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Abstract

This paper is devoted to the stability in distribution of stochastic differential equations with
Markovian switching and Lévy noise by delay feedback control. By constructing efficient
Lyapunov functional and linear delay feedback controls, the stability in distribution of
stochastic differential equations with Markovian switching and Lévy noise is accomplished
with the coefficients satisfying globally Lipschitz continuous. Moreover, the design meth-
ods of feedback control under two structures of state feedback and output injection are
discussed. Finally, a numerical experiment and new algorithm are provided to sustain the
new results.

1 INTRODUCTION

Over the past years, following the development of stochastic
differential equations with Markovian switching (SDEs-MS),
many authors have turned their attentions to the studies of
SDEs-MS-LN. This class of systems is often used to model
many realistic systems, such as mathematical finance, biology
and so on, see refs. [1–5]. As an important aspect of the study
of SDEs-MS-LN, asymptotic stability analysis has been broadly
studied in refs. [6–11] and references therein. In ref. [12], some
sufficient conditions were established to get almost surely expo-
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nential stability of neural networks with Markovian switching
and Lévy noise. Using a continuously differentiable Lyapunov
function, Li et al. [13] showed the moment exponential input-
to-state stability for nonlinear switched stochastic differential
equations. As can be followed from the literature mentioned
above, the majority of research in this field has concentrated
on the stability of the trivial solutions in probability or moment
and so on.

However, many hybrid systems under realistic backdrops
do not have an equilibrium state or their solutions do not
converge to zero (such as stochastic two-species competitive
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Lotka–Volterra system in biology [14], flexible manufactur-
ing systems in engineering [15]). It is unsuitable to investigate
the asymptotic stability of trivial solutions in this case. From
another point of view, this kind of stability is excessively mighty
and powerful to some extent while in reality, it is sufficient
to recognise if the probability distribution of the solution will
converge to some distribution or not (but not necessary to
zero). This property is called asymptotic stability in distribu-
tion. Stability in distribution of SDEs-MS has been attracted
much attention and some research results appeared, for exam-
ple, Yuan et al. [16], Yuan and Mao [17], Bo and Yuan [18],
Dua et al. [19], Li and Zhang [20]. It is rather remarkable that
You [21] and several collaborators recently made a ground-
breaking work: stabilisation in distribution for SDEs-MS with
Brownian motion by linear delay feedback controls (DFC) when
coefficients are globally Lipschitz continuous. As a continuous
stochastic process, Brownian motion has been widely used in
SDEs-MS. However, due to some random jump type instanta-
neous disturbance, the classical Brownian motion cannot always
describe this kind of phenomenon well. In this case, Lévy noise
as a discontinuous process is more appropriate for modelling
these systems. Unfortunately, as far as we know, the stability
in distribution of SDEs-MS-LN by feedback control has not
been considered.

Consider the following unstable SDEs-MS-LN

dY (t ) = f (Y (t ), q(t ))dt + g(Y (t ), q(t ))dW (t )

+ ∫
ℝn

0

h(Y (t− ), q(t− ), x )Ñ (dt , dx ),
(1)

where Y (t ) ∈ ℝd and q(t ) is a Markov chain, W (t ) is a Brow-
nian motion, Ñ (dt , dx ) is a compensated Poisson random
measure and ℝn

0 = ℝ
n − {0}. (More precise notion of SDEs-

MS-LN will be given in the next section.) Can we stabilise it by
DFC u(Y (t − 𝜏), q(t )) so that the controlled system

dY (t ) =[ f (Y (t ), q(t )) + u(Y (t − 𝜏), q(t ))]dt

+ g(Y (t ), q(t ))dW (t )

+ ∫
ℝn

0

h(Y (t− ), q(t− ), x )Ñ (dt , dx ),

(2)

becomes stable in distribution?
In this article we are interested in investigating how to use a

DFC to stabilise a given unstable SDEs-MS-LN in the sense of
asymptotic stability in distribution. The key works of this article
are highlighted below.

∙ Based on linear delay feedback control, the stability in distri-
bution is investigated for SDEs-MS-LN in functional space
𝜏 .

∙ We obtain a bound on 𝜏∗ in order that the linear DFC works
if only 𝜏 ≤ 𝜏∗.

∙ For state feedback and output injection two structure case,
the corresponding feedback controls of SDEs-MS-LN are
designed.

∙ We develop new algorithm to verify the convergence of the
distribution of two segment processes.

To close this introduction, we would like to compare our
work with You et al. [21]. Their paper was the first to design
feedback control to stabilise a given unstable SDEs-MS in the
sense of asymptotic stability in distribution. It is a very signifi-
cant and profound contribution to study the stabilisation issue
of the practical applications. In ref. [21], the authors assumed
that the SDEs-MS were driven by Brownian motions. How-
ever, in general, many hybrid systems may be subject to some
random jump type instantaneous disturbance (e.g. hurricanes,
sandstorms and earthquakes). Lévy noise is therefore more use-
ful in real world and this is what we will establish in this paper.
To investigate the SDEs-MS-LN, we adopt the functional space
𝜏 (please see Section 2 for the formal definitions) endowed
with the Skorokhod topology rather 𝜏 in ref. [21] and different
Lyapunov functionals are also established in our proofs.

This article is organised as follows. We first presents some
preliminaries and assumptions concerning Equation (1) in Sec-
tion 2. In Section 3, in view of Lyapunov functional and Itô
formula, we investigate the stable in distribution of the solu-
tion to Equation (2). In Section 4, we give some important
Corollaries and discuss how to design linear DFC matrix. While
the numerical simulations to support the theoretical results are
given in Section 5. Finally, Section 6 states the main conclusions.

2 PRELIMINARIES

Let | ⋅ | denote the Euclidean norm or the matric trace
norm, respectively. ℝd denote the d -dimensional Euclidean
space and (ℝd ) represents the family of all Borel mea-
surable sets in ℝd . If A is a matrix, its trace norm is
denoted by |A| =√

trace(AT A) while its operator norm is
denoted by ‖A‖ = sup |Ay| ∶ |y| = 1. If A is a symmetric
matrix, denote by 𝜆max(A) and 𝜆min(A) its largest and smallest
eigenvalue, respectively.

(Ω, , {t }t≥0, ℙ) denotes a complete probability space,
in which a filtration {t }t≥0 satisfying the usual condi-
tions. Let 𝜏 (or D([−𝜏, 0]; ℝd )(𝜏 > 0)) be the family of all
càdlàg (i.e. right continuous with left limits) function 𝜂 ∶
[−𝜏, 0] → ℝd endowed with the Skorokhod topology and met-
ric given by dS (𝜂1, 𝜂2) = inf𝜆∈Λ{‖𝜆‖◦ ∨ ‖𝜂1 − 𝜂2◦𝜆‖𝜏}, where
Λ denote the class of strictly increasing, continuous map-
pings of [−𝜏, 0] onto itself, 𝜂2◦𝜆 denotes the composition

of two functions 𝜂2 and 𝜆, ‖𝜆‖◦ = sup
−𝜏≤s<t≤0 | log

𝜆(t )−𝜆(s)

t−s
|

and ‖𝜂‖𝜏 = sup
−𝜏≤u≤0 |𝜂(u)|. Under the Skorohod metric

dS, D([−𝜏, 0]; ℝd ) is complete and separable (ref. [22], The-
orem 12.2, p. 128). Also, (𝜏 ) represents the family of
all Borel measurable sets in 𝜏 . Let W (t ) = (W1, … ,Wm )
be an m-dimensional Brownian motions and N (t , x ) be an
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n-dimensional Poisson process and denote the compensated
Poisson random measure by

Ñ (dt , dx )T

= N (dt , dx ) − 𝜈(dx )dt

= (N1(dt , dx1) − 𝜈1(dx1)dt , … ,Nn(dt , dxn ) − 𝜈n(dxn )dt ),

where {Nk, k = 1, … , n} are independent 1-dimensional Pois-
son random measures with characteristic measure {𝜈k, k =
1, … , n} coming from n independent 1-dimensional Poisson
point processes.

