
Northumbria Research Link

Citation: Bakrania, Mayur R., Rae, Jonathan, Walsh, Andrew P., Verscharen, Daniel and
Smith,  Andy  W.  (2020)  Using  Dimensionality  Reduction  and  Clustering  Techniques  to
Classify  Space  Plasma  Regimes.  Frontiers  in  Astronomy  and  Space  Sciences,  7.  p.
593516. ISSN 2296-987X 

Published by: Frontiers

URL:  https://doi.org/10.3389/fspas.2020.593516
<https://doi.org/10.3389/fspas.2020.593516>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/49238/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Using Dimensionality Reduction and
Clustering Techniques to Classify
Space Plasma Regimes
Mayur R. Bakrania1*, I. Jonathan Rae1,2, Andrew P. Walsh3, Daniel Verscharen1,4 and
Andy W. Smith1

1Department of Space and Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, United
Kingdom, 2Department of Mathematics, Physics and Electrical Engineering, University of Northumbria, Newcastle, United
Kingdom, 3European Space Astronomy Centre, ESA, Madrid, Spain, 4Space Science Center, University of New Hampshire,
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Collisionless space plasma environments are typically characterized by distinct particle
populations. Although moments of their velocity distribution functions help in distinguishing
different plasma regimes, the distribution functions themselves providemore comprehensive
information about the plasma state, especially at times when the distribution function
includes non-thermal effects. Unlike moments, however, distribution functions are not
easily characterized by a small number of parameters, making their classification more
difficult to achieve. In order to perform this classification, we propose to distinguish between
the different plasma regions by applying dimensionality reduction and clustering methods to
electron distributions in pitch angle and energy space. We utilize four separate algorithms to
achieve our plasma classifications: autoencoders, principal component analysis, mean shift,
and agglomerative clustering. We test our classification algorithms by applying our scheme
to data from the Cluster-Plasma Electron and Current Experiment instrument measured in
the Earth’s magnetotail. Traditionally, it is thought that the Earth’s magnetotail is split into
three different regions (the plasma sheet, the plasma sheet boundary layer, and the lobes),
that are primarily defined by their plasma characteristics. Starting with the ECLAT database
with associated classifications based on the plasma parameters, we identify eight distinct
groups of distributions, that are dependent upon significantlymore complex plasma and field
dynamics. By comparing the average distributions as well as the plasma and magnetic field
parameters for each region, we relate several of the groups to different plasma sheet
populations, and the rest we attribute to the plasma sheet boundary layer and the lobes. We
find clear distinctions between each of our classified regions and the ECLAT results. The
automated classification of different regions in space plasma environments provides a useful
tool to identify the physical processes governing particle populations in near-Earth space.
These tools are model independent, providing reproducible results without requiring the
placement of arbitrary thresholds, limits or expert judgment. Similar methods could be used
onboard spacecraft to reduce the dimensionality of distributions in order to optimize data
collection and downlink resources in future missions.
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1 INTRODUCTION

Particle populations in collisionless space plasma environments,
such as the Earth’s magnetotail, are traditionally characterized
by the moments of their distribution functions. 2D distribution
functions in pitch angle and energy, however, provide the full
picture of the state of each plasma environment, especially when
non-thermal particle populations are present that are less easily
characterized by a Maxwellian fit. These non-thermal plasma
populations are ubiquitous across the solar system. They make
crucial contributions to the bulk properties of a plasma, such as
the temperature and collisionality (Hapgood et al., 2011).
Magnetic reconnection, for example, heats non-thermal seed
populations in both the diffusion and outflow regions, making
them an important component of the overall energization
process (Øieroset et al., 2002). High-quality measurements
and analysis of collisionless plasmas are consequently of key
importance when attempting to understand these non-thermal
populations.

Distribution functions, unlike moments, are not easily
classified by a small number of parameters. We therefore
propose to apply dimensionality reduction and clustering
methods to particle distributions in pitch angle and energy
space as a new method to distinguish between the different
plasma regions. 2D distributions functions in pitch angle and
energy are derived from full 3D distributions in velocity space
based on the magnetic field direction and the assumption of
gyrotropy of electrons. With these novel methods, we robustly
classify variations in particle populations to a high temporal
and spatial resolution, allowing us to better identify the
physical processes governing particle populations in near-
Earth space. Our method also has the advantage of being
independent of the model applied, as these methods do not
require prior assumptions of the distributions of each
population.

