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Abstract 

Neurological diseases such as neurodegeneration, pain, psychiatric disorders, stroke and 

brain cancers would greatly benefit from the use of highly potent and specific peptide 

pharmaceuticals.  Peptides are especially desirable because of their low inherent toxicity. 

The presence of the blood-brain barrier (BBB), their short duration of action and need for 

parenteral administration limits their clinical use. However, over the last decade there have 

been significant advances in delivering peptides to the central nervous system. Angiopep 

peptides developed by Angiochem, transferrin antibodies developed by Armagen and cell 

penetrating peptides have all shown promise in delivering therapeutic peptides across the 

BBB after intravenous administration. Non-invasive methods of delivering peptides to the 

brain include the use of chitosan amphiphilie nanoparticles for oral delivery and nose to brain 

strategies. The uptake of the chitosan amphiphile nanoparticles by the gastrointestinal 

epithelium is important for oral peptide delivery.  Finally protecting peptides from plasma 

degradation is integral to the success of most of these peptide delivery strategies.  
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1.0 Introduction  

Peptides, proteins and antibodies are of increasing interest to the pharmaceutical industry 

due to their high potency and selectivity (Serrano Lopez and Lalatsa 2013).  Peptides 

biodegrade into non-toxic metabolites, possess a minimal potential for drug-drug interactions 

and are less likely to cause an immunogenic reaction when compared to larger proteins (Van 

der Walle 2011).  These favourable properties have resulted in peptides having a relatively 

good probability of securing regulatory approval, when compared to low molecular weight 

drugs (Lax 2010).  

Today the most significant impediment to translating peptides into viable therapies is their 

overwhelming need for parenteral administration and their short duration of action. Peptides, 

despite their excellent pharmacological properties, are molecules with poor physical and 

metabolic stability and peptides have a limited ability to permeate biological membranes; the 

latter due to their hydrophilicity and comparatively high molecular weight (> 500 Da).  

However, despite these limitations, the decreasing number of low molecular weight drugs 

being approved for clinical use has resulted in an intensification in efforts to find suitable 

delivery strategies for peptides; delivery strategies that would enable peptides to be 

converted into medicines.  It is interesting to note that peptides now make up 10% of the 

world’s pharmaceutical sales revenues (Reichert 2010). 

Brain diseases would benefit from the use of highly potent and specific pharmaceuticals with 

low inherent toxicity and several peptides are being investigated as therapies for 

neurological diseases, such as  neurodegeneration, pain, psychiatric disorders, stroke and 

brain cancers (Strand 2003).  These neurological diseases are responsible for more than 

12% of total global deaths (Masserini 2013). However for viable peptide neurotherapies to 

emerge, peptides need to cross the blood brain barrier (BBB) to elicit their response. The 

BBB, evolutionary designed to maintain brain homeostasis and protect the brain from 
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circulating toxins, prevents over 95% of drugs from accessing the brain (Pardridge 2005). 

Furthermore, the short plasma half life of most peptides means that virtually no peptides 

show any real brain bioavailability, unless they are transported via specific carriers.  As such 

there are currently no neuropeptide drugs on the market.  In essence the delivery of peptides 

to the brain today would require the use of extremely invasive techniques such as 

intracerebroventricular infusion, convection-enhanced delivery (Zhou, Patel et al. 2013), 

intracerebral injections, the use of intracranial implants or temporary disruption of the BBB 

by using osmotic agents, ultrasound or by the activation of the bradykinin B2 receptors 

(Gabathuler 2010).    

Nanoparticle technologies are not widely used in medicine, despite the notable exceptions 

provided by medicines such as Ambisome, Doxil and Abraxane (Uchegbu and Siew 2013). 

The complexity of nanoparticles as multi-component three dimensional constructs requiring 

careful design and engineering, detailed analytical methods and reproducible scale-up 

manufacturing processes to achieve a consistent product with the intended physicochemical, 

biological and pharmacological properties along with the lack of regulatory standards in the 

examination of nanomedicines are hindering their translation into the clinic.  However 

preclinical studies abound in which nanoparticles have shown promise in meeting the 

challenge of peptide delivery (Lalatsa, Schatzlein et al. 2012). The reasons for the use of 

nanoparticles to deliver peptides across the blood brain barrier include their small size, 

which promotes blood residence and hence brain transport of the encapsulated drug 

(Lalatsa, Lee et al. 2012; Nance, Woodworth et al. 2012), particle shape as nanofibres have 

been shown to deliver peptides across the blood brain barrier (Mazza, Notman et al. 2013) 

and the fact that nanoparticle surfaces may be decorated with various transport ligands to 

exploit a number of brain endothelial transporters such as: the low density lipoprotein (LDL) 

receptor related protein 1 & 2, and the transferrin, leptin, insulin and diphtheria toxin 

receptors (Lalatsa, Schatzlein et al. 2012; Pardridge 2012; Pardridge and Boado 2012). This 
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review focuses on recent advances in peptide brain delivery with a particular emphasis on 

the use of nanoparticle technologies.  Peptides, for the purposes of this review, are defined 

as polyamino acid bioactive agents with less than 60 amino acids.   

2.0 Pathways for the transport of peptides across the blood brain 

barrier 

There are several potential routes by which peptides could cross the blood brain barrier, 

namely by diffusion, carrier mediated uptake and receptor mediated endocytosis (Figure 1).  

For diffusion, enhanced lipophilicity is required and for receptor mediated and carrier 

mediated uptake a transport specific ligand must be incorporated within the peptide 

medicine.  

Weak hydrogen bonding potential (less than 6 hydrogen bonds), lipophilicity (Log D > 2) and 

a small molecular size (< 500 Da) along with the absence of free rotatable bonds and a polar 

surface area of < 60 - 70 Å are favourable for permeation across the BBB via diffusion 

(Pauletti, Okumu et al. 1997; Sorensen, Steenberg et al. 1997; Kelder, Grootenhuis et al. 

1999; Lennernas and Lundgren 2004). Thus, passive diffusion of natural peptides is very 

limited unless the peptides possess an amphipathic structure (Teixido, Belda et al. 2005) or 

are rendered lipophilic by synthetic means (Batrakova, Vinogradov et al. 2005; Lalatsa, Lee 

et al. 2012).   

The brain capillary endothelial cells rely upon transport proteins to facilitate the entry of 

essential polar nutrients with polarised expression on either the luminal or abluminal 

membrane (Brasnjevic, Steinbusch et al. 2009). These transport systems are specific for 

certain small peptides of no less than 10 amino acids (peroxisome Targeting Signal Type 1-

5, PTS1 - 5), hexoses (glucose transporter 1, GLUT - 1), monocarboxylic acids (Proton-

linked monocarboxylate transporter, MCT - 1), amino acids, organic anions (organic anion-
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transporting polypeptide, OATP) and organic cations (organic cation transporter novel 

subfamily, OCTN), neurotransmitters and nucleosides. Utilisation of these carrier systems 

expressed at the BBB is a useful strategy for therapeutic peptide delivery to the brain; 

however there is a need to attach specific chemical groups to the peptides in order to render 

them substrates for these endogenous carriers; e.g. the glycosylation of the peptide to 

enable transport through the GLUT - 1 receptors (Bilsky, Egleton et al. 2000; Egleton, 

Mitchell et al. 2000).  These carrier mediated strategies of peptide transport have been 

recently reviewed (Brasnjevic, Steinbusch et al. 2009; Lalatsa 2011; Lalatsa, Schatzlein et 

al. 2012) and the carrier system for glutathione (GSH), which is present at the luminal 

membrane is the only carrier mediated  system that has been used for the delivery of 

nanoparticles (Cacciatore, Baldassarre et al. 2012).  