Let q(t ), t ≥ 0, be a right-continuous Markov chain with
finite state space 𝕊 = {1, 2, … ,N } on the probability space. The
generator of {q(t )}t≥0 is defined by Γ = (𝛾i j )N×N given by

ℙ{q(t + 𝛿) = j |q(t ) = i} =

{
𝛾i j𝛿 + o(𝛿) if i ≠ j ,

1 + 𝛾i j𝛿 + o(𝛿) if i = j ,

where 𝛿 > 0 satisfies lim𝛿→0
o(𝛿)

𝛿
= 0 and 𝛾i j is the transition

rate from i to j satisfying 𝛾i j > 0 if i ≠ j while 𝛾ii = −
∑

i≠ j
𝛾i j .

We assume that W (t ), N (t , x ), q(t ) are mutually independent.
Consider a d -dimension SDEs-MS-LN (1), where f ∶ ℝd ×

𝕊 → ℝd , g ∶ ℝd × 𝕊 → ℝd×m and h ∶ ℝd × 𝕊 × ℝn
0 → ℝd×n

are Borel measurable functions, Y (t− ) = lims↑t Y (s). We note
that each column h(k) of the d × n matrix h = [hl j ] depend on x

only through the kth coordinate xk, that is

h(k)(Y , i, x ) = h(k)(Y , i, xk ); x = (x1, … , xn ) ∈ ℝn
0,

by means of refs. [23,24], we researched this type of dependence
of SDEs-MS-LN. The component of Y (t ) = (Yl (t ))l≤d =
(Yl (t ), … ,Yd (t )) in system (1) has the following form:

dYl (t ) = fl (Y (t ), q(t ))dt +

m∑
j=1

gl j (Y (t ), q(t ))dWj (t )

+

n∑
k=1

∫
ℝ⧵{0}

hlk(Y (t− ), q(t− ), xk )Ñk(dt , dxk ).

To study the stabilisation in distribution of system (1), we
impose the following assumption.

Assumption 2.1. Assume that f , g and h are globally Lipschitz
continuous. That is, there exists positive constants e1, e2 and e3
such that

| f (y, i ) − f (z, i )|2 ≤ e1|y − z|2, |g(y, i ) − g(z, i )|2 ≤ e2|y − z|2
and

n∑
k=1

∫
ℝ⧵{0}

|h(k)(y, i, xk ) − h(k)(z, i, xk )|2𝜈k(dxk ) ≤ e3|y − z|2

for all y, z ∈ ℝd and i ∈ 𝕊.

From Assumption 2.1, it can be directly obtained that

| f (y, i )|2 ≤ 2e1|y|2 + e0, |g(y, i )|2 ≤ 2e2|y|2 + e0 (3)

and

n∑
k=1

∫
ℝ⧵{0}

|h(k)(y, i, xk )|2𝜈k(dxk ) ≤ 2e3|y|2 + e0 (4)

for each (y, i ) ∈ ℝd × 𝕊, where e0 = 2 maxi∈𝕊(| f (0, i )|2 ∨|g(0, i )|2) ∨
∑n

k=1 ∫ℝ⧵{0} |h(k)(0, i, xk )|2𝜈k(dxk ).
Under Assumption 2.1, it is proved in Wei et al. [10] that the

solution Y (t ) of SDEs-MS-LN (1) exists and is unique for all
t ≥ 0. Suppose that the original SDEs-MS-LN (1) is not stable
in distribution. To make it stable, we construct a feedback con-
trol in the drift part to stabilise the original SDEs-MS-LN (1).
We use the linear form of DFC to make the design more concise
and simple, that is u(Y (t − 𝜏), q(t )) = U (q(t ))Y (t − 𝜏), where
U (i ) ≡ Ui ∈ ℝ

d×d (1 ≤ i ≤ N ). Thus the controlled system (2)
can be rewritten as

dY (t ) =[ f (Y (t ), q(t )) +U (q(t ))Y (t − 𝜏)]dt

+ g(Y (t ), q(t ))dW (t )

+ ∫
ℝn

0

h(Y (t− ), q(t− ), x )Ñ (dt , dx ).

(5)

Actually, the controlled system (5) is a stochastic delay dif-
ferential equations with Markovian switching and Lévy noise
(SDDEs-MS-LN) and so we naturally choose the correspond-
ing initial data as

{
{Y (s) ∶ −𝜏 ≤ s ≤ 0} = 𝜂 ∈ 𝜏,

q(0) = i ∈ 𝕊.
(6)

As is known to all (see, e.g. refs. [24], [25], and [28]), for any
initial data (6), Assumption 2.1 guarantees the existence of
global solution for the SDDEs-MS-LN. Define Yt = {Y (t +
s) ∶ −𝜏 ≤ s ≤ 0} for t ≥ 0. Denote by Y 𝜂,i (t ) the solution to
SDDEs-MS-LN (5) with initial data (6) and denote by qi (t ) the
Markov chain starting from i. In addition, as far as we known
that (see, e.g. ref. [28])

𝔼[‖Y
𝜂,i

t ‖2
𝜏] < Ct (1 + ‖𝜂‖2

𝜏 ) ∀t ≥ 0, (7)

where Ct represents a positive number depending on t but not
on (𝜂, i ). For t ≥ 0, we can easily get that the joint process
(Yt , q(t )) is a time-homogeneous Markov process with transi-
tion probability p(t , 𝜂, i; d𝜉 × { j }) (see, e.g. refs. [24] and [29]),
where p(t , 𝜂, i; d𝜉 × { j }) denotes transition probability measure
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on 𝜏 × 𝕊, namely

ℙ((Y 𝜂,i
t , qi (t )) ∈ O × G ) =

∑
j∈G

∫
O

p(t , 𝜂, i; d𝜉 × { j }) (8)

for any O ∈ (𝜏 ) and G ∈ 𝕊.
Let  (𝜏 ) be the family of probability measures on the mea-

surable space (𝜏,(𝜏 )). For ℙ1, ℙ2 ∈  (𝜏 ), define metric
d𝕃 by

d𝕃(ℙ1, ℙ2) = sup
F∈𝕃

|||∫𝜏 F (𝜂)ℙ1(d𝜂) − ∫𝜏 F (𝜂)ℙ2(d𝜂)|||,
(9)

where 𝕃 = {F ∶ 𝜏 → ℝ satisfying |F (𝜂) − F (𝜉 )| ≤ dS(𝜂, 𝜉 )
and |F (𝜂)| ≤ 1 for 𝜂, 𝜉 ∈ 𝜏}. Besides, let (Yt ) represent the
probability measure generated by Yt on (𝜏,(𝜏 )).

Definition 2.2. The SDDEs-MS-LN (5) is said to be stable in
distribution if there exists a probability measure 𝜔𝜏 ∈  (𝜏 )
such that

lim
t→∞

d𝕃((Y 𝜂,i
t ), 𝜔𝜏 ) = 0 (10)

for all (𝜂, i ) ∈ 𝜏 × 𝕊.

Remark 2.3. From Yuan and Mao [24], we know that the stability
in distribution is defined on the joint process (Y 𝜂,i

t , qi (t )), that
is, the transition probability measure p(t , 𝜂, i; d𝜉 × { j }) con-
verges weakly to a probability measure on 𝜏 × 𝕊 as t →∞.
Clearly, it is known (see, e.g. ref. [26]) that the Markov chain
qi (t ) has a unique stationary distribution.

3 STABILISATION IN DISTRIBUTION

Denote by C 2(ℝd × 𝕊;ℝ+ ) the family of all non-negative con-
tinuous functions Φ(y, i ) defined on ℝd × 𝕊, such that for all
i ∈ 𝕊, they are twice continuously differentiable in y. Suppose
that there exist one Φ ∈ C 2(ℝd × 𝕊;ℝ+ ), define an operator
LΦ from ℝd × 𝕊 to ℝ by

LΦ(y, i )

=Φy (y, i )[ f (y, i ) +Uiy]

+
1
2

trace[g(y, i )T Φyy (y, i )g(y, i )]

+ ∫
ℝ⧵{0}

n∑
k=1

[Φ(y + h(k)(y, i, xk ), i ) − Φ(y, i )

− Φy (y, i )h(k)(y, i, xk )]𝜈k(dxk ) +
N∑
j=1

𝛾i jΦ(y, j ),

(11)

where Φy (y, i ) =
(
𝜕Φ(y,i )

𝜕y1
,
𝜕Φ(y,i )

𝜕y2
, … ,

𝜕Φ(y,i )

𝜕yd

)
, Φyy (y, i ) =(

𝜕2Φ(y,i )

𝜕yi𝜕y j

)
d×d

.

