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Abstract 

Transferosomes, also known as transfersomes, are ultradeformable vesicles for 

transdermal applications consisting of a lipid bilayer with phospholipids and an edge 

activator and an ethanol/aqueous core. Depending on the lipophilicity of the active 

substance, it can be encapsulated within the core or amongst the lipid bilayer. Compared 

to liposomes, transferosomes are able to reach intact deeper regions of the skin after 

topical administration delivering higher concentrations of active substances making them 

a successful drug delivery carrier for transdermal applications. Most transferosomes 

contain phosphatidylcholine (C18) as it is the most abundant lipid component of the cell 

membrane, and hence, it is highly tolerated for the skin, decreasing the risk of undesirable 

effects, such as hypersensitive reactions. The most common edge activators are 

surfactants such as sodium deoxycholate, Tween® 80 and Span® 80. Their chain length is 

optimal for intercalation within the C18 phospholipid bilayer. A wide variety of drugs 

has been successfully encapsulated within transferosomes such as phytocompounds like 

sinomenine or apigenin for rheumatoid arthritis and leukaemia respectively, small 

hydrophobic drugs but also macromolecules like insulin. The main factors to develop 

optimal transferosomal formulations (with high drug loading and nanometric size) are  

the optimal ratio between the main components as well as the critical process parameters 

for their manufacture. Application of quality by design (QbD), specifically design of 

experiments (DoE), is crucial to understand the interplay among all these factors not only 

during the preparation at lab scale but also in the scale-up process. Clinical trials of a 

licensed topical ketoprofen transferosomal gel have shown promising results in the 

alleviation of symptons in orthreothritis with non-severe skin and subcutaneous tissue 

disorders. However, the product was withdrawn from the market which probably was 

related to the higher cost of the medicine linked to the expensive manufacturing process 

required in the production of transferosomes compared to other conventional gel 

formulations. This example brings out the need for a careful formulation design to exploit 

the best properties of this drug delivery system as well as the development of 

manufacturing processes easily scalable at industrial level.  

 

Key words: transferosomes, ultradeformable vesicles, transdermal administration, 

natural products, edge activator, quality by design (QbD)  
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1. Skin as a barrier for topical and transdermal therapies 

Skin is the largest interface between the human body and the external environment 

(Prausnitz et al., 2012). Being the body’s largest organ (Hadgraft and Lane, 2011), skin 

maintains body’s homeostasis by regulating the entrance and clearance of different 

substances, preventing excessive water loss and maintaining body temperature. However, 

exchange of substances across the skin is very limited as its primary function is protection 

compared to the gastrointestinal tract or the lung epithelial which are designed for 

compound exchange (Prausnitz et al., 2012).  

Skin is composed of three main layers: the epidermis (the outer layer), the dermis (the 

middle layer containing sensory receptors, sweat glands and various connective fibers) 

and the hypodermis (subcutaneous layer which contains adipose tissue and anchors the 

other two outer layers of the skin for support) (Hadgraft and Lane, 2011). The outermost 

layer of the skin, the “stratum corneum” (SC) which is made up of a broad 10-15 m size 

matrix of flattened, dehydrated and dead keratolytic cells (corneocytes), that are 

surrounded by an extracellular milieu of lipids organized as multiple lamellar bilayers, 

remains the main barrier to the topical or transdermal delivery (Rane and Gujarathi, 

2016). The structure of the SC is a composite material made of proteins and lipids 

structurally organized as “bricks and mortar” (Prausnitz et al., 2012; Rane and Gujarathi, 

2016) in which the corneocytes are envisaged as the bricks and the intercellular lipids and 

esters organized into lamellar membranes surrounding the corneocytes being the mortar 

that holds them together (Kleesz et al., 2012). The human SC is typically comprised of 

about 20 corneocyte cell layers with varying thickness, packing of keratin filaments, 

filaggrin content and a number of corneodesmosomes depending on the site. A highly 

cross-linked sheath surrounds corneocytes, while their cell interior is packed with keratin 

filaments embedded in a filaggrin matrix. The extracellular matrix comprises of 

structured lipids preventing excessive loss of water from the body and block the entry of 

most topically applied drugs, except those that are lipophilic (Log P: 1-3) and with low 

molecular weight (<500 Da) for which this extracellular, lipid-enriched matrix acts as a 

reservoir within which lipophilic drugs can accumulate and be slowly released (Prausnitz 

et al., 2012). Although corneocytes play a role as spacers and as a scaffold for the lipid-

enriched extracellular matrix, the latter has been the primary focus of transdermal 

delivery strategies.  
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Nanoparticulate delivery systems offer advantages in overcoming the SC as they have 

shown to enable the delivery and permeation of hydrophilic compounds and bio-

macromolecules to reach deeper layers of the skin, provide a sustained depot effect locally 

and increase transdermal delivery resulting in enhanced bioavailability. In particular, 

transferosomes are advantageous over other nanoparticulate drug delivery systems in the 

administration of drugs across the skin as their composition contains a greater amount of 

safe and biocompatible excipients (phospholipids, commonly soya lecithin) and have the 

capability of squeezing and permeate across the SC and deeper layers of the skin without 

losing their structure (Rajan et al., 2011). The differentiating effect will be discussed over 

the next sections. 

2. Transferosomes 

2.1. Transferosomes: versatile and flexible nano-vesicular carriers 

The word transferosome is a registered trademark by the German company IDEA AG 

and the name derives from the Latin word “transferre” meaning “to carry across” and the 

Greek word “soma” meaning “body”. The technology was first described in 1991 by Çevc 

and Blume and has been the subject of several patents and research over the last 30 years 

(Naik, 2013; Rai et al., 2017). Although there has been almost 30 years since the first 

time that the term transferosome has been used, this drug delivery system can still be 

considered novel as very few transferosomal formulations have been translated into 

clinical products. Similar trend has occurred with liposomes. The first report about 

liposomes in literature dates from 1970 (Sessa and Weissmann, 1970), being 

AmBisome®, one of the first liposomal formulations coming to the market in 1996 

(AEMPS, 2017). For this reason, it can be expected that more transferosomes will be 

commercialized in the following coming years. 

Transferosomes are lipid-based vesicular carriers that compared to the rigid lipid bilayers 

(liposomes) or non-ionic surfactant single layer vesicles (niosomes) are elastic, ultra-

deformable and stress-responsive (Rajan et al., 2011). When drug delivery systems, such 

as liposomes, nanoparticles and niosomes are deposited on the skin, usually they are only 

able to permeate through the upper layers of the SC, resulting in accumulation in the 

epidermal layer but failing to reach deeper areas of the skin such as the dermis or effective 

systemic levels. Liposomes are by far one of the most commonly used drug delivery 

system for skin purposes. However, the mechanism of liposomal permeation is still not 
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fully understood. Several authors support that small unilamellar liposomes have greater 

skin permeation capacity than larger ones (Verma et al., 2003). For example, liposomes 

with a 120 nm particle size reached to deeper skin areas (viable epidermis and dermis) in 

4.6-fold greater amounts than liposomes with 191 nm in size and 33-fold higher than 810 

nm liposomes (Verma et al., 2003). In addition, multilayered liposomes have been shown 

to be able to loose external layers during penetration facilitating the permeation of smaller 

vesicles with intermediate size (100-300 nm) leading to deeper drug penetration (Morrow 

et al., 2007). Hyaluronate chitosan multilayer liposomes (containing 10 alternating layers) 

with 528 nm particle size exhibited an enhanced transdermal delivery than uncoated 

unilamellar liposomes (~100 nm) (Jeon et al., 2015). Similarly, multilayered 

nanostructured lipid nanoparticles coated with hyaluronic acid and chitosan (181 nm) 

showed a two-fold larger flux across rat skin compared to uncoated nanoparticles (Zhang 

et al., 2016). In contrast, other authors support that multilamellar and small unilamellar 

liposomes possess similar ability to penetrate into the SC and viable skin 

(Lymberopoulos, 2017). Liposomes penetrate mainly into the SC but as much lesser 

extent in the epidermis and dermis (800 and 10,000 times less) (Lasch, 1992). Actually, 

more than size, their lipid composition plays a greater role in the skin permeation. 

Liposomal lipids can penetrate until 20 µm reaching the viable epidermis in greater 

amount than the whole liposomes per se (Peralta et al., 2018). Only liposomes containing 

dioleoylphophatidylethanolamine (DOPE) as lipid were able to penetrate into deeper 

stratum corneum (Lasch, 1992). Regarding niosomes, their penetration capacity has been 

associated with reduced fluxes across the SC compared to conventional liposomes even 

though are more stable and resistant to changes in osmolarity (Agarwal et al., 2001; Naik, 

2013; Rai et al., 2017; Rajan et al., 2011). In terms of zeta-potential, transferosomes seem 

have shown the greatest colloidal stability when compared to liposomes and niosomes in 

liquid media (van Zyl et al., 2019); transferosomes have exhibited good colloidal stability  

(with no sign of aggregation) up to three months both at 4 ⁰C and 25 ⁰C (Hadidi et al., 

2018), while niosomes and liposomes have shown poorer physical stability with greater 

tendency for aggregation at the same temperatures (Fathi-Azarbayjani et al., 2015). This 

fact can explain why most of the commercial liposomal formulations are marketed as 

freeze-dried powders in order to enhance the shelf-life of the product (AEMPS, 2017). 

