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Abstract

Distribution networks are envisaged to host significant number of electric vehi-
cles (EVs) and potentially many charging stations (CSs) in the future to provide
charging as well as vehicle-to-grid (V2G) services to the electric vehicle owners. A
high number of electric EVs in the transportation sector necessitates an advanced
scheduling framework for e-mobility ecosystem operation as a whole in order to over-
come range anxiety and create a viable business model for CSs. Thus, the future
e-mobility ecosystem will be a complex structure with different stakeholders seeking
to optimize their operation and benefits. The main goal of this study is to develop
a comprehensive day-ahead grid-to-vehicle (G2V) and V2G scheduling framework to
achieve an economically rewarding operation for the ecosystem of EVs, CSs and re-
tailers using a comprehensive optimal charging/discharging strategy that accounts
for the network constraints. To do so, a non-cooperative Stackelberg game, which is
formed among the three layers, is proposed. The leader of the Stackelberg game is the
retailer and the first and second followers are CSs and EVs, respectively. EV routing
problem is solved based on a cost-benefit analysis rather than choosing the short-
est route. The proposed method can be implemented as a cloud scheduling system
that is operated by a non-profit entity, e.g., distribution system operators or distribu-
tion network service providers, whose role is to collect required information from all
agents, perform the day-ahead scheduling, and ultimately communicate the results
to relevant stakeholders. To facilitate V2G services and to avoid congestion at CSs,
two types of trips, i.e., mandatory and optional trips, are defined and formulated.
Also, EV drivers’ preferences are added to the model as cost/revenue threshold and
extra driving distance to enhance the practical aspects of the scheduling framework.
The stochastic nature of all stakeholders’ operation and their mutual interactions are
modelled by proposing a three-layer joint distributionally robust chance-constrained
(DRCC) framework. The proposed stochastic model does not rely on a specific prob-
ability distribution for stochastic parameters. To achieve computational tractability,
the exact reformulation is implemented for double-sided and single-sided chance con-
straints (CCs). Furthermore, the impact of temporal correlation of uncertain PV
generation on CSs operation is considered. To solve the problem, an iterative process
is proposed to solve the non-cooperative Stackelberg game and joint DRCC model by
determining the optimal routes and CS for each EV, optimal operation of each CS and
retailers, and optimal V2G and G2V prices. Extensive simulation studies are carried
out for a e-mobility ecosystem of multiple retailers and CSs as well as numerous EVs
based on real data from San Francisco, the USA. The simulation results shows the
necessity and applicability of such a scheduling method for the e-mobility ecosystem.

keywords - Distributionally robust chance constraints, E-mobility ecosystem, EV
drivers’ preferences, G2V and V2G operation, optional trips, temporal correlation of
uncertain PV generation, three-layer optimization problem.
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1 | Introduction

1.1 Background

Electrification of the transport system first emerged in mid-19th century, when

electricity was found as a propulsion for automobiles [1]. However, the low top speed,

exorbitant cost, battery depletion, and short driving range of electric vehicles (EVs)

confined the use of EVs to public transport, especially electric locomotive. At the

beginning of the 21st century, by developing the modern chargers and advances in

battery storage technologies for EVs, together with the potential of EVs to reduce

greenhouse gas (GHG) emissions, the general public’s interest grew in purchasing

EVs. In the past few years, in industrialised and developing countries, interest in EVs

has grown and measurements have been undertaken to facilitate the electrification of

the greater transportation sector. For instance, in the first half of 2019, the sales of

internal combustion engine cars were dropped by 5%, while the sales of plug-in hybrid

electric vehicles (PHEVs) were increased by 36% [2].

The rising trend of using EVs could be seen mostly in China, Europe, the US,

Japan, and South Korea, which collectively share 97% of EV manufacturing and

sale capacity in the world [3], as shown in Figure 1.1. The global sales of EVs and

PHEVs reached more than 3.2 million unites in 2020 compared to 2.26 million units

in 2019. By comparing Figure 1.1 and Figure 1.2, it can be seen that, in 2020, Europe

has passed China and become pioneer in EV and PHEV sales with a 137% growth

compared to registered vehicles in 2019 [4].

One of the major advantages of EVs is the contribution that they can make to-

wards reducing the air pollution in urban areas due to zero tailpipe emissions. The

internal combustion engine car emits around 3.4 times more GHG per passenger mile

1



Chapter1. Introduction Page 2 of 170

Figure 1.1: EVs sold and manufactured by countries and percentage in 2016 [3].

Figure 1.2: The number and percentage growth of EV and PHEV sales [4]

emitted by the EV. In 2019, the UK’s domestic transport emitted 122 million tonnes

of carbon dioxide (27%) from the total emissions. By increasing the penetration of

transportation electrification, the UK’s domestic transport GHG emissions in 2020

have been dropped by 19.6% since 2019 [5]. Thus, transportation electrification is
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an assuring option to reach decarbonisation targets and improve urban air quality.

In fact, electrification of transportation sector was one of the main talking points at

the COP 21 UN Climate Change Conference in Paris in 2015 on the grounds that

transportation system makes a significant contribution to the current GHG emissions

(23%) and it is predicted that it will be on the rise by 20% by 2030 and nearly 50%

by 2050 [6]. Therefore, there is a general consent between the participants of the

conference to develop e-mobility infrastructure and implement policies and consumer

incentives to limit the global warming to two degrees or less. These factors have been

catalysts for the transition of the transportation sector towards electric technologies.

Besides the environmental advantages, the wider adoption of EVs leads the charg-

ing demand increase, which means that additional electricity generation will be re-

quired to meet extra demand due to the EV uptake. According to the UK Department

for Transport study [7], the accessibility of charging infrastructure is an important fac-

tor to support the higher uptake of e-mobility technologies. The report further states

that the inadequate charging infrastructure and the range anxiety are the biggest

deterrents for adopting EVs in the domestic transportation sector [7]. To tackle this

issue, many countries have financed the roll-out of fast chargers by building charging

infrastructure. For example, the UK government has dedicated substantial budget to

design zero emission vehicles and develop the EV charging infrastructure to terminate

producing and selling of petrol and diesel cars by 2030 and hybrid vehicles by 2035

[8]. Furthermore, the UK government set out Road To Zero Strategy to boost the

transition to zero emission road transport, thereby diminishing GHG emissions dur-

ing the transition [9]. Figure 1.3 summarises the UK’s EV deployment plan to meet

the target of Road To Zero Strategy [10]. In November 2020, the UK government

announced that £1.9 billion will be invested in charging infrastructure which support

the turn out of fast charging stations (CSs), the manufacture of the EVs, vans, taxis,

and motorcycles, as well as installation of more charging points. As depicted in Fig-

ure 1.4, the registration of EVs in the UK has been on the rise from 2010. Since it is

impossible to meet the zero GHG emission transportation target without having easy

and plentiful access to fast charging points, the number of different types of public

charging points installed in UK is increasing as shown in Figure 1.5. Thus, continued
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investment in charging infrastructure sets the stage to overcome consumers’ anxiety

and concerns regarding accessibility of charging points.
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Figure 1.3: UK market share of electric vehicles to 2030 [10].

Total UK annual registrations of EVs 

Figure 1.4: Increase in the total UK annual registrations of EVs from 2010 to 2019 [11].

Furthermore, financial incentives, e.g., tax credits, tax exemptions and registration

fee reduction, play an important role in decreasing the upfront cost of EVs and encour-

aging the EVs’ adoption in the transportation sector. The United States, the third

largest EV market after China and Europe, has implemented a wide range of policies

including financial incentives and charging infrastructure development to foster the
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Figure 1.5: Increase in number of public charging points by charging speed (2016-March
2021) [11].

far-reaching commercialisation of EVs and overcome the barriers regarding high costs

of EVs and range anxiety of consumers. The US federal government has entitled a

tax credit ranges from $2,500 to $7,500 for each plug-in electric vehicle (PEV) pur-

chased after 2009. In November 2020, at least 45 states and the District of Columbia

developed incentives to accelerate e-mobility deployment, which are high-occupancy

vehicle lane exemptions, financial aids for purchasing EVs and their equipment, emis-

sions inspections exemptions, and price reductions for grid-2-vehicle (G2V) operation

during off-peak hours [12].

China has laid the major groundwork for EV’s adoption. The government has

announced tax exemption on EV purchase since 2014 and initiated a consumer subsidy

program since 2010 which covers up to 60% of the costs of EVs [13].

1.2 Deployment of Renewable Energy Resources in

E-mobility Ecosystem

Electric transportation offers opportunities for the wide integration of renewable

energy sources (RESs) to the transport sector. By 2050, the gross electricity con-

sumption will be doubled and RESs can compensate the increase in power demand

[14]. The main part of increase in power demand will be derived from increased use

of EVs [15], which cause significant impact on the power grid. In order to mitigate
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the impact, the distributed generators, such as RESs, are used in the local charging

infrastructure [16]. In fact, if the EV electricity demand is fulfilled by fossil fueled

generators, the EV could become significant GHG emitter in the environment. Thus,

integration of RESs into charging infrastructure is an effective solution to mitigate

GHG emissions and reduce charging cost. Supplying EVs from RESs leads to true

decarbonisation of the transportation sector, and consequently, helps to meet the goal

of 80-95% reduction in GHG emissions by 2050. On account of RES intermittency,

the difficulty associated with coordinating EV charging with other grid load and RES

becomes challenging for distribution network service providers [16]. Recently, the

RES-powered CSs that can work in parallel with the grid are becoming a popular

technology to provide reliable and clean charging infrastructure.

In addition to the advantages of this transition on reducing GHG emissions and

air pollution, e-mobility has a significant impact on how RESs are used to produce

efficient and green energy. According to the International Renewable Energy Agency

(IRENA), at the end of 2020, global renewable generation capacity reached 2,799 GW

(261 GW or 10.3% increase), as shown in Figure 1.6. The joint share of solar and

wind energy is 91% of total RES in 2020. In addition, the growth in solar, wind, and

hydropower energy has led to an increase in renewable generation capacity [17].
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Figure 1.6: Renewable power capacity growth [17].

RESs participate in producing more than 20% of the UK’s electricity and wind is

the biggest contributor of RES in the UK. Furthermore, there has been an increase

in solar power integration into the power grid. In 2020, 545 MW of new photovoltaic
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(PV) capacity was installed in UK, which is a 27% increase compared with 2019. As

depicted in Figure 1.7, 70% of total installations of PV panels in the UK accounts

for ground-mounted plants and there is a 14% year-on-year increase for installed PV

belongs to rooftop solar panels [18].

Figure 1.7: UK PV deployment to March 2021 [18].

1.3 Vehicle-2-grid Service

From one perspective, EVs can be seen as distribution energy storage devices under

the concept of vehicle-2-grid (V2G). They can supply electricity to the grid when

needed, e.g., during generation shortfall. This capability allows a larger integration

of renewable energy resources in the weak grid without network upgrade, which leads

to avoiding investment in the infrastructure.

Improvement in battery lifetime, advanced bi-directional chargers, higher adop-

tion of EVs and higher prices of ancillary services in many electricity markets have

provided true economic opportunities for the car manufacturers, retailers, service

providers/aggregators and EV owners to pursue the idea of V2G. In response to

the changing landscape, many research studies have focused on V2G operation of

full/hybrid EVs to provide services to the grid (accompanied by remuneration for the

EV owners). The V2G concept has been trialed in many projects around the world.

For instance, Nissan Leaf is the first full EV that is capable of providing V2G service

[19]. In 2016, Nissan announced a major V2G project with Enel, a multinational
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power company in the UK. Nissan and Enel installed and connected 100 V2G units

for Nissan Leaf and e-NV200 owners in order to sell the excess energy back to the

National Grid [20]. In 2017, V2G technology provider Nuvve launched a pilot pro-

gram at the University of California, San Diego, called INVENT, which was funded

by the California Energy Commission, with the installation of 50 V2G bi-directional

CSs around the campus [21]. The program expanded in 2018 to include a fleet of

EVs for its free night-time shuttle service, Triton Rides [22]. In Amsterdam, V2G

CSs have been installed for the public at locations to supply stored energy back to

the company’s grid network in 2008 [23]. In 2019, Nissan and EDF announced that

they will co-develop V2G technology as part of a new agreement in France, Italy, the

UK and Belgium [24]. Western Power in Australia started a V2G program where EV

owners can join the program and they will be called for services and get paid for it

[25]. In 2014, southwest research institute (SwRI) developed the first V2G aggrega-

tion system qualified by the electric reliability council of Texas (ERCOT). The system

allows for owners of electric delivery truck fleets to make money by assisting in man-

aging the grid frequency. The system was originally developed as part of the Smart

Power Infrastructure Demonstration for Energy Reliability and Security smart power

infrastructure demonstration for energy reliability and security (SPIDERS) Phase II

program, led by Burns and McDonnell Engineering Company, Inc. The goals of the

SPIDERS program are to increase energy security in the event of power outage from

a physical or cyber disruption, provide emergency power, and manage the grid more

efficiently [26, 27]. Thus, there is a global consensus on the benefit and possibility

of V2G services that should be fully exploited. It is believed that the true value

of V2G will be unlocked by introducing aggregators, appropriate market products,

availability of fast bi-directional chargers as well as robust and scalable scheduling

platforms.

The entities that are involved in the V2G service are EV drivers, CSs, the ag-

gregator, and distribution network operator (DNO). A review of motivation for V2G

service of each entity is presented in the following subsections [28].
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1.3.1 Motivations for DNO

The V2G service would be attractive for DNOs because it can be a storage system

for intermittent RESs. If a sufficient number of EVs offers the V2G service at the

right times, it would pave the way for faster adoption of RESs and tackling the issues

regarding the inconsistent and limited predictability of RESs. In fact, if EVs connect

to the grid during the times when they are not driven, the EV batteries can be

operated as the distributed storage system and support RESs. Thus, V2G can bring

environmental benefits and reduce GHG emissions. The ancillary services which are

provided by the V2G service include providing peak power and the operating reserve.

EVs can help the DNO to supply reliable electricity for the customers during peak

period. EVs could be charged during off-peak period and then discharged during peak

period to supply peak loads in order to waive the need to start up the peaking power

plants, which reduces the maintenance and operation costs and leads to environmental

benefits.

1.3.2 Motivations for the Aggregator

The aggregator’s responsibility is to accumulate battery sources and provides var-

ious services, e.g., fast regulation or energy arbitrage, for the electricity network. The

aggregator manages the total flexibility in terms of consumption and/or generation

and certifies the participation level. Participation of a single EV in the V2G service

does not have significant impact on electricity network operation but when a large

number of EVs offer the V2G service, the aggregator can guarantee the provision of

sufficient electricity which is contracted.

1.3.3 Motivations for EV Drivers

The V2G service can provide revenues for EV drivers to reduce their overall cost

through energy arbitrage between the electricity network and EV drivers. During

the V2G service, the battery degradation is quantified to avoid excessive and uneco-

nomical V2G operation. To do so, the battery degradation cost is formulated into

the cost of EV operation during V2G and considered in the objective function of the
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optimisation problem. The battery degradation cost considers the most important

cycling degradation factors in optimal scheduling. In fact, the battery degradation

cost is considered to ensure benefits of the services outweigh degradation cost. For

instance, EVs will be scheduled for V2G services only if they can recover the cost of

battery degradation and make a profit.

1.3.4 Motivations for CSs

The CSs provide the required infrastructure to link EVs and the distribution net-

work during the V2G and G2V services. The CSs must be designed for bi-directional

flow and make the communications between EVs and the aggregator to allow access

and control of the discharge of EVs during V2G operation. CSs will purchase the

V2G service offered by the EV drivers and sell it to the aggregator to make a profit.

1.4 Charger and Plug Types

EVs can be charged using either alternating current (AC) or direct current (DC)

chargers. Typically, DC chargers are able to charge faster than AC chargers. The

capacity of the most common DC fast chargers is 50 kW. However, three different

charging levels (Level 1, 2 and 3) exist in the market based on their power and

charging speeds.

• Level 1 Charging - These types of chargers provide charging through 120 volt

(V) single phase AC up to 16 amps, and a slow charging rate (up to 1.9 kW).

That equals to about 4 to 5 miles per hour. The fully charging time takes 8

to 12 hours depending on the EV’s battery capacity. EV owner’s house is the

common place to install Level 1 chargers.

• Level 2 Charging - These chargers offer charging through 240V single phase

AC up to 80 amps and 19.2 kW charging rate, which provides 12 to 60 miles per

hour charging speed. The fully charging time varies from 4 to 6 hours depending

on the EV battery. Level 2 chargers can be installed at commercial buildings,

workplaces and public parking lots.
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• Level 3 Charging - These chargers are typically Known as DC fast chargers

and they charge through a 480 V DC plug. The charging rate is up to 140kW,

which provides 170 miles per hour. It takes about 30 minutes to charge an EV

for 80%. Level 3 chargers are mainly installed at public CSs.

Furthermore, the chargers could be categorised based on the plug types as follows.

In particular, type 1 and 2 are AC and type 3 (Combined Charging System) and 4

(CHAdeMo) are for DC.

• Type 1 plugs - These types of chargers allow charging at a speed up to 7.4

kW, depending on the charging power of the EV and the grid capability. Most

of these types of plugs are used by Asian manufacturers, such as Nissan and

Mitsubishi and they are rare in Europe.

• Type 2 plugs - These types of chargers are the European standard and utilised

mainly by European car manufacturer such as Audi, BMW, and Mercedes. Type

2 plugs provide faster charging for EVs. The highest charging power rate is 22

kW at home and up to 43 kW at public CSs.

• Type 3 plugs: Combined Charging System - These types of chargers are

used by most manufacturers for rapid charging and commonly seen in Europe.

Two additional DC power lines have been added to the Type 2 plug in order

to boost the voltage. Type 3 connectors can supply between 25 kWh and 350

kWh power.

• Type 4 plugs: CHAdeMO - These types of chargers consist with rapid-

charging DC connectors up to 50 kW. CHAdeMO chargers can be bi-directional

chargers for V2G technology in order to send back the energy stored in EV

batteries to the main grid.

Considering the nature of fast chargers (Level 3), the limited time that EV owners

have to charge during a trip, and the limited number of CSs relative to the higher

number of EVs on the road in the future, it is anticipated that only CSs with fast

chargers can make economic sense in the e-mobility ecosystem. In other words, CSs
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are expected to have fast chargers in order to attract EV drivers to their service

and fulfil their charge requirements in a timely manner. Otherwise, EV owners would

prefer to charge their cars at home or workplaces. In addition, CSs primary customers

will be the EV drivers in rush. Therefore, they obviously need fast chargers if they

are going to sell services to the majority of EV drivers. In fact, fast charging has

become the main trend in the EV industry during the last couple of years. From

the car manufacturers’ perspective, e.g., Tesla, BMW and Hyundai, fast charging is

inevitable for e-mobility ecosystem operation. As a result, they indicated supports

for fast charging in their electric cars by charging up to 80% in an hour in fast CSs

[29–31]. Following the EV manufacturers, a revolution in fast DC chargers have been

rolled out in the market. For instance, Nissan recently announced installation of 8,000

public fast CSs across Europe [32]. Another example is Tesla, which installed 16,585

fast chargers in Asia, North America, Europe and Middle East up to this day [29].

As one of the biggest chargers provider in the world, ABB has sold more than 13,000

fast DC chargers across 80+ countries until 2019 [33]. According to the international

energy agency (IEA) Global EV Outlook 2019 report [34], 140,000 fast chargers have

been installed only in 2018. Further, EVSE has sold 111,333 fast chargers only in

China until 2020 [35]. As one can see, the future of EV ecosystem is envisaged with

fast chargers at different locations and CSs as one of the solutions to overcome range

anxiety and encourage people to purchase EVs. This way, CSs are expected to have

fast chargers in order to compete in the market or they won’t have a chance to attract

EV owners to use their services.

