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Shape-supervised dimension reduction:
Extracting geometry and physics associated features with geometric moments

bstract

n shape optimisation problems, subspaces generated with conventional dimension reduction approaches often fail to extract the in-
rinsic geometric features of the shape that would allow the exploration of diverse but still valid candidate solutions. More importantly,
hey also lack incorporation of any notion of physics against which shape is optimised. This work proposes a shape-supervised di-
ension reduction approach. To simultaneously tackle these deficiencies, it uses higher-level information about the shape in terms
f its geometric integral properties, such as geometric moments and their invariants. Their usage is based on the fact that moments
f a shape are intrinsic features of its geometry, and they provide a unifying medium between geometry and physics. To enrich the
ubspace with latent features associated with shape’s geometrical features and physics, we also evaluate a set of composite geometric
oments, using the divergence theorem, for appropriate shape decompositions. These moments are combined with the shape modifi-
ation function to form a Shape Signature Vector (SSV) uniquely representing a shape. Afterwards, the generalised Karhunen-Loève
xpansion is applied to SSV, embedded in a generalised (disjoint) Hilbert space, which results in a basis of the shape-supervised
ubspace retaining the highest geometric and physical variance. The validation experiments are performed for a three-dimensional
ing and a ship hull model. Our results demonstrate a significant reduction of the original design space’s dimensionality for both test
ases while maintaining a high representation capacity and a large percentage of valid geometries that facilitate fast convergence to
he optimal solution.

eywords: Computer-Aided Design, Design Space, Dimensionality Reduction, Geometric Moment Invariants, Shape Optimisation.

. Introduction

Simulation-driven optimisation of free-form shapes is often
bstructed by high-dimensional design spaces stemming from
he baseline/parent shape parameterisation, which leads to the
otorious curse of dimensionality [1]. A common cure in-
olves dimensionality reduction, also referred to as feature ex-
raction/embedding or manifold learning, etc. These approaches
im to extract latent features/variables from the design space,
hich can be classified as geometrically active or inactive de-
ending on their importance in affecting a shape’s geometric
ariability [2]. Inactive features are redundant, and their us-
ge has either no or minimal impact on shape variation and
erformance improvement during optimisation; thus, they can
e safely ignored to reduce the space’s dimensionality. The
eometrically active latent features form a new set of param-
ters for shape modification and construct a basis spanning a
ower-dimensional subspace for faster optimisation convergence
ith fewer computationally intensive design evaluations. The
idely used Design Space Dimensionality Reduction (DSDR)
pproaches include the Karhunen-Loève Decomposition (KLD)
3] (closely related to Principal Component Analysis (PCA)), the
o-called proper orthogonal decomposition [4]) and their non-
inear extensions such as kernel PCA [5], ISOMAP [6], LLE
7] that aim to handle design space non-linearities, if present.
ecently, Machine Learning-based approaches, auto-encoder
8, 5], Generative-Adversarial Networks (GANs) [1] and vari-
tions [9, 10], emerging from applications in image analysis, ob-
ect recognition, speech analysis, clustering, and data visualisa-
ion etc., have gained attention in DSDR literature.
Despite the proven efficiency of the aforementioned ap-
roaches for DSDR, they often suffer from certain drawbacks.
common deficiency is their inability to preserve the shape’s

omplexity and intrinsic underlying geometric structure. Thus,

the resulting subspace lacks the representation capacity and com-
pactness, which, as defined in [1, 10], is subspace’s ability to pro-
duced diverse and valid shapes, respectively, with least number
of latent variables when being explored for shape optimisation.
These deficiencies can hamper the success of the optimiser as
it may spend the majority of the available computational budget
on exploring infeasible, practically invalid and similar shapes.
Furthermore, the basis of the subspace is solely formulated with
geometric features and no information related to physics, against
which designs are assessed, is incorporated. Therefore, this may
not be an optimisation-efficient subspace since even if high ge-
ometric variation is preserved, maximum design improvements
are not guaranteed; see [9, 8, 2, 11]. However, it should be noted
that these techniques’ inability to extract appropriate geometric
or physics-associated features is not necessarily an intrinsic char-
acteristic but mainly stems from the geometry representations
used in subspace learning, which are commonly low-level shape
discretisations. Thus, extracting intrinsic latent information from
such representations becomes implausible, and therefore, richer
representations with high-level information related to the under-
lying shape’s structure and physics are imperative.

1.1. Objective and contribution
To simultaneously tackle the aforementioned challenges as-

sociated with DSDR, we propose a shape-supervised approach,
which, along with geometric modification function [4], uses the
shape’s integral properties, i.e., geometric moments and their in-
variants [12, 13], to harness the compact geometric representa-
tion of baseline shape and complement its physics during DSDR.
Therefore, the resulting subspace

1. has not only enhanced representation capacity and compact-
ness to produce a valid and diverse set of design alternatives,
respectively, but
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igure 1: Workflow illustration of the proposed shape-supervised DSDR approach. It commences with extracting latent features from shape’s geometric and physical
omains and combines them in a subspace that guarantees geometric and functional variability. For reasons of computational efficiency, geometric moment invariants
re used to capture physical information and, once created, the subspace is connected with the optimiser and the design evaluation module to expedite convergence to
he optimal solution.

2. is also physically informed to improve the convergence rate
of the shape optimiser towards an optimal solution.

well-known feature of geometric moments is their strong cou-
ling with physics as they provide the geometric foundation for
ifferent physical analyses and, like physics, provide important
lues about the form, distribution and validity of the design. As
ith physics, they depend on the design’s geometry, but their
valuation is substantially less expensive. Therefore, we perform
SDR in a supervised setting where geometric moments are used
s QoI to induce a notion of shape’s physical information, thus
esulting in a shape-supervised subspace, whose basis is not only
ssociated with shape’s geometry but also with its physics. A
omplete workflow of the proposed pipeline for shape is illus-
rated in Fig. 1. In conclusion, the selection of geometric mo-
ents in our work is motivated by the following fundamental

nsights:
1. Geometric moments of a shape are the intrinsic properties

of its underlying geometry and act as a unifying medium
between geometry, and its physical evaluation [12, 13].

2. The analysis for any physics requires such integral proper-
ties of the geometry while moments of a domain are suffi-
cient to ensure accurate integration of a large class of inte-
grands [13, 14].

3. Like physics, geometric moments also act as a compact
shape signature or descriptor facilitating various shape pro-
cessing tasks [15, 16].

Geometric moments of higher order are also used in different
hape processing tasks such as object recognition [16], rigid body
ransformation [15], etc. Most notably, in physical analyses, they
re used for parametric sensitivity analyses [17], material field
odelling [18], governing equation of motions for flows around
body [14], and, recently, for meshfree FEA [13, 19], in which
oment-based shape representations are used to aid the interop-
rability between CAD representations and physics.

.2. Overview of the proposed approach
To maximise the accumulation of both geometric and physical

ariance in the subspace, our approach uses a set of composite

moments by disintegrating the body geometry into several sub-
sets of coherent shape. Afterwards, we use the divergence the-
orem to evaluate moments of all subsets up to a specific order.
Once moments are evaluated, they are used, along with the shape
modification function, to form a Shape Signature Vector (SSV)
function, which acts as a descriptor to uniquely represent each in-
stance in the design space. Karhunen-Loève Expansion (KLE) of
SSV is evaluated, where the solution of a variational problem al-
lows for the evaluation of latent features as a linear combination
of original designs. The features provided by KLE are expressed
by the eigenfunctions of a symmetric and positive definite covari-
ance function constructed with SSV. The KL-values associated
with each feature allow the identification of active and inactive
features. The active features reparameterise the shape and act as
a new basis to span the subspace, retaining the highest variance
in geometry and physics. Moreover, different quality measures
are formulated to assess the quality of the shape-supervised sub-
space in producing rich and valid sets of shapes.
Two test cases, a three-dimensional (3D) wing and a ship hull,

are used to analyse the shape-supervised subspace’s ability to
produce diverse and valid designs. At the same time, the ship
hull model is also used for shape optimisation with respect to
the wave resistance coefficient (Cw). Cw is a significant compo-
nent of the total ship’s resistance and a critical design criterion
whose evaluation is computationally demanding. These experi-
ments validate the conservation of physical information via geo-
metric moments and expedite convergence to optimal solutions.