Transferosomes are composed by four key elements: i) phospholipids (such as 

phosphatidylcholine, dipalmitylphosphatidylcholine, distearylphosphatidylcholine), ii) 
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an edge activator such as a surfactant or bile salt ranging from 10-25% (e.g. sodium 

cholate, sodium deoxycholate, Tween® 80, Span® 80, dipotassium glycyrrhizinate), iii) 

ethanol in a lower percentage usually below 10 % (as higher concentrations are described 

as ethosomes) and iv) water as a vehicle (Fig. 1) (Rai et al, 2017; Rajan et al, 2011; 

Morrow et al, 2007). Transferosomes are highly ultra-deformable and are able to squeeze 

through the SC and penetrate as intact vesicles through the skin when their size is below 

300 nm and when they are applied under non-occlusive conditions that maintains the 

trans-epidermal osmotic gradient which acts as the driving force for the elastic transport 

into the skin (Naik, 2013; Rai et al., 2017; Rane and Gujarathi, 2016).  

In this respect, the edge activator plays a key role as it provides a high radius of curvature 

that can destabilize the lipid bilayer increasing the deformability of the membrane. This  

allows transferosomes to spontaneously squeeze though channels in the SC that are less 

than one-tenth the diameter of the vesicles and prevents vesicle rupture when crossing 

through the different skin layers (Naik, 2013; Rane and Gujarathi, 2016). The 

concentration of the edge activator in the formulation (usually between 10-20 %) is 

crucial and ideally included in sub-lytic concentrations i.e. not able to cause destruction 

of vesicles (Naik, 2013; Rai et al., 2017; Rajan et al., 2011). The risk of formation of 

mixed micelles increases when amounts of edge activator greater than 15 % are used 

(Jangdey et al., 2017). 

Hydrophilic drugs are encapsulated within the aqueous central cavity, while more 

hydrophobic drugs are embedded within the phospholipid bilayer. Transferosomes are 

typically below 300 nm being more elastic and flexible than liposomes (typically five-

eight times higher), which makes them highly suitable for skin penetration (Rai et al., 

2017; Rane and Gujarathi, 2016), although higher sizes can be obtained due to the 

aggregation of the particles. An optimal zeta-potential in transferosomes is lower than -

30 mV or higher than +30 mV in order to ensure colloidal stability; otherwise the risk of 

aggregation increases significantly (Hanaor et al., 2012). 

2.2. Mechanism of transferosome penetration across the SC 

As these novel artificial carriers are self-adaptable, they can go through pores much 

smaller than their own size by changing their shape and size easily and rapidly, by 

adjusting lipid bilayer components to the surrounding stress experienced by the system, 

and thus being able to carry drugs with a high molecular weight across the intact skin 
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(Fig. 2). As these molecules with a high molecular weight are barely able to reach the 

deepest layers of the skin and the bloodstream, transferosomes are an alternative to 

subcutaneous administration of insulin or IFN-α, showing a 50 % of response when 

compared with insulin and sufficient concentration of IFN-α for immunotherapy (Reddy, 

2015). When transferosomes are administered on the surface of the skin, they are able to 

permeate across the different layers of the skin by going through the intercellular lipids 

as well as lipid cell membranes (Rai et al., 2017; Rane and Gujarathi, 2016). The skin 

penetration of these vesicles lies on the interdependency of the local composition and 

shape of the bilayer which makes the vesicle both self-regulating and self-optimizing 

enabling the transferosomes to cross various transport barriers efficiently and then acting 

as a drug carrier for non-invasive targeted drug delivery and sustained release of 

therapeutic agents (Rai et al., 2017; Rajan et al., 2011; Rane and Gujarathi, 2016).  

The penetration of intact transferosomes through the SC occurs due to the “transdermal 

osmotic gradient” caused by the difference in water content between the relatively 

dehydrated skin surface (approximately 15 % water) and the aqueous viable epidermis 

(close to 75 %) (Rajan et al., 2011). This difference in hydration is a physiological feature 

of the skin in order to prevent water loss. Based on the principles of elastomechanics, the 

hydrophilic lipid vesicles establish an energetically favorable interaction, which force 

them to escape from the complete drying environment moving them to more hydrated 

regions (Naik, 2013; Rai et al., 2017; Rajan et al., 2011). Hence, transferosomes are 

subject to evaporation and in order to avoid dehydration, the vesicles deform, penetrate 

across the SC, and travel towards deeper and more aqueous areas of the skin to rehydrate 

(Rai et al., 2017). Transferosomes have the ability to modify their shape, but the internal 

entrapped volume capacity does not change drastically and therefore the solubility of the 

entrapped drug in the core should not be altered significantly. Small breakages could 

occur in the lipid bilayer due to the deformation during the penetration across the skin 

resulting in the partial release of ethanol/water content from the core. However, this 

situation is reverted during the rehydration process with water from the viable epidermis. 

The flexibility of the transferosomal membrane decreases the risk of complete vesicle 

rupture in the skin and allows the transferosomes to change their membrane composition 

locally and reversibly, while passing through the intercellular gaps and intracellular lipid 

cell membranes. This self-optimizing deformability allows the transferosomes to 

dehydrate and deform to cross through small gaps while they can recover their shape by 
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a rehydration process (Naik, 2013; Rai et al., 2017; Rajan et al., 2011). Actually, these 

rheological and hydration properties responsible for their great deformability are 

attributed to the combination of the phospholipids and edge activator in an optimal ratio 

(Rajan et al., 2011). 

Previous research suggested that the penetration of the formulation through the skin is 

forced by a osmotic gradient that is caused by the different water content between the 

relatively dehydrated skin surface (with a ≈20 % of water) and the aqueous viable 

epidermis (≈75 % water content). A lipid formulation applied in the surface of the skin 

avoids evaporation and, consecuently, dehydration, allowing transferosomes to reach 

deeper layers of the skin (Benson, 2006). In the case of PEGylated transferosomes 

containing terpenes as edge activators, apart from the good elastic characteristics of the 

transferosomes, a greater in vitro/in vivo performance has been associated with the fact 

that terpenes-containing vesicle bilayers could enter the SC by altering the intercellular 

lipids lamellar and also by the effect of PEG that could hydrate the skin facilitating the 

transport based on the hydration gradient (Wang et al., 2017).  

A sustained drug release can occur from transferosomal formulations. It has been reported 

a burst effect from transferosomes during the first 4 hours upon administration followed 

by a slow release afterwards. Considering that hydrophilic drugs are located in the core 

of the transferosome, their release would be slower compared to hydrophobic drugs, 

which are located in the lipid bilayer. However, the burst effect observed during the first 

hours upon administration has been also linked with a small breakage of the lipid bilayer 

due to the vesicle deformation taking place during the permeation, allowing a partial 

release of the drug located in the core (Omar et al., 2019). PEG-coating in the surface of 

the transferosome has also lead to sustained drug release during prolonged periods of time 

(Panwar et al., 2010). 

3. Transferosomes in preclinical studies - Laboratory scale preparation 

The thin film hydration technique is the most widely strategy to prepare transferosomes 

at lab-scale (Table 1). The main advantages of this technique when a suitable ratio 

between lipid:edge activator:drug is selected are that nanometric particle size, high 

entrapment efficiency and high yield can be easily obtained. The thin film hydration 

technique is the most common method at lab scale, due to the simplicity of the technique 

and the short time required to prepare the formulation. However, this technique has 
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several limitations including poor scalability mainly related to the fact that the particle 

size of the formulation is highly dependent on the volume capacity of the equipment 

employed and the energy applied in the process (Kraft et al., 2014). The desired features 

of the transferosomes can be easily altered during the scaling-up of this method (Paliwal 

et al., 2014). For example, it was proven that the particle size was reduced when greater 

impeller speed and agitation times were used (Colombo et al., 2001). In addition, this 

bottom-up approach is less popular in industry as it requires removal of the traces of the 

remaining solvent (Junghanns and Muller, 2008). Other disadvantage associated with this 

technique is that often requires a downsizing technique to make the transferosomes more 

uniform and within the nanometric range (Wagner and Vorauer-Uhl, 2011). The scale-up 

of this downsizing step is challenging at industrial level.  

Most transferosomes contain phosphatidylcholine (C18) as the lipid fraction (usually 

above 70%) as it is the most abundant lipid component of the cell membrane, and hence, 

it is highly tolerated for the skin, decreasing the risk of undesirable effects, such as 

hypersensitivity reactions (Ishikawa et al., 2017). Soya phosphatidylcholine (>95 % 

purity) is a GRAS (Generally Regarded As Safe) excipient and actually it has been used 

in suspensions, emulsions, mixed micelles, solid dispersions and drug-phospholipid 

complexes with a good safety profile (Rajan et al., 2011; van Hoogevest and Wendel, 

2014).  

The most common edge activators employed are sodium deoxycholate, Tween® 80 

(polyoxyethylene 20 sorbitan monooleate) and Span® 80 (sorbitan monooleate) as their 

chain length is easier to intercalate within the C18 phospholipid bilayer (El Maghraby et 

al., 2004). There is a certain discrepancy amongst the results collected from the different 

studies included in Table 1. For this reason, a multilinear regression analysis was 

performed in order to evaluate the correlation between the percentage of lipids and edge 

activator in each formulation and the particle size, zeta-potential and permeability (Fig. 