1.1 Machine Learning Models
In this section, we give a detailed account of the internal
operations of each of the unsupervised machine learning
algorithms used in our method. In unsupervised learning,
algorithms discover the internal representations of the input
data without requiring training on example output data.
Dimensionality reduction is a specific type of unsupervised
learning in which data in high-dimensional space is
transformed to a meaningful representation in lower
dimensional space. This transformation allows complex
datasets, such as 2D pitch angle and energy distributions, to
be characterized by analysis techniques (e.g., clustering
algorithms) with much more computational efficiency. Our
machine learning method utilizes four separate algorithms:
autoencoders (Hinton and Salakhutdinov, 2006), principal
component analysis (PCA, Abdi and Williams, 2010), mean
shift (Fukunaga and Hostetler, 1975), and agglomerative
clustering (AC) (Lukasovã, 1979). We obtain the autoencoder
algorithm from the Keras library (Chollet et al., 2015), and the
PCA, mean shift, and AC algorithms from the scikit-learn library
(Pedregosa et al., 2011).

We use the autoencoder to compress the data by a factor of 10
from a high-dimensional representation. We subsequently apply
the PCA algorithm to further compress the data to a three-
dimensional representation. The PCA algorithm has the
advantage of being a lot cheaper computationally than an
autoencoder, however the algorithm only captures variations
that emerge from linear relationships in the data, while
autoencoders also account for non-linear relationships in the
dimensionality reduction process (Bishop, 1998). For this
reason, we only utilize the PCA algorithm after the data have
been compressed via an autoencoder. After compressing the data,
we use the mean shift algorithm to inform us of how many
populations are present in the data using this three-dimensional
representation. While the mean shift algorithm provides us with
this estimate of the requisite number of clusters, the algorithm is
ineffective in constraining the shapes of the clusters to determine
which population each data-point belongs to. Therefore, we use an
AC algorithm to assign each data-point to one of the populations.

FIGURE 1 | The architecture of an autoencoder, adapted from Sakurada
and Yairi (2014). Each circle represents a neuron corresponding to a data-
point. Layer L1 represents the input data, layer L2 the encoded data in latent
space, and layer L3 the reconstructed data. The circles labeled “+1” are
known as “bias units,” which are parameters that are adjusted during training
to improve the performance of the neural network.
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1.1.1 Autoencoders
Autoencoders are a particular class of unsupervised neural
networks. They are trained to learn compressed
representations of data by using a bottleneck layer which maps
the input data to a lower dimensional space, and then
subsequently reconstructing the original input. By minimizing
the “reconstruction error,” or “loss,” the autoencoder is able to
retain the most important information in a representative
compression and reconstruction of the data. As a result,
autoencoders have applications in dimensionality reduction
(e.g., Hinton and Salakhutdinov, 2006), anomaly detection
(e.g., Kube et al., 2019) and noise filtering (e.g., Chandra and
Sharma, 2014).

During training, an autoencoder runs two functions
simultaneously. The first, called an “encoder,” maps the input
data, x, to the coded representation in latent space, z. The second
function, called a “decoder,” maps the compressed data, z, to a
reconstruction of the input data, x̂. The encoder, E(x), and
decoder, D(z), are defined by the following deterministic
posteriors:

E(x) � p(z|x; θE),
D(z) � p(x̂|z; θD), (1)

where θE and θD are the trainable parameters of the encoder and
decoder respectively. Figure 1 illustrates the standard
architecture of an autoencoder.

In feed-forward neural networks, such as autoencoders, each
neuron computes the following sum:

y � ∑
i

wixi + b, (2)

where xi represents the input from the previous layer, wi enotes
the weights associated with the connections between neurons in
different layers, and b denotes the bias term associated with each
layer (represented by the circles labeled “+1” in Figure 1). The
number of neurons in each layer defines the dimension of the data
representation in that layer. The output of each neuron, f(y), is
called the activation function. Rectified Linear Unit, (Hahnioser
et al., 2000) is the most commonly used activation function due to
its low computational cost (Agarap, 2018). The function is
described as:

f (y) � max(0, y). (3)

The sigmoid activation function (Chandra and Singh, 2004) is
also commonly used. It is defined by:

f (y) � 1
1 + e−y

, (4)

where y is defined in Eq. 2. Analysis of the use of various
activation functions in the remit of plasma physics are given by
Kube et al. (2019).

In order to improve the representation of the compressed data
in layer L2 and minimize the discrepancy between the input and
reconstruction layer, the autoencoder adjusts the weights and
biases by minimising a loss function through an optimiser
(described below). The binary cross-entropy loss function

(de Boer et al., 2005) is typically used when the input data, x,
are normalized to values between 0 and 1. The loss value, c,
increases as the reconstruction data, x̂, diverge from the input
data. The loss function is defined as:

c � −[x ln(x̂) + (1 − x)ln(1 − x̂)]. (5)