In what follows we also need to consider the difference
between two solutions of the system (5) starting from different
initial data, that is,

Y 𝜂,i (t ) −Y 𝜉,i (t )

=𝜂 − 𝜉 + ∫
t

0
[ f (Y 𝜂,i (s), qi (s)) − f (Y 𝜉,i (s), qi (s))

+U (qi (s))(Y 𝜂,i (s − 𝜏) −Y 𝜉,i (s − 𝜏))]ds

+ ∫
t

0
[g(Y 𝜂,i (s), qi (s)) − g(Y 𝜉,i (s), qi (s))]dW (s)

+ ∫
t

0 ∫
ℝn

0

[h(Y 𝜂,i (s− ), qi (s
− ), x )

− h(Y 𝜉,i (s− ), qi (s
− ), x )]Ñ (ds, dx ).

(12)

Let Ψ ∈ C 2(ℝd × 𝕊;ℝ+ ), we define an operator 𝕃Ψ ∶ ℝd ×
ℝd × 𝕊 → ℝ related to Equation (12) by

𝕃Ψ(y, z, i )

=Ψy (y − z, i )[ f (y, i ) − f (z, i ) +Ui (y − z )]

+
1
2

trace[(g(y, i ) − g(z, i ))TΨyy (y − z, i )(g(y, i ) − g(z, i ))]

+ ∫
ℝ⧵{0}

n∑
k=1

[Ψ(y − z + h(k)(y, i, xk ) − h(k)(z, i, xk ), i ), i )

− Ψ(y − z, i ) − Ψy (y − z, i )(h(k)(y, i, xk )

− h(k)(z, i, xk ))]𝜈k(dxk ) +
N∑
j=1

𝛾i jΨ(y − z, j ). (13)

Throughout this paper, we will set e4 = maxi∈𝕊 ‖Ui‖2. In
order to establish criterion on asymptotic stability in distribution
of the SDDEs-MS-LN (5), we make the following assumptions.

Assumption 3.1. There are positive numbers b0, 𝜃1, b2,
c1, function Φ(y, i ) ∈ C 2(ℝd × 𝕊;ℝ+ ) and J1(y) ∈ C (ℝd ; ℝ+ )
such that

c1|y|2 ≤ Φ(y, i ) ≤ J1(y),

LΦ(y, i ) + 𝜃1|Φy (y, i )|2 ≤ −b0J1(y) + b2

(14)

for all (y, i ) ∈ ℝd × 𝕊.

Assumption 3.2. There are positive numbers c2, 𝜃2, b1, func-
tion Ψ(y, i ) ∈ C 2(ℝd × 𝕊;ℝ+ ) and J2(y) ∈ C (ℝd ; ℝ+ ) such
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that

c2|y|2 ≤ Ψ(y, i ) ≤ J2(y),

𝕃Ψ(y, z, i ) + 𝜃2|Ψy (y − z, i )|2 ≤ −b1J2(y − z )
(15)

for all (y, z, i ) ∈ ℝd × ℝd × 𝕊.

3.1 Lyapunov functionals

In this section, we aim to deal with the asymptotic stability
in distribution of the SDDEs-MS-LN (5). Unless otherwise
specified, all hypothetical positive numbers below are inde-
pendent of the initial data (6). To achieve our purpose, we
first establish the Lyapunov functional on the segments Ŷt ∶=
{Y (t + u) ∶ −2𝜏 ≤ u ≤ 0} and q̂t = {q(t + u) ∶ −2𝜏 ≤ u ≤ 0}
for t ≥ 𝜏. Let q(s) = q(0) for −2𝜏 ≤ s ≤ 0. Obviously Ŷt is
D([−2𝜏, 0]; ℝd )-valued which is not same as Yt . We design a
Lyapunov functional as follow.

V (Ŷt , q̂t , t ) ∶= Φ(Y (t ), q(t )) + V̂ (Ŷt , q̂t , t ), for t ≥ −𝜏
(16)

where

V̂ (Ŷt , q̂t , t ) =𝛼 ∫
t

t−𝜏
∫

t

s

[
𝜏| f (Y (v), q(v)) +Uq(v)Y (v − 𝜏)|2

+ ∫
ℝn

0

|h(Y (v− ), q(v− ), x )|2𝜈(dx )

+|g(Y (v), q(v))|2] dvds (17)

and 𝛼 is a positive number to be chosen later.
One can see that

c1|Y (t )|2 ≤ V (Ŷt , q̂t , t ) ≤ J1(Y (t )) + V̂ (Ŷt , r̂t , t ). (18)

For simplicity, let Y 𝜂,i (t ) = Y (t ) and fix the initial data
(𝜂, i ) arbitrarily. Applying the functional Itô formula (It can be
obtained immediately by combining the ideas from refs. [30] and
[31]) to Equation (16) yields, for t ≥ 𝜏,

dV (Ŷt , q̂t , t ) = LV (Ŷt , q̂t , t ) dt + dI (t ) (19)

where I (t ) is a martingale with I (0) = 0, and

LV (Ŷt , q̂t , t )

= LΦ(Y (t ), q(t )) − ΦY (Y (t ), q(t ))Uq(t ) (Y (t ) −Y (t − 𝜏))

+𝛼𝜏
[
𝜏| f (Y (t ), q(t )) +Uq(t )Y (t − 𝜏)|2 + |g(Y (t ), q(t ))|2

+ ∫
ℝn

0

|h(Y (s− ), q(s− ), x )|2𝜈(dx )

]

−𝛼 ∫
t

t−𝜏

[
𝜏| f (Y (s), q(s)) +Uq(s)Y (s − 𝜏)|2

+ |g(Y (s), q(s))|2 + ∫
ℝn

0

|h(Y (s− ), q(s− ), x )|2𝜈(dx )

]
ds

≤ LΦ(Y (t ), q(t )) + 𝜃1|ΦY (Y (t ), q(t ))|2
+

1
4𝜃1

‖Uq(t )‖2|Y (t ) −Y (t − 𝜏)|2
+𝛼𝜏

[
𝜏| f (Y (t ), q(t )) +Uq(t )Y (t − 𝜏)|2 + |g(Y (t ), q(t ))|2

+ ∫
ℝn

0

|h(Y (s− ), q(s− ), x )|2𝜈(dx )

]

−𝛼 ∫
t

t−𝜏

[
𝜏| f (Y (s), q(s)) +Uq(s)Y (s − 𝜏)|2

+ |g(Y (s), q(s))|2 + ∫
ℝn

0

|h(Y (s− ), q(s− ), x )|2𝜈(dx )

]
ds.

(20)

Using Assumption 2.1 that one gains

𝛼𝜏
[
𝜏| f (Y (t ), q(t )) +Uq(t )Y (t − 𝜏)|2

+|g(Y (t ), q(t ))|2 + ∫
ℝn

0

|h(Y (t− ), q(t− ), x )|2𝜈(dx )

]

≤𝛼𝜏 [4e1𝜏|Y (t )|2 + 2e0𝜏 + 2e4𝜏|Y (t − 𝜏)|2
+2e2|Y (t )|2 + e0 + 2e3|Y (t )|2 + e0

]
≤𝛼𝜏 [2(2e1𝜏 + e2 + e3)|Y (t )|2
+2e0(𝜏 + 1) + 2e4𝜏|Y (t − 𝜏)|2]

≤𝛼𝜏 [2(2e1𝜏 + e2 + e3 + 2e4𝜏)|Y (t )|2
+2e0(𝜏 + 1) + 4e4𝜏|Y (t ) −Y (t − 𝜏)|2] .