3). Formulations containing an ionic edge activator, such as sodium deoxycholate, were 

analysed separated from those formulated with non ionic surfactant such as Tween® 80 

or Span® 80. Overall, the general trend indicated that higher percentage of sodium 

deoxycholate led to lower particle size while large amounts of non ionic surfactants 

resulted in an increase in particle size. This is probably related with the volume of the 

polar head of the non ionic surfactants and with the greater intercalation of the sodium 

deoxycholate within the lipid bilayer leading to an increase in the curvature of the 
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transferosomes. Regarding the in vitro permeability, there was a positive correlation 

between the amount of sodium deoxycholate and the permeability across the skin. 

Opposite effect was observed for those transferosomes containing non ionic edge 

activators which can be related to the larger particle size obtained with larger amounts of 

this type of surfactant. 

The percentage of edge activator ranges from 4 % till 20 % (Table 1). Overall, drug 

entrapment is improved when higher concentrations of edge activator are employed  

(usually up to 10 %). However, a ratio above 10 %, in the case of valsartan 

transferosomes,  led to lower drug encapsulation (from 93.56 to 62.73 %) because the 

lipid bilayer of the transferosome becomes disrupted and more leaky releasing the 

entrapped drug (Ahad et al., 2012b). Also mixed micelles can co-exist with 

transferosomes when the surfactant exceeds 15 % of the total composition, resulting in 

partial drug encapsulation within small size micelles and hence, lower drug entrapment 

within the transferosomes (Jangdey et al., 2017).  Larger entrapment values were obtained 

when Span® 80 was used as edge activator (1.5-fold higher entrapment efficiency than 

using sodium deoxycholate), while transferosomes including sodium deoxycholate have 

resulted in better permeation across the SC (16.8 versus 9-fold greater permeability) 

(Ahad et al., 2017). Better in vitro skin permeation and in vivo PK cutaneous permeability 

in microdialysis studies than conventional liposomes has been reported when 

monoterpenes such as limonene and citrol have been incorporated as edge activators 

(Wang et al., 2017). Also, the combination of phosphatidylcholine with DSPE-PEG2000 

has resulted in an increase in the transdermal permeation of the transferosomes (Wang et 

al., 2017).  

Span® 80 have been shown to act as a destabilizing agent and leads to highly deformable 

vesicles with enhanced permeation (Pathak et al., 2016). The hydrophilic-lipophilic 

balance (HLB) of the surfactant has an effect on particle size. The lower the HLB, the 

larger the particle size (Ahmed, 2015). The hydration medium temperature has also some 

influence in the final particle size. More stable smaller vesicles were obtained at 

temperatures around 20 ºC (Ahmed, 2015). 

Drugs with different physicochemical characteristics have been successfully entrapped in 

transferosomes ranging from small molecular weight hydrophobic drugs and 

phytocompounds (such as sinomenine or apigenine for rheumatoid arthritis and 
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leukaemia) to labile biomacromolecules such as insulin (>5 kDa) (Table 1). Drug loading 

can be tuned easily being able to encapsulate potent drugs at low doses such as tretinoin 

at 0.05 % but also high drug loading up to 20-25 % like  in the case of sinomenine. 

However, drug loading above 20 % is challenging considering the amounts of lipid and 

edge activator needed to produce stable transferosomes. Thus, entrapment of potent drugs 

is more likely to lead to clinically translatable formulations.  
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4. Optimising transferosomal formulations using quality by design (QbD)  

The concept of QbD is usually used in pharmaceutical development and manufacturing 

to enhance the quality of the obtained products (Adam et al., 2011). QbD is a systematic 

approach that starts with predefined objectives (also known as “Target Product Profile” 

or product specifications) and emphasizes on product critical quality attributes (CQAs), 

understanding of critical process parameters (CPPs) and process control (Fig. 4). This can 

be improved by building quality standards into the process of development and 

manufacturing and not only testing the product at the end of the process (Defeo, 2016; 

Rathore and Winkle, 2009).  

This concept was introduced in the 2000s by the pharmaceutical industry combined with 

support from the Food and Drug Administration (FDA). Even though, the quality of the 

final products was usually ensured, a high percentage of the production was wasted 

because the quality control only took place at the end of the process, leading to higher 

costs associated with medicine manufacturing. Taking into account the high cost and 

complex production associated with nanomedicines, the optimisation of the 

manufacturing process is key to ensure that advance formulations, such as 

transferosomes, reach the market.  

According to the 21st Century Initiative, more controls were necessary to be implemented 

in manufacturing in order to improve efficiency and safety in the process leading to the 

establishment of GMP (Good Manufacturing Practices) (Rathore and Winkle, 2009). 

Since the FDA-GMP Initiative, new documents have been published by the International 

Conference on Harmonization (ICH) focused on the concept and implementation of QbD 

in pharma companies: Q8 Pharmaceutical Development, Q9 Quality Risk Management 

and Q10 Quality Systems Approach to Pharmaceutical GMP Regulations (Rathore and 

Winkle, 2009).  

In pharmaceutical R&D (research and development), QbD, specifically design of 

experiments (DoE), is commonly used to obtain optimised formulations taking into 

consideration a wide range of factors that can affect the Target Product Profile, as 

experiments are set up in an efficient and precise way (Savic et al., 2012). Formulation 

optimisation usually takes place in several steps, starting with a pre-screening design (also 

known as ruggedness testing) (Chen et al., 2017; Zhao et al., 2017) in order to identify 

the critical main factors of the process (Yang et al., 2014) utilising the minimum number 
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of experimental runs to be performed to ensure cost and time efficiency. Pre-screening is 

performed by using different types of factorial models, among which Plackett-Burman 

(Zhao et al., 2017) and Taguchi (Chen et al., 2017) are the most utilised. These models 

are useful to determine which factors have higher or lower, positive or negative influence 

in the development of the formulation (eg. amount of components or parameters in the 

manufacturing process). Once, the most influential factors have been identified with the 

pre-screening designs, response surface models are commonly employed to find the 

optimal design space. Mixture design spaces are also utilised where the suitable ratio 

between excipients needs to be identified but there is no investigation on the process 

parameters. 

Plackett-Burman design can appraise between 2 to 47 factors, where each factor is set to 

2 levels (higher and lower). This design can be applied to investigate up to N-1 variables 

with N experiments (Zhao et al., 2017). This design is particularly useful to test 

ruggedness when the aim is focused on finding a small or non-existent effect due to the 

factors (Zhao et al., 2017). A ruggedness test determines the sensitivity of a protocol to 

small changes in operational factors (Parker et al., 2014). The Taguchi model is an 

orthogonal array design which evaluates two-level factorial designs (higher and lower) 

(Chen et al., 2017). This type of DoE reduces effectively the number of experiments 

required in a design process, instead of having to test all possible combinations: the model 

only tests pairs of combinations (Chen et al., 2017; Rao et al., 2008). Taguchi focuses on 

the concept of robust design methodology where variations due to noise factors beyond 

the control of the design are considered and the obtained responses are only affected by 

controllable factors (Rao et al., 2008).  

Response surface methodology consists on a group of mathematical and statistical 

techniques based on the fit of empirical models to the experimental data obtained in 

relation to DoE (Bezerra et al., 2008). As an advance DoE technique designed to aid the 

better understanding and optimisation of the responses, it is often used to refine models 

once the major factors have been previously identified with a pre-screening test (Bezerra 

et al., 2008). There are two main types of response surface designs: the central composite 

and the Box-Behnken. A central composite design is a 2-full-factorial design that includes 

both the central and star points allowing estimation of curvature. The number of central 

points runs the design and the star points represent the extreme values (low and high) for 

each factor in the design. This design estimates efficiently first- and second-order terms 
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and is especially useful in sequential experiments as previous factorial experimental data 

can be fed in the design. In contrast, Box-Behnken design requires fewer design points 

and hence is less expensive to run with the same number of factors, however, lacks the 

ability to incorporate data from previous experiments. Additionally, Box-Behnken design 

always have three levels per factor unlike central composites which can have up to five 

(Ferreira et al., 2007; Khajeh, 2009). 

As a starting point in optimising transferosomal formulations, a mixture design can be 

applied taking into account that the suitable ratio among phospholipids, edge activator 

and drug should be identified utilising ternary diagrams (Fig 5A). The measured 

responses which are usually drug loading and particle size are assumed to depend only 

on the relative proportions of the excipients. Usually a fitting standard model is employed 

like Simplex-Lattice or Simplex-Centroid design, where the components must sum to one 

(or 100 %). However, they are usually combined with constrained mixture designs such 

as Extreme-Vertices design to introduce and define additional constrains such as the 

maximum and/or minimum value for each component. In the case of transferosomes, the 

amount of lipids needs to be always higher than the amount of edge activator to ensure 

formation of bilayered vesicles (Fig 5B-C) (Rispoli and Shah, 2008).  