An overview of various loss functions is provided by
Janocha and Czarnecki (2017). Optimisers are used to
ensure the autoencoder converges quickly to a minimum
loss value by finding the optimum value of the weight, wi,
of each neuron. This is achieved by running multiple
iterations with different weight values, known as gradient
descent (Ruder, 2016). The weights are adjusted in each
iteration, t, according to:

wt � wt−1 − α
zc
zω

, (6)

where zc/zω is the gradient, which is a partial derivative of the loss
value with respect to the weight. The learning rate, α, updates all
the weights simultaneously with respect to the gradient descent.
This learning rate is randomly initialized between 0 and 1 by the
Algorithm. A low learning rate results in a slower convergence to
the global minimum loss value. However a too high value for the
learning rate impedes the gradient descent (Eq. 6) from
converging on the optimum weights. The Adadelta optimiser
(Zeiler, 2012) is commonly used due to its rapid convergence to
the minimum loss value and its ability to adapt the learning rate
depending on each parameter. The optimiser updates each
parameter, θ, according to:

Δθt � −RMS[Δθ]t−1
RMS[g]t gt , (7)

where Δθt is the parameter update at the t-th iteration, gt is the
gradient of the parameters at the t-th iteration, and RMS is the
root mean square. An overview of the various optimisers is
provided by Khandelwal (2019).

1.1.2 Principal Component Analysis
PCA is a statistical procedure that, as well as autoencoders, also
reduces the dimensionality of input data. The algorithm achieves
this by transforming the input data from a large number of
correlated variables to a smaller number of uncorrelated
variables, known as principal components. These principal
components account for most of the variation in the original
input data, making them a useful tool in feature extraction.

Before the procedure, the original data, X0, are represented by
a (n × Q) matrix, where n is the number of observations and Q is
the number of variables (also called dimensions). In the first step,
the algorithm scales and centers the data:

X � (X0 − X0)D−1, (8)

where X0 contains the means of each of the variables, and D is a
diagonal matrix that contains the scaling coefficient of each
variable. Typically, Dii � σi where σi is the standard deviation
of variable with index i (Peerenboom et al., 2015). The algorithm
then uses X to calculate the covariance matrix:
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CX � 1
n − 1

XTX, (9)

which measures the correlation between the different variables.
The principal components are calculated as the eigenvectors,A, of
the covariance matrix:

CX � ALAT , (10)

where L is a diagonal matrix containing the eigenvalues
associated with A. These principal components are ordered in
decreasing order, whereby the first principal components account
for most of the variation in the input data. These input data are
finally projected into the principal component space according to:

Z � XA, (11)

where Z represents the output data containing the principal
component scores. The dimensionality of these output data are
determined by the number of principal components used.

1.1.3 Mean Shift
The mean shift algorithm is a non-parametric clustering
technique that is used for locating the maxima of a density
function in a sample space. The algorithm aims to discover
the number of clusters within a dataset, meaning no prior
knowledge of the number of clusters is necessary.

For a dataset containing n data-points xi, the algorithm starts
finding each maximum of the dataset’s density function by
randomly choosing a data-point to be the mean of the
distribution, x. The algorithm then uses a kernel function, K,
to determine the weights of the nearby data-points for re-
estimating the mean. The variable h is the width of the kernel
window. Typically, a Gaussian kernel, k, is used:

K(x − xi
h

) � ckk(∣∣∣∣∣∣
∣∣∣∣∣∣x − xi

h

∣∣∣∣∣∣
∣∣∣∣∣∣2) � exp( − ck

∣∣∣∣∣∣
∣∣∣∣∣∣x − xi

h

∣∣∣∣∣∣
∣∣∣∣∣∣2), (12)

where ck is the normalising constant. With the kernel function,
the multivariate kernel density estimator is obtained:

f (x) � 1
nhd

∑n
i�1

K(x − xi
h

), (13)

where d is the dimensionality of the dataset. The gradient of the
density estimator is then:

▽f (x) � 2ck
nhd+2

∑n
i�1

(xi − x)g(∣∣∣∣∣∣
∣∣∣∣∣∣x − xi

h

∣∣∣∣∣∣
∣∣∣∣∣∣2)

� 2ck
nhd+2

⎡⎣∑n
i�1

g(∣∣∣∣∣∣
∣∣∣∣∣∣x − xi

h

∣∣∣∣∣∣
∣∣∣∣∣∣2)⎤⎦mh(x),

(14)

where g(x) � −k′(x). The first term is proportional to the density
estimate at x, and the second term, mh(x), is:

mh(x) �
∑ n

i�1xig(∣∣∣∣∣∣∣∣x−xih

∣∣∣∣∣∣∣∣2)
∑ n

i�1g(∣∣∣∣∣∣∣∣x− xih

∣∣∣∣∣∣∣∣2) − x, (15)

which is the mean shift vector and points toward the direction of
the maximum increase in density. The mean shift algorithm

therefore iterates between calculating the mean shift vector,
mh(xt), and translating the kernel window:

xt+1 � xt +mh(xt), (16)

where t is the iteration step. Once the window has converged to a
point in feature space where the density function gradient is zero,
the algorithm carries out the same procedure with a new window
until all data-points have been assigned to a maximum in the
density function.