1.5 Barriers to the Transit

The transportation landscape has been changing quickly after the introduction of

EVs. However, there are major barriers to EV adoption in the transportation sector

as follows:

• Infrastructure - Lack of enough fast and ultra-fast charging points is one

of the major concerns of EV drivers. There have been concerns among EV

drivers if there are enough charging points available close to interstate roads
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and highways, or they can recharge in a reasonably short time. The CSs with

fast- and ultra-fast chargers provide an opportunity for EV drivers to limit the

time of charging/discharging during a trip, and consequently, reduces the EV

drivers range anxiety in an e-mobility ecosystem.

• Battery Range - The increasing rate of urbanization of EVs puts new demands

on the battery. The lithium-ion battery is a rechargeable battery that has a high

potential for the e-mobility application due to its low self-discharge rate, high

energy density, and lack of memory effect. Using the existing energy storage

technologies, which determines the driving range of EVs, is the main economical

and technical constraints for the commercialisation and wide spread adoption

of EVs [36]. The battery range restricts the driving distance of an EV that can

travel on a single charge. The battery range problem is more critical for battery

electric vehicle (BEV), compared to PHEV and hybrid electric vehicles (HEV)

due to the lack of flexibility of energy source [37]. The typical battery range

of Evs are 8kWh, 12kWh, 14.5kWh, 16kWh, 22kWh, 28kWh, 30kWh, 40kWh,

50kWh, 64kWh, and 100kWh.

• Battery Cost - The major economic bottleneck of large-scale integration of

EVs in transportation sector is the battery cost. In 2015, the price of the battery

of an EV accounted for about 57% of the vehicle’s production cost [38]. Thus,

due to battery cost, EVs are significantly more expensive than conventional

vehicles [37]. Therefore, one of the main factors which will boost e-mobility

adoption is the reduction of the total cost of EV batteries. The growth in the EV

market leads to significant improvements in battery technology and reduction

in battery costs as depicted in Figure 1.8. Over the last ten years, battery

prices have been decreased as production has increased the economy of scale.

Further, in 2010, the U.S. department of energy (DOE) investigated to decrease

cost of batteries from 1200 $/kWh in 2008 to 300 $/kWh by 2014 according

to Vehicle Technology Program [39]. In 2020, it costs below $137/kWh, which

is 85% drop from 2010. According to BloombergNEF (BNEF) forecast, the

average EV battery prices will be close to $100/kWh by 2023. Therefore, the
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major obstacle to e-mobility integration has been resolving by reducing battery

cell production costs and improving battery performance.

• Battery Degradation - The battery degradation reduces the driving range

and battery efficiency. Thus, enhancing the battery lifetime gives confidence to

EV drivers. Thus, prolonging battery lifetime, and consequently, reducing the

degradation process of the battery during EV operation are essential factors to

increase the EV market share [40]. Most new EV battery lifetime is around

eight years [41].

• Battery Recycling - The significant safety, environmental and commercial

issue of integration of EVs in transportation sector is to recycle dead EV bat-

teries. EV batteries have a limited operational life and the recyclable materials

need to be used to have safe and environmentally desirable batteries. Recycling

batteries is expensive and leads the high operational costs for recyclers who do

it properly.

• Electrical Network - While electrification of transportation sector has unde-

niable and significant environmental impacts, a large uptake of EVs introduces

new challenges for the grid operation, the biggest of which is uncoordinated

EV charging in G2V mode. Also, distribution network service providers are ex-

pected to face extreme voltage violations, increased power losses and overload of

power lines and transformers due to significant increase in demand by uncoordi-

nated EV charging [42]. The system’s operation will become more challenging

when EVs operate in V2G mode supporting the upstream grid operation. It

has been investigated in several studies [43–46] by showing that a proper co-

ordinated operation of EVs in both G2V and V2G modes can be beneficial for

the grid operation.

It should be noted that considering other entities/agents involved in the future elec-

trified transportation sector, e.g., CSs and energy providers (retailers), the e-mobility

ecosystem will be faced with an unprecedented level of operational complexity. As

a result, optimal scheduling of CSs and EVs as well as determining V2G and G2V
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prices by accounting for EVs driving needs are deemed as one of the significant chal-

lenges to facilitate transportation electrification. Therefore, a comprehensive optimal

scheduling framework is needed to overcome the outstanding economic and technical

challenges by minimising the cost of EVs operation while fulfilling their requirements,

and maximising the profit of CS operators and other entities/agents while respecting

technical limitations of the network.

Figure 1.8: Li-ion battery market development for EVs [15].

1.6 Stochastic Nature of E-mobility Ecosystem

With the increasing adoption of EVs in the transportation sector and the rising

number of CSs equipped with renewable generation resources, application of a coordi-

nated V2G and G2V operation of e-mobility ecosystems under inherent uncertainties

has become inevitable. While day-ahead scheduling can reduce range anxiety of the

drivers, using a deterministic model to do so might not fulfil the actual driving re-

quirements of the EV drivers due to inaccurate estimation of stochastic parameters

for the next day; hence leading to ineffective outcomes and drivers’ disappointment.

In fact, ignoring the impact of underlying uncertainties in an e-mobility ecosystem

might result in significant losses for all stakeholders/agents and might introduce con-

cerns and challenges for power system operation. This indicates the importance of

a scheduling framework that accounts for the different source of uncertainty in the
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e-mobility ecosystem operation. Thus, the major sources of uncertainty in the future

e-mobility ecosystem originate from the EV drivers behavior, unpredictable nature of

RESs at the CSs and the wholesale electricity market prices [47, 48].

1.7 Problem Statement

In this study, it is supposed that the future e-mobility ecosystem consists of three

stakeholders namely EVs, CSs, and retailers. Retailers purchase electricity from the

wholesale electricity market and sell it to CSs who deal with EVs. The CSs are charg-

ing stations with DC fast bidirectional chargers and known location throughout an

area and operate at the distribution system level. In other words, CSs are the point

of connection for the EVs to the grid in both G2V and V2G services. Both CSs and

EVs are qualified to decide their energy suppliers based on their economic benefits.

At the same time, CSs might supply electricity to EVs by onsite sources including a

conventional generation unit (CGU), PV, and energy storage system (ESS). Thus, a

framework for an e-mobility ecosystem which includes all entities is proposed to repre-

sent the interaction between EVs, CSs, and retailers during V2G and G2V operation.

The framework is developed to solve EV day-ahead scheduling problem based on a

non-cooperative Stackelberg game (the leader is the retailer and the first and second

followers are CSs and EVs, respectively). In fact, instead of optimising one or two

stakeholders (as in the existing literature) which may lead to sub-optimal solutions,

a comprehensive model is developed in this study to consider the operation of all

stakeholders in the future e-mobility ecosystem as a three-layer optimisation prob-

lem. In the proposed problem, through the iterative process, economical scheduling

of EVs and CSs operation is determined and the collective social welfare of all agents

in the e-mobility ecosystem is maximised, which means that the profits of EVs, CSs,

and retailers are optimised collectively instead of individually. Furthermore, the pro-

posed method offers a way to determine the optimal electricity prices in both V2G

and G2V modes such that the collective benefit of all three agents are guaranteed

simultaneously. Additionally, CSs are assigned to EVs based on their travel plans,

driving routes, and cost/benefit of V2G and G2V operation considering the energy
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consumed on the routes in the proposed method. The proposed scheduling system

is offered as a cloud service to the stakeholders, which is scalable and well-developed

industry-level solution for massive computation. The operator of the cloud scheduling

system will receive required information from all stakeholders in order to solve the

scheduling problem. It should be noted that in this study, most of EV drivers are

daily commuters with the same driving plan for weekdays. Also, many CS-related

parameters in the model will not change on a daily basis and can be updated when

required. Therefore, most of the parameters do not change every day and the amount

of data which is exchanged by the scheduling operator on a daily basis is limited. The

scheduling model is designed in such a way that allows EVs not to be scheduled for

charging or discharging throughout a day. The rationale behind this is that some of

the EVs might be fully charged at home over the night and they may not travel too far

in a day. As a result, they may not need to be charged or discharged according to the

G2V and V2G prices, drivers’ preferences, etc. Therefore, every EV is not expected

to use CSs on a daily basis, which can be verified by the simulation results. This

consideration leads to a more practical scheduling system that can handle a variety

of situations in a real world implementation. Furthermore, the e-mobility ecosystem

is designed in such a way that the practical aspects of EV scheduling problem is

considered to lead to facilitate higher participation in the G2V and V2G services,

and to enhance convenience and flexibility in EV scheduling. In order to provide

an opportunity for EV drivers to take advantage of cheaper G2V prices and more

expensive V2G prices outside of the mandatory trips, optional trips as opposed to

mandatory trips are introduced to provide a chance to EV drivers to take advantage

of cheaper G2V prices or more V2G prices (for the purpose of making money). Also,

the economically-irrational decisions that may be taken by the EV drivers is modeled.

This is based on the fact that EV drivers (similar to other consumers and produc-

ers) respond differently to economic incentives. To consider economically-irrational

decisions, driver’s cost/revenue threshold and driver’s route preference constraints

are modeled. Finally, a three-layer joint distributionally robust chance-constrained

(DRCC) framework is proposed to schedule day ahead V2G and G2V operation in an

uncertain environment with unknown probability distribution. The mutual impacts
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of stochastic behaviours of the three stakeholders of the ecosystem are explored in the

proposed model. To achieve computational tractability, the exact reformulation is im-

plemented for double-sided and single-sided chance constraints (CCs). Furthermore,

the impact of temporal correlation of uncertain PV generation on CSs operation is

considered. Eventually, the simulation studies are carried out for an ecosystem of

three retailers, nine CSs, and 600 EVs based on real data from San Francisco, the

USA.

1.8 Aims and Objectives of the Research Work

Aim: The aim of this study is to develop a holistic day-ahead scheduling frame-

work for the most comprehensive e-mobility ecosystem including EVs, CSs, and re-

tailers, where the operation of different agents/entities is optimised collectively.

Research Objectives:

A list of research objectives could be outlined as follows:

• Developing a non-cooperative Stackelberg game to model a day-ahead schedul-

ing framework, which is formed as a three-layer optimisation problem;

• Proposing an e-mobility ecosystem to model the interaction between all stake-

holders (EVs, CSs, and retailers) during EV’s V2G and G2V operation and

optimise the collective welfare of all agents;

• Determining optimal day-ahead electricity prices for all agents during V2G and

G2V operation;

• Improving the practical aspects of EV scheduling problems to facilitate higher

participation in G2V and V2G services, and to enhance convenience and flexi-

bility in EV scheduling.

• Proposing a strategy to alleviate the congestion at CSs;

• Modelling economically-irrational decisions which are made by the EV drivers

to consider the different responses of EV drivers towards economic incentives;
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• Developing a stochastic model to account for the stochastic nature of all stake-

holders’ operations and their mutual interactions in the future e-mobility ecosys-

tem.

1.9 Main Contributions

The main contributions of the proposed research could be highlighted as follows:

• C1: Formulating a three-layer optimisation problem: A comprehensive

day-ahead scheduling model based on a non-cooperative Stackelberg game is

developed to evaluate the operation of all stakeholders in the future e-mobility

ecosystem as a three-layer optimisation problem. The interaction between EVs,

CSs, and retailers during EVs’ V2G and G2V operation is considered while

optimising the collective welfare of all stakeholders. In addition, the proposed

three-layer optimiation problem is solved iteratively to obtain the optimal so-

lutions of the ecosystem operation.

• C2: Considering the effects of optimal operation of CSs and retailers:

The effects of optimal operation of CSs and retailers are investigated in the

coordinated EVs’ V2G and G2V operation through an iterative process.

• C3: Day-ahead pricing: Optimal day-ahead electricity prices of all stake-

holders are obtained by solving the proposed equilibrium problem iteratively

such that the benefit of all three stakeholders are achieved collectively and si-

multaneously.

• C4: Combining cost/benefit and energy-efficient-routing problem for

choosing CSs: Selection of the best CS by each EV based on combined

cost/benefit and energy-efficient-routing problems instead of choosing the short-

est route;

• C5: Optional trips: Optional trips (besides mandatory trips) are proposed in

this research for the first time to improve the practical aspects of EV scheduling

problem, to facilitate higher participation in the G2V and V2G services, and
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to enhance convenience and flexibility in EV scheduling. EV drivers can take

advantage of cheaper G2V prices or more expensive V2G prices in optional

trips. The results show that the optional trips can decrease the cost of EVs,

increase revenue of CSs, help to eliminate congestion at CS, and reduce CSs’

PV spillage. Moreover, CSs have a chance to sell more energy from onsite PV

at a cheaper prices.

• C6: Modelling economically-irrational decisions taken by the EV

drivers.: Since EV drivers respond differently to economic incentives, new con-

straints are added to the optimisation problem in order to model economically-

irrational decisions by the EV drivers. Therefore, driver’s cost/revenue thresh-

old and driver’s route preference constraints are introduced in this study. Driver’s

cost/revenue threshold represents the drivers’ expectation regarding minimum

cost reduction of G2V and minimum revenue increase of V2G operation.

• C7: Formulating and solving a stochastic problem: A three-layer joint

DRCC model is proposed in this research to provide the day-ahead V2G and

G2V scheduling framework for an e-mobility ecosystem in an uncertain envi-

ronment considering the mutual interactions of the stochastic behaviour of all

stakeholders.

• C8: Independency of stochastic programming to specific probability

distribution functions: A three-layer joint DRCC model proposed in this

research is for a family of probability distributions with the same mean and

covariance matrix without relying on a specific probability distribution function.

• C9: Exact reformulation of double-sided DRCC in EV’s G2V and

V2G scheduling: An exact second order cone programming reformulation of

joint DRCC day-ahead scheduling framework is developed which ensures that

violation of both the upper and lower limit of a constraint for the worst-case

probability under the ambiguity set is small.

• C10: Temporal correlation of PV generation in CSs: The temporal

correlation of the PV system generation in each time interval is considered in
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joint DRCC model.

1.10 Thesis Structure

The rest of the thesis is organised as follow: Chapter 2 outlines a literature review.

Particularly, the existing studies are categorised into five groups and caveats of the

corresponding studies are mentioned at the end of each category. In addition, the

major drawbacks in the existing literature are highlighted categorically in the list of

gaps. Chapter 3 proposes a comprehensive day-ahead scheduling strategy for EVs’

V2G and G2V operation to guarantee economic and energy-efficient routing of EVs.

A three-layer optimisation problem is formulated and solved by salp swarm algorithm

(SSA) through an iterative process to model the interaction between all stakeholders

including EVs, CSs, and retailers in an e-mobility ecosystem. Moreover, the simula-

tion results are verified by particle swarm optimisation (PSO) algorithm. Optimal

day-ahead electricity prices of all stakeholders during V2G and G2V operation is ob-

tained in this chapter. In Chapter 4, a non-cooperative Stackelberg game is proposed

as a three-layer optimisation problem to model a day-ahead scheduling framework. A

mixed-integer quadratic programming (MIQP) problem is developed and solved using

Gurobi® solver in Python. Furthermore, two kinds of trips including mandatory trip

and optional trip during a typical day are introduced in this chapter. The optional

trip (aside from mandatory trips) is introduced to improve the practical aspects of

EV scheduling problem. Two new constraints are added to the optimisation problem

to model economically-irrational decisions. Chapter 5 focuses on the stochastic pro-

gramming of the proposed e-mobility ecosystem. A three-layer joint DRCC model is

developed to provide the day-ahead V2G and G2V scheduling framework under un-

certain behaviours of all stakeholders. Finally, Chapter 6 summerised the proposed

work and recommends the future works on the e-mobility ecosystem.
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1.11.1 Journal Papers

1. Mahsa Bagheri Tookanlou, S. Ali Pourmousavi, Mousa Marzband, “An Op-

timal Day-Ahead Scheduling Framework for E-Mobility Ecosystem Operation

with Drivers Preferences”, IEEE Transactions on Power Systems, 36, 2021.

2. Mahsa Bagheri Tookanlou, S.Ali Pourmousavi Kani, Mousa Marzband, “A

comprehensive day-ahead scheduling strategy for electric vehicles operation”,

International Journal of Electrical Power & Energy Systems, 131, 2021, 106912.

1.11.2 Book Chapter

1. Mahsa Bagheri Tookanlou, Mousa Marzband, Ameena SaadAl-Sumaiti, So-
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2 | Literature Review

2.1 Introduction

The uncoordinated EVs’ G2V and V2G operation results in several issues and

challenges in distribution network due to excessive load consumption, such as voltage

violations, power loss increase, and overloads. Recently, as governments have shifted

their focus towards environmental aspects and energy saving in the transportation

sector, EV has been developed expeditiously in terms of both technical advances and

market expansion. For instance, Nissan Leaf increased the driving range of EVs from

84 miles in the 2015 EV model to 220 miles in the 2019 EV model by upgrading

their battery performance [1]. With the commercialization of EVs, large-scale EV

charging may negatively impact drivers (they need to wait in long queues for a long

time for charging their vehicles), the electrical distribution network operation, and

traffic congestion at CSs. Although increasing market share of EVs reduces fuel

consumption to a certain degree, the random arrival times of EVs in the CSs may

cause traffic congestion at CSs which are located at city centers. Further, the system’s

operation will become more challenging when EVs operate in V2G mode supporting

the upstream grid operation. Therefore, a proper scheduling strategy for EVs plays

an important role to have a secure e-mobility ecosystem.

Researchers have put forward different algorithms for EV charging/discharging

scheduling problem from different perspectives. In this chapter, a review of the ex-

isting studies on EV’s G2V and V2G scheduling algorithm is presented. Considering

the fact that EV scheduling literature is quite crowded, the existing studies have been

categorised into five groups in this chapter as follows:

30
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• Coordinated G2V and V2G operation algorithm;

• Game theory in e-mobility ecosystem;

• Multi-objective optimisation problem;

• Pricing in e-mobility ecosystem;

• Stochastic programming in e-mobility ecosystem;

Then, the drawbacks of the corresponding studies are mentioned at the end of each

category. In addition, at the end of this chapter, the major cons in the existing

literature are highlighted categorically in the list of gaps. Helpful definitions are

provided for the context of this chapter.

Bi-directional chargers : Bi-directional chargers allow EV drivers to not only

charge the EV batteries but to also send energy back to the main power grid.

Chance-constrained optimisation : It is a kind of stochastic optimisation prob-

lem that certifies that the probability of meeting a certain constraint is more than a

confidence level.

Charging station (CS): An infrastructure that supplies electricity to recharge

EVs or connect to the power grid to send energy back through bi-directional chargers.

Day-ahead scheduling algorithm : It is defined as an algorithm which schedules

a system one day prior to or one day earlier.

E-mobility ecosystem : It represents the concept of a system which includes all

stakeholders/agents participated in charging and discharging of EVs, as well as their

mutual interaction between them.

Grid-2-Vehicle (G2V): It is defined as a technology in which an EV is connected

to the grid to store energy in its battery.

Hierarchical control system : It is a control system which includes hierarchy

of control levels and formed as a hierarchical tree. Each control level consists of
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an optimisation problem, with the formulation regarding a multilevel programming

problem [2].

Plug-in hypbrid electric vehicle (PHEV): A type of vehicle which is able to

swap between the internal combustion engine and electric motor. It has EV benefits

for the short drives and have the support of the diesel or petrol engine for long drives.

Stackelberg game : A sequential game in economics which involves two types of

players with asymmetric roles which are called leader and follower. The leader makes

a decision and the follower chooses a policy with the knowledge of leader’s strategy

[3].

