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Abstract 
 

Since the 1950s, amphotericin B (AmB) has been used in clinical practice to treat 

systemic fungal infections and leishmaniasis, a neglected parasitic disease that can be 

fatal if left untreated. Fungizone® (a micellar dispersion) was the “gold standard” for more 

than three decades but due to the safer profile of novel lipid-based medicines 

(AmBisome®, Abelcet® and Amphocil®), it is now used as second-line in the developed 

world. Lipid-based medicines possess a more favourable safety profile (mainly lower 

nephrotoxicity and infusion-related side effects) allowing the administration of larger 

doses and therefore similar efficacy with fewer administrations. However, all 

formulations require parenteral administration because AmB has low oral bioavailabi lity 

(0.2-0.9%) due to the precipitation in aqueous media. In the last decade, strong 

partnerships between academia and industry has led to the development of innovative 

drug delivery systems able to deliver and target orally AmB in effective concentration 

while reducing its nephrotoxicity and infusion-related side effects. Currently, three major 

platform technologies (cochleates, chitosan nanoparticles and SEDDS) that are 

undergoing clinical trials that are discussed in this review. The pharmacokinetic and 

pharmacodynamic profile against visceral leishmaniasis, systemic candidiasis and 

aspergillosis of novel delivery systems will also be discussed.  
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Introduction 
 
Since the 1950s, amphotericin B (AmB) is used in clinical practice to treat initia l ly 

systemic fungal infections and several years later also leishmaniasis, a neglected parasitic 

disease that can be fatal when left untreated [1, 2]. A micellar dispersion of AmB and 

sodium deoxycholate (Fungizone®) was considered the “gold standard” for more than 

three decades due to its broad-spectrum activity and low incidence of clinical resistance 

in spite of causing severe adverse effects such as nephrotoxicity, anaemia and infusion-

related side effects [3]. However, Fungizone® was relegated to a second-line treatment in 

developed countries when lipid-based medicines (AmBisome®, Abelcet® and 

Amphocil®) were marketed in the 1990s. Lipidic formulations exhibit similar efficac ies 

but more favourable safety profiles (mainly lower nephrotoxicity) which allows the 

intravenous administration of higher doses (5-10 mg/kg compared to the 0.5-1 mg/kg 

recommended dose for Fungizone®) [4, 5]. Infusion-related side effects and the need for 

patient hospitalization to monitor for AmB side effects remain still an issue for lipid ic 

formulations and limits the access to AmB treatment in developing countries. An oral 

self-administered AmB formulation can overcome these challenges, however, this has not  

yet been materialized.  

 

Why has an oral AmB medicine not been marketed till now? 

In clinical practice, AmB is administered orally only when a local action is desired, for 

example to prevent nosocomial infections in the oesophageal and gastrointestinal tract 

[6].  The main reason of requiring IV administration is the low fraction of AmB that is 

orally absorbed (0.2-0.9%) due to the precipitation of crystalline drug in aqueous media 

(Figure 1a) [6, 7]. The zwitterionic and amphiphilic character of AmB with an 

asymmetrical distribution of ionisable carboxyl and primary amine groups and 

hydrophobic and hydrophilic groups respectively leads to poor aqueous solubility (< 1 

mg L-1 at physiological pH) [7, 8]. AmB violates Lipinski´s rule of five possessing a 

molecular weight of 924 Da, 12 H-bond donors and 18 H-bond acceptors [3, 9]. Thus, to 

achieve clinical effective AmB concentrations in targeted organs after the oral 

administration, chemical modification of the drug or reformulation using appropriate 

excipients is required. The latter will require excipients able to increase AmB’s aqueous 

solubility [10, 11] as well as ensure stability of the drug throughout all the harsh 

environment of the gastrointestinal tract (GIT) such as the low pH of the stomach and  
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facilitate the drug absorption through the enterocytes (reaching the portal blood) or M-

cells (till the lymphatic route). 

 

Pharmacokinetics of oral AmB 

AmB was originally orally studied for its pharmacokinetics in humans in 1957 even at 

very high doses of 2-10 g daily (Table 1) [12-14]. Two decades later [6], lower doses of 

AmB were orally administered (30-40 mg/day) for infections of the GIT. Interestingly 

both high doses and lower doses resulted in similar plasma concentrations (Table 1). 

Researchers speculated that the absorption process may be saturated (reaching a 

maximum plateau) after oral administration and thus, multiple administrations of lower 

doses could results in higher plasma levels than a single high dose of AmB.  