1.1.4 Agglomerative Clustering
AC is a type of hierarchical clustering that uses a “bottom-up”
approach, whereby each data-point is first assigned a different
cluster. Then pairs of similar clusters are merged until the
specified number of clusters has been reached. During each
recursive step, the AC algorithm combines clusters typically
using Ward’s criterion (Ward, 1963), which finds pairs of
clusters that lead to the smallest increase in the total intra-
cluster variance after merging. The increase is measured by a
squared Euclidean distance metric:

dij � d(Ci,Cj) � ||Ci − Cj||2, (17)

where Ci represents a cluster with index i. The algorithm
implements Ward’s criterion using the Lance–Williams
formula (Lance and Williams, 1967):

d(Ci ∪Cj,Ck) � ni + nk

ni + nj + nk
d(Ci,Ck)

+ nj + nk

ni + nj + nk
d(Cj,Ck) − nk

ni + nj + nk
d(Ci,Cj),

(18)

where Ci, Cj, and Ck are disjoint clusters with sizes ni, nj, and nk,
and d(Ci ∪  Cj,Ck) is the squared Euclidean distance between the
new cluster Ci ∪ Cj and Ck. The clustering algorithm uses Eq. 18
to find the optimal pair of clusters to merge.

1.2 The Magnetotail
We use electron data from the magnetotail in order to test the
effectiveness of our method. The magnetotail is traditionally
divided into three different regions: the plasma sheet, the
plasma sheet boundary layer, and the lobes (Hughes, 1995).
These regions are defined by their plasma and magnetic field
characteristics. The low temperature (∼85 eV) outermost
northern and southern lobes are on open magnetic field lines
which results in a much lower plasma density of ∼0.01 cm (Lui,
1987). The plasma sheet boundary layer exists on the reconnected
magnetic field lines. This region forms the transition region in
between the plasma sheet and the lobes, and is characterized by a
population of field-aligned particles and a plasma β, which is the
ratio of the plasma pressure to themagnetic pressure, of ∼0.1 (Lui,
1987).

The innermost plasma sheet typically contains a
comparatively hot (∼4,250 eV) and isotropic plasma with a
relatively high particle density of ∼0.01 cm−3. At the center of
the plasma sheet is the thin neutral current sheet, which is
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characterized by a relatively high plasma β of ∼0, and a magnetic
field strength of near zero (Lui, 1987). Although isotropic electron
pitch angle distributions (PADs) are the most dominant in the
plasma sheet, many cases of pitch angle anisotropy have also been
found (e.g., Walsh et al., 2013; Artemyev et al., 2014; Liu et al.,
2020). These intervals correspond to a colder and denser electron
population and are linked to: cold anisotropic ionospheric
outflows (Walsh et al., 2013), and a penetration of cold
electrons from the magnetosheath near the flanks (Artemyev
et al., 2014).

2 METHOD AND APPLICATION

In this section, we detail the steps required to classify different
regions within a space plasma environment using machine learning
techniques. As an example, we classify Cluster-Plasma Electron and
Current Experiment (PEACE, Johnstone et al., 1997; Fazakerley
et al., 2010) data (Laakso et al., 2010) from the Earth’s magnetotail
to showcase our method, as this allows us to compare to the
Cluster-ECLAT (European Cluster Assimilation Technology)
(Boakes et al., 2014) database for evaluation. The same method,
however, can be applied to any plasma regime where energy and
pitch angle measurements are available. Our steps are as follows:

(1) Data preparation: We obtain the Cluster-PEACE data from
different magnetotail regions based on the Cluster-ECLAT
database, and prepare the data for testing.

(2) Reducing dimensionality: We build our autoencoder and use
the encoder part to reduce the dimensionality of each pitch
angle and energy distribution by a factor of 10. We use a PCA
algorithm to further compress each distribution to a set of
coordinates in 3D space.

(3) Clustering: We apply the mean-shift algorithm to determine
how many clusters exist within the compressed magnetotail
electron data, and use an AC algorithm to separate the
compressed dataset into this number of clusters. This
allows us to determine how many plasma regimes exist
within the overall dataset.

(4) Evaluation: We estimate the probabilities of the AC labels
and compare our clustering results to the original ECLAT
labels in order to evaluate our method.

2.1 Data Preparation
We prepare PEACE instrument data from the Cluster mission’s
C4 spacecraft (Escoubet et al., 2001) to test and present our
method. The Cluster mission comprises of four spacecraft, each
spinning at a rate of 4 s−1. The PEACE data have a 4 s time
resolution and are constructed from two instantaneous PAD
measurements per spin. Each of our distributions is a two-
dimensional differential energy flux product containing twelve
15° wide pitch angle bins and 26 energy bins, spaced
logarithmically between 93 eV and 24 keV. The dimensionality
of each distribution is 312 (12 × 26).We normalize the differential
energy flux linearly between 0 and 1 based on the maximum flux
value in the dataset. An example of an individual differential

energy flux distribution used in our analysis is shown in Figure 2.
We correct for spacecraft potential with measurements from the
Cluster-EFW (Electric Field and Wave Experiment) instrument
(Gustafsson et al., 2001) and corrections (19% increase)
according to the results of Cully et al. (2007).