(21)

In view of Assumption 3.1, we get from Equations (20) and (21)
that

LV (Ŷt , q̂t , t )

≤ − b0J1(Y (t )) + b2 +
e4

4𝜃1
|Y (t ) −Y (t − 𝜏)|2

+ 𝛼𝜏[2(2e1𝜏 + e2 + e3 + 2e4𝜏)|Y (t )|2
+ 2e0(𝜏 + 1) + 4e4𝜏|Y (t ) −Y (t − 𝜏)|2]

− 𝛼 ∫
t

t−𝜏

[
𝜏| f (Y (s), q(s)) +Uq(s)Y (s − 𝜏)|2

+|g(Y (s), q(s))|2 + ∫
ℝn

0

|h(Y (s− ), q(s− ), x )|2𝜈(dx )

]
ds
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≤ − bJ1(Y (t )) + b2 + 2e0𝛼𝜏(𝜏 + 1)

+

(
e4

4𝜃1
+ 4e4𝛼𝜏

2

) |Y (t ) −Y (t − 𝜏)|2 (22)

− 𝛼 ∫
t

t−𝜏

[
𝜏| f (Y (s), q(s)) +Uq(s)Y (s − 𝜏)|2

+|g(Y (s), q(s))|2 + ∫
ℝn

0

|h(Y (s− ), q(s− ), x )|2𝜈(dx )

]
ds

for t ≥ 𝜏, where b = b0 − 2𝛼𝜏(2e1𝜏 + e2 + e3 + 2e4𝜏)∕c1. Note
that, it follows from Equation (5) along with Equations (3) and
(4) that one gains

𝔼|Y (t ) −Y (t − 𝜏)|2
=𝔼|∫ t

t−𝜏

[ f (Y (s), q(s)) +U (q(s))Y (s − 𝜏)]ds

+ ∫
t

t−𝜏

g(Y (s), q(s))dW (s)

+ ∫
t

t−𝜏
∫
ℝn

0

h(Y (s− ), q(s− ), x )Ñ (ds, dx )|2
≤3𝜏𝔼∫

t

t−𝜏

| f (Y (s), q(s)) +U (q(s))Y (s − 𝜏)|2ds

+ 3𝔼|∫ t

t−𝜏

g(Y (s), q(s))dW (s)|2
+ 3𝔼|∫ t

t−𝜏
∫
ℝn

0

h(Y (s− ), q(s− ), x )Ñ (ds, dx )|2.

(23)

By Itô isometry,

𝔼|Y (t ) −Y (t − 𝜏)|2
≤3𝜏𝔼∫

t

t−𝜏

| f (Y (s), q(s)) +U (q(s))Y (s − 𝜏)|2ds

+ 3𝔼∫
t

t−𝜏

|g(Y (s), q(s))|2ds

+ 3𝔼∫
t

t−𝜏
∫
ℝn

0

|h(Y (s− ), q(s− ), x )|2𝜈(dx )ds.

(24)

Choose 𝛼 = 3e4

𝜃1

and 𝜏 ≤ 1

4
√

e4

. It then follows from Equations

(22)–(24) that

𝔼(LV (Ŷt , q̂t , t )) ≤ − b𝔼(J1(Y (t ))) + b2

+
6e4e0

𝜃1
𝜏(𝜏 + 1)

(25)

for t ≥ 𝜏.

3.2 Lemmas

To show our main results on the stabilisation in distribution, we
first present a couple of lemmas.

Lemma 3.3. Let Assumption 2.1 and Assumption 3.1 hold. If 𝜏 > 0
is small enough for

c1b0 −
6e4

𝜃1
𝜏(2e1𝜏 + e2 + e3 + 2e4𝜏) > 0 and 𝜏 ≤ 1

4
√

e4
,

then for any given initial data (6), the solution of Equation (5) has the

properties that

𝔼‖Y
𝜂,i

t ‖2
𝜏 ≤ C (1 + ‖𝜂‖2

𝜏 ) (26)

for all t ≥ 0, where C represents a positive constant.

Proof. From Equation (25), one can see that

𝔼(LV (Ŷt , q̂t , t )) ≤ − b𝔼(J1(Y (t ))) + 𝛽0 (27)

for t ≥ 𝜏, where 𝛽0 = b2 +
6e4e0

𝜃1
𝜏(𝜏 + 1). Let 𝛽3 be the unique

root to the equation

b − 𝛽3 − 2𝛽3M1𝜏e2𝜏𝛽3 = 0,

where M1 is a positive number to be determined later. In view
of the functional Itô formula to e𝛽3t V (Ŷt , q̂t , t ), we have

e𝛽3t𝔼(V (Ŷt , q̂t , t )) − e𝛽3𝜏𝔼(V (Ŷ𝜏, q̂𝜏, 𝜏))

=𝔼∫
t

𝜏

e𝛽3s (𝛽3V (Ŷs , q̂s , s) + LV (Ŷs , q̂s , s))ds, (28)

for t ≥ 𝜏. Using Equations (7) and (18), we hence obtain that

c1e𝛽3t𝔼|Y (t )|2 − 𝛽4(1 + ‖𝜂‖2
𝜏 )

≤𝔼∫
t

𝜏

e𝛽3s[𝛽3(J1(Y (s)) + V̂ (Ŷs , q̂s , s))

+ LV (Ŷs , q̂s , s)]ds, (29)

where 𝛽4 is a positive number. Moreover, by Equations (3) and
(4), we derive that

𝔼(V̂ (Ŷs , q̂s , s))

≤𝛼𝜏𝔼∫
s

s−𝜏

[
𝜏| f (Y (v), q(v)) +Uq(v)Y (v − 𝜏)|2

+|g(Y (v), q(v))|2 + ∫
ℝn

0

|h(Y (v− ), q(v− ), x )|2𝜈(dx )

]
dv
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≤𝛼𝜏 ∫
s

s−𝜏

[
2(2e1𝜏 + e2 + e3)𝔼|Y (v)|2 + 2e0(𝜏 + 1)

+2e4𝜏𝔼|Y (v − 𝜏)|2] dv

≤𝛼𝜏 ∫
s

s−𝜏

2(2e1𝜏 + e2 + e3)𝔼|Y (v)|2dv + 2𝛼𝜏2e0(𝜏 + 1)

+ 2e4𝛼𝜏 ∫
s

s−2𝜏
𝔼|Y (v)|2dv

≤𝛼𝜏 ∫
s

s−2𝜏
2(2e1𝜏 + e2 + e3 + e4)𝔼|Y (v)|2dv

+ 2𝛼𝜏2e0(𝜏 + 1)

≤M1 ∫
s

s−2𝜏
𝔼(J1(Y (v)))dv +M2 (30)

where M1 =
1

c1
2𝛼𝜏(2e1𝜏 + e2 + e3 + e4) and M2 = 2𝛼𝜏2e0(𝜏 +

1). Substituting Equation (30) into Equation (29), we can get

c1e𝛽3t𝔼|Y (t )|2 − 𝛽4(1 + ‖𝜂‖2
𝜏 )

≤∫
t

𝜏

e𝛽3s𝛽3

(
M1 ∫

s

s−2𝜏
𝔼(J1(Y (v)))dv +M2 + 𝔼(J1(Y (s)))

)
ds

+ ∫
t

𝜏

e𝛽3s
(
−b𝔼(J1(Y (s))) + 𝛽0

)
ds. (31)

Noting that

∫
t

3𝜏
e𝛽3s (∫

s

s−2𝜏
𝔼(J1(Y (v)))dv)ds

≤∫
t

𝜏

𝔼(J1(Y (v)))(∫
v+2𝜏

v

e𝛽3sds)dv

≤2𝜏e2𝜏𝛽3 ∫
t

𝜏

e𝛽3v𝔼(J1(Y (v)))dv. (32)

Then it follows from Equation (31) that

c1e𝛽3t𝔼|Y (t )|2 − 𝛽4(1 + ‖𝜂‖2
𝜏 )