State of charge (SOC): It is defined as the level of charge of the EV’s battery

capacity which is expressed as a percentage of the capacity.

Stochastic programming : It is a framework for modeling optimisation problems

including uncertainties. In the optimisation problem, some or all problem parameters

uncertain. The framework is compared with deterministic model, in which all problem

parameters are supposed to be certain.

Vehicle-2-Grid (V2G): A technology which enables the EV to send back energy

to the main grid through bi-directional chargers.

2.1.1 Literature regarding coordinated G2V and V2G opera-

tion algorithm

Most of the literature have proposed coordinated G2V and V2G operation mech-

anisms to minimise their impact on the grid as the coordination of EVs’ opera-

tion is necessary to determine optimal charging/discharging schedule for EVs in or-

der to attain the economical and technical operation in the e-mobility ecosystem.

Since behaviour of EV drivers is unpredictable, regulated operation of EVs in charg-

ing/discharging mode is challenging. Therefore, different algorithms for coordinated

G2V and V2G operation have been proposed in the literature. In [4], mixed integer
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linear programming (MILP) was proposed for an economic scheduling strategy to co-

ordinate energy exchanged between distribution network operators and EVs in order

to satisfy cost-effective targets considering uncertainty of wholesale electricity prices

and random EV charging behaviours. In that study, the model is not comprehensive

because only the operation of the EVs and grid were considered in the e-mobility

ecosystem. Furthermore, electricity prices were considered as given parameters. In

[5], a quadratic programming (QP) was proposed to develop EV charging/discharging

scheduling algorithm to minimise EV operational costs and mitigate voltage viola-

tion. EV arrival and departure times were considered as stochastic parameters to

investigate the presence of uncertainties on the voltage level. The impact of the CS

operation on the EV charging/discharging scheduling was not considered in [5]. In [6],

a regulated charging scheduling algorithm was proposed for microgrid to minimise the

difference between load demand during peak period and valley period. In the pro-

posed algorithm, the urgency of EV charging demand and the uncertainty of EV

charging behaviour were considered to improve the actual aspects of the scheduling

method. The proposed algorithm was not comprehensive because the V2G service was

not investigated. A mixed integer quadratically constrained programming (MIQCP)

was formulated in [7] to coordinate the planning of electrical network, transportation

system, energy storage systems, fast CSs, and a large number of EVs. In the proposed

problem, the fast CS siting module and traffic congestion were considered to decrease

the investment cost of the transportation network and improve the efficiency of driv-

ing. In that study, the economically-irrational decisions taken by the EV drivers were

not modeled and their role was not investigated. Optimal day-ahead V2G and G2V

scheduling scheme was proposed in [8] to determine the optimal charging power and

minimise the total cost for a large number of EVs. The operation of CSs and the grid

was not investigated on V2G and G2V scheduling and the V2G and G2V prices were

considered as known parameters and were not determined. In [9], a MILP model was

proposed for developing EV charging coordination problem under unbalanced distri-

bution system. The proposed problem minimised the energy cost of EV considering

the requested priorities of EV drivers. In that study, the impact of CSs operation was

not considered in the EV charging coordination problem. In addition, the electric-
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ity prices were considered as known parameters. Authors of [10] have developed EV

charging schedules framework to minimise the charging cost considering the distri-

bution network constraints including voltage magnitude limit, power line rating, DC

power flow, and the transformer capacity limitation. In that study, the V2G service

and the revenue obtained from selling electricity by the EV were not considered in

the schedules framework. A hierarchical framework, which was presented in [11] as

a three-level model, coordinated real-time and day-ahead PEV charging to deal with

the PEV drivers requirement. The proposed mathematical three-level model, which

included provincial level, municipal level, and CS level, optimised system load profile

and charging costs. The economically-irrational decisions taken by the EV drivers

were not modeled and the electricity prices were considered as given parameters in

the model. In [12], a convex mathematical model was proposed to coordinate DC

fast charging of a group of EVs. The model accounted for the nonlinear relationship

between maximum charging power, battery voltage, and SOC of battery. The maxi-

mum charging power was constrained by battery voltage in the model. However, the

impact of CSs operation and the preferences of the EVs were not considered in the

coordination problem. In [13], a hierarchical mixed-variable optimisation problem

was developed for EV charging scheduling, which included multiple optimisation ob-

jectives and considered the different charging options and charging amounts at CSs.

The total time, charging cost, and the SOC gap were minimised in the proposed op-

timisation problem. The total time included the driving time, the waiting time, and

the charging time at CSs. The SOC gap was considered as the difference between the

final SOC of EVs and the expected SOC. The limitations of the distribution network

were not implemented in the optimisation problem. A scheduling problem based on a

decentralised method was developed in [14] to coordinate the charging schedules of a

large number of EVs. The plug-in and plug-off times were considered in the proposed

strategy to enhance the practical aspects of EV charging scheduling. The EV drivers’

convenience (charging time and desired SOC at the departure time) and the grid

operator benefits (load valley filling) were considered in the proposed model. The dif-

ferent responses of the EV drivers to economic incentives were not modeled, and also,

the electricity prices during G2V operation were considered as the given parameters.
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Two optimal scheduling models were proposed in [15] to obtain the scheduling single

EV and an EV fleet in public CS and home-charging patterns with regard to minimise

the cost of EV owners based on dynamic pricing. The inconvenience of EV owners

was considered as a part of the cost of EV owners which improved the satisfaction

of EV owners. The operation of two stakeholders including CSs and the distribution

network was ignored in that study. In [16], a distributed algorithm was proposed to

schedule EVs and optimise the usage of CSs in G2V operation in a highway. The

queues among the CSs were coordinated considering the traffic network and the sta-

tus of CSs. The distribution network constraints were not taken into account in the

scheduling model and the electricity prices were not calculated and they were consid-

ered as known parameters. The authors of [17] developed a coordination algorithm

based on fuzzy method for charging PEVs, which decreased the total cost of energy

generation and loss of electricity network while sustaining constraints of the network

operation including the voltage and maximum load limitations. The algorithm con-

sidered random PEVs, Time-of-Use electricity prices, and preferences of PEV drivers

for charging time. The algorithm was not considered economically-irrational deci-

sions that may be taken by the EV drivers. In addition, the electricity prices during

charging PEVs were know parameters and the optimal prices were not calculated as

a part of the algorithm. In [18] a more realistic model was developed to coordinate

EV, which considered discrete charging levels in the distribution network and the

grid capacity limitation. The proposed model optimised the total load variations and

total number of switching in EV’s G2V operation. In that study, the operation of

CSs was ignored in the EV coordination problem. In [19], a real-time scheme for

EV’s G2V operation was brought forward to coordinate EV charging with respect to

the dynamic electricity price, and implementation of the demand response program

in the parking station. The proposed optimisation problem was maximisation of the

number of EVs charged and the EV owner’s convenience and minimisation of the

charging cost. A bi-level optimisation problem, which was MILP programming was

developed in [20] to determine the optimal day-ahead charging strategy for PEVs.

The peak load which consisted of charging load of PEVs and the load fluctuation,

were minimised in the first and the second level, respectively. In addition. a social
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welfare approach was presented to determine the revenue and cost of a PEV in V2G

and G2V operation. In [19, 20], the V2G service, the impacts of CSs operation and

the distribution network were neglected. In [21], an energy management and charging

scheduling system were proposed for CSs and PEVs based on battery control units.

The system provided facilities for the EV drivers to make the optimal decision for

EV charging. ,The distribution network constrains and the V2G operation were ig-

nored in that study. Authors of [22] proposed the multi-objective energy management

problem to minimise total cost of EVs and obtain real-time energy management con-

trol. The proposed energy management optimisation was based on the direct multiple

shooting method and sequential QP algorithm. The proposed algorithm reduced the

total operating cost. The impacts of two stakeholders operation including CSs and

the distribution network were not be taken into account in the energy management

problem.

In [23], an EV charging/discharging scheduling and control framework have been

proposed to provide grid services considering EV drivers travel requirements. The

economically-irrational decisions that may be taken by the EV drivers were not con-

sidered in the scheduling. Further a charging algorithm has been proposed for al-

locating power to a large-scale PHEVs at a parking station in [24]. In that study,

the operation of only EVs was taken into account and other stakeholders including

CSs and retailers were neglected. The EV management and charging/discharging

scheduling model have been developed for an intelligent parking lot in [25] consider-

ing economical and technical aspects of EV operation, simultaneously. The proposed

model considered desired charging electricity prices, remaining battery capacity, re-

maining charging time and age of the battery as EV owners’ preferences. The prices

were considered as given parameters and the optimal desired charging prices were not

obtained in the model. In [26], a bi-level optimisation algorithm was developed based

on multi-agent systems to optimise the performance of an EV aggregator and to gen-

erate optimal bids for participation in the energy markets. The effects of EV’s V2G

and G2V operation on the power system demand profile as well as the stability and

reliability of the power system were investigated in [27]. Various power levels for V2G

and G2V operation were considered to estimate its impact on the system reliability.
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In [28], a coordination algorithm for EVs’ V2G and G2V operation was proposed con-

sidering the impact of penetration of EV fleets into the power system. In [27, 28], the

operation of CSs were not considered and the prices for G2V and V2G services were

considered as given parameters.. In [29], a multi-variant route optimisation model was

presented for EVs operation incorporating G2V and V2G options in the travel path.

The impacts of retailers were not investigated in operation of EVs and CSs in that

study. A steady-state analysis of a distribution network was introduced in [30] to de-

termine the nodal voltage variations considering different EVs’ charging strategies. A

smart charging strategy of EVs at CSs has been introduced offering multiple charging

options. In [31], a combination of EV routing and charging/discharging scheduling

strategy was proposed to operate an EV fleet. A MILP was formulated to maximise

the revenue of EV owners subject to EV and distribution network constrains. In

[30, 31], the operation of CSs as one of the main stakeholders in e-mobility ecosystem

was ignored. In addition the optimal charging/discharging prices were not obtained

and the prices were considered as given parameters in the model. In [32], a mathe-

matical model is developed for integration of EVs and distributed generation units in

energy market under a joint aggregator. Also, the performance of the EV aggregator

under the uncertainty of electricity market prices was studied through an stochastic

optimisation formulation. A two-stage scheduling framework at the distribution level

was proposed in [33]. In the first stage, the charging/discharging schedules of EVs

were obtained. In the second stage, the resource were scheduled, i.e., usage profiles

of the distributed generation units, strategy of buying electricity from the market,

and final charging/discharging patterns of the EVs were obtained. The operation of

CSs was ignored in the proposed framework. In [34], a framework was presented to

develop the network equilibrium traffic and charge patterns in an electric transporta-

tion network. In that study, the effects of individual CS on aggregate congestion and

electricity costs were investigated. However, the impacts of retailers were not stud-

ied. In [35], the optimal traffic-power flow model was reformulated as a mixed integer

second-order cone program to optimise coordinated operation of transportation and

electricity networks.

A two-step EV scheduling methodology was proposed in [36] to minimise EVs’
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charging impact on the distribution network. The optimal number of EVs to be

charged during each hour was determined in the first step and the maximum num-

ber of EVs that should be charged during the next hour was obtained in the second

step. An iterative two-layer optimisation model was proposed in [37] based on a

mixed-integer programming to alleviate the negative impact of uncoordinated charg-

ing/discharging of a large number of EVs on the grid. The operation of retailers and

economically-irrational decisions that may be taken by the EV drivers were not in-

vestigated in [36, 37]. A decentralised algorithm was proposed to optimally schedule

EV charging and discharging to fulfil load shifting in [38, 39]. Only the operation

of EVs were investigated in those studies and the impacts of CSs and retailers as

two significant stakeholders in the e-mobility ecosystem were ignored completely. In

[40], an energy management problem was formulated using dynamic programming to

minimise the daily energy cost of PHEVs. In that study, an optimal charging scheme

for PHEVs was developed to shave the peak load and flatten the overall load profile

from the distribution system operator’s perspective. In [41], an optimal V2G and

G2V control mechanism was offered to reduce the negative impact of EVs on the

grid while minimising EV charging cost and losses of the power system. The authors

in [42] developed a two-stage scheduling optimisation model including EVs, thermal

power units and load demand. The day-ahead schedules of charging and discharging

EVs and thermal units were determined in the first step, and charging and discharg-

ing schedules of the EVs were obtained afterwards considering demand uncertainties.

A smart charging approach was presented in [43] for EV aggregator’s operation to

optimise power delivered to EVs during G2V mode. Three different options were

considered based on electricity prices and charging power rates, and the final decision

was made by the EV owners based on their waiting time preferences.

As summarised in Table. 2.1, in the proposed algorithms only one or two stakehold-

ers were considered by neglecting the impact of other players in the future e-mobility

ecosystem. Moreover, the prices were treated as given parameters as opposed to ob-

taining them in the solutions. Also, a careful review of the literature shows that the

proposed algorithms find the best CS based on the EV drivers’ preferences such as

minimum driving distance , minimum cost of G2V, maximum revenue of V2G , and
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minimum waiting time in CSs without considering diverse attitude of EV drivers to

economic incentives. In addition, the EV drivers may react differently to extra driv-

ing distances required for cheaper (more expensive) G2V (V2G) services. In other

words, EV drivers are modelled fully rational in the literature, which may jeopardise

the EV drivers’ welfare because considering EV drivers’ preferences, drivers would

accept a longer route to save any amount of money. However, in this thesis, a whole

system approach is adopted to optimise major stakeholders (EVs, CSs, and retail-

ers) operation in the ecosystem. Also, the mutual impacts of the stakeholders are

considered by optimising stakeholders’ operation collectively. Furthermore, two sig-

nificant preferences of EV drivers (driver’s cost/revenue threshold and driver’s route

preference) are considered to model economically irrational decisions taken by the EV

drivers in response to economic incentives. Furthermore, the G2V and V2G prices

are investigated for all stakeholders.

Table 2.1: The comparison of works relevant to coordinated G2V and V2G operation
algorithm proposed in the literature and the model proposed in this thesis.

Ref. Which stakeholder is
considered?

Pricing Preferences

[8, 15, 19, 20, 22, 24,
25, 38, 39]

EVs 7 7

[7, 13, 16, 21, 29, 34] EVs & CSs 7 7

[4–6, 9, 10, 12, 14, 17,
18, 27, 28, 30, 31, 33,
35–37, 40, 41, 43]

EVs & Grid 7 7

[26] EV Aggregator &
Retailers

7 7

[32, 42] EV Aggregator, &
Generation Units

7 7

[11, 23] EVs, CS, & Grid
Constraints

7 7

This thesis EVs, CSs, & Retailers 3 3
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2.1.2 Literature regarding game theory in e-mobility ecosys-

tem

Since there are distinct entities/stakeholders in the e-mobility ecosystem, com-

petition between the stakeholders exists to give services to EVs in V2G and G2V

operation. Game theory has been used in several studies on this subject, which facil-

itates analysis of the interactions between the stakeholders and price calculation. In

[44], a game was developed to minimise the total cost of the utility company which

controls the load supplied to CSs and maximise the profit of each CS, considering

uncertainty of EV demand and renewable energy generation. In that study, CSs and

utility company were considered as the game players and the role of other stakeholders

including EVs and retailers were neglected in the game.

In [45], a stackelberg game was formulated as a bi-level optimisation problem to

provide energy and reserve management of the fast CS as the leader of the game. The

fast CS managed electricity and determined energy/reserve prices for EVs consider-

ing the uncertainty of renewable energy sources. Charging and reserve strategies were

determined in the follower level of the game which belongs to EVs. In that study,

only the optimal electricity prices during G2V operation were determined and the

V2G service was not considered. In addition, the operation of retailers as one of the

key players in the Stackelberge game was not taken into account. In [46], a bi-level

non-cooperative game was developed to model the competition among multiple EV

aggregators who deal with the coordination of EV charging, while considering the

response of the aggregators are not rational. In the developed model, charging costs

of aggregators were minimised by choosing optimal start times for G2V operation and

energy profiles. In [47], a Stackelberg game was presented for EV charging schedul-

ing. The leader was the smart grid, which maximised its revenue and decided the

electricity price. The followers in the game were EVs and charging strategy was de-

termined in the followers’ level by minimising the charging cost. The G2V prices were

determined in that study but the V2G services and V2G prices were not investigated.

The competition between CSs with renewable energy generation to attract EVs was

analysed using a supermodular game in [48]. The electricity price and the revenue
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of CSs were determined considering the limitations of power line capacity, the dis-

tance between EVs and CSs, and the number of chargers at CSs. The impacts of EVs

and retailers operation were not investigated in the competition between Css. The

authors of [49] proposed a non-cooperative and cooperative game. The interaction

between the EV aggregator and EVs was modeled using non-cooperative stackelberg

game, in which the EV aggregator was the leader and EV drivers were the followers.

The electricity price was determined in the leader’s level and V2G and G2V mode

was decided in the followers’ level. In addition, the cooperative game was developed

to investigate the social welfare of the entities in the V2G service. However, in that

study, the economically-irrational decisions that may be taken by the EV drivers were

not modeled as part of the game. In [50], a hierarchical game was presented to model

the competition between PHEVs in the frequency regulation. The prices of frequency

regulation were obtained in the upper level as the non-cooperative game model. Then,

the regulation capacity of the aggregator was optimised in the cooperative game of the

lower level to improve the ability of the aggregator in frequency regulation bidding.

The V2G service was ignored in that study. In [51], a non-cooperative game model

was developed for the parking-lot EV charging scheduling. The utility function of

each EV as a player was maximised considering SOC, the transformer capacity, and

the electricity price. In that study, only EVs were the players of the non-cooperative

game and the comprehensive game which includes CSs and retailers were not stud-

ies. In [52], a non-cooperative game framework which is based on charging control

method was developed to coordinate the charging schedule of PEV fleet, while min-

imising the cost of PEV drivers without jeopardising the constraints of the power

grid constraints. In the proposed game, the V2G services and operation of CSs and

retailers were neglected and the economically-irrational decision that may be taken

by PEV drivers was not considered as one of the preferences of the PEVs. A Stack-

elberg game between EVs and CSs was proposed with multiple leaders and followers

in [53]. In the developed model, the charging scheme was obtained, which includes

selection of CSs for G2V operation and pricing strategy for EVs and CSs. The selec-

tion of CSs by EVs was based on the charging prices and the distance between EVs

and CSs, while maximising the revenue of CSs. The pricing strategy was developed
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only for G2V and the V2G pricing was neglected. In addition, the retailers were not

considered as players of the game and only CSs and EVs partecipated in the game. In

[54], a graphical game was proposed for the charging scheduling of EVs to minimise

the charging time, which includes driving time to CSs, waiting time and charging

time at CSs. In that study, only EVs participated in the graphical game and other

players (CSs and retailers) were ignored. A framework linking power network with

transportation system was proposed in [55] to navigate EVs to CSs using a hierar-

chical game approach considering reliability of the distribution network and profit of

CSs. A day-ahead G2V scheduling was proposed in [56] based on an aggregative game

model accounting for the interaction between the EV charging demand and its impact

on the electricity prices. In [57], a Stackelberg game was developed, where CSs (as

leaders) offered their G2V prices to EVs (as followers), who then select CSs based on

prices, travel distances, and expected waiting times at CSs. In [58], an optimisation

framework based on non-cooperative game was developed using mixed-integer linear

programming to allocate CSs to EVs for G2V operation in order to minimise EV

waiting times.

As summarised in Table. 2.2, in the literature, the proposed algorithms can only

solve the scheduling problem for a subset of the players in future e-mobility ecosystem,

which may lead to sub-optimal solutions, thus lower public acceptance. However, in

this thesis, a comprehensive non-cooperative stackelberge game is proposed which

includes all major stakeholders (EVs, CSs, and retailers) operation in the ecosys-

tem. The new added constraints (i.e., drivers’ preferences) represent economically-

irrational drivers as opposed to fully rational users assumed in the literature, where

the drivers would accept a longer route to save any amount of money. Also, both

G2V and V2G prices are determined.