The ECLAT dataset consists of a detailed list of plasma regions
encountered by each of the four Cluster spacecraft in the
nightside magnetosphere. The dataset is available from July to
October during the years 2001–2009. Using plasma and magnetic
field moments from the PEACE, Cluster Ion Spectrometry (CIS)
(Rème et al., 2001), and Fluxgate Magnetometer (FGM) (Balogh
et al., 1997) instruments, the dataset provides a list of (inner and
outer) plasma sheet, boundary layer, and lobe times. These
regions are identified based on the plasma β, the magnetic
field measurements, and the current density vectors. A
comprehensive account of the ECLAT identification routine
for each plasma region is provided by Boakes et al. (2014). To
ensure that we test our method on a large number of data from
each of the magnetotail regions (>50,000 samples), we obtain
PEACE data from times when the C4 spacecraft has spent at least
1 h in each region, according to ECLAT.

2.2 Reducing Dimensionality
After preparing the dataset to include a series of >50,000 time
intervals, each with its associated 2D pitch angle and energy
distributions (e.g., Figure 2), the first step toward reducing the
dataset’s dimensionality is to build a suitable autoencoder
(described in Section 1.1.1). We construct our autoencoder
using the Keras library. This step requires defining the
number of neurons in each layer. The input and
reconstruction layer should have the same number, which is
equal to the dimensionality of the original dataset (312 for each
time interval in this example). The middle encoded layer typically
contains a compressed representation of the data that is by a
factor of 10 smaller than the input data (Hinton and
Salakhutdinov, 2006). We therefore specify our encoded layer
to contain 32 neurons. The next step involves specifying the
activation function for the neurons in the first and middle layers.

FIGURE 2 | An example two-dimensional electron differential energy flux
distribution, as a function of pitch angle (°) and energy (eV), measured by the
Cluster-Plasma Electron and Current Experiment instrument in the
magnetotail across a 4 s window (09:51:23–09:51:27 on October 13,
2003).
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We use the standard Rectified Linear Unit activation function
(Hahnioser et al., 2000) in the encoder part of our autoencoder
and the sigmoid activation function (Chandra and Singh, 2004) in
the decoder part, as this function is used to normalize the output
between 0 and 1.

The next step defines which loss function and optimiser the
autoencoder uses in order to representatively compress and
reconstruct the input data. As we use normalized output data,
we choose the standard binary cross-entropy loss function
(de Boer et al., 2005). In terms of the optimiser, we utilize the
Adadelta optimiser (Zeiler, 2012) due to its speed and versatility.
All of the activation functions, loss functions, and optimisers
are available in the Keras library.

In the next step, we set the hyperparameters used for
training the autoencoder. These hyperparameters include:
the number of epochs, the batch size, and the validation
split ratio. The number of epochs represents the number of
training iterations undergone by the autoencoder, with the
weights and biases updated at each iteration. The batch size
defines the number of samples that are propagated through the
network at each iteration. It is equal to 2n, where n is a positive
integer. The batch size (256 in our case) is ideally set as close to
the dimensionality of the input data as possible. The validation
split ratio determines the percentage of the input data that
should remain “unseen” by the autoencoder in order to verify
that the algorithm is not overfitting the remaining training
data. We set the validation split ratio to 1/12, which is
commonly used for large datasets (Guyon, 1997). At each
iteration, a training loss value and a validation loss value are
produced, which are determined by the binary cross-entropy
loss function. Both of these values converge to their minima
after a certain number of iterations, at which point the
autoencoder cannot be optimized to the input data any
further. Loss values <0.01 are typically considered ideal (Le
et al., 2018).

After retrieving the compressed representation of the input
data from the encoding layer (with a dimensionality of 32 in our
case), we apply a PCA algorithm (see Section 1.1.2) to the
compressed data to reduce the dimensionality to 3. We obtain
the PCA algorithm from the scikit-learn library. We set the
output dimensionality of the PCA algorithm to 3 as the
following clustering algorithms used in this method are
computationally expensive and their performance scales poorly
with increasing dimensionality (Lukasovã, 1979; Comaniciu and
Meer, 2002). Setting the dimensionality to 3 has the added benefit
that the clusters can be visualised.

2.3 Clustering
Once the dimensionality reduction stage has taken place and each
pitch angle and energy distribution is represented by three PCA
values, we use clustering algorithms to separate the dataset into
the different particle populations. To first determine how many
populations exist within the dataset (8 in our case), we apply a
mean shift clustering algorithm (see Section 1.1.3) to the data to
find the number of maxima, nc, in the distribution of data-points.
We obtain the mean shift algorithm from the scikit-learn library.
We set the bandwidth, represented by h in Eq. 15 to 1, which we

find optimizes the time taken for the algorithm to converge on the
maxima in the density distribution.