1.3. Related works
Recently, GANs [1] have been used for reparameterisation of

the shape with latent features, as baseline parameterisation ap-
proaches, like the ones used in free-form deformation, produce
high-dimensional design spaces [20] that do not guarantee fea-
sible/valid shapes. Chen et al. [1] proposed the Bézier-GAN for
two-dimensional (2D) aerofoil design by introducing a Bézier
layer into GAN to maximise subspace’s representation capacity
and compactness. However, the baseline parameterisation can-
not automatically guarantee valid shapes and, as a result, these
approaches require a training dataset of existing designs, which

2
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Nomenclature

G two-dimensional manifold
Γ three-dimensional body bounded by G
ϑ̄ coordinate set on G
t design parameters
T n−dimensional design space
tl, tu lower and upper design vector bounding T
G(ϑ̄, t) continuous shape modification vector function
g(t) performance index of the design
ϑM arbitrary moment vector point
M(ϑM , t) lumped geometric moment vector
M moment domain
P(ϑ, t) combined geometry and moment shape signature

vector
P(ϑ, t) deviation from the mean of shape signature vector
P shape signature vector domain
⟨P⟩ mean of shape signature vector
f (ϑ̄), f (ϑM) positive weight functions
σ2 variance of shape signature vector
v geometrically- and functionally-active variable

vector
V reduced m−dimensional subspace
Mp,q,r geometric moment of order s = p + q + r
MIp,q,r geometric moment invariant under uniform scal-

ing and translation of order s = p + q + r
MIs vector containing all sth-order geometric moment

invariants
µp,q,r central geometric moment, invariant to translation
ρ(x, y, z) probability density function
ω(ϑ) orthonormal functions forming the basis ofV
f vector field over volume of Γ
L self adjoint integral operator
ε desired level of confidence for capturing the vari-

ance
d(t) spatial discretisation of P(ϑ, t)
W spatial discretisation of ω(ϑ)
Λ vector of KL-values/eigenvalues
H (O,O′) Hausdorff distance between two designs
Ψ total number of designs sampled from T

ay prevent optimisers from finding innovative designs; a draw-
ack studied in detail by Li and Zhang in [10]. Moreover, their
sage can be problematic for novel problems, as in this case, cre-
ting training datasets can be extremely arduous.
Furthermore, although subspaces resulting from the ap-

roaches described above may address the validity problem,
hysics-associated features are still not present. The Active Sub-
pace Method [21] and supervised KLE [11] can handle this is-
ue, but they become computationally intensive as they require
irect evaluation of physics quantities and/or their gradients.
onekura and Suzuki [8] recently used conditional variational
uto-encoder (CVAE) for aerofoil design. They used the lift co-
fficient as a condition to auto-encoder during training so that
he decoder could generate the shape with specific performance.
hen and Ahmed [22] proposed PaDGAN to augment the per-
ormance of design into the generator to create high-quality de-
igns with good optimisation convergence. Another GANs-based
ethod was proposed by Shu et al. [9], which elevates the quality

of generated designs by iteratively updating the training dataset
using performance-based design filtering. All methods above,
i.e., [21, 11, 8, 22, 9] are efficient but supervised and therefore
require performance labels to be evaluated for a large shapes
dataset; if not readily available, the creation of such a dataset
is computationally very demanding.
The remainder of this paper is organised as follows: Section 2

discusses the problem formulation, evaluation of geometric mo-
ments and KLE of SSV. A detailed discussion on the relevance
of geometric moments with Cw, along with the description of the
test case, is given in Section 3. The numerical results of the pro-
posed technique are provided in Section 4. Section 5 presents
concluding remarks and opportunities for future work.

2. Proposed approach

This section provides an in-depth description of the proposed
approach, including the general assumptions and the mathemati-
cal formulation of SSV generation. A brief overview of the cri-
teria used to assess the quality of a subspace is also provided.

2.1. Problem formulation
Let Γ be a 3D body bounded by a closed 2D manifold G,

representing a baseline/parent design, and ϑ̄ ∈ G ⊆ Rn̄, with
n̄ = 1, 2, 3, a coordinate set on this manifold. For an automatic
shape modification, G is commonly parameterised with n ge-
ometric parameters, defining the parametric/design vector t =
(t1, t2, . . . , tn) ∈ T ⊆ Rn. Here, T is the n−dimensional design
space, which is bounded by appropriately defined set constraints,
e.g., T :=

{
t : tli ≤ ti ≤ tui ,∀i ∈ {1, 2, . . . n}

}
with tl, tu ∈ Rn denot-

ing the lower and upper bound vector, respectively. The paramet-
ric vector t of G yields a continuous shape modification vector
G(ϑ̄, t) ∈ RnG with nG = 1, 2, 3, which for any t ∈ T modifies the
initial ϑ̄ to produce new ϑ̄′ that defines the modified G′, i.e.,

ϑ̄′ = ϑ̄ + G(ϑ̄, t), ∀ϑ̄. (1)

Furthermore, in shape optimisation, we also assume at least one
given function g : T → R which, for each t ∈ T , evaluates the
performance index ℓ = −g(t) ∈ R of the corresponding design.
Therefore, the optimisation problem can be stated as follows:

Find t∗ ∈ Rn : − ℓ∗ = g(t∗) = min
t∗∈T

g(t). (2)

Obviously, optimal design will be then defined by the corre-
sponding set ϑ̄∗, with ϑ̄∗ = ϑ̄ + G(ϑ̄, t∗).
In a typical shape optimisation problem, we may use a

set of alternative performance indices (multi-objective optimi-
sation) and additional functional constraints (design specifica-
tions/requirements) expressed as inequalities and equalities that
further limit the space of feasible designs. Finally, an appropri-
ate optimisation method is employed to search for the optimum
solution (t∗) within the feasible space bounded by all imposed
constraints.

2.2. Design space dimensionality reduction
As explained in §1, the computational cost of shape optimisa-

tion increases exponentially with the dimension of T . This cost
grows further if evaluating the performance index ℓ is compli-
cated and time-consuming. Therefore, in the present work, we
intend to cure the curse of dimensionality with feature extraction
techniques to create a lower-dimensional subspace using DSDR.
Typically, dimensionality reduction is achieved via extraction of

3
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atent features/variables of T which reduces its dimension while
etaining, to the extent possible, the geometric variability exhib-
ted in the resulting domains G′. However, due to the aforemen-
ioned drawbacks associated with a typical DSDR approach, we
im to develop a subspace with latent variables that go beyond
he features extracted from T . These additional elements com-
rise appropriate geometric moments computed on the body ge-
metry. Therefore, the resulting subspace is not only adequately
ich but also robust and efficient when used for shape optimisa-
ion, as we will demonstrate in §3.
To construct this subspace, we consider that along with the

ontinuous shape modification vectors, G(ϑ̄, t), there is a lumped
eometric moment vector, M(ϑM , t) ∈ RnM with nM = 1, 2, . . . ,
hich has a null measure and corresponds to an arbitrary point,
M , where this moment vector is virtually defined. We further as-
umeG andM as domains of definition forG(ϑ̄, t) and M(ϑM , t),
espectively; see Fig. 2. Now, consider a combined geometry and
oment vector P(ϑ, t) ∈ RnP , nP = nG + nM , defined in the do-
ain P := G ∪M with ϑ = (ϑ̄,ϑM) and

P(ϑ, t) =
(
G(ϑ̄, t),M(ϑM, t)

)
. (3)

(ϑ, t) contains both the geometry and its moments and forms a
nique SSV function encompassing high level information about
he baseline design. Also consider that P(ϑ, t) belongs to a dis-
oint Hilbert space L2f (P) as shown in Fig. 2, which is defined by
he generalised inner product:

(a,b) f =
∫

P
f (ϑ)a(ϑ) · b(ϑ)dϑ

=

∫

G
f (ϑ̄)a(ϑ̄) · b(ϑ̄)dϑ̄ + f (ϑM)a(ϑM) · b(ϑM),

(4)

ith the associated norm ∥a∥ = (a, a)
1
2
f , where f (ϑ̄), f (ϑM) ∈ R

re appropriate positive weight functions used to focus analysis
n certain regions of G.

𝐺!

𝐺"

𝐺#

𝑀!

𝑀"
𝑀# 𝝑$

𝒫: Disjoint Hilbert Space

𝓖 𝓜

Lumped moment vectorShape Modification vector

igure 2: Domains for shape modification vector and lumped geometric moment
ector in a disjoint Hilbert space.

The identification of optimal design through this process may
uffer from epistemic uncertainties [3]. Therefore, one can con-
ider t as an element of a stochastic space T with an associated
robability Density Function (PDF) ρ(t), which represents the
rior probability of finding optimal design in a given T . An ap-
ropriate definition of ρ(t) is nontrivial; therefore, the prior is
sually defined as a uniform distribution function, i.e., any re-
lisation of t has the same probability of being t∗. Once ρ(t) is
efined, the mean and the variance of SSV can be evaluated as

⟨P⟩ =
∫

T
f (ϑ)P(ϑ, t)ρ(t)dt, (5)

σ2 = ⟨∥P∥2⟩ =
∫

T

∫

P
f (ϑ)P(ϑ, t) · P(ϑ, t)ρ(t)dϑdt, (6)

where P is the deviation from the mean of SSV (i.e., P = P−⟨P⟩)
and ⟨·⟩ is the ensemble average over t. The aim for dimen-
sionality reduction is to find the lower-dimensional representa-
tion of P(ϑ, t), namely, P(ϑ, v), which, instead of t depends
on a Geometrically- and Functionally-Active Latent Variable
(GFALV) vector, v = {v1, v2, v3, . . . , vm} ∈ V ⊆ Rm. GFALV
is constructed using an appropriate combination of features from
T and SSV which will constitute the coordinates in a new m-
dimensional subspace, V :=

{
v : vli ≤ vi ≤ vui ,∀i ∈ {1, 2, . . .m}

}
,

with m < n, i.e., V is a low-dimensional space when compared
with the original design space, T . This new vector space can be
employed to expedite the shape optimisation. Figure 3 graph-
ically illustrates the notions of shape modification via original
and the proposed approach.

P

G

Figure 3: Representation of the scheme and notation used for the current formu-
lation of shape modification.

