respectively and are set by either S− i or S+i. S− i is the last data point from the previous window, while S+i is the 
first data point of the next window of any discarded Si (except the first and the last in Sw). In (21), Sk is each data point in the discarded 
Si. It is qualified/accepted to fill the points in the discarded window if the value is between α and β. Otherwise, the value remains 
undefined. The idea is to perform a second screening in every discarded window, to accept values that do not exceed the values of 
adjacent windows. Finally, a simple linear interpolation is used to fill the remaining undefined data points which may originally be the 
noise. 

α =

{
S− w, S− w < S+w
S+w, otherwise (19)  

β =

{
S− w, S− w ≥ S+w
S+w, otherwise (20)  

Sk =

{
Sk, (Sk ≥ α)Λ(Sk ≤ β)
undefined, otherwise (21) 

Fig. 16 shows the comparison of the original problem versus the denoised and expected solution. It is obvious from Fig. 16 that 
there are still some spikes in the denoised signal. 

3.5. Artificial neural network 

The Artificial Neural Network (ANN) mimics the natural working of biological neural networks. The network comprises neuron that 
is arranged in layers. The layers may be multi-dimensional and are arranged as tensors. The tensor holds the coefficient of a function, 
also known as the activation function. During training, the algorithm feeds training inputs from both ends of the network (similar to a 
pipeline). Given an X value, the pipeline is to predict the y value. The algorithm iterates over the training inputs to update values in the 
tensors so that the predicted y is as close as possible to the original y. The evaluation of the predicted and the original is done using a 
loss function. A well-designed and well-trained ANN could produce a very good approximation to a function for a solution (also known 
as ground truth). The most common application of ANN is a regression model where the regression model tries to approximate a 
function (Jain et al., 1996). 

The one specific design of artificial neural network (ANN) that this paper uses is the autoencoder (Bank et al., 2020). It features an 
encoder and decoder in the same network. The encoder compresses autoencoder input to smaller dimensions of the original infor-
mation. Afterwards, it is immediately decompressed by a decoder. The decoding is a reconstruction attempt to get back the original 

Fig. 17. Autoencoder architecture.  
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Fig. 18. Results with different combinations of configuration.  
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information. By using the autoencoder, the variant of original information could be expected. It is almost impossible to get an identical 
result to the original information due to the loss of information during compression and decompression. Hence, it is possible to train an 
autoencoder to purposely lose a piece of certain information (noise). 

A technique that uses a pattern filter to scan a presence of a pattern in data is called a convolution (O’Shea and Nash, 2015). The 
convolution also makes the pattern in the data more prominent to become a feature. Usually, the convolution is followed by pooling 
where only the average, minimum or maximum value is retained at a certain interval. Multiple filters are used to extract certain 
multiple features (multiple filters may also be referred to as channels). Combining ANN, autoencoder architecture, and convolution, a 
denoising model could be built to take out spikes (Gondara, 2016). 

From Fig. 18, three sample results are using a certain configuration of autoencoder models. Period is the size of the input (number 
of data points) to the autoencoder. It indicates the size of the first convolution layer. The size is reduced by half after each stage by the 
average pooling layer (three stages according to Fig. 17). The filter is the number of filter channels of the first layer of the convolution 
layer while the kernel is the length of the convolution filter. Both filter and kernel also get halved in each stage towards the bottleneck 
(latent). From the latent towards the output, the period, filter, and kernel get doubled towards the output (reconstruction). The output 
dimension conforms to the input dimension. 

For each model combination, training must take place. The training uses a dataset of 100 segments (segment #2 is one of them). 
After training, the model is used to make prediction presented by the denoised result in Fig. 18(b). It is immediately apparent that the 
spikes disappeared by configuration #3 of Fig. 18(c). In configuration #2, although there are still a few spikes, it is not as many as in 
configuration #1 of Fig. 18(a). More details of the results are discussed in Section 4. 

4. Results and discussion 

This section compares and discusses the performance of each denoising method with multiple configurations. The metrics (MAE 
and R2) are generated by using data from 100 segments. Sections 4.1 to 4.5 discuss each of the five filtering methods in various 
configurations. Finally, the comparison among the five filtering methods is presented in Section 4.6 using segment #2 as a demon-
strating example. 