After determining the number of clusters in the dataset, we use
an AC algorithm (see Section 1.1.4) to assign each data-point to
one of the clusters. We obtain the AC algorithm from the scikit-
learn library and instantiate the algorithm by specifying the
number of clusters, nc, before applying it to the compressed
dataset. Assigning several clusters to a large dataset with three
dimensions is a computationally expensive task, however we find
the AC algorithm converges relatively quickly in comparison to
other clustering algorithms. A further advantage of the
hierarchical clustering procedure, used in the AC algorithm, is
that data-points belonging to a single non-spherical structure in
the 3-dimensional parameter space are not incorrectly separated
into different clusters, unlike the more widely used K-means
algorithm (Arthur, 2007).

Figure 3 contains a flow diagram detailing our method.

2.4 Evaluation
Figure 4 shows the training and validation loss values associated
with each iteration during the training of our autoencoder. We
use this graph to check if the autoencoder is overfitting to the
training data, which is evident if the training loss starts to
decrease more rapidly than the validation loss. In this case,
our autoencoder is not overfitting at any iteration during
training. Figure 4 shows that both the loss values start to
rapidly level off in less than 100 epochs. Both loss values,
however, continue to decrease, with the training loss value
converging to 0.0743 after 444 iterations, and the validation
loss value converging to 0.0140 after 485 iterations. We
therefore set the number of epochs to 500. As both loss values
are lower than 0.01, we conclude the autoencoder is accurately
reconstructing both sets of input data, assuring us that the
encoded data with a lower dimensionality is representative of
the original 2D distribution functions. The lower validation loss
than training loss in Figure 4 indicates the presence of anomalous
data in the training set that is not represented in the validation set.
We discuss this anomalous data later in this section.

Figure 5 shows the result of applying the AC algorithm to the
compressed magnetotail electron data after the implementation
of the autoencoder and PCA algorithms. The 3-dimensional
representation shows that the clustering algorithm is able to
assign data-points of varying PCA values to the same cluster if
they belong to the same complex non-spherical structure, e.g.,
clusters 0, 4, and 6. The clustering algorithm is able to form clear
boundaries between clusters with adjacent PCA values, e.g.,
between clusters 0, 1, and 7, with no mixing of cluster labels
on either side of the boundaries. The clustering algorithm locates
the boundaries by finding areas with a low density of data-points
in comparison to the centers of the clusters.

Figure 6 shows the results of averaging the 2D differential
energy flux distributions in pitch angle and energy space for each
of the eight clusters. Using moments data collected by the
PEACE, FGM, and CIS instruments, we compare the proton
plasma βs, electron densities and temperatures, andmagnetic field
strengths to the average 2D distribution of each cluster. This
process allows us to verify the consistency of the clustering
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method and provide general region classifications in order to
make comparisons with the ECLAT labels. Our classifications
(shown in the captions below each sub-figure) are produced with
the aid of previous analyses of electron PADs (e.g., Walsh et al.,
2011; Artemyev et al., 2014) and the plasma and magnetic field
parameters (e.g., Lui, 1987; Artemyev et al., 2014) in the
magnetotail.

The individual sub-figures in Figure 6 display large differences
in the average electron 2D pitch angle and energy distributions.
Each average distribution differs by either: the energy of the peak
flux, the peak value of the flux, or the amount of pitch angle
anisotropy, i.e., the difference in flux between the parallel and

perpendicular magnetic field direction. The lack of identical
average distributions amongst the clusters shows the mean
shift algorithm has not overestimated the number of clusters.
By observing the individual 2D distributions within each cluster,
we see a distinct lack of intra-cluster variance, showing the mean
shift algorithm does not underestimate the number of clusters.

A limitation of using the AC algorithm is that outliers or
anomalous data are not differentiated from the main clusters.
Clustering a sizable number of outliers with the main populations
can lead to ambiguity in the defining characteristics of each
population, reducing the robustness of our method. In our
case, Figure 5 shows only nine data points, within cluster 6,
that are disconnected from the main structure of cluster 6 due to
their distinct PCA values. We observe similar phenomenon to a
lesser extent with cluster 2. To counteract this issue, we perform
an outlier detection procedure using the reconstructed output of
the autoencoder. By calculating the mean square error (MSE)
between each input data-point and its reconstructed output, we
isolate outliers in the dataset from the AC analysis based on their
large MSE values, in comparison to 99.95% of the data-points.
During training, the autoencoder learns the latent space
representation that defines the key characteristics of the bulk
populations present in the dataset. The most relevant features of
an anomalous particle distribution are not present in this
subspace, resulting in a large MSE between the reconstructed
data, which lacks these important features, and the original data.
This technique effectively identifies the nine obvious outliers
observable by eye in Figure 5, along with six from cluster 2
and 5 from cluster 1.

