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Abstract

Despite a load below the elastic limit is applied on a viscoelastic material, the material may fail after a long duration of constant
loading because of the time-dependent viscous deformations. In this regard, a viscoelastic material model in the ordinary state-
based peridynamic framework is proposed to capture crack propagation in polymeric water treatment membranes. The deformation
state is decoupled into dilatational and distortional parts, and it is assumed that the dilatational part of deformation is elastic, while
the distortional part is considered as viscoelastic, whose behaviour can be represented by the Prony series. First, we verify our

implementation with FEM results for a benchmark case. Afterwards, the crack propagation is studied by the viscoelastic ordinary
state-based peridynamic model.
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1. Introduction

The impact of climate change on earth has been causing scarcity of the water resources all around the world, see the
United Nations report for an extensive work on the impacts of climate change, UN climate change (2022). Especially,
the societies, who live in geographically disadvantageous areas, are expected to suffer from water scarcity further
in the near future. In this regard, it is crucial not only to protect available water resources but also to reuse of the
waste-water for a sustainable resource management.

In water treatment systems, the membrane materials can be basically categorized as organic or inorganic Baker

(2004). The mechanical properties of organic membranes can be improved further by composing with some inorganic
compounds as exemplified by Madaeni et al. (2015).
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Nomenclature

horizon radius of a particle

extension state betwesn two particles

distortional part of the extension state between two particles
elastic part of the distortional extension state between two particles
viscous part of the extension state betwesn two particles
domeain of neighbourhood, also called horizon

PD constant related to the bulk modulus

PD constant rlated to the shear modulus

step function that defines the bond condition

scalar state of the weight function

local damage parameter of a particle

weighted volume of the horizon for a particle

density of the material

force density vector

¢ distortional part of the force density

*  dilatational part of the force density

7;  relaxation time for each Maxwell element in the Prony series
#  PDvolume dilatation

¥V volume of a material point
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The main constituent of the organic based membranes are polymers, which naturally demonstrate some degrae of
viscous deformations even at the room temperature, Chung et al. (2000). The viscoelastic properties of the membrane
malerials can be identified by either dynamic mechanical analysis, see Chartoffet al. (2008) or tensile creep tests with
the load levels below the elastic limil, see Emori et al. (2019).

Mechanical characterization of membrane materials used in waste-water treatment systems can be performed by
several methods of which many of them are also common in other engineering applications, e.g, civil and structural
enginesring. These techniques were summarized for various membrane materials by Wang etal. (2017).

Despite the operation load. which is below the critical level based on static analysis approach, the deformations
in viscoelastic membranes tend to increase by time. This effect becomes prominent if the temperature of working
environment is higher than the glass transition temperature of the material. Chung et al. (2000) showed the influence
of emperature on the viscous behaviour of polymeric water treatment membranes. Considering this phenomenon, it is
required to pradict the long-term response of a polymeric membrane under given loading conditions. In this particular
study, we therefore examine the growth of an existing crack and full failure of the membrane due to the viscous
deformations under constant loads.

The modelling of defects is inherently a challenging task when conventional continuum mechanics based meth-
ods am employed. However, the damage evolution and crack propagation can be numerically simulated by a recent
methodology, called as peridynamics (PD), which was proposed by Silling (2000). The simplest form of the PD is
bond-based approach, which defines the force interaction solely depending on the relative deformation of the parti-
cles, Silling and Askari (2005). The bond-based PD hence introduces some limitations on the material constants. A
more comprehensive PD approach, which is called ordinary state-based (OSB) PD was later proposad by Silling et al

(2007).

A simplified form of OSB-PD was presented by Le et al. (2014) for two-dimensional (2D) plane stress and plans
strain cases by comespondznce of the strain energy densities and volume dilatations in classical and PD theories. The
2D O5B-PD formulation presented by Le et al. (2004) was adopted by Ozdemir et al. (2020) for the dynamic crack-
propagation simulation in functionally graded materials. Then, a comprehensive investigation on the micro-macro
crack interactions in functionally graded materials employing the same formulation was carried out by Ozdemir et al.
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The outstanding featurzs of OSB-PD have been adopted for material simulations, w hich involve nonlinear effects.
Madenci and Oterkus (2016) decomposed the deformation states of materials into dilatational and distortional parts,
and proposed OSB-PD formulation for plastic deformations with von-Mises vielding criterion and isotropic hardening.
Being able to decompose the deformation states in OSB-PD perspective has enabled the researchers to introduce
viscoelastic effects in the PD models, see for example Mitchell (201 1); Madenci and Oterkus (2017).