4.1. Haar wavelet transform 

Table 2 compares a few combinations of subset size, stride, and attenuation factor (factor) using MAE and R2 (the metrics). When 
the subset size is larger, both the metrics tend to be better than the smaller ones. This is because the larger subset takes more data 
points, hence more information into account. The (attenuation) factor is also a strong variable. The larger the value indicates the more 
aggressive the denoising process, thus the better the metrics. A larger factor number exponentially suppresses the spikes than a smaller 
factor number, as formulated in (6) and (7). 

Out of eight combinations of variable configuration, configuration number 6 in Table 2 can produce a relatively better outcome 
which will be compared with other denoising methods in Section 4.6. A smaller stride does a little better than a larger stride at the 
expense of a longer processing time. Stride determines the interval at which the subset starts along the signal to be denoised. For 
example, stride 0.25 with subset size 64 equals 16 (0.25 × 64 = 16). This means that one subset (of 64 data points) is created at an 
interval of every 16 data points. After applying (7) to a subset to get a set of results, the first 0.25 of the result is sequenced back to form 
the final denoising result. The overlap of 0.75 towards the end is discarded. Fig. 19 shows the comparison of results with varying strides 
on one segment (#2). 

Fig. 19(a) explains the effect of a larger stride. The results appear digitized or of low resolution at a longer stride. In Figs. 19(b), (c), 
and (d), the results are increasingly becoming higher resolution. Ultimately, the smallest stride of one data point would have the 
highest resolution. Nevertheless, the smaller stride or higher resolution does not necessarily yield better results, as shown by the MAE 
and R2 metrics. In addition, a shorter stride requires a longer processing time. 

4.2. Kalman filter 

Fig. 20 compares the effect of different values of process uncertainty (Q), covariance (P), and measurement uncertainty (R) using 

Table 2 
Haar wavelet transform configuration comparison.  

No. Subset Size Stride Factor MAE R2 Processing Time (s) 

1 8 (23) 0.25 0.125 0.002300 0.720 31 
2 8 (23) 0.25 8 0.002288 0.761 31 
3 8 (23) 1 0.125 0.002304 0.713 8 
4 8 (23) 1 8 0.002294 0.756 8 
5 64 (26) 0.25 0.125 0.002231 0.754 48 
6 64 (26) 0.25 8 0.002267 0.820 48 
7 64 (26) 1 0.125 0.002236 0.750 12 
8 64 (26) 1 8 0.002231 0.806 12  

J. Hadi et al.                                                                                                                                                                                                            



MaritimeTransportResearch3(2022)100063

20

Fig. 19. Comparison of results from one segment at various stride values. Each subfigure is a pair of full segments denoised results and its zoomed-in portion (in orange). (a) Stride = 1.0; (b) Stride =
0.5; (c) Stride = 0.25; (d) Stride = 0.125. 
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Fig. 20. Kalman filter comparison with test data. (a) Q = 0.005, P = 10, R = 0.25. (b) Q = 0.05, P = 10, R = 0.025. (c) Q = 0.05, P = 1, R = 0.25.  
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toy data. It is to note that Fig. 20 uses the same test data as Fig. 8. In Fig. 20(b), R is reduced to 10 times that of Figs. 20(a) and (c). 
Reducing R indicates low uncertainty (high confidence) in the measurement/observation (z). Therefore, it trusts the measurement/ 
observation, and the filtered values tend to be closer to the observation. In contrast, Q in Fig. 20(a) is reduced by 10 times that of 
Figs. 20(b) and (c). Reducing Q indicates that there is a low uncertainty (high confidence) in prediction (xt), and less confidence in z. 
This causes the filtered value to fit a trend, creating a smoothening effect. 

P in Fig. 20(c) is reduced by 10 times that of Figs. 20(b) and (c). The effect is only obvious in the early part of the filtered value. 
There is an initial wide separation at data point 0. Setting P to be near zero or negative causes the correlation between filtered and 
observation to be very low or the inverse. On the other hand, if the P is set to be a large positive value, the correlation between 
observation and the filtered is very strong, which means that the filtered value is to be very close to observation, to begin with. This 
conforms to the general intuition of covariance. If the correlation is assumed to be weak in the beginning, the algorithm requires 
several iterations (or data points) to break the initial momentum before being able to follow the general trend. This is due to (13) that 
updates P closer to the relevant value at the end of each iteration. 

