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Highlights

• We study how profits of a firm should be shared in the most efficient way among

heterogeneously productive, risk averse workers, and an unproductive outside in-

vestor. We model the firm as a team production process subject to moral hazard.

In addition to awarding shares, the firm can use incentive contracts based on noisy

performance signals.

• We show that more productive agents with noisier performance signals are more

likely to be motivated with shares as opposed to incentive contracts. Since the efforts

of agents who have soft skills, such as managers, are more difficult to observe, this

result provides a potential explanation for why managers in most firms are motivated

by shares.

• Our results also suggest an explanation for why law or consulting firms, where

agents’ efforts are difficult to observe, are often organized as partnerships.

• We show that the unproductive outside investor holds shares only if all productive

agents hold shares.

• We ask whether large firms are more or less likely to be owned by outside investors.

We find that a firm that grows by opening branches is held almost entirely by

outside investors when its output noise grows faster than the number of branches.

Otherwise, insiders hold substantial amount of a large firm’s shares.
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Abstract

We model a firm as a team production process subject to moral hazard and derive

the optimal profit sharing scheme between productive workers and outside investors

together with incentive contracts based on noisy performance signals. More pro-

ductive agents with noisier performance signals are more likely to receive shares

which can explain why managers are motivated by shares, and law or consulting

firms form partnerships. A firm that grows by opening branches is held almost

entirely by outside investors when its output noise grows faster than the number of

branches. Otherwise, insiders hold substantial amount of a large firm’s shares.

1 Introduction

Firms are organized in a variety of ways. One common organizational form is a public cor-

poration where external shareholders own shares in the firm. Often, a substantial amount

of the shares in the firm are held by outside investors who do not participate in the pro-

ductive activities of the firm. Another common organizational form is partnership. Unlike

outside shareholders of a corporation, partners in a partnership are typically insiders who

∗Contact: Department of Economics, London Business School, Regent’s Park, NW1 4SA, Lon-
don, United Kingdom. Email: eozdenoren@london.edu. Web: https://sites.google.com/site/

ozdenoren/
†Contact: Department of Economics, Nazarbayev University, Qabanbay Batyr ave. 53, 010000,

Nur-Sultan, Kazakhstan. Email: oleg.rubanov@nu.edu.kz. Web: https://sites.google.com/site/

orubanov/
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participate in productive activities of the firm. Hansmann (1996) reports that in the US

employee ownership is uncommon in industrial sector of the American economy whereas

it is quite common in the service professions like law, accounting, investment banking,

management consulting, advertising, architecture, and medicine.1 The pattern is similar

in Europe and elsewhere. Although Hansmann’s observation is broadly correct employee

ownership is not an all or nothing decision. Most firms fall somewhere in between where

some shares are held by productive insiders and the rest by outsiders. For example, in

the services industry where partnership is common many workers are given performance

based incentives either exclusively or in addition to ownership of the firm. Similarly, in

industrial firms where ownership is not as common, often upper management receives

ownership based incentives. This observation suggests that theories of employee owner-

ship should also explain both who obtains shares within the firm as well as the extent to

which outside investors receive shares.

This paper focuses on how profits of a firm should be shared in the most efficient

way to incentivize their workers and share risks among them. In partnerships profits

must be shared among the partners of the firm. In their path breaking work, Alchian

and Demsetz (1972) and Holmström (1982), show that profit sharing leads to important

incentive problems. This insight, in fact even more powerfully, applies to corporations

where a substantial amount of the shares is held by outside shareholders. To solve the

resulting incentive problems, in most firms, workers also receive contracts which condition

pay on performance.2 Therefore, the efficient allocation of ownership and the provision

of performance based contracts must be jointly determined.

To derive the optimal allocation of ownership and performance contracts, in Section 2,

we consider a firm that employs agents who are heterogeneous with respect to their

productivities and levels of risk aversion. There is also an unproductive and potentially

risk neutral outside investor. The firm’s production depends stochastically on the efforts

of the productive agents. Agents’ efforts are not observable and subject to moral hazard.

We assume that for each productive agent there is a contractible noisy performance signal

of his effort level. The productive agents and the outside investor receive contracts based

1One can find partnerships in other industries. For example, John Lewis Partnership is a leading UK
retail business where the partners are its permanent staff.

2Including both profit sharing and performance signals always improves surplus no matter how noisy
output or the signals are as long as they are informative about performance. Generally, this follows from
Holmström (1979) who shows that signals that are informative about performance should always be used
in the contract no matter how noisy they might be.
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on all the signals. For a productive agent, the contract he receives provides incentive to

exert effort since it depends on his own effort. Profit of the firm is given by its production

minus the contractual payments. Productive agents and the outside investor share the

profit so that each agent receives a non-negative share of the firm and the shares add up

to one.3 For productive agents, receiving a share of the firm’s profit provides additional

incentive to work but also exposes the agent to the output risk. We abstract away from

the bargaining process through which parties decide on share allocations and contracts,

and assume that these are determined to maximize the total surplus.

In Section 3 we present our main model and characterize the optimal allocation of

shares when the firm can write contracts based on performance signals. In the main

model we restrict attention to linear contracts, normally distributed signals and CARA

utility functions. In Appendix B we study a variation of the model with binary outcomes

and signals, arbitrary concave utility functions and general contracts. Holmström (1982)

shows that under budget balance first-best cannot be achieved but when there is a risk-

neutral and unproductive outside investor who breaks the budget balance and acts as a

residual claimant first-best is restored.4 Our focus is slightly different than Holmström’s.

We preserve budget balance and introduce a risk neutral outside investor not as a residual

claimant but to improve risk sharing. We derive an ownership parameter and rank the

agents according to this parameter. An agent’s ownership parameter increases in his

productivity and the variance of his performance signal.5 We show that only the agents

with the k-highest ownership parameters own shares where k is determined endogenously.

Hence more productive agents whose performances are poorly observable are more likely

to be partially motivated with shares, rather than just a contract. Since the efforts of

agents who have soft skills, such as managers, are more difficult to observe, this result

provides a potential explanation for why managers in most firms are motivated by shares.

The result also suggests an explanation for why law or consulting firms, where agents

efforts are difficult to observe, are often organized as partnerships.

We show that the unproductive outside investor always has the lowest ownership

3Note that budget balance is automatically imposed since agents who receive profit shares effectively
are liable for the contract payments in proportion to their shares.

4This solution has its issues. For example, when the total output is slightly less than the optimum,
the principal’s payoff is much higher. Hence, she has incentive to sabotage production. Also, see Eswaran
and Kotwal (1984) who discuss why budget breaking schemes might be hard to implement. Legros and
Matsushima (1991) discuss balanced transfers in partnerships.

5It also depends on the level of risk aversion of all agents but the ranking of the ownership parameter
depends on the risk aversion parameters in a more subtle way.
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parameter and holds shares only if all productive agents hold shares even though it is

possible to write performance based contracts.6 The reason is that due to budget balance,

any improvement in risk sharing that is achieved by giving shares to the outside investor

comes at the cost of reduced incentives for the productive agents, and when a productive

agent does not have any shares, marginally increasing his shares has a first order effect on

incentives and a second order effect on risk. To show that this result is robust to model

specification and does not rely on the linear/normal structure, in Appendix B we present

a variation of our main model where output and signals are binary and the contracts are

unrestricted and show that the result still holds.

An interesting question is whether large firms are more or less likely to be owned

by outside investors. As we emphasized above, in our model the outside investor is

unproductive and the only purpose of giving her shares is to improve risk sharing which

comes at a cost because it reduces the incentives of the insiders to exert effort. In Section 4,

we ask whether, as the firm size grows, the insiders are able to avoid this cost by self-

insuring or whether they need to give shares to an unproductive outside investor so that

the large firm is owned partially or completely by outside investors. We model a large

firm as a collection of identical branches. Each branch employs heterogenous productive

worker types. We show that as the firm size (or the number of branches) grows, whether

the insiders keep all the shares or they give some, and even almost all of the shares to the

outside investor depends on the ratio of the variance of the noise in the total output to

the number of branches. Roughly speaking, this ratio is determined by the correlation of

output risk across branches. For example, when the output risk is perfectly and positively

correlated across branches, the variance of the noise in the total output grows faster than

the number of branches. In this case, the risk grows too fast for the risk averse insiders

to shoulder and a large enough firm is held almost entirely by the outside investors. In

contrast, when this ratio is constant (or vanishing), the outcome is determined by the

tradeoff between risk and incentives and requires the agent types in each branch whose

ownership parameters exceed a certain cutoff to be motivated by shares and shoulder the

risk.7 In particular, when the output risk vanishes relative to the size of the firm, shares

are held by the agent type who has the highest ownership parameter. This result provides

6This result is about the extensive margin that determines whether an agent or outside investor holds
shares. It is not about the intensive margin that determines how many shares they own. In particular, if
the output is very noisy the outside investor might own most of the firm but the productive agents still
own some shares.

7To be more precise, if the ratio is constant but large enough, some shares might be held by the
outside investor.
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one explanation for the observation that partnerships tend to form among individuals with

similar characteristics such as lawyers in a law firm. The broader message is that larger

firms are more likely to be partnerships only after controlling for output risk. If we do

not control for risk, in industries where firms face common risks that increase rapidly as

they expand, larger firms are more likely to be owned by outside investors.

In Section 5 we study how the optimal share allocation and contracts depend on

the precision of the output noise, providing further intuition for the degree of outside

ownership.

We discuss how the results of our paper compare to the literature in Section 6. Proofs

missing from the main text can be found in the Appendix.

2 The Main Model: Linear Contracts

We model a firm as a team of agents who are engaged in the production of a good. There

are n productive agents indexed by i ∈ {1, 2, . . . , n} and an unproductive outside investor

indexed by 0. The level of production of the firm depends on the efforts of the productive

agents. We denote agent i’s effort by ei ≥ 0.

The output of the firm is given by y(e1, . . . , en) = q(e1, . . . , en) + εq where εq captures

the uncertainty in the outcome of the production process. For tractability, we assume the

production function to be the sum of individual efforts q(e) =
∑n

i=1 ei.
8

The efforts of the agents are not directly observable. Instead, for every agent i there

is a signal si = ei + εsi which is observable by everyone (including the court), and where

εsi are jointly independent.

Efforts are costly for the agents. The cost of effort is quadratic, and the cost functions

are heterogenous. It costs agent i Ci(ei) = µi
e2i
2

to exert effort ei. The lower µi is, the

less costly it is to exert effort for agent i. Sometimes we call agents with lower µi “more

productive”.

We assume that the agents have CARA utility functions. Agent i’s von Neumann-

Morgenstern utility function of consuming x and exerting effort ei is given by 1 −

8Here and below we often refer to the vector (x1, . . . , xn) as x (for example, for λ, e and other
variables).
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e−γi(x−Ci(ei)), where γi > 0 is agent i’s coefficient of absolute risk aversion. We assume

that there is no limited liability, and the agents have deep pockets, so that they can be

made to pay any amount of money if the contract requires them to do so.

All noises εq and εsi are normally distributed where εq ∼ N (0, σ2
q ), εsi ∼ N (0, σ2

si
),

and signal noises εsi and the output noise εq are jointly independent.