5. Lab scale manufacture of QbD optimized transferosomes  
QbD has been employed in several studies towards preclinical development of 

transferosomal formulations (Table 2) (Csanyi, 2018; Gilani, 2019). The first example 

was the development of zolmitriptan transferosomes for migraine using 

phosphatidylcholine and Tween® 80. The effect of the amount of phospholipid, drug and 

edge activator on particle size, drug release and flexibility index (parameter that 

determines the deformability capacity of the transferosome across membranes) was 

evaluated using a Box-Behnken design (Pitta et al., 2017). The flexibility index was 

determined by extruding the formulation through a 0.22 µm filter assembled to a 

measuring cylinder and a vacuum pump. In order to determine the flexibility index, the 

particle size of the formulation was measured before and after passing through the filter 

for 15 min. In this case, a mixture design would have been more suitable as no process 

variables were investigated. Transferosomes were prepared using the rotary film 

evaporation method. Optimized transferosomes with a particle size below 100 nm, a 

flexibility index of 20.25 % and a drug release of 97 % after 10 h were prepared as 

followed: 38.79 % of soya lecithin (dissolved in chloroform) was added to 15.1 % of 
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Tween® 80 (dissolved in a methanol:chloroform (1:2) mixture) that was rota-evaporated 

at 68 °C to obtain a dry lipid film. The films were stored in a vacuum oven to eliminate 

traces of organic solvents prior reconstitution with the dissolved zolmitriptan (9.8 %) in 

pH 6 buffer under stirring for 1 h at 90 ⁰C at 60 rpm. After hydration of the film, the final 

formulation was annealed at room temperature for 2 hours, probe sonicated for 25 min 

with a pulse of 10 min and filtered through a 0.22 µm nylon filter (Pitta et al., 2017). An 

initial particle size of 93.3 nm was obtained after lyophilization, particles were 

agglomerated and size was increased above 1 µm. This formulation was developed for 

intranasal administration due to the high permeability of the nasal epithelium and the 

quick absorption by this route; brain delivery was possible through the olfactory pathway. 

An in vitro release study of the optimized transferosomal formulation was performed 

exhibiting a 97 % release after 10 h while the marketed nasal spray Zolmist® resulted in 

a 98 % release in 4 h. The bioavailability of the transferosomal formulation was found to 

be 1.72-fold higher than Zolmist®. 

Similary, a Box-Behnken design was employed in optimising raloxifene transferosomes 

for estrogen replacement therapy but utilising sodium deoxycholate as the edge activator. 

The investigated variables were the amount of phosphatidylcholine (100, 200 and 300 

mg) and edge activator (15, 35 and 55 mg) along with the probe sonication time (15, 25 

and 35 min, 325 W). The effect of these factors on the following three responses, 

entrapment efficiency, particle size and transdermal flux was investigated. The optimised 

formulation was prepared using the film evaporation method by dissolving the lipids 

(89.23 %), the raloxifene (0.36 %) and the edge activator (10.41 %) in a mixture of 

methanol and chloroform (1:2) and rota-evaporating the solvent mixture under vacuum 

at 40 °C until a dry lipid film was obtained. Overnight evaporation under vacuum to 

ensure no traces of solvents was necessary. Film rehydration using a PBS buffer (pH 6.5) 

by stirring for 1 h at 41-44 ⁰C at 120 rpm was performed. Transferosomes were annealed 

for 2-3 hours at room temperature, followed by probe sonication for 20-30 min (325 W) 

and extrusion through 0.45 and 0.22 µm polycarbonate membranes (Mahmood et al., 

2014). The optimised transferosomes possessed a particle size of 134 ± 9 nm, with a drug 

entrapment of 91 ± 4.9 % and exhibited a transdermal flux of 6.5 ± 1.1 µg/cm2/h. 

Transferosomal permeation was 1.05 and 4-fold higher than ethosomal raloxifene (6.194 

µg/cm2/h) and plain drug solution (1.6 µg/cm2/h), respectively (Thakkar et al., 2016). 
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A Box-Behnken design was also utilised in the optimization of valsartan transferosomes 

for hypertension employing sodium deoxycholate (DC) as edge activator. The effect of 

four variables on the drug encapsulation efficiency, permeation flux across the skin and 

particle size was investigated. The four variables were the following: i) amount of 

phosphatidylcholine (Phospholipon 90G at 75, 85 or 95 mg), ii) amount of edge activator 

(5, 15 and 25 mg), iii) amount of drug (40, 60 and 80 mg) and iv) sonication time (15, 25 

and 35 min). The optimised formulation was prepared using a similar film evaporation 

method as described above. Upon “trading off” response variables, the final formulation 

composition contained phosphatidylcholine (85 mg), DC (15 mg), valsartan (60 mg), 

using a sonication time of 25 minutes. The particle size was 130 ± 10 nm  with a 

encapsulation entrapment of 85.77 % ± 2.97 % and a transdermal flux across rat skin of 

627.47 ± 30.45 μg/cm2/h. Results of in vivo antihypertensive activity indicated that the 

transferosomal formulation  released the drug gradually over a period of time of 48 h, 

which resulted in prolonged control of hypertension, 3.6-fold times greater than liposomal 

valsartan (Ahad et al., 2012b). 

Sildenafil transferosomes were developed using a Plackett-Burman pre-screening design, 

allowing the investigation of the effect of a large number of factors with minimal number 

of experimental runs to elucidate which parameters were critical in the final 

characteristics of the transferosomes. Six variables on two different responses (particle 

size and entrapment efficiency) were investigated: i) drug:phospholipid molar ratio (1:2, 

1:6 or 1:10); ii) phospholipid:edge activator ratio (95:5, 85:15 or 72:25); iii) edge 

activators with different HLB (Tween® 80 or Span® 80); iv) pH of the PBS rehydration 

buffer (5.5, 6.5 or 7.5); v) hydration time (30, 75 or 120 min) and vi) temperature during 

hydration (2, 11 or 20 ºC). Drug, phospholipids and edge activator were dissolved in 

methanol and the solvent was evaporated in a rotatory evaporator under vacuum at 45 ⁰C 

until the lipid film was obtained. The flask was kept under vacuum overnight to ensure 

the complete solvent evaporation, prior rehydration with PBS of various pH over a range 

of times at different temperatures as described above. Finally, the formulation was bath 

sonicated for 30 minutes (Ahmed, 2015).  

Surfactant HLB and temperature of the hydration medium had a positive effect on the 

vesicle size of the transferosomes, and hence, a decrease in the HLB led to an increase in 

particle size probably due to the affinity between edge activator and lipids. A higher 

temperature of the medium led to the formation of more stable smaller vesicles. Factors 
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with a significant impact on entrapment efficacy were the drug:phospholipid ratio and the 

pH of the hydration medium. Increase in the entrapment efficacy was obtained using 

lower amount of lipids, which was atributed to the competition between the drug and the 

lipid in the bilayer of the transferosomes, which led to an exclusion of the drug inside the 

vesicle. As the drug’s solubility decreased with increasing the pH of the hydration 

medium, a higher entrapment was obtained at higher pH due to a migration of the drug 

into the transferosomes cavity and lamellar layers (Ahmed, 2015). The in vitro 

permeation study showed that the optimized formulation had a 5-fold higher permeation 

compared with sildenafil suspension. The release profile of the transferosomal 

formulation was biphasic, with a burst release in the first 4 hours followed by a sustained 

release. This could be explained by the fact that a fraction of the drug was located on the 

surface of the transferosome which is rapidly released, while the encapsulated fraction 

within the transferosome followed a sustained release.   

Apigenin transferosomes were optimised using a 3-level 3-factors Box-Behnken design. 

Phospholipid/edge activator ratio (85:15, 90:10, 95:5), sonication time (10, 20, 30 min) 

and rotation speed (20, 40, 60 rpm) were the investigated factors, while particle size, drug 

loading and entrapment efficacy were the chosen responses. Phosphatidylcholine, 

Tween® 80 and apigenin were dissolved in ethanol, which was later evaporated by rotary 

evaporation to form the lipid film in the flask. The film was hydrated at 45 °C using PBS 

and a speed rotation of 60 rpm. The transferosomes were annelled at room temperature 

for 2 hours followed by probe sonication to reduce particle size. Drug retention in the 

skin after 24 h was 1.4-fold and 1.1-fold higher than the drug suspension and the marketed 

product (Jangdey et al., 2017), respectively. 

Timolol transferosomes were optimised using a 23 full factorial design (8 experimental 

runs). Two parallel designs were carried out using two different carriers either spray-dried 

lactose or mannitol. Phosphospholipid/edge activator ratio (3:1, 9:1), carrier/solvent 

mixture ratio (5:1, 20:1) and edge activator type (Span® 80, Tween® 80) were the 

selected factors, while particle size, entrapment efficacy and release rate were the chosen 

responses. Phosphatidylcholine, edge activator and timolol were dissolved in a 2:1 

mixture of chloroform:methanol (v/v). Later, the carrier (spray-dried lactose or mannitol) 

was added and the mixture was rota-evaporated for 30 min at 55 °C under reduced 

pressure. The resultant powder was kept in a dessicator overnight at room temperature to 

remove all traces of organic solvents. The optimised formulation containing spray-dried 
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lactose showed a greater permeation (1.3-fold) after 24 h than the one containing mannitol 

(Morsi et al., 2017). 

A 23 full factorial design was also utilised for the development of optimised miconazole 

nitrate transferosomes entrapped in a Carpobol 934 gel for the treatment of candidiasis. 

Type of surfactant, total amount of lipids and phospholipid/surfactant ratio were the 

independent factors. The optimised formulation was consisted of soya lecithin and Span® 

80 (ratio 90:10 w/w) and was loaded with clinical relevant amounts of miconazole (23.08 

%). Treatment of Candida albicans infected rats with commercially available Daktarin® 

cream (2 %) allowed for reduction of the oedema and signs of inflammation; however, 

scarring was still present. In contrast, the transferosomal gel showed similar efficacy but 

with fewer signs of acanthosis (Qushawy et al., 2018).  