≤𝛽3M1 ∫
3𝜏

𝜏

e𝛽3s ∫
s

s−2𝜏
𝔼(J1(Y (v)))dvds

+ (2𝛽3M1𝜏e2𝜏𝛽3 + 𝛽3)∫
t

𝜏

e𝛽3s𝔼(J1(Y (s)))ds

+ (M2𝛽3 + 𝛽0)∫
t

𝜏

e𝛽3sds − b∫
t

𝜏

e𝛽3s𝔼(J1(Y (s)))ds

≤𝛽3M1 ∫
3𝜏

𝜏

e𝛽3s ∫
s

s−2𝜏
𝔼(J1(Y (v)))dv)ds

− (b − 𝛽3 − 2𝛽3M1𝜏e2𝜏𝛽3 )∫
t

𝜏

e𝛽3s𝔼(J1(Y (s)))ds

+ (M2𝛽3 + 𝛽0)∫
t

𝜏

e𝛽3sds

≤𝛽3M1 ∫
3𝜏

𝜏

e𝛽3s ∫
s

s−2𝜏
𝔼(J1(Y (v)))dv)ds

+ (M2𝛽3 + 𝛽0)∫
t

𝜏

e𝛽3sds ≤ e𝛽3t𝛽7, (33)

where 𝛽7 and following 𝛽8 etc. are all positive numbers. This
implies that

𝔼|Y (t )|2 ≤ 𝛽8(1 + ‖𝜂‖2
𝜏 ), t ≥ 𝜏. (34)

Next, we shall estimate the segment process Yt . Let t ≥ 2𝜏 and
𝜃 ∈ [0, 𝜏]. In view of the Itô formula and Equation (5), we
have

|Y (t − 𝜃)|2
=|Y (t − 𝜏)|2 + 2∫

t−𝜃

t−𝜏

Y T (s)[ f (Y (s), q(s)) +Uq(s)Y (s − 𝜏)]ds

+ 2∫
t−𝜃

t−𝜏

Y T (s)g(Y (s), q(s))dW (s) + ∫
t−𝜃

t−𝜏

|g(Y (s), q(s))|2ds

+ ∫
t−𝜃

t−𝜏
∫
ℝ⧵{0}

n∑
k=1

[|Y (s) + h(k) (Y (s− ), q(s− ), xk )|2
− |Y (s)|2 − 2Y T (s)h(k) (Y (s− ), q(s− ), xk )]𝜈k(dxk )ds

+

n∑
k=1

∫
t−𝜃

t−𝜏
∫
ℝ⧵{0}

[|Y (s− ) + h(k) (Y (s− ), q(s− ), xk )|2
− |Y (s− )|2]Ñ (ds, dxk ). (35)

Following Kunita’s estimates (see ref. [27]), we obtain

𝔼 sup
0≤𝜃≤𝜏

|Y (t − 𝜃)|2
≤c3

{
𝔼∫

t

t−𝜏

[| f (Y (s), q(s))|2 + |Uq(s)Y (s − 𝜏)|2]ds

+ 𝔼|Y (t − 𝜏)|2 + 𝔼∫ t

t−𝜏

|g(Y (s), q(s))|2ds (36)

+ 𝔼∫
t

t−𝜏
∫
ℝ⧵{0}

n∑
k=1

|h(k) (Y (s− ), q(s− ), xk )|2𝜈(dxk )ds
}
.

By Equations (3) and (4), we have

𝔼 sup
0≤𝜃≤𝜏

|Y (t − 𝜃)|2 ≤c4

(
𝔼|Y (t − 𝜏)|2 + ∫

t

t−𝜏

𝔼|Y (s)|2ds
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+∫
t

t−𝜏

𝔼|Y (s − 𝜏)|2ds + c5

)
, (37)

where c3–c5 are all positive constants. This, together with
Equation (34), yields,

𝔼‖Yt‖2
𝜏 ≤ 𝛽9(1 + ‖𝜂‖2

𝜏 ), (38)

where 𝛽9 = c4(𝛽8 + 2𝜏𝛽8 + c5). Together with Equation (7),
obtain that the assertion (26). The proof is complete. □

Lemma 3.4. Let Assumption 2.1 and Assumption 3.2 hold. If 𝜏 > 0
is small enough for

b1c2 −
3e4

𝜃2
𝜏(2e1𝜏 + e2 + e3 + 2e4𝜏) > 0 and 𝜏 ≤ 1

2
√

2e4

,

then for any (𝜂, 𝜉, i ) ∈ 𝜏 ×𝜏 × 𝕊,

𝔼‖Y
𝜂,i

t −Y
𝜉,i

t ‖2
𝜏 ≤ 𝛼1‖𝜂 − 𝜉‖2

𝜏e
−𝛼2t (39)

for all t ≥ 2𝜏, where 𝛼1 and 𝛼2 represents positive numbers.

Proof. Fix any (𝜂, 𝜉, i ) ∈ 𝜏 ×𝜏 × 𝕊 and we simply write
E (t ) = Y 𝜂,i (t ) −Y 𝜉,i (t ). So Et = {E (t + s) ∶ −𝜏 ≤ s ≤ 0} for
t ≥ 0 and Êt = {E (t + s) ∶ −2𝜏 ≤ s ≤ 0} for t ≥ 𝜏. Next,
apply another Lyapunov functional Ṽ (Êt , q̂t , t )

Ṽ (Êt , q̂t , t )

∶=Ψ(Y 𝜂,i (t ),Y 𝜉,i (t ), q(t )) + 𝛼 ∫
t

t−𝜏
∫

t

s

[
𝜏| f (Y 𝜂,i (v), q(v))

− f (Y 𝜉,i (v), q(v)) +Uq(v)E (v − 𝜏)|2
+ |g(Y 𝜂,i (v), q(v)) − g(Y 𝜉,i (v), q(v))|2 (40)

+ ∫
ℝn

0

|h(Y 𝜂,i (v− ), q(v− ), x )

−h(Y 𝜉,i (v− ), q(v− ), x )|2𝜈(dx )
]

dvds,

for t ≥ 𝜏. Following the functional Itô formula, one get

dṼ (Êt , q̂t , t ) = LṼ (Êt , q̂t , t )dt + dĨ (t ) (41)

for t ≥ 𝜏, where Ĩ (t ) is a martingale with Ĩ (0) = 0, and

LṼ (Êt , q̂t , t )

=𝕃Ψ(Y 𝜂,i (t ),Y 𝜉,i (t ), q(t ))

− ΨY (Y 𝜂,i (t ),Y 𝜉,i (t ), q(t ))Uq(t )(E (t ) − E (t − 𝜏))

+ 𝛼𝜏
[
𝜏| f (Y 𝜂,i (t ), q(t )) − f (Y 𝜉,i (t ), q(t ))

+Uq(t )E (t − 𝜏)|2 + |g(Y 𝜂,i (t ), q(t )) − g(Y 𝜉,i (t ), q(t ))|2
+∫

ℝn
0

|h(Y 𝜂,i (t− ), q(t− ), x ) − h(Y 𝜉,i (t− ), q(t− ), x )|2𝜈(dx )

]

− 𝛼 ∫
t

t−𝜏

[
𝜏| f (Y 𝜂,i (s), q(s)) − f (Y 𝜉,i (s), q(s))

+Uq(s)E (s − 𝜏)|2 + |g(Y 𝜂,i (s), q(s)) − g(Y 𝜉,i (s), q(s))|2
+ ∫

ℝn
0

|h(Y 𝜂,i (s− ), q(s− ), x )

−h(Y 𝜉,i (s− ), q(s− ), x )|2𝜈(dx )
]

ds. (42)

We can derive by Assumption 2.1 and Assumption 3.2 that

LṼ (Êt , q̂t , t )

≤ − b̄J2(E (t )) + (e4∕4𝜃2 + 2e4𝛼𝜏
2)|E (t ) − E (t − 𝜏)|2

− 𝛼 ∫
t

t−𝜏

[
𝜏| f (Y 𝜂,i (s), q(s)) − f (Y 𝜉,i (s), q(s))

+Uq(s)E (s − 𝜏)|2 + |g(Y 𝜂,i (s), q(s)) − g(Y 𝜉,i (s), q(s))|2
+ ∫

ℝn
0

|h(Y 𝜂,i (s− ), q(s− ), x )

−h(Y 𝜉,i (s− ), q(s− ), x )|2𝜈(dx )
]

ds (43)

for t ≥ 𝜏, where b̄ = b1 −
1

c2
𝛼𝜏(2e1𝜏 + e2 + e3 + 2e4𝜏).