2.3. Geometric moments
In the construction of SSV, introduced in Eq. (3), we use a fi-

nite number of moments of Γ, which are defined by the following
equation;

Mp,q,r =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
xp yq zr ρ(x, y, z) dΓ,

p, q, r ∈ {0, 1, 2, . . . },
(7)

which evaluates the s th-order geometric moments of Γ, where

s = p + q + r and ρ(x, y, z) =


1 if (x, y, z) ∈ Γ
0 otherwise

. Given now a

non-negative integer s, we consider the vector Ms to contain all
Mp,q,r moments for which p + q + r = s. For instance, M2 ={
M2,0,0,M0,2,0,M0,0,2,M1,1,0,M1,0,1,M0,1,1

} ∈ RnM=6. Further-
more, the zeroth- and first-order moments, i.e., M0,0,0 and M1,0,0,
M0,1,0, M0,0,1, are commonly used in computer aided design and
engineering packages to compute an object’s volume, V = M0,0,0,

and its centroid c =
{
Cx,Cy,Cz

}
=

{M1,0,0

M0,0,0
,
M0,1,0

M0,0,0
,
M0,0,1

M0,0,0

}
. If ρ(x, y, z)

is the PDF of a continuous random variable then M0 = 1,
whereas M1, M2, M3 and M4, represent the mean, variance,
skewness and kurtosis of the random variable, respectively.
An appropriate combination of geometry and its moments re-

sults in a vector that better captures the shape’s intrinsic features
and offers a more accurate and unique shape representation that
acts as its descriptor, or signature [15]. Theoretically, s ranges

4
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rom 0 to ∞, though there exist classes of objects for which s is
nite when, e.g., dealing with the class of the so-called quadra-
ure domains in the complex plane [23] or when approximating
onvex bodies using Legendre moments [24]. The geometric mo-
ents of Γ can be thought of as projections (with respect to L2

nner product) of ρ onto any polynomial basis, such as monomi-
ls, Legendre polynomials, etc. [13]. In Mathematical Analysis,
he classical moment problem, which has been treated by various
amous mathematicians such as Markov in 1883 and Stieltjes in
is famous 1894 paper on: ”Recherchers sur les fractions contin-
es”, can be stated as follows: Recover a function f (x) given its
oments Mp =

∫
xp f (x)dx, p = 0, 1, .... In all these guises, the

oment problem is recognised as a notoriously difficult inverse
roblem, often leading to the solution of very ill-posed systems
f equations that usually do not have a unique solution [25].

.3.1. Geometric moment computation
There exist several methods available in the literature for eval-

ating geometric moments, but the most commonly used ap-
roach is via Gauss’s divergence theorem [26, 12, 13], which
llows for the conversion of volume integrals to integrals over
he bounding surface(s). In the following, we briefly explain the
valuation of geometric moments using the divergence theorem

or a triangulation S =
N⋃
i=1

Ti approximating the surface bounding

, where N is the number of triangles in S .
To start with, let be given a vector field f : Rn → R3 over

olume V of Γ, whose boundary comprises piecewise smooth
urfaces. The divergence theorem states that the volume integral
f the divergence (div) of f over V equals the surface integral of
he inner product of f with the normal vector n̂ of S over S . This
llows the conversion of volume integrals, which are generally
ifficult to evaluate, into easier surface integrals, when f is con-
inuous and has piecewise continuous first partial derivatives on
neighbourhood of V . To evaluate the moments in Eq. (7) using
his theorem, we consider the following field:

f =
1
3
xp yq zr

(
x

p + 1
ı̂ +

y
q + 1

ȷ̂ +
z

r + 1
k̂
)
. (8)

hen,

Mp,q,r =

∫

V
div(f) dV =

N∑

i=1

∫

Ti

f · n̂i dS i, (9)

here n̂i is the unit normal vector on the triangle Ti, which can
e represented as a linear parametric surface as

S i(u, v) = αiu + βiv + ci, (u, v) ∈ Ωi ⊂ R2, αi ⊥ βi (10)

ere,Ωi can be taken to be the triangle with vertices (0, 0), (1, 0),
0, 1). Then

Mp,q,r =

N∑

i=1

∫

Ti

f · n̂i
√
EiJi − F2

i dudv, (11)

here

i = S i,u · S i,u = |αi|2, Fi = S i,u · S i,v = 0, Ji = S i,v · S i,v = |βi|2.
(12)

ere Ei, Fi and Ji are the constant first-order fundamental quan-
ities of the S i. Now, substituting Eq. (12) into Eg. (11) we
et

Mp,q,r =

N∑

i=1

∫

Ti

f · n̂i |αi||βi| dudv (13)

with
n̂i =

S i,u × S i,v√
EiJi − F2

i

=
αi × βi
|αi| |βi| (14)

and
f(x, y, z)|Ti = f (xi(u, v), yi(u, v), zi(u, v)) , (15)

where xi(u, v), yi(u, v) and zi(u, v) are the x−, y− and z− compo-
nents of S i(u, v).

2.3.2. Geometric moment invariants
The geometric moments are generally variant with respect to

rigid and non-rigid transformations, such as translation, rotation
and scaling [27]. However, most physical quantities are invariant
to either all or some of these transformations. Therefore, before
the incorporation of geometric moments in P(ϑ, t), their invari-
ance with respect to translation and scaling has to be secured.
Invariant geometric moments with respect to translation and scal-
ing are discussed below; see also [27] for a complete discussion
on moment invariants.
Now, if we consider the geometric moments about the centroid
c(Γ) = (Cx,Cy,Cz) of Γ, we get the so-called central geometric
moments which are invariant to translation and, based on Eq. (7),
are defined as:

µp,q,r =

∫

Γ

(x −Cx)p (y −Cy)q (z −Cz)rdΓ. (16)

To further achieve invariance of µp,q,r to scaling, we assume that
Γ is uniformly scaled by a factor γ, which gives

µ̂p,q,r = γ
p+q+r+3µp,q,r. (17)

Then, one can easily conclude that

MIp,q,r =
µp,q,r

(µ0,0,0)1+(p+q+r)/3
(18)

is an invariant geometric moment for Γ under uniform scaling
and translation [27]. For any non-negative integer, s, the vector
MIs contains all the s-th order invariant moments to translation
and scaling; recall that p+q+ r = s. These vectors will therefore
take the place of the moment vector appearing in Eq. (3). More-
over, by definition, we have MI0 = 1 and all elements of MI1
equal to zero for any Γ.

2.4. Karhunen-Loève expansion of SSV
After the initial construction of SSV with the invariant geo-

metric moments, we employ KLE, which aims to find an optimal
basis of orthonormal functions for the linear representation of
SSV so that:

P(ϑ, t) ≈
m∑

i=1

viωi(ϑ), (19)

where {ωi(ϑ)}mi=1 are orthonormal functions forming the basis of
the subspaceV which will retain, to the extent possible, the vari-
ance in shapes and moments exhibited in P. These functions are
used to form the GFALV vector, v ∈ V, whose ith element can
be represented as

5
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vi =
(
P,ωi

)
f
=

∫

P
f (ϑ)P(ϑ, t) · ωi(ϑ)dϑ, (20)

hich, as explained earlier, will be used for shape modifica-
ion during optimisation. The optimal condition for KLE is to
onstruct basis functions retaining maximum geometric variance
σ2) via Eq. (19). Therefore, combining Eq. (6), (19) and (20)
e find:

σ2 =

∞∑

i=1

∞∑

j=1

⟨viv j⟩(ωi(ϑ),ωi(ϑ)) f

=

∞∑

j=1

〈
v2j

〉
=

∞∑

j=1

〈(
P,ωi(ϑ)

)2
f

〉
.

(21)

he basis retaining the maximum variance is provided by the
olution of the following variational problem [3]:

min
ω∈L2f (P)

J
(
ω(ϑ)

)
=

〈(
P,ω(ϑ)

)2
f

〉

subject to
(
ω(ϑ),ω(ϑ)

)2
f = 1,

(22)

hich, as proven in [3], yields

Lω(ϑ) =
∫

P
f (θ)

〈
P(ϑ, t) ⊗ P(θ, t)

〉
ω(θ)dθ = λω(ϑ), (23)

here ⊗ is the outer product, θ,ϑ ∈ G, and L is the self adjoint
ntegral operator whose eigensolutions form the basis function
or the linear representation of P(θ, t) given in Eq. (19). The
esulting eigenvectors, or KL-modes {ωi(ϑ)}∞i=1, are orthogonal
nd constitute a complete basis for L2f (G ∪M). Additionally,
he eigenvalues or KL-values {λi}∞i=1 represent the variance,

σ2 =

∞∑

i=1

λi, (24)

etained by the associated basis. The first m eigenvectors, i.e.,
ωi(ϑ)}mi=1 constitute the optimal basis for the approximation in
q. (19). Moreover, considering ε as the desired level of confi-
ence for capturing the variance, m in Eq. (19) can be selected to
atisfy

m∑

i=1

λi ≥ ε
∞∑

i=1

λi = εσ
2 (25)

ith 0 < ε ≤ 1 and λi ≥ λi+1.
The numerical implementation of Eq. (23) – or its generalised

orm; see Eq. (4) – is performed using the approach of Diez et
l. in [3]. Specifically, the steps that need to be followed are
resented below:

1. Define an orthonormal basis of RnP , {ek}nPk=1;
2. Express the deviation from SSV mean, P, and KL-modes ω

in term of the basis, i.e.,

P(ϑ, t) =
nP∑

k=1

Pk(ϑ, t) ek; ω(ϑ) =
nP∑

k=1

ωk(ϑ) ek, (26)

where Pk = P ·ek, ωk = ω ·ek and nP = nG+nM . Note that P
in Eq. (26) represents a realisation of SSV, associated to t,
before dimension reduction is applied. Regardless of shape
modification function, ω in Eq. (26) is the solution used to
form the reduced-dimensional basis for shape optimisation;

3. Compute the integral in Eq. (4) by discretising the do-
main of integration, ϑ̄ ∈ G, into E quadrilateral mesh
elements with measure equal to ∆Gi and centroid at{
ϑ̄i, i = 1, 2, . . . , E

}
;

4. Use the spatial discretisation d(t) and W of P(ϑ, t) and
ω(ϑ), respectively;

5. Finally, recast the problem as an eigenproblem of a matrix
(A):

AW =WΛ, (27)

where, W =
{
wi, i = 1, 2, . . . , nGE + nM

}
is a square matrix

whose ith column, wi, is the corresponding eigenvector or KL-
mode. The KL-values, Λ = {λi, i = 1, 2, . . . , nGE + nM}, repre-
sent the variance retained by the associated KL-mode. For ex-
ample, at nP = 4 (with nG = 3 and nM = 1), A can be represented
as

A =



C11 C12 C13 C14
C12 C22 C23 C24
C13 C32 C33 C34
C14 C24 C34 C44





Q 0 0 0
0 Q 0 0
0 0 Q 0
0 0 0 Q


, (28)

where Clk =
〈
dl(t) [dk(t)]T

〉
, ∀ l, k = 1, 2, . . . , nP and Q is the

weighted matrix to normalise Clk, so all of its components have
same influence while computing A. For dimensionality reduc-
tion we first rearrange KL-values in Λ in descending order, i.e.,
λi ≥ λi+1. Afterwards, we select the first m KL-values {λi}mi=1 via
Eq. (25) along with their associated KL-modes

{
wi

}m
i=1

, which
correspond to features with the greatest impact on geometry
changes. The spatial discretisation of P(ϑ, t) and ω(ϑ) (namely
d(t) andW) can now be approximated and defined as

d(t) =



P1(ϑ̄1, t)
...