Paclitaxel transferosomes were optimised using a 3-level 3-factors Box-Behnken design 

(15 experimental runs). The amounts of soya lecithin, cholesterol and Span® 80 were the 

selected factors, while entrapment efficiency, particle size and cumulative drug 

permeation were the investigated responses. Soya lecithin, paclitaxel and cholesterol 

were dissolved in a mixture of ethanol and chloroform, followed by the addition of Span® 

80. This mixture was probe sonicated for 30 min and later evaporated to dryness in a 

water bath at 60 ºC. The resulting film was hydrated with 200 ml of phosphate buffer pH 

6.8 (Pathak et al., 2016). The gel formulation of paclitaxel encapsulated within 

transferosomes showed a 3.4-fold higher permeation than the control gel (freely dispersed 

paclitaxel in carbopol gel matrix) after 24 h. 

Insulin transferosomes were optimised using a 23 full factorial design (8 experimental 

runs). Phosphatidylcholine/cholesterol ratio (8:3, 10:1 w:w), lipids/edge activator ratio 

(1:1, 1.47:1 w:w) and Tween® 80/sodium deoxycholate ratio (4:6, 7:3 w:w) were the 

selected factors. Phosphatidylcholine, cholesterol and Tween® 80 were placed inside a 

flask and dissolved in a mixture of diethyl ether:chloroform (3:1 v:v). The flask was kept 

at room temperature for 24 h until the film was formed. Insuline solution (1.4 mg/ml in 

water) was added to the flask and probe sonicated (20 KHz, 2 min). After that, the film 

was hydrated using sodium deoxycholate in PBS pH 7.4 and sonicated for 2 min. 

Dimethyl sulfoxide (2 % v/v) was added as chemical permeation enhancer and later 

passed through Watman® filter paper (Nº. 40). The transferosomal suspension was 

transferred to 5 % w/v methylcellulose gel (Malakar et al., 2012). Optimised formulation 
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had a 1.3-fold higher permeation through porcine ear skin when applied in the presence 

of iontophoresis. 

A 34 design was utilised to optimise resveratrol transferosomes entrapped into a Carbopol 

934-Poloxamer 407 gel for intranasal administration in the treatment of Alzheimer’s 

disease. The following independent factors were studied: phosphatidyl 

choline/permeation enhancer excipient ratio (7:3, 8:2, 9:1, w:w), (Phosphatidyl 

choline+permeation enhancer excipient)/edge activator ratio (2:1, 3:1, 4:1, w:w), type of 

edge activator (Tween® 80, sodium deoxycholate or Cremophor® RH 40) and type of 

permeation enhancer excipient (Transcutol®, oleic acid or ethanol). Particle size, 

polydispersity index, zeta-potential and entrapment efficiency were the selected 

responses. Resveratrol (10 mg), edge activator and phosphatidylcholine were dissolved 

in a 2:1 (v:v) chloroform:methanol mixture, vortexed for 10 min and later evaporated in 

a diseccator for 24 hours. The film was then hydrated with nasal simulated fluid (10 ml) 

at pH 5.5 which contained the permeation enhancer. The vesicles were formed and then 

annelled for 2 hours at room temperature. The mixture was then probe sonicated (20 min) 

and extruded through a 0.22 µm filter to reduce particle size. The transferosomal 

suspension was centrifuged (3 h, 20000 rpm, 4 ⁰C) to be separated and then reconstituded 

with nasal simulated fluid. The transferosomal gel was formed by adding Carbopol 934 

and then Poloxamer 407 to the reconstituted transferosomes. The mixture was stirred until 

a clear solution was obtained. Two drops of triethanolamine were finally added to adjust 

the pH and form the gel. Optimised transferosomes resulted in 4.5-fold more permeable 

than resveratrol suspension across sheep nasal mucosa (Salem et al., 2019). 

Overall, it can be concluded that pre-screening fractional designs such as Plackett-

Burman or Taguchi are useful DoE at the first stages during the development of a novel 

transferosomal formulation in order to understand what are the key parameters affecting 

the particle size, drug loading and release. However, full factorial designs and specifically 

those including 3-levels and 3-factors are more interesting when the key factors are 

already known and a detail optimisation is carried out. It is worthy nothing that at lab-

scale, the Critical Material Attributes (CMAs) such as amount of lipids, drug and edge 

activator play a more relevant role on the Critical Quality Attributes (CQAs) of the 

transferosomal formulation (mainly particle size and drug entrapment). However, Critical 
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Process Parameters (CPPs) such as reconstitution volume, stirring and sonication time 

are highly important during the scale-up of the formulations. 
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6. Scale-up: from bench to industrial manufacturing  

The film evaporation method is the classical strategy to produce transferosomes at lab 

scale (Ahmed, 2015; Mahmood et al., 2014; Pitta et al., 2017). Experience in utilising this 

technique for industrial scale-up of liposomes and ethosomes is challenging and hampers 

the clinical traslation from bench to market of these nanomedicines. The main reason is 

the need for small batch sizes which increases manufacturing costs as well as the time 

needed to produce necessary quantities of the optimal formulation (Wagner and Vorauer-

Uhl, 2011). Several techniques have been implemented in industry to obtain 

transferosomes at a larger scale based on lessons learned on liposomal industrial 

manufacturing (Table 3 & Fig. 6). 

In homogenization/extrusion techniques, rehydrated films are subjected to constant 

pressure changes to break down multilaminar vesicles instead of sonication prior to the 

mixture is passed through different orifices to obtain transferosomes of different sizes 

(Wagner and Vorauer-Uhl, 2011). This method is easy to scale-up and the reduction of 

particle size remains reproducible; however, the process is time and resource consuming. 

The ethanol injection method is based on the addition of ethanol into the aqueous phase. 

By that, the lipid molecules precipitate and form bilayer planar fragments, which 

themselves form lipid vesicles and entrap the aqueous media. This method is easy to 

scale-up, just by increasing the volume of the vessels and usually allows to obtain vesicles 

with higher entrapment efficacy and higher stability. The particle size can be tunned by 

controlling the ratio between lipids and edge activator and also by adjusting the whole 

diameter of the injection tool, the pressure of injection and the flow rate of the aqueous 

phase (Wagner and Vorauer-Uhl, 2011). 

Protransferosome-transferosome method consists of the preparation of in situ 

transferosomes. The transferosome can be prepared using the same lab scale methods 

above mentioned (Davidson et al., 2016). The transition from a protransferosome to a 

transferosome takes place by diluting the formulation using an aqueous phase (Wagner 

and Vorauer-Uhl, 2011). This method is easy to scale-up and the stability of the 

formulation is usually acceptable. 

Microfluidics can be applied in the manufacturing of transferosomes using different 

techniques: electroformation, which consists on the hydration of a lipid film in the 
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presence of an alternating current (AC) electric field (Girard et al., 2004); pulsed jetting, 

which relies on a controlled pulsatile liquid jet directed into unilamellar lipid bilayer 

formed between two aqueous phases (Stachowiak et al., 2008); double emulsion transfer, 

which consists on the templating of the oil phase by the water droplets in this phase, and 

then transferring it to an aqueous phase by centrifugation or repeated washing; ice droplet 

hydration, which consists on a monodisperse W/O emulsion with an average droplet size 

prepared by microchannel emulsification. These droplets are frozen, separated and 

replaced by a surfactant and then the solvent is evaporated (Sugiura et al., 2008); 

hydrodynamic forces, which consist on a sample which is forced to pass through a small 

channel at a high flow speed (Golden et al., 2012). 

The formation of transferosomes is based on the diffusion of the different molecular 

species (usually alcohol and water, but also lipids) at the liquid interface between the 

solvent (alcohol) and the water. The alcohol diffuses into the aqueous phase until the 

solvent concentration decreases to a critical level, below the solubility limit of the lipids. 

This fact triggers the formation of the transferosomes by self-assembly. It is believed that 

the constant diffusion of alcohol and water across the interface leads to lipid precipitation, 

resulting in the formation of lipid vesicles. This technique has demonstrated a good 

uniformity in the production of particles as allows a direct control of their size by doing 

fine adjustments of the volumetric flow rate ratio between the lipid and aqueous phase or 

the total flow rate (Carugo et al., 2016). 
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7. Transferosomes under clinical trials 

Several transferosomes are currently under clinical trials including drugs or 

phytocompounds as active pharmaceutical ingredients (API). 

Papaverine, a phytocompound obtained from Papaver somniferum known to produce 

relaxation of smooth muscles and dilation of blood vessels, is currently under clinical 

trials for the treatment of erectile dysfunction (Ali et al., 2015). The composition of this 

transferosomal formulation is soya phosphatidyl choline (50 mg), cholesterol (30 mg) and 

sodium deoxycholate, Span® 60 and Brij® 35 (polyoxyethylene lauryl ether) used as edge 

activators (25, 50 and 100 mg respectively) (Ali et al., 2015). 