In the light of the works by Mitchell (2011) and Madenci and Oterkus (2017}, we introduce viscous deformation
effects into the 2D plane stress OSB-PD formulation in the present work. The rest of the present work is outlined as
follows. In Section 2, we will present 2D viscoelastic OSB-PD formulation for the plane stress case. Section 3 will
be covering the verification of the proposed formulation with the viscoelastic FEM analysis using a commercial FE
code, Ansys (2020). Afterwards, the crack propagation simulations of the viscoelastic membranes will be carried out
in Section 4. The concluding remarks will be drawn in Section 5.

2, OS5BE-PD Formulation for Viscoelastic Deformations
21, Fundamentals

In the PD framework, we basically solve the equation of motion in the discretized domain The discrete form of
the equation of motion can be written as:

Nay,
il = (o — tum)Vip + b, (1)
1
In Eq. {1}, the force density vectors are denoted as oo and § e between the particles (k) and () within the
horizon of particle (k). The number of partickes in the neighbourhood of particle (k) is represented by Ny, The
displacement and acceleration vectors are expressed by u and i, respectively. The remaining parameters in Eg. (1)
are: o, V' and b, which respectively stand for the density of material, comected volume for the particles and the body
force density vector.
In the present study, we adopt 21D OSB-PD formulation from the work by Le et al. (2014). The force density for
linear elastic solids can be expressed as:
_Av—1)f,, A s
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In the force density expression, » stands for the Poisson’s ratio; & and A represent the PD material constants for the
dilatational and distortional parts of deformation, respectively. These constants can be obtained by the correspondence
of volumetric dilatations and strain energy densities in the PD and classical theory. The symbol "e™ denotes the dot
product of two PD states, see Silling et al. (2007) for details. The volume dilatation, # for the plane stress condition
can be written as:

o= 22v— D iwI)e e
T ow—1 g

(3)

The parameter c is scalar state of the weight function, and it is expressed as w = 1 — x/4§ with the horizon radius
& and the initial distance between the particles, x. The parameter g represents the weighied volume of the horizon for
each particle, and it is defined as g = (wx) » 1.

2.2 Viscous deformations

In order to introduce viscous deformations, we firstly decompose the force density into dilatational and distortional
parts as ¢ = * + ¥ Madenci and Oterkus (2016). Here, the dilatational part of the force demsity is identical for both
linear elastic and viscoelastic solids, and is given as follows.
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Then, by the assumption of incompressibility in viscous fluids, only the distortional part of the deformation is split
into elastic and viscous parts, ie., ¢ = e* + &%

It is a common practice to epesent viscozlastic propertizs by means of general Maxwell models, in which a
single spring element is connectad with a series of paralle] Maxwell elements. The constitutive relation for the general
Maxwell model is represented by the Prony series Lakes (2009). The Promy series basically represent the relaxation
of the materizl, which results in either continuous deformation under constant loading or stress release under constant
deformations with respect to time. In the PD perspective, the parameter 4 is the time dependent material property, and
can be expressed by the Prony series as follows.

N
AN=14, + Z Agein, (5)
=l

where 7; represents the relaxation time for each Maxwell element. The limit value of the material constant as the time
converges to infinity is A,,. The number of Maxwell elements in the general Maxwell model is denoted by Ny
In a general Maxwell model, the distortional part of the force density is expressed as:

Nu
s Z . i)
=1

where 1%, stands for the distortional part of force density for the single spring element, while the distortional force
density component acting on each Maxwell element is denoted by . Considering the viscous deformations, the
force density expression for each Maxwell element is obtained as:

; v - 1)
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By substituting Eg. (7} into Eq. (6), the distortional part of the force density in a general Maxwell model can be
expressed as:
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The viscous extension state ¢** at each time increment can be obtained according to the procedure described by
Mitchell (2011).