Using data from Fig. 2 as well as 99 other segments, several combinations of configurations are used to generate results shown in 

Table 3 
Kalman filter results with several configurations.  

No. Q P R MAE R2 Processing Time (s) 

1 0.0005 0 0.25 0.002295 0.748 60 
2 0.0005 0 1 0.002436 0.698 64 
3 0.0005 100 0.25 0.002282 0.793 60 
4 0.0005 100 1 0.002405 0.783 61 
5 1 0 0.25 0.002322 0.715 61 
6 1 0 1 0.002313 0.729 64 
7 1 100 0.25 0.002322 0.715 65 
8 1 100 1 0.002313 0.730 61  

Table 4 
Kalman filter results with extended configurations.  

No. Q P R MAE R2 Processing Time (s) 

1 0.00005 100 0.025 0.002282 0.793 60 
2 0.00005 100 0.25 0.002580 0.764 61 
3 0.00005 100 2.5 0.003571 0.637 65 
4 0.0005 100 0.025 0.002263 0.779 63 
5 0.0005 100 0.25 0.002282 0.793 60 
6 0.0005 100 2.5 0.002580 0.764 59 
7 0.005 100 0.025 0.002298 0.751 58 
8 0.005 100 0.25 0.002263 0.779 59 
9 0.005 100 2.5 0.002282 0.793 58  

Fig. 21. Results with different combinations of configuration (combo).  
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Table 3. Setting P to an arbitrarily large positive number yields better results, as it quickly assumes that there is a close correlation 
between the observation and filtered values. This is demonstrated by results number 1 and 2 versus results number 3 and 4 for Q =
0.0005. 

Setting both Q and R requires a balancing act to achieve the optimum level. From Table 3, it is noticeable that lower Q and R 
produce the best result as indicated by result number 3. However, there is a limit to how extreme both Q and R values can be, before the 
uncertainties are underestimated or overestimated. Table 4 attempts to explain the underestimation by extending values of Q and R 
combination around result number 3 in Table 3. Table 4 shows optimum combinations of Q and R as result numbers 1, 5 and 9. The 
correlation between Q and R is formulated as (22). The optimum ratio of the confidence level of observation over the confidence level 
of prediction is approximately 500 times. Fig. 21 plots Eq. (22) showing a regression line. 

R ≅ 500 × Q (22)  

4.3. Fourier transform 

In Table 5, the combination of smaller subset size and smaller stride requires longer processing time due to a higher number of 
iterations. The term stride in this methodology has the same idea as the stride used in HWT. In general, a smaller subset size (period) 
yields a better set of results. 

The Gaussian window does better than the exponential window, especially the narrow one (std = 5 versus tau = 5). However, wider 
exponential window (tau = 113) performs better than wide Gaussian window (std = 113). This demonstrates that not only the 
narrowness of the window is important, but also the type of window. Out of Table 5, result number 3 produces the best result. The 
selection as the best result is emphasized by Table 6 and Fig. 22 that the Gaussian window with std = 5 has both the best MAE and R2. 

4.4. Descriptive statistics denoising 

Table 7 shows that similar to other methods discussed so far, a smaller subset size and stride require longer processing time to 
process more iterations. The term stride in this methodology has the same idea as stride used in HWT and FFT. Results for numbers 1 to 
4 have a smaller subset size advantage. Subsequently, the gap size (explained in Fig. 15) tends to be smaller as well. Therefore, 
interpolation over a smaller gap has a smaller error than interpolation over a larger gap. Despite yielding an inferior set of R2 scores, a 
smaller subset size manages to achieve a better set of MAE metrics over results number 5 to 8. This emphasizes the different functions of 

Table 5 
Fourier transform configuration comparison.  