On the other hand, we can compute that

𝔼|E (t ) − E (t − 𝜏)|2
≤𝔼|∫ t

t−𝜏

[ f (Y 𝜂,i (s), q(s)) − f (Y 𝜉,i (s), q(s))

+U (q(s))E (s − 𝜏)]ds

+ ∫
t

t−𝜏

[g(Y 𝜂,i (s), q(s)) − g(Y 𝜉,i (s), q(s))]dW (s)

+ ∫
t

t−𝜏
∫
ℝn

0

[h(Y 𝜂,i (s− ), q(s− ), x )

− h(Y 𝜉,i (s− ), q(s− ), x )]Ñ (ds, dx )|2
≤3𝜏𝔼∫

t

t−𝜏

| f (Y 𝜂,i (s), q(s)) − f (Y 𝜉,i (s), q(s))

+U (q(s))E (s − 𝜏)|2ds

+ 3𝔼∫
t

t−𝜏

|g(Y 𝜂,i (s), q(s)) − g(Y 𝜉,i (s), q(s))|2ds
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+ 3𝔼∫
t

t−𝜏
∫
ℝn

0

|h(Y 𝜂,i (s− ), q(s− ), x )

− h(Y 𝜉,i (s− ), q(s− ), x )|2𝜈(dx )ds. (44)

Choosing 𝛼 =
3e4

𝜃2
and 𝜏 ≤ 1

2
√

2e4
. Therefore, we have

𝔼(LṼ (Êt , q̂t , t )) ≤ − b̄𝔼(J2(E (t ))) (45)

for t ≥ 𝜏. The following proof is similar to Lemma 3.3, thus we
have

𝔼|E (t )|2 ≤ 𝛼3‖𝜂 − 𝜉‖2
𝜏e
−𝛼2t (46)

for t ≥ 𝜏, where 𝛼3 and 𝛼2 represents positive constants.
Nevertheless, for t ≥ 2𝜏, it is easily obtain that

𝔼 sup
0≤𝜃≤𝜏

|E (t − 𝜃)|2
≤c6

{
𝔼|E (t − 𝜏)|2 + 𝔼∫ t

t−𝜏

[| f (Y 𝜂,i (s), q(s))

− f (Y 𝜉,i (s), q(s))|2 + |Uq(s)E (s − 𝜏)|2]ds

+ 𝔼∫
t

t−𝜏

|g(Y 𝜂,i (s), q(s)) − g(Y 𝜉,i (s), q(s))|2ds

+ 𝔼∫
t

t−𝜏
∫
ℝ⧵{0}

n∑
k=1

|h(k)(Y 𝜂,i (s− ), q(s− ), xk )

− h(k)(Y 𝜉,i (s− ), q(s− ), xk )|2𝜈(dxk )ds
}
.

(47)

By use of Assumption 1, one get that

𝔼 sup
0≤𝜃≤𝜏

|E (t − 𝜃)|2 ≤c7

(
𝔼|E (t − 𝜏)|2 + ∫

t

t−𝜏

𝔼|E (s)|2ds

+∫
t

t−𝜏

𝔼|E (s − 𝜏)|2ds

)
, (48)

where c6 and c7 are all positive numbers. This, together with
Equation (46), yields,

𝔼‖Et‖2
𝜏 ≤ 𝛼1‖𝜂 − 𝜉‖2

𝜏e
−𝛼2t , ∀t ≥ 2𝜏, (49)

where 𝛼1 = c7(𝛼3 + 2𝛼3𝜏). This imply the assertion (39) hold.
The proof is hence complete. □

3.3 Key theorems

Theorem 3.5. Let Assumption 2.1 and Assumption 3.1 hold.

Let 𝜏∗1 , 𝜏
∗
2 , 𝜏

∗
3 , 𝜏

∗
4 be the unique positive roots to the following

equations

b0c =
3e4

𝜃
2𝜏∗1 (2e1𝜏

∗
1 + e2 + e3 + 2e4𝜏

∗
1 ), 𝜏∗2 =

1

4
√

e4
,

b1c =
3e4

𝜃
𝜏∗3 (2e1𝜏

∗
3 + e2 + e3 + 2e4𝜏

∗
3 ), 𝜏∗4 =

1

2
√

2e4

,

(50)

respectively, and set 𝜏∗ = 𝜏∗1 ∧ 𝜏
∗
2 ∧ 𝜏

∗
3 ∧ 𝜏

∗
4 . Then for each 𝜏 < 𝜏∗,

there exists a unique probability measure 𝜔(𝜏) ∈  (𝜏 ) such that

lim
t→∞

d𝕃((Y 𝜂,i
t ), 𝜔𝜏 ) = 0 (51)

for all (𝜂, i ) ∈ 𝜏 × 𝕊.

Proof. At first, we show that for any compact set  ⊂ 𝜏 ,

lim
t→∞

d𝕃((Y 𝜂,i
t ),(Y 𝜉, j

t )) = 0 (52)

uniformly in (𝜂, 𝜉, i, j ) ∈  ×  × 𝕊 × 𝕊. Define sequence of
the stopping time oi j = inf{t ∶ qi (t ) = q j (t ), t ≥ 0}. Obviously
through the ergodicity of the Markov chain, we can know that
oi j < ∞ a.s. As a result, for each positive 𝜀 ∈ (0, 1), there exists
an K1 > 0 such that

ℙ(oi j ≤ K1) > 1 −
𝜀

6
. (53)

Recalling a known result that

sup
(𝜂,i )∈ ×𝕊

𝔼( sup
−𝜏≤t≤K1

|Y 𝜂,i (t )|) < ∞, (54)

this implies that we can find enough large K2 > 0 satisfying

ℙ(Ω𝜂,i ) > 1 −
𝜀

12
∀(𝜂, i ) ∈  × 𝕊, (55)

whereΩ𝜂,i = {𝜔 ∈ Ω ∶ sup
−𝜏≤t≤K1

|Y 𝜂,i (t , 𝜔)| ≤ K2}. For any
F ∈ 𝕃 and t ≥ K1, we yield

|𝔼F (Y 𝜂,i
t ) − 𝔼F (Y 𝜉, j

t )| ≤ 𝜀

3
+H1(t ), (56)

where H1(t ) ∶= 𝔼(I{oi j≤K1}|F (Y 𝜂,i
t ) − F (Y 𝜉, j

t )|). Set Ω1 =

Ω𝜂,i ∩ Ω𝜉,i ∩ {oi j ≤ K1}. By the Markov property of joint pro-

cess (Y 𝜂,i
t , qi (t )) and the property of conditional expectation,

we derive

H1(t )

=𝔼
(

I{oi j≤K1}𝔼(|F (Y 𝜂,i
t ) − F (Y 𝜉, j

t )|||oi j
)
)

=𝔼
(

I{oi j≤K1}
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×𝔼(|F (Y 𝜂,l
t−oi j

) − F (Y 𝜉̃,l
t−oi j

)|) ∣
𝜂=Y

𝜂,i
oi j
,𝜉̃=Y

𝜉, j
oi j

l=qi
oi j
=q

j
oi j

)
≤ 𝜀

3
+ 𝔼

(
IΩ1

(57)

×𝔼(|F (Y 𝜂,l
t−oi j

) − F (Y 𝜉̃,l
t−oi j

)|) ∣
𝜂=Y

𝜂,i
oi j
,𝜉̃=Y

𝜉, j
oi j

l=qi
oi j
=q

j
oi j

)

≤ 𝜀
3
+ 𝔼

(
IΩ1
𝔼dS (Y 𝜂,l

t−oi j
,Y

𝜉̃,l
t−oi j

) ∣
𝜂=Y

𝜂,i
oi j
,𝜉̃=Y

𝜉, j
oi j

l=qi
oi j
=q

j
oi j

)
.