2.3 Damage represeniation

The inclusion of damage and structural discontinuities in the PD formulation is rather straightforward. The inter-
actions between the particles can be removed frreversibly to generate a damaged region. The damage accumulation in
2 PD particle is quantified by the local damage parameter  as follows Silling and Askari (2005).

Ly el £)dH
[Hz L
where the step function uix. £) represents the bond condition between the particle located at x and its neighbour, and

takes the value of 1.0 for the intact bonds, and zero for the broken bonds. £ defines the bond vector between the

particlkes.

There are several criteria to assess the bond condition in the PD perspective, and some of them have been coverad
by Dipasquale et al. (2017). The most common one is the so called critical stretch criterion, which was clearly defined
for bond-based PD by Silling and Askari (2005), and defined for OSB-PD in Madenci and Oterkus (2014). Despite
the implementation of critical stretch criterion is rather straightforward, its validity is limited to linear elastic problems.
Since the present problem involves non-linearities arising from the viscous part of the deformation, the critical bond

wix) = 1— (9)
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Fig. 1. Benchmark problem for uniaxial ension specimen: (a) representative model, (b loading condition.

strain energy density criterion by Fosteret al. (2011) is employed to examine the bond conditions. The critical value
of the strain energy density that can be stored in a bond for a 2D case was given by Dipasquale et al. (2017) as follows.
3
.= =
c 2{;31'};

where &, stands for the critical energy mlease rate of the material, whereas i, is the thickness of 2D model. If the
strain energy density of 2 bond exceeds the value given by Eq. (10}, the siep function is set to zero for the associated
bond, i.e., pix, £) = 0. Then, the weight function w is multiplied by the step function in the force density and dilatation
EXPIEssions.

(10}

3. Numerical Studies

The solution of the P equation of motion can be performed by an explicit time intzgration scheme. However, the
present work requires extra car when dealing with the time integration. The steps for solving the viscoelastic PD
models were given by Madenci and Oterkus (2017). The problem itself is transient, which means that the viscous
deformations are to be updated for each real time increment. However, for each real time increment, it is required to
evaluate almost steady-state displacement field by employing the adaptive dynamic relaxation (ADR) technique in a
virtual time frame, se2 Kilic and Madenci (20100 and Madenci and Oterkos (2014) for the implementation of ADR
in the PD perspective.

3.1, Verificarion afthe OSB-PD formulation

In the verification stage of our OSB-PD viscoelastic formulation, we simply consider flat-sheet type polymeric
specimen under unizxial tensile load, which was previously studied by Madenci and Oterkus (2017). The problem is
described in Fig. 1.

The fundamental materizl properties are indicated in Fig. 1(a); however, these properties represent the material
response at the initial stage. We can expect the relaxation of the modulus of elasticity as the time passes. The material
relaxation is thus represented by the Prony series invoking 15 terms. The parameters of the Prony series are adopled
from Madenci and Otzrkus (2017), and are given in Table 1. In the given table, £, stands for the modulus of elasticity
when the time converges to infinity, which means the makerial modulus will relax from 16600 MPa to 700 MPa in an
exponantial manner.

A step loading, as shown in Fig. 1(b). is applied to the right edge of the model while keeping the left edpe fied.
A uniform tension load of magnitude oy = 2000 Pa is suddenly applied on the loaded edge for 5 ms, then the load is
removed. Total time of the simulation is set as 10 ms.



In order to capture the material e laxation accurately, the time increment size is adopted as Ar = 1= 10~ 5. As stated
previously, the steady-stale displacement field is obtained by the ADR algorithm. As for the comparison purposes,
transiznt dy namic analysis was performed by a commercial FE code, Ansys (2020}, In both FEM and PD simulations,
the domain discretization is performed by 100=<350 elements/particles. The thickness of the model is assumed to be
L 100, Plane 132 element with plane stress formulation is employed by considering the full integration of the stiffness
mafrix in Ansys.