2.1.3 Literature regarding multi-objective optimisation prob-

lem

Numerous studies offered approaches based on a multi-objective optimisation for

the EV scheduling problem. In [60], a multi-objective optimisation problem was de-
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Table 2.2: The comparison of works relevant to game theory in e-mobility ecosystem
proposed in the literature and the model proposed in this thesis

PricingRef. Game Players (Type of Game) G2V V2G Preferences

[44] CSs 7 7 7

[45] EVs and CSs (Stackelberge game) 3 7 7

[46] EV aggregators 7 7 7

[47] EVs and smart grid (Stackelberge
game)

3 7 7

[48] CSs 3 7 7

[49] EVs and EV aggregator (Stackelberge
game)

3 3 7

[50] Non-cooperative game between
aggregators and Markov game

between PHEVs

3 7 7

[51] EVs (non-cooperative game) 7 7 7

[52] PEVs (non-cooperative game) 3 7 7

[53] EVs and CSs (Stackelberge game) 3 7 7

[54] EVs (graphical game) 7 7 7

[55] EVs and CSs (hierarchical game) 3 7 7

[56] EVs (aggregative game) 3 7 7

[57] PEVs and CSs (Stackelberg game) 3 7 7

[58] EVs (non-cooperative game) 7 7 7

[59] EVs and aggregator (Stackelberge
game)

3 7 7

This thesis EVs, CSs, Retailer (Non-cooperative
Stackelberge game)

3 3 3

veloped for scheduling EV’s V2G and G2V operation. Simultaneous optimisation of

electricity cost, battery degradation, grid net exchange, and CO2 emissions have been

performed. In that study, the electricity prices for G2V and V2G service were not

determined and the optimisation problem was not considered CSs and retailers costs.

Another multi-objective optimisation problem was developed in [61] to consider both

power grid and EV drivers’ concerns. The stochastic modelling was proposed to take

into account the inherent uncertainty of EV driving activities and renewable energy

output power. In [62], a day-ahead co-optimisation problem was developed to min-

imise the negative impacts of PEVs on the power system operation by minimising

the cost of energy losses and the transformer operation cost while managing active

and reactive powers. In [61, 62], the optimisation problems were not comprehensive

and the operation of CSs was not part of the optimisation problems. In [63], a multi-
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objective framework was proposed to schedule EVs’ charging and discharging in a

smart distribution network, where total operation cost of the distribution network,

including EVs and CO2 emission from distributed generation units and the main grid,

was minimised. The charging and discharging prices were considered as given parame-

ters and were not determined as part of the optimisation problems. A multi-objective

optimisation problem was proposed in [64] to find optimal charging schedule of a large

EV fleet considering the operation of the transportation network, power network, and

CSs where the nearest CS was selected as the best option regardless of the electric-

ity prices. In that study, the operation of the stakeholders including EVs, CSs, and

grid were considered in the optimisation problem but no strategy was proposed for

determining the electricity prices. A two-stage multi-objective optimisation problem

was offered in [65], where the driving needs of EV owners were considered in the first

stage. In that study, total energy and emission costs were optimised in the second

stage under the uncertainty of solar irradiation and wind speed.

On a relevant subject, a CS selection method was presented in [66] to minimise

the travel time, waiting time, and charging cost for an EV. However, the operation

of retailers was not considered in the optimisation problem. In [67], a multi-objective

optimisation problem was proposed to co-optimise customer and system operator ob-

jectives. The proposed model controlled the peak load from the system operator’s

perspective and optimised EVs’ costs/revenues and the battery degradation cost from

the EVs’ perspective. In [68], a real-time multi-objective optimisation problem was de-

veloped to schedule charging/discharging EVs, while performing the co-optimisation

of the end-user cost, battery degradation and grid stress. In [69], a scheduling strat-

egy was proposed for a system including EVs, distributed energy resource, and grid

load to minimise the variance of total power load and the maximise dispatching cost

simultaneously. In [70], a bi-objective optimisation problem was developed for EV

charging scheduling to optimise the operation of two stakeholders including CSs and

EV drivers. The proposed centralised scheduling algorithm minimised the charging

cost and reduce the charging time. In [71], a multi-objective optimisation problem as

MILP was developed for charge scheduling and route management of EVs considering

the traffic network to minimise the energy usage and the travel time which includes
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driving time on roads, waiting time at the CS, and charging time at the CS. Schedul-

ing of a large-scale EVs was developed in [72] to flatten the electricity duck curve by

proposing a multi-objective optimisation problem, whereas the ramp-up requirement

system and the quality of service were optimised. In [73], a 24-hour charging profile

of a PHEV was optimised by minimising the electricity, fuel, and battery degrada-

tion cost concurrently. A multi-objective model was proposed in [74], to schedule

electric vehicles by optimising the convenience and cost of users, along with the load

fluctuation of grid using PSO algorithm.

It can be seen in Table. 2.3, that the proposed multi-objective methods only opti-

mise one or two stakeholders’ operation without accounting for the impact of optimal

operation of the other ones. Also, the G2V and V2G prices for different stakehold-

ers have not been obtained in the proposed multi-objective frameworks.In addition,

economically-irrational drivers’ behaviour were not modelled in the literature which

may reduce the EV drivers’ interests. Moreover, other potential challenges related to

multi-objective problems are the dilemma over determining appropriate weights for

different objectives and the tractability of a larger optimisation problem that should

be solved in a single shot [75].

Table 2.3: The comparison of works relevant to multi-objective optimisation problem in
e-mobility ecosystem proposed in the literature and the model proposed in this thesis

PricingRef. Which stakeholder is considered? G2V V2G Preferences

[60, 68] EVs and microgrid 7 7 7

[61–63, 65, 67,
69, 74]

EVs and grid 7 7 7

[64] EVs, CSs and grid 7 7 7

[66, 70, 72] EVs and CSs 7 7 7

[71, 73] EVs 7 7 7

This thesis EVs, CSs, and retailers 3 3 3

2.1.4 Literature regarding pricing in e-mobility ecosystem

Another group of studies focused on optimal pricing of G2V and/or V2G services

in the future e-mobility ecosystem. For example, an optimal pricing scheme was
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proposed in [76] to coordinate the charging processes of EVs. Another model was

developed in [77] for managing EVs in a public CS network through differentiated

services including optimal pricing and routing. In the method, CSs were assigned to

EVs based on the energy demand and the traveling preferences (i.e., which stations

they are willing to visit) to manage waiting time and electricity prices. In [78], a

pricing scheme for charging an EV was proposed including two optimisation problems

to maximise the profit of CSs and EV owners. In [79], a pricing methodology for CSs

was developed to facilitate consumption of renewable generation. The selection of CSs

by EV owners was modeled based on the charging prices, driving distance to CSs and

traffic congestion information. In [80], an algorithm was proposed to schedule EVs for

G2V and V2G services according to EV driving demand while planning the time and

location of the services. The scheduling was based on Time-of-Use pricing. In [81],

a CS operation mechanism was developed that jointly optimised pricing, charging

scheduling and admission of a single CS to maximise the CS’s profit. In [82], pricing

for G2V operation was developed to improve the coordination between CSs and EVs

in order to obtain the equilibrium strategies of those entities. The uncertainties of PV

system generation, traffic conditions and electricity prices were investigated. Pricing

policy for G2V considering power of PV system and internal distributed generation

and power purchased from the grid were determined in the proposed CS model. In the

EV model, the optimal travel-route selection and G2V scheduling were determined

with regard to the pricing policy. The distribution locational marginal pricing method

was proposed in [83] to mitigate congestion in the grid which was caused by EVs’ G2V

operation. A nonlinear optimisation problem was developed to maximise the social

welfare of the distribution system and the electricity price was determined for EV

aggregators.

As illustrated in Table. 2.4, the impact of retailers’ operation and prices is disre-

garded in this group of literature, which is quite important as the major provider of

electricity and thus a price maker. Also, V2G prices have not been determined in the

proposed algorithms.
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Table 2.4: The comparison of works relevant to pricing in e-mobility ecosystem proposed
in the literature and the model proposed in this thesis

PricingRef. Which stakeholder is considered? G2V V2G Preferences

[76, 79, 81, 82] EVs and CSs 3 7 7

[78, 80] EVs and CSs 3 3 7

[77] EVs, CSs, and grid 3 7 7

[83] EV aggregators and grid 3 7 7

This thesis EVs, CSs, and retailer 3 3 3

2.1.5 Literature regarding stochastic programming in e-mobility

ecosystem

To consider sources of uncertainties in the scheduling problem, various approaches

have been proposed in the literature including robust optimization and scenario-based

stochastic programming, which are commonly used to characterise the uncertainties

in transportation sector [84–86]. However, each of these approaches poses certain

challenges. For scenario-based methods, an adequate number of scenarios must be

considered to sufficiently represent the stochasticity of the parameters. This is be-

cause the performance of stochastic models highly depends on the assumed scenarios.

More than often, it requires extra computational time and sometimes results in com-

putational intractability. In robust optimisation approaches, the worst-case scenario

is considered, which may lead to the most conservative solutions [87]. Also, it is chal-

lenging to define a proper probability distribution function for stochastic parameters.

Numerous research papers in the literature focused on EVs’ G2V and V2G schedul-

ing in an uncertain environment in recent years. The existing studies have been cat-

egorised based on different methods used, namely (1) scenario-based methods, (2)

robust optimisation-based methods, and (3) Chance-constrained (CC) optimisation-

based approaches. The first group of studies focused on scenario-based methods using

stochastic programming for e-mobility ecosystem operation. For instance, a scenario-

based stochastic approach was proposed in [88] to obtain optimal scheduling of PEVs

for aggregators by maximising their profit in day-ahead and reserve markets. To con-

sider uncertainties, the risk-constrained stochastic optimisation model was proposed
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in that paper. In [89], a scenario-based two-stage stochastic problem was offered based

on a rolling window approach for scheduling EVs in G2V operation for different grid

requirements. The goal was to minimise the distance between the actual and SOC

over a given time span. The arrival and departure times, and the initial and target

SOC of EV batteries were considered as uncertain parameters. A two-stage stochastic

model was developed in [90] to optimise the investment decision and the operational

cost of EVs in the first and second stage, respectively, considering energy consumption

and available charging times as the sources of uncertainties. The stochastic study was

investigated based on different scenarios, which was generated by a hidden Markov

model. In [91], an EV charging scheduling model was presented to minimise the mean

waiting time of EVs at a CS with multiple charging points equipped with RES. The

EV arrival, the intermittency of the RES, and the electricity price were considered

as uncertain parameters and described as independent Markov processes. In [92],

optimal control of a CS with a PV system was investigated based on a finite-horizon

Markov decision model under uncertainties of EV drivers’ behaviors and dynamic

electricity prices. Then, the total operation cost of the CS was minimised consid-

ering the V2G service and battery degradation. In [93], a two-stage scenario-based

stochastic framework was developed for modeling the optimal network of CSs aiming

to find the optimal CS for PHEVs. In that study, stochastic parameters were the

battery demand, initial SOC, preferences for charging, and RES generation. In the

first stage, the deterministic problem was solved leading into the second stage, where

the decision was made considering the uncertainties. In [94], a dynamic stochastic

optimisation problem was solved to determine optimal EV charging cost considering

electricity prices, RES production, and load as stochastic parameters. The authors

in [95] proposed a predictive framework by accounting for the uncertainties of EV

drivers’ behaviors to achieve cost-efficient solutions, whereas a kernel-based method

was used to estimate uncertain parameters in G2V operation.

The second group of studies explored the application of robust optimisation in

the e-mobility ecosystem. For example, in [96], a bi-level robust optimisation model

was formulated to optimise the design of a CS considering uncertainties in real-time

operation of the CS including the electricity prices, RES, and the number of EVs.
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In [84], a robust day-ahead scheduling approach was developed for EV charging in a

stochastic environment in order to simultaneously deal with EV drivers’ requirements

and distribution network constraints. Several uncertainties were considered including

daily trip distances and arrival and departure times. Furthermore, conservative day-

ahead assumptions were considered in the proposed model to address the negative

effects of uncertainties. In [97], a robust optimisation-based unit commitment model

was developed for a system with thermal generators and EV aggregators in day-ahead

V2G planning problem. The robust optimisation model was then reformulated as a

deterministic mixed-integer quadratic program using explicit maximisation method.

The uncertain parameter was the available energy capacity of each EV aggregator.

In [59], a robust Stackelburg game was used to investigate the interaction between

an aggregator as the leader and several plug-in hybrid EVs as the followers for charg-

ing scheduling under energy demand uncertainty. Cooperative and non-cooperative

games were investigated to analyse charging scheduling in that study, and selling

electricity price to EVs was determined by maximising the utility of the aggregator.

Then, the EV schedules were obtained by optimising the utility function of EVs.

A deterministic optimisation problem for optimal charging schedules and its robust

counterparts under uncertainty of electricity prices were compared in [98]. Trade-offs

between optimality of the cost function and robustness of charging scheduling were

investigated and stability of robust charging schedules were obtained with respect to

uncertain electricity prices. In [99], robust scheduling of EV aggregators operation

was investigated under uncertainty of electricity prices to maximise its profit. In [100],

a Stackelberg game was proposed for the EV aggregator (as the leader) and EVs (as

followers) to determine optimal day-ahead charging and frequency reserve scheduling

aiming to balance the benefits of the players in the game. The robust optimisation

approach was used to investigate EVs’ optimal schedules under uncertain frequency

regulation signals. In [101], a bi-level stochastic framework was developed for day-

ahead scheduling for PHEV fleets and wind farm system. In the upper level, the

total cost and operational emission of GHG were minimised. Arrival/departure times

and their driving distance were considered as stochastic parameters for PHEV fleets

were modelled through scenarios-based stochastic programming. The wind power
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production was modelled based on robust optimisation problem. The proposed bi-

level problem was solved using Karush–Kuhn–Tucker (KKT) and the PHEV fleets

were categorised into five clusters via K-means clustering.

The application of CC optimisation has been investigated in several studies in

this field. For instance, to consider the stochastic features of the EV driving patterns

in [102], a CC optimisation problem of EV aggegators and the distribution system

operator were developed as a mixed-integer quadratic program. The goal was to

reduce the congestion in the distribution network with a large amount of EVs. In

[103], the CC programming was used to develop a day-ahead scheduling strategy for

an EV battery swapping station. EV’s battery swapping and PV generation were

considered as the source of uncertainties, described by a probabilistic sequence. In

[104], a two-stage program for energy management system of the distribution networks

with EVs and RES was presented. In the first stage, a CC model was developed to

obtain the optimal operation of CSs and battery swapping stations under uncertainties

of RES generation. In the second stage, the regulated EV charging was determined

to meet the EV’s charging demand following the optimal operation of CSs.

There are several concerns about existing studies regarding stochastic program-

ming of EV scheduling in e-mobility ecosystem. As mentioned in Table. 2.5, in the ex-

isting studies, the interactions between stochastic parameters originated from different

stakeholders in an e-mobility ecosystem was ignored by optimising each stakeholder’s

operation individually. Also, the stochastic programming has been investigated based

on a specific type of probability distribution functions which may be different for a

certain stochastic parameter [105]. In other words, the uncertain parameters do not

follow a specific type of probability distribution in reality and a family of probabil-

ity functions needs to be considered. In addition, the proposed CC models in the

literature have considered the lower and upper-bound constraints separately as two

single-sided CCs, which makes error in the simulation because it is an inexact approx-

imation when the lower and upper- bound are treated separately in two single-sided

CCs. Furthermore, the impacts of temporal correlation of PV generation uncertainty

on CSs operation has not been investigated in a CC formulation in this field. To

properly address these concerns in stochastic programming, in this thesis, a three-
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layer joint DRCC model is proposed to G2V and V2G operation in day-ahead for

e-mobility ecosystems. The proposed stochastic model does not rely on a specific

probability distribution for stochastic parameters. The model considers an ambiguity

set, which encompasses a family of probability distributions with the first- and second-

order moments. Also, the ambiguity set with mean and covariance matrix obtained

from empirical data can perfectly describe the temporal correlation of uncertainties.

To achieve computational tractability, the exact reformulation is implemented for

double-sided and single-sided CCs. Furthermore, the impact of temporal correlation

of uncertain PV generation on CSs operation is considered.

Table 2.5: The comparison of works relevant to stochastic programming in e-mobility
ecosystem proposed in the literature and the model proposed in this thesis

Ref. Which stakeholder
is considered?

Stochastic modeling
method

Correlation
of PV

Preferences

[88] PEV aggregators Scenario-based method 7 7

[89, 90] EVs Scenario-based method 7 7

[91] EVs, CSs, and grid Scenario-based method 7 7

[92–95] EVs and CSs Scenario-based method 7 7

[96] EVs and CSs Robust optimisation 7 7

[84] EVs and grid Robust optimisation 7 7

[97] EV aggregators
and grid

Robust optimisation 7 7

[98] EVs Robust optimisation 7 7

[99] EV aggregator Robust optimisation 7 7

[100] EVs and EV
aggregator

Robust optimisation 7 7

[101] EVs and CSs Scenario-based and
robust optimisation

7 7

[102] EV aggregators
and grid

CC optimisation 7 7

[103] EVs and CS CC optimisation 7 7

[104] EVs, CS, and grid CC optimisation 7 7

This thesis EVs, CSs, and
retailers

DRCC optimisation 3 3
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2.2 Conclusion

This chapter has presented the different algorithms proposed for EVs’ G2V and

V2G scheduling in five groups. A review of the existing literature indicates several

gaps in research related to G2V and V2G operation as well as CSs operation, which

are outlined in the following.