Endocytosis is the main route of cellular entry for large molecular weight compounds and 

several peptides have been transported across the BBB via receptor mediated transcytosis 

(Brasnjevic, Steinbusch et al. 2009). Binding of the ligand to its specific membrane receptor 

on the cell surface induces a modification of the receptor protein and triggers the formation 

of invaginations; these invaginations may be clathrin coated and in turn trigger the formation 

of endocytotic vesicles (Broadwell, Balin et al. 1988). Once within the cell, the ligand 

containing vesicles can be either exocytosed leading to transport across the BBB, fused with 

a lysosome leading to intracellular degradation (Broadwell, Balin et al. 1988), or can bind to 

a second intracellular receptor as in the case of the transfer of iron from transferrin to 

intracellular ferritin (Willingham, Hanover et al. 1984).  Once there is dissociation of the 

ligand from the receptor, the receptor is recycled to the cell surface to participate in further 

transport events (Gabathuler 2010).  Another minor intracellular pathway may involve 

trafficking of endosomes, containing intact receptor ligand, to the inner saccule of the Golgi 

complex, where the enzymes can cause dissociation of the ligand from the receptor, and the 

separated ligand may then be exported in vesicles destined for lysosomal degradation 



8 

 

(Brasnjevic, Steinbusch et al. 2009). Exocytosis and the avoidance of the lysosomal pathway 

may be a special feature of the BBB compared to other types of cells and tissues, as 

transcytosis of a number of macromolecules is a homeostatic requirement (Abbott, 

Patabendige et al. 2010). Receptor-mediated endocytosis across the BBB in vivo has been 

shown for a few peptides such as insulin (Frank, Pardridge et al. 1986).  Table 1 

summarises available receptors for transport of molecules across the BBB. 
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Figure 1: Schematic diagram of the neurovascular unit forming the BBB. (Right): Routes for transport across the BBB. Modified with permission 

from (Abbott, Patabendige et al. 2010).  
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Table 1: Receptors available for transport of molecules across the BBB 

Receptor Ligand Direction Reference 

Insulin  Insulin Blood to 

Brain  

(van Houten, Posner et 

al. 1979; Frank and 

Pardridge 1981) 

Insulin like growth 

factor 

Insulin like growth factor I 

and II 

Blood to 

Brain  

(Frank, Pardridge et al. 

1986; Duffy, Pardridge et 

al. 1988) 

Transferrin Transferrin Blood to 

Brain  

(Jefferies, Brandon et al. 

1984; Fishman, Rubin et 

al. 1987; Visser, 

Stevanovic et al. 2004) 

Melanotransferrin Melanotransferrin Blood to 

Brain  

(Demeule, Poirier et al. 

2002) 

Leptin Leptin Blood to 

Brain  

(Banks and Farrell 2003) 

Tumour necrosis 

factor alpha 

Tumour necrosis factor 

alpha 

Blood to 

Brain  

(Pan and Kastin 2002) 

Epidermal growth 

factor 

Epidermal growth factor Blood to 

Brain  

(Pan and Kastin 1999) 

Immunoglobulin G Immunoglobulin G Blood to 

Brain  

(Zlokovic, Skundric et al. 

1990) 
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Receptor Ligand Direction Reference 

Interleukin Interleukin 1a, Interleukin 

1b, Interleukin 6 

Blood to 

Brain  

(Banks 2001; Banks, 

Farr et al. 2001) 

Apolipoprotein E  Lipoproteins and 

Apolipoprotein E bound 

molecules 

Blood to 

Brain  

(Herz and Marschang 

2003) 

LDL – receptor - 

related protein 1  

Lipoproteins, Amyloid - β, 

Lactoferrin 

Blood to 

Brain, Brain 

to Blood 

(Herz and Marschang 

2003) 

LDL – receptor - 

related protein 2  

Apolipoprotein E, 

Melanotransferin 

Blood to 

Brain 

(Gaillard, Brink et al. 

2005) 

Diphtheria toxin 

receptor 

Diphtheria toxin, CRM 197 

(a non - toxic mutant of the 

Diphtheria toxin) 

Blood to 

Brain 

(Gaillard, Brink et al. 

2005) 

 

The conjugation of peptide loaded nanostructures to the transport ligands shown in Table 1 

is a viable strategy for the delivery of peptides to the brain (Brasnjevic, Steinbusch et al. 

2009). However when choosing a transport ligand, the ligand should have certain properties: 

a) it should have sufficiently high affinity for the receptor and yet still enable the release of its 

cargo in the brain parenchyma, b) the endogenous ligand should not compete with the 

delivery ligand for receptor occupancy at the BBB, thus a careful consideration of the relative 

binding affinities and the physiological levels of the endogenous ligand needs to be made 

[transferrin is not a suitable ligand as its plasma concentration is >1000 fold higher than the 



12 

 

transferrin – transferrin receptor Kd (5.6 nM) (Visser, Voorwinden et al. 2004), c) the brain 

uptake of the ligand conjugate should be high enough to allow for a therapeutic dose to 

reach the brain. 

3.0 Parenteral Administration 

Due to the delivery challenges highlighted above, most experimental neuropeptides have 

been administered by parenteral routes, i.e. the intravenous route and in some preclinical 

studies via the intraperitoneal route.  Once in the blood these neuropeptides are required to 

cross the BBB.  The brain is 1% of the rodent mass and hence delivery of 1% of the injected 

dose to the brain at the peak time point, indicates a complete negation of the blood brain 

barrier in experimental studies.  However such levels are rarely achieved and morphine for 

example, a very effective CNS drug only achieves 0.02% of the dose reaching the rodent 

brain 30 minutes after subcutaneous injection  (Banks and Kastin 1994).  Hence levels of 

brain delivery in excess of 0.1% of the administered dose, represent a real crossing of the 

blood brain barrier.   A number of methods have been used to achieve brain delivery that 

can be summarised according to their reliance on endogenous transporters and the 

biological properties of the nanoparticles. 

3.1 Carrier Transport Mediated Uptake 

The glutathione carrier has been employed in delivering peptides across the BBB in the form 

of glutathione poly(ethylene glycol) (GSH-PEG) liposomes.  When these liposomes were 

loaded  with a synthetic opioid peptide (DAMGO, H –Tyr – d – Ala – Gly – MePhe – Gly - ol) 

and injected intravenously they prolonged the brain half-life of DAMGO to 6.9 ± 2.3 h, 

increasing he half life by  4.5 fold when compared to the administration of the free drug 

(Lindqvist, Rip et al. 2013).  It was found that free DAMGO entered the brain to a limited 

extent and the use of the GSH - PEG liposomes doubled the brain exposure (Lindqvist, Rip 

et al. 2013).  
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3.2 Receptor Mediated Uptake 

3.2.1 Low-density lipoprotein receptor related protein 1 (LRP1)  

A new family of 19 amino acid peptides derived from the kunitz domain of protease inhibitor 

aprotinin, and known as the Angiopeps, has been shown to facilitate transfer across the BBB 

by utilising low-density lipoprotein receptor related protein 1 (LRP - 1)  (Demeule, Currie et 

al. 2008; Demeule, Regina et al. 2008). This technology has been used to deliver both 

peptides and larger molecules such as 150 kDa antibodies (Gabathuler 2010). Angiopep – 

2’s  (TFFYGGSRGKRNNFKTEEY) positive charge contributes to its binding to the brain 

endothelial cell surface and after its interaction with LRP - 1, the Angiopep - 2 – LRP - 1 

complex is internalised by vesicle formation. LRP-1 is involved in the Angiopeps’ mechanism 

of action, and this distinguishes the Angiopeps from other positively charged peptide 

transporters such as the cell penetrating peptides (CPPs):  transcription activating factor 

(TAT), penetratin and Syn - B; these CPPs utilise adsorptive-mediated transcytosis (Herve, 

Ghinea et al. 2008; Bertrand, Currie et al. 2010). ANG2002 is a conjugate of Angiopep - 2 

peptide and neurotensin (a 13 amino acid neuropeptide). The transport of ANG2002 across 

the BBB is higher than that of unconjugated neurotensin and the conjugated neurotensin in 

ANG2002 retains its affinity for the neurotensin receptor (Demeule, Regina et al. 2010). 