No. Subset Size Stride Window MAE R2 Processing Time (ms) 

1 100 0.25 Exponential, tau = 5 0.004015 0.624 1832 
2 100 0.25 Exponential, tau = 113 0.002314 0.742 1821 
3 100 0.25 Gaussian, std ¼ 5 0.002250 0.816 1872 
4 100 0.25 Gaussian, std = 113 0.002335 0.702 1839 
5 100 1 Exponential, tau = 5 0.003996 0.615 588 
6 100 1 Exponential, tau = 113 0.002312 0.737 603 
7 100 1 Gaussian, std = 5 0.002220 0.810 598 
8 100 1 Gaussian, std = 113 0.002337 0.699 605 
9 500 0.25 Exponential, tau = 5 0.004483 0.538 645 
10 500 0.25 Exponential, tau = 113 0.002689 0.772 650 
11 500 0.25 Gaussian, std = 5 0.002757 0.784 722 
12 500 0.25 Gaussian, std = 113 0.002702 0.765 655 
13 500 1 Exponential, tau = 5 0.004373 0.528 288 
14 500 1 Exponential, tau = 113 0.002562 0.768 286 
15 500 1 Gaussian, std = 5 0.002587 0.786 319 
16 500 1 Gaussian, std = 113 0.002572 0.761 291  

Table 6 
Fourier transform denoising extended configuration comparison.  

No. Subset Size Stride Window MAE R2 Processing Time (ms) 

1 100 0.25 exponential, tau = 5 0.004015 0.624 1858 
2 100 0.25 exponential, tau = 29 0.002423 0.789 1856 
3 100 0.25 exponential, tau = 53 0.002338 0.772 1899 
4 100 0.25 exponential, tau = 87 0.002317 0.752 1863 
5 100 0.25 exponential, tau = 113 0.002314 0.742 1866 
6 100 0.25 gaussian, std ¼ 5 0.002250 0.816 1978 
7 100 0.25 gaussian, std = 29 0.002262 0.786 1912 
8 100 0.25 gaussian, std = 53 0.002299 0.738 1933 
9 100 0.25 gaussian, std = 87 0.002326 0.710 1885 
10 100 0.25 gaussian, std = 113 0.002335 0.702 1962  
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MAE and R2 metrics. While R2 is a good metric to evaluate the similarity between Solution and Denoised based on the trend, MAE is a 
good metric to evaluate dissimilarity. 

Fig. 23 shows the comparison of the results using different strides. In Fig. 23(a) region in the green rectangle, the suspected noise 
data points are discarded and appear as gaps in the orange curve (Denoised). These gaps are filled with linear interpolation (not shown 
in Fig. 23). Although there is a large gap in Fig. 23(a) green rectangle, the error from interpolation is relatively small as it nears the blue 
curve (Solution). The disadvantage of the larger gaps is shown in Fig. 23(a), as indicated in the region in the red rectangle. Once the 

Fig. 22. . AE and R2 comparison for extended configuration. (a) MAE at extended std/tau settings. Lower is better. (b) R2 at extended std/tau 
settings. Higher is better. 

Table 7 
Statistical denoising configuration comparison.  

No. Subset Size Stride Threshold MAE R2 Processing Time (ms) 

1 10 0.5 0.001 0.001938 0.796 6425 
2 10 0.5 0.005 0.002044 0.780 6075 
3 10 1 0.001 0.001935 0.792 3627 
4 10 1 0.005 0.002036 0.780 3188 
5 50 0.5 0.001 0.002240 0.819 1703 
6 50 0.5 0.005 0.002041 0.834 1584 
7 50 1 0.001 0.002341 0.800 1064 
8 50 1 0.005 0.002049 0.831 1068  
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Fig. 23. Comparison of longer vs shorter strides prior to interpolation. Each subfigure has a zoomed-out perspective of a denoised result from one segment (left), and respective zoomed-in regions 
(center and right) as indicated by coloured rectangles (green and red). (a) Longer stride, Stride = 1.0; (b) Shorter stride, Stride = 0.1. 
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interpolation is applied, the result will be worse than the red region in Fig. 23(b). This is because there are too many discarded data 
points to adequately follow the Solution (blue plot) closely. This disadvantage will be reflected in higher MAE errors. 

4.5. Artificial neural network (Autoencoder) 

Out of numerous ANN architectures, this paper only focuses on autoencoder with a one-dimensional convolutional layer. Table 8 
shows the comparison of three ANN configurations. The processing time is the training time required to train a model and to make a 
prediction. As ANN is non-deterministic, the performance of a model may vary quite considerably by the model of the same config-
uration trained at different times. However, one configuration should perform better than the other on average. 