We use Gaussian mixture models (GMMs, McLachlan and
Peel, 2000) to establish the probabilities of each of the data-points

FIGURE 3 | Flow diagram illustrating the steps we take to reduce the dimensionality of the dataset and subsequently apply clustering algorithms to characterize the
different populations. Our choices for the functions and input parameters necessary to train the autoencoder are shown in brackets in steps 3 and 4.

FIGURE 4 | The evolution of the training loss value and validation loss
value as the autoencoder iterates through 500 steps (epochs).
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belonging to the clusters they have been assigned to by the AC
algorithm, providing useful information on the uncertainty
associated with our region classification method. We obtain
the GMM from the scikit-learn library. For each data-point, xi,
a GMM fits a normal distribution, N , to each cluster and
computes the sum of probabilities as:

p(xi) � ∑k
j�1
ϕj N (xi; μj, τ j) � 1, (19)

where µj and τj are the mean and covariance of the normal
distribution belonging to cluster j, and ϕj is the mixing coefficient
which represents the weight of Gaussian j and is calculated by the
Expectation–Maximisation algorithm (Dempster et al., 1977). A
complete description of GMMs and the
Expectation–Maximisation algorithm is provided by Dupuis
et al. (2020).

Figure 7 shows a histogram of the probabilities, calculated by
the GMM, associated with each data-point belonging to the
cluster it is assigned to by the AC algorithm. More than 92%
of the data-points have a probability of over 0.9, and <1% of the
data-points have a probability of <0.5. This indicates a high
certainty in our clustering method and validates the high
precision in our region classifications. Further investigations of
the data-points with associated probabilities of <0.5 show that
these data-points exist on the boundary between clusters 0 and 1,
i.e., two plasma sheet populations that differ by temperature. This
illustrates a small limitation in the AC method when
distinguishing between relatively similar plasma regimes.

Table 1 shows themedian and upper and lower quartiles of the
electron density, electron temperature, magnetic field, and ion
plasma β for each of the eight clusters designated by our AC
algorithm. None of the eight clusters have comparable median
and quartile values across all four of the chosen parameters.

FIGURE 5 | Three-dimensional representation of the magnetotail data after undergoing dimensionality reduction via an autoencoder and principal component
analysis (PCA) algorithm. The colors represent the clustering results from the agglomerative clustering algorithm.
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Certain pairs of clusters exhibit similarities in the median and
quartile values for one or two of the four parameters, e.g., clusters
0 and 4 exhibit similar electron densities and magnetic field
strengths, and clusters 3 and 6 exhibit similar magnetic field
strengths. However there are large differences in the values of the
remaining parameters for these pairs of clusters. These results

show that clear differences in the 2D pitch angle and energy
distributions (see Figure 6) can translate into distinctions
between certain but not all plasma parameter measurements,
providing a strong indicator that full 2D distributions can
effectively be used to distinguish between similar particle
populations. Regarding the ECLAT classifications, which are

FIGURE 6 | Average electron differential energy flux distributions as a function of pitch angle and energy for each of the eight clusters (A–H) classified by the agglomerative
clustering algorithm. Each cluster is assigned a magnetotail region (included in the subcaptions) based on our interpretation of their plasma and magnetic field parameters.
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based onmagnetic field and plasma βmeasurements, certain pairs
of clusters exhibit a similar range of values in both of these
measurements, e.g., clusters 0 and 4 and clusters 1 and 7. As the
majority of data-points for all of these clusters are considered the
same plasma sheet population by ECLAT (see Table 2), we
conclude that using a limited number of parameters to
provide classifications overlooks distinctions between different
populations and incorrectly groups them into the same category.

Table 2 shows our comparison between the eight AC labels
and the region names given in the ECLAT database, for the
magnetotail data used in our example.

In Table 2, there is some disagreement with three of our
clusters, namely AC labels 3, 5, and 7, which correspond to the
plasma sheet boundary layer, the lobes, and a plasma sheet
population respectively. However for each of these clusters, the
majority of labels are in agreement with the ECLAT regions (72.4,
86.8, and 86.9% for AC clusters 3, 5, and 7 respectively). For AC
labels 0, 1, 2, 4, and 6, which represent various other populations
within the plasma sheet, there is 100% agreement with the
ECLAT label 0, which denotes the plasma sheet. By using this

method to characterize full electron pitch angle and energy
distributions, instead of using the derived moments, we are
successfully able to distinguish between multiple populations
within what has historically been considered as one region,
due to the lack of variation in the plasma moments (see
Table 1) as well as the similarity in spatial location. Using 2D
pitch angle and energy distributions also improves the time
resolution of the plasma region classifications, due to a higher
cadence in the spacecraft flux and counts data (e.g., 4 s resolution
for the PEACE instrument) in comparison to the moments data
(e.g., 8 s resolution for CIS moments and 16 s resolution for
PEACE moments).