Advancements in drug delivery technologies and the emergence of nano-enabled 

formulations have enhanced research efforts of academic and industrial researchers in the 

last two decades. Various delivery strategies including polymeric and solid lipid 

nanoparticles [15-17], micellar dispersions [18], cochleates [19], nanosuspensions [20], 

carbonanotubes [21] and lipid-based nanomedicines [22-24] have been reported with 

varying degrees of success in achieving effective plasma and tissue after oral 

administration and moving further in human clinical trials (Table 2-6).  

Single dose pharmacokinetics studies in animals have illustrated that tissue-plasma ratio 

is a key factor to take into account after oral administration of AmB (Table 2). A low 

plasma concentration does not necessarily indicate that the formulation is ineffective. Due 

to its physicochemical properties, AmB accumulates in tissues for longer periods of time 

leading to long half-life after intravenous administration [25]. Tissue accumulation is 

similarly observed after oral administration. For this reason, determination of AmB levels 

in organs of interest such as liver and spleen for visceral leishmaniasis and lungs, kidneys, 

brain and liver for fungal infections is critical in the evaluation of an AmB oral candidate 

formulation. Bearing in mind the in vitro effective concentrations of AmB against funga l 

and parasitic strains (reported IC50 between 0.1 to 2 µg/ml [26-28]), levels reached in 

tissues of interest equal or higher to the in vitro IC50 after oral administration could be 

effective. 

After evaluating the published data on single oral administration of AmB in rodents, 

several conclusions can be drawn (Table 2). Saturated absorption impacts on the overall 
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oral bioavailability and AmB follows a non-linear pharmacokinetic profile. No significant 

higher levels were achieved when a dose of 50 mg/kg of Peceol-AmB was administered 

compared to 5 mg/kg [18, 24, 29]. P-glycoprotein ATPase activity may be involved in 

the saturation process. However, Osei-Twum et al. have shown that AmB was not a 

substrate of P-glycoprotein mediated efflux [30].  Lipid-based formulations appear to 

have a later Tmax (between 2-12.5 hours) and the Tmax increases with increasing dose. 

Lymphatic absorption can contribute to the later Tmax. Doses below 5 mg kg-1 fail to 

produce plasma levels above 0.1 µg mL-1 which are required in vitro to elicit an effect. 

The situation is more complicated for polymeric nanoparticles. Polylactic-co-glyco lic 

acid (PLGA, 50:50) nanoparticles have illustrated a sustained response, while chitosan 

based nanoparticles illustrated an early onset Tmax and greater plasma concentrations 

(Table 2). Single dose pharmacokinetic levels in both plasma and tissues are critical for 

designing a multiple dose regime that can prove to be more efficacious exploiting the 

accumulation of AmB in the body and its high tissue distribution. The gastrointest ina l 

toxicity of AmB, which manifests as mild nausea, vomiting, diarrhea and loss of appetite, 

remains a major limitation for oral strategies taking into account the higher oral AmB 

dose administered needed for ensuring oral bioavailability and tissue accumulation. A 

high oral dose combined with non-linear and variable pharmacokinetics might result in 

acute nephrotoxicity and this needs to be taken into account in multiple dose regimes.  

Multiple doses have been reported for lipid-based and polymeric formulations with doses 

ranging between 2.5-20 mg kg-1 twice daily. Similarly, a dose above 5 mg kg-1 elicited 

adequate plasma concentrations and an equivalent or higher AmB concentration in liver 

compared to kidney. However, in visceral leishmaniasis (VL) infected animals, a lower 

accumulation in liver has been reported compared to non-infected animals after 

intravenous administration of Ambisome (2 mg kg-1) or lipid-based nanoemulsions orally 

(10-20 mg kg-1 twice daily for 5 days). Researchers have speculated that the liver and 

spleen macrophages of VL infected mice lose their phagocytic activity [24]. Macrophages 

infected with L. donovani in vitro illustrate a lower phagocytic activity compared to 

uninfected cells [31].  

The most successful formulations able to deliver greater amounts of drug in tissues in 

rodent model were cochleates [19], lipid-based systems [22, 29] and polymeric 

nanoparticles [15]. From all the formulations, AmB-GCPQ (N-palmitoyl-N-methyl-N,N-

dimethyl-N,N,N-trimethyl-6-O-glycol chitosan) nanoparticles showed oral 
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bioavailability not only in rodents but also in dogs and possesses one major differentia l 

characteristic compared the other formulations: preferential drug accumulation in liver, 

spleen and lung leading to highest spleen/kidney and high liver/kidney and lung/kidney 

ratios. Cochleates were the only formulation to show almost four fold accumulation in 

the lungs compared to the liver and kidneys [19].  

Pharmacodynamics of oral AmB 

AmB activity after oral administration has been mostly tested against VL, systemic 

candidiasis and aspergillosis (Tables 4-6) but also research against other parasitic diseases 

such as trypanosomiasis is recently published [32].  