In Table 8, result #2 also attempts to describe that the middle ground of not having too small or too large of convolution (period), 
filter and kernel is a good configuration. Apart from the configuration in Table 8, there are more possibilities to tune and improve this 
denoising method. One way is to enrich the training dataset by augmenting existing ones (DeVries and Taylor, 2017). Another way is to 
use other types of layers (e.g., dense, or RNN/LSTM layer) (Sainath et al., 2015; Hochreiter and Schmidhuber, 1997). 

4.6. Comparison of different methodologies 

Fig. 24 shows the comparison of the five methods discussed in this paper tested with one segment (segment #2). Visually, it is 
obvious that all of them produce acceptable results with the spikes mostly removed. The result from descriptive statistic denoising in 
Fig. 24(d) leaves out two or three big spikes. The Fourier transform in Fig. 24(b) denoising leaves out many smaller spikes. In the 
artificial neural network in Fig. 24(e), there is a downward shift by the Denoised result throughout. In addition, the tail end of the 
Denoised is starting to separate. Results from the Haar wavelet transform in Fig. 24(a) and Kalman filter in Fig. 24(b) produce 
competitive results, albeit the Haar wavelet performs slightly better. 

Table 9 shows the KPI metrics comparison of the denoising methods. The best performing according to the R2 score is the statistical 
denoising, despite leaving out two big spikes (see Fig. 24(d)). It is due to the nature of this method that it does not alter original raw 
noisy data. It either accepts or rejects data points based on a statistical threshold. Only when it rejects suspected noise, thus creating a 
missing data point, it artificially fills the missing data point by linear interpolation. Hence, most of the valid (not noisy) data points are 
accepted as is, resulting in a very good MAE value. The next best performing is the Haar wavelet transform, with the best R2 score. 
Therefore, it indicates that it has the closest correlation or similarity to the solution. It is due to the nature of Haar wavelet transform 
denoising that tends to preserve the shape of the original signal. It only reduces fluctuation/peaks while maintaining the trend. In other 
words, the spikes do not go away, only mitigated. 

Fourier transform assumes that the noise’s frequency is at the high end of the frequency spectrum. Given this assumption, it 
discriminately reduces the high-frequency components according to the windowing factor. Since it discriminatively treats the higher 
frequency range as noise, some parts of the high frequency that may be the valid data points are also affected. More analyses could be 
carried out to identify the noise frequencies, and to perform a targeted reduction of noise instead (Slimane and Zaid, 2021). Fourier 
transform implementation uses optimized software (scipy) (Virtanen et al., 2019). Therefore, its processing time is the best. There is 
an opportunity to optimize the other two methods (Haar wavelet transform and statistical denoising) to reduce processing time. 

Similar to Fourier transform, Kalman filter and autoencoder also use readily available software frameworks (filterpy and 
tensorflow) (Abadi et al., 2016). Both Kalman Filter and autoencoder use a predictive approach (Haykin, 2004). Autoencoder re-
quires training an ANN model. Training requires the same data points to be input to the model multiple times (also known as training 
epochs), hence requiring a longer processing time than the Kalman filter. Kalman filter immediately predicts the next data point in 
each iteration based on the previous iteration. 

This paper aims to solve a problem that is of one type, i.e., to clean a signal whose noise is a very narrow period of discontinuity 
away from the true signal at random intervals and values. This noise type appears as spikes over the true valid signal. All five denoising 
methods could be tricked by a set of raw data whose true signals appear to have the same characteristics as noise. This is shown in 
Fig. 25 with statistical denoising. The earlier part of the true (Solution) is noise-like, and all cleaning methodology struggles to 
distinguish it. Therefore, it is denoised by all denoising methods. 

Fig. 26 discusses further the case in which the valid data points are noise-like, using a sample case from segment #4. It can be 
observed in Fig. 26(b) that the filtering by KF is over-zealous. In contrast, as shown in Fig. 26(c), the filtering by DSD is performing 
relatively well. However, there is a limit to how well the DSD can perform in such a situation. Fig. 27 discusses this further using a 
sample case from another segment, #9. It is especially apparent from the later half of the curve, that the fluctuation by the valid data 
points (not noise) is overly reduced. Nevertheless, using any filtering method discussed in this paper, the general trend of the denoised 
signal is still maintained with the general trend of the solution, at the expense of the precision of point-by-point precision. 