We consider two situations: with and without outside investment. To capture the

possibility of outside investment, we consider a risk neutral agent 0 who represents all

outside investors. We assume that exerting zero effort is costless but exerting strictly

positive effort is extremely costly for the outside investor. Consequently, the outside

investor does not directly participate in production and e0 = 0. In the formulas below,

when the outside investor is present we set γ0 = 0 and µ0 = ∞. Although the external

investor exerts zero effort and need not be incentivized, she might still own shares of the

company and make transfers to the other agents based on their performances for risk

sharing reasons. We denote the set of all agents by I which includes the outside investor

agent 0 when there is one. Since the case with only one agent in the economy is trivial, we

assume that there are at least two agents one of whom is potentially the outside investor,

i.e. |I| ≥ 2.

We assume that the agents can only benefit from the output of the firm by owning

its shares, but cannot contract on the output otherwise. Hence, every agent owns share

λi ≥ 0 of the firm, and the total number of shares is equal to 1.9 If agent i owns share λi

of the company, and the profit of the company is π, then agent i receives λiπ.10

Following Holmström and Milgrom (1987), we restrict attention to linear compensation

contracts. Denote the compensation scheme of agent i as wi. Since we assume agent i’s

compensation is linearly dependent on the available signals, denote β̃ji the additional

amount agent i receives for a unit increase in signal sj. In addition, β̃0
i denotes the lump

sum payment to agent i from the firm (or alternatively, the rest of the agents). Thus, for

9One reason for the non-contractibility of output is that contracts are short term, while some of
the effects of efforts on output might be realized in the long term. Another reason is that the value of
being a shareholder of a firm might provide non-tangible benefits and be much more important to the
shareholders than just the production output of the company or its share price.

10This includes the situations when π is negative. In such realizations of profit the owners split the
obligations of the company, rather than the profit.
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a given realization of signals s = (s1, . . . , sn) agent i ∈ I receives:

w̃i(s) = β̃0
i +

n∑

j=1

β̃ji sj. (1)

The profit of the company is equal to its output minus the cost of labour (we assume

that the other costs are already incorporated in the production function):

π = y − w̃(s) =
n∑

i=1

ei −
∑

i∈I
w̃i(s) + εq =

n∑

i=1

ei −
∑

i∈I

n∑

j=1

β̃ji sj −
∑

i∈I
β̃0
i + εq. (2)

There are four periods in this model. In the first period the shares are allocated among

the agents. In the second period the agents sign contracts that determine transfers in every

state of the world. In the third period, taking the allocation of shares and the contracts

as given, agents exert effort. In the fourth period signals are realised, and the profit is

shared according to the agents’ shares in the company, and the transfers are made as

specified in the contract given the state of the world.11

We assume that the agents choose the allocation of shares and the contracts to achieve

the levels of effort that maximize the total surplus. This allows us to abstract away from

the bargaining process through which parties decide on share allocations or contracts.12

3 Optimal ownership structure and contracts

The goal of the firm is to motivate the productive agents in the best possible way while

allowing the agents to share risks optimally. The firm can use two tools to accomplish

these objectives. These are ownership of shares (or profit sharing) and performance based

incentive contracts. In this section we characterize the optimal mixture of ownership

11We do not assume that the transfers add up to zero in every state because, with profit sharing,
budget balance is automatically satisfied. For example, if in a state the sum of contractual transfers is
strictly positive then this amount is subtracted from output. The remainder, which is the profit of the
firm that might be negative, is then shared among the agents.

12For example, a designated agent could make take-it-or-leave-it offers to all other agents. This agent
would choose share allocations and contracts to maximize the total surplus, and make sure that all the
other agents receive exactly their outside options so that they accept the offers. There are no outside
options in our model, so any lump sum payments β0

i are optimal, because they do not affect the incentives
of the agents.
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and contracts. We then use this characterization to study how ownership and incentives

depend on factors such as firm size, agents’ productivities, and the riskiness of incentives

and production.

As a preliminary observation consider an alternative formulation of the model in which,

instead of sharing the profit, agents split the output of the firm and write contracts that

are budget balanced, i.e. payments of the agents including the outside investor add up

to zero for any realization of the signals.13 In the Appendix A we study the relationship

between the two formulations. Theorem A.2 in the Appendix shows that given profit

shares (λ0, ..., λn) and a profile of contracts, identical output shares (λ0, ..., λn) and a

unique profile of modified contracts that are budget balanced implement the same payoff

for all agents. Conversely, given output shares (λ0, ..., λn) that sum to one and a profile

of contracts that are budget balanced, the same profile of profit shares (λ0, ..., λn) and

multiple profiles of modified contracts implement the same payoff for all agents. This

implies that the optimal output shares and profit shares are identical but the contracts are

unique only in the output setting. Therefore, in the remainder of the paper we study the

optimal ownership structure using the output sharing formulation and the corresponding

profit sharing arrangements can be derived in a straightforward manner.

As usual, we solve this problem backwards. The first step is to solve for optimal

effort choices of the agents given a fixed allocation of output shares and contracts. In

equilibrium given the efforts of other agents, agent i chooses ei to maximize

max
ei

E (λiy(e) + wi(s)− ci(ei))−
γi
2
V (λiy(e) + wi(s)− ci(ei)) ,

where e = (e1, . . . , en). Since the noise in output and signals are additive, the variance

term is constant. Moreover, the other agents’ efforts are taken as given, so the expression

above is equivalent to:

max
ei

λiei + βiiei − Ci(ei).

Hence, optimal effort ei satisfies (λi + βii) = C ′i(ei) or ei = (λi + βii)/µi.

In the Online Appendix we show that the optimal ownership and incentive structure

maximizes the sum of certainty equivalents of the payoffs of all agents subject to the

constraints that for any realization of signals payments among the agents are balanced,

13Notice that if the payments are budget balanced (add up to zero), then the profit is equal to output.
So, output shares is equivalent to profit shares, when the contracts are budget balanced.
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each agent receives a non-negative share of the firm, and the agents’ shares in the firm

add up to the whole firm:

max
λ,w(s)

∑

i∈I

(
E (λiy(e)− Ci(ei) + wi(s))−

γi
2
V(λiy(e) + wi(s))

)
,

s.t. ∀s :
∑

i∈I
wi(s) = 0,∀i : λi ≥ 0 and

∑

i∈I
λi = 1.

(3)

Substituting the optimal effort levels and noticing that
∑n

i=1 Ewi(s) = 0 we obtain:

E (λiy(e)− Ci(ei)) = λi

n∑

j=1

ej −
µie

2
i

2
= λi

(
n∑

j=1

λj + βjj
µj

)
− µi

2

(
λi + βii
µi

)2

,

V(λiyi(e) + wi(s)) = λ2
iσ

2
q +

n∑

j=1

(
βji
)2
σ2
sj
.

The next proposition characterizes the optimal contracts for a given ownership struc-

ture.

Proposition 3.1. Without outside investment, given the share allocation λ, for every j,

• the increase in agent j’s pay for a unit increase in his own performance signal sj is

given by:

βjj =
1− λj

1 + µjσ2
sj

(
γj + 1∑

i 6=j
1
γi

) ; (4)

• for every i 6= j the reduction in agent i’s pay for a unit increase in agent j’s signal

sj is given by:

βji = −
1
γi∑
k 6=j

1
γk




1− λj
1 + µjσ2

sj

(
γj + 1∑

k 6=j
1
γk

)


 . (5)

With the outside investor, βjj =
1−λj

1+µjσ2
sj
γj

, βj0 = −βjj and βji = 0 for j 6= 0, i.

Proposition 3.1 allows us to make several observations about the incentive structure.

First, agent j receives more powerful incentives if he holds fewer shares, or equivalently,

the other agents own more of the firm. In addition, agent j receives more powerful
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incentives if he is more productive, has a less noisy performance signal and is less risk

averse. Interestingly, agent j’s incentives become more powerful if the other agents in the

team become less risk averse. This is because agent j’s payment comes from the other

agents in the team and hence they are subject to the noise in agent j’s payment. Finally,

note that how much of agent j’s payment comes from agent i does not depend on how

much of the firm agent i owns. This is because the payments are shared to optimize

the allocation of risk across agents (which is captured by the coefficient in front of the

parenthesis in equation (5)). In fact, if there is a risk neutral outside agent 0 (for example,

an insurance company) then only the outside investor (agent 0) makes payments to the

agents and βji = 0 for all i 6= 0 even if the outside investor does not own any shares in the

firm.

Next we turn to the optimal allocation of shares. We define

Di ≡
1

µi + 1

σ2
si

(
γi+

1∑
j 6=i 1

γj

)
. (6)

We refer to Di as the ownership parameter of agent i.14,15

In the optimal share allocation problem, there is an extensive margin that determines

whether an agent holds shares or is incentivized solely based on a performance contract.

There is also an intensive margin that determines, conditional on holding shares, how

many shares an agent holds. The ownership parameters Di play a crucial role in deter-

mining both margins. To see this rank the agents according to their ownership parameters,

so that 0 < D1 ≤ D2 ≤ · · · ≤ Dn. If there is an outside investor, then by substituting

µ0 = ∞ and γ0 = 0 into the definition (6), we see that her ownership parameter D0 = 0

which is strictly less than D1. The following proposition shows that only the agents with

highest ownership parameters hold shares in the firm. Agent i’s ownership parameter

increases, and the other agents’ ownership parameters are constant, in his productivity

and the variance in his performance signal. Hence, if an agent becomes more productive

or his performance signal becomes more noisy, his rank will be higher and as we show

14The ownership parameters also feature in Rayo (2007) and play similar roles in both papers: they
capture the sensitivity of the incentives based on the noisy signal of effort as the agent’s level of ownership
increases.

15In these derivations we do not assume that there is necessarily a risk neutral outside investor, and
Equations (4), (5) and (6) all simplify when there is one. In particular with a risk neutral outside investor
βji ’s are all zero and (6) becomes Di = 1

µi+
1

σ2si
γi

.
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next he is more likely to hold shares in the firm.

Proposition 3.2. If an agent with ownership parameter Di has some shares of the firm,

then all agents with at least as high ownership parameters Dj ≥ Di also own shares of the

firm (in both the case with and without the outside investor).

For every two agents i and j with positive holdings of shares the following condition

holds:

(Di −Dm)− λi(Di + γiσ
2
q ) = −λm(Dm + γmσ

2
q ). (7)

The next proposition characterizes the optimal ownership structure in the firm.

Proposition 3.3. Suppose m is the lowest k that satisfies

n∑

i=k+1

Di −Dk

Di + γiσ2
q

< 1. (8)

Agent i holds shares if and only if i ≥ m. That is, only the n − m + 1 agents with the

highest ownership parameter Di own shares of the firm.

If m > 0 then each of these n−m+ 1 agents owns

λj =
1−∑n

i=m
Di−Dj
Di+γiσ2

q∑n
i=m

Dj+γjσ2
q

Di+γiσ2
q

(9)

shares.