3 CONCLUSION

We present a novel machine learning method that characterizes
full particle distributions in order to classify different space
plasma regimes. Our method uses autoencoders and
subsequently PCA to reduce the dimensionality of the 2D
particle distributions to three dimensions. We then apply the
mean shift algorithm to discover the number of populations in
the dataset, followed by the AC algorithm to assign each data-
point to a population.

To illustrate the effectiveness of our method, we apply it to
magnetotail electron data and compare our results to previous
classifications, i.e. the ECLAT database, that utilizes moments.
With our method, we find multiple distinct electron populations
within the plasma sheet, which previous studies have identified as
one region (Table 2). These findings show that key features in
particle distributions are not fully characterized by the plasma
moments (e.g., Table 1), resulting in important distinctions
between populations being overlooked. For example, we find
two separate cold dense anisotropic populations in the plasma
sheet (clusters 2 and 6), which are less abundant than the hotter
and more isotropic plasma sheet populations. By using our
clustering method to specify an exact list of times when
populations like these are observed, we create a more
comprehensive picture of their spatial distribution. Inherent
time-dependencies may also contribute to our finding of

FIGURE 7 | Histogram showing the probabilities, generated by
Gaussian mixture model (GMMs), that the data-points belong to the cluster
assigned to them by the agglomerative clustering algorithm.

TABLE 1 |Comparisons of themedian, Q2, and upper, Q3, and lower, Q1, quartile values of the electron density ne, electron temperature Te, magnetic field |B|, and plasma β
associated with each of the eight clusters.

AC labels ne (cm−3) Te (eV) |B| (nT) Plasma β

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

0 0.21 0.22 0.23 2,057.26 2,515.28 2,913.33 32.45 35.09 37.86 3.54 4.33 5.92
1 0.12 0.14 0.19 1,487.67 1,838.97 2,258.43 10.56 13.65 19.42 15.31 24.54 39.75
2 1.08 1.18 1.30 106.44 114.19 123.33 20.87 22.67 24.25 0.80 0.99 1.17
3 0.21 0.25 0.28 79.21 83.63 93.00 16.64 35.07 39.76 0.28 0.39 0.60
4 0.22 0.28 0.82 783.33 879.77 997.85 24.58 39.10 41.93 1.23 1.52 6.29
5 0.01 0.02 0.03 116.63 170.57 252.85 32.97 41.34 49.00 0.00 0.06 0.27
6 1.29 1.49 1.65 164.41 214.64 269.16 41.65 44.74 46.56 0.30 0.43 0.60
7 0.08 0.10 0.13 669.64 882.30 1,217.77 5.42 17.16 25.95 3.69 9.05 128.11

AC, agglomerative clustering. The AC labels 0, 1, 2, 4, 6, and 7 belong to the plasma sheet, according to ECLAT, three belongs to the plasma sheet boundary layer, and five belongs to
the lobes.
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multiple plasma sheet populations. Even in this case, our method is
effective in characterising the evolution of particle populations,
made possible by the high time resolution of our region
classifications. In a follow up study, we will use this information
to link the occurrence of these populations to other high-resolution
spacecraft measurements in different plasma regions, in order to
understand the physical processes driving changes in the less
abundant particle populations. As an example analysis, our high
resolution classifications of the observed anisotropic plasma sheet
populations could be combined with previous theories on the
sources of these populations (e.g., Walsh et al., 2013; Artemyev
et al., 2014), to understand the relative contributions of particle
outflows from distinct magnetospheric regions, such as the
magnetosheath or ionosphere.

Comparisons between this original method and the previous
classifications from ECLAT also show specific periods of
disagreement (e.g., we classify a small number of ECLAT periods
of plasma sheet as the plasma sheet boundary layer). This
discrepancy shows that using the full 2D pitch angle and energy
distributions, without requiring prior assumptions about
magnetospheric plasma regions, may redefine the classifications
of electron populations, along with our understanding of their
plasma properties. Our method, which uses open-source and
easily accessible machine learning techniques, can be used to
better characterize any space plasma regime with sufficient in-situ
observations. By not being constrained to a small number of
parameters, this method allows for a more complete
understanding of the interactions between various thermal and
non-thermal populations. With increasingly large datasets being
collected by multi-spacecraft missions, such as Cluster (Escoubet
et al., 2001) (>109 full distributions in 20 years) andMagnetospheric
Multiscale Mission (Sharma and Curtis, 2005), similar methods
would provide a useful tool to reduce the dimensionality of
distributions, thereby optimising data retrieval on Earth.

Furthermore, combining this method with large-scale survey data,
such as NASA/GSFC’s OMNI database, would allow users to isolate
a specific population or plasma region for analysis of its properties.
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