A Phase I placebo-controlled study was performed including 9 men between 32 and 60 

years old from Minia University Hospital (Egypt) with at least 1-month history of erectile 

dysfunction. Participants received treatment with papaverine either encapsulated within 

transferosomes or mixed with hydroxypropyl methylcellulose (HPMC) hydrogel. The 

placebo group was treated with a HPMC hydrogel without the drug. The study took place 

during a 11-day period (Ali et al., 2015) that involved four sessions. During the 1st session 

(day 1), the hydrogel was applied. During the 2nd session (day 4): the hydrogel was 

applied again; biochemical and analytical measurements including blood pressure, heart 

rate, cavernous artery diameter and peak systolic flow were measured before and 1 hour 

after the administration of the gel. During the 3rd session (day 8): the application of 

hydrogel was also performed and erections were evaluated according to curvature of the 

penis. Finally, during the 4th session (day 11): penis and scrotum were evaluated to check 

any skin changes. 

The application of the transferosomal gel resulted in a 47 % statistically significant 

increase in the cavernous artery diameter. An increase in the diameter higher than 65 % 

happened in three of the volunteers treated with the transferosomal papaverine gel, but 

only in one patient treated with the free form gel. The application of the papaverine gels 

triggered a decrease in blood pressure in the hypertensive group and positive response to 

treatment appeared in 44 % of the volunteers. No undesirable effects were seen after the 

application of the gel; there was no evidence of skin irritation, erythematous rash, facial 

flushing, dizziness or pain in the area of application, ensuring the safety of the formulation 

(Ali et al., 2015). 
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8. Marketed transferosomes 

To the best of our knowledge, Diractin®, containing ketoprofen, has been the only 

transferosomal formulation to reach the market licensed by the Swiss Regulatory Agency 

(SwissMedic) in 2007. This formulation was indicated as a painkiller in knee 

osteoarthritis (Rother et al., 2009). Transferosomes were able to deliver ketoprofen to 

deeper tissues, including muscle, compared to conventional anti-inflammatory gels 

(Kneer et al., 2009). However, six months after the approval, the product was withdrawn 

by EMA as deemed only marginally superior efficacy compared to ketoprofen free-

vehicle (Kneer et al., 2013; Rajan et al., 2011). One of the main reasons that can explain 

the withdrawal from the market is the higher-cost associated with the manufacturing 

process of transferosomes compared to conventional gels. The higher manufacturing cost 

is linked with a greater medicine price. However, the marginal benefit obtained from the 

transferosomal formulation in terms of permeability is not enough to justify a higher 

treatment cost. When formulated appropiately, transferosomes have a greater 

permeability capacity than other topical dosage form and drug delivery systems. Its higher 

cost can be justified in certain diseases that require higher permeability into deeper 

tissues, even the bloodstream, or when formulating challenging molecules that possess 

extremely poor permeability properties. In those cases, the clinical benefit from using 

transferosomes would be greater and hence, the economic cost can be justified. 

Ketoprofen is a lipophilic drug (log P=3.61 (DrugBank, 2019)) with low molecular 

weight (254 g/mol). Hence, its permeability across the skin is acceptable and hence, a 

conventional gel delivers enough drug to elicit a pharmacological effect. For this reason, 

a transferosomal ketoprofen formulation was not ideal as the room for improvement was 

limited. 

9. Future perspectives and concluding remarks 

Lipid nano-carriers are highly researched and utilised technologies for transcutaneous and 

transdermal delivery across the stratum corneum. Transferosomes have shown to have an 

important advantage over liposomes and niosomes due to their ultra-deformable 

properties conferred by the edge activator that allows them to reach deeper layers inside 

the skin via intercellular and paracellular routes across the corneocytes. QbD can be 

utilised to guide the development of optimal transferosomal composition as well as the 

effect of manufacturing processing. Work is still needed in translating lab scale 
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manufacture of transferosomes to industrial processess ensuring that final products 

maintain their composition, stability, loading, and particle size. Clinical studies so far 

confirm the tolerability of the transferosomal formulations, however, work is still needed 

to develop protocols in combining this technology with other techniques used for 

permeation enhancement such as iontophoresis, electroporation and microneedles to 

facilitate further drug delivery of drugs across the skin (Prausnitz and Langer, 2008); 

although very few reports has been found in literature about the combination of these 

techniques with transferosomes, a synergistic effect on the skin permeability could be 

achieved bearing in mind their mechanism of action. In the case of iontophoresis, the 

increase in permeability is obtained by providing an electric driving force for transport 

the drug across the SC (Malakar et al., 2012). Small and hydrophilic drugs are the ideal 

candidates for this technique based on the principle that in a given electric field, cations 

(positively charged drugs) are repelled by a positive electrode called anode and are 

directed towards the catode, while anions (negatively charged molecules) follow the 

anode after being repelled by the negative electrode, catode (Karpinski, 2018). The 

combination of transferosomes and electroporation can be another viable option for 

increasing the skin permeation based on the formation of temporarily aqueous pores in 

cell membranes after the application of high voltage pulses (Ita, 2016). Even though, this 

technique has a broader application for different lipophilicites and sizes including high 

molecular weight biopharmaceuticals, the voltage applied could also disturbe the integrity 

of the transferosomes and hence, limiting their skin penetration. In the case of 

microneedles, the formation of micron-scale pathways into the skin, as well drive 

nanomedicines directly into the skin can potentially enhance the delivery of 

transferosomes across the SC (Wu et al., 2019; Yang et al., 2019). In this sense, the 

manufacturing of dissolvable microneedles containing transferosomes immobilised 

within a solid matrix could resolve the long term stability issues of the transferosomes in 

liquid media. In conclusion, there are plenty of options to explore in order to improve the 

capabilities of transferosomes and close the gap between lab-scale manufacturing and 

clinical medicines based on transferosomes. Apart from all the mentioned studies, 

transferosomes have been recently formulated to deliver proteins, such us the growth 

hormone (Azimi, 2019) or oligopeptides (Jiang et al., 2018).  
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10. Figure legends 

 

Figure 1. Schematic representation of the composition of a transferosome including 

the main components: hydrophilic and hydrophobic drugs, phospholipids and edge 

activator as well as the internal core with the mixture of water and ethanol. 
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Figure 2. Schematic representation of the mechanism of penetration of 

transferosomes across the skin. After topical administration, the transferosome is 

exposed to a transdermal osmotic gradient due to the difference in water content 

between the stratum corneum and the viable epidermis. This gradient triggers the 

evaporation of the liquid of the transferosome and make favorable its deformation 

and penetration across the stratum corneum towards deeper and more aqueous 

areas of the skin in order to rehydrate. 

 

 



28 
 

 

Figure 3. Multilinear regression analysis (using Unscrambler®) of the compiled data 

illustrated in Table 1. The effect of the percentage of lipids and edge activator on the 

particle size, zeta-potential and in vitro permeability was evaluated. Those 

formulations containing an ionic edge activator (sodium deoxycholate) were 

analyzed separately from those formulated with a non-ionic surfactant (Tween® 80 

and Span® 80). Key: sodium deoxycholate used as edge activator (a, b and c); Span® 

80 and Tween® 80 used as edge activator (d, e, f). 
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Figure 4. A) Steps to follow in the QbD process of the manufacturing of 

transferosomes: including target product profile (TPP), critical quality attributes 

(CQAs), critical material attributes (CMAs), and critical process parameters 

(CPPs). B) Ishiwaka diagram representing the most critical parameters in the 

optimization of transferosomes. 
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Figure 5. Application of QbD in the optimization of transferosomes. Key: A) 

Schematic representation of a ternary diagram. B) Constrained mixture design 

(contour plot) for optimization of particle size where the factors A, B, and C 

represent the amount of drug, lipid and edge activator in the transferosomal 

formulation. C) 3D surface plot exhibiting the relationship between the effect of the 

transferosome composition and particle size. 
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Figure 6. Schematic representation of lab and industrial scale techniques in the 

manufacturing of transferosomes, including thin film hydration method, sonication, 

extrusion, sequential filtration, homogenization, ethanol injection method, 

protransferosome-transferosome method and microfluidics. 
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Table 1. Summary of transferosomal formulations under preclinical research. The main components 
of the formulations are illustrated in the table: phospholipid, edge activator and drug. Key: DSPE: 1,2-
Distearoyl-sn-glycero-3-phosphoethanolamine; DC, sodium deoxycholate; PANAM G3, polyamido amide 
dendrimer third generation. 