The size of particulate formulations is a key characteristic for ensuring adequate targeting 

of AmB strategies in murine VL models to reach reticuloendothelial (RES) organs (Table 

4). Poor activity levels were achieved after the oral administration of a nanosuspens ion 

consisting of polysorbate 80, pluronic F68 and sodium cholate with a particle size greater 

than 500 nm [20]. However, greater parasitaemia reduction in liver and spleen was 

obtained with: i) AmB attached to functionalized carbon nanotubes (long axial, width 

approximately 50 nm) [21], ii) lipid-based emulsions such as iCo-10 (approximately 200 

nm) composed of 60/40 (v/v) mono- and diglycerides (Peceol/Gelucire 44/14) with 

vitamin E-TPGS (D-α-tocopheryl polyethylene glycol succinate) [33, 34] and iii) 

polymeric AmB-GCPQ nanoparticles with similar particle size (approximately 200 nm) 

[15]. Therapeutic regimes of 2.5 mg/kg twice daily were insufficient to eradicate the 

parasitemia while doses equal or above 5 mg/kg once or twice daily for at least 5 

consecutive days were able to deliver enough AmB to elicit its pharmacological effect. 

Leishmania is an intracellular parasite accumulated in the RES organs (liver, spleen, bone 

marrow) and targeting these organs will lead to a better therapeutic outcome. The oral 

route is ideal for liver targeting as the drug reaches the liver via the portal blood 

circulation after absorption, while lymphatic uptake can enable bone marrow targeting.  

A complication in comparing the efficacy of oral AmB formulations in apergillosis is the 

use of different infection models (Table 5), which use different number of colonies to 

induce the infection that impacts in treating animals of varying degrees of neutropenia 

with tested formulations and does not allow direct comparison of the strategies and doses 

used. Compared to parasitic infections like VL, fungal apergillosis caused by A. fumigatus 

is more severe and higher doses (> 15-20 mg kg-1) and longer duration of therapy (>10 
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days) are necessary to prolong the survival rate and inhibit the growth of Aspergillus in 

infected tissues. Also, the infection is more disseminated, thus, higher levels of AmB are 

required not only in liver and spleen but also in plasma, lungs, kidneys and brain. Oral 

AmB strategies for aspergillosis involved lipid based systems [35, 36], polymeric 

nanoparticles [15, 17] and cochleates [37], with the latter being the most successful 

formulation in preclinical studies. The same formulations were also tested in a systemic 

candidiasis animal model and treatment for longer periods of time was more efficac ious 

at eradicating the C. albicans from the infected tissues after oral AmB administra t ion 

(Table 6) and are the ones closer to translating into an oral AmB formulation.  

A step closer to oral AmB 

Engineering oral AmB drug delivery systems requires: i) an increased AmB dissolut ion 

in the gastrointestinal tract, (ii) enhancement of lymphatic absorption, (iii) reduction in 

drug degradation in the acidic pH of the stomach, (iv) enhancement of the gastrointest ina l 

transit and (v) finally targeting of the formulation in organs of interest and reducing off-

target side-effects (e.g. nephrotoxicity).  The three most promising delivery strategies that 

have entered clinical trials are described in more detail below: 

 
1. CAmB- Amphotericin B cochlehates (Aquarious Biotechnologies- Matinas 

Biopharma) [38]. Clinical trials phase I have been completed and currently, the company 

is recruiting participants to initiate a Phase II clinical trial [39]. This platform technology 

is based on the encapsulation of AmB within cochleates which are stable cationic 

phospholipid precipitates composed of commonly used excipients such as 

phosphatidylserine and calcium. They have a multilayer structure consisting of a large, 

continuous, solid lipid bilayer sheet rolled up in a spiral without aqueous space  (Figure 

1b) [40]. The structure of the cochleates provides protection from the acidic gastric pH 

because the entire cochleate structure is composed of a series of solid layers and even 

though the outer layers can be exposed to harsh environmental conditions, the interior of 

the cochleate remains intact. AmB cochleates have shown comparable efficacy in vivo to 

parenteral liposomal AmBisome® in three disease states (VL, candidiasis and 

aspergillosis) [37, 40-42]. However, the scaling-up process can be complex as one of the 

major limitations is that the cochleate structure is not always uniform resulting in either 

aggregates or stacked sheets and cochleates or large size needles-like structures [43].  
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2. NM0147 METAmphizon (Nanomerics) [44]. AmB nanoparticles are obtained using 

Molecular Envelope Technology (MET) and engineered from a biocompatible polymer. 