• G1: The proposed strategies have not optimised the profit of all agents includ-

ing retailers, CSs, and EVs (major stakeholders in the future e-mobility ecosys-

tem) participating in charging/discharging scheduling, whether collectively or

individually. In other words, a comprehensive ecosystem has not been consid-

ered in these studies to address different aspects of the G2V and V2G operation

considering the effects of optimal operation of CSs and retailers through an iter-

ative process. That is to say, the mutual impacts of the stakeholders have been

ignored by optimising each stakeholder’s operation individually (Dealt with

by C1 and C2);

• G2: V2G and G2V prices have been considered as known parameters as opposed

to calculating the equilibrium prices as a part of the optimisation problem. Also,

they have not offered a mechanism to determine V2G prices (Dealt with by

C3);

• G3: The nearest CSs were selected as the optimal option without considering

the cost-benefit of the services offered by CS operators (Dealt with by C4);

• G4: The role of retailers on the operation of the EV’s scheduling system and

the prices have not been investigated (Dealt with by C2 and C3);

• G5: In the proposed algorithms, some of the practical aspects of EV scheduling,

e.g., EV drivers’ preferences and G2V and V2G operation outside of declared

trips, were not considered (Dealt with by C5 and C6);

• G6: The interactions between stochastic parameters originated from different

stakeholders in an e-mobility ecosystem was ignored by optimizing each stake-

holder’s operation individually (Dealt with by C7);

• G7: Specific probability distribution functions were assumed for modelling of

stochastic parameters, which mostly are just an estimation of true underlying
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model (Dealt with by C8);

• G8: The proposed CC models treated the lower and upper bounds as two single-

sided CCs, which may lead to over or under-estimation of the parameters; hence

violating the constraints in reality (Dealt with by C9);

• G9: The impacts of temporal correlation of PV generation uncertainty on CSs

operation have not been investigated in a chance-constraint formulation in this

field (Dealt with by C10).
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3 | A Comprehensive Day-Ahead Schedul-

ing Strategy for Electric Vehicles

Operation

Nomenclature

Indices

a, b Index of buses in the distribution network

h Index of number of cycles of EV’s battery

h Index of hours of a day

i Index of CS

it Number of iterations

j Index of chargers

k Index of EV

m Branch of the distribution network

n Dimension of search space

r Index of trip

s Index of retailer

Parameters

APV
i Area of PV in CS i (m2)

Bba Susceptance of overhead line between bus b and a (mho)

cBAT
p.u Per-unit capacity cost of battery

67
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cPQ
p.u,i Per-unit capacity cost of the active power filtering and reac-

tive power compensation in CS i

CpAV,CH
h,i,j Capacity of available charger j in CS i (kWh)

CpCH
h,i,j Capacity of charger j in CS i at time h (kWh)

CpESS
i Capacity of ESS of CS i (kWh)

CpEV
k Capacity of EV’s battery k (kWh)

CpGU
i Capacity of CGU of CS i (kWh)

Cpnom
k Nominal capacity of EV k (kWh)

Cpre
k Real capacity of EV k (kWh)

CpTR Substation transformer capacity (kWh)

DEVOR→CSSE

h,k,r Shortest driving distance of EV k between its origin and the

selected CS in trip r at time h (km)

DCSSE→EVDE

h,k,r Shortest driving distance of EV k between the selected CS

and its destination in trip r at time h (km)

DEVOR→EVDE

h,k,r Shortest driving distance of EV k between its origin and des-

tination in trip r at time h (km)

Gba Conductance of overhead line between bus b and a (mho)

HV Heat value fuel on the operation of gas turbine-generator

(kWh/m3)

it Maximum number of iterations

N b Number of distribution network nodes

NCS Number of charging stations

NCY C Number of cycles of EV’s battery

NEV Number of electric vehicles

NRe Number of retailers

NT Number of trips

PPV,nom
i Nominal power of PV system of CS i

PFCH
i,j Power factor of charger j in CS i

Rm Resistance of overhead line (Ω)

Rah Solar radiation at time h (W/m2)

SD0 ,b Nominal apparent electrical load of the distribution network

(kVA)
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SOCin
h,k,1 Initial SOC of EV k at the beginning of first trip (%)

SOC
ESS

i /SOCESS
i Maximum/Minimum SOC of ESS in CS i (%)

SOC
EV

k / SOCEV
k Maximum/ Minimum SOC of EV k (%)

SOCEV DE

h,k,r Minimum SOC of EV k at the destination of trip r (%)

Tmam
h Ambient temperature at time h (○C)

∆t Time step (s)

ubn/lbn Upper/Lower bound of variables in SSA

V b/V b Minimum/Maximum nodal voltage of the distribution net-

work (V)

WTh,k,r Waiting time of EV k for trip r at time h (s)

XCS
i Longitude of CS i

XEV DE

h,k,r Longitude of destination of EV k in trip r at time h

XEVOR

h,k,r Longitude of origin of EV k in trip r at time h

Y CS
i Latitude of CS i

Y EVOR

h,k,r Latitude of origin of EV k in trip r at time h

αi,j Harmonic current containing rate in the AC power input ter-

minal of the charger j of CS i

βi,j Reliability coefficient of the charger j of CS i

γk Power consumed by EV k per km (kWh/km)

ηPV
i Efficiency of PV system of CS i at time h

ηCH
i,j Efficiency of charger j of CS i

ηGU
h,i Efficiency of CGU of CS i at time h

ηESS+ Efficiency of ESS in charging period

ηESS− Efficiency of ESS in discharging period

ηBat+ Efficiency of EV’s battery in G2V operation

ηBat− Efficiency of EV’s battery in V2G operation

κi Overall correction coefficient of CS i

λi Simultaneity coefficient of the chargers of CS i

ρgas
h Natural gas price at time h

ρRe+,WM
h,s Electricity price purchased from wholesale market by retailer

s at time h ($/kWh)
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ρRe−,CS/ρRe−,CS Maximum/Minimum electricity price sold to CSs by retailers

($/kWh)

σ1,σ2,σ3 Fitting parameters for cycling degradation related to DOD

φ1,φ2,φ3, φ4 Fitting parameters for cycling degradation related to dis-

charge rate

Variables

c1,it Coefficient for balancing exploration in SSA for iteration it

c2,it, c3,it Random number generated uniformly between 0 and 1 in SSA

for iteration it

CCS+,EV Cost of energy purchased from EVs ($)

CCS+,Re Cost of energy purchased from retailers ($)

CD Battery degradation cost ($)

CEV The net cost of EVs operation ($)

CEV+,CS The cost of electricity purchased from CSs by EVs ($)

COp,CS Operation cost of CSs ($)

CRe+,WM Cost of electricity purchased from the wholesale market by

retailers ($)

DEV
h,k,r Battery degradation of EV k in trip r at time h

DODEV
h,k,r(T ) Depth of charge of EV’s battery k in trip r

DREV
h,k(T ) Discharging rate of EV’s battery k in trip r

Fn,it Position of food source in SSA for iteration it

Ih,m Current of overhead line m at time h (A)

it Number of iterations

itEV/itCS/itRe Number of iterations in EV/CS/retailer layer

Mh,k,r Mode of electric vehicle k in trip r at time h

NAV,CH
h,i The number of available chargers in CS i

PCS+,EV
h,i,k,r Power purchased from EV k by CS i in trip r at time h (kW)

PCS−,EV
h,i,k,r Power sold to EV k by CS i in trip r at time h (kW)

PDb,h Calculated active electrical load at bus b of the distribution

network at time h (kW)

PDN
Lh

Power loss of distribution network at time h (kW)

PESS+
h,i Charging power of ESS of CS i at time h (kW)
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PESS−
h,i discharging power of ESS of CS i at time h (kW)

PGb,h Power generation at bus b of the distribution network at time

h (kW)

PPV
h,i PV generation of CS i at time h (kW)

PCS−,AG
h,i Power sold to the aggregator by CS i at time h (kW)

PCS+,Re
h,s,i Power purchased from retailer s by CS i at time h (kW)

PEV+,CS
h,i,k,r Power purchased from CS i by EV k in trip r in trip r at time

h (kW)

PEV−,CS
h,i,k,r Power sold to CS i by EV k in trip r at time h (kW)

PGU
h,i Power produced by CGU of CS i at time h (kW)

PRe−,CS
h,s,i Power sold to CS i by retailer s at time h

PRe+,WM
h,s Power purchased from wholesale market by retailer s at time

h (kW)

PFh,b Power factor at bus b and time h

QDb,h Calculated reactive electrical load at bus b of the distribution

network at time h (kVar)

QDN
Lh

Reactive power loss of distribution network at time h (kVar)

RCS Net revenue of CS operators ($)

RCS−,AG Revenues of CSs from selling energy to the aggregators ($)

RCS−,EV Revenues CSs from selling energy to EVs ($)

REV−,CS Revenue of EVs from selling electricity to CSs ($)

RRe Net revenue of retailers ($)

RRe−,CS Revenue of retailers obtained by selling electricity to CSs ($)

SDb,h Calculated apparent electrical load at bus b of the distribution

network at time h (kVA)

SOCDP,EV
h,k,r SOC of EV k in trip r at time h (%)

SOCESS
h,i SOC of ESS of CS i at time h (%)

SOCEV
h,k,r SOC of EV k in trip r at time h (%)

SOCEVDE

h,k,r SOC of EV k at its destination in trip r at time h (%)

SOC in
h,k,r Initial SOC of EV k at the beginning of trip r and time h (%)
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SOCR,EV+
h,k,r Required SOC of EV k in trip r at time h during charging

period (%)

SOCR,EVOR→CSSE

h,k,r Required SOC of EV k in order to reach the selected CS from

its origin in trip r at time h (%)

SOCR,EV OR→EV DE

h,k,r Required SOC of EV k in order to reach its destination from

its origin in trip r at time h (%)

SOCR,CSSE→EV DE

h,k,r Required SOC of EV k in order to reach its destination from

the selected CS in trip r at time h (%)

TCYC Period of cycle

Vh,b Voltage at bus b and time h (V)

xf
n,it Position of the follower f in the dimension n in SSA

θb,h Voltage angle of the bus b at time h

ρCS−,AG
h,i Electricity price sold to the aggregator by CS i at time h

($/kWh)

ρCS+,EV
h,i Electricity price purchased from EVs by CS i at time h

($/kWh)

ρRe−,CS
h,s Electricity price sold to CSs by retailer s at time h ($/kWh)

ρCS−,EV
h,i Electricity price sold to EVs by CS i at time h ($/kWh)

ρCS+,Re
h,s Electricity price purchased from retailer s by CS i at time h

($/kWh)

ρEV+,CS
h,i Electricity price purchased from CS i by EVs at time h

($/kWh)

ρEV−,CS
h,i Electricity price sold to charging station i by EVs at time h

($/kWh)
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3.1 Introduction

The goal of this chapter1 is to develop a comprehensive day-ahead scheduling

framework to guarantee economic and energy-efficient routing of EVs, where each

EV finds the best CSs for V2G and G2V operation based on a cost-benefit analy-

sis. It is done by proposing an ecosystem including three stakeholders (EVs, CSs

and retailers) and a three-layer optimisation problem. It is formulated and optimised

as an equilibrium problem such that the collective benefits of all three stakeholders

are guaranteed simultaneously. Numerous studies have proposed various EV’s charg-

ing/discharging strategies considering customers’ preferences which are presented in

Chapter 2. As stated in Chapter 2, a review of the existing literature indicates several

gaps in research related to G2V and V2G operation as well as CSs operation, which

are outlined in G1, G2, and G3 of Section 2.2 of Chapter 2. In this chapter, the

proposed framework has dealt with the gaps.

The main contributions of this chapter can be summarised as follows:

• Proposing a comprehensive day-ahead scheduling strategy that represents an

ecosystem including the interaction between EVs, CSs, and retailers during

EVs’ V2G and G2V operation whilst optimising the collective welfare of all

agents;

• The coordinated EVs’ V2G and G2V operation is formulated and solved such

that the effects of optimal operation of CSs and retailers are considered through

an iterative process;

• Obtaining optimal day-ahead electricity prices of all agents during V2G and

G2V operations such that the collective benefit of all three stakeholders are

achieved simultaneously by solving an equilibrium problem iteratively;

• Combining cost/benefit and energy-efficient-routing problems (instead of choos-

ing the shortest route) for each EV to select the best CS, which is integrated

with the CSs operation in purchasing electricity from retailers.

1This chapter is published on International Journal of Electrical Power Energy Systems:
Mahsa Bagheri Tookanlou, S.Ali Pourmousavi Kani, Mousa Marzband, “A comprehensive day-

ahead scheduling strategy for electric vehicles operation”, International Journal of Electrical Power
Energy Systems, 131, 2021, 106912.
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This chapter is organized as follows. Section 3.2 describes the structure of the

proposed EV charging and discharging strategy incorporating the three agents. Sec-

tion 3.3 presents the proposed three-layer optimisation formulation. In this chapter,

SSA is used for solving optimisation problems (and compared with PSO, which is

explained in Section 3.4. The case study is introduced in Section 3.5. The simulation

results are presented and discussed in Section 3.6. Finally, in Section 3.7, conclusion

is given.

3.2 The Structure of the Proposed Ecosystem

In this chapter, a comprehensive ecosystem is envisaged for the future electrified

transportation sector by considering all three agents, as shown in Figure 3.1. In this

ecosystem, retailers purchase electricity from the wholesale market and sell it to CSs

aiming to maximise their profit. The CSs are charging stations with known locations

in a given area and operate at the distribution system level as the point of connection

of EVs to the main grid in G2V and V2G modes. Similar to retailers, CS operators

are looking to maximise their profit in this framework. CSs and EVs are entitled to

choose retailers and CSs, respectively, based on their economic benefits. For the sake

of completeness, the CSs are assumed to have onsite CGU, PV, and ESS, which might

be used to supply electricity to EVs. An CGU could be a small gas turbine-generator.

In this study, conventional retailers are assumed; thus they are not able to sell energy

back to the wholesale market by purchasing it from CS operators. Therefore, V2G

service is purchased from EVs by CS operators and sold in the wholesale market

through an aggregator. Please note that the aggregator optimal operation has not

been considered in this study to avoid further complexity and will be considered in

the future work.

EVs are the end-users, as shown in Figure 3.1. During a typical day, EVs might

have multiple trips with different waiting times between each trip. EVs with known

location and initial SOC plan their charging/discharging depending on the shortest

driving route and a cost/benefit analysis based on the CSs prices. Please note that

each EV can only be charged or discharged during each trip if there is an economic
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benefit to do so while respecting the EV’s constraints. In this case, EVs require an

algorithm to select proper CSs for G2V and V2G operation to minimise their cost.

In order to satisfy the objectives of different agents, a top-to-bottom coordinated

method is proposed that solves a day-ahead scheduling problem for all agents. The

formulated problem is an equilibrium one that is solved in three layers sequentially

and iteratively, where the leader is the retailer agent. The solution to the equilibrium

problem is inspired by Walrasian tâtonnement, which leaves the price invariant if and

only if it is an equilibrium price [1, 2]. Through the iterative three-layer optimization

problem, the operation of each player in the framework is changed by receiving new

information from other players to reach the equilibrium point. The proposed solution

can be offered to the agents as a cloud scheduling system, which is operated by a

non-profit entity (aka price-setter). Its role is to collect required information from all

agents, as shown in Figure 3.2, run the top-to-bottom coordinated scheduling method,

and ultimately dispatch the results to relevant agents. Since power system topology

is needed to ensure the feasibility of the solutions against network constraints, dis-

tribution system operators or distribution network service providers could be the

best candidates to take on this role. Since the scheduling system operator does not

seek any profit in the proposed framework, accessing to the information of the three

stakeholders does not compromise fair operation of the scheduling system. It is as-

sumed that all agents have communication links with the cloud scheduling system.

All information exchanged between the stakeholders and the scheduling operator can

be end-to-end encrypted, so that it becomes more difficult to compromise the infor-

mation. The information exchanged between three agents and the cloud scheduling

system are detailed in Figure 3.2. The following assumptions are made in developing

the proposed strategy:

• All agents are economically rational within their personal preferences and limi-

tations, which means that they change their behaviour in response to economic

incentives;

• It is assumed that each EV can only be charged or discharged during each trip

if there is an economic benefit to do so while respecting the EV’s constraints.

Therefore, there is an implicit constraint in the optimisation formulation that
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Wholesale Electricity Market

EVs

CSs

Retailers

Aggregator

RetailerRetailerRetailer

...

...

...

Figure 3.1: Conceptual structure of the proposed ecosystem including interactions between
wholesale electricity market, retailers, aggregator, CSs, and EVs.

is limiting the number of charge/discharge events, which is based on the EV

owner’s preferences (as in their day-ahead plan);

• In order to consider EV owners’ preferences, a minimum SOC level is specified

by the EV owner as the minimum battery SOC at the end of the day;

• All CSs have fast DC charger (22kW and 50kW). This is to ensure that the

scheduled G2V or V2G operation will be fulfilled within an hour for any type

of EVs;

• In each hour, the number of EVs assigned to a CS is smaller or equal to the

number of EV chargers in that station. Therefore, no queuing is required.

There are four steps to implement the proposed strategy, as depicted in Figure 3.3,

that should be followed:

Step 1: At the beginning of the scheduling period, the cloud scheduling system

collects required parameters and data from each agent for every hour of the next day.

The input parameters that should be communicated to the cloud scheduling system

from each agent and decision variables of each agent are summarized in Table 3.1. It
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Cloud Scheduling 
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Figure 3.2: The cloud scheduling system and the required communication links with other
agents.

is worth mentioning that some of the parameters do not change on a daily basis; they

will be updated when needed by the agent, e.g., number and capacity of available EV

chargers in each CS. This way, the amount of required communication bandwidth can

be reduced significantly.

Table 3.1: Input parameters and decision variables for each agent

Agent Input Parameters Decision Variables

Retailers ρRe+,WM
h,s ρRe−,CSh,s

CSs XCS
i , Y CS

i NAV,CH
h,i , CpAV,CHh,i,j PGU

h,i , P
CS+,Re
h,s,i , PCS−,AG

h,i

EVs
XEV OR

h,k,r , Y EV OR

h,k,r , XEV DE

h,k,r , Y EV DE

h,k,r PEV −,CS
h,i,k,r , PEV +,CS

h,i,k,r

SOCin
h,k,1, WTh,k,r, SOCEV DE

h,k,r

Step 2: Let’s assume that each EV is allowed to plan T trips per day where each

trip r ∈ {1, . . . , r, r + 1, . . . , T} (in this chapter, it is assumed that each EV has two

trips per day). The shortest driving route for each trip is determined by a network

analyst toolbox called ArcGIS [3] as a navigation platform in the cloud scheduling
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system. For each hour, the longitude and latitude of each CS, origin and destination

of each EV for each trip are used to determine the shortest route considering the

traffic pattern in each hour. Five potential shortest driving routes will be identified

in step 2: Route#1: the shortest driving route between the origin and destination

of EV k for trip r; Route#2: the shortest driving route between the origin of EV k

and the location of CS i for trip r/trip r + 1; Route#3: the shortest driving route

between the destinations/origin of EV k for trip r/trip r + 1 and destination of EV

k for trip r + 1; Route#4: the shortest driving route between the location of CS i

and destination of EV k for trip r; Route#5: the shortest driving route between the

location of CS i and the destination of EV k for trip r + 1. As shown in Figure 3.3,

the driving distances corresponding to the five possible driving routes will be used in

Step 3.

Step 3: Required energy (in terms of battery SOC changes) to drive each set of

the five routes will be calculated in this step for each EV.

Step 4: The framework of the three-layer optimisation problem for EVs, CSs, and

retailers is implemented in this step, as shown in Figure 3.3. Three layers in the frame-

work correspond to the optimisation problem that should be solved for each of the

three agents. As shown in Figure 3.2, parameters are received by the cloud schedul-

ing system, as explained in Table 3.1. The three optimisation problems are solved

iteratively for 24 hours ahead, which is summarised in Algorithm 1. The optimisation

problems formulation and the optimisation technique are explained in Section 3.3 and

3.4, respectively. Through the iterative three-layer optimization problem, the profit

of all agents are optimised as an equilibrium problem. It essentially leads to collective

optimisation which can be called social welfare optimisation of the ecosystem. In the

equilibrium problem, the iterative algorithm is used to solve, and consequently, up-

date the position of each player in the framework by receiving new information (e.g.,

new prices) from other players to find the equilibrium point in which the prices do

not change. This way, the prices of V2G and G2V at different level of the system are

obtained. Since the scheduling system is operated in day-ahead, wholesale market

price estimation is needed for the entire next day.

In the first iteration, retailers generate the prices that they would like to offer to
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CSs based on their profit margin. Then, the prices will be passed on to CS layer in

this iteration. The prices increase in CS layer considering their profit margin. Then,

CSs communicate the prices to EV layer where the first optimisation problem, i.e.,

Eqs. (3.1)-(3.2c) with the constraints in Eqs. (3.9a)-(3.14), will be solved for the first

time. The optimisation solutions, i.e., energy sold/purchased to/from CSs in each

trip, will be sent to the CSs layer, where the operation of CSs will be scheduled

by solving the optimisation problem in Eqs. (3.4)-(3.6c) with the constraints given

in Eqs. (3.15a)-(3.19c). Ultimately, the optimisation solutions including energy pro-

duced by CGUs as well as the electricity traded with retailers and aggregators will

be used in retailer layer to obtain optimal operation of the retailers using the optimi-

sation problem in Eqs. (3.7)-(3.8b) and the constraints in Eqs. (3.20a)-(3.26). As a

result, the optimal day-ahead electricity prices sold to CSs by retailers is determined

in retailer layer. The newly generated prices will then be used in the second iteration

to repeat the optimisation problems of the EV and CS layers. This iterative process

will go on until a certain convergence criterion is met. In this study, the convergence

criterion is defined as the change in the objective function in the two consecutive

iterations, which should be less than 10−3 for all three optimisation problems.