Despite its limitations, the methods discussed in the paper could be tuned to target to reject/denoise certain levels of spikes while 

Table 8 
ANN autoencoder configuration.  

No. Period Filter Kernel MAE R2 Training Time (s) 

1 64 8 16 0.009279 0.881 121 
2 128 16 32 0.005359 0.942 122 
3 256 32 64 0.013425 0.797 175  
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Fig. 24. Results comparison: (a) Haar wavelet transform, subset size = 26 (64), stride = 0.25, f = 8, (b) Kalman Filter, Q = 0.0005, R = 0.25, P = 100. (c) Fourier transform, subset size = 100, stride =
0.25, window type is Gaussian (std = 5). (d) Descriptive statistic denoising, subset size = 10, Stride = 0.25, standard deviation threshold = 0.001, and (e) ANN autoencoder, period = 128, filter = 16, 
kernel = 32. 
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accepting others, especially the neural network method. It is especially true for HWT and DSD. The filtered data could be used in 
enhancing the training efficiency of the machine learning system in predicting fuel consumption. 

5. Conclusion 

This paper aims to discuss characteristics of filtering methods from five topics, i.e., wavelet transforms, optimal estimation, fre-
quency decomposition, descriptive statistics and artificial neural network (autoencoder) using actual noisy mass flowmeter data. As 
explained in the introduction, the use of a mass flowmeter on a tugboat to measure actual fuel usage is uncommon in the Singapore 
region. Hence, the problem presented (and its solution) is unconventional and requires an unconventional solution as well. 

Given the characteristics of each filtering method, there is an opportunity to tailor the solution for applications other than those 
discussed in this paper. For instance, Fourier transform could easily filter data in which the unwanted frequency is known. However, 
the Fourier transform struggles when the target frequency is discriminatively selected or unknown. The same could not be said of 
descriptive statistics denoising, as it does not have such a characteristic. What descriptive statistics denoising is good at, though, is 
when the noise is of a certain discontinuity level which can be isolated by a set of conditional thresholds. 

Haar wavelet transforms distinctive characteristic is that it processes by smoothening (or sharpening by tuning f in Eq. (6)) data in 
batches of power of two. Hence, it is suitable to filter digital data. Similar to the Haar wavelet transform, the Kalman filter also has the 
characteristic of smoothening effect. This effect creates the illusion that the data point sequence has momentum whose mass and velocity 
are analogous to Q and R. Kalman filter is already a popular filtering method to filter sensor measurement (i.e., GPS which could be 
quite sporadic). However, unlike the Haar wavelet transform, the Kalman filter uses prediction similar to the ANN. Nevertheless, 
unlike the Kalman filter, the ANN (autoencoder) requires a large amount of dataset to train, and quite considerable efforts to tune right. 
Once, optimally done, the autoencoder could become a useful method to filter data with a unique or peculiar pattern due to the 
convolutional feature. 

As also explained in the introduction, the imperfection in raw mass flow data due to noise is a problem that better be solved using 
software correction instead of hardware correction. Although all methods discussed in the paper have done a relatively good job in 
denoising the spikes, some methods perform better than others as far as filtering mass flow data is concerned. The Haar wavelet 
transform, Kalman filter, and descriptive statistical denoising are proven to be accurate and lightweight (requiring no significant 

Table 9 
Final KPI metrics comparison among denoising methods on segment #2 only.  

Denoising Method MAE R2 Processing Time1 

Haar Wavelet Transform 0.001721 0.993579 301 ms 
Kalman Filter 0.001771 0.992649 345 ms 
Fourier Transform 0.001862 0.991261 11 ms 
Descriptive Statistics Denoising 0.000588 0.993416 76 ms 
ANN Autoencoder 0.003762 0.982553 122 s 2  

1 Processing time for processing segment #2 only. 
2 Including model training time. 

Fig. 25. Raw data with noise (Problem) whose true signal (Solution) appear to be noisy.  
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Fig. 26. Filtering of a noise-like valid signal (or data-points). (a) Observation. (b) Over-zealous denoising by KF. (c) Denoising by DSD.  
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computing requirement) to filter out spikes in the mass flow data. 
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