The displacement histories of the loaded edge by FEM and OSB-PD have been recorded. and compared in Fig.
2. The given figure suggests that the proposed OSB-PD formulz is capable of capturing the creep deformation of the
membrane in the time interval of 0-5 ms. Beyond the load release point, the membrane starts to recover its original
shape. The recovery of the membrane has also been captured by OSB-PD with a good accuracy.

3.2 Crack propagarion cases

We have verified our OSB-PD formulation for a viscoelastic membrane under uniaxial tensile loading in section
3.1. The crack propagation cases can be simulated next.

In the crack propagation simulations, the main dimensions and the material properties are the same with those in
section 3.1; however, an angular crack is introduced in the centre of the membrane. The magnitude of the load is
chosen so that the membrane keeps structural integrity at the beginning, vet the failure takes place in a reasonable
period by the relaxation of the membrane. The cracked membrane specimen and its loading condition are depicted in
Fig. 3.

A series of parametric analyses was performed by varying the crack orientation angle with respect to the horizontal
axis, Le., # = 30°, 45" and 90°. The crack pattzms at the instance just before the failure and at the intance of full
Failure were given in Fig. 4. These failure patterns obviously indicate the mode-1 type failure under uniaxial tension
for all crack orientations.

As expected, the crack crientation angles have significantly influenced the full failure time. When the crack is
perpendicular to the loading direction, i.e., = 90°, the specimen fails after 0.05 ms. The full failure time for & = 45°
is 5.3 ms. However, when the crack orientation is set as # = 307, the full failure time becomes 5.6 5. which is a dramatic
increase of the time until the full failure. In case of @ = 30° specimen, the full failure takes place at a relatively late
stage compared to the other crack orentations cases; therefore, it is required to adjust the time step size properly. For
instance, the simulations can be conducted with a relatively small time increment, At = 1% 107 s, at the beginning.
Then, it can be adjusted, e.g., Ar = 13 107" 5, for achieving the required failure time in a computationally efficient
Way.

Tabde 1. Promy series parameters for the material from Madenci and Oterkus (20017

i i E; [MPa]
1 1.0E-4 20}
2 1.OE-3 B0
3 1.OE-2 1500
4 LOE+D 1000
5 LOE+1 1100
& LOE+2 g
7 L.OE+3 20440
8 LOE+4 2500
a4 LOE+5 L]
10 LOE+6 a50
11 LOE+T L]
12 LOE+E 120
13 LOE+8 180
14 LOE+11 200
15 10E+12 250

E. T




4 T T T T T
L—".’.—i—.-‘_.-.-.— —_

i B _0SB-PD| |

Tt
wh
T
1

End displacement [mim]
in b
: :
1 1

05r 7

]
0 0000 0002 0003 0004 0005 0006 0007 0008 0009 001
Time [5]

Fig. 2. Loaded edge displacement history of the flat-sheet membrane under aniaxial loading.
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Fig. 3. Cracked membrane specimen: (2) modelling, (b) loading condition.

The end displacement history for & = 307 case has been extracied and presenied in Fig. 5. This figure suggests that
a significant portion of the creep deformation takes place within a very short time, e.g., 1.0 s due to the exponential
form of the relaxation terms in the Prony series. Beyond 1.0's, the displacement increment rate is quite small compared
to the first 1.0 s. After 5.5 s the sudden increase of the displacement is the evidence for full failure of the specimen.



..
(b)
’ ..

Fig. 4. Damage pattems for viscoelastic membranes with varions crack orientation anges: (2) @ = 307, (b) & = 457, (c) & = G,

4. Concluding Remarks

The viscoelastic deformation of the polymeric membranes has been highlighted. Then, the numerical reprasentation
of material ralaxation by the Prony series was articulated, and this approach was emploved in both our OSB-PD
formulation and the commercial FE code. By the comparison of FE and OSB-PD displacements for the membrane
sheat, we demonstrated the validity of our formulation for the viscoelastic deformations. Once present model had
been verified, the crack propagation simulations were performed to examine the influence of crack orientation angle
and the time dependent material response. It was found that the crack orientation angle has a prominent impact on the
time period until the full failure.
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