Drug 
(%) 

Thera
peutic 

use 

Edge 
activator 

(%) 
Lipids (%) Method 

Parti
cle 
size 
(nm)  

Zeta 
potenti

al 
(mV) 

In vitro 
behaviour 

In vivo 
behaviour Safety Refer

ence 

 Phytocompounds 

Sinomeni
ne 

(Sinomeni
um 

acutum) 
(20.3) 

Rheum
atoid 

arthritis 

Mixed 
monoterp

enes 
(limonen
e:citrol, 

1:1, w:w) 
(4) 

Egg 
Phosphatidyl
choline (61) 

+ DSPE-
PEG2000 

(3.7) + 
Cholesterol 

(10) + 
Vitamin E 

(1) 

Ethanol 
injection 
method 

followed 
by 

extrusion 

109  -18.9 

Mixed 
monoterpenes 
edge activator 
transferosomes 

showed 1.5- fold 
higher in vitro 
permeability 

Transfero
somes 

showed a 
steady-

state 
concentrat
ion 8-fold 

greater 
than 

liposomes 

The 
formulati
on is well 
tolerated 
with  no 
reported  
irritation 

in the skin  

(Wan
g et 
al., 

2017) 

Apigenin 
(flavone 
found in 

many 
plants) 
(0.05) 

Leukae
mia 

Tween® 
80 (10) 

Phosphatidyl
choline 
(89.95) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

35  -14.3 

Optimised 
transferosomes 
showed 1.2-fold 
higher in vitro 

permeation than 
the drug 

suspension and 
the marketed 

product 

Not 
reported 

Not 
reported 

(Jangd
ey et 
al., 

2017) 

 Chemically synthetized drugs 

Eprosarta
n 

mesylate 
(Not 

reported) 

Hypert
ension 

DC (25) 
or Span® 
80 (15) 

Phosphatidyl
choline (75 

or 85) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

and 
extrusion 

108 
(with 
DC) 
160 

(with 
Span
®) 

-14 
(with 

DC) or 
-10 

(with 
Span®

) 

Enhancement 
permeation ratio 
of 16.8 (for DC) 

or 9-fold (for 
Span® 80) over 

traditional 
liposomes 

Not 
reported 

Not 
reported 

(Ahad 
et al., 
2017) 

Valsartan 
(37.6) 

Hypert
ension DC (9.4) Phosphatidyl

choline (53) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

130 
Not 

reporte
d 

Enhancement 
permeation ratio 
of 33 over drug 

entrapped within 
liposomes 

Blood 
pressure 
was 3.5-

fold lower 
after 
using 

transferos
omes 
when 

compared 
to the oral 
suspensio

n 

Not 
reported 

(Ahad 
et al., 
2012a

) 

Timolol 
(Not 

reported) 

Hypert
ension 

Span® 80 
(Not 

reported) 

Phosphatidyl
choline (Not 
reported) + 
spray-dried 
lactose or 
mannitol 

(Not 
reported) 

(Spray-dried 
lactose and 

mannitol are 
not lipids, 
however, 

they are used 
in these 

formulations 
as carriers) 

Film 
deposition 
on carrier 
method 

2800 
(with 
spray

-
dried 
lacto
se), 

1640 
(with 
mann
itol) 

Not 
reporte

d 

Using spray-
dried lactose as 
a nano-carrier 
showed an in 

vitro permeation 
1.3-fold higher 

than the 
formulation with 

mannitol 

Protransfe
rosomal 

formulati
on 

showed a 
Cmax 2.6-

fold lower 
than the 

oral 
solution 

and a 
delay in 
the tmax 

from 1.5 
hours to 
24 hours 

Well 
tolerated. 
No signs 

of 
erythema 
or edema 

(Mors
i et 
al., 

2017) 

Cytarabin
e (14.5) 

Leukae
mia 

Sodium 
deoxycho
late (13) 

Phosphatidyl
choline 
(72.5) 

Thin film 
hydration 
technique 

114  
Not 

reporte
d 

Flux across rat 
skin of 

192.8±3.6 

Plasma 
concentrat

ion of 

Less skin 
irritation 
that drug 

(Raj et 
al., 

2016) 
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followed 
by 

sonication 
and 

extrusion 

µg/cm2/h  (5-
fold and 17-fold 

higher than 
liposomes and 

drug in solution) 

transferos
omes was 
11.7-fold 

higher 
than rigid 
liposomes 

after 8 
hours. 
After 1 

hour and 
24 hours, 
cytarabine 
was only 
observabl
e in the 
case of 

transferos
omes 

in 
solution 

and 
conventio

nal 
liposomes 

Pentoxify
lline 

(9.52) 

Intermi
ttent 

claudic
ation 

Sodium 
cholate 
(14.29) 

Phosphatidyl
choline 
(76.19) 

Vortexing-
sonication 

method 
followed 

by 
extrusion 

690 -34.9 

Transdermal 
permeability of 
transferosomes 

was 8.5-fold 
higher than drug 

in aqueous 
solution 

Transder
mal 

administr
ation of 

pentoxifyl
line 

transferos
omes 

resulted in 
1.2-fold 
lower 

than oral 
administr
ation of 

pentoxifyl
line 

tablets 

Not 
reported 

(Al 
Shuw
aili et 

al., 
2016) 

Asenapin
e maleate 

(5) 

Schizo
phrenia 

Sodium 
deoxycho
late (10) 

Phosphatidyl
choline (75) 

Thin film 
hydration 
technique 
followed 

by 
sonication, 
centrifugat

ion and 
freeze-
drying 

126 -43.7 

Optimised 
transferosomes 

showed a 
permeation 2.3-
fold higher than 

liposomal 
formulation 

without ethanol 

Transder
mal 

administr
ation of 

transferos
omal gel 

resulted in 
1.2-fold 
lower 

than oral 
administr
ation of 

drug with 
carboxym

ethyl 
cellulose 

Not 
reported 

(Shrey
a et 
al., 

2016) 

Clindamy
cin (1) Acne Span® 80 

(17.18) 

Phosphatidyl
choline 
(81.82) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

351 -40 

Transferosomal 
gel resulted in a 
permeation 1.2-
fold higher than 
the control gel 

Not 
reported 

No 
irritation 

(Abde
llatif 
and 

Tawfe
ek, 

2016) 

Paclitaxel 
(0.9) 

Kaposi 
sarcom

a 

Span® 80 
(10.62) 

Phosphatidyl
choline 
(67.2) + 

cholesterol 
(21.28) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

186 -23.2 

Transferosomal 
gel resulted in a 
permeation 3.4-
fold higher than 
the control gel 

after 24 h 

Not 
reported 

Cytotoxic
ity was 
seen in  
KSY-1 

cells 

(Patha
k et 
al., 

2016) 

Raloxifen
e (Not 

reported) 

Osteop
orosis 

Sodium 
deoxycho
late (Not 
reported) 

Phosphatidyl
choline (Not 

reported) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

134 -9.5 

Optimised 
formulation had 

a permeation 
profile 6.5-fold 

better than 
nanosize 

liposomes 

Not 
reported 

Not 
reported 

(Mah
mood 
et al., 
2014) 

Sildenafil 
(19.69) 

Erectile 
dysfun
ction 

Tween® 
80 and 

Span® 80 
(4.02) 

Phosphatidyl
choline 
(76.29) 

Thin film 
hydration 
technique 
followed 

610 
Not 

reporte
d 

Optimised 
formulation 
resulted in 

permeation 5-

Not 
reported 

Not 
reported 

(Ahm
ed, 

2015) 
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by 
sonication 

fold higher than 
drug suspension 

Felodipin
e (1) 

Hypert
ension 

and 
angina 
pectori

s 

Tween® 
80 and 

Span® 80 
(5) 

Phosphatidyl
choline (94) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

75.71 -49.8 

Optimised 
formulation 

resulted in an 
enhancement of 
2.6-fold in drug 

permeation 
compared to 
control gel 

Transder
mal 

administr
ation of 

transferos
omes 

showed a 
Cmax 3.5-

fold 
higher 

than oral 
suspensio

n of 
felodipine

. It also 
showed a 
delay in 
the tmax 

from 4.85 
to 6 hours 

Not 
reported 

(Yusu
f et 
al., 

2014) 

Tretinoin 
(0.05) Acne Tween® 

80 (20) 

Phosphatidyl
choline 
(79.95) 

Sequential 
filtration 131 -5.9 

15% tretinoin 
formulation 
resulted in 

permeation 2-
fold higher than 
20 % tretinoin 
formulation 

Not 
reported 

Less 
irritating 

than 
marketed 
tretinoin 

(Asce
nso et 

al., 
2014) 

5-
Fluoroura

cil (1) 

Cutane
ous 

melano
ma 

Tween® 
80 (9.9) 

Phosphatidyl
choline 
(89.1) 

Thin 
hydration 
technique 
followed 

by vortex, 
sonication 

and 
extrusion 

267 
Not 

reporte
d 

Permeation of 
this formulation 

was 1.1-fold 
lower using 

Tween® 80 than 
using Span® 80, 
but entrapment 

efficacy and 
skin deposition 
was lower when 
using Span® 80 
as edge activator 

Tumour 
size 

resulted in 
1.9-fold 
lower 
after 

using the 
transferos

omal 
formulati
on when 

compared 
to the 

marketed 
one for 6 

weeks 

Not 
irritant 

(Khan 
et al., 
2015) 

Insulin 
(Not 

reported) 

Diabete
s 

mellitu
s 

Tween® 
80, 

Span® 80 
or 

Sodium 
deoxycho
late (Not 
reported) 

Phosphatidyl
choline + 

Cholesterol 
(Not 

reported) 

Reverse 
phase 

evaporatio
n followed 

by 
sonication 

and 
extrusion 

720 -14.3 

Permeation of 
the optimised 

formulation was 
1.3-fold higher 

with 
iontophoresis 
than without it 

Glucose 
levels 
were 

1.25-fold 
after 24 
hours 

after the 
administr
ation of 

transferos
omes 

Not 
reported 

(Mala
kar et 

al., 
2012) 

Insulin-
iodine 
(1.2) 

Diabete
s 

mellitu
s 

Sodium 
deoxycho
late (25) 

Phosphatidyl
choline 
(73.8) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

188 10.8 

Transferosomal 
gel resulted in a 
permeation 1.2-
fold higher than 

the 
transferosomal 
suspension and 
1.3-fold higher 
than control gel 

Transfero
somal gel 

with 
iodophor 

resulted in 
a higher 

permeatio
n than the 

gel 
without 

the 
iodophor, 

but not 
significan

tly 

Not 
reported 

(Mar
wah et 

al., 
2016) 

Amphoter
icin B (5) 

Viscera
l 

leishma
niasis 

Sodium 
deoxycho
late (8.6) 

Phosphatidyl
choline 
(60.5) + 

Thin film 
hydration 
technique 
followed 

101 -50.9 

Permeation of 
the optimised 

formulation was 
found to be 

Not 
reported 

Not 
reported 

(Singo
dia et 
al., 

2010) 
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Cholesterol 
(25.9) 

by 
sonication 

approximately 
1.5-fold higher 

compared to 
liposomal 

formulation 

Resveratr
ol (Not 

reported) 

Alzhei
mer 

Cremoph
or® RH 
40 (Not 

reported) 

Phosphatidyl
choline (Not 

reported) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

80 
Not 

reporte
d 

Ex vivo 
permeation of 
the optimised 

formulation was 
4.5-fold higher 

compared to 
suspension. The 

kinetics 
followed a zero-

order model 

Nasal 
administr
ation of 

transferos
omes 

resulted in 
a Cmax 2.1-

fold 
higher 

than the 
oral 

suspensio
n, with a 
delay in 
the tmax 

from 0.75 
to 7.33 
hours 

Degenerat
ive 

changes 
in 

olfactory 
epitheliu

m and 
moderate 
infiltratio

n of 
mononucl
ear cells 

in the 
lamina 
propria 

(Sale
m et 
al., 

2019) 

Lidocaine 
(Not 

reported) 

Anesth
esic 

Sodium 
cholate, 

Span® 80 
or Brij® 
35 (Not 

reported) 

Phosphatidyl
choline + 

Cholesterol 
(Not 

reported) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

179.5 -43.5 

Transferosomal 
gels increased 
the permeation 
of drug when 

compared with 
lidocaine 

solution and gel. 
That increase 

was dependant 
of the 

permeation 
enhancer that 

was used, being 
PANAM G3 the 

one with a 
higher impact 

Not 
reported 

Not 
reported 

(Omar 
et al., 
2019) 

Raloxifen
e-HCl 
(Not 

reported) 

Breast 
cancer 

Span® 
(Not 

reported) 

Phosphatidyl
choline (Not 

reported) 

Thin film 
hydration 
technique 
followed 

by 
sonication 

95.1 17.62 

The 
transferosomal 

formulation 
permeated 4.66-
fold faster than 
conventional 

liposomes 

Not 
reported 

Not 
reported 

(Mah
mood 
et al., 
2018) 
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Table 2. Preparation of transferosomes using QbD.  

Drug Edge 
activators 

Lipids Factors Model Responses In vitro 
behavior 

Referen
ces 

Zolmitrip
tan 

 

Tween® 
80 

Phosphatidylch
oline 

Amount of 
phospholipid 
Amount of 

drug 
Amount of 

edge activator 

Box-
Behnk

en 

Particle 
size 

Flexibility 
index 

Determinat
ion 

coefficient 
for 

achieving 
control 
release 

(R2) 

1.72-fold 
higher nasal 
bioavailabil

ity than 
marketed 
product  

(Pitta et 
al., 

2017) 

Raloxifen
e 

Sodium 
deoxychol

ate 

Phosphatidylch
oline 

Amount of 
phospholipid 
Amount of 

edge activator 
Sonication time 

Box-
Behnk

en 

Entrapmen
t 

efficiency 
Particle 

size 
Transderm

al flux 

The 
optimised 

formulation 
resulted in a 

6.5-fold 
higher 

permeation 
than the 

nano-size 
liposomes 

(Mahmo
od et al., 

2014) 

Valsartan Sodium 
deoxychol

ate 

Phosphatidylch
oline 

Amount of 
phospholipid 
Amount of 

drug 
Amount of 

edge activator  
Sonication time 

Box-
Behnk

en 

Entrapmen
t 

efficiency 
Particle 

size 
Transderm

al flux 

Enhanceme
nt 

permeation 
ratio of 33 
over drug 
entrapped 

within 
liposomes 

(Ahad et 
al., 

2012) 

Sildenafil Tween® 
80 

Span® 80 

Phosphatidylch
oline 

Drug/phospholi
pid ratio 

Phospholipid/e
dge activator 

ratio 
Edge activator 

HLB 
pH of 

hydration 
medium  

Hydration time 
Temperature of 

hydration 

Placke
tt-

Burma
n 

Particle 
size 

Entrapmen
t 

efficiency 

The 
optimised 

formulation 
showed a 

permeation 
5-fold 

higher than 
drug 

suspension 

(Ahmed, 
2015) 

Apigenin Tween® 
80 

Phosphatidylch
oline 

Phospholipid/e
dge activator 

ratio 
Sonication time 
Rotation speed 

Box-
Behnk

en 

Particle 
size 

Drug 
loading 

Entrapmen
t 

efficiency 

Enhanceme
nt 

permeation 
ratio of 1.2 
over drug 

suspension 
and 

marketed 
formulation 

(Jangdey 
et al., 
2017) 

Timolol 
 

Span® 80 Phosphatidylch
oline 

Phospholipid/e
dge activator 

ratio 
Carrier/mixture 

ratio 
Carrier type 

23 full 
factori

al 
design 

Particle 
size 

Entrapmen
t 

efficiency 
Release 

rate 

Permeation 
ratio was 
1.3-fold 
higher in 

the 
formulation 
with spray-

(Morsi 
et al., 
2017) 
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dried 
lactose 

Release rate 
was 1.1 

fold higher 
in the 

formulation 
containing 
mannitol 

Paclitaxel Span® 80 Phosphatidylch
oline 

Cholesterol 

Concentration 
of soya lecithin 
Concentration 
of cholesterol 
Concentration 
of Span® 80 

Box-
Behnk

en 

Entrapmen
t 

efficiency 
Particle 

size 
Cumulativ

e drug 
permeation 

Transferoso
mal gel 

resulted in a 
permeation 

3.4-fold 
higher than 
the control 
gel after 24 

h 

(Pathak 
et al., 
2016) 

Miconazo
le 

Span® 80 
Tween® 

80 

Phosphatidylch
oline 

Type of 
surfactant 
Amount of 

lipids 
Phospholipid/e
dge activator 

ratio 

23 full 
factori

al 
design 

Entrapmen
t 

efficiency 
Particle 

size 
Transderm

al flux 

Transferoso
mal gel 

resulted in a 
permeation 
1.19-fold 

higher than 
Daktarin® 
after 24 h 

(Qushaw
y et al., 
2018) 

Insulin 
 

Tween® 
80 

Sodium 
deoxychol

ate 

Phosphatidylch
oline 

Cholesterol 

Phosphatidyl 
choline/cholest

erol ratio 
Lipids/edge 

activator ratio 
Tween® 

80/sodium 
deoxycholate 

ratio 

23 full 
factori

al 
design 

Flux Optimised 
formulation 

had a 
permeation 

1.3-fold 
higher with 
iontophores

is than 
without it 

(Malaka
r et al., 
2012) 

Resveratr
ol 
 

Tween® 
80 

Sodium 
deoxychol

ate 
Cromoph
or® RH40 

Phosphatidylch
oline 

Phosphatidyl 
choline/permea
tion enhancer 

ratio 
(Phosphatidyl 

choline+Perme
ation 

enhancer)/edge 
activator ratio 
Type of edge 

activator 
Type of 

permeation 
enhancer 

34  
design 

Particle 
size 

Polydisper
sity index 

Zeta-
potential 

Entrapmen
t 

efficiency 

Ex vivo 
permeation 

of the 
optimised 

formulation 
was 4.5-

fold higher 
compared 

to 
suspension. 

The 
kinetics 

followed a 
zero-order 

model 

(Salem 
et al., 
2019) 
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Table 3. Comparison among the different techniques employed in the preparation of 
transferosomes.  

Technique Advantages Disadvantages 
Laboratory 
or industrial 

scale  
References 

Thin film 
hydration 

Suitable for all kind of lipids 
Easy to perform 

High drug encapsulation rates 

Difficult to scale-up 
Long time 
High cost 

Lab scale 

(Ahmed, 2015; 
Mahmood et 

al., 2014; Pitta 
et al., 2017; 
Wagner and 

Vorauer-Uhl, 
2011) 

Sonication High effiency in reducing particle 
size 

It is not a technique by 
itself, but it is commonly 

used after thin film 
hydration. 

Difficult to scale-up 
 

Lab scale 
(Wagner and 
Vorauer-Uhl, 

2011) 

Homogenization/ 
Extrusion 

Less aggressive than sonication 
Easy to scale-up 

High reproducibility of 
downsizing 

Long-lasting preparation 
High product losses 

High cost 
Both 

(Wagner and 
Vorauer-Uhl, 

2011) 

Ethanol injection 
method 

Easy to scale-up 
Ethanol is a harmless solvent 

Higher stability 
High entrapment efficacy 

The obtained 
formulation might be an 

ethosome instead of a 
transferosome 

Industrial 
(Wagner and 
Vorauer-Uhl, 

2011) 

Protransferosome 
-transferosome 

method 

High entrapment efficacy 
Easy to scale-up 

High amount of product 
is needed to be diluted in 

a second step 
Industrial 

(Davidson et 
al., 2016; 

Wagner and 
Vorauer-Uhl, 

2011) 

Microfluidics Possibility of monitoring the 
process 

Requires the use of 
HPLC grade compounds, 
which increases the cost 

Industrial 

(Carugo et al., 
2016; Golden 
et al., 2012; 

Sugiura et al., 
2008) 
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