AmB is encapsulated within N-palmitoyl-N-methyl N,N-dimethyl-N,N,N-trimethyl-6-O-

glycol chitosan (GCPQ) nanoparticles of about 200 nm in size [15]. The particles have a 

core-shell structure with the ionic units forming the particle shells and the hydrophobic  

groups forming the particle core (Figure 1c). The hydrophobic tail of the polymer has the 

same number of carbons as the hydrophobic domain of AmB, which enhances the 

hydrophobic interaction and the formation of a nanocomplex [15].  The oral 

bioavailability of AmB-GCPQ nanoparticles is 24% and similar to AmB cochleates, AmB 

encapsulated in GCPQ nanoparticles also has shown a high efficacy against candidias is, 

aspergillosis and VL compared to parenteral administered AmBisome® [15]. Currently, 

METAmphizon is in clinical trials Phase I and preclinical studies have shown ability to: 

protect AmB from gastric degradation, reduce nephrotoxicity and enhance lympha tic 

absorption while target to lung, liver and spleen. The lower accumulation in the kidneys 

is favourable as the nephrotoxicity is reduced but at the same time, it can be a limita t ion 

in those cases where the microorganisms are localised in the kidneys.  

 

3. iCo-Amphotericin B (iCo Therapeutics Inc) [45]. iCo Therapeutics has developed 

self-emulsifying drug delivery systems (SEDDS) to enhance oral AmB bioavailabi lity 

which are currently in Phase I. There are two main formulations in their pipeline: iCo-

009 and iCo-010. The iCo-009 system is composed of AmB mixed with Peceol® (glyceryl 

monooleate) and distearoylphosphatidylethanolamine (DSPE)-(PEG)2000 and is 

characterised by excellent homogeneity and no crystalline features [35].  Accumula t ion 

of AmB in liver, spleen, kidney and lung tissues was reached after the oral administra t ion 

of the formulation without inducing gastrointestinal toxicity leading to high efficacy 

against candidiasis, aspergillosis and leishmaniasis [22]. The iCo-010 system is a novel 

oral AmB formulation consisting of Peceol®, Gelucire® 44/14 (lauroyl macrogol-32-

glycerides) and vitamin E-TPGS that remains highly effective against murine systemic 

candidiasis following exposure to tropical temperatures (43 ℃). This is advantageous 

bearing in mind that neglected diseases occur mainly in tropical regions and AmB is a 

thermally unstable drug [46]. However, one of the limitations of this system is the low 

level of AmB solubilized in the aqueous fraction (<20%) during lipolysis studies which 

is indicative of the amount of the drug that is available for absorption [47]. 
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Oral administration can enable liver targeting as AmB will be transported to the liver, an 

important site of replication of the leishmania parasite, via the portal circulation. Oral 

administration of particulate formulations (<300nm) can target M cells and result in 

lymphatic uptake and has been shown to play a key role in the oral bioavailability of both 

AmB-GCPQ nanoparticles and SEDDS [15, 48]. Khan et al. have suggested that a particle 

size of 100-500 nm is optimal for lymphatic uptake via the GI lymphatic system [49, 50]. 

Apart from particle size, the particle composition is critical. Chitosan polymers have been 

shown to adsorb great amounts of bile salts [51] during their transit through the GIT which 

can facilitate enterohepatic recirculation and enable their incorporation into chylomicrons 

and entrance in the lymphatic vessels, a process similar to what has been described for 

lipid-based SEDDS [52]. Bearing in mind that the Leishmania parasites reside in lymph 

nodes and they accumulate in RES tissues, the lymphatic uptake of AmB facilita tes 

accumulation of the drug in tissues of interest enabling efficacious treatment of this 

parasitic disease [53].   

 

Translating oral nanomedicines of AmB: cost-effectiveness  

Even though the number of doses needed will be higher in the oral regime compared to a 

single IV administration of the drug to obtain the same level of efficacy, the overall cost 

of treatment may be lower taking into account both direct and indirect costs. Parenteral 

administration requires patient hospitalization and drug monitoring due to the acute and 

sometimes fatal infusion-related adverse effects such as anaphylactic reactions and 

nephrotoxicity which prolongs hospitalization. Parenteral formulations need to be sterile, 

while oral formulations such as the SEDDS or polymeric nanoparticles are cheaper to 

procude under GMP conditions and are easily scalable compared to liposomes 

(AmBisome®). Oral AmB permit self-administration and can be distributed in rural areas 

and results in fewer adverse effects. Moreover, oral AmB formulations have been shown 

to be stable at tropical conditions not requiring a cold transport chain and cold storage 

reducing further the final cost of the oral formulations.   

 

Clinical translation of oral AmB has been only evaluated in VL and not in other clinica l 

manifestations of leishmaniasis such as mucocutaneous (MCL) and diffuse cutaneous 

(DCL) forms alone or in combination with topical treatments.  