It follows from the Proposition 1.17 in ref. [32] and dS (𝜂1, 𝜂2) ≤‖𝜂1 − 𝜂2‖, for any 𝜂1, 𝜂2 ∈ 𝜏 (see, e.g. ref. [33, p. 19]) that

H1(t ) ≤ 𝜀
3
+ 𝔼

(
IΩ1
𝔼(‖Y

𝜂,l
t−oi j

−Y
𝜉̃,l

t−oi j
‖𝜏 )

)
. (58)

For any 𝜔 ∈ Ω1, we note that ‖𝜂‖ ∨ ‖𝜉̃‖ ≤ h. By apply
Lemma 3.4, we can find positive number K3 satisfying

𝔼(‖Y
𝜂,l

t−oi j
−Y

𝜉̃,l
t−oi j

‖𝜏 ) ≤ 𝜀

3
, ∀t ≥ K1 + K3 (59)

whenever 𝜔 ∈ Ω1. we obtain that

|𝔼F (Y 𝜂,i
t ) − 𝔼F (Y 𝜉, j

t )| ≤ 𝜀, ∀t ≥ K1 + K3. (60)

Thanks to the arbitrariness of F , for all (𝜂, 𝜉, i, j ) ∈  ×  ×
𝕊 × 𝕊, we must have

d𝕃((Y 𝜂,i
t ),(Y 𝜉, j

t )) ≤ 𝜀, ∀t ≥ K1 + K3. (61)

This proves Equation (52).
We next prove that {(Y 𝜂,i

t )}t≥0 is a Cauchy sequence in
 (𝜏 ) with metric d𝕃 for any (𝜂, i ) ∈ 𝜏 × 𝕊, i.e. we need to
show that there exists a positive number K4 satisfying, for any
𝜀 > 0, u ≥ K4 and v > 0,

d𝕃((Y 𝜂,i
u+v ),(Y 𝜂,i

u )) ≤ 𝜀. (62)

The proof of Equation (62) is standard, so we omit it here (For
more details, see ref. [21]).

It can be seen from Equation (62) that there exists 𝜔𝜏 ∈ (𝜏 ) such that

lim
t→∞

d𝕃((Y 0,1
t ), 𝜔𝜏 ) = 0. (63)

By the triangle inequality, together with Equation (52), we derive
that

lim
t→∞

d𝕃((Y 𝜂,i
t ), 𝜔𝜏 ) ≤ lim

t→∞
d𝕃((Y 𝜂,i

t ),(Y 0,1
t ))

+ lim
t→∞

d𝕃((Y 0,1
t ), 𝜔𝜏 )

= 0

for all (𝜂, i ) ∈ 𝜏 × 𝕊. The require assertion (51) hold. The
proof is complete. □

4 DESIGN OF MATRICES Ui

In order to facilitate the calculation and design of Matrices, we
here adopt the most common form of function as follows

Φ(y, i ) = Ψ(y, i ) = yT Qiy (64)

for some N symmetric positive definite matrices Qi (i ∈ 𝕊). It
can be obtained directly from Equations (11) and (13)

LΦ(y, i )

= 2yT Qi [ f (y, i ) +Ui (y)] + trace[g(y, i )T Qig(y, i )]

+ ∫
ℝ⧵{0}

n∑
k=1

[(h(k)(y, i, xk ))T Qih
(k)(y, i, xk )

+ (h(k)(y, i, xk ))T Qiy − yT Qih
(k)(y, i, xk )]𝜈k(dxk )

+

N∑
j=1

𝛾i j y
T Q j y

(65)

and

𝕃Ψ(y, z, i )

=2(y − z )T Qi [ f (y, i ) − f (z, i ) +Ui (y − z )]

+ trace[(g(y, i ) − g(z, i ))T Qi (g(y, i ) − g(z, i ))]

+ ∫
ℝ⧵{0}

n∑
k=1

[(h(k)(y, i, xk ) − h(k)(z, i, xk ))T

× Qi (h
(k)(y, i, xk ) − h(k)(z, i, xk ))

+ (h(k)(y, i, xk ) − h(k)(z, i, xk ))T Qi (y − z )

− (y − z )T Qi (h
(k)(y, i, xk ) − h(k)(z, i, xk )]𝜈k(dxk )

+

N∑
j=1

𝛾i j (y − z )T Q j (y − z ).

(66)

Then we get the following useful corollary directly from
Lemma 3.3, Lemma 3.4 and Theorem 3.5.

Corollary 4.1. Let Assumption 2.1 hold. If there exist positive numbers

b̄0, b̄1 and b̄2 and positive definite matrices Qi such that

LΦ(y, i ) ≤ −b̄0|y|2 + b̄2,

𝕃Ψ(y, z, i ) ≤ −b̄1|y − z|2 (67)
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for all y, z ∈ ℝd and i ∈ 𝕊. If 𝜏 > 0 is small enough for

b̄1 − č2𝜃̄ − 𝛼𝜏(2e1𝜏 + e2 + e3 + 2e4𝜏) > 0, 𝜏 ≤ 1

2
√

2e4

,

b̄0 − č2𝜃̄ − 2𝛼𝜏(2e1𝜏 + e2 + e3 + 2e4𝜏) > 0, 𝜏 ≤ 1

4
√

e4
,

where 𝛼 =
3e4

𝜃̄
, 𝜃̄ ∈ (0,

b̄1

č2
∧

b̄0

č2
) and č = maxi∈𝕊 ‖Qi‖. Then the

SDDEs-MS-LN (5) is stable in distribution.

The stability in distribution of SDDEs-MS-LN (5) largely
relies on the matrices Ui . Here we will expound how to design
these matrices. Namely, for some integer l > 0, we will find the
matrices in the structure form of Ui = AiBi with Ai ∈ ℝ

d×l

and Bi ∈ ℝ
l×d . For the convenience of calculations, we will dis-

cuss how to design these matrices to make Corollary 4.1 hold
but the advantages of our new results will be explained clearly.
We will research state feedback and output injection (ref. [34])
as follows.

(i) State feedback

In this case, Bi ’s are given so our goal is to find Ai ’s so that
SDDEs-MS-LN (5) is stability in distribution. We will complete
the matrix design in two steps.

Step 1: Based on Assumption 2.1, we can seek N couple of
positive-definite symmetric matrices (Qi , Q̂i ) in order for

2(y − z )T Qi [ f (y, i ) − f (z, i )]

+ trace[(g(y, i ) − g(z, i ))T Qi (g(y, i ) − g(z, i ))]

+ ∫
ℝ⧵{0}

n∑
k=1

[(h(k)(y, i, xk ) − h(k)(z, i, xk ))T

× Qi (h
(k)(y, i, xk ) − h(k)(z, i, xk ))

+ (h(k)(y, i, xk ) − h(k)(z, i, xk ))T Qi (y − z )

− (y − z )T Qi (h
(k)(y, i, xk ) − h(k)(z, i, xk )]𝜈k(dxk )

≤(y − z )T Q̂i (y − z ).

It is straightforward to show from Assumption 2.1 and
Equation (68) that

2yT Qi [ f (y, i ) +Ui (y)] + trace[g(y, i )T Qig(y, i )]

+ ∫
ℝ⧵{0}

n∑
k=1

[(h(k)(y, i, xk ))T Qih
(k)(y, i, xk )

+ (h(k)(y, i, xk ))T Qiy − yT Qih
(k)(y, i, xk )]𝜈k(dxk )

+

N∑
j=1

𝛾i j y
T Q j y ≤ yT Q̂i y + b̄2.

Step 2: By linear matrix inequalities (LMIs, see, e.g. ref. [35]), we
can find a solution of matrices Ai , that is

Q̂i + AiQiBi + BT
i QiA

T
i +

N∑
j=1

𝛾i j Q j < 0. (68)

Corollary 4.2. Let Assumption 2.1 hold and moreover we can seek

matrices Ai as shown in Steps 1 and 2. Then the conditions of Corollary

4.1 are satisfied with Ui = AiBi and

b̄1 = −max
i∈𝕊

𝜆max

(
Q̂i + AiQiBi + AT

i QiB
T
i +

N∑
j=1

𝛾i j Q j

)
.

(ii) Output injection

In this case, Ai ’s are given so our goal is to design Bi ’s so
that SDDEs-MS-LN (5) is stability in distribution. This situa-
tion is similar to state feedback, and the following corollary can
be drawn.

Corollary 4.3. Let Assumption 2.1 hold and moreover we can seek

matrices Qi , Q̂i , and Bi as shown in Steps 1 and 2. Then the conditions of

Corollary 4.1 are satisfied with Ui = AiBi and

b̄1 = −max
i∈𝕊

𝜆max

(
Q̂i + AiQiBi + BT

i QiA
T
i +

N∑
j=1

𝛾i j Q j

)
.

5 EXAMPLE

A simple example is provide to illustrate the numerical results
of our theory.