The cloud scheduling system finds the charging/discharging schedules of all EVs

at once, which depends on the V2G and G2V prices in each trip throughout a day

and the minimum expected SOC level of EVs by the owners. To identify V2G and

G2V mode of each EV during a day, a rule-based approach is developed in this study

as follows:

• If G2V prices in trip r is less than V2G prices in trip r+1, EV k will be charged

in trip r and discharged in trip r + 1 with regards to the minimum expected

SOC level of EV k throughout a day;

• If V2G prices in trip r is more than G2V prices in trip r + 1, EV k will be

discharged in trip r and charged in trip r+1 with regards to the minimum SOC

level of EV k at the end of the trip.
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Algorithm 1 Three-layer optimisation problem for EVs, CSs, and Retailers
▷ retailer layer

1 itRe
= 1

2 while itRe
≤ it

Re
do

34 Initialize the decision variables in retailer layer.
▷ CS layer

5 itCS
= 1

6 while itCS
≤ it

CS
do

itCS
= 1

7 Initialize the decision variables in CS layer.
▷ EV layer

8 itEV
= 1

9 while itEV
≤ it

EV
do

10 if itEV
= 1 then

11 Initialize the decision variables in EV layer.
12 Calculate the objective function in EV layer (Eq. (3.1))

else
13 Determine the best value of decision variables in EV layer
14 Solving optimisation problem of EV layer
15 itEV

= itEV
+ 1

16 Import the optimal value of decision variables from EV layer.
17 Calculate the objective function in CS layer (Eq. (3.4)).
18 Determine the best value of decision variables in CS layer
19 Solving optimisation problem of CS layer
20 itCS

= itCS
+ 1

21 Import the optimal value of decision variables from CS layer
22 Calculate the objective function in retailer layer (Eq. (3.7)) for each salp
23 Determine the best value of decision variables in retailer layer
24 Solving optimisation problem of retailer layer
25 itRe

= itRe
+ 1

3.3 Mathematical Modeling

In this section, objective functions and technical constraints for each layer in Step

4 of Figure 3.3, namely EVs, CSs, and retailers, are presented and explained. For

the sake of clarity, objective functions and constraints are presented in separate sub-

sections for the three agents.

3.3.1 Objective function of EV layer

The net cost of EV operation must be minimised in this layer, which is the dif-

ference between the cost of EVs (including electricity purchased from CSs, CEV+,CS,

and battery degradation cost during V2G operation, CDEG,EV) and the revenue from

selling electricity to CSs, REV−,CS, as per below equation:

CEV = CEV+,CS +CDEG,EV −REV−,CS (3.1)
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The individual cost and revenue terms can be computed as follows:

CEV+,CS =
24

∑
h=1

NEV

∑
k=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r + 1) × PEV+,CS

h,i,k,r × ρEV+,CS
h,i (3.2a)

CDEG,EV =
24

∑
h=1

NEV

∑
k=1

NCYC

∑
c=1

NT

∑
r=1

1

2
×Mh,k,r×(Mh,k,r−1)×cBAT

p.u ×Cpnom
k ×

DEV
h,k,r(T

CYC)

Cpnom
k −Cpre

k

(3.2b)

REV−,CS =
24

∑
h=1

NCS

∑
i=1

NEV

∑
k=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r − 1) × PEV−,CS

h,i,k,r × ρEV −,CSh,i (3.2c)

To avoid uneconomical V2G operation, battery degradation should be quantified

and its cost should be included in the objective function. As a result, EV owners

will be remunerated for V2G services only if they can recover the cost of battery

degradation and make some profit. In Eq. (3.2b), the battery degradation cost is

considered for EVs during discharging period, which is obtained from the cycling

degradation for a given discharge profile using the following equations [4]. The cost

considers cycle number, depth of discharge, and discharge rates in optimal scheduling:

Cpre
k = 0.8 ×Cpnom

k (3.3a)

DEV
h,k,r(T

CYC
c ) =(σ1 × [DODEV

h,k,r(T
CYC
c )]2 + σ2 ×DOD

EV
h,k,r(T

CYC
c ) + σ3)

× (φ1 × [DREV
h,k(T

CYC
c )]3 + φ2 × [DREV

h,k(T
CYC
c )]2 + φ3 ×DR

EV(TCYC
c ) + φ4)

(3.3b)

3.3.2 Objective function of CS layer

As it was explained in Section 3.2, it is assumed that CS operators purchase

electricity from retailers only if the onsite generation and storage is not sufficient to

meet EVs charging demand, or the onsite generation is more expensive compared to

the electricity supplied from retailers. In addition, to provide services to the upper

grid for added revenue, CS operators are allowed to purchase electricity from EVs and

sell to the wholesale market through aggregators. Therefore, the objective function in

this layer is defined as the net revenue of CS operators, which has to be maximised.

The net revenue (profit) of CS operators can be calculated by subtracting revenues
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of selling energy to the aggregators, RCS−,AG, and EVs, RCS−,EV, from the expenses

including onsite operational costs, COp,CS, cost of energy purchased from retailers,

CCS+,Re, and EVs, CCS+,EV, expressed by:

RCS = RCS−,AG +RCS−,EV −COp,CS −CCS+,Re −CCS+,EV (3.4)

The revenue terms in Eq. (3.4) can be calculated as follows:

RCS−,AG =
24

∑
h=1

NCS

∑
i=1

NRe

∑
s=1

PCS−,AG
h,i × ρCS−,AG

h,i (3.5a)

RCS−,EV =
24

∑
h=1

NCS

∑
i=1

NEV

∑
k=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r + 1) × PCS−,EV

h,i,k,r × ρCS−,EV
h,i (3.5b)

Various cost terms are calculated by:

COp,CS =
24

∑
h=1

NCS

∑
i=1

PGU
h,i × ρgas

h

ηGU
h,i ×HV

+
NCS

∑
i=1

cPQ
p.u,i × λi × κi

NCH
i

∑
j=1

βi,j × αi,j ×
PCH
i,j

ηCH
i,j × PFCH

i,j

(3.6a)

CCS+,Re =
24

∑
h=1

NCS

∑
i=1

PCS+,Re
h,i,s × ρCS+,Re

h,s (3.6b)

CCS+,EV =
24

∑
h=1

NCS

∑
i=1

NEV

∑
k=1

NT

∑
r=1

1

2
×Mh,k,r × (Mh,k,r − 1) × PCS+,EV

h,i,k,r × ρCS+,EV
h,i (3.6c)

The operation cost of each CS in Eq. (3.6a) includes the operation costs of the CGU

and chargers related to active power filtering and reactive power compensation cost,

as given in [5–7]. Charger efficiency is considered because of the internal conversion

losses, where input power to the charger is more than the power sold to EVs. For

the other terms, the cost is simply the product of the traded energy by the prices

obtained from previous optimisation layer.

3.3.3 Objective function of retailer layer

The net revenue of retailers in this layer must be maximised, which is defined as

the difference between the revenue obtained by selling electricity to CSs and the cost

of electricity purchased from the wholesale market, as given by:

RRe = RRe−,CS −CRe+,WM (3.7)

The collective daily revenue and cost of retailers are expressed in the following
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equations:

RRe−,CS =
24

∑
h=1

NRe

∑
s=1

NCS

∑
i=1

PRe−,CS
h,s,i × ρRe−,CS

h,s (3.8a)

CRe+,WM =
24

∑
h=1

NRe

∑
s=1

PRe+,WM
h,s × ρRe+,WM

h (3.8b)

3.3.4 Constraints of EV layer

The SOC evolution after each charge and discharge and each trip for hour h can

be determined by Eq. (3.9a), while Eq. (3.9b) ensures that the battery SOC level is

maintained within a lower and upper bound for EV k for the safety and longevity of

the battery:

SOCEV
h,k,r = SOC

EV
h−1,k,r +

PEV+,CS
h,k,r × ηBAT+ ×∆t

CpEV
k

−
PEV−,CS
h,k,r ×∆t

CpEV
k × ηBAT− (3.9a)

SOCEV
k ≤ SOCEV

h,k,r ≤ SOC
EV

k (3.9b)

Charging and discharging power of the chargers at each CS are limited, which is

enforced by Eqs. (3.10a) and (3.10b). At each hour h, an EV can only adopt one of

the charging or discharging mode, which is achieved by Eq. (3.10c).

0 ≤ PEV+,CS
h,k,r ≤ CpCH

h,i,j (3.10a)

0 ≤ PEV−,CS
h,k,r ≤ CpCH

h,i,j (3.10b)

PEV+,CS
h,k,r × PEV−,CS

h,k,r = 0 (3.10c)

During charging period, the required energy (in terms of battery SOC) is calcu-

lated by Eq. (3.11) in a way to guarantee the minimum SOC level, SOCEV DE

h,k,r , at the

next destination, which is specified by the EV owner. The required SOC of EV is

determined by the minimum driving distance obtained in Step 2 of Section 3.2.
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SOCR,EV+
h,k,r = SOCR,EVOR→CSSE

h,k,r + SOCR,CSSE→EV DE

h,k,r + SOCR,EV OR→EV DE

h,k,r

+ SOCEV DE

h,k,r − SOC in
h,k,r

=
(DEVOR→CSSE

h,k,r +DCSSE→EVDE

h,k,r +DEVOR→EVDE

h,k,r ) × γk

CpEV
k

+ SOCEV DE

h,k,r − SOC in
h,k,r

(3.11)

Similarly, the maximum available energy of an EV that can be sold to a CS,

depends on the EV’s travel plan and the distance of the routes, which is calculated

in Eq. (3.12).

SOCR,EV−
h,k,r = SOC in

h,k,r − SOC
R,EVOR→CSSE

h,k,r − SOCR,CSSE→EV DE

h,k,r

− SOCR,EVOR→EV DE

h,k,r − SOCEVDE

h,k,r

= SOCin
h,k,r −

(DEVOR→CSSE

h,k,r +DCSSE→EVDE

h,k,r +DEVOR→EVDE

h,k,r ) × γk

CpEV
k

− SOCEV DE

h,k,r

(3.12)

For EV k in both charging or discharging mode, the SOC at the departure time

from selected CS must be higher than the required SOC of the EV to reach the next

destination, as expressed in Eq. (3.13):

SOCDP,EV
h,k,r ≥ SOCR,EV±

h,k,r (3.13)

At the final destination, the SOC of EV k must be more than the final SOC level

that is specified by the EV owner, which is achieved by:

SOCEV DE

h,k,r ≥ SOCEV DE

h,k,r (3.14)

3.3.5 Constraints of CS layer

Balance between supply and demand within a CS should be maintained at all times

during charging and discharging, which is achieved by Eq. (3.15a). Charger efficiency

is considered for the sake of accuracy. Equation (3.15b) ensures that the number of

operational chargers in a CS does not exceed the number of existing chargers in that

station.

PPV
h,i + P

GU
h,i ± PESS±

h,i +
NEV

∑
k=1

PCS+,EV
h,i,k,r +

NRe

∑
s=1

PCS+,Re
h,s,i =

PCS−,AG
h,i

ηCH
i

+
NEV

∑
k=1

PCS−,EV
h,i,k,r

ηCH
i

(3.15a)
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NAV,CH
h,i ≤ N

CH

i (3.15b)

The onsite PV generation is estimated by Eq. (3.16a) from meteorological data

and PV panel specifications. Equation (3.16b) ensures that the PV dispatch at time

h is lower than or equal to the maximum available PV at the same time. Therefore,

PV curtailment is allowed in the CS operation.

PPV
h,i = ηPV

i ×APV
i ×Rah × (1 − 0.005 × (Tmam

h − 25)) (3.16a)

PPV
h,i ≤ PPV,nom

i (3.16b)

In Eq. (3.17a), onsite stationary ESS operation and its SOC evolution is char-

acterised. The SOC upper and lower limits are enforced by Eq. (3.17b). Moreover,

simultaneous operation of the ESS in the two modes (i.e., charge and discharge) is

prohibited by Eq. (3.17c).

SOCESS
h,i = SOCESS

h−1,i +
PESS+
h,i × ηESS+ ×∆t

CpESS
i

−
PESS−
h,i ×∆t

CpESS
i × ηESS− (3.17a)

SOCESS
i ≤ SOCESS

h,i ≤ SOC
ESS

i (3.17b)

PESS+
h,i × PESS−

h,i = 0 (3.17c)

Equation (3.18a) ensures that electricity produced by a CGU at time h does not

exceed its nominal capacity [8]. Moreover, based on Eq. (3.18b), it is not reasonable

to operate the CGU below 30% of its rated power due to low efficiency and high

greenhouse gas emission at the lower operating ranges. Therefore, the CGU will be

turned off, as in [8].

PGU
h,i ≤ CpGU

i (3.18a)

PGU
h,i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

PGU
h,i PGU

h,i ≥ 0.3 ×CpGU
i

0 PGU
h,i < 0.3 ×CpGU

i

(3.18b)

Total charge/discharge capacity of CS i is calculated by Eq. (3.19a) [9]. Electricity

purchased from retailers by CS i at the point of common coupling is limited by
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Eq. (3.19b). Based on Eq. (3.19c), CS i is not allowed to sell CGU power to the

aggregator. In other words, the power sold to the aggregator should be equal or lower

than the power purchased from EVs. This is because of the existing regulations in

many electricity markets and the desire to limit emissions from CGU.

CpCS
i = λi ×

NCH

∑
j=1

PCH
i,j

ηCH
i,j × PFCH

i,j

(3.19a)

PCS+,Re
h,s,i ≤ CpCS

i (3.19b)

PCS−,AG
h,i ≤

NEV

∑
k=1

PCS+,EV
h,i,k,r × ηCH

i (3.19c)

3.3.6 Constraints of retailer layer

Active and reactive power should be balanced at all times. Therefore, sum of the

electricity purchased from the wholesale electricity market through retailers must be

equal to the sum of the electricity purchased by CSs from retailers, load demand and

power losses of the distribution network for active and reactive power at hour h:

NRe

∑
s=1

PRe+,WM
h,s =

NRe

∑
s=1

NCS

∑
i=1

PRe−,CS
h,s,i +

Nb

∑
b=1

PDb,h + PL
DN
h (3.20a)

NRe

∑
s=1

QRe+,WM
h,s =

NRe

∑
s=1

NCS

∑
i=1

QRe−,CS
h,s,i +

Nb

∑
b=1

QDb,h +QL
DN
h (3.20b)

Active and reactive power demands at bus b and hour h are determined by:

PDb
,h =

SD0 ,b
Nb

∑
b=1
SD0 ,b

× PD0 ,h (3.21a)

QDb,h = tan(cos−1(PFh,b)) × PDb,h (3.21b)

The power factor of bus b is extracted from [10].

Active power losses are given by:

PDN
Lh

=
NM

∑
m=1

∣ Ih,m ∣
2
×Rm (3.22)

Total electricity purchased from the wholesale electricity market must not exceed
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substation transformation capacity [11]:

NRe

∑
s=1

PRe+,WM
h,s ≤ CpTR (3.23)

Voltages of all buses must be within permissible range in order to guarantee a

secure operation of the distribution network while maintaining power quality at a

standard level:

Vb ≤ ∣ Vh,b ∣ ≤ Vb (3.24)

Active and reactive power balance are maintained for bus b at hour h by [12]:

PGb,h − PDb,h = Vb,h
Nb

∑
a=1

Va,h(Gbacos(θb,h − θa,h) +Bbasin(θb,h − θa,h)) (3.25a)

QGb,h −QDb,h = Vb,h
Nb

∑
a=1

Va,h(Gbasin(θb,h − θa,h) +Bbacos(θb,h − θa,h)) (3.25b)

The electricity price offered by retailers to CSs is limited by minimum and maxi-

mum bounds for the optimisation problem at this layer.

ρRe−,CS ≤ ρRe−,CS
h,s ≤ ρRe−,CS (3.26)

3.4 Optimisation Model

Despite the fact that evolutionary algorithms might not be able to guarantee

global optimal solutions and that they might only reach near-optimal solutions, an

evolutionary algorithm, called SSA, is preferred in this study because of the non-linear

nature of the three optimisation problems. SSA is an evolutionary computation tech-

nique that is inspired by swarming behaviour of salps when they navigate in deep

oceans within chains of salp searching for a food source as the swarm’s target. In

literature, the most popular swarm-inspired algorithms are PSO and ant colony al-

gorithm (ACO) [9, 13–15]. However, it was discovered in a few studies. e.g., [16, 17],

that the SSA is able to explore the search space more effectively, and that the optimi-

sation technique benefits from high exploration and convergence speed to obtain the

true global solutions [16]. In order to obtain a mathematical model of salp chains,

the population of salps is divided into two groups: the first group is the leader where

the salp at the front of the chain guides the swarm and the second group includes
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the followers, as the rest of salps, chasing the leader. In every iteration, the leader

changes its position around the food source and the followers chase the leader. The

position of salps is defined as an n-dimensional search space, where n is the number

of decision variables of the optimisation problem at hand. The position of all salps

are stored in a two-dimensional matrix, xn,it. The position of the first salp as the

leader is updated with respect to the food source, Fn,it, based on [16, 18]:

xL
n,it =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Fn,it + c1,it ((ubn − lbn) c2,it + lbn) c3,it ≥ 0

Fn,it − c1,it ((ubn − lbn) c2,it + lbn) c3,it < 0

(3.27)

where c1,it is a variable that will exponentially decrease throughout the iterations, as

obtained by Eq. (3.28); and c2,it and c3,it are random numbers uniformly distributed

on the interval of [0,1] at iteration it.

c1,it = 2e
−
⎛
⎜
⎝

4 × it

it

⎞
⎟
⎠

2

(3.28)

The position of the follower f in the dimension n is updated by:

xf
n,it =

1

2
(xf

n,it + x
f−1
n,it) (3.29)

To determine optimal day-ahead electricity prices sold to CS operators by retailers,

there are NRe × 24 decision variables to optimise in retailer layer. The number of

decision variables in the CS layer is 3×NCS×24 considering three sets of variables that

correspond to the power produced by CGU, power purchased from retailers, and power

sold to the aggregator for 24 hours ahead. In the EV layer, the optimisation problem

includes 2× 24×NEV decision variables that correspond to the power sold/purchased

to/from EVs.

3.5 Simulation Study

In order to examine the performance of the proposed method, a comprehensive

simulation study is carried out, as shown in Figure 3.4, using a selected area of San

Francisco [19]. The IEEE 37-bus distribution test system [10] is mapped over the

area to represent the CSs connection to the distribution system. It is assumed that

there are three retailers to provide electricity to CSs and one aggregator is considered
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to sell energy back to the wholesale market by purchasing it from CSs. The nominal

voltage of the network is 480 V and the minimum and maximum voltage limits are

0.95 and 1.05 p.u., respectively. Node 1 is connected to the distribution transformer

as the slack bus. Total active and reactive power demand (without EV) at the peak

hour are equal to 8.7 MW and 4.3 MVAr, respectively. As depicted in Figure 3.4,

the CSs are randomly placed at nodes 2, 8, 10, 11, 16, 22, 29, 32, and 35. The origin

and destination of EVs in each trip is assumed to be contained in this area. 600 EVs

are randomly situated over the area, each of which is assumed to complete two trips

per day with different waiting times between each trip, without loss of generality.