P1(ϑ̄E , t)
P2(ϑ̄1, t)

...

P2(ϑ̄E , t)
P3(ϑ̄1, t)

...

P3(ϑ̄E , t)
P1(ϑM , t)



≈
m∑

i=1

viwi; wi =



ω1(ϑ̄1)
...

ω1(ϑ̄E)
ω2(ϑ̄1)

...

ω2(ϑ̄E)
ω3(ϑ̄1)

...

ω3(ϑ̄E)
ω1(ϑM)



. (29)

The latent variables v ∈ Rm formulated in Eq. (20) can be finally
obtained in a discretised form as

vi = d(t)T



Q 0 0 0
0 Q 0 0
0 0 Q 0
0 0 0 Q


wi. (30)

It should be noted that the KL-modes are formulated while tak-
ing into account both geometry and geometric moments in or-
der to preserve the underlying structure of G and to accumulate
the functional information of designs in T . Therefore, by using
only the first nGE elements of column vector wi in Eq. (30) one
could form the latent variable vector which is used for the shape
modification ofG during the shape optimisation performed in the
subspaceV :=

{
v : vli ≤ vi ≤ vui ,∀i ∈ {1, 2, . . .m}

}
.

6
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.5. Additional design space considerations

Apart from the dimension of the design space, the use of mean-
ngful parameter bounds, [tl, tu], is also crucial since they de-
ne the allowable/feasible domain for exploration and identifica-
ion of any optimum regions or points. Generally, exploration
f a large space is favoured, though it considerably increases
he chances of encountering invalid and impractical designs. Al-
hough such designs can be avoided by adding more design con-
traints, this will inevitably make the optimisation problem in Eq.
2) more challenging and time-consuming. On the other hand, a
arrow design space weakens the need for additional constraints
ut, at the same time, may eliminate large regions where highly-
mproved or optimum designs lie. Therefore, designers tend to
se their field experience to define a design space that balances
obustness and allows diversity in G.

.5.1. Bounds on subspaces
Setting the subspace’s parameter bounds, (vl, vu), can be even
ore challenging as designers have to work with latent variables,
, instead of the original design variables t. Commonly, design
ariables t have physical meaning, i.e., lengths, radii, angles, etc.,
hereas no physical interpretation is generally expected by any
omponents of v. We need to be very cautious when setting the
ounds of V since we have to ensure that any design produced
n V should also be a member of the appropriately bounded T ,
.e., conforming to all design constraints and requirements. To
vercome this problem, one may project the bounds of the origi-
al design space on the subspace. In this setting, the range of the
-th latent parameter vi can be evaluated as

vi ∈
min
tψ∈X

d(tψ)
T


Q 0 0
0 Q 0
0 0 Q

w
i

 ,max
tψ∈X

d(tψ)
T


Q 0 0
0 Q 0
0 0 Q

w
i



 ,

ψ = 1, 2, 3, . . . ,Ψ,
(31)

here Ψ is the number of points densely sampled from T . An-
ther common approach employs the standard deviation from the
ean shape lying at the centroid of the design space. In this ap-
roach, the bounds for the i-th variable are set as

vi ∈
[
−

√
κλi,

√
κλi

]
, κ ∈ {1, 2, 3}. (32)

he latter approach is computationally efficient, and our exper-
ments have shown that it can provide a good balance between
he number of invalid shapes and the allowed diversity. Both
pproaches are analysed experimentally, and quality criteria are
roposed in the subsequent section.

.5.2. Design space quality
To quantify the quality of a subspace with respect to its ability

o produce a wide range of diverse and valid shapes, we intro-
uce relevant measures. The diversity measure is based on the
ausdorff distance [28], which is widely used to measure how far
wo subsets of a metric space are from each other. Therefore, it
an also be used to measure the similarity/diversity between two
ree-form shapes. Consider now an instance of v that modifies
he parent design G to G′. Both G and G′ can be then discretised
y an appropriately dense point set, O = {oi, i ∈ {1, 2, . . . , no}} ∈
⊆ R3 and O′ = {o′j, j ∈ {1, 2, . . . , n′o}} ∈ G′ ⊆ R3 containing a

otal no and n′o points, respectively. The Hausdorff distance, H,
etween O and O′ can be then evaluated as

H
(
O,O′

)
= max

{
sup
o∈O

d(o,O), sup
o′∈O′

d(O, o′)
}
, (33)

where d(o,O′) = info′∈O′ d(o, o′) quantifies the distance from a
point o ∈ O to the setO′. Note that bothO andO′ need to be sub-
sets of the same metric space. In our case we use the Euclidean
distance for d(o, o′) (and d(o′, o)), and we further assume that the
Hausdorff distance between G and G′ is quantified by H (O,O′),
i.e., H (G,G′) B H (O,O′). Hence, we define the diversity mea-
sure to be the average of the Hausdorff distance between the par-
ent design and a dense set of designs sampled from the subspace
V. Therefore, the higher the value of diversity measure the richer
the subspace. However, as mentioned before, a more diverse de-
sign space may also have a high possibility of producing invalid
geometries. A typical example of invalid free-form geometries is
that of self-intersecting surfaces. An ideal subspace will have the
highest diversity and few invalid geometries. Therefore, we de-
fine the validity measure as the ratio of invalid over valid designs
for a dense sampling ofV. Obviously, subspaces with a validity
measure equal or close to 0 are preferred.
Algorithm 1 briefly summarises the step-wise procedure of

the proposed approach from dimension reduction to design space
formulation and shape optimisation.

Algorithm 1 Step-wise procedure for implementing the pro-
posed approach.

1: Create an initial model G composed of coordinate set ϑ̄ ∈
G ⊆ Rn̄ and parametrise it with n design parameters
(t1, t2, . . . , tn).

2: Define the design space T with lower and upper bounds of n
parameters, T := {tli ≤ ti ≤ tui , ∀i ∈ {1, 2, . . . n}}.

3: Define a shape modification vector G(ϑ̄, t) ∈ RnG to modify
G for any realisation t ∈ T .

4: Evaluate geometric moment invariant vector MIs ∈ RnM of
order s containing nM = (s + 1)(s + 2)/2 components using
Eq. (18).

5: Defined combined geometry and moment shape signature
vector P(ϑ, t) ∈ RnP , nP = nG + nM , in the domain P :=
G ∪M with ϑ = (ϑ̄,ϑM); see Eq. (3).

6: Find the mean and variance of SSV using Eq. (5) and (6),
respectively.

7: Employ the KLE to find an optimal linear representation of
SSV in Eq. (19) while recast the problem in Eq. (23) as an
eigenproblem resulting AW =WΛ.

8: Rearrange columns of W, which represents KL-
modes/eigenvectors, based on their associated KL-
values/eigenvalues, such that λi ≥ λi+1.

9: Identify first m KL-modes capturing minimum 95% of the
variance based on Eq. (25).

10: Form geometrically- and functionally-active latent variable
vector v = {vi, i = 1, 2, . . . ,m} as in Eq. (30), where m < n.

11: With v create a subspace V ⊂ Rm as, V := {v : vli ≤ vi ≤
vui , ∀i ∈ {1, 2, . . .m}}, where vli and vui are the lower and upper
bounds set using either Eq. (31) or (32).

12: Solve Eq. (2) to find an optimal design v∗ inV.

7
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. Test Cases

We used two different 3D modelling cases, a wing model
ased on the NACA 2410 aerofoil1 (see Fig. 4) and a US Navy
ombatant DTMB 5415 hull model2 (see Fig. 5), to analyse
nd validate the proposed approach. We use the wing model to
emonstrate the capability of the proposed approach to generate
ubspaces with high representation capacity and compactness.
he hull model case goes one step further to demonstrate that
he proposed approach not only produces subspaces with high
epresentation capacity and compactness but are also physics-
nformed as the physical QoI is dependent on geometric mo-
ents. Therefore, we can significantly expedite the shape op-

imisation process. In the subsequent subsections, we discuss
hese two test cases in detail.