Example 5.1. Consider an unstable SDEs-MS-LN:

dY (t ) = (𝜇(q(t )) +Y (t ))dt + 𝜎(q(t ))Y (t )dW (t )

+ 𝛾(q(t− ))Y (t− )d Ñ (t ),
(69)

with initial value Y0 ∈ ℝ. Here, W (t ) is a scalar Brownian
motion, Ñ (t ) is a compensated Poisson random measure which
means that N (t ) is a scalar Poisson process with intensify 𝜆,
q(t ) ∈ 𝕊 = {1, 2} and

Γ =

(
−1 1

2 −2

)
.

Set 𝜆 = 1, 𝜇(1) = 𝜇(2) = 1.5, 𝜎(1) = 0.2, 𝜎(2) = 0.5, 𝛾(1) =
0.8, and 𝛾(2) = 1.2. From ref. [36], we can easily get the mean
of the solution to system (69) as follows

𝔼Y (t ) = −1.5 + et (Y (0) + 1.5).
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FIGURE 1 Up: the trajectory of 𝔼Y1(t ) with initial value Y0 = 1. Down:
the trajectory of 𝔼Y2(t ) with initial value Y0 = −4

Moreover, such as lim
t→+∞

𝔼Y (t ) → +∞ when Y0 = 1 while

lim
t→+∞

𝔼Y (t ) → −∞ when Y0 = −4. These show that the sys-

tem (69) is not stable in distribution. Computer simulation is
also performed to show that the system (69) is not stable in
distribution, as shown in Figure 1.

The Figure 1 shows the trajectories of 𝔼Y (t ) with different
initial value Y0 = 1 and Y0 = −4 (i.e. the trajectories of 𝔼Y1(t )
and 𝔼Y2(t )), which show that 𝔼Y1(t ) tend to +∞ and 𝔼Y2(t )
tend to −∞.

Next, we will apply our theory to design a linear DFC to sta-
bilise the SDEs-MS-LN. Assume that the linear DFC has the
form −k(i )Y (t − 𝜏), where k(1) and k(2) to be determined.
Then the controlled system can be written as

dY (t ) =[𝜇(q(t )) +Y (t ) − k(q(t ))Y (t − 𝜏)]dt

+ 𝜎(q(t ))Y (t )dW (t ) + 𝛾(q(t− ))Y (t− )dÑ (t ).
(70)

Let Qi (i ∈ 1, 2) be the identity matrix, then the conditions of
Corollary 4.1 holds as long as

−b̄1 = max
i∈𝕊

(
2 + 𝜎2(i ) − 2k(i ) + 𝛾2(i )

)
< 0. (71)

Setting 2 + 𝜎2(i ) − 2k(i ) + 𝛾2(i ) = −11 for i = 1, 2, namely

2 + 0.25 − 2k(1) + 0.64 = −11, 2 + 2.25 − 2k(2) + 1 = −11,

we get k(1) = 6.84 and k(2) = 7.345. Consequently, the condi-
tions of Corollary 4.1 holds with b̄1 = b̄0 = 11. It is easy to show
that Assumption 2.1 is satisfied provided e1 = 1, e2 = 0.25,
and e3 = 1.44. Moreover, by e4 = maxi∈𝕊 ‖k(i )‖2 and Equation
(18), we compute e4 = 53.949, and č = 1. Therefore, choosing

𝜃̄ = 0.1, we can compute

𝜏∗1 = 0.003284, 𝜏∗2 = 0.048135, 𝜏∗3 = 0.001786, 𝜏∗4 = 0.034038

and hence 𝜏∗ = 0.001786. By Corollary 4.1, we can obtain that
for all 𝜏 < 0.001786 so that the controlled system (70) is stable
in distribution.

The numerical example discussed in ref. [21] does not illus-
trate how to verify the convergence of the distribution of the
two segment processes, we therefore develop new algorithm to
tackle such problem.

5.1 Algorithm and simulation

It is not hard to verify that there exists a unique probability
measure 𝜔𝜏 such that lim

t→∞
d𝕃((Y 𝜂,i

t ), 𝜔𝜏 ) = 0, for all (𝜂, i ) ∈

𝜏 × 𝕊. However, the explicit form of 𝜔𝜏 is rarely found. In
order to illustrate the stability in distribution of system (70), we
provide an algorithm as follows. Define Y

𝜂,i
t = {Y 𝜂,i (t + u) ∶

−𝜏 ≤ u ≤ 0} with initial data (𝜂, i ) and Y
𝜉,ī

t̄
= {Y 𝜉,ī (t̄ + u) ∶

−𝜏 ≤ u ≤ 0} with initial data (𝜉, ī ). Let Δ =
𝜏

m
, where Δ is

the stepsize and m is a positive integer. For any t , t̄ > 0, there
are two positive integers k and k̄ such that t ∈ [(k − 1)Δ, kΔ)
and t̄ ∈ [(k̄ − 1)Δ, k̄Δ). The discrete approximation of segment
process can be expressed as

Y
𝜂,i

l j
(k) = Y 𝜂,i (kΔ − lΔ,𝜛 j ),

Y
𝜉,ī

l j
(k̄) = Y 𝜉,ī (k̄Δ − lΔ,𝜛 j ),

where l = 0, 1, … ,m, j = 1, … , J , k = 1, 2, …, and k̄ = 1, 2, ….
We have noticed that

d𝕃((Y 𝜂,i
kΔ ),(Y 𝜉,ī

k̄Δ
)) = sup

𝜙∈𝕃

|𝔼𝜙(Y 𝜂,i
kΔ ) − 𝔼𝜙(Y 𝜉,ī

k̄Δ
)|

≤𝔼||Y 𝜂,i
kΔ −Y

𝜉,ī

k̄Δ
||𝜏

≈
1
J

J∑
j=1

sup
0≤l≤m

|Y 𝜂,i
l j

(k) −Y
𝜉,ī

l j
(k̄)|

≜𝜌(k̄, k).

When k̄ takes a sufficiently large fixed value, we regard the

distribution of segment process Y
𝜉,ī

k̄Δ
as the true probability dis-

tribution. If we have 𝜌(k̄, k) tend to zero along the time line,
then the distribution of Y

𝜂,i
kΔ will converge to distribution of

Y
𝜉,ī

k̄Δ
. Thus we claim that limt→∞ d𝕃((Y 𝜂,i

t ), 𝜔𝜏 ) → 0, namely
the controlled system (70) is stable in distribution.

To perform a computer simulation, we set 𝜏 = 10−3, Δ =
10−4, i = 1 and ī = 2. In this example we regard the distribution

of segment process Y
𝜉,ī

k̄Δ
with initial data (𝜉, ī ) at time t = 20

(i.e. k̄ =
t

Δ
) generated by the Euler–Maruyama method as the
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FIGURE 2 The computer simulation of 𝜌(k̄, k) started from different
initial data (𝜏 = 10−3, Δ = 10−4, 𝜉(t ) = 1.5 + 0.55 sin(t ) on t ∈ [−0.001, 0])

true probability distribution. We observe that the distributions
of segment process Y

𝜂,i
kΔ at time t ∈ [0, 10] approximate the

degree of the true distribution. Moreover, we choose two differ-
ent initial data (𝜂1(t ) = −2 + 0.55 sin(t ) and 𝜂2(t ) = 3 + cos(t )
on t ∈ [−0.001, 0]) for the distributions of segment process
Y
𝜂,i

kΔ . Figure 2. plots the value 𝜌(k̄, k) with different initial data
along the time line. It indicates that as time advances the values
of 𝜌(k̄, k) simulated by EM method with different initial data
converge to 0, which indicates the SDDEs-MS-LN (70) is stable
in distribution.

6 CONCLUSION

In this paper, we have studied the stability in distribution
of a given unstable SDEs-MS-LN by linear DEC u(Y (t −

𝜏), q(t )) = U (q(t ))Y (t − 𝜏). Under global Lipschitz condition,
we have shown that a bound on 𝜏∗ is given so that the SDDEs-
MS-LN is stability in distribution as long as 𝜏 ≤ 𝜏∗. Especially,
we focuses on in more detail how to design the linear DFC by
linear matrix inequalities. Finally, we develop a new algorithm to
illustrate how to verify the convergence of the distribution of
the two segment processes.
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