Using a similar strategy, ANG2006 has been introduced and this is a conjugate of Angiopep 

-2 with Exendin - 4 (glucagon - like peptide - 1 agonist); however very limited information is 

available pertaining to this peptide conjugate (Nikolich 2009). The Angiopep technology is 

now at a clinical stage and ANG1005 (an Angiopep - 2 – paclitaxel conjugate) (Regina, 

Demeule et al. 2008; Thomas, Taskar et al. 2009; Gabathuler 2010) is currently being 

clinically evaluated for the delivery of paclitaxel to brain tumours. 

3.2.2 Low density lipoprotein receptor 

Vect-Horus S.A.S. (Marseille, France) recently identified a series of non-competitive peptide-
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based ligands for the human low density lipoprotein receptor (LDLR), e.g. VH0411, a 15 

amino acid peptide [Ac – Asp – Ser – Gly – Leu - Cys (S - bridged) – Met – Pro – Arg – Leu -

Arg – Gly – Cys (S - bridged) – Asp – Pro – Arg - NH2] (Marcor 2009). This lead compound 

led to the design of a new peptide-based vector: VH0445 (Ac - [cMet – Pro – Arg – Leu – 

Arg – Gly - Cys]c - NH2), a cyclic 8 amino acid peptide containing natural and non-natural 

amino acids (Malcor, Payrot et al. 2012). In vivo preclinical proof of principal data has been 

established in an acute pain mouse model by conjugation of VH0445 to an opioid peptide 

and an assessment of antinociceptive activity; a sharp improvement in antinociceptive 

activity was observed (Vlieghe and Khrestchatisky 2010; Vlieghe, Lisowski et al. 2010; 

Malcor, Payrot et al. 2012).  

3.2.3 Transferrin receptor 

ArmaGen Technologies have developed brain delivery technology (fusion proteins) based on 

genetic engineering of recombinant fusion proteins wherein the bioactive protein is fused to 

a molecular “Trojan horse” transporter protein. Fusion proteins have dual functions as they 

cross the BBB via one of the endogenous BBB receptor-mediated transport systems (e.g. 

the transferrin receptor) and bind neuronal or glial receptors in the brain parenchyma 

(Pardridge and Boado 2007; Pardridge and Boado 2008; Pardridge and Boado 2009; 

Pardridge and Boado 2010).  

OX26, a rat transferrin receptor monoclonal antibody, has been used to successfully target 

polymersomes and nanoparticles across the BBB. The optimal number of OX26 molecules 

conjugated to poly(ethylene glycol) - poly(epsilon - caprolactone) (PEG - PCL) 

polymersomes was found to be 34 (OX2634 - PO) and this system resulted in the delivery of  

0.14 - 0.16% of the intravenously injected dose to the brain (Pang, Lu et al. 2008). NC-1900 

(a vasopressin fragment with neuroprotective properties) was encapsulated into OX2634 - PO 

and the NC -1900 - OX2634 - PO system improved the scopolamine-induced learning and 
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reduced memory impairment in a rat water maze task after intravenous administration 

(Pang, Lu et al. 2008). Conjugation of OX26 to poly(ethylene glycol) chitosan nanoparticles 

also resulted in enhanced brain uptake after intravenous administration of an anticaspase 

peptide, Z-DEVD-FMK (Aktas, Yemisci et al. 2005).  

A peptide motif obtained from phage display experiments and with a high affinity for 

transferrin receptors (CGHKAKGPRK, denoted as B6) has also shown potential in enabling 

the permeation of poly(ethylene glycol) - poly(lactic acid) block copolymer (PEG - PLA) 

nanoparticles to the brain (Liu, Gao et al. 2013). B6 nanoparticles exhibited significantly 

enhanced cellular accumulation compared to plain PEG - PLA nanoparticles and cellular 

uptake was achieved via lipid raft-mediated and clathrin - mediated endocytosis. B6 PEG -

PLA nanoparticles were loaded with an octapeptide (NAPVSIPQ) derived from an activity 

dependent neuroprotective protein and which is being trialled clinically in Alzheimer’s 

Disease patients (Gozes, Divinski et al. 2008). Administration of B6 nanoparticles 

encapsulating the neuroprotective peptide NAPVSIPQ to Alzheimer’s disease mouse models 

resulted in excellent amelioration of learning impairments, cholinergic disruption, and a 

reduced loss of hippocampal neurons (Liu, Gao et al. 2013).  

A comparative study of nanoparticles bearing targeting ligands and their brain delivery data 

has been conducted with intravenously injected tritiated liposomes (van Rooy, Mastrobattista 

et al. 2011). Five targeting ligands were compared, namely: a) holotransferrin (a 

transmembrane glycoprotein, consisting of two linked 90 kDa subunits, that each can bind a 

transferrin molecule) (Mishra, Mahor et al. 2006; Ulbrich, Hekmatara et al. 2009), b) RI7217, 

an anti-mouse transferrin receptor monoclonal antibody (Ulbrich, Hekmatara et al. 2009), c) 

COG133, an apolipoprotein E mimetic peptide from amino acids 133 – 149 

(LRVRLASHLRKLRKRLL), e) Angiopep - 2 (Li, Sempowski et al. 2006) and f) CRM 197 (a 

non-toxic mutant of the diphtheria toxin) (Gaillard, Brink et al. 2005; Gaillard and de Boer 
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2006). Almost half of the injected dose of all the liposomes was recovered in the liver and 

spleen 12h after dosing (van Rooy, Mastrobattista et al. 2011). The COG133 peptide was 

unable to target the liposomes to the BBB. Only the anti-mouse transferrin antibody, RI7217, 

was able to improve the delivery of the liposomes to the brain. van Rooy’s data is interesting 

as in vivo brain targeting of albumin nanoparticle conjugated RI7217 had been demonstrated 

previously (Ulbrich, Hekmatara et al. 2009), but van Rooy’s study was the first report to 

demonstrate brain delivery with liposome conjugated RI7217 to the brain (0.18% of the 

injected dose was found in the brain 12 h after dosing) (van Rooy, Mastrobattista et al. 

2011).  

3.2.4 Leptin receptor 

Leptin, a 16 kDa protein produced in white peripheral adipocytes, binds to the leptin receptor 

in the choroid plexus and on the brain capillary endothelial cells, where it is taken up into the 

brain parenchyma (Banks 2001). The leptin receptor may be saturated in obese patients that 

have elevated levels of leptin (Kd of the receptor is similar to normal serum levels) 

(Burgueraa and Couceb 2001). A leptin12 - 32 fragment, g21, conjugated on the surface of 

poly(lactic - co - glycolic) acid (PLGA) nanoparticles has been shown to cross the BBB on 

intravenous injection, with 0.16% of the injected dose of nanoparticles reaching the brain 

after 2h  (Tosi, Badiali et al. 2012). No anorectic effects were seen in rats after the 

intravenous administration of 0.03 µg of the g21 transport ligand conjugated to nanoparticles 

(Tosi, Badiali et al. 2012). 

3.3 Cell Penetrating Peptides 

Cell-Penetrating Peptides (CPPs) originate from various families and are heterogeneous in 

size (10 - 27 amino acid residues) and sequence, but they all possess multiple positive 

charges at physiological pH. Some of them share common features such as an amphipathic 

sequence and the ability to interact with a lipid membrane (Morris, Deshayes et al. 2008; 
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Eiriksdottira, Konateb et al. 2010). Examples include the transcription-activating factor (TAT), 

penetratin and the SynB vectors (family of vectors derived from the antimicrobial peptide 

protegrin 1). A number of other CPPs are the product of engineering efforts, e.g. the 

homoarginine vectors, the model amphipathic peptide, transportan and other chimeric 

peptides such as signal-based peptide (SBP) and the fusion sequence-based peptide (FBP) 

(Herve, Ghinea et al. 2008).  

The TAT peptide is a non-amphipathic arginine-rich CPP derived from the TAT protein 

originating from the human immunodeficiency virus type 1 (HIV - 1), a multifunctional viral 

protein named originally for its intracellular role as a transcriptional activator of viral gene 

expression (Subrizi, Tuominenb et al. 2013). The TAT protein is actively released from 

unruptured, HIV -1 infected cells and is detectable in ex vivo culture supernatants and in the 

serum of HIV - 1 infected individuals (Subrizi, Tuominenb et al. 2013). This exogenous TAT 

is able to enter both uninfected and infected cells, however the precise molecular 

mechanism by which TAT enters the cells is still unclear. TAT binds to cell-surface heparin 

sulphate and the binding of the full - length TAT protein to both heparin sulphate 

proteoglycans and the low - density lipoprotein receptor family has been confirmed (Rusnati, 

Coltrini et al. 1997; Liu, Jones et al. 2000). The basic domain of TAT extending from 

residues 49 to 58 (RKKRRQRRR) includes a highly cationic cluster composed of 6 arginine 

and 2 lysine residues that play an important role in the translocation of the protein across 

biological membranes; translocation is aided by the strong cell adherence of this motif and 

cell binding is independent of cell receptors and of temperature (Subrizi, Tuominenb et al. 

2013). The guanidinium head group of arginine is required for peptide uptake and is more 

potent than other cationic groups, such as lysine, histidine or ornithine (Mitchell, Steinman et 

al. 2000). The mechanism of cellular penetration, which is often compared to a Trojan horse 

approach, involves two distinct steps: endocytic uptake followed by endosomal escape 

(Erazo-Oliveras, Muthukrishnan et al. 2012).  
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Memapsin - 2 (β-secretase or BACE) inhibitors are particularly attractive candidates for 

Amyloid β reduction therapy since β - secretase cleavage of amyloid precursor protein 

represents the initial step in the biogenesis of Amyloid β. It is hypothesised that the inhibition 

of this step would lead to the elimination of all steps in the pathogenesis of Alzheimer’s 

disease, but memapsin - 2 inhibitors are not able to permeate the BBB. Conjugation of a 12 

residue TAT fragment but preferably a 9-residue poly – D - Arginine to a peptide analogue 

inhibitor of memapsin (Wender, Mitchell et al. 2000) resulted in a 64% reduction of Amyloid 

β levels after a single intraperitoneal injection (Chang, Koelsch et al. 2004). Multiple 

injections to simulate a longer half life of the inhibitor produced maximal inhibition of about 

90% in the plasma and about 70% in the brain (Chang, Koelsch et al. 2004). 

Nanoparticulate drug delivery system possesses distinct advantages for brain drug delivery. 

However, their permeation across the BBB is not always therapeutically adequate. Cell-

penetrating peptides (CPPs), short peptides that facilitate cellular uptake of various 

molecular cargoes, would be appropriate candidates for facilitating brain delivery of 

nanoparticles encapsulating peptides. Examples of the use of CPPs to deliver nanoparticles 

across the BBB are given below 

The SynB peptides (RGGRLSYSRRRFSTSTGR) are a family of cell-penetrating peptides 

that show charge - mediated BBB selectivity, with uptake proceeding via a caveolae-

independent pathway (Drin, Cottin et al. 2003). The SynB peptide family is derived from the 

natural antimicrobial peptide protegrin 1 (PG - 1) originally isolated from porcine leukocytes. 

PG -1 is an 18 amino acid long peptide with an antiparallel beta-sheet structure stabilized by 

two disulfide bridges. It interacts with, and forms pores in the lipid matrix of bacterial 

membranes. Various linear analogues of PG -1 that lack cysteine residues have been 

designed and these are devoid of the membrane-disrupting activity of PG -1 (Harwig, Waring 

et al. 1996; Mangoni, Aumelas et al. 1996; Chen, Falla et al. 2000).  
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SynB peptides have been used extensively as cationic cell penetrating peptides for low 

molecular weight actives (Adenot, Merida et al. 2007) and for peptides such as dalargin 

(Rousselle, Clair et al. 2003); with transport observed across cell membranes in vitro and 

across the BBB in vivo when administered intravenously.  There have also been recent 

reports of the use of SynB peptides as brain transport systems for nanoparticles.  For 

example, intravenously injected SynB pegylated gelatin siloxane nanoparticle (SynB – PEG - 

GS) levels in the brain were significantly higher and levels in the liver significantly lower 

compared to plain nanoparticles (Tian, Wei et al. 2012). 

Penetratin, a CPP with a relatively low content of basic amino acids, has been used to 

functionalize poly(ethylene glycol)-block-poly(lactic acid) (PEG - PLA) nanoparticles and 

penetratin enhanced the cellular accumulation (Xia, Gao et al. 2012). In vivo 

pharmacokinetic and biodistribution studies showed that penetratin nanoparticles exhibited 

significantly enhanced brain uptake and reduced accumulation in the non-target tissues 

compared with low molecular weight protamine (a CPP with high arginine content) 

functionalized nanoparticles (Xia, Gao et al. 2012).  

A thermally responsive elastin like polypeptide (ELP) covalently attached to a cell-

penetrating peptide and a therapeutic inhibitory peptide (inhibits the oncogenic c - Myc 

protein) has been shown to be able to enhance delivery to rat brain tumours and mediate 

uptake across the tumour cells’ plasma membranes on intravenous administration (Table 1) 

(Bidwell, Perkins et al. 2013). Specifically, when the lead CPP – ELP - fused c - Myc inhibitor 

was combined with focused hyperthermia of the tumours, an 8 fold increase in tumour 

polypeptide levels was observed.  Additionally an 80% reduction in tumour volume was 

recorded along with a delayed onset of tumour-associated neurological deficits, a doubling of 

the median survival time and complete tumour regression in 80% of the animals (Bidwell, 

Perkins et al. 2013).  
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The ability of CPPs to penetrate many cell types in vitro, as well as in vivo greatly restricts 

their application as pharmaceutical tools and hence methods of targeting CPPs are being 

investigated. Such strategies may exploit specific cell features, such as extracellular 

receptors or enzymes, or use of small or large cell-binding ligands (e.g. vitamins, growth 

factors or antibodies) which, when incorporated into CPPs, may render these cationic 

peptides capable of distinguishing between non-target and target cells (Herve, Ghinea et al. 

2008). The stability of peptide vectors is an important factor regarding their use for in vivo 

delivery, as the vector must not be metabolically cleaved until it delivers its cargo to the 

appropriate target. In studies, transportan (GWTLNSAGYLLGKINLKALAALAKKIL amide), its 

analogue transportan 10 (TP10, AGYLLGKINLKALAALAKKIL amide) and TAT (47-57) 

(YGRKKRRQRRR) were shown to be more stable than penetratin 

(RQIKIWFQNRRMKWKK) for example (Herve, Ghinea et al. 2008). The use of D-amino 

acids is one way to enhance the stability of these transport peptides. However, it is critical 

that when the vector reaches its target it should subsequently degrade or release its cargo in 

order to elicit its pharmacological response. Toxicity and immunogenicity are also important 

issues to be considered when translating these brain delivery strategies to the clinic. The full 

- length TAT protein produced lower levels of neurotoxicity than the shorter peptides TAT (31 

- 71) and TAT (31 - 61) in that order (Herve, Ghinea et al. 2008). Both the cysteine - rich 

domain extending from residues 32 to 47 and the basic domain (positions 48 – 57) seem to 

be essential for neurotoxicity to develop (Herve, Ghinea et al. 2008). The assessment of the 

toxicity of unmodified CPPs using a lactate dehydrogenase (LDH)-leakage, DiBAC4(3) - 

(membrane depolarization), and hemolytic assay showed rather severe toxic effects of 

transportan 10 as representative of the amphipathic CPPs, but it showed only mild effects of 

the arginine - rich peptides TAT and penetratin (Tünnemann and Cardoso 2009). However, 

the toxicological properties can be dramatically changed on attachment of low-molecular-

weight cargoes, for example, labels or other peptides (Tünnemann and Cardoso 2009). 
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Finally, as CPPs are derived from non-human proteins and since, in the case of 

administration to humans, these peptides have the potential to induce an immune response; 

one must consider that this risk of an immune response  may increase considerably if these 

vectors are conjugated to particularly large peptide molecules.  

3.4 Passive Delivery 

3.4.1 Polymeric Nanoparticles: 

Peptide brain delivery may also be achieved by using a polymeric or lipid nanocarrier loaded 

with a hydrophilic peptide. Various examples of such strategies have been reported and the 

majority of these approaches are exemplified with analgesic peptides (Table 2) (Aliautdin, 

Petrov et al. 1996; Lalatsa, Garrett et al. 2012; Lalatsa, Lee et al. 2012). Nanomerics Ltd (St 

Albans, U. K.), for example, is exploiting technology based on an engineered amphiphilic 

chitosan polymer (Quaternary ammonium palmitoyl glycol chitosan - GCPQ) tailored to form 

nanoscale polymeric aggregates that are able to package or specifically interact with 

peptides. Preclinically the technology has been successful in delivering leucine5 - enkephalin 

(an endogenous opioid peptide with a plasma half-life of 3 minutes) across the BBB, with 

anti-nociceptive activity demonstrated in a rodent acute pain animal model after both 

intravenous (Lalatsa, Garrett et al. 2012) and oral administration (Lalatsa, Garrett et al. 

2012) (Table 2). The anti - nociceptive response in these studies lasted for up to 8 hours.  

The ability to elicit a short lived pharmacological effect (30 minutes and 90 minutes) after the 

administration of dalargin (a mu opioid receptor agonist peptide) loaded poly(butyl 

cyanoacrylate) nanoparticles coated with either  polysorbate 80 or poly(ethylene glycol) 

(molecular weight = 20 kDa) via the intravenous and oral route respectively has also been 

shown (Schroeder, Sommerfeld et al. 1998; Das and Lin 2005). A polysorbate 80 coating of 

the poly(butyl cyanoacrylate) nanoparticles was critical for dalargin entry into the brain as 

this coating enables the particles to adsorb Apolipoprotein E from the blood plasma onto the 
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nanoparticle surface and it is this Apolipoprotein E coating that is believed to facilitate 

transport across the BBB via the LDL – receptor (Kreuter, Shamenkov et al. 2002).   

Vesicles prepared from bolaamphiphiles containing two hydrophilic head groups at each end 

of a hydrophobic lipidic chain have been used to enhance permeation of small hydrophilic 

analgesic peptides across the BBB and are characterised by high chemical and physical 

stability and the ability to be destabilised by esterases leading to changes in the head 

groups; such head group changes disrupt the vesicular structure and release the 

encapsulated peptide in tissues with high acetylcholinesterase activity such as the brain 

(Popov, Abu Hammad et al. 2013). The presence of chitosan pendant groups appears to 

enhance antinociception elicited with these bolaamphiphilic vesicles (Table 2).  
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Table 2: Peptide delivery across the BBB  
Strategy Peptide Develop-

mental Stage 

- Route 

Therapeutic advantage References 

Passive Delivery 

Polymeric Nanoparticles 

Quaternary 

ammonium 

palmitoyl glycol 

chitosan (GCPQ) 

nanoparticles 

Leucine
5 
-

enkephalin, 

Tyrosyl
1
 

Palmitate-

Leucine
5 
-

enkephalin 

(Lipidised 

prodrug of 

Leucine
5 
-

enkephalin) 

Preclinical – 

Intravenous, 

Oral 

A sustained anti-

nociceptive effect on 

intravenous and oral 

administration and 

enhanced levels of 

leucine
5 
- enkephalin are 

detected in the brain.   

Leucine
5 
- enkephalin 

alone is inactive. 

(Lalatsa, 

Garrett et al. 

2012; 

Lalatsa, 

Garrett et al. 

2012) 

Poly(butyl 
cyanoacrylate ) 
nanoparticles 
coated with 
polysorbate - 80  

Dalargin 
 

Preclinical - 

Intravenous 

Enhanced antinociception. (Schroeder, 

Sommerfeld 

et al. 1998) 

 

 

Bolaamphiphiles 

Bolaamphiphile 

vesicles 

Leucine
5 
-

enkephalin 

Preclinical - 

Intravenous 

Vesicles produced using 

GLH -19 and GLH - 20 

(Popov, Abu 

Hammad et 
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Strategy Peptide Develop-

mental Stage 

- Route 

Therapeutic advantage References 

(prepared from 

GLH - 19, GLH - 

20, or a mixture of 

GLH - 19 and GLH 

- 20, with and 

without chitosan 

pendant groups) 

bolalipids loaded leucine
5 
-

enkephalin produced 

enhanced antinociceptive 

effects upon intravenous 

administration, particularly 

when the bolaamphiphiles 

loaded with leucine
5 
-

enkephalin contained 

chitosan pendant groups.  

al. 2013) 

Peptide Amphiphiles 

Nanofibers O - palmitoyl 

tyrosinate 

ester
1
‐dalargin 

Preclinical - 

Intravenous 

Prolonged antinociceptive 

response. Dalargin alone 

is inactive. 

(Mazza, 

Notman et al. 

2013)  

Amphiphilic 

peptide core - 

shell 

nanoparticles 

Amphiphilic 

peptide 

(CGGGRRRRR

RTAT) 

Preclinical - 

Intravenous 

Enhanced antimicrobial 

activity in a 

Staphylococcus aureus in 

vivo meningitis model in 

rabbits (two intravenous 

doses) 

(Liu, Xu et al. 

2009) 

Actively targeted nanoparticles 

Glutathione 

Poly(ethylene 

DAMGO (H –Tyr 

– d – Ala – Gly – 

Preclinical -

Intravenous 

Enhancement of plasma 

half life and doubling of 

(Lindqvist, 

Rip et al. 
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Strategy Peptide Develop-

mental Stage 

- Route 

Therapeutic advantage References 

glycol) liposomes 

(GSH - PEG 

liposomes) 

MePhe – Gly - 

ol) 

brain exposure of DAMGO 

when administered as a 

GSH - PEG liposomal 

formulation 

2013) 

OX26 – 

poly(ethylene 

glycol) – block - 

poly (epsilon 

caprolactone)  

(PEG - PCL) 

polymersomes 

NC1900 (a 

vasopressin 

fragment) 

Preclinical - 

Intravenous 

Improved the scopolamine 

- induced learning and 

memory impairments in a 

water maze task after 

intravenous administration 

in rats 

(Pang, Lu et 

al. 2008) 

OX26 

poly(ethylene 

glycol) chitosan 

nanoparticles  

Z-DEVD-FMK (a 

specific caspase 

inhibitor) 

Preclinical - 

Intravenous 

Enhanced brain 

translocation after 

intravenous administration 

in Swiss albino mice 

(Aktas, 

Yemisci et al. 

2005) 

Lactoferrin PEG – 

PCL 

nanoparticles 

NAPVSIPQ  Preclinical -

Intranasal 

Administration lactoferrin 

PEG - PCL nanoparticles 

loaded with NAPVSIPQ 

improved behaviour in a 

Morris water maze 

experiment when 

compared to NAPVSIPQ 

PEG - PCL nanoparticles 

(Liu, Jiang et 

al. 2013) 
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Strategy Peptide Develop-

mental Stage 

- Route 

Therapeutic advantage References 

alone. 

Angiopep - 2  

Neurotensin 

(ANG2002)  

Neurotensin Preclinical - 

Intravenous 

Enhancement of the foot 

licking latency in a mouse 

hot plate assay, reduced 

licking responses in 

formalin - induced pain 

model and reduced 

mechanical allodynia in 

both  a Brennan post-

operative pain model and 

a Chung model for 

neuropathic pain 

(Demeule, 

Regina et al. 

2010) 

VH0445 peptide 

conjugates 

Opioid peptide Preclinical - 

Intravenous 

Enhancement of 

antinociceptive activity in 

mice 

(Vlieghe and 

Khrestchatis

ky 2010; 

Vlieghe, 

Lisowski et 

al. 2010; 

Malcor, 

Payrot et al. 

2012) 

Cell Penetrating Peptide Conjugates   

Cell penetrating c - Myc Preclinical - Combining CPP - ELP (Bidwell, 
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Strategy Peptide Develop-

mental Stage 

- Route 

Therapeutic advantage References 

peptide – elastin 

like polypeptide 

fused to c - Myc 

inhibitory peptide 

inhibitory 

peptide  

Intravenous fused c - Myc inhibitor with 

focused hyperthermia of 

the tumours, resulted in an 

80% reduction in tumour 

volume, delayed onset of 

tumour-associated 

neurological deficits, and a 

doubling of the median 

survival time.  There was 

also complete tumour 

regression in 80% of 

animals. 

Perkins et al. 

2013) 

TAT- NBD peptide NBD (anti – NF-

κB peptide) 

Preclinical -

Intanasal 

Delivery of 1.4 mg kg 
-1

 

TAT - NBD, markedly 

attenuates NF-κB 

signalling, microglia 

activation, and brain 

damage triggered by 

hypoxic ischemia  

(Yang, Sun 

et al. 2013) 
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Strategy Peptide Develop-

mental Stage 

- Route 

Therapeutic advantage References 

9 - residue poly –

D - Arginine – 

Memapsin - 2 

Memapsin - 2 (β 

- secretase 

inhibitor) 

Preclinical -

Intraperitoneal 

Multiple injections 

produced a maximal 

reduction in Amyloid β 

levels (a reduction of 90% 

in the plasma and 70% in 

the brain) in transgenic 

Tg2576 mice 

(Chang, 

Koelsch et 

al. 2004) 

SynB - Dalargin Dalargin Preclinical – 

Intravenous  

Enhancement of 

antinociception of Dalargin 

in a hot-plate murine 

model 

(Rousselle, 

Clair et al. 

2003) 

Key; c-Myc: oncogenic protein expressed in 78% of human glioblastoma multiforme tumours, GLH-
19: Acetyl choline head groups attached via the oxygen atoms to vernonia oil derivatives, GLH-20: 
Acetyl choline head groups attached via the nitrogen atoms to vernonia oil derivatives, NAPVSIPQ: 
Asparagine-Alanine-Proline-Valine-Serine-Isoleucine-Proline-Glutamine, NC 1900: Vasopressin 
fragment, NGF: Nerve growth factor, OX26:  anti-transferrin receptor antibody IgG2a, TAT peptide: 
Tyrsoine-Glycine-Arginine-Lysine-Lysine-Lysine-Arginine-Arginine-Glutamine-Arginine-Arginine-
Arginine, TAT-NBD: 22 amino-acid CPP containing the NF - κB Essential Modulator (NEMO)/IKKγ - 
Binding Domain coupled to the transduction sequence of the HIV - TAT protein, VH0445: Ac -[cMet -
Pro-Arg-Leu-Arg-Gly-Cys]c-NH2), a cyclic 8-mer peptide with enhanced permeation across the blood-
spinal cord barrier.  

 

3.4.2 Peptide amphiphiles 

Peptides can molecularly arrange into a variety of structures mediated by hydrogen bonding, 

electrostatic interactions particularly between charged amino acids, hydrophobic 

associations and π – π stacking (Ulijn and Smith 2008). Amphipathic peptides possess both 

hydrophobic and hydrophilic parts and they can be natural peptides (as with penetratin for 

example), engineered by inclusion of hydrophobic and hydrophilic amino acid mini blocks or 
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by point lipidisation of specific amino acid residues, e.g. by conjugation for example of a 

hydrophobic alkyl or acyl chain. The distinct separation between the hydrophilic and 

hydrophobic parts of the molecule drives self-assembly in aqueous environments and the 

net result is the formation of spherical (Zhang, Marini et al. 2002), membrane (Zhang, 

Holmes et al. 1993), hydrogel (Zhang, Marini et al. 2002) or fibrous aggregates (Zhang, 

Marini et al. 2002; Mazza, Notman et al. 2013). Peptide micellar aggregates and nanofibres 

have been successfully used to deliver peptides across the BBB.  

Peptide nanofibres are typically prepared by probe sonication of an aqueous dispersion of 

the peptide amphiphile. Peptide nanofibres consist of a central hydrophobic core surrounded 

by a β - sheet of peptides (Paramonov, Jun et al. 2006) with the peptide β - sheet wrapped 

tightly around the hydrocarbon core (Mazza, Notman et al. 2013) and the cylindrical 

assembly primarily driven by the β - sheet. The presence of a β - sheet forming peptide 

sequence, a charged amino acid and an alkyl chain linked to one end of the peptide have 

been proposed as critical parameters important for engineering peptide nanofibres (Cui, 

Webber et al. 2010). Our group was the first to show that therapeutic peptides could be 

made to assemble into peptide nanofibres, with the report that the acyl derivatised 

therapeutic peptide, namely O - palmitoyl tyrosinate ester1 ‐ dalargin self assembles into 

nanofibres (Mazza, Notman et al. 2013).  These nanofibres cross the BBB and produce a 

pharmacological response on intravenous administration; whereas the peptide dalargin 

alone is inactive via this route (Mazza, Notman et al. 2013).  Furthermore peptide nanofibres 

in which the peptide does not contain a charged amino acid have been produced from O-

palmitoyl tyrosinate ester1 ‐ leucine5 ‐ enkephalin and this molecule also is active via the 

intravenous route, where again the peptide alone is inactive.  These peptide nanofibres act 

as a self assembled prodrug, releasing the drug itself from its ester linkage in vivo ((Lalatsa, 

Schatzlein et al. 2013; Mazza, Notman et al. 2013). A passive mechanism of transport for 

the peptide nanofibers is envisaged due to the increased lipophilicity of the peptide 
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amphiphiles, but the mechanism of transport has not yet been fully elucidated. Peptide 

nanofibres are a promising delivery strategy for the transport of peptides across the BBB.  

Amphiphilic engineered peptides (CGGGRRRRRRTAT) able to form core-shell 

nanoparticles also demonstrate enhanced antimicrobial activity in a Staphylococcus aureus 

in vivo meningitis model. Peptide amphiphile spherical aggregates have been prepared by 

incubation of the peptide amphiphile in aqueous media at 35 °C for 24 hours (Liu, Xu et al. 

2009).  

4.0 Oral Administration 

Technologies able to ensure non-invasive delivery of peptide and protein therapies to the 

brain hold immense commercial potential. The oral and the intranasal route are the only 

routes that have shown some promise in this respect. The low bioavailability of peptides via 

the oral route which is a direct result of their physical and enzymatic instability and their low 

permeability across biological membranes may be overcome by the use of nanoparticle 

technologies (Serrano Lopez and Lalatsa 2013). The pharmaceutical industry, driven by the 

medical and clinical success of intravenously administered biologics is increasingly 

investigating more complex brain peptide delivery systems in order to enter niche treatment 

markets and address the growing need for brain therapeutics. An oral to brain peptide 

delivery technology may provide an answer to a therapeutic field with unmet needs in the 

form of drugs to treat an ever growing catalogue of neurological diseases 

(neurodegeneration, pain and cancer for example). 

Nanoparticle technologies are the only strategies able to protect peptides in the harsh 

environment of the gastrointestinal tract, enhance their absorption across the gastrointestinal 

mucosa and increase their circulation half life in order to maintain an adequate concentration 

of peptide in the plasma for transport across the BBB. Oral to brain peptide delivery, has 

been demonstrated with opioid peptide analgesics. The first reported strategy able to deliver 
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peptides orally involved the analgesic peptide dalargin, encapsulated in 

poly(butylcyanoacrylate) nanoparticles coated with either polysorbate 80 (Schroeder, 

Sommerfeld et al. 1998) or polyethylene glycol (molecular weight = 20 kDa) (Das and Lin 

2005). However, although the intellectual property protection was secured for this technology 

over 15 years ago (Sabel B. A. and U. 1997), the technology appears not to have 

progressed beyond the preclinical stage. 

Nanomerics Ltd (St Albans, U. K.) 

has shown that its proprietary 

Molecular Envelope Technology 

(MET) – quaternary ammonium 

palmitoyl glycol chitosan (GCPQ) 

nanoparticles achieves the oral 

delivery of peptides and lipophilic 

peptide prodrugs to the brain 

(Lalatsa, Garrett et al. 2012; 

Lalatsa, Lee et al. 2012).  The 

technology works by protecting the 

peptide from degradation in the 

gut, the nanoparticles being taken 

up by the enterocytes, the 

absorbed particles stabilising the 

peptide and peptide prodrug 

against plasma degradation and 

the particles adhering to the 

endothelial cells of the blood brain 

 
Figure 2a: Brain levels showing the oral to brain 

delivery of leucine5-enkephalin (70 mg kg−1, ) and 

a lipidised leucine5-enkephalin prodrug (O-tyrosinyl 

palmitate leucine5-enkephalin, 100 mg kg−1, ) 

encapsulated in Nanomerics Molecular Envelope 

Technology (GCPQ Nanoparticles).  Brain levels of 

leucine5-enkephalin alone () are also shown. 

Figure 2b: The anti-nociceptive response following 

the oral administration of leucine5-enkephalin and 

O-tyrosinyl palmitate leucine5-enkephalin 

encapsulated in Nanomerics Molecular Envelope 

Technology. Symbols are as in Figure 2a.  A group 

of mice were also dosed with water (▲).  The drug, 

GCPQ ratio was 1: 5 g g-1. Reproduced with 

permission from reference (Lalatsa, Lee et al. 2012). 
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barrier, enabling the peptide and the peptide prodrug to cross the BBB (Figure 2) by as yet 

unclear cellular mechanisms (Garrett, Lalatsa et al. 2012; Lalatsa, Garrett et al. 2012; Siew, 

Le et al. 2012).  In the case of formulations comprised of the prodrug, the drug is released 

from the prodrug by plasma, liver and possibly brain esterases (Lalatsa, Lee et al. 2012).  

Developing medicines from endogenous peptides does not require validation of the 

mechanism of action for the active therapeutic.  This is critical if one wishes to avoid the high 

attrition rates in late clinical development as clinical proof-of concept data is already 

available. Although commercialisation of peptides as oral therapies is still deemed risky by 

the pharmaceutical industry, the rewards of niche treatment areas should fuel the 

development of peptide pill technologies by smaller market entrants. 

5.0 Intranasal Administration 

Nasal delivery is a promising alternative to intravenous injection for the delivery of peptides 

and proteins as the large surface area and high vascularity of the nasal cavity favours fast 

absorption of therapeutic molecules into the systemic circulation. However, peptide 

intranasal bioavailability is considerably less effective than after intravenous administration 

due to enzymatic degradation or mucociliary clearance, and poor mucosal membrane 

permeability of large polar substrates (Irwin, Dwivedi et al. 1994).  

Exploitation of the nasal route for the delivery of drugs to the brain via the olfactory region 

has been explored as the olfactory region of the nose can be a major site for entry of viruses 

into the brain (Illum 2000; Reis, Veiga et al. 2008). In order for a peptide to travel from the 

olfactory region in the nasal cavity to the cerebrospinal fluid (CSF) or the brain parenchyma, 

it has to traverse the nasal olfactory epithelium and, depending on the pathway followed, 

also the arachnoid membrane surrounding the subarachnoid space.  Three different 

pathways across the olfactory epithelium may be envisaged; a) a transcellular pathway, 

especially across the sustentacular cells, most likely by receptor mediated endocytosis, fluid 
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phase endocytosis or by passive diffusion (unlikely for peptides), b) a paracellular pathway 

through tight junctions between the sustentacular cells and olfactory neurones and c) via the 

olfactory nerve pathway where the drug is taken up into the neurons by endocytotic or 

pinocytotic mechanisms and transported by intracellular axonal transport to the olfactory 

bulb (Illum 2000). The transneuronal pathway is very slow and agents reach the CNS as late 

as 24 hours after administration, hence transport via neuronal routes cannot explain the 

rapid appearance of drug in the CSF that is seen for a range of low molecular weight 

compounds (Illum 2000).  Hence, at least in animal models, a therapeutic molecule with 

moderate lipophilicity, i.e. one that is not so lipophilic so as to give rapid transport into the 

systemic circulation, will show a higher CSF and olfactory bulb concentration after nasal 

administration than after parenteral administration (Illum 2000). 

Leucine5 - enkephalin loaded N - trimethyl chitosan nanoparticles prepared using the ionic 

gelation method were evaluated as a brain delivery vehicle via the nasal route. Using the N -

trimethyl chitosan gel nanoparticles, there was significant improvement in the observed 

antinociceptive effect of leucine5 - enkephalin, as evidenced by the hot plate and acetic acid 

induced writhing bioassay (Kumar, Pandey et al. 2013). Polysorbate 80 coated nanoparticles 

loaded with neurotoxin II (an analgesic peptide which was separated from the venom of Naja 

atra) also resulted in enhanced antinociception after intranasal delivery (Ruan, Yao et al. 

2012).  

Thyrotropin-releasing hormone (TRH) is reported to have anticonvulsant effects in epileptic 

patients but is unable to cross the BBB and is rapidly metabolised in the periphery.  The 

intranasal administration of TRH loaded poly (D,L - lactic acid) nanoparticles reduced the 

frequency and severity of seizures in a rat seizure model. (Kubek, Domb et al. 2009; 

Veronesi, Aldouby et al. 2009).   

Coating particles with brain endothelial cell transport ligands has also been explored via the 
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intranasal route.  Lactoferrin, a natural 80 kDa iron binding cationic glycoprotein of the 

transferrin family, consists of a single-chain glycoprotein folded into two globular lobes and 

lactoferrin is expressed in various tissues and involved in various physiological processes, 

such as iron uptake by the intestinal mucosa and acting as a bacteriostatic agent (Lönnerdal 

and Iyer 1995; Suzuki, Lopez et al. 2005). Extensive histological studies revealed that the 

lactoferrin receptor is highly expressed in brain endothelial cells and neurons and 

overexpressed in the CNS in  age-related neurodegenerative diseases including Alzheimer’s 

Disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis (Liu, 

Jiang et al. 2013). Furthermore, lactoferrin is more efficiently taken up by the brain tissue 

than both transferrin and OX26 (Ji, Maeda et al. 2006). The intranasal administration 

lactoferrin conjugated poly(ethylene glycol) – block - poly(epsilon caprolactone) (PEG - PCL) 

nanoparticles loaded with the neuroprotective peptide NAPVSIPQ produced superior results 

to NAPVSIPQ loaded onto plain PEG - PCL nanoparticles.  Pharmacological activity was 

evaluated in a rat Morris water maze experiment (Liu, Jiang et al. 2013).  The behavioural 

pharmacodynamic activity improvements were supported by the evaluation of 

acetylcholinesterase activity, choline acetyltransferase activity and neuronal degeneration in 

the mice hippocampus (Liu, Jiang et al. 2013).  

Another successful nasal strategy involved PEG - PLA nanoparticles modified with wheat 

germ agglutinin loaded with vasoactive intestinal peptide.  This formulation resulted in 

enhanced brain uptake and improvements in spatial memory in ethylcholine aziridium -

treated rats following the intranasal administration of 25 g kg-1 and 12.5 g kg-1 of 

vasoactive intestinal peptide loaded on unmodified nanoparticles and wheat germ agglutinin-

modified nanoparticles, respectively (Gao, Wu et al. 2007). An intranasal peptide delivery 

system was also developed by conjugation of odorranalectin (MW = 1700 Da, a leptin like 

peptide) to cubosomes via a non-covalent streptavidin - biotin "bridge".  Odorranalectin 

retained its bio - recognitive activity and enhanced the nose to brain delivery of 
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Gly14Humanin (a neuroprotective peptide) (Wu, Li et al. 2012).  Pharmacodynamics effects 

were measured in a Morris water maze test and by acetylcholinesterase activity (Wu, Li et al. 

2012).   

TAT peptides have also been utilised via the intranasal route.  TAT-NBD, a 22 amino-acid 

CPP containing the nuclear factor kappa B (NF - κB) IKKγ - Binding Domain coupled to the 

transduction sequence of the HIV - TAT protein, is a potent NF- κB inhibitor that attenuates 

inflammatory responses  (Yang, Sun et al. 2013). Yet, intravenous delivery of TAT - NBD 

peptides still requires a high dose to cross the BBB to reach the central nervous system; 

such a high dose may weaken general immunity and increase the risk of severe infection 

(Yang, Sun et al. 2013). In an attempt to reduce the required dose, intranasal delivery of 

TAT - NBD peptides was carried out in two animal models of neonatal infection sensitised 

hypoxic-ischemic brain injury. Kinetic experiments showed that TAT - NBD peptides entered 

the olfactory bulbs rapidly (within 10 – 30 min) and peaked in the cerebral cortex around 60 

min after the intranasal application in P7 rats (Yang, Sun et al. 2013). Further, intranasal 

delivery of 1.4 mg kg-1 TAT - NBD, which is only 7% of the intravenous dose, markedly 

attenuated NF- κB signalling, microglia activation, and the brain damage triggered by 

hypoxic ischemia (following a 4 or 72 h exposure to the bacterial endotoxin 

lipopolysaccharide) (Yang, Sun et al. 2013). 

Intranasal to the brain peptide delivery strategies have not only been the subject of 

preclinical experiments but have been exploited in clinical studies and even resulted in the 

launch of peptide products. Peptides such as melanocortin (4-10), angiotensin II, arginine-

vasopressin, cholecystokinin - 8, oxytocin and insulin have been successfully delivered to 

the brain in human trials (Table 2). However, recently Allon Therapeutics Inc. announced 

that its drug candidate davunetide [NAP, eight amino acid peptide (NAPVSIPQ)] failed to 

show efficacy for progressive supranuclear palsy (PSP) in a phase 2/3 trial. Participants 
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showed no benefit on either of the primary outcome measures, the progressive supranuclear 

palsy rating scale and the Schwab and England Activities of Daily Living and neither 

secondary endpoints either (ClinicaSpace 2012).  

Table 3 Summary of clinical studies of nasal delivery of peptides to CNS  

Peptide Molecular 

Weight (Da) 

Pharmacokinetics Pharmacodynamics References 

Melanocortin (4 -

10) 

980 Detected in CSF Acutely diminished 

focusing of attention, 

decreased body - fat in 

normal weight humans 

(Born, Lange et 

al. 2002), (Fehm, 

Smolink et al. 

2001), (Smolnik, 

Perras et al. 

2000), 

(Hallschmid, 

Smolnik et al. 

2006) 

Angiotensin II 1084 Not determined Acutely increased blood 

pressure  

(Derad, Willeke 

et al. 1998) 

Arginine – 

vasopressin 

1046 Detected in CSF Enhanced brain activity (Pietrowsky, 

Struben et al. 

1996) 

Cholecystokinin - 

8 

1143 Not determined Enhanced brain activity (Pietrowsky, 

Thiemann et al. 

1996) 

Oxytocin 1007 Not determined Increased trust, reduce 

stress-related control, 

(Kosfeld, 

Heinrichs et al. 
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produced anxiolytic 

effects, attenuated 

response to fear in 

amygdala in 

generalised anxiety 

disorder, improved 

emotional recognition in 

autism 

2005), (Kirsch, 

Esslinger et al. 

2005), (Domes, 

Heinrichs et al. 

2007), (Heinrichs, 

Baurngartner et 

al. 2003), 

(Labuschange, 

Phan et al. 2010), 

(Guastella, 

Einfeld et al. 

2010) 

Insulin 5808 Detected in CSF Reduced brain activity, 

decreased food intake, 

enhanced postprandial 

thermogenesis, 

improved memory and 

modulated Ab in 

patients with mild 

cognitive impairment 

(Kern, Born et al. 

1999), (Benedict, 

Hallschmid et al. 

2004), (Benedict, 

Kern et al. 2008), 

(Benedict, Brede 

et al. 2011), 

(Reger, Watson 

et al. 2008) 

 

 

6.0 Concluding Remarks 

Over the last decade there have been significant advances in the delivery of peptides, to the 

brain. Various vectors have been shown to deliver peptides across the BBB with notable 
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promise offered by receptor mediated endocytosis strategies such as the Angiopep peptides 

pioneered by Angiochem and transferrin antibodies developed by Armagen.  The chitosan 

amphiphile nanoparticles developed by Nanomerics, cell penetrating peptides and the 

utilisation of nose to brain strategies by a number of companies are also recording notable 

successes.  Protecting intravenous peptides from plasma degradation is a key to achieving 

brain delivery of these molecules on intravenous administration.  With respect to the oral 

route, data has been presented on the oral delivery of peptides to the brain by utilising 

chitosan amphiphile nanoparticles that are taken up by the gastrointestinal epithelium.  

Controlling neurological conditions will continue to be at the forefront of therapeutic 

strategies for the foreseeable future.  The possibility of delivering medicines containing drug 

compounds that do not usually distribute to the brain, by using the technologies and 

approaches described above, means that new medicines will emerge to tackle these rather 

challenging conditions.     
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