Furthermore, four types of EVs with battery capacity of 14.5kWh, 16kWh, 28kWh,

and 40kWh are considered. In this study, the base case is defined in such a way

that no optimisation is carried out for scheduling and every EV selects the closest CS

without considering prices. Also, V2G and G2V prices in the base case strategy are

equal to the initial prices in the first iteration of the proposed three-layer optimisation

problem for each agent.

Input parameters and their corresponding values for the distribution network, CSs,

and EVs are given in Table 3.2. Due to lack of daily load profile at each node in the

IEEE 37-bus distribution test system, the daily hourly load profile of California ISO

[20] is used by re-scaling the values in proportion to the test network load demand

using Eqs. (3.21a) and (3.21b). Also, day-ahead electricity prices of the wholesale

electricity market for a typical day are extracted from California ISO [20], which are

used in the simulation studies.

In order to take into account ancillary services costs, network maintenance costs,

taxes, and etc. (which are normally included in the retail electricity tariffs), the day-

ahead electricity prices of the wholesale market is multiplied by 4.5 homogeneously.

The new prices will serve as the electricity prices that is paid by CS operators to the

retailers. The electricity prices sold to EVs by CSs and electricity prices purchased

from EVs by CSs are obtained by:

ρCS−,EVh,i = rand(1.1,1.5) × ρRe−,CSh,i (3.30)

In Eq. (3.30), it is assumed that CSs’ asking prices are 10–50% more than what
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Figure 3.4: IEEE 37-bus distribution test network and location of some of the EVs and
all CSs in San Francisco, the USA [19] and [10].

Table 3.2: Input parameters of distribution network, CSs, and EVs [7, 21, 22]

Parameter Value Parameter Value

Mh,k,r ± 1(+1: G2V, -1: V2G) CpEV 14.5, 16, 28, 40 (kWh)
∆t 1 hr V b/V b 0.95/1.05
cPQ
p.u 10.16 ($/kVA) HV 0.7 (kWh/m3)
ηCH 0.9 ηPV 0.157
PFCH 0.95 APV 800 (m2)
CpGU 65 (kW) CpESS 50 (kWh)
N

CH

i 5 ρgas 13.07 (cents/m3)
α 0.03 β 1.05
κ 0.61 λ 1
SOCESS/ SOC

ESS
0.1/0.9 γ 0.2 (kWh/km)
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they pay to the retailers in order to make profit. In addition, CS operators offer

prices to EVs for V2G services that will be sold to the wholesale market through

aggregators. The performance of a CS in this case depends on the prices offered to

the EVs. Therefore, a sensitivity analysis is carried out using the following three

scenarios:

Scenario I (Low-price scenario): ρCS+,EVh,i =
1

4.5
× ρRe−,CSh,i × rand(0.1,0.9)

Scenario II (Medium-price scenario): ρCS+,EVh,i = ρRe−,CSh,i × rand(0.6,0.85)

Scenario III (High-price scenario): ρCS+,EVh,i = ρRe−,CSh,i × rand(1.05,1.3)

It can be seen that the optimal day-ahead electricity prices for discharging EVs

increase from scenario I to scenario III. In fact, in scenario I to scenario III, V2G

prices are getting closer to G2V prices to encourage more EVs in V2G operation, and

consequently, determine the range of V2G prices in which the collective benefit of all

agents is maximised. In all scenarios, ρCS−,AGh,i = 1.1 × ρCS+,EVh,i where the aggregator

expects maximum of 10% profit based on the price offered by CSs.

It is assumed that different retailers are looking for up to 30% profit. As a result,

the minimum and maximum value of the day-ahead electricity prices sold to CSs by

retailers are expressed as:

1.05 × 4.5 × ρRe+,WM
h ≤ ρRe-,CS

h,s ≤ 1.3 × 4.5 × ρRe+,WM
h (3.31)

The cloud scheduling system specifies the charging/discharging plan of all EVs at

once. Four plans can be expected for EV charging and discharging with two trips.

The flowchart for choosing a proper plan for EVs is shown in Figure 3.5, which are

explained below:

• Plan 1: The initial SOC of EV k at the beginning of trip 1 is not sufficient to

complete this trip. Therefore, EV k must be charged in trip 1. If it is profitable,

it will be discharged in trip 2.

• Plan 2: The initial SOC of EV k at the start of trip 1 is more than the total

energy needed to finish trip 1 and the minimum SOC of the EV at the end of
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the trip. If charging prices in trip 1 are less than discharging prices in trip 2, EV

k will be charged in trip 1 and discharged in trip 2. EVs will be scheduled for

discharging only if they can recover the cost of battery degradation and make

a profit.

• Plan 3: The initial SOC of EV k at the beginning of trip 1 is more than the

total energy required for the trip and the minimum SOC of EV at the end of

the trip. If discharging prices in trip 1 are more than charging prices in trip 2,

EV k will be discharged in trip 1 and charged in trip 2.

• Plan 4: The initial SOC of EV k at the beginning of trip 1 is more than the

required energy to complete the trip and minimum SOC of EV at the end of

the trip. However, charging prices in trip 1 are more than discharging prices in

trip 2. In addition, discharging price in trip 1 is less than charging price in trip

2. In this case, EV k will not be charged nor discharged. However, if the initial

SOC of EV k at the beginning of trip 2 is not more than the required energy

to complete the trip and minimum SOC of EV at the end of the trip, the EV k

must be charged in trip 2.

3.6 Simulation Results and Discussion

In this section, simulation results for a typical day will be presented and explained

for the case study introduced in Section 3.5.

3.6.1 V2G and G2V operation and prices

The optimal day-ahead electricity prices offered by the most and least profitable

CS are shown in Figure 3.6. It can be seen that the most profitable CS is CS#8

in scenario II and the the least profitable CS is CS#1 in scenario I. The number of

EVs charged and discharged in each scenario for each hour is depicted in Figure 3.7.

No EVs is planned for V2G service in Scenario I due to the extremely low prices

offered by the CSs. However, by increasing the V2G prices (assuming that the cost

of ancillary services, taxes, etc. are reduced or prices in the wholesale market are

high), the number of EVs participating in V2G increases and reaches its maximum in
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Scenario III. Also, it can be seen from Figure 3.7 that the number of EVs in charging

mode has increased substantially because it is economically beneficial for the EVs to

charge in one trip and discharge in the next one (i.e., energy arbitrage).

The number of EVs in each charge and discharge mode in each scenario for Plan

1, 2, and 3 is depicted in Figure 3.8. For Plan 1, the number of EVs planned for V2G

service in the second trip is raised by increasing V2G prices because it is economically

rewarding for EVs to make profit from the high SOC level of batteries in the second

trip. For Plan 2, the results show that by increasing V2G prices, when G2V prices

in the first trip is lower than V2G prices in the second trip, the number of EVs that

prefer to charge in the first trip and discharge in the second trip increases because

they can make more profit. As explained in Section 3.5, for Plan 1, EVs must be

charged in trip 1, and if it is profitable, they will be discharged in trip 2. However,

for Plan 2, EVs are charged in trip 1 and discharged in trip 2 to make profit if the

prices are right. Furthermore, in Plan 3, more EVs discharged in the first trip with

higher prices and charge in the second trip with lower prices.

Figure 3.9 depicts the routes for an EV that is specified by ArcGIS in the base case

and the proposed strategy in this study. In this example, EV k selects the nearest CSs

(CS#8 and CS#3) in the base case without running a cost-benefit analysis, which

leads to $4 extra cost for EV k in comparison with the proposed three-layer optimal

strategy.

3.6.2 CS and retailers operation

In Table 3.3, optimal day-ahead electricity prices offered by three retailers to CSs

are reported. The cheapest retailer is selected in each hour, which are specified in

the Table. Off-peak and peak periods with minimum and maximum electricity prices

occur in hours 10 and 19, respectively, and Retailer#1 is selected by CSs in both

off-peak and peak periods.

As reported in Table 3.4, by increasing the number of EVs participating in V2G

program from scenario I to III, the net cost of EVs decreases and the net revenue

of CS operators and retailers increases. However, in Scenario III, while more EVs

participated in the V2G program, the net revenue of retailers and CS operators as
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Figure 3.6: Optimal day-ahead electricity prices offered by the least (CS#1) and the most
profitable CS (CS#8) during charging and discharging of EVs among all Scenarios.

Figure 3.7: Number of EVs planned to participate in (a) G2V and (b) V2G in each scenario.
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Table 3.3: Optimal day-ahead electricity prices offered by retailers and the selected retailer
in each hour (cents/kWh)

Time (Hour) Retailer#1 Retailer#2 Retailer#3 Selected retailer
t=1 18.74 19.35 21.12 Retailer#1
t=2 18.66 17.48 19.96 Retailer#2
t=3 16.74 17.46 16.43 Retailer#3
t=4 16.73 17.39 16.33 Retailer#3
t=5 17.73 18.24 18.13 Retailer#1
t=6 20.62 18.75 19.25 Retailer#2
t=7 24.34 24.42 22.51 Retailer#3
t=8 20.03 19.49 22.31 Retailer#2
t=9 16.58 15.16 16.72 Retailer#2
t=10 14.25 15.11 16.03 Retailer#1
t=11 16.52 15.55 16.12 Retailer#2
t=12 16.60 18.53 16.20 Retailer#3
t=13 18.06 18.62 17.38 Retailer#3
t=14 18.78 21.16 19.68 Retailer#1
t=15 19.93 21.16 19.96 Retailer#1
t=16 21.56 22.1 21.00 Retailer#3
t=17 22.73 22.19 21.94 Retailer#3
t=18 25.16 27.39 27.81 Retailer#1
t=19 35.64 38.03 39.52 Retailer#1
t=20 32.75 35.15 33.59 Retailer#1
t=21 28.69 29.07 25.67 Retailer#3
t=22 25.22 22.96 25.27 Retailer#2
t=23 22.48 21.57 21.51 Retailer#3
t=24 21.74 19.45 19.00 Retailer#3
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Figure 3.8: Total number of EVs for Plan 1, Plan 2, and Plan 3 in each scenario.

Table 3.4: Objective function values in three layers and the number of EVs discharged in
all scenarios

Scenario Total net cost of
EVs ($)

Total net
revenue of CSs

($)

Total net revenue
of retailers ($)

No. of EVs
discharged

Scenario I 1835.1 291.7 643.9 0
Scenario II 1800.4 453 654.7 25
Scenario III 1219.3 378.1 639.7 261

well as the net cost of EVs decreased compared to Scenario II. The main reason

is that the cost of electricity purchased by CS operators from EVs participating in

V2G services increased while the electricity purchased from retailers by CS operators

decreased. Based on the results presented in Table 3.4, the most profitable operation

is achieved in Scenario II for all three agents, i.e., EV, CS, and retailer.

3.6.3 The proposed algorithm performance and convergence

To verify the simulation results obtained by SSA, the three-layer optimisation

problem is also solved by PSO approach. The optimisation algorithms convergence

rates of prices for both optimisation techniques are shown in Figure 3.10 for each

scenario in the three layers, where optimal results are reached after about 70 and 75



Chapter3. A comprehensive Day-Ahead Scheduling Strategy... Page 99 of 170

Origin of EV k in trip 1

EVCS#5

Destination/origin 
of EV k in trip 1/2

EVCS#6EVCS#3

Destination of EV k in trip 2

EVCS#8

Base case

Proposed method

Figure 3.9: Scheduling results for a sample EV in the base case (red line) and the proposed
strategy (green line).(If the preferences proposed in Chapter 4 are considered, the green line
may not be chosen).
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Table 3.5: Comparing the simulation results for the base case, the proposed three-layer
optimisation problem and the individual optimisation problems in Scenario II

Optimal ValueParameters SSA PSO
CEV ($) Three-layer optimisation problem 1800.4 1801.3

Base case 2185.7 2185.7
Individual optimisation problem 2005.7 2006.2

RCS ($) Three-layer optimisation problem 453 453.7
Base case 374.1 374.1
Individual optimisation problem 382.6 382.9

RRe ($) Three-layer optimisation problem 654.7 655.2
Base case 534.1 534.1
Individual optimisation problem 550.2 550.8

iterations in most cases using SSA and PSO, respectively. The optimal values are ob-

tained by SSA and PSO in 1,683 and 1,829 seconds, respectively. Therefore, it shows

that SSA is outperforming PSO in terms of computational time. All computations

are executed on a laptop with Intel Core i7 CPU with 1.80GHz processor and 8GB

RAM.

In Table 3.5, the cost/revenue of EVs, CS operators, and retailers are reported

for the base case and the proposed three-layer optimisation problem in scenario II,

obtained by SSA and PSO. It can be seen that the cost of EVs decreased by 17.6%,

and the revenue of CS operators and retailers raised by 21.1% and 22.6%, respectively,

in the proposed method solved by SSA in comparison with the base case. The results

obtained by SSA and PSO are quite close, with SSA performing slightly better in most

instances. It shows the effectiveness of SSA in solving these complex optimisation

problems in a reasonable time.

To better show the effectiveness of the proposed method, another simulation study

is performed, called “Individual optimisation problem”, in which the optimisation

problem of each stakeholder is solved individually without iterative process. It can

be seen from Table 3.5 that if the the proposed method yields 10.2% reduction in

EVs operation cost and 18.4% and 19% increase in revenue of CSs and retailers,

respectively, compared to “Individual optimisation problem” in scenario II.
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Figure 3.10: Convergence of the optimisation problems in (a-c) EV layer, (d-f) CS layer,
and (g-i) retailer layer for all scenarios.
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3.7 Conclusions

In this chapter, a day-ahead scheduling framework is presented to guarantee eco-

nomic and energy-efficient routing of EVs. Based on the proposed strategy, each EV

and CS finds optimal CSs and retailers, respectively, for V2G and G2V services by

solving an equilibrium problem. The proposed method can be offered as a cloud

service to all stakeholders, which facilitates day-ahead EV scheduling considering ob-

jectives and preferences of all stakeholders. In this method, EVs independently plan

their charging/discharging depending on the minimum driving routes and cost/benefit

analysis based on the prices offered by CSs. Also, CSs select optimal retailers to pur-

chase energy while utilising onsite generation and stationary storage in the most

economic way. In addition, CSs are able to facilitate V2G operation by purchasing

energy from EVs and selling back to the wholesale market through aggregators. Com-

prehensive simulations are conducted on a real test system.The results are obtained

by SSA. To verify the simulation results, the three-layer optimisation problem is also

solved by PSO approach. The results obtained by SSA and PSO are quite close.

Simulation results confirm that the cost-effective operation is achieved for all agents,

and it is highly dependant on the level of participation of EVs in the V2G program

and the cost of energy in the wholesale market. The optimal solutions are obtained

for all stakeholders by respecting physical limits of the network, avoiding queuing at

the CSs, and preserving EV owners comfort and preferences during the scheduling.

In the next chapters, the practical aspects of EV scheduling problem are improved

to facilitate higher participation in the G2V and V2G services, and to enhance con-

venience and flexibility in EV scheduling. EV owners’ preferences, and unpredictable

and economically-irrational behavior taken by EV drivers are considered. Also, var-

ious sources of uncertainty will be added to the model and stochastic optimisation

will be used to deal with the uncertainties.
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Nomenclature

Indices

e,i,r Index for EVs, CSs, and retailers, respectively

m,n Index of buses of distribution network

t Index for hours

Parameters

∆t Time step (s)

ηGUi /ηCHi Efficiency of CGU/chargers at CS i (p.u.)

η+e /η
−
e Efficiency of EV e’s battery in G2V/V2G mode (p.u.)

γe Power consumed by EV e per km (kWh/km)

Dt,e,i Shortest driving distance between CS i and destination of EV

e at time t, (km)

Ge EV e’s driver preference for minimum revenue increase in V2G

operation ($)

Ke EV e’s driver preference for maximum extra distance to lower

the cost compared to minimum route (in km)
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Ot,e,i Shortest driving distance between origin of EV e and CS i at

time t (km)

ρ−/ρ− Maximum/Minimum electricity prices offered by CSs for V2G

service ($/kWh)

ρre/ρre Maximum/Minimum electricity prices offered by retailers to

CSs ($/kWh)

E
CGU

i /E
PV

i Capacity of CGU/PV system at CS i (kW)

E
ESS

i Capacity of ESS at CS i (kW)

Ee Capacity of EV e’s battery (kWh)

Ei Capacity of CS i (kW)

E
CH

i Capacity of chargers at CS i (kW)

N
CH

i Maximum number of chargers in CS i

Pm,n,t/Pm,n,t Maximum/Minimum active power flow between bus m and n

(kW)

Qm,n,t/Qm,n,t
Maximum/Minimum reactive power flow between bus m and

n (kVar)

SOCe/SOCe Maximum/Minimum SOC of EV e (p.u.)

SOC
ESS

i /SOCESS
i Maximum/Minimum SOC of ESS at CS i (p.u.)

ρgast Natural gas price at time t ($/m3)

ρWM
t Wholesale electricity market price at time t ($/kWh)

∆V /∆V Lower/Upper limit of voltage deviation at bus m

ϑe EV e’s driver preference for minimum cost reduction in G2V

operation ($)

D̂Ot,e Driving distance of EV e to closest CS at time t (km)

ŜOCt,e SOC of EV e at time t if EV e charged or discharged at the

closest CS (p.u.)

a SOC target

b, c, d, f Cost of battery degradation parameters

bm,n/gm,n Susceptance/conductance of transmission line between bus m

and n

HV Heat value of fuel on the operation of gas turbine-generator

(kWh/m3)
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NEV/NCS/N re Number of EVs/CSs/retailers

SOCend
e SOC of EV e at the end of the day (p.u.)

ζt,e Shortest driving route to reach the destination directly from

origin of EV e at time t without stopping at any CS (km)

V CS Virtual charging station

Sets

B,E,R,S,T,F Sets of Buses, EVs, retailers, CSs, hours, and optional trip

times, respectively

Variables

βt,i,r Binary variable for retailer r by CS i at time t

∆θm,t Voltage angle deviation on bus m at time t

∆Vm,t Voltage magnitude deviation on bus m at time t

∆V̂m,t Voltage magnitude deviation obtained from the lossless power

flow solution on bus m at time t

Γt,e,i/Πt,e,i Binary variable for CS i for charging/discharging EV e at time

t

ψt,i Binary variable for charging/discharging ESS at CS i

ρ+t,i/ρ−t,i Electricity price offered by CS i at time t for charg-

ing/discharging EVs ($/kWh)

ρAGt,i Electricity price sold to the aggregator by CS i at time t

($/kWh)

ρret,r Electricity price sold to CSs by retailer r at time t ($/kWh)

θm,t Voltage angle of bus m and time t

ρ̂+t,e/ρ̂−t,e Electricity price offered by the closest CS to EV e at time t

in G2V/V2G mode ($/kWh)

Pm,n,t/Qm,n,t Active/Reactive power flow between bus m and n at time t

(kW/kVar)

Y re
t,i,r/Qre

t,i,r Active/Reactive power purchased/provided from/by retailer

r by CS i at time t (kW/kVar)

SOC0,e Initial SOC of EV e (p.u.)

SOCT,e SOC of EV e at the end of the day (p.u.)
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SOCt,e SOC of EV e at time t (p.u.)