If condition (8) is satisfied for k = 0 (i.e. m = 0), then the outside investor’s share is

positive and is equal to:

λ0 = 1−
n∑

i=1

Di

Di + γiσ2
q

, (10)

and agent j’s share is

λj =
Dj

Dj + γjσ2
q

. (11)

Proposition 3.3 implies that if the outsider holds shares of the firm then every pro-

ductive agent has shares of the firm. This result does not emerge as an artefact of the

linear/normal model. In Appendix B we consider a variation of our model with arbitrary

utility functions and compensation schemes where signals and output realizations are
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binary. We show that in that model the outsider also holds shares of the firm only if ev-

eryone else holds shares of the firm. This result is in line with many modern employment

contracts, where employees are given equity as part of their compensation. However,

there are many public firms in which most stakeholders are not shareholders, and yet

most of the shares are held by outside investors. We provide one explanation for this

observation in Section 4 where we show that if output noise grows faster than the size of

the firm then in the limit almost all shares go to outsiders. Under this scenario, if there

is a small fixed cost to introducing ownership based incentives into employment contracts

than most agents should obtain no shares. A second explanation is that even agents who

do not explicitly obtain shares in the firm may act as if they have some ownership (feeling

company spirit and being part of the team) in which case optimal contract may provide

them only performance based incentives.

To see why the outsider may be given some shares, imagine a situation, where all

agents start with no shares, and then small amounts of shares are gradually allocated to

the agents. Suppose at each step, the recipient of the next portion of shares is selected

to maximize total welfare.16 The agents getting their first portions of shares get a large

boost to their incentive to work, but very little additional risk (the marginal cost of effort

and the risk bearing are both almost zero relative to the marginal benefit). However, a

risk averse agent bears a growing amount of risk as more shares are allocated to him.

At some point, additional boost to performance is dominated by the additional risk the

agent must bear. At this point, it is better to give all additional shares to the risk neutral

outsider who gets a benefit proportional to output. Without the outsider, if the agents

are sufficiently risk averse, the total amount of risk could exceed the benefit of production,

in which case it would be beneficial for the agents to “burn shares”. However, with the

outsider, burning shares is no longer necessary. We elaborate further on the role of output

risk on the allocation of shares between productive agents and the outsider in Section 5.

Inequality (8) always holds for k = n − 1 implying that the two agents with the

highest productivity parameters always hold some shares. To see why this is the case

consider the simpler problem of allocating shares of the entire firm to the two agents with

the highest productivity parameter, i.e. agents n and n − 1. For the moment assume

that performance based incentives are not available. This problem can be written as

maximizing
∑n

i=n−1

(
λi/µi − Ci(ei)− λ2

i
γi
2
σ2
q

)
with λn−1 + λn = 1. Each term in brackets

16This exercise is equivalent to solving the initial problem, but substituting constraint
∑
λi = 1 with

constraint
∑
λi = x, where x changes between 0 and 1.
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under the summation can be interpreted as the impact of agent i’s ownership on the total

surplus. It is easy to see that each term (on its own) is maximized at 0 < λi ≤ 1. That

is, ignoring the adding up constraint, the planner would like each agent to hold some of

the firm but when there is risk in the output not the entire firm.17 Put differently, the

term in brackets is increasing at 0 and weakly decreasing at 1. This means that starting

from a situation where agent n owns the entire firm, reducing agent n’s share slightly and

increasing agent n−1’s share by exactly that amount always increases the total surplus.18

The above intuition also goes through when performance based incentives are available.

We argued that, without performance based incentives, the impact of agent i’s ownership

on the total surplus (on its own) is maximized at 0 < λi ≤ 1. With performance based

incentives, this number will weakly decrease since it is no longer necessary to motivate

the agent solely by ownership but will still exceed zero since some ownership improves

risk allocation. This means that, fixing the performance based incentives, starting from

a situation where the most productive agent owns the entire firm, reducing the most

productive agent’s share slightly and increasing the second most productive agent’s share

by exactly that amount always increases the total surplus. Notice that while βjj is positive

for all productive agents (
∑

k 6=j λk > 0 in equation (4), since we showed that agent j

cannot be the sole shareholder of the firm), some of them might not get any shares. This

is because although both shares and wages incentivize, the shares are in limited supply,

so giving shares to one agent disincentivizes another agent. At the same time, paying one

agent a higher wage has no effect on the other productive agents’ incentives.

As is typical in moral hazard problems, all agents’ efforts are lower than the first

best.19 Indeed, the first best level of effort is e∗i = 1
µi

, but since effort is unobservable, the

optimal effort is ei =
λi+β

i
i

µi
, which is lower than e∗i , as it follows from equation (4) that

βii < 1− λi. It is natural to assume that every agent’s effort without an outside investor

is smaller than with an outside investor, and it is true in most cases, but we provide a

17When there is no risk in the output, ignoring the adding up constraint, the planner would like each
agent to hold the entire firm.

18This argument does not imply that all agents must hold positive shares. Consider a situation with
k ≥ 2 agents such that these agents optimally get positive shares in the firm. Now suppose a new agent
(with a lower ownership parameter) joins the team. The new agent may optimally get zero shares in
the firm: the impact of the new agent’s ownership on the total surplus will be strictly increasing in his
ownership (since he starts at zero). But at the previous optimum, the shares are optimally allocated so
that the impact of each existing agents’ ownership on the total surplus is also increasing that agent’s
ownership. Thus allocating shares to the new agent from the existing ones might sometimes reduce the
overall surplus.

19The opposite can happen in some models as well, see Rauh (2014).
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counter-example in an online appendix.

Proposition 3.3 characterizes both the extensive margin (who holds shares) and the

intensive margin (how much of the firm a shareholder holds). Once these are determined,

Proposition 3.1 tells us the optimal performance based incentives each agent receives. In

the next section, we use these two propositions to provide comparative statics results on

the ownership and incentive structures in the firm.

4 Profit Sharing and Firm size

We have seen that sharing profits with an outside investor improves risk sharing, but

reduces the incentives of the insiders to exert effort. As the firm size grows the insiders’

ability to share risks among themselves increases but the risk that they face may also grow.

Is the outside investor more likely to own profit shares in a large firm? Could the outside

investor own a large firm entirely? To answer these questions we look at the optimal profit

sharing in a large firm. We model a large firm as a collection of N identical branches.

Each branch employs b heterogenous productive worker types indexed by {1, . . . , b}. In

addition, we assume that there is an unproductive and risk neutral agent 0.20 Agent j in

each branch is characterised by a triplet of parameters (µNj , (σ
N
sj

)2, γNj ) corresponding to

the cost of effort coefficient, variance of the performance signal and the coefficient of risk

aversion. Note that we allow for the parameters to depend on the number of branches N ,

allowing larger firms to employ workers of different characteristics. For example, larger

firms might have access to better monitoring technologies that would lower the variance

of the performance signal as N gets larger. The parameters for the agents within a branch

can be different, so our specification allows for heterogeneity within a branch but requires

the composition of the branches to be the same. We also assume that, as N grows, for

all type j, productivity parameter, variance of the performance signal and coefficient of

risk aversion, (µNj , (σ
N
sj

)2, γNj ), converge to finite positive limits given by (µj, σ
2
sj
, γj) > 0.

As in our main model we specify the production of branch k as:

yk =
b∑

i=1

eki + εqk

20Hence, there are n = Nb productive agents altogether.
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where eki is the effort of agent i who works for branch k and εqk is the noise in the

production of branch k. The production of the firm is equal to the sum of productions of

individual branches:

Y =
N∑

k=1

yk =
N∑

k=1

(
b∑

i=1

eki

)
+ ε2

q

where εq is the sum of the output noise in the branches. We assume that εqk ’s are

identically and jointly normally distributed (but not necessarily independent), so their

sum is also Gaussian:

εq =
N∑

j=1

εqk ∼ N (0, σ2
q ).

To complete our description of the firm we need to specify how production is correlated

across branches. Depending on the correlation structure, as the firm grows, the variance

in the firm’s output can be vanishing relative to N (for example, if εqk = −εqk+1
for every

k), or growing relative to N (for example, if εqk = εqk̂ for every k and k̂, then σ2
q = N2σ2

k).

For the special case of no correlation between εk (independent noises), total variance is

equal to σ2
q = Nσ2

qk
and the variance in the firm’s output grows at the same rate as N .

We define the ownership parameter for type j agent as:

DN
j ≡

1

µNj + 1
(σNsj )2γNj

.

Since all the parameters converge to finite positive limits, DN
j converges to a finite positive

value given by

Dj =
1

µj + 1
σ2
sj
γj

.

We assume that the limiting values are distinct and we order the types by their ownership

parameter in the limit, i.e., Db > Db−1 > · · · > D1 > 0. As before the ownership

parameter of the unproductive outside investor, D0, is zero.

The following proposition characterizes the distribution of shares, as the firm grows,

depending on how fast σ2
q grows.

Proposition 4.1. Let α ≡ limN→∞
σ2
q

N
∈ [0,∞]. There exist (R0, . . . , Rb−1), ∞ > R0 =

∑b
j=1

Dj
γj
> R1 ≥ · · · ≥ Rb−1 > 0, such that

(i) if 0 ≤ α ≤ Rb−1 then for N large enough only the agents with the highest ownership

parameter Db own shares of the firm.
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(ii) if for some j ∈ {1, . . . , b − 1}, Rj < α ≤ Rj−1, then for N large enough types

j, j + 1, . . . , b have positive shares of the firm, and the other types (including the outside

investor) do not have any shares of the firm.

(iii) if α ∈ (R0,∞), then for N large enough agents of all types (including the outside

investor) have strictly positive shares of the firm.

(iv) if α =∞ then in the limit the firm is owned entirely by the outside investor (although

for any fixed N insiders always own a positive share).

To understand the intuition for Proposition 4.1 let’s start with the case where α goes to

zero as N grows, or equivalently σ2
q is o(N). Part (i) of the proposition implies that in this

case a large enough firm is owned by only one type of insider. This is because as the firm

grows output risk per agent vanishes and the agents with the highest ownership parameter

are not only the best to own shares but are also able to shoulder the vanishing output risk.

In fact, part (i) of Proposition 4.1 says that agents with the highest ownership parameter

should hold the shares as long as α is below Rb−1 in the limit. This sheds light on why

partnerships tend to form among individuals with similar characteristics (e.g. lawyers in a

law firm.) If we assume that insiders are similar in terms of their risk aversion parameters

then agents with the largest ownership parameters have largest productivity parameters

and their performances are difficult to observe. Indeed, lawyers in a law firm are more

likely to have these characteristics than other staff.

When α goes to a strictly positive number above Rb−1, or equivalently σ2
q is O(N),

the output risk does not vanish and needs to be shared among the agents. In these cases,

the outcome is determined by the tradeoff between risk and incentives and requires the

agents with the highest ownership parameters to be motivated by shares and shoulder the

risk although if the risk is large enough as in case (iii) some shares might be held by the

outside investor. In case (iv) σ2
q grows faster than N and the risk grows too fast for the

risk averse insiders to shoulder. In this case, a large enough firm is held almost entirely

by the outside investor.
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5 Output noise

In this section we study how the optimal share allocation changes with the precision of

the output noise.21 This comparative static crucially depends on whether the outside

investor owns any shares of the firm. Everything else constant, the outside investor owns

shares only if there is enough output risk. We state this formally in the next proposition.

Proposition 5.1. There exists a cutoff σ̄2
q > 0 such that the outside investor does not

own any shares if σ2
q ≤ σ̄2

q and owns a positive share of the firm σ2
q > σ̄2

q . If the outside

investor owns positive share of the firm then agent i owns,

λi =
Di

Di + γiσ2
q

. (12)

From, Proposition 5.1 we see that if the outside investor owns positive shares of the

firm, then her share increases and all the insiders’ shares decrease as the variance of the

output noise σ2
q increases. In the limit, the outside investor holds almost all the shares.

The behavior of the optimal ownership structure for σ2
q ∈ [0, σ̄2

q ] is more nuanced. For

σ2
q = 0 not all agents might hold some shares of the firm.22 Agents {m, . . . , n} (in total,

n−m+ 1 of them) participate if condition

1

Dk

<
1

n− k − 1

n∑

i=k+1

1

Di

is satisfied for k = m and is not satisfied for k = m− 1.23

As the output noise σ2
q increases, the left hand side of condition (8) decreases.24 This

implies that if agent i holds a positive amount of shares for a lower σ2
q , she will also hold a

positive amount of shares for a higher σ2
q . Consider two agents i and m who have positive

21In an online appendix, we study comparative statics with respect to the productivity and risk aversion
parameters of the agents (µi and γi) and noisiness of the performance signals (σ2

si).
22Too see why both all and not all agents might hold shares of the firm, consider two examples. In

the first example we have n identical agents. Then they all must hold 1
n shares of the firm. In the second

example consider a firm with some of the agents being similar in their parameters to the outside investor
(unproductive, large µi). Then it is easy to see that they will not hold any shares of the firm.

23Such m exists, because for k = n − 1 it is satisfied (so for no noise in the output there will be at
least two owners of the firm), and for k = 0 it is not satisfied.

24Di ≥ Dk for every i > k and Di does not depend on σ2
q . As σ2

q appears only in the denominator, and
all terms in the sum a non-negative, the whole expression in the left-hand side of condition (8) decreases.
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amounts of shares, and differentiate (7) with respect to σ2
q :

dλi
dσ2

q

(Di + γiσ
2
q ) + γiσ

2
q =

dλm
dσ2

q

(Dm + γmσ
2
q ) + γmσ

2
q .

Since it cannot be the case that everyone’s share holdings increase, for some agents
dλj
dσ2
q

is

non-negative, and for some it is non-positive. If it is negative for a less risk averse agent

(share holding decreases with σ2
q ), then share holding of a more risk averse agent must

also decrease. So, as σ2
q increases, share holdings of agents who are more risk averse then

a threshold decreases and less risk averse than a threshold increases.
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Figure 1: Changing output noisiness σ2
q .

Figure 1 illustrates the situation with an outside investor. Notice that for low values

of output noise the outside investor does not own shares of the firm, and the optimal

allocation with or without the external investor is the same. However, as the output noise

becomes greater, eventually the outside investor owns positive shares. After this point, if

output noise increases further outside investor owns more and all other agents own fewer

shares.
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6 Discussion and Related Literature

In this section we discuss how our results on the optimal ownership structure compare to

those in the literature.

In Proposition 3.2 we showed that agents with higher ownership parameter Di (other

things equal, these are productive risk averse agents whose performance signals are noisy)

own shares of the company. We also demonstrated that a variety of organizational forms

can be possible (see, for example, Proposition 4.1 or Figure 1), depending on the produc-

tion structure of the company: partnerships with only few partners, cooperatives where

all or a big share of employees own all shares, companies partially or almost completely

owned by outside investors. These results are consistent with the findings in the literature.

Hansmann (1996) discusses various explanations of relative prevalence of employee

ownership in the services industry. One critical factor is the difficulty of monitoring

performance (which corresponds to the noisiness of performance signals in our paper).

Hansmann specifically discusses law firms and is skeptical whether the ownership pattern

in law firms is due to the difficulty of monitoring lawyers’ performances. Hansmann ar-

gues that lawyers tend to provide detailed reports of their time use. On the other hand,

Galanter and Palay (1990) argue that monitoring output in the provision of legal services

to clients is difficult and costly. They point out that while law firms can measure the

number of hours a lawyer puts in, it is more difficult to assess how many “quality” hours

a lawyer has worked. Once again our theory is consistent with the pattern that is typically

observed in law firms: senior partners whose contributions are more difficult to measure

obtain shares, more junior lawyers whose contributions are easier to quantify obtain more

performance based incentives, and outside investors who do not provide productive effort

rarely obtain shares. Coram and Robinson (2017) interview nine participants, all part-

ners from Big 4 firms and larger mid-tier firms in 2012 in Australia. Their study points

out that “given the nature and scope of partner responsibilities in accounting firms, it

is nearly impossible to accurately measure total effort or contribution on an individual

basis.” They find that these firms use a combination of profit-sharing schemes and per-

formance incentives. Although they do not study the relative weight on profit sharing

versus performance incentives as a function of difficulty of measurement, their study is

consistent with the results in Proposition 3.2 – the agents with high ownership parameters

Di get both shares of the company and incentives, and the agents with high ownership

parameters are those who perform difficult to measure tasks.
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Testing theories of ownership directly is interesting but also quite difficult due to lack

of data, number of factors affecting incentives and performance and related endogeneity

problems. Nevertheless, empirical findings from two widely cited studies are consistent

with our theory. Anderson and Schmittlein (1984) use survey data from the electronic

components industry to look at what factors influence companies’ decisions to use sales

reps (who are given incentive contracts) as opposed to direct sales force (who are em-

ployed by the company). They ask sales managers whether measuring the results of

individual sales people are difficult. They find that companies that report that perfor-

mance measurement is difficult are more likely to use direct sales force suggesting that

measurement plays a role in incentive design.25 Lafontaine (1992) studies franchisors

decisions’ to use company owned versus franchised outlets. If we view managers of a fran-

chise as productive agents and the franchisor as an outside investor, then in our theory

independent franchises are motivated through shares and company owned outlets are mo-

tivated through incentive contracts. Lafontaine uses geographical dispersion as a measure

of difficulty of performance measurement and, consistent with our theory, finds that this

variable is correlated with more independent outlets. Literature also acknowledges that

workers in managerial roles whose performances are harder to measure tend to receive

more ownership based incentives. Although the aforementined studies are suggestive, we

are not aware of a direct test of how measurability of performance in different tasks affect

the composition of incentives in organizations. Hence, this seems to be an open question

for future empirical research.

The paper that is most closely related to ours is Rayo (2007) who considers incentive

provision in a team production setting. Rayo studies relational contracts, i.e. the contracts

which are enforced not by a court but rather by mutual trust between the parties. The

parties do not deviate from the specified payments because they can be excluded from the

joint production in the future.26 In Rayo (2007), with risk-neutral and infinitely patient

agents, any relational contract which gives expected value greater than the outside option

can be maintained with a grim trigger strategy (following the argument by Levin (2003),

which is a special case of Rayo (2007) with one productive agent). In particular, the first

best levels of effort can be implemented. In our model, agents are risk averse, but in

25Although suggestive, the study does not investigate the incentive contracts of direct sales force.
26Ishiguro and Yasuda (2021) study a static model with a principle and multiple agents and without

explicit contracts. They show that when there are at least two risk neutral agents who can be interpreted
as shareholders, second best outcome can be implemented. Their focus is very different because in their
model there is no team production, and profit sharing does not motivate the agents.
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the special case with risk neutrality, first best effort can also be implemented using solely

noisy performance signals. In this sense, the outcome of our model with risk neutral

agents coincides with Rayo’s model when agents are infinitely patient. Differently from

Rayo (2007), our focus is on the case with risk-averse agents where optimal contracts

balance the amount of risk coming from two sources: shares of output and payment based

on individual performance. We show that if the agents are collectively relatively risk

averse, they cannot bear the risk resulting from shares and have to give some shares to

the outsider.

The results on the concentration of shares in our paper and Rayo’s work also have

some similarities. Rayo (2007) assumes that the vector of signals is a sufficient statistic

for output, conditional on the efforts of the agents. In our paper, signals and output are

conditionally independent, so using shares has additional informational value. In Rayo

(2007), when there is enough noise in the signals, only one person gets all shares of the

company. In contrast, we show that all agents are shareholders in this situation. The other

extreme is similar: if the signals are not noisy (observable effort), then output becomes a

bad measure of performance (compared to the signals) and it is best to provide all agents

with some shares, but give most shares to the outsider (unless we are at the exact limit

with signal noise equal to zero, where the outsider receives all shares of the company). In

Rayo (2007) there is more than one owner in this situation.

In the literature there are alternative theories about profit sharing based on various

forms of adverse selection. Most of these theories focus on professional services such

as investment banking or law firms. Levin and Tadelis (2005) study why profit-sharing

partnerships are common in professional services. They find that it is optimal to use a

partnership when clients are at a disadvantage in determining the average ability of the

workers in the firm. They argue that this informational asymmetry is especially impor-

tant in professional services relative to firms in other industries. Focusing on professional

services Morrison and Wilhelm (2004) and Morrison and Wilhelm (2008) argue that part-

nerships foster the formation of human capital through mentoring and on-the-job training.

Kandel and Lazear (1992) argue that profit sharing might increase motivation through

peer pressure. Poblete (2015), in a career concerns framework, study agents’ choice be-

tween working for firms with profit sharing and firms in which pay is based on individual

productivity. Profit sharing makes it easier for agents to signal their productivity, but

suffers from free riding. In equilibrium skilled agents are more likely to belong to profit

sharing organizations. Garicano and Santos (2004) suggest profit sharing provides incen-
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tives to allocate client work efficiently within a diverse group of partners. Relative to

these papers, our paper provides a complementary rationale for observing partnerships in

professional services. We argue that it is the relative importance of output risk and ease

of monitoring of the agents’ effort levels that determines the organizational form. We

predict that partnerships emerge in industries where the agents’ performance metrics are

noisy relative to the output.

Like us Heywood and Jirjahn (2009) consider the relationship between profit sharing

and firm size. They cite many studies showing no significant relationship between firm size

and profit sharing. They find this surprising because, with team production, larger firms

would avoid profit sharing since they are subject to more free riding. These empirical

results are consistent with our findings, since in our model larger firms are less likely

to use profit sharing only if output risk grows faster than the number of agents (see

Proposition 4.1). Otherwise, larger firms are able to self insure. This means that one

needs to control for output risk when testing for the relationship between firm size and

profit sharing.27

Weitzman (1980) studies the optimal cost splitting between a buyer and a contractor.

In his model, the ambiguity is in the contractor’s private benefit resulting from the project,

and it is unknown to both parties at the time when the sign the contract. Weitzman shows

that the buyer covers a greater part of the cost when the contractor is relatively more risk

averse and when the contractor’s ability to change the cost is more limited.

We focus on profit sharing and its impact on incentives and risk sharing. Often profit

sharing involves ownership which also has implications on control rights and decision

making in the firm. Starting with Williamson (1985) a large literature looks at whether

a firm should vertically integrate certain functions or provide market based incentives.

Williamson (1985) and Grossman and Hart (1986) argue that vertical integration is supe-

rior to market based incentives when there are relationship specific assets and ownership

creates residual rights to the asset when it is prohibitively hard to specify all possible

contingencies in the contract. Our theory provides a complementary view: without asset

specificity, relative difficulty in performance measurement drives the distribution of own-

ership of shares within a firm. Hence, our theory is not only about inside ownership but

also about how shares will be distributed within the firm.

27Li (2016) also studies profit sharing in a firm with many agents, but his focus is on information
acquisition.
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7 Conclusion

Performance contracts and profit sharing are often used jointly to incentivize productive

agents and share risks both within the firm and with outside investors. Our paper provides

a simple framework to study how profits should be shared among insiders and outsiders.

As usual there is a tradeoff between risk sharing and incentives. When output is risky

insiders would like to share risks with outside investors but this reduces the incentives of

the insiders to exert costly effort. The firm can counter this by writing more powerful

incentive contracts. In spite of this, we show that outsiders hold shares only if all insiders

hold shares in the company although insiders’ shares might be very small if output is

very risky. Our paper provides several testable hypothesis. For example, we show that

insiders in larger firms are more likely to share profit if the output risk is unchanged, but

if the output risk grows too fast, larger firms are more likely to share their profits with

the outside investors.

Appendix

A Equivalence of the profit and output-sharing prob-

lems

Consider a setting identical to the problem described in Section 2, but where we allocate

shares of output rather than profit. Agent i holds a claim to share λi of output and has

a contract paying wi(s) given by:

wi(s) = β0
i +

n∑

j=1

sjβ
j
i .

Therefore, the agent’s total payment equals

λiy + wi(s). (13)
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Since the sum of payments to all agents must equal the total output, we obtain:

∑

i

wi(s) =
∑

i

(
β0
i +

n∑

j=1

βji sj

)
= 0

for every realisation of signals s. This is satisfied if and only if
∑

i β
j
i = 0 for every

j = 0, . . . n.28

Proposition A.1. Consider two compensation schemes:

• profit sharing, where each agent i gets a share of profit λi and is additionally paid

according to a contract w̃i(s) = β̃ji sj + β̃0
i ;

• and output sharing, where each agent i gets a share of output λi and is additionally

paid according to a contract wi(s) = βji sj + β0
i .

If β̃ and β are such that for every i ∈ {0, . . . , n} and j ∈ {0, . . . , n},

βji ≡ β̃ji − λi
∑

k∈I
β̃jk. (14)

then each agent receives the same payment under the two payment schemes for any real-

ization of output y and signals s.

Proof. To prove the proposition, we consider a realisation of signals {sj}nj=1 and calculate

how much agent i gets under the two compensation schemes:

λiy + wi(s) = λiy + β0
i +

n∑

j=1

βji sj = λiy + β̃0
i − λi

n∑

k=1

β̃0
k +

n∑

j=1

(
β̃ji sj − λi

n∑

k=1

β̃jk

)
=

λi

(
y −

n∑

k=1

(
β̃0
k +

n∑

j=1

β̃jksj

))
+ β̃0

i +
n∑

j=1

β̃ji sj =

λi

(
y −

n∑

k=1

w̃k(s)

)
+ w̃i(s) = λiπ + w̃i(s). (15)

28To see that
∑
i β

0
i = 0, consider the realisation of signals s = (0, . . . , 0). Since

∑
i β

0
i = 0, consider a

realisation of signals where for some j, sj = 1, and for all k 6= j, sk = 0. For such combination of signals

s,
∑
i wi(s) =

∑
i

(
β0
i +

∑n
j=1 β

j
i sj

)
=
∑
i β

0
i +

∑
i β

j
i = 0, so

∑
i β

j
i = 0.
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This equivalence shows that the profit and the output formulations are payoff equiv-

alent. Since the payoffs are exactly the same, the incentives of the agents in the two

settings are exactly the same.

Each vector of coefficients (β̃0
j , . . . , β̃

n
j ) uniquely defines (β0

j , . . . , β
n
j ):




βj0

βj1

. . .

βjn




=




1− λ0 −λ0 . . . −λ0

−λ1 1− λ1 . . . −λ1

...
...

. . .
...

−λn −λn . . . 1− λn







β̃j0

β̃j1

. . .

β̃jn



≡ Λ




β̃j0

β̃j1

. . .

β̃jn



. (16)

Notice that
n∑

i=0

βji = 0. (17)

Lemma A.1. If
∑n

j=0 λi = 1, then the rank of the (n+ 1)× (n+ 1) matrix Λ is n. If
∑n

j=0 λi 6= 1, then the rank of matrix Λ is n+ 1.

Proof. First, let us show that if
∑n

i=0 λi = 1 the rank of matrix Λ is not full (not n+ 1).

Indeed, the sum of its rows is 0. Indeed, the sum of elements in each column equals

1−
n∑

i=0

λi = 0.

Now, let us show that if we remove one row, then the remaining n rows are linearly

independent. Removing the first row from matrix Λ leaves




−λ1 1− λ1 −λ1 . . . −λ1

−λ2 −λ2 1− λ2 . . . −λ2

...
...

...
. . .

...

−λn −λn −λn . . . 1− λn



.

Denote ri row i of this equation. If the rank of this matrix is n, then all rows are linearly

independent. It means, that there does not exist a non-zero vector (a1, . . . , an), such that
∑n

i=1 airi = 0. Indeed, if such vector exists, then the sum of elements in the first column

with weights ai equals
n∑

i=1

ai(−λi) = 0.
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The sum of elements in column j equals

aj −
n∑

i=1

ai(−λi) = 0.

But the two equations together imply that aj = 0 for every j. So, rows r1, . . . rn are

linearly independent, and the rank of matrix Λ is n (one less than the full rank).

Similarly, if
∑n

i=0 λi 6= 1, let us show that any linear combination of its columns is

non-zero. Denote the columns of matrix Λ as c0, c1, . . . , cn. The columns are linearly

dependent if and only if there exist real numbers a0, a1, . . . , an, such that
∑n

i=0 aici = 0.

For element i of the columns it means that

ai − λi
n∑

k=0

ak = 0. (18)

Let us sum equations (18) for i from 0 to n:

n∑

i=0

ai −
n∑

i=0

λi

n∑

k=0

ak =

(
1−

n∑

i=0

λi

)
n∑

k=0

ak = 0. (19)

Since
∑n

i=0 λi 6= 1, equation (19) implies that
∑n

k=0 ak = 0. Then, from equation (18) it

follows that ai = 0 for every i. Therefore, the columns of matrix Λ are independent, and

it has full rank.

Even though (β̃0
j , . . . , β̃

n
j ) uniquely defines (β0

j , . . . , β
n
j ), (β0

j , . . . , β
n
j ) does not uniquely

define (β̃0
j , . . . , β̃

n
j ), because the square matrix in equation (16) has rank n. On the other

hand, the payments βji must satisfy condition (17). Theorem A.2 shows how different

profit-sharing contracts β̃ corresponding to the same output-sharing contract β relate to

each other.

Theorem A.2. Given a vector (βj0, . . . , β
j
n) satisfying condition (17), the system of equa-

tions (16) has a solution and any pair of its solutions (β̃j0, . . . , β̃
j
n) and (β̃j∗0 , . . . , β̃

j∗
n )

satisfy: 


β̃j0

β̃j1

. . .

β̃jn




=




β̃j∗0

β̃j∗1

. . .

β̃j∗n




+




xλ0

xλ1

. . .

xλn




(20)
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for some real number x. Also, if (β̃j∗0 , . . . , β̃
j∗
n ) is a solution to problem (16), then any

(β̃j0, . . . , β̃
j
n) is also a solution to problem (16) for any real x.

Proof. Existence

Since
∑n

i=0 λi = 1, there is an agent with a strictly positive share λi. Without loss of

generality, let it be agent n. We will show that there is a solution, where β̃jn = 0. Since

β̃jn = 0, we can remove the last column of Λ and the equation (16) remains correct




1− λ0 −λ0 . . . −λ0

−λ1 1− λ1 . . . −λ1

...
...

. . .
...

−λn−1 −λn−1 . . . 1− λn−1

−λn −λn . . . −λn







β̃j0

β̃j1

. . .

β̃jn−1




=




βj0

βj1

. . .

βjn−1

βjn



.

Now, remove the last equation from this system of equation:




1− λ0 −λ0 . . . −λ0

−λ1 1− λ1 . . . −λ1

...
...

. . .
...

−λn−1 −λn−1 . . . 1− λn−1







β̃j0

β̃j1

. . .

β̃jn−1




=




βj0

βj1

. . .

βjn−1



. (21)

By Lemma A.1 the n× n matrix in this equation has full rank, and there exists a unique

solution 


β̃j∗0

β̃j∗1

. . .

β̃j∗n−1




of system (21). Let us show that then




β̃j0

β̃j1

. . .

β̃jn−1

β̃jn




=




β̃j∗0

β̃j∗1

. . .

β̃j∗n−1

0




is a solution of equation (16). We already know that it is true for the first n equations of
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this system. Now, let us check if

βjn =
(
−λn −λn . . . 1− λn

)




β̃j∗0

β̃j∗1

. . .

β̃j∗n−1

0



. (22)

Indeed, adding all the rows in equation (21), we obtain

(
1−

n−1∑

i=0

λi

)
n−1∑

k=0

β̃j∗i =
n−1∑

k=0

βji . (23)

Since
∑n

i=0 β
j
i = 0, βjn = −∑n−1

i=0 β
j
i , and equation (23) can be rewritten as:

λn

n−1∑

k=0

β̃j∗i =
n−1∑

k=0

βji = −βjn.

The last equation is equivalent to equation (22).

Relation between solutions

Take any two solutions β̃j and β̃j∗, which are solutions of equation (16), so that

βj = Λβ̃j = Λβ̃j∗.

Then

Λ(β̃j − β̃j∗) = 0.

The statement of the theorem is therefore equivalent to saying that the only solutions of

the system

Λz = 0 (24)

are vectors

z =




z0

z1

. . .

zn




=




xλ0

xλ1

. . .

xλn



. (25)
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Equation i in system Λz = 0 states that

(1− λi)zi − λi
∑

k 6=i
zk = zi − λi

n∑

k=0

zk = 0,

so, if
∑n

k=0 zk = 0, then zi = 0 for every i. Also, if λi = 0, then zi = 0. Otherwise, for all

i and k, such that λi, λk 6= 0:
zi
λi

=
zk
λk
≡ x. (26)

Then all solutions z of system (24) satisfy condition (25).

It is straightforward to check that any such solution satisfies condition (25) also solves

system (24), so if β̃j∗ is a solution of system (16) then the set of solutions of system (16)

is given by 






β̃j0

β̃j1

. . .

β̃jn




∣∣∣∣∣∣∣∣∣∣




β̃j0

β̃j1

. . .

β̃jn




=




β̃j∗0

β̃j∗1

. . .

β̃j∗n




+




xλ0

xλ1

. . .

xλn



, x ∈ R




. (27)

Indeed, adding a payment proportional to the allocation of shares to all agents leads

to the exact same payment to each agent in every state of the world, so it does not change

the incentives or utilities of any of the agents.

It means that the firm where profit is split according to shares λi (agent i gets share

of the profit equal to λiπ), and the contracts are given by a combination of parameters

{β̃ji }i,j∈{0,...,n} is equivalent to a firm where output is split according to shares λi (agent

i gets share of the profit equal to λiy) and the contracts are given by a combination of

parameters {βji }i,j∈{0,...,n} (satisfying the budget constraint (17)) defined by a system of

equations (16) for each j ∈ {0, . . . , n}.

In the remaining sections we speak only in terms of the output-sharing setting. The

reason is that the solution in this setting is unique, while there is a number of payoff-

equivalent solutions in the profit-sharing setting. However, Proposition A.1 proves that

all these solutions are also payoff equivalent to the unique solution in the output-sharing

setting, and the optimal shares are the same in the unique optimal allocation in the

output-sharing setting and all optimal allocations in the profit-sharing setting.
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B Binary model

In this section we develop a model which is slightly different from the model in the main

part of the paper. We show that one of the main results from Proposition 3.3 that if the

outsider holds shares of the firm, then every insider holds shares of the firm is still valid

in a different setting.

The model is more general in that it allows for any concave utility functions, however

here we assume that output and all signals have only binary realisations.

B.1 Setting

Consider a universe with n+ 1 agents indexed 0, 1, . . . , n.

Agent 0 represents all non-productive people in the society. Agent 0 cannot exert

effort, but can own shares of the firm. We assume that she is risk neutral, so that her

utility from getting amount of money x is normalized to u0(x) = x.

Agent i (for i ≥ 1) exerts effort ei at cost ci(ei) (c′i(ei) > 0 and c′′i (ei) < 0 for every

ei). The agent’s effort increases the probability of high output, that is we assume that

the output can have two realisations: high=1 and low=0. The probability of high output

is:

P(y = 1|e) = min

{∑

j

ej, 1

}
.

We assume that the functions and other parameters are such that it is never optimal to

exert level of efforts ei with
∑n

i=1 ei ≥ 1,29 so that the probability above can be written

as just e.

In addition, there is a signal of effort of agent 1:30

si =

{
0, with probability 1− tiei;
1, with probability tiei.

λi denotes agent i’s share of the company (claim of output), and the rest of the

29For example, if ci(·) is such that ci(ei)→∞ when ei → 1
n .

30Again, we choose parameters such that tiei is always in [0, 1], similar to the comment in the previous
footnote.
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company (share λ0 = 1 −∑j 6=i λj) belongs to an unproductive risk neutral agent 0. All

agents signs a contract based on signal si with agent 0 (or he signs it with the firm, but

the firm itself buys an insurance contract from agent 0), who pays agent i wage31

wi =

{
w̄i, if si = 1;

¯
wi, if si = 0.

We assume that no agent can get a negative share of output, so λi ≥ 0 for i ∈
{0, . . . , n}.

Let the utility function of agent i be ui(xi)− ci(ei), where xi is the amount of money

he gets and ui with u′i > 0 and u′′i < 0 (for example, 1− e−xi).

B.2 Results

Proposition B.1. The optimal distribution of shares is such that the outsider (agent 0)

owns shares only if all productive agents also own some shares of the firm.

Proof. Every productive agent i maximizes (assuming that equilibrium efforts are such

that
∑n

i=1 ei < 1):

max
ei

tiei

(
n∑

j=1

ej

)
ui(λi + w̄i) + (1− tiei)

(
n∑

j=1

ej

)
ui(λi +

¯
wi)+

tiei

(
1−

n∑

j=1

ej

)
ui(w̄i) + (1− tiei)

(
1−

n∑

j=1

ej

)
ui(

¯
wi)− ci(ei) (28)

31We assume that the wages are paid by agent 0 for brevity here. In principle, we can think of this
as the firm paying wages to workers and then buying an insurance contract from agent 0. It is better for
agent 0 to carry the risk of the wage associated with signal si, because other agents (not 0 or i) cannot
affect signal si, so it does not have a positive effect on their incentives, but they prefer a certain outcome
over a lottery based on random variable si, so it is better if agent 0 bears this risk.

32

                  



FOC:

Vi ≡
dUi
dei

= ti

(
ei +

n∑

j=1

ej

)
ui(λi + w̄i) +

(
1− tiei − ti

n∑

j=1

ej

)
ui(λi +

¯
wi)+

ti

(
1− ei −

n∑

j=1

ej

)
ui(w̄i)−

(
ti

(
1−

n∑

j=1

ej

)
+ 1− tiei

)
ui(

¯
wi)− c′i(ei) = 0. (29)

The second derivative is:

2ti (ui(λi + w̄i)− ui(λi +
¯
wi)− ui(w̄i) + ui(

¯
wi))− c′′i (ei) < 0,

so there is a unique maximum. It is also greater than 0 (if
∑

j 6=i ej < 1), because the LHS

of equation (29) is positive when ei = 0:

ti
∑

j 6=i
ejui(λi + w̄i) +

(
1− ti

∑

j 6=i
ej

)
ui(λi +

¯
wi)+

ti

(
1−

∑

j 6=0,i

ej

)
ui(w̄i)−

(
ti

(
1−

∑

j 6=0,i

ej

)
+ 1

)
ui(

¯
wi)− c′i(ei) =

ti

(
1−

∑

j 6=i
ej

)
(−ui(λi + w̄i) + ui(λi +

¯
wi) + ui(w̄i)− ui(

¯
wi)) +

ti(ui(λi + w̄i)− ui(λi +
¯
wi)) + (ui(λi +

¯
wi)− ui(

¯
wi)). (30)

The first term above is non-negative because function ui is concave and
∑

j 6=i ej < 1,

the second term is positive if w̄i >
¯
wi and the third term is positive if λi > 0, because

ui is an increasing function, and we assumed that c′i(ei) = 0. So, the expression above

is non-negative and only equals zero if λi = 0 and w̄i =
¯
wi. So, as long as agent i is

motivated with either shares (λi > 0) or a wage bonus (w̄i >
¯
wi) agent to exert positive

effort. If he is not motivated with either of them, he puts in effort 0.

All Pareto optimal compensation schemes solve the following maximization problem:

max
λ0,{

¯
wi,w̄i,λi}ni=1

n∑

i=0

νiUi, s.t. ∀i : λi ≥ 0,
n∑

i=0

λi ≤ 1 (31)

Here the utility of all productive agents i, i ≥ 1 is given by the expression in problem (28)
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and utility of agent 0 is:

U0 ≡ λ0

n∑

j=1

ej −
n∑

j=1

((1− tjej)
¯
wj + tjejw̄j) .

Let us show that it cannot be optimal for the outsider to have shares of the company

if at least one of the insiders has no shares of the company. In other words λ0 > 0 and

λi = 0 for some i cannot be the solution of the optimization problem (31).

The Lagrangian of this problem is:

L ≡
n∑

i=0

νiUi +
n∑

i=0

θiλi + χ

(
1−

n∑

i=0

λi

)
.

We normalize ν0 = 1.

In order to proceed with first order conditions, we introduce additional notation to

make the following derivations more concise.

Denote εi an n-dimensional column-vector, such that component i is equal to one, and

all other components are zero.

Notice that conditions Vi = 0 from equation (29) determine effort levels ej. Thinking

of the vector of Vis as a vector-valued function, we can rewrite the conditions, determining

the link between different derivatives

dVi
dx

=
∂Vi
∂x

+
n∑

j=1

∂Vi
∂ej

dej
dx

= 0, (32)

where x is one of the parameters (for example, λi or w̄k), using the Jacobian matrix

J ≡




∂V1
∂e1

∂V1
∂e2

. . . ∂V1
∂en

∂V2
∂e1

∂V2
∂e2

. . . ∂V2
∂en

...
...

. . .
...

∂Vn
∂e1

∂Vn
∂e2

. . . ∂Vn
∂en




; J ·




de1
dx
de2
dx
...
den
dx




=




−∂V1
∂x

−∂V2
∂x
...

−∂Vn
∂x



≡ −∂V

∂x
.

In lemma B.2 we show that matrix J is invertible.

Since matrix J is invertible, dei
dx

= −εTi J−1 ∂V
∂x

. If variable x has index j (like x = w̄j),
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then first order conditions are such that Vk does not depend on x for k 6= j, so ∂Vk
∂x

= 0.

Thus, dei
dx

= −εTi J−1εj
∂Vj
∂x

.

Finally, we need to calculate derivatives (for j 6= k):

∂Uj
∂ek

= tjej(uj(λj + w̄j)− uj(w̄j)) + (1− tjej)(uj(λj +
¯
wj)− uj(

¯
wj)) ≡ Sj.

Remember that
∂Uj
∂ej

= 0, because ej is defined as the solution of optimization problem (28).

Also, Sj > 0 if λj > 0 and Sj = 0 if λj = 0.

First order conditions:

dL
dw̄i

=
n∑

j=0

νj

(
∂Uj
∂w̄i

+
∑

k 6=0,j

∂Uj
∂ek

dek
dw̄i

)
= νi

∂Ui
∂w̄i

+
∂U0

∂w̄i
+

n∑

j=0

νj
∑

k 6=0,j

∂Uj
∂ek

dek
dw̄i

=

νitiei

(
n∑

j=1

eju
′
i(λi + w̄i) +

(
1−

n∑

j=1

ej

)
u′i(w̄i)

)
− tiei+

+
n∑

k=1

dek
dw̄i

(
(λ0 − tk(w̄k −

¯
wk)) +

∑

j 6=0,k

νjSj

)
= 0. (33)

dL
d

¯
wi

=
n∑

j=0

νj

(
∂Uj
∂

¯
wi

+
∑

k 6=0,j

∂Uj
∂ek

dek
d

¯
wi

)
= νi

∂Ui
∂

¯
wi

+
∂U0

∂
¯
wi

+
n∑

j=0

νj
∑

k 6=0,j

∂Uj
∂ek

dek
d

¯
wi

=

νi(1− tiei)
(

n∑

j=1

eju
′
i(λi +

¯
wi) +

(
1−

n∑

j=1

ej

)
u′(

¯
wi)

)
− (1− tiei)+

+
n∑

k=1

dek
d

¯
wi

(
(λ0 − tk(w̄k −

¯
wk)) +

∑

j 6=0,k

νjSj

)
= 0. (34)
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dL
dλi

∣∣∣∣
i 6=0

= θi − χ+
n∑

j=0

νj

(
∂Uj
∂λi

+
∑

k 6=0,j

∂Uj
∂ek

dek
dλi

)
=

θi − χ+ νi
∂Ui
∂λi

+
∂U0

∂λi
+

n∑

j=0

νj
∑

k 6=0,j

∂Uj
∂ek

dek
dλi

=

θi − χ+ νi

(
n∑

j=1

ej

)
(tieiu

′
i(λi + w̄i) + (1− tiei)u′(λi +

¯
wi)) +

+
n∑

k=1

dek
dλi

(
(λ0 − tk(w̄k −

¯
wk)) +

∑

j 6=0,k

νjSj

)
= 0. (35)

dL
dλ0

=
n∑

j=1

ej + θ0 − χ = 0. (36)

Denote

Rk ≡ (λ0 − tk(w̄k −
¯
wk)) +

∑

j 6=0,k

νjSj. (37)

Lemma B.1. If there is an agent i, i ≥ 1 with no shares (λi = 0), then the outsider has

no shares as well (λ0 = 0).

Proof. If λi = 0, then condition (33) can be simplified into:

νitieiu
′
i(w̄i)− tiei +

n∑

k=1

dek
dw̄i

Rk = 0. (38)

In turn, since
dej
dw̄i

= −εTj J−1εi
∂Vi
∂w̄i

, this condition can be written as:

νitieiu
′
i(w̄i)− tiei −

∂Vi
∂w̄i

n∑

k=1

εTk J
−1εiRk = 0. (39)

Since λi = 0:

∂Vi
∂w̄i

= ti

(
ei +

n∑

j=1

ej

)
u′i(λi + w̄i) + ti

(
1− ei −

n∑

j=1

ej

)
u′i(w̄i) =

λ=0
tiu
′
i(w̄i).

Analogously,
∂Vi
∂

¯
wi

=
λ=0
−tiu′i(¯

wi),
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∂Vi
∂λi

= ti

(
ei +

n∑

j=1

ej

)
u′i(λi + w̄i) +

(
1− tiei − ti

n∑

j=1

ej

)
u′i(λi +

¯
wi) =

λ=0

ti

(
ei +

∑

j=1

ej

)
u′i(w̄i) +

(
1− tiei − ti

n∑

j=1

ej

)
u′i(¯
wi).

First order conditions (33), (34) and (35) can be written as:

νitieiu
′
i(w̄i)− tiei − tiu′(w̄i)

n∑

k=1

εTk J
−1εiRk = 0, (40)

νi(1− tiei)u′i(¯
wi)− (1− tiei) + tiu

′(
¯
wi)

n∑

k=1

εTk J
−1εiRk = 0, (41)

and

θi − θ0 −
n∑

j=1

ej + νi

(
n∑

j=1

ej

)
(tieiu

′
i(w̄i) + (1− tiei)u′(

¯
wi))−

(
ti

(
ei +

∑

j

enj=1

)
u′i(w̄i) +

(
1− tiei − ti

n∑

j=1

ej

)
u′i(¯
wi)

)
n∑

k=1

εTk J
−1εiRk = 0. (42)

Subtract equation (40)×
(∑n

j=1 ej

)
and equation (41)×

(∑n
j=1 ej

)
from equation (42)

to get:

θi − θ0 − (tieiu
′(w̄i) + (1− tiei)u′i(¯

wi))
∑

k

εTk J
−1εiRk = 0. (43)

In lemma B.3 we show that

∑

k

εTk J
−1εiRk < 0,

so equation (43) implies that θi < θ0. If λ0 > 0, then θ0 = 0. But this is impossible,

because θi ≥ 0 for all i.

So, agent 0 has shares only if all other agents have shares.

Lemma B.2. Matrix J is invertible.
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Proof. First, we calculate the elements of matrix J :

∂Vi
∂ei

= 2ti (ui(λi + w̄i)− ui(λi +
¯
wi)− ui(w̄i) + ui(

¯
wi))− c′′i (ei).

∂Vi
∂ej

∣∣∣∣
i 6=j

= ti (ui(λi + w̄i)− ui(λi +
¯
wi)− ui(w̄i) + ui(

¯
wi)) .

Denote the expression from above as Ti. Notice that Ti ≤ 0 and Ti = 0 if and only if

either λi = 0 or w̄i =
¯
wi.

J =




2T1 − c′′1(e1) T1 . . . T1

T2 2T2 − c′′2(e2) . . . T2

...
...

. . .
...

Tn Tn . . . 2Tn − c′′n(en)




J has full rank if and only if its columns (denote them J1, . . . , Jn) are linearly independent:

n∑

i=1

bi · Ji = 0⇔ ∀i : bi = 0.

Condition
∑n

i=1 bi · Ji = 0 implies

Ti

n∑

j=1

bj = bi(c
′′
i (ei)− Ti).

If Ti = 0, then this condition cannot be satisfied, unless bi = 0, because c′′i (ei) > 0. If

Ti < 0 (notice that Ti cannot be positive), then either bi =
∑n

j=1 bj = 0 or bi and
∑n

j=1 bj

have different signs. But all bi and
∑

j bj cannot have different signs (if the sum is positive,

all bi cannot be negative, and if the sum is negative, all bi cannot be positive), so bi = 0

for all i. Thus, matrix J has the full rank.

Lemma B.3. ∑

k

εTk J
−1εiRk < 0,

Proof. Notice that
∑n

k=1 ε
T
k J
−1εiRk ≤ 0. Indeed, subtract equation (41)×tiei from equa-

tion (40)×(1− tiei):

νitiei(1− tiei) (u′i(w̄i)− u′i(¯
wi)) = ti ((1− tiei)u′i(w̄i) + tieiu

′
i(¯
wi))

∑

k

εTk J
−1εiRk. (44)
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If w̄i >
¯
wi, then the left hand side of this equation is negative (tiei ∈ (0, 1) and u′(w̄i) <

u′(
¯
wi), and ti ((1− tiei)u′(w̄i) + tieiu

′(
¯
wi)) ≥ 0, so

∑

k

εTk J
−1εiRk < 0.

Let us show that it cannot be the case that w̄i =
¯
wi (so that the agent is not motivated

not only with shares but also with a wage bonus).

If w̄i =
¯
wi then equation (44) implies that

∑

k

εTk J
−1εiRk = 0.

Denote (
X1 X2 . . . XN

)
≡
(
R1 R2 . . . RN

)
· J−1.

Then Xi =
∑

k ε
T
k J
−1εiRk and

(
X1 X2 . . . XN

)
· J =

(
R1 R2 . . . RN

)

Hence,

Rj −Ri =
(
X1 X2 . . . XN

)
·




T1 − T1

...

Ti − 2Ti − c′′i (ei)
...

2Tj − c′′j (ej)− Tj
...

Tn − Tn




=

−Xi(Ti − c′′i (ei)) +Xj(Tj − c′′j (ej)). (45)

Using the definition of R in equation (37):

Rj −Ri = −tj(w̄j −
¯
wj) + ti(w̄i −

¯
wi) + νiSi − νjSj.

If Xi = 0, then w̄ =
¯
wi and therefore ei = 0 should hold, and also Si = 0 since λi = 0.
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Then the equation above is:

Rj −Ri = −tj(w̄j −
¯
wj)− νjSj.

There is an agent with positive shares λj > 0 or w̄j− w̄i > 0, then Rj−Ri < 0. If Xi = 0,

then equation (45) becomes:

0 > Rj −Ri = Xj(Tj − c′′j (ej)).

As Tj − c′′j (ej) < 0, Xj > 0. So, for all agents who have either shares or bonuses Xj > 0

and for the ones who have neither shares, nor bonuses Xi = 0 (implied by equation (44)).

But

Ri =
(
X1 X2 . . . XN

)
·




T1

...

2Ti − c′′i (ei)
...

Tn




=

Xi(Ti − c′′i (ei)) +
∑

k

XjTk =
∑

k

XkTk < 0. (46)

The last inequality is true because Xi = 0, Xj > 0 and Tj < 0, and for all k: Xk ≥ 0 and

Tk ≤ 0. But

Ri = λ0 − ti(w̄i −
¯
wi) +

∑

j 6=i
νjSj = λ0 +

∑

j 6=i
νjSj ≥ 0. (47)

Equations (46) and (47) contradict each other, therefore, the assumption that Xi = 0 is

wrong, so Xi < 0.
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C Proofs

C.1 Proof of Proposition 3.1

Proof. Consider the optimization problem in (3). Denote the Lagrange multipliers for

λi ≥ 0 by θi, for
∑
λi = 1 by χ, and for

∑
i β

j
i = 0 by ηj. Then the Lagrangian is:32

L =
∑

i∈I

[
λi

(
n∑

j=1

λj + βjj
µj

)
− µi

2

(
λi + βii
µi

)2

− γi
2

(
(λi)

2σ2
q +

∑

j∈I

(
βji
)2
σ2
sj

)]
+

∑

i∈I
λiθi + χ

(
1−

∑

i∈I
λi

)
−

n∑

j=1

(
ηj
∑

i∈I
βji

)
. (48)

Notice that the objective function is concave in the variables βji . Indeed, all cross

derivatives ∂2L
∂βji ∂β

l
k

are equal to zero and all second derivatives ∂2L
∂(βji )

2 are negative. So

first order conditions define the unique maximum of this problem. Differentiating the

Lagrangian from expression (48) with respect to choice variables βji yields first order

conditions (equation (49) is for j 6= i):

∂L
∂βji

= −βji γiσ2
sj
− ηj = 0. (49)

∂L
∂βjj

=
n∑

i=1

λi
µj
−
λj + βjj
µj

− βjjγjσ2
sj
− ηj =

∑

i 6=j

λi
µj
−
βjj
µj
− βjjγjσ2

sj
− ηj = 0. (50)

Comparing equation (49) for pairs (i, j) and (k, j), we obtain:

βji
βjk

=
γk
γi
.

Equating ηj from equations (49) and (50) yields:

βjj
µj
− βji γiσ2

sj
=

1

µj

n∑

k 6=j
λk − βjjγjσ2

sj
.

32In the case with the outside investor the first term under the sum
∑
i∈I for i = 0 is simply

λ0

(∑n
j=1

λj+β
j
j

µj

)
.
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Thus,

βji =
1

γi

(
βjj

(
γj +

1

µjσ2
sj

)
−
∑

k 6=j λk

µjσ2
sj

)
. (51)

Sum expression (51) for all i 6= j:

−βjj =
∑

i 6=j
βji = βjj

(
γj +

1

µjσ2
sj

)∑

i 6=j

1

γi
−
∑

i 6=j
1
γi

∑
k 6=j λk

µjσ2
sj

.

Therefore, the coefficient βjj which determines how agent i’s payment depends on her

effort is given by:

βjj =

∑
i 6=j

1
γi

∑
k 6=j λk

µjσ2
sj

((
γj + 1

µjσ2
sj

)∑
i 6=j

1
γi

+ 1

) =

∑
k 6=j λk

µjσ2
sj

(
γj + 1

µjσ2
sj

+ 1∑
i 6=j

1
γi

) =

∑
k 6=j λk

1 + µjσ2
sj

(
γj + 1∑

i 6=j
1
γi

) =
1− λj

1 + µjσ2
sj

(
γj + 1∑

i 6=j
1
γi

) . (52)

Now, substitute βjj into expression (51) to obtain βji :

βji =
1

γi




∑
k 6=j λk

1 + µjσ2
sj

(
γj + 1∑

k 6=j
1
γk

)
(
γj +

1

µjσ2
sj

)
−
∑

k 6=j λk

µjσ2
sj


 =

1

γi




∑
k 6=j λk

1 + µjσ2
sj

(
γj + 1∑

k 6=j
1
γk

)
(
γj +

1

µjσ2
sj

− γj −
1∑
k 6=j

1
γk

− 1

µjσ2
sj

)

 =

−
1
γi∑
k 6=j

1
γk




1− λk
1 + µjσ2

sj

(
γj + 1∑

k 6=j
1
γk

)


 . (53)

With the outside investor, the first order condition (49) for i = 0 means that ηj = 0. So,

βji = 0 for all i 6= 0, j and βj0 = −βjj (because
∑

i β
j
i = 0). Since ηj = 0, equation (50)

simplifies into βjj =
∑
k 6=j λk

1+µjσ2
sj
γj

=
1−λj

1+µjσ2
sj
γj

.
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C.2 Proof of Proposition 3.2

Proof. In order to find the optimal allocation of shares, we derive the first order condition

on the Lagrangian:

∂L
∂λi

=
n∑

j=1

λj + βjj
µj

+

(∑

j∈I
λj

)
1

µi
− µi

1

µi

(
λi + βii
µi

)
− γiσ2

qλi + θi − χ = 0. (54)

Notice, that the equation above is valid in both the case with and without the outside

investor. Indeed, ∂L
∂λ0

=
∑

j∈I
λj+β

j
j

µj
+ θ0 − χ, which is the same as equation (54) when

µ0 → 0 and γ0 = 0. After some algebra we rearrange the first order condition as,

∂L
∂λi

=



∑

k∈I
λk



∑

j 6=k,i

1

µj

(
1 + µjσ2

sj

(
γj + 1∑

l 6=j
1
γl

)) +
1

µi
+

1

µk
Ii 6=k





−

γiσ
2
qλi + θi − χ = 0. (55)

In the Online Appendix we show that the problem above is concave on the hyperplane
∑n

i=1 λi = 1 (feasible allocations of shares).

Denote Ai = 1
µi

andBi = 1

µi

(
1+µiσ2

si

(
γi+

1∑
j 6=i 1

γj

)) . In the case with the outside investor,

Bi = 1

µi(1+µiσ2
si
γi)

and A0 = B0 = 0.

Equating χ in expressions (55) for i and m, we get:

(∑

k∈I
λk

(∑

j 6=k,i
Bj + Ai + AkIi 6=k

))
− γiσ2

qλi + θi =

(∑

k∈I
λk

(∑

j 6=k,m
Bj + Am + AkIi 6=k

))
− γmσ2

qλm + θm. (56)

Rearrange this expression:

(Ai−Am−Bi +Bm)
∑

k 6=i,m
λk +λm(Ai−Bi)− θm− γiσ2

qλi = λi(Am−Bm)− θi− γmσ2
qλm.

Denote Di ≡ Ai −Bi. Since
∑

j∈I λj = 1,
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(Di −Dm)− λi(Di + γiσ
2
q ) = θm − θi − λm(Dm + γmσ

2
q ). (57)

If both agents i and m hold positive shares of the company, then θi = θm = 0, and

condition (7) follows.

C.3 Proof of Proposition 3.3

Proof. First, let us assume that Di ≥ Dk. Let us show that if λk > 0, then λi > 0 as well.

Indeed, then θk is 0, and the right-hand side of condition (if we substitute m with

k) (57) is non-positive.33 If λi was zero, then the left-hand side of condition (57) is either

positive (if Di > Dk), or zero (if Di = Dk). If it is positive, then we get a contradiction.

If it is zero, then the right-hand side has to also be zero, but it can be zero only if Di = 0,

which is not the case for any productive agent i. Therefore, λi has to be positive.

Hence, there is an ordering of the agents, and if agents with a lower Di have a share in

the firm, then agents with a higher share Dm have a share as well. In particular, if there

is an agent with a noiseless signal, while there are other agents with noisy signals about

their performances, then she should not hold any shares of the company. There will be a

threshold type, such that all agents with a higher Di own stock in the company, and all

agents below do not.

Consider a situation with an outside investor. Let us check when it optimal for ev-

eryone, including the outside investor to hold shares of the company. Since the outside

investor is risk neutral (γ0 = 0) and D0 = 0, all other agents have higher D and also

have shares of the company. It means that θi = 0 for every i. Substitute m = 0 into

equation (57), then we immediately get:

λi =
Di

Di + γiσ2
q

for every i ∈ {1, . . . , n}. As the sum of all shares should equal to 0, the outsider’s share

is given by:

λ0 = 1−
n∑

i=1

λi = 1−
n∑

i=1

Di

Di + γiσ2
q

. (58)

33In fact, it is strictly negative, unless agent k is the outside investor with Dk = 0 and γk = 0. For all
other agents Dk + γkσ

2
q > 0.
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Thus, the outsider owns shares of the company if and only if λ0 from expression (58) is

positive.

If it is negative, it is not optimal for the outsider to own shares of the company.

Now we will check when it is optimal for agents k, k + 1, . . . , n to own some stock

of the company. If in the optimal allocation they all have positive shares, then all θk =

θk+1 = · · · = θn = 0. Solving the system of first order conditions (57) and the feasibility

condition
∑
λi = 0 we will find λis.

λi =
Di −Dj + λj(Dj + γjσ

2
q )

Di + γiσ2
q

.

Assume that agent k is the one with the lowest index who has shares of the company.

It follows from above that all agents i with Di ≥ Dk have shares of the company, so all

agents k, k + 1, . . . , n also have positive shares of the company. The sum of their shares

is equal to 1:

1 =
n∑

i=k

λi =
n∑

i=k

Di −Dj

Di + γiσ2
q

+ λj

n∑

i=k

Dj + γjσ
2
q

Di + γiσ2
q

.

Then for all j ∈ {k, k + 1, . . . , n}:

λj =
1−∑n

i=k
Di−Dj
Di+γiσ2

q∑n
i=k

Dj+γjσ2
q

Di+γiσ2
q

. (59)

If all λj are non-negative, then due of concavity the allocation of λs is optimal under the

assumption that agents with indices lower than m do not get shares. If some of the λjs

are negative, then it is not optimal for all agents k, k + 1, . . . , n to have positive shares,

and fewer agents should be owners of the firm. In order to check that all λjs are positive,

it is sufficient to check that λk > 0. Indeed, notice that the numerator in this formula

positively depends on Dj, so if λk is positive, so are λj for j > k. λk > 0 if and only if

n∑

i=k

Di −Dk

Di + γiσ2
q

< 1.

We showed that there is a threshold type, so we need to find this threshold type.

We start by checking if all agents have positive shares of the company. If this is optimal

(condition (8) is satisfied for the k = 1 or k = 0, if there is an outsider), then we found the
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best solution (the unconstrained maximum satisfies all constraints λi ≥ 0 are satisfied). If

this is not optimal, check if it can be optimal for n−1 agents to have shares of the company,

so, check condition (8) for k = 2 (or n agents to be owners of the company and check

condition (8) for k = 1 if there is an outsider). Continue this process till we find k = m

where all agents with indices at least k have positive λs.34 This is the optimal allocation,

because we showed that for a greater number of agents the allocation is not optimal, and

this is the optimal allocation under the assumption that agents j = 0, . . . , k − 1 have no

shares.

C.4 Proof of Proposition 4.1

Proof. To distinguish between an agent of type j for a given N , an agent of type j in the

limit, and an agent number i for a given number of branches N , we denote the variables

related to an agent of type j for a given N by (µNj , γ
N
j , (σ

N
sj

)2), the variables related to

the limit type j by (µj, γj, σ
2
sj

), and (µ̂i, γ̂i, σ̂
2
si

) denote the variables related to agent i for

a finite N . Then, for example, µ̂i = µNd iN e and µNj → µj.

Let us check which of the workers will have shares of the firm, as it consists of more

branches. According to Proposition 3.3, agent k has shares if and only if35

n∑

i=k+1

D̂i − D̂k

D̂i + γ̂iσ2
q

=
n∑

i=N ·d kN e+1

D̂i − D̂k

D̂i + γ̂iσ2
q

< 1. (60)

We can order limit types by

Dl =
1

µl + 1

σ2
sl

(
γl+

1∑
j 6=l·N 1

γj

)
.

If there is a risk neutral outsider, then the sum of inverse coefficients of risk aversion in

the denominator is equal to zero, so the expression above can be rewritten as:

Dl =
1

µl + 1
σ2
sl
γl

.

34The process will end, because condition (8) is satisfied for k = n− 1.
35Notice that all the terms between i = k and i = N ·

⌈
k
N

⌉
are equal to 0, since then D̂i = D̂k.
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For a big enough N the types are sorted the same way as in the limit.36 Since there are

N identical agents of each type l, the left hand side of inequality (60) equals:37

N
b∑

j=l+1

DN
j −DN

l

DN
j + γNj σ

2
q

If (µNl , (σ
N
sl

)2, γNl ) → (µl, σ
2
sl
, γl) > 0 and σ2

q → ∞, as N → ∞, then the expression

behaves asymptotically as

N

σ2
q

b∑

i=l+1

DN
i −DN

l

γi
. (61)

Hence, if σ2
q grows faster than N (N = o(σ2

q )), then this expression converges to 0,

and every type l will participate (all workers have shares of the firm), and the outsider

participates as well. In fact, the outsider’s share in this case converges to 1:

λ0 = 1−N
b∑

i=1

DN
i

DN
i + γNi σ

2
q

→ 1. (62)

If σ2
q grows slower than N (σ2

q = o(N)), then expression (61) converges to infinity for any

l < n̄. It means that in the limit on the type with the highest D̂ in each branch will have

shares of the firm (e.g. the top management), but not the other types of workers.

In the threshold situation, when σ2
q = O(N) (for example, in case of independent

noises εqi), it depends on how big the limit of the ratio
σ2
q

N
is.

For every l ∈ {0, 1, . . . , b− 1} denote

Rl ≡
b∑

i=l+1

Di −Dl

γi
.

Thus, if α > Rl, then condition (60) is satisfied:

N

σ2
q

b∑

i=l+1

DN
i −DN

l

γNi
→
∑b

i=l+1
Di−Dl
γi

α
=
Rl

α
< 1,

so, type l agents have positive shares of the firm. Notice that if Di > (≥)Dj, then

36The only issue can happen if the limit some types have the same parameter Dj . Then one of the
types’ DN

j might be higher than the other for any N , but they converge to the same Dj . The behavior
in this case is not very different, but we assume this case away to simplify the proof.

37Here l is the type corresponding to agent i in inequality (60), that is l =
⌈
k
N

⌉
.
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Ri < (≤)Rj (each term in the sum is smaller, and there are fewer of them). Effectively,

Ris are thresholds determining which types of agents hold shares of the firm in the limit.

Notice that if R0 ≥ α > Rl that in the limit all agents of type l together own a strictly

positive share of the firm in the limit. Indeed, the sum of their shares (from equation (9))

is equal to:

Nλl = N
1−N∑b

i=k

DNi −DNl
DNi +γNi σ

2
q

N
∑b

i=k

DNl +γNl σ
2
q

DNi +γNi σ
2
q

→ 1− Rl
α

γl
∑b

i=k
1
γi

> 0.

If ∞ > α > R0, then

Nλj = N
DN
j

DN
j + γNj σ

2
q

→ Dj

γjα
> 0.

C.5 Proof of Proposition 5.1

Proof. By setting k = 0 in (8) we see that the outside investor owns a positive number of

shares if and only if:
n∑

i=1

Di

Di + γiσ2
q

< 1. (63)

The left hand side of condition (63) strictly decreases with σ2
q , and when σ2

q = 0, it is equal

to n, so the condition is not satisfied. When σ2
q →∞, the left-hand side of condition (63)

monotonically converges to zero, therefore there is a unique value of σ2
q = σ̄2

q , such that

if σ2
q ≤ σ̄2

q the outsider does not own any shares of the company, and if σ2
q > σ̄2

q , then the

outsider owns a positive share. If the outside investor owns a positive share of the firm,

then substituting m = 0 in equation (7) yields (12).
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