.1. 3D wing model
The 3D wing model is based on NACA 2410 aerofoil sec-

ions, parameterised via the approach described in [29]; see also
ig. 4(a). This parameterisation uses 12 parameters to define a
oil profile. The construction of the aerofoil commences with the
efinition of four simple cubic Bézier curves employed to cre-
te the final cubic B-spline curve. The foil’s chord length (L)
s the only dimensional parameter, and all remaining length pa-
ameters are non-dimensionalised by it and vary between [0, 1]
hile always guaranteeing a valid aerofoil shape instance. Read-
rs are advised to refer to [29] for details on the construction
nd the parametric definition of the aerofoil. The wing, shown in
ig. 4(b), is constructed using three independent aerofoil sections
laced at the root, mid-span, and tip of the wing, which follow an
ppropriate chord-length distribution along the span-wise direc-
ion. A fixed sweep angle is used, and the final NURBS surface,
epresenting the wing shape, is generated by a cubic lofting op-
ration. The principal dimensions of the wing, i.e., span length
nd swept angle, are kept fixed and set to 1.2 meters and 4.29◦,
espectively. The chord length L at root and tip is equal to 0.15
nd 0.06 meters, respectively. The remaining shape parameters,
= 3×11, are defined to reconstruct NACA 2410 profiles for the
arent design and are considered free parameters for the design
pace. Finally, to initiate the DR, the entire surface is discre-
ised with E = 90 × 25 nodes by directly evaluating them on the
URBS surface of the wing.

.2. DTMB hull model
The DTMB 5415 hull model is a widely used benchmark ship

mployed in shape optimisation, especially in the pertinent re-
earch community. In the present work, this parent model is
onsidered for the minimisation of the ship hull’s wave-making
esistance coefficient, Cw. Wave-making resistance constitutes a
art of the ship’s total resistance. It corresponds to the energy
onsumed to generate the free-surface waves appearing when a
ody moves on or near the free-surface of oceans, rivers or lakes.
t is a significant part of a ship’s total resistance for high Froude
umbers, i.e., high speed-length ratios, common for military and
arge container ships. Moreover, Cw is sensitive to local features
f the hull form, such as the bulbous bow or sonar dome; thus, a
ignificant reduction inCw can be achieved without shape optimi-
ation affecting the ship’s overall dimensions or capacity, which

1see, for example, http://airfoiltools.com/airfoil/details?

irfoil=naca2410-il for more information on NACA 2410 profile.
2see, for example, http://www.simman2008.dk/5415/combatant.html

or more details on DTMB 5415.

(a)

(b)

Figure 4: (a) Parametric representation of the aerofoil defined with 12 different
parameters (highlighted in red). (b) 3D wing model constructed with three aero-
foils; resulting in n = 33 design parameters and is used as a test case for the
validation of the proposed approach.

are critical design constraints. Therefore, minimising this resis-
tance component is extremely important for several ships; how-
ever, evaluating it is computationally intensive.

Figure 5: DTMB 5415 hull model used as a test case for the proposed approach.

Relation of moments with Cw: The flow around a slender
ship moving on the free surface with a constant velocity can
be represented by using an appropriate source-sink distribution
along its centre plane. The strength of these sources is pro-
portional to the longitudinal rate of change of the ship’s cross-
sectional area [30], and this aspect can be well captured by ge-
ometric moments, especially those of higher order. In fact, an
early derivation for the evaluation ofCw for slender ships, known
as Vosser’s integral, reveals explicit dependence on the longi-
tudinal derivative of the cross-sectional area [30], i.e., S ′(x) =
d
dxS (x) where S (x) =

∫
Φ(x) dydz is the cross-sectional area, and

Φ(x) denotes the cross-section of a ship hull at the longitudi-
nal position x. Let now mp =

∫ L
o xpS ′(x)dx be the p−th order

moment of S ′(x) with x = 0 and x = L corresponding to the
stern and bow tips of the hull, respectively. Assuming now that
S (0) = S (L) = 0 we get:

mp = −p
∫ L

0
xp−1S (x)dx = −p

∫ L

0

∫

Φ(x)
xp−1dxdydz, (34)

which leads to

mp = −pMp−1,0,0, (35)
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here Mp−1,0,0 is a component of the hull’s geometric moments
ector of order s = p+ q+ r = p− 1; see Eq. (7) . Thus, p−order
D moments of S ′(x) are directly linked to (p−1)−order 3D lon-
itudinal moments of the hull. These moments along with corre-
ponding G(ϑ, t), create the SSV which can be used in the previ-
usly described KLE formulation. We can thus say that our de-
ign vector is augmented with a physics-informed part expressed
y geometric moments.
It should be noted that one cannot expect that every physi-

al QoI of integral character is strongly connected with the geo-
etric moments of the body; thus, the usage of moments cannot
uarantee a physics-informed subspace. For example, viscous-
ressure resistance is expressed as an integral over the wetted
urface of the body; nevertheless, it depends on local properties
f the surface, such as smoothness and curvature, which can act
s turbulence generators by triggering flow separation. However,
ven if there is no strong connection of physics under consid-
ration with geometric moments, their usage, as explained ear-
ier, can still provide a high-level intrinsic geometric information
f the shape’s geometry, which is imperative to learning an effi-
ient subspace with enhanced representation capacity and com-
actness.
Shape Modification Method: To achieve a plausible shape

ariation of the parent hull during shape optimisation, a Global
odification Function (GMF) employing n = 27 parameters is
sed for G(ϑ̄, t) with nG = 3. GMF is a grid modification ap-
roach performed using a shape modification function based on
ector-valued functions defined on a design grid. These func-
ions are defined with the objective that during modification, the
nderlying structure of the design should be preserved, and the
esign grid used for simulation to evaluate Cw does not have to
egenerate. Details of the description of this approach can be
ound in [4].
Hydrodynamic Solver and Setup: Hydrodynamic simula-

ions for evaluating Cw are performed using a software package
ased on a linear potential flow theory using Dawson (double-
odel) linearisation, whose details of the employed formula-

ion, numerical implementations, and validation of the numeri-
al solver are provided in [31]. The computational domain for
he free-surface calculation extends from 1Lpp upstream to 3Lpp
ownstream, and 1.5Lpp sideways. A total of 75 × 20 grid nodes
re used for the free surface, whereas E = 90×25 nodes are used
or the hull discretisation and simulation is performed at Froude
umber 0.25.

. Results and discussion

This section discusses the results of extensive experimentation
ith the proposed approach to analyse its performance and prove
ts capability for efficient dimensionality reduction compared to
ther existing methods.

.1. Evaluation of geometric moment invariants
Geometric moments and their invariants of any order can be

alculated for geometries satisfying the conditions indicated in
ection 2.3. However, high-order geometric moments can be
ensitive to noise [16] while at the same time, numerical inac-
uracies are ever-present when evaluating high-order terms [15].
urthermore, a literature review in various application areas,
anging from kinetic equations [14] to shape retrieval [27], re-
eals that moments of an order higher than four are rarely useful.
e limited the order of geometric moments invariants appearing

n SSV up to s = 4 in this connection. The 0th−, 1st, 2nd−, 3rd−

and 4th−order geometric moments have nM equal to 1, 3, 6, 10
and 15 components, respectively. The moment invariants for the
wing and the submerged part of the hull are presented in Tables
1 and 2, respectively. Due to symmetries in shape, any vanishing
geometric moment invariants are not added to SSV.

Table 1: Geometric moment invariants up to 4th−order evaluated for the baseline
wing shape.

MI0,0,0 MI1,0,0 MI0,1,0 MI0,0,1 MI2,0,0
1 0 0 0 9.927E-02
MI0,2,0 MI0,0,2 MI1,1,0 MI0,1,1 MI1,0,1
8.922E-04 10.268 -3.222E-04 -1.213E-02 4.482E-01
MI0,0,3 MI0,1,2 MI0,2,1 MI0,3,0 MI1,0,2
18.353 -2.170E-02 -1.004E-03 7.692E-06 8.018E-01
MI1,1,1 MI1,2,0 MI2,0,1 MI2,1,0 MI3,0,0
-1.191E-03 -1.012E-04 -5.843E-02 -4.146E-04 -4.479E-03
MI0,0,4 MI0,1,3 MI0,2,2 MI0,3,1 MI0,4,0
2.415E+02 -2.855E-01 7.848E-03 -3.353E-05 1.925E-06
MI1,0,3 MI1,1,2 MI1,2,1 MI1,3,0 MI2,0,2
10.553 -1.070E-02 4.311E-04 -8.069E-07 1.143
MI2,1,1 MI2,2,0 MI3,0,1 MI3,1,0 MI4,0,0
-4.585E-04 7.540E-05 9.955E-02 -3.682E-05 2.257E-02

Table 2: Geometric moment invariants up to 4th−order evaluated for the baseline
hull shape.