Vm,t Voltage magnitude of bus m and time t

X+
t,e,i/X−

t,e,i Charging/Discharging power of EV e at CS i at time t (kW)

Y +
t,i/Y −

t,i Charging/Discharging power of ESS of CS i at time t (kW)

Y GU
t,i Power produced by CGU/PV system of CS i at time t (kW)

Y PV
t,i Local PV generation of CS i at time t (kW)

PWM
t,r /QWM

t,r Active/Reactive power purchased/provided from/by the

wholesale market by retailer r at time t (kW/kVar)

4.1 Introduction

In this chapter1, a comprehensive day-ahead scheduling framework is developed for

an e-mobility ecosystem including EVs, CSs, and retailers (as the three major stake-

holders) for V2G and G2V operation. In an attempt to improve the practical aspects

of the EV scheduling formulation, two major improvements are proposed. First, the

optional trips (besides mandatory trips) are introduced in the formulation to pro-

vide opportunities for G2V and V2G services beyond mandatory trips, explained in

Section 4.2.1. As it can be seen in the simulation studies in Section 4.4.1, it will

enhance convenience and flexibility in EV scheduling and provide an opportunity to

encourage more G2V and V2G participation. Second, two new parameters, namely

driver’s cost/revenue threshold and driver’s route preference, are defined and formu-

lated to model diverse reaction of EV drivers to economic incentives, as described in

Section 4.2.2. The G2V and V2G prices are also obtained by considering the mu-

tual impact of the stakeholders through an iterative process, which is presented in

Section 4.2.3.

A careful review of the literature are presented in Chapter 2. As stated in Chap-

ter 2, a review of the existing literature indicates the several gaps, which are outlined

in G1, G2, G4, and G5 of Section 2.2 of Chapter 2. In this chapter the proposed

1This chapter is published on IEEE Transactions on Power Systems journal:
Mahsa Bagheri Tookanlou, S. Ali Pourmousavi, Mousa Marzband, “An Optimal Day-Ahead

Scheduling Framework for E-Mobility Ecosystem Operation with Drivers Preferences”, IEEE Trans-
actions on Power Systems, 36, 2021.
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framework has been dealt with the gaps. The main contributions of this study are:

1. Formulating and solving a three-layer optimisation problem: A com-

prehensive model is developed to consider the operation of all stakeholders in

the future e-mobility ecosystem as a three-layer optimisation problem. An iter-

ative solution is proposed to solve the problem as a non-cooperative Stackelberg

game.

2. Optional trips: This provision is expected to improve the practical aspects of

EV scheduling problem and provides an opportunity for EV drivers to take ad-

vantage of cheaper G2V prices and more expensive V2G prices beyond manda-

tory trips’ timeframe. The effect of optional trips on the cost/revenue of three

stakeholders, CS congestion and PV spillage are investigated.

3. Preferences of EV drivers: Two important practical aspects of the EV

scheduling problem are considered by adding new constraints in order to model

economically-irrational decisions taken by the EV drivers in response to eco-

nomic incentives. These constraints are driver’s cost/revenue threshold and

driver’s route preference.

The rest of the chapter is organised as follows: Section 4.2 presents problem defi-

nition and describes the structure of the proposed G2V and V2G framework including

the three stakeholders. It is followed by the proposed three-layer optimisation formu-

lation in Section 4.3. In Section 4.4, two ecosystems are proposed for simulation and

a series of studies are carried out to show the effectiveness of the proposed framework.

Simulation results are discussed and the chapter is concluded in Section 4.5.

4.2 Problem Definition

This chapter presents a day-ahead scheduling framework for e-mobility ecosystems

including EVs, CSs, and retailers as three major players. In the proposed ecosystem,

illustrated in Fig 4.1, there are multiple retailers selling electricity to CSs from the

wholesale electricity market. The CSs are the charging stations located in the schedul-

ing area. They operate at the distribution system to serve EVs during G2V and V2G
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operation. For the sake of completeness, each CS is assumed to own and operate an

onsite small gas turbine/diesel generator as a CGU, PV, and ESS, which can be used

to supply electricity to EVs during G2V operation. Also, CSs purchase V2G services

from EVs and sell it in the wholesale electricity market through aggregators. It is

assumed that conventional retailers are not allowed to sell electricity to the wholesale

market (i.e., simultaneous buying and selling energy are prohibited).
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Figure 4.1: Schematic diagram of the future e-mobility ecosystem.

In order to facilitate cost-effective operation of the stakeholders, to mitigate con-

gestion and PV curtailment at CSs, and to consider EV drivers’ preferences, two kinds

of trips and extra constraints are defined and formulated in this chapter, which are
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explained in detail in Sections 4.2.1 and 4.2.2, respectively. It should be noted that

the reduction in PV curtailment leads reduction in loss of PV power generation.

4.2.1 Different Types of Trips

As shown in Figure 4.2, EVs can have two kinds of trips during a typical day:

mandatory trip and optional trip. Each EV can have multiple mandatory trips with

known departure time, origin, and destination for each trip. These trips will be

fulfilled at any cost. In other times, e.g., between two mandatory trips, EV drivers

may have time for G2V and/or V2G services if the prices are right. This is the

basis for what is called optional trip in this study. An optional trip, as opposed to

mandatory trip, provides a chance for EV drivers to take advantage of cheap G2V or

expensive V2G services outside of the mandatory trip time frame; thus reduce their

overall cost. Overall, EVs with a known location and initial SOC seek a G2V and

V2G plan for the combined mandatory and optional trips such that it minimises their

overall cost while respecting their preferences. The optional trips also help CSs to

sell their excess energy, to provide services to the upper grid that generates revenue

for EVs, and to enable CSs to alleviate congestion.

The scheduling problem is solved for the entire day ahead. EV drivers submit

their plans for mandatory and optional trips to the scheduling centre (which could

be a cloud platform with monthly subscription fee) a day before the scheduling day.

As shown in Figure 4.2, there are NCS real CSs with known driving routes from EV

origin in each trip, only one of which might be scheduled for EV e. Therefore, each

CS is represented by two binary variables in the EV e problem for G2V and V2G

operation at each time interval (as shown in Figure 4.3).

As mentioned before, a mandatory trip should always be accomplished. Let’s

consider a mandatory trip in which the most economic decision for EV e is not to be

charged nor discharged. In this case, none of the actual CSs should be selected and

yet, the battery SOC values should be updated at the end of the trip and the shortest

route should be selected. For this purpose, Virtual CS (virtual charging station) is

introduced in the model that represents the shortest route to reach the destination

directly from EV’s origin, as shown in Figure 4.2. When VCS is selected, EV e arrives
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at the destination from its origin without charging or discharging, while it is ensured

that the EV’s preferences and constraints are satisfied. Hence, G2V and V2G power

of a VCS in a mandatory trip are equal to zero for EV e. A VCS is also needed for

EV e in an optional trip to correctly model the solution in which neither G2V or

V2G services are recommended. The only difference between VCS in optional and

mandatory trips is that the driving route of a VCS is zero in the optional trip. Thus,

the EV will be idle for that optional trip.
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Figure 4.2: A schematic of two mandatory trips and one optional trip for EV e.

4.2.2 EV Drivers Preferences

In this study, two practical aspects of the EV scheduling problem are modeled by

defining “driver’s cost/revenue threshold” and “driver’s route preference” constraints.

They represent economically-irrational decisions of the EV drivers, as explained in

the following.

Driver’s cost/revenue threshold: It is assumed that EV drivers accept an

alternative route (instead of the shortest route) only if there is an economic incentive
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Figure 4.3: The proposed framework for day-ahead G2V and V2G scheduling for all
stakeholders.

greater than or equal to the drivers’ expectation. When a CS offers a lower price

than the nearest CS for G2V service, the EV driver accepts it only if the charging

cost reduction is equal to or more than the driver’s cost threshold. Otherwise, the

EV driver would prefer to charge at the nearest CS although it may be a bit more

expensive. The same argument can be made during the V2G services, where a driver

chooses a CS with higher V2G prices over the nearest CS only if the increase in

revenue is equal to or more than the driver’s revenue threshold.

Driver’s route preference: In addition to the cost/revenue threshold, an EV

driver may accept a CS other than the nearest CS only when the required extra

driving distance is equal to or less than “driver’s route preference”. In other words,

the driver’s route preference ensures that not only selecting an alternative route makes

sense economically to the driver, but also the driver’s desire for not being on the road
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for more than “driver’s route preference” is fulfilled in the scheduling process.

Let’s see the two preferences in an example. Consider an EV driver whose

“cost/revenue threshold” and “route preference” are $5 and 2 km, respectively. An

alternative route will be selected only if the cost-benefit of the alternative route is at

least $5AND the extra driving distance does not go beyond 2 km, both in comparison

with the nearest CS.

4.2.3 The Proposed Day-Ahead Scheduling Framework/Solution

The proposed scheduling framework is a non-cooperative Stackelberg game, which

is formed among the three layers [1]. The leader of the Stackelberg game is the retailer

and the first and second followers are CSs and EVs, respectively. Typically, three- or

n-level non-cooperative games are solved using KKT optimality condition or strong

duality theorem by replacing the lower level problem with a set of constraints in the

upper level problem. In this study, however, the lower level problem is a mixed-integer

quadratic program, which doesn’t satisfy the KKT optimality condition. Even if there

was a differentiable objective function and constraints in the lower level, formulating

the complementarity conditions of the lower level in the middle-level problem would

result in a non-convex optimisation problem [2, 3]. In this study, an iterative approach

is adopted to solve the Stackelberg game, which is common in three-level games in

the literature [2, 4]. The solution of this formulation provides a Nash equilibrium,

although the uniqueness and existence of Nash equilibrium cannot be guaranteed

[2, 3].

As shown in Figure 4.4, the electricity prices, estimated using historical wholesale

market prices, are generated by retailers in the first iteration. Then, the prices will

be given to the CS layer. In this iteration, the prices will be modified by adding

CSs’ profit margin. Afterwards, CSs’ prices will be passed on to EV layer where the

first optimisation problem will be solved in the first iteration. Please note that the

prices for V2G services are also estimated by the CS layer in the first iteration. In

the EV layer, the decision variables are EVs’ power during G2V and V2G operation,

and CS selection for each trip (as shown in Figure 4.3). The optimal solutions (i.e.,

G2V and V2G power of EVs and optimal CSs) for this iteration are sent back to the
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CS layer, where its optimisation problem is solved. The optimal solutions in the CS

layer are electricity prices for V2G service, power generation of onsite CGU and PV

system, power purchased from retailers, charging/discharging power and operation

mode of stationary ESS and optimal retailers for each CS. Afterwards, the EV layer

problem will be solved with the updated V2G prices and new EV and CS schedules

will be obtained. The inner loop (see Fig 4.4) will continue between CS and EV

layers until the convergence criterion of the optimisation problems in the CS layer is

satisfied for the given retailers’ prices. Since the aggregator operation is not modelled

in this study, the same V2G prices from the first iteration will be used in the inner

loop. Upon convergence of the inner loop in the first iteration (of the outer loop),

optimal solutions (i.e., selected retailers and power purchased from each) are passed

on to retailer layer. Then, an optimisation problem is solved to identify new electricity

prices offered by retailers to CSs according to the reactions of CSs and EVs to original

prices. Second iteration of the outer loop starts with the new Retailers’ prices (see

Fig 4.4). The iterative process will be terminated when the change in the relevant

objective functions in the last two iterations for both inner and outer loops is less

than or equal to 0.001.

4.3 Mathematical Modeling

4.3.1 Optimisation Problem in the EV Layer

The objective function of EV e is the net cost of EV operation to be minimised.

It is the difference between cost of EV e and the revenue from selling electricity to CS

i in V2G mode. The cost of EV e comprises electricity purchased from CS i in G2V

mode and battery degradation cost (the term inside the bracket of Eq. (4.1)). The

battery capacity degradation model is used from [5], which works for any arbitrary

battery charging/discharging profile and captures the impact of battery SOC and

charge/discharge power levels. As a result, EVs will be scheduled for V2G services

only if they can recover the cost of battery degradation and make a profit. During

G2V operation, the battery degradation model ensures that EVs won’t be charged
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Figure 4.4: Flowchart of the three-layer optimisation problem.
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excessively unless the benefits of low G2V prices exceed the extra degradation cost

of the battery. Please note that the objective is sum of the objective functions of all

EVs in this layer 2.

min
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t,e.ŜOCt,e.Ee).Πt,e,i ∀t ∈ T,∀e ∈ E,∀i ∈ S (4.1j)

Γt,e,i.(Ot,e,i +Dt,e,i) ≤ (D̂Ot,e +Ke).Γt,e,i ∀t ∈ T,∀e ∈ E,∀i ∈ S (4.1k)

Πt,e,i.(Ot,e,i +Dt,e,i) ≤ (D̂Ot,e +Ke).Πt,e,i ∀t ∈ T,∀e ∈ E,∀i ∈ S (4.1l)

X+
t,e,i= 0 ∀t ∈ T,∀e ∈ E,∀i = V CS (4.1m)

X−
t,e,i= 0 ∀t ∈ T,∀e ∈ E,∀i = V CS (4.1n)

Ot,e,i +Dt,e,i= ζt,e∀t ∈ (T − F ),∀e ∈ E,∀i = V CS (4.1o)

2Due to complexity of the proposed problem, cost sharing study in the cooperative game has
not been investigated. In the future work, it is recommended to study cost sharing in a cooperative
game to determine a proper and stable coalition in which players stay together and cooperate
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Ot,e,i +Dt,e,i= 0 ∀t ∈ F,∀e ∈ E,∀i = V CS (4.1p)

SOC of EV e after each charge and discharge is calculated by Eq. (4.1b), while

Eq. (4.1c) ensures that the SOC level is maintained within a lower and upper bound

at all times. The SOC of EV e must be greater than or equal to the desired SOC

level specified by the driver at the end of the day, as expressed in Eq. (4.1d). Max-

imum and minimum charging and discharging capacity of the chargers at CS i are

enforced by Eqs. (4.1e) and (4.1f). Sum of the binary variables of CSs must be less

or equal to one for EV e in order to select one CS for either G2V or V2G operation

at time t, imposed by Eq. (4.1g). Equation (4.1h) ensures that the number of used

chargers in a CS during G2V and V2G operation does not exceed the number of ex-

isting chargers. Equations (4.1i) and (4.1j) enforce drivers’ cost/revenue preferences.

Based on Eq. (4.1i), an EV will be assigned an alternative CS from the nearest CS

only if the driver’s cost reduction is greater than or equal to her/his expected cost

reduction. In V2G mode, Eq. (4.1j) guarantees a minimum incentive greater than

or equal to drivers’ revenue expectation for a CS that is not on the shortest route.

Equations (4.1k) and (4.1l) enforce the driver’s route preference in G2V and V2G

mode, respectively. In this case, an alternative route will be selected only if the extra

driving distance (in comparison with the shortest route) is less than or equal to the

specified value. Equations (4.1m) and (4.1n) set the VCSs’ G2V and V2G power

to zero. Based on Eq. (4.1o), the driving route assigned to VCS for the mandatory

trip is equal to the shortest route to reach the destination directly from EV’s origin.

Equation (4.1p) set the driving route distance to zero between the EV and VCS in

the optional trips.

4.3.2 Optimisation Problem in CS Layer

The objective function of CS i is the net revenue of the CS. The revenue of CS i

comes from selling electricity to EV e and aggregator during G2V and V2G operation,

respectively. It is assumed that the electricity purchased from EV e is equal to the

electricity sold to the aggregator. The expenses of CS i consists of onsite operational

costs [6] and cost of energy purchased from retailer r and EV e during G2V and V2G



Chapter4. An Optimal Day-Ahead Scheduling Framework for... Page 120 of 170
services, respectively. The overall objective function is the sum of the individual CSs’

objective functions 3.

max
Y re
t,i,r,Y

GU
t,i ,Y PV

t,i

Y +t,i,Y
−

t,i,ρ
−

t,i,

βt,i,r,ψt,i

T

∑
t=1

S

∑
i=1

∑e∈E(X
+
t,e,i.ρ

+
t,i +X

−
t,e,i.ρ

AG
t,i )−Y re

t,i,r.ρ
re
t,r −∑e∈EX

−
t,e,i.ρ

−
t,i−

Y GU
t,i .ρ

gas
t

ηGU
i .HV

r ∈ R

(4.2a)

s.t.

Y PV
t,i + Y GU

t,i + Y re
t,i,r + Y

−
t,i +∑e∈EX

−
t,e,i =

∑e∈EX
−
t,e,i

ηCH
i

+
∑e∈EX

+
t,e,i

ηCH
i

+ Y +
t,i

∀t ∈ T,∀i ∈ S, r ∈ R

(4.2b)

0 ≤ Y GU
t,i ≤ E

GU

i ∀t ∈ T,∀i ∈ S (4.2c)

0 ≤ Y PV
t,i ≤ E

PV

i ∀t ∈ T,∀i ∈ S (4.2d)

0 ≤ Y re
t,i,r ≤ Ei.βt,i,r ∀t ∈ T,∀i ∈ S, r ∈ R (4.2e)

R

∑
r=1

βt,i,r ≤ 1 ∀t ∈ T,∀i ∈ S (4.2f)

0 ≤ Y +
t,i ≤ E

ESS

i .ψt,i ∀t ∈ T,∀i ∈ S (4.2g)

0 ≤ Y −
t,i ≤ E

ESS

i .(1 − ψt,i) ∀t ∈ T,∀i ∈ S (4.2h)

SOCESS
i ≤

t

∑
t=2

(Y +
t,i − Y

−
t,i).∆t

E
ESS

i

≤ SOC
ESS

i ∀t ∈ T,∀i ∈ S (4.2i)

ρ− ≤ ρ−t,i ≤ ρ
− ∀t ∈ T,∀i ∈ S (4.2j)

During G2V and V2G operation, the power balance between supply and demand

at CS i will be maintained at all times by Eq. (4.2b). Therefore, the total power pro-

duced by PV system, CGU, stationary ESS during discharging, and power purchased

from retailer r and EVs must be equal to the total power demand, including power

of stationary ESS in charging mode, power sold to the aggregator and EVs during

V2G considering chargers’ efficiency. CGU and PV upper and lower capacity limits

3Due to complexity of the proposed problem, cost sharing study in the cooperative game has
not been investigated. In the future work, it is recommended to study cost sharing in a cooperative
game to determine a proper and stable coalition in which players stay together and cooperate
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at CS i are enforced in Eqs. (4.2c) and (4.2d), respectively. The power purchased

from retailer r is limited by Eq. (4.2e). βt,i,r is a binary variable showing if retailer r

is selected by CS i. Equation (4.2f) ensures that only one retailer is selected by CS i

at time t. Charging and discharging power of the stationary ESS at CS i are enforced

by Eqs. (4.2g) and (4.2h). The upper and lower limits of ESS’ SOC in CS i at time t

are guaranteed by Eq. (4.2i). The electricity prices offered by CS i to EV e for V2G

services are confined by Eq. (4.2j).

4.3.3 Optimisation Problem in Retailer Layer

The objective function in this layer is the net revenue of all retailers to be max-

imised. It includes the difference between revenue obtained by selling electricity to

CS i, and the cost of electricity purchased from the wholesale market, as given by 4:

max
ρret,r

T

∑
t=1

R

∑
r=1

∑i∈S Y
re
t,i,r.ρ

re
t,r − P

WM
t,r .ρWM

t ∀i ∈ S (4.3a)

s.t.

PWM
t,r = ∑i∈S Y

re
t,i,r (4.3b)

QWM
t,r = ∑i∈SQ

re
t,i,r (4.3c)

Pm,n,t= gm,n.(1 +∆V̂m,t).(∆Vm,t −∆Vn,t)

−bm,n.(θm,t − θn,t) ∀m,n ∈ B,∀t ∈ T

(4.3d)

Qm,n,t= −bm,n.(1 +∆V̂m,t).(∆Vm,t −∆Vn,t)

−gm,n.(θm,t − θn,t) ∀m,n ∈ B,∀t ∈ T

(4.3e)

Vm,t = 1 +∆Vm,t ∀m ∈ B,∀t ∈ T (4.3f)

θm,t = 0 +∆θm,t ∀m ∈ B,∀t ