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1. Summary
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improve performance.

For increasingly complex modern manufacturing production systems, operational decision
making encounters more challenges in terms of having sustainable manufacturing to satisfy
customers and markets’ rapidly changing demands. Nowadays, the efficiency of decision
making could not be guaranteed nor meet the dynamic scheduling requirement in the job-shop
manufacturing environment based on the traditional knowledge-based method. We propose using
Al-enhanced deep reinforcement learning methods to tackle the dynamic scheduling problem
in the job-shop manufacturing system with unexpected machine failure. The proximal policy
optimization algorithm was used in the DRL framework to accelerate the learning process and
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Figure 4. Learning progess of different algorithms;
(a) policy gradient (PG), (b) trust region policy
optimization (TRPO), and (¢) proximal policy
optimization (PPO).
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Figure 6. Gantt chart of operating state working with
random policy
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Figure 7. Gantt chart of operating state working with
optimal policy trained by the PPO algorithm

5. Concl sion

Utilization:
w1 Ry (Se, Ar) Ar € Asym
w utz(st At) -

Table 5. Results for PPO dispatching approaches under different
reward function in both production scenarios

Reward Function Comparison

Waiting time:
(Ulth(St, At) A € AS—)M

Ry—wt(St, At) = { waRyi(St, At) At € Apss
0 else

= Q waR i (St, At) At € Ay

0 else

PPO Scenario 1
U(%) WT(s) flr.'
R onst 4320+ 3.72 11930 +=11.04 230+ 0.63
R, _ i 4421 + 3.60 130.65 =11.51 2.37 =0.59
Rt 4368 =411 126.61 =12.02 238 +0.71
R;wbgrd 43.35 + 3.67 12453 +19.15 232+ 0.62
PPO Scenario 2
U(%) WT(s) 0
Ronst 62.29 +5.02 80.79 + 14.87 0.56 +=0.15
R, _ i 66.31 + 7.09 99 87 + 20.55 0544+0.18
Rey—wt 62.03 +=5.98 80.10 +15.63 057 +0.18
Rhybgrd 62.75 + 6.99 80.56 =17.12 0.54 +0.19

Multiple-objective:

Table 6. Results for different combination of parameters w; and w-
under reword function Ryypirg In production scenario 2.

Rhybird(sh At) = W1R i + w2 Ry

U(D/’o) WT(S) (14
w; =01,w; =09 61.89 £+ 5.81 80.99 £ 16.14 0.57 £0.16
wq = 0.25, wy = 0.75 62.30 = 6.08 80.35 & 14.69 0.56 =0.17
w1 =0.5,wy; =05 62.75 +6.99 80.56 =17.12 0.54 £0.19
w1 = 0.75, wy = 0.25 68.46 +£7.02 106.22 +19.30 0.48 +0.16
w; =09, wy =0.1 69.79 £7.16 104.88 £+ 20.29 044 £0.16
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The deep relnforcement learning framework with the PPO algorithm has been approved as
problems 1n the manufacturing environment. This research 1s still in the 1nitial phase. However, it shows the powerful potential of data-driven
Al-based methods to s1gn1ﬁcantl enhance the manufacturlng rocess
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a suitable solution to the dynamic scheduling
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