MI0,0,0 MI1,0,0 MI0,1,0 MI0,0,1 MI2,0,0
1 0 0 0 2.315
MI0,2,0 MI0,0,2 MI1,1,0 MI0,1,1 MI1,0,1
4.197E-02 6.984E-03 0 0 -2.378E-02
MI0,0,3 MI0,1,2 MI0,2,1 MI0,3,0 MI1,0,2
-3.303E-04 0 1.076E-03 0 2.786E-03
MI1,1,1 MI1,2,0 MI2,0,1 MI2,1,0 MI3,0,0
0 -9.078E-03 2.452E-03 0 4.404E-01
MI0,0,4 MI0,1,3 MI0,2,2 MI0,3,1 MI0,4,0
1.333E-04 0 2.258E-04 0 3.997E-03
MI1,0,3 MI1,1,2 MI1,2,1 MI1,3,0 MI2,0,2
-8.841E-04 0 -5.538E-04 0 2.298E-02
MI2,1,1 MI2,2,0 MI3,0,1 MI3,1,0 MI4,0,0
0 6.045E-02 -2.238E-01 0 12.370

4.2. Dimension reduction
The proposed DSDR approach commences with the definition

of bounding limits for parameters in T , which for the wing and
hull models are assigned to 0 ≤ t ≤ 1 and −1.02 ≤ t ≤ 1.02,
respectively. According to [4, 29] these values provide sufficient
variation with a relatively large number of valid shapes. During
dimension reduction, the ensemble averages, ⟨·⟩ (in Eq. (5)), over
T is evaluated using Monte Carlo sampling, with statistically
converged number of samples Ψ = 9000, {tψ}Ψψ=1 ∼ ρ(t). ρ(t)
is a selected to be a uniform distribution, thus each shape in T
has the same possibility to be optimal. The lth component of
{Pl(ϑ, tψ)}, namely dl(tψ), which is discretised deviation from the
mean SSV, is evaluated as

dl(t j) = {Pl(ϑ, tψ} − 1
Ψ

Ψ∑

ψ=1

{Pl(ϑ, tψ}, (36)

which for all the samples gives a matrix Dl =[
dl(tψ),∀ j = 1, 2, 3 . . .Ψ

]
. Using this, the sub-matrix in Eq.
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28) can be evaluated as

Clk =
1
Ψ
DlDT

k . (37)

imilarly, all the components of Clk, l, k = 1, . . . , nP are evalu-
ted to compute A. Now, in the discrete form, quality of lower-
imensional representation P(ϑ, v) can be assessed via the recon-
truction error, measured by the Normalised Mean Squared Error
NMSE) as

NMSE =

∑Ψ
ψ=1

∥∥∥d(tψ) − d(vψ)
∥∥∥2

∑Ψ
ψ=1

∥∥∥d(tψ)
∥∥∥2

. (38)

In order to test and analyse the performance of the pro-
osed approach, different subspaces with varying SSVs are
onstructed. The employed SSVs contain either a single
igh order vector, i.e., MIs ∈ RnM with s = 2/3/4 and
M = 6/10/15, respectively, and their combinations specif-
cally for the hull model. In other words, the tested SSVs
re the following:

(
G(ϑ, t),MI2

)
,
(
G(ϑ, t),MI3

)
,
(
G(ϑ, t),MI4

)
,

G(ϑ, t),MI2,MI3
)
,

(
G(ϑ, t),MI2,MI4

)
,

(
G(ϑ, t),MI3,MI4

)

nd
(
G(ϑ, t),MI2,MI3,MI4

)
, which form the shape-supervised

ubspaces VG,MI2 , VG,MI3 , VG,MI4 , VG,MI2,3 , VG,MI2,4 , VG,MI3,4
nd VG,MI2,3,4 , respectively. For the wing model only VG,MI2 ,
G,MI3 and VG,MI4 are tested. The comparison of these

ubspaces, in terms of their diversity/richness and valid-
ty/robustness, along with their capacity to generate optimal de-
igns will helps us analyse the correlation of each moment (and
oment combinations) with shapes’ performance. The perfor-
ance of these shape-supervised subspaces is also compared
ith VG that does not employ any moment-based information.
s explained in §3.2, the wave-making resistance coefficient,Cw,
f hull has strong dependence on geometric moments. Therefore,
n this case, performance of above mentioned subspaces is also
ompared with VG,Cw , which augments geometry, G(ϑ, t), with
he calculated value of Cw.
As previously mentioned, the employed grid for the baseline
ing and hull is composed of E = 25 × 90 nodes, which, along
ith nG = 3 and the moments, when provided, will produce the
atrices, A, in Eq. (27). Specifically, the construction of VG,
G,Cw , VG,MI2 , VG,MI3 , VG,MI4 , VG,MI2,3 , VG,MI2,4 , VG,MI3,4
nd VG,MI2,3,4 is performed on the basis of an A matrix with
250×2250, 2251×2251, 2256×2256, 2260×2260, 2265×2265,
266 × 2266, 2271 × 2271, 2275 × 2275 and 2281 × 2281 ele-
ents3, respectively. For the hull model, the weighting func-

ion f (ϑ) is defined in a way that only counts nodes belonging
o the submerged part of the hull and nodes above the waterline
ssume a zero weight since they do not play any role in the resis-
ance components considered in our problem. On contrary, for
he wing model, f (ϑ) is set to take into account entire shape dur-
ng the implementation of the proposed approach. It should be
lso noted that for both test cases vector spaces are normalised
o exhibit the same variance associated to geometry and moment
nvariants. The selection of active KL-modes (eigenvectors) for
he construction of subspaces is performed in a way that guar-
ntees that every subspace retains at least 95% of the variance
ssociated to T . In other words, the number is determined by the
um of KL-values (eigenvalues) that reach this threshold; see Eq.
24).

3Assuming usage of all moment’s components.
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Figure 6: Percentage of variance retained by each of the wing model’s subspace
versus its dimension

. The horizontal red line indicates the 95% threshold.
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Figure 7: Percentage of variance retained by each of the hull model’s subspace
versus its dimension. The horizontal red line indicates the 95% threshold.

Figures 6 and 7 depict the percentage of variance retained for
the wing and hull models with respect to the dimension of each
subspace and the dimension required for each subspace to reach
that level. One may easily observe in these figures that all consid-
ered augmented subspaces perform much better than the purely
geometry-based subspaceVG when assessing variance retention.
Successful DSDR requires a subspace retaining the highest pos-
sible variance with the fewest latent variables. In this aspect, all
shape-supervised subspaces reach the threshold variance (95%)
with half or less dimensions when compared toVG, even if a sin-
gle component is added to SSV. For the wing model case, shape-
supervised subspaces, VG,MI2 , VG,MI3 and VG,MI4 have similar
performance; requiring m = 11 dimensions to capture 95% of
variance; thus, resulting in a 67% dimensional reduction, i.e.,
from n = 33 to m = 11. More importantly, these subspaces cap-
ture higher geometric variance with fewer latent variables com-
pared to solely geometry-based subspace VG, which requires
m = 14 dimensions for 95% of variance. For the hull model,
a more detailed analysis, employing shape-supervised subspaces
with moments combinations, is performed. In this case, the in-
clusion of a single geometric moment, i.e., MI2, MI3 or MI4,
performs almost identically to Cw’s inclusion, which, as stated
earlier, confirms the close relation of these moments with Cw.
With regards to dimensionality reduction, VG requires a mini-
mum of m = 15 dimensions to capture 95% of variance, which
corresponds to a 44% reduction when compared to the original
space, T ⊆ R27(n = 27). On the other hand, VG,Cw , VG,MI2 ,
VG,MI3 and VG,MI4 need m = 8, which corresponds to a reduc-
tion of 70%, while the spaces using moment combinations ex-
hibit the best performance, i.e., VG,MI2,3 , VG,MI2,4 , and VG,MI3,4
require m = 6 parameters achieving a reduction of 78% and fi-
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allyVG,MI2,3,4 needs only m = 5, resulting in reduction of 81%.
his demonstrates clearly the effectiveness of the approach in
ignificantly reducing dimensionality. Finally, we need to note
hat VG,MI2 , VG,MI3 and VG,MI4 achieve the same reduction as
G,Cw which is created in a physics-supervised setting with the

nclusion of Cw [11]. Moreover, the construction of VG,Cw is
ime consuming as Cw evaluation is computationally expensive,
hereas geometric moments have minimal cost. This provides
lear support to our claim that geometric moments are adequate
n capturing the physics involved in our problem and costly com-
utational approaches can be avoided.

igure 8: Shape deformation of the wing model corresponding to the first three
igenvectors of all employed subspaces: (a) VG (b) VG,MI2 , (c) VG,MI3 and
d) VG,MI4 . Magnitude of surface displacement is colour coded [small:blue to
arge:yellow].

w1
(a) (b) (c)

(d) (e)

w2

w3

w1

w2

w3

w1

w2

w3

(i)(h)(g)
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igure 9: Shape deformation of hull model corresponding to the three first eigen-
ectors of all employed subspaces: (a) VG (b) VG,Cw , (c) VG,MI2 , (d) VG,MI3 ,
e) VG,MI4 , (f) VG,MI2,3 , (g) VG,MI2,4 , (h) VG,MI3,4 and (i) VG,MI2,3,4 . Magni-
ude of surface displacement is colour coded [small:blue to large:yellow].

Figures 8 and 9 show the first three KL-modes, w1, w2 and
3 for all employed subspaces projected on the wing and hull
rids, respectively. This projection is of great practical value
s it highlights the type and order of variance corresponding to
ach KL-mode. There are some interesting remarks drawn from
hese figures. From Fig. 8 it can be seen that the first (w1) and
hird (w3) KL-modes of VG show high deviation at the lower
urface (pressure side) of wing, with (w1) affecting the leading
dge and (w3) affecting the leading edge area near the root. On
he contrary, w2 affects mainly the upper surface. The sets of

KL-modes of VG,MI2 , VG,MI3 and VG,MI4 , are very similar to
each other. Specifically, w1, in all cases, relates to both upper
and lower surfaces, whereas, interestingly, w2 and w3 are sim-
ilar to the w1 and w2 of VG. For the hull model, apart from
Fig. 9(b), variation is exhibited only below the waterline as the
proposed method assigns zero weight to nodes above the water-
line. The first KL-mode (w1) of VG,Cw is highly affected by the
inclusion of physics, i.e., Cw, whereas the remaining two (w2

and w3) are identical to w1 and w2 of VG. This pattern per-
sists for the remaining higher modes, not depicted in the figure.
In case of shape-supervised subspaces for the hull model, re-
sults can be grouped in two sets, {VG,MI2 ,VG,MI4 ,VG,MI2,4 } and
{VG,MI3 ,VG,MI2,3 ,VG,MI3,4 ,VG,MI2,3,4 } as their respective KL-
modes bare noticeable similarities. Although both sets exhibit
different first and second modes when compared with VG, the
third mode, i.e., w3, is very similar along all cases but VG,Cw

which pushed down that mode to become w4. However, w1 of
the second set bears some resemblance to w1 of VG while the
first set seems to more closely follow the w2 ofVG. Fig. 11 and
10 depicts NMSE (see Eq. (38)) versus subspace dimensionality
for the wing and hull models, respectively. NMSE reduces for
all subspaces as their dimension m increases. Except for VG,Cw

in case of hull model, there is no significant difference between
the NMSE of the initial subspaceV(G) and the remaining shape-
supervised subspaces.
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Figure 10: Reconstruction accuracy of wing model’s subspaces measured via
NMSE with respect to their dimensionality (m).
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Figure 11: Reconstruction accuracy of hull model’s subspaces measured via
NMSE with respect to their dimensionality (m).