 

Future perspectives and concluding remarks 
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Several years before an oral AmB would be unthinkable. Higher doses and longer 

duration of treatment than those used parenterally are required to eradicate the 

microorganisms from affected tissues. Further toxicological studies in humans upon 

longer administration periods are required to assess the risk-benefit ratio. However, in the 

last decade, strong partnerships between academia and industry has led to the 

development of innovative drug delivery systems able to deliver oral AmB in enough 

concentration in targeted tissues to elicit its pharmacological effect while reducing its 

nephrotoxicity and infusion-related side effects. Currently, the road to market for oral 

AmB medicines is paved by three major platform technologies (cochleates, chitosan 

nanoparticles and SEDDS) undergoing clinical trials. Apart from the toxicity, other major 

limitations of these systems that have to be carefully taken into consideration are the  

scaling-up of the fabrication as well as the polymer synthesis and GMP production in 

order to get overall cost-effective formulations allowing the access of oral AmB treatment 

worldwide especially in developing countries.  
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Figure captions: 
 
Figure 1. AmB electron micrographs: A) TEM of Crystals of AmB in dextrose 5% (w/v) 
(reprinted with permission from [15]. Copyright (2015) American Chemical Society); B) 
Electron micrograph freeze-fracture of cochleates [54]; c) TEM of AmB- GCPQ 
nanoparticles in deionised water (reprinted with permission from [15]. Copyright (2015) 
American Chemical Society). 
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Table 1: Oral pharmacokinetics studies in humans with AmB. Key: - data non available. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation Number of 
patients 

Tretment 
(duration) Regime Sampling Cmax plasma 

(µg/ml) Ref. 

AmB 
5 2 g / day Single dose 

- 
0.040 

[12] 5 4 g / day (1   day) Multiple 0.080 
5 10 g / day (3  days) Multiple 0.210 

AmB 15 4.2 g / day (2  days) Multiple - 0.180 [14] 
Solubilised 

AmB  9 5.8 g / day 
 (10  days) Multiple - 0.054 [13] 

Tablet AmB 
10 mg 

(Fungilin®) 

3 30 mg/ day (2 days) Multiple 3 h after dose in 
the morning 0.068 

[6] 
2 40 mg /day (2 days) Multiple 3 h after dose in 

the morning 0.068 
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Table 2: Single dose oral pharmacokinetics animal studies with AmB. Key: -, data no available; ND, no detectable, below limit of quantification; D-AmB, Sodium 
deoxycholate – Amphotericin B;  Albelcet,  AmB-lipid complex suspension; Intralipid-AmB, AmB incorporated into 10% intralipid;  Peceol-AmB, AmB incorporated in 100% 
Peceol (Self-emulsifying drug delivery system formulation: SEDDS); PLGA: polylactic-co-glycolic Acid (50:50), DSPE/PEG2000 (iCo-009), 
distearoylphosphatidiylethanolamine-poly-(ethylene glycol)2000; iCo 010, 60/40 (v/v) mono- and diglycerides with vitamin E-TPGS (D-α-tocopheryl polyethylene glycol 
succinate); AmB-cochleates* data are extrapolated from the graph pub. Nº: US 2003/0228355 A1 patent; SLN, solid lipid nanoparticles; GCPQ- N-palmitoyl-N-methyl-N,N-
dimethyl-N,N,N-trimethyl-6-O-glycol chitosan. 

 

 

Formulation Animal model 
(nº animals) Therapy Collection of the 

samples 

T max 
plasma   

(h) 

Cmax 
plasma 
(µg/mL) 

AmB concentration in tissues (µg  AmB/ g tissue) 
Ref. Liver Spleen Kidney Lung Brain Heart 

D-AmB Rat (n=10) 1.6 – 16.7  
mg/kg - 5 - 9 0.040 – 

0.100 - - - - - - [55] 

D-AmB 
(Fungizone®) 

Rat (n=6) 5 mg/kg 

24 h post-
administration 

ND ND ND ND ND ND - ND 

[18] 

Rat (n=6) 50 mg/kg 8 0.0398 ND ND 0.009 0.731 - ND 
Albelcet® Rat (n=6) 50 mg/kg 10 0.0485 ND ND ND 0.558 - 0.0459 

Intralipid-AmB Rat (n=6) 50 mg/kg 2 0.719 0.0134 ND ND 43 - ND 
Peceol-AmB Rat (n=6) 5 mg/kg 2 1.187 0.0061 ND ND ND - ND 
Peceol-AmB Rat (n=6) 50 mg/kg 4 1.469 0.0109 0.0765 ND ND - 0.0128 
AmB PLGA 

nanopartícles Rat (n=3) 10 mg/kg 
- 

24 0.176 
- - - - - - [56] D-AmB 

(Fungizone®) Rat (n=3) 10 mg/kg 6 0.0602 

Peceol/DSPE/ 
PEG2000 - AmB 

Rat (n=6) 4.5 mg/kg 72 h post-
administration 

6.3 0.071 0.017 0.091 0.079 0.117 ND ND [23] Rat (n=8) 10 mg/kg 12.5 0.096 0.033 0.039 0.283 0.055 ND ND 
AmbiOnp (SLN) Rat (n=4) 200 mg/kg - 

 

9 0.124 - - - - - - 
[16] AmB dissolved in      

DMSO Rat (n=4) 200 mg/kg 12 0.142 - - - - - - 

AmB-Cochleates* 

Mice C57BL16 
(n=3) 10 mg/kg 1 h post-

administration - - 0.04 ND 0.04 0.04 0.02 0.04 

[19] Mice C57BL16 
(n=3) 10 mg/kg 6 h post-

administrationn - - 0.72 0.6 0.96 0.96 0.48 0.1 

Mice C57BL16 
(n=3) 10 mg/kg 24 h post-

administrationn - - 0.4 0.36 0.16 0.22 ND ND 

AmB-GCPQ 
nanoparticles 

Mice CD-1 (n=4) 5 mg/kg - 4 0.308 0.985 1.364 1.119 1.608 - - [15] Beagles (n=3) 4 mg/kg - 8 0.065 - - - - - - 
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Table 3. Multiple dose oral pharmacokinetics animal studies with AmB. Key: -, data no available; ND, no detectable, below limit of quantification; Peceol (Self-emulsify ing  
drug delivery system formulation: SEDDS); DSPE/PEG2000 (iCo-009), distearoylphosphatidiylethanolamine-poly-(ethylene glycol) 2000; iCo 010, 60/40 (v/v) mono- and 
diglycerides with vitamin E-TPGS (D-α-tocopheryl polyethylene glycol succinate); VL-mice, visceral leishmaniasis infected mice; BID, twice a day; GCPQ- N-palmitoyl-N-

methyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycol chitosan. 

 

Formulation Animal model 
(nº animals) 

Therapy 
(duration) 

Collection of the 
samples 

Conc. plasma 
(µg/mL) 

AmB concentration in tissues (µg  AmB/ g tissue) Ref. Liver Spleen Kidney Lung Brain Heart 

AmB-Cochleates Mice C57BL16 
(n=3) 

10 mg/kg/day (10 
day) 

Organs collected 24 h 
post-administration ND 2.4 1.5 2.3 9.5 0.1 0.3 [19] 

Peceol/DSPE/ 
PEG2000 - AmB 

Mice  BALB/c (n=8) 2.5 mg/kg BID 
(5 days) 

Organs collected 12 h 
post-administration 

0.166 0.714 0.329 0.112 0.589 0.082 0.160 

[22] 
Mice  BALB/c (n=8) 5 mg/kg BID 

(5 days) 0.168 0.957 0.751 0.323 1.449 0.112 0.289 

Mice  BALB/c (n=8) 10 mg/kg BID 
(5 days) 0.390 3.151 1.920 0.928 4.076 0.160 0.626 

Mice  BALB/c (n=6) 20 mg/kg BID 
 (5 days) 0.519 4.728 4.194 1.589 5.048 0.184 0.621 

Peceol/DSPE/ 
PEG2000 - AmB 

Mice  BALB/c (n=5) 10 mg/kg BIB  
(5 days) 

Organs collected 60 h 
post-administration 

- 0.328 0.152 - - - - 

[24] 

VL-  Mice  BALB/c 
(n=6) 

10 mg/kg BID 
5 days) - 0.125 0.233 - - - - 

Mice  BALB/c (n=5) 20 mg/kg BID 
 (5 days) - 0.536 0.477 - - - - 

VL-  Mice BALB/c 
(n=6) 

20 mg/kg BID 
(5 days) - 0.171 0.428 - - - - 

iCo-010            
 

Mice  BALB/c (n=6) 2.5 mg/kg BID (5 
days) 

Organs collected 12 h 
post-administration 

0.172 0.446 0.342 0.495 0.408 0.059 0.084 

[29] 
Mice  BALB/c (n=6) 5 mg/kg BID 

(5 days) 0.232 0.836 0.916 0.813 1.168 0.112 0.156 

Mice  BALB/c (n=6) 10 mg/kg BID 
(5 days) 0.418 2.543 1.407 2.268 2.014 0.157 0.338 

Mice  BALB/c (n=7) 20 mg/kg BID 
(5 days) 0.538 3.494 1.939 3.685 3.179 0.169 0.366 

AmB-GCPQ 
nanoparticles 

Mice CD-1 
(n=3) 

5 mg/kg/day 
(5 days) 

Organs collected 24 h 
post-administration 0.229 0.892 1.716 1.405 1.548 0.139 - 

[15] 
Mice CD-1 

(n=3) 
5 mg/kg BID 

(5 days) 
Organs collected 12 h 
post-administration 0.462 6.281 7.884 3.346 7.456 0.280 - 
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Table 4. Oral efficacy studies with AmB against visceral leishmaniasis. Efficacy compared with non-treated controls. Key: -, data no available; ZP, zeta potential, p.i, post 
infection; f-CNTs, functionalized carbonnanotubes; iCo 010, 60/40 (v/v) mono- and diglycerides (Peceol/Gelucire 44/14) with vitamin E-TPGS (D-α-tocopheryl polyethylene 
glycol succinate); BID, twice a day; QD, four times a day; GCPQ- N-palmitoyl-N-methyl-N, N-dimethyl-N,N,N-trimethyl-6-O-glycol chitosan, p.i, post infection. 
 

Formulation 
composition 

Formulations 
characteristics 

Animal 
model Infection model Nº of 

animals Therapy 
Parasitemia load 
reduction (% ) Reference 

Liver Spleen 
Nanosuspension 

0.4% AmB (w/w), 
0.5% Tween 80 (w/w),  

0.25% Pluronic F68 (w/w), 
 0.05% sodium cholate 

(w/w) 

Size: 528 nm 
ZP: - 38 mV 

Stability: > 21 days at 20 ° 

BALB/c 
mice 

 

IV infection with 1 x 107 L. 
donovani amastigotes. 
Treatment: 7 days p.i. 
Sacrifice: 14 days p.i. 

- 5 mg/kg (4-5 days) 28.6 - [20] 

Lipid-based formulation - 
BALB/c 

mice 
 

IV infection with 5 x 107 L. 
donovani promastigotes. 

Treatment: 7 days p.i. 
Sacrifice: 14 days p.i. 

4 2.5 mg/kg BID (5 days) 64.7 - 

[33] 4 5 mg/kg BID (5 days) 96.4 - 
5 10 mg/kg BID (5 days) 99.5 - 
5 20 mg/kg BID (5 days) 99.8 - 

iCo – 010 

Size ≈ 200 nm 
Stability: AmB > 75% 

over 60 days a 30 and 43 
°C 

BALB/c 
mice 

 

IV infection with 5 x 107 L. 
donovani promastigotes. 

Treatment: 7 days p.i. 
Sacrifice: 14 days p.i. 

4 2.5 mg/kg BID (5 days) 83 - 

[34] 
4 5 mg/kg BID (5 days) 98 - 

4 10 mg/kg BID (5 days) 99 - 

4 20 mg/kg QD (5 days) 96 - 

AmB attached to f-CNTs - Golden 
hamster 

Intracardiac infection with 1 x 
108 L. donovani promastigotes. 

Treatment: 30 days p.i. 
Sacrifice: 37 days p.i. 

8 5 mg/kg/day (5 days) - 90.2 

[21] 7 10 mg/kg/day (5 days) - 96.5 

8 15 mg/kg/day (5 days) - 98.2 

AmB-GCPQ 
nanoparticles 

Size: 216 nm 
ZP: + 3 mV 

Stability: AmB > 95% at 
4°C 

BALB/c 
mice 

Intracardiac infection with 1 x 
107 L. infantum promastigotes 

Treatment. 24 days p.i. 
Sacrifice: 31 days p.i. 

8 5 mg/kg/day (5 days) - - 
[15] 

8 5 mg/kg/day (10 days) 98.9 92.1 
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Table 5. Oral efficacy studies with AmB against apergillosis. Efficacy compared with non-treated controls. Key: -, data no available; CFU, colony forming units; p.i, pot-
infection; NSD, no significant differences (p>0.05) between treatment and control groups; DSPE/PE, distearoylphosphatidyletha nolamine – polyethylenglycol, PLGA: 
polylactic-co-glycolic Acid; IP, intraperitoneally; SC, subcutaneously; BID, twice a day; GCPQ- N-palmitoyl-N-methyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycol chitosan, 
p.i, post infection; * values obtained 8 days p.i. 

 

 

Formulation 
 

Animal 
model Infection model Nº of 

animals 
Therapy 

(duration) 

% of survival Aspergillus CFU reduction (%) 
Reference After 4 

days p.i. 
After 14 
days p.i. Liver Spleen Brain Lungs Heart Kidneys 

AmB-
cochleates 

BALB/c 
mice 

Neutropenia with cyclophosphamide 
200 mg/kg day -3 p.i. IV infection with 
106 spores of A. fumigatus. Treatment 
immediately after infection. 

10 20 mg/kg/day 
(14 days) 70 60 - - - - - - 

[37] 
10 40 mg/kg/day 

(14 days) 90 70 - - - - - - 

AmB 
incorporated 
into Peceol  

Sprague
-Dawley 

Rat 

IV injection with 2.1-2.5 x 107 CFU of 
A. fumigatus. Treatment:  48 h p.i. 
 

7 50 mg/kg 
(4 days) - - NSD 98 95 NSD NSD NSD [36] 

Peceol/DSPE/ 
PEG2000 – 

AmB 
 

Sprague
-Dawley 

Rat 

IV injection with 2.9-3.45 x 107 CFU of 
A. fumigatus. Treatment:  48 h  p.i. 
Sacrifice: day 3 
 

7 10 mg/kd BID 
(2 days) - - NSD 90.1 79.2 NSD NSD 87.9 [35] 

AmB – PLGA 
nanoparticles 

CD-1 
mice 

Neutropenia with cyclophosphamide 
200 mg/kg IP+ cortisone 250 mg/kg SC: 
day -2 and +3 p.i. Infection by 
nebulization of 8.1 x 108 CFU of A. 
fumigatus spores/ml 1h. Treatment: 5 h 
p.i. Sacrifice: 101 h p.i. 

6 5 mg/kg - - - - - 95.0 - - 

[17] 6 5 mg/kg/day 
(4 days) - - - - - 99.7 - - 

Neutropenia with cyclophosphamide 
200 mg/kg IP day -3 p.i. IV infection 
with 8 x 104 CFU of A. fumigatus. 
Treatment: 5 h p.i. Sacrifice: 101 h p.i. 

5 2 mg/kg - - - - - - - 78.1 

5 5 mg/kg - - - - - - - 98.0 

AmB-GCPQ 
nanoparticles 

OF-1 
mice 

Neutropenia with cyclophosphamide 
200 mg/kg IP and fluorouracil 150 
mg/kg IV at day -1 p.i. IV infection 
with 1 ×104 CFU of A. fumigatus. 
Treatment: 24 h p.i. Sacrifice: 14 days. 

10 5 mg/kg  
(10 days) 100 25 - - - 60* - 40* 

[15] 15 7.5 mg/kg  
(10 days) 100 25 - - - >95* - >95* 

15 15 mg/kg  
(10 days) 100 20 - - - >95* - >95* 
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Table 6. Oral efficacy studies with AmB against candidiasis. Efficacy compared with non-treated controls. Key: NSD, no significant differences (p>0.05) between treatment 
and control groups; -, data no available; DSPE/PEG2000 (iCo-009), distearoylphosphatidiylethanolamine-poly-(ethylene glycol) 2000; BID, twice a day. GCPQ- N-palmitoyl-
N-methyl-N,N-dimethyl-N,N,N-trimethyl-6-O -glycol chitosan, p.i, post infection. 
 

 

 
 
 
 
 
 
 
 
 

Formulation 
 

Animal 
model Infection model Nº of 

animals Therapy 

%  of 
survival Candiadiasis CFU reduction (% ) 

Ref. After 15 
days p.i. Lungs Kidneys Spleen Liver 

Peceol/DSPE/ 
PEG2000 – 

AmB 

Sprague-
Dawley 

Rat 

IV injection with 1-1.35 x 106 
CFU of C. Albicans.  
Treatment:  48 h p.i.  

Sacrifice: day 3 

5 5 mg/kg BID  
(2 days) - NSD 75 - - 

[35] 
7 10 mg/kg BID  

(2 days) - NSD 95 - - 

AmB - 
cochelates  

BALB/c 
mice 

IV injection with 106 
blastoconidia of C. Albicans. 

 Treatment:  24 h p.i.  
Sacrifice: day 17 p.i. 

10 0.5 mg/kg/day  
(15 days) 100 NSD NDS - - 

[57] 

10 1 mg/kg/day  
(15 days) 100 NSD NDS - - 

10 2.5 mg/kg/day 
 (15 days) 100 100 99.97 - - 

10 5 mg/kg/day  
(15 days) 100 100 99.98 - - 

10 10 mg/kg/day  
(15 days) 100 100 99.97 - - 

10 20 mg/kg/day  
(15 days) 100 100 99.97 - - 

AmB-GCPQ 
nanoparticles 

BALB/c 
mice 

IV injection with 1 × 106 CFU 
of C. albicans. 

Tretament: 24 h p.i. 
Sacrifice: 10 days p.i. 

5 5 mg/kg/day  
(9 days) 100 - NSD 100 100 [15] 
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