4.3. Shape-supervised DSDR with composite-SSV for the hull
model

For feature-rich and complex geometries like the hull model,
geometric moments of higher-order (above four) may be needed
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o capture local features that do affect wave-making resistance if
hey reside, for example, in the bulbous bow. However, as men-
ioned earlier, incorporating higher-order moments comes with
roblems related to noise and numerical issues. Therefore, in-
tead of evaluating higher-order geometric moments, one may
ecompose the geometry into sufficiently simple parts so that
ower-order moments can efficiently describe them. This decom-
osition results in a composite moment vector containing up to
th−order moment invariants for each part. The corresponding
SVwill incorporate the moment composite vector in such cases.
enceforth, in this connection, we shall refer to composite-SSV
ersus the global-SSV used in the previous section.

Figure 12: Decomposition of hull model for DSDR with composite-SSV.

The hull decomposition we have used is shown in Fig. 12.
e split the hull model into four parts: sonar dome, for-part,
id-body, and aft-part. After the segmentation, composite-SSV

s composed of all sth order moment invariants, MIs ∈ R4nM ,
M = (s + 1)(s + 2)/2, obtained for each of the four segments
nd the shape modification vector function (G), which is evalu-
ted for the entire shape to ensure smooth deformation over the
egments. KLE is then performed on the composite-SSV in a
imilar manner to global MIs to obtain a single subspace used
or shape optimisation. Fig. 13 corresponds to the previously dis-
ussed Fig. 7. We should also note here that the segmented shape
s only used with the shape-supervised subspaces, and therefore
he results forVG andVG,Cw remain unchanged.
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igure 13: Percentage of variance retained by each the hull model’s subspace
ersus its dimension. The horizontal red line indicates the 95% threshold.

Fig. 13 depicts a similar pattern, in terms of variance, of the
hape-supervised subspaces constructed with composite-SSV to
he ones constructed previously with the global-SSV. However,
n this case, the variance retained by the first few latent vari-
bles is comparably less. For example, at m = 1, VG,MI2,4 ex-
ibits a variance of approximately 63%, whereas the same space
ecorded the largest variance (around 82%) in the global case. In
he composite case, the largest variance is retained by VG,MI3 ,
ollowed VG,MI4 , VG,MI2,4 at m = 1. It is also interesting to
ote that the variance retained byVG,Cw , over all plotted dimen-
ions, closely matches the variance retained by VG,MI3 in this
ase. This again demonstrates howmoments, especially compos-
te MI3, are able to capture the behaviour of Cw in the proposed
pproach for dimensionality reduction.

Fig. 14 shows the final dimensionality of all subspaces. In the
case of composite-SSV, dimensionality of the shape-supervised
subspaces is higher then what was achieved with global-SSVs.
The dimensions ofVG,MI2 ,VG,MI3 andVG,MI4 increased from 8
to 10 (and 9VG,MI3 ) and now exhibit a dimensionality reduction
of approximately 63%, 67% and 63%, respectively. A significant
increase is observed in the case ofVG,MI2,3,4 , whose dimensional-
ity increased from 5 to 7, which now matches the dimensionality
of VG,MI2,4 . Finally, NMSE values for the composite case re-
semble the results presented in Fig. 11 and therefore no separate
figure is included here.
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Figure 14: Dimension required by each of the hull model’s subspace to reach
95% of the variance threshold.

4.4. Subspace quality analysis (SQA)

Once the new basis and the corresponding subspaces are
formed for both test cases, their quality for representation ca-
pacity and compactness against the criteria defined in §2.5.2 is
analysed. The analysis assesses the suitability of the subspace
for shape optimisation, i.e., we assess whether the subspace V
resulting from new parametrisation of shapes with latent vari-
ables v can captures the underlying shape structure adequately
and whether it produces valid and diverse geometries. To com-
mence these analyses, we use five random Monte Carlo sam-
plings of Ψ = 5, 000, 000 parameter vectors from each sub-
space and compute the average number of invalid shapes (i.e.,
shapes with self-intersecting geometries) appearing in each sub-
space. We first briefly analyse the quality of shape-supervised
subspaces,VG,MI2 ,VG,MI3 andVG,MI4 constructed for the wing
model and compare them with VG. Afterwards, we perform a
detailed Subspace Quality Analysis (SQA) for the hull model’s
subspaces constructed with global- and composite-SSVs.

4.4.1. SQA for the wing model
Figure 15 shows the average number of invalid wing designs

and the average diversity of designs present in subspaces VG,
VG,MI2 , VG,MI3 and VG,MI4 bounded with Eq. (31). From
Fig. 15(a), it can be seen that the VG subspace, constructed
using only geometry, as in [3], produces a significantly larger
number of invalid shapes when compared to the proposed shape-
supervised subspaces, i.e., VG,MI2 , VG,MI3 and VG,MI4 . Aver-
age diversity measure, calculated using Eq. (33), for the wing
case and for all subspaces is shown in Fig. 15(b). Note that the
diversity of designs in VG is only slightly higher to the ones
in VG,MI2 , VG,MI3 and VG,MI4 , which is practically negligible.
These results show that even if there is no prior information of
physics or its dependence on geometric moments, the shape-
supervised subspaces are significantly more robust in terms of
providing valid shapes while maintaining similar levels of de-
sign diversity. These capabilities of subspaces are beneficial for
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ccelerating the convergence of shape optimisation towards opti-
al solution [32].
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igure 15: (a) Average percent of invalid wing designs and (b) average diversity
easure for wing designs in subspacesVG,VG,MI2 ,VG,MI3 andVG,MI4 .

.4.2. SQA for the hull model
For the hull model, apart from comparing subspaces formed
ith global- and composite-SSVs, we also assess the effect of the
pproach employed in setting parameter bounds (see Eqs. (31)
nd (32)) on their quality. We henceforth denote with S L1 and
L2 the results following the approach in Eq. (31) and (32), re-
pectively. The resulting percents of invalid geometries using
L1 and S L2 are shown in Fig. 16.
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igure 16: Average percent of invalid hull designs in VG, VG,Cw and shape-
upervised subspaces sampling with global- and composite-SSVs when bounded
y S L1 and S L2 approaches.

The following remarks can be drawn by observing the results
n Fig. 16: i) S L1 leads to more invalid geometries for all sub-
paces; ii) shape-supervised subspaces with composite-SSV have
lower percentage of invalid geometries to global-SSV, even
hen S L1 is used; iii) the number of invalid geometries in VG
re substantially higher than any other subspace regardless of the
ounding approach; finally iv) in all cases, shape-supervised sub-
paces tend to produce a similar or even lower number of invalid
hapes when compared toVG,Cw . These results confirm the abil-
ty of shape-supervised subspaces to generate a large number of
alid geometries, thereby promoting fast convergence in optimi-
ation and, more importantly, also manifest the ability of geomet-
ic moments to attain the performance of the physics-informed
SDR with Cw, without the computational penalty induced by
t.
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Figure 17: Percentage of invalid hull designs as a function of dimensionality of
subspace formed with S L1 bounding approach.

Fig. 17 depicts the relation of invalid shapes percentage to di-
mensionality m when subspaces are formed with S L1. The first
obvious observation is that there are either no or only a few in-
valid geometries for the first few dimensions, but these increase
rapidly after the 4th or 5th dimension. This trend is more promi-
nent for VG: while m = 2 shows no invalid geometries, m = 3
records an increase to 3.5%, and atm = 4 this abruptly goes up to
23% and stabilises to around 30% till m = 10 before increasing
further. A downwards shift can be observed for shape-supervised
subspaces with composite-SSV, but, in this case, the relation with
dimensionality is also affected. The selection of the S L2 bound-
ing approach does not affect this relationship.
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Figure 18: Average diversity measure for hull designs inVG, VG,Cw and shape-
supervised subspaces created with global- and composite-SSV bounded by S L1
and S L2 techniques.

Finally, we also analysed the diversity of subspaces as de-
scribed in §2.5.2. The results of the analysis are collectively pre-
sented in Fig. 18. Similar to the validity analysis, these results
are obtained by averaging over 5 Monte-Carlo samplings with a
size of Ψ = 5, 000, 000 and diversity is only measured for valid
geometries. Most subspaces bounded by S L1 have a higher diver-
sity index than when bounded with S L2. Note that despite their
lower-dimensionality, shape-supervised subspaces have similar
diversity toVG, which is especially true when subspaces, formed
with either global- or composite-SSV, are bounded by S L2. More
importantly, VG, VG,Cw and VG,MI3 have similar diversity per-
formance althoughVG,Cw andVG,MI3 have lower dimensionality
and less then half of the invalid shapes when compared to VG.
Fig. 19 draws a more detailed picture of these results as it depicts
diversity performance buildup with subspace dimensionality. Di-
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ersity increases monotonically with dimensionality; however, it
lowly tends to its maximum value after including a sufficient
umber of dimensions for each subspace. This observation is in
ine with our previous analysis in which we indicated that the
rst few KL-modes (5 to 8) forming the basis of these subspaces
apture most of the variance.
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igure 19: Plot showing the diversity measure of hull designs as a function of
imensionality of subspace formed with S L2 bounding approach.

.5. Shape optimisation of the hull model

When comparing S L1 with S L2, we can see that the number
f invalid geometries generated by S L1 is twice as large as S L2;
owever, there is no significant difference between the two ap-
roaches in terms of diversity. We, therefore, employ S L2 to
et the bounding limits of subspace used for shape optimisation.
inally, after performing the dimensionality reduction, the opti-
isation problem is redefined as follows:

Find v∗ ∈ Rm such that

Cw(v∗) =min
v∈V

Cw(v)

subject to 0.95V0 ≤ V(v) ≤ 1.05V0,

0.95BWL0 ≤ BWL(v) ≤ 1.05BWL0 ,

LWL(v) = LWL0 and T (v) = T0,

(39)

here V, BWL, LWL,T correspond to volume, length and beam at
he waterline, and draft, respectively. The sub-index (0) indicates
he quantity values for the parent hull. The optimisation problem
bove is solved using Jaya Algorithm (JA), a simple yet efficient
ptimiser; see more details in [33]. Furthermore, as JA employs
stochastic approach, results may differ in each run; therefore,
hree different optimisation runs are performed, and results are
veraged in this work. In each run, a total of 150 iterations are
onsidered, and Fig. 20 displays the convergence graph over the
rst 50 iterations. Optimum designs in terms of cross-sections
or body plans), obtained for each case, are depicted in Fig. 21(a).
he contours shown in Fig. 21(a) constitute the so-called hulls’
ody-plan. It consists of the halves of cross-sections resulting
rom intersecting the hull with planes located perpendicularly to
ts longitudinal symmetry plane. Cross-sections from amidships
o the forward part of the hull are drawn on the righthand side of
he figure, while the remaining sections, amidships to the stern,
re drawn on the lefthand side. An example of construction of
uch cross-sections is shown in Fig. 21 (b). Cross-sections high-
ighted in blue correspond to optimised designs, while the ones
ighlighted in grey are of the baseline design. Plotting both base-
ines and optimised designs’ cross-sections on the same image
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Figure 20: Cw optimisation history for VG, VG,Cw , and the shape-supervised
subspaces with global- and composite-SSV.

facilitates the comparison of their geometrical features. Such
comparison is widely used in naval architecture. The QoI value,
i.e., the wave-resistance of the hull, is the criterion for deciding
which of the two is the best hull.

Figure 21: (a) Comparison between the baseline and optimised hull shapes, in
term of cross-sections (or body plans), obtained at the end of the optimisation
process. (b) Example of construction of hull’s cross-sections.

The convergence graph in Fig. 20 clearly demonstrates the
competitive performance of the proposed approach. Shape
optimisation performed with shape-supervised subspaces (both
global- and composite-SSV) converge substantially faster than
VG and, more importantly, exhibits a similar convergence per-
formance withVG,Cw . One of the reasons for the slower conver-

14



Journal Pre-proof

g1

t2

A3

o4

w5

6

i7

s8

s9

i10

V11

g12

t13

u14

s15

416

17

s18

s19

p20

d21

o22

m23

224

fl25

e26

f27

p28

l29

t30

531

32

f33

p34

b35

a36

s37

h38

a39

a40

s41

s42

b43

v44

t45

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68
Jo
ur

na
l P

re
-p

ro
of

ence of VG is the existence of many invalid shapes, whereas
he remaining subspaces perform better from the very beginning.
ll shape-supervised spaces tend to approach the performance
fVG,Cw and especially,VG,MI3 that even surpasses it when built
ith composite-SSV.

Table 3: Average Cw values over three optimisation runs after 150 iterations.

Design Spaces Cw

Global-SSV Local-SSV
VG 6.6772E-04
VG,Cw 6.5408E-04
VG,MI2 6.7591E-04 6.6582E-04
VG,MI3 6.6895E-04 6.1056E-04
VG,MI4 6.8511E-04 6.7065E-04
VG,MI2,3 7.0910E-04 6.9833E-04
VG,MI2,4 6.9694E-04 6.8407E-04
VG,MI3,4 7.0599E-04 6.9029E-04
VG,MI2,3,4 6.9875E-04 6.8052E-04

Table 3 provides the average Cw values obtained at the final
teration over three runs for all cases. It can be seen that all cases
how a substantial improvement when compared to the parent de-
ign whoseCw value is 1.025×10−3. However, there is no signif-
cant difference between optimum designs generated from VG,
G,Cw and the shape-supervised subspaces. When comparing
lobal- to composite-SSVs, the latter perform consistently bet-
er, although slightly, and the overall best is achieved byVG,MI3
sing a composite-SSV, which might be a rather unexpected re-
ult since it surpasses the performance attained byVG,Cw .

.6. Computational cost
The computational cost of constructing shape-supervised sub-

paces is higher than the cost of a purely grid-based geometric
ubspace. However, using moments is glaringly cheaper than
erforming physics simulations, in our case Cw. On a PC with a
ual 12-core 2.7GHz Intel® Xeon® Gold 6226 CPU and 128GB
f memory, it takes approximately 9.04 seconds to evaluate all
oment invariants {MIs, s = 1, 2, 3, 4} for a hull meshed with
,512,886 vertices. On the other hand, the employed potential
ow solver requires approximately 69.30 seconds for a single
valuation of Cw for a hull meshed with 2, 250 vertices. There-
ore, performing dimension reduction with shape-supervised ap-
roaches provides the same (or better) quality with a significantly
ower computational cost when compared to the other supervised
echniques in this work.

. Conclusion and future work

Despite the success of design space dimensionality reduction
or accelerating computationally demanding shape optimisation
rocesses, the existing approaches suffer from two critical draw-
acks: i) low-levels of robustness, i.e., a non-negligible percent-
ge of designs in the reduced dimensionality subspace corre-
ponds to invalid/infeasible instances, and ii) inability to capture
igh-level structure information, i.e., high-level features, associ-
ted to physics, which would considerably improve performance,
re not captured. Therefore, in this work, we propose a shape-
upervised approach for reducing the dimension of the initial de-
ign space. Our approach uses geometric moment invariants of
oth global and composite nature to construct a shape-signature
ector (SSV) that describes important underlying intrinsic struc-
ures of the shape, which can, to some extent, substitute physics

information. The subspaces produced in this work retain the re-
quired reconstruction capabilities, offer diversity and robustness,
and, more importantly, are physics informed. The representa-
tion capacity and compactness of the produced subspaces are ac-
cessed, and the former is found to be equivalent to the original
spaces, whereas the latter is significantly better, i.e., significantly
fewer invalid designs are generated.
Furthermore, the applicability of the proposed method is tested

against the challenging problems of wing design and ship-hull
shape optimisation. The wing and hull models are parameterised
with 33 and 27 design variables parameters, respectively. The
shape optimisation performed for the hull model aims at its wave
resistance coefficient (Cw) minimisation. The results confirm our
claims and demonstrate the higher convergence capability of the
shape-supervised approach. One may easily apply the same ap-
proach to shape optimisation of other free-form shapes in com-
putational mechanics.
In the future, we would also like to explore the possibility of

SSV’s integration into a generative adversarial network and per-
form physics-augmented training. At the same time, an exten-
sion of our work in an Iso-Geometric Analysis setting, where
Non-uniform Rational B-splines representations (NURBS) of the
shape for DSDR, analysis and shape optimisation would be di-
rectly used, is also in our plans.
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Shape-supervised dimension reduction:
Extracting geometry and physics associated features with geometric moments
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bstract

n shape optimisation problems, subspaces generated with conventional dimension reduction approaches often fail to extract the in-
rinsic geometric features of the shape that would allow the exploration of diverse but valid candidate solutions. More importantly,
hey also lack incorporation of any notion of physics against which shape is optimised. This work proposes a shape-supervised di-

ension reduction approach. To simultaneously tackle these deficiencies, it uses higher-level information about the shape in terms
f its geometric integral properties, such as geometric moments and their invariants. Their usage is based on the fact that moments
f a shape are intrinsic features of its geometry, and they provide a unifying medium between geometry and physics. To enrich the
ubspace with latent features associated with shape’s geometrical features and physics, we also evaluate a set of composite geometric
oments, using the divergence theorem, for appropriate shape decomposition. These moments are combined with the shape modifi-

ation function to form a Shape Signature Vector (SSV) uniquely representing a shape. Afterwards, the generalised Karhunen-Loève
xpansion is applied to SSV, embedded in a generalised (disjoint) Hilbert space, which results in a basis of the shape-supervised sub-
pace retaining the highest geometric and physical variance. Validation experiments are performed for a three-dimensional wing and a
hip hull model. Our results demonstrate a significant reduction of the original design space’s dimensionality for both test cases while
aintaining a high representation capacity and a large percentage of valid geometries that facilitate fast convergence to the optimal

olution. The code developed to implement this approach is available at https://github.com/shahrozkhan66/SSDR.git.

eywords: Computer-Aided Design, Design Space, Dimensionality Reduction, Geometric Moment Invariants, Shape Optimisation.
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 Shape signature vector (SSV) comprises a shape modifcaaon vector and geometric moment 

invariants. 

 Karhunen-Loève expansion of SSV results in a shape-supervised space with high 

representaaon capacity and compactness.

 Dependence of physical QoI (Quanaty of Interest) on geometric moments can induce the 

noaon of physics into the subsspace.

 Shape-supervised subsspace retains higher geometric variance with fewer latent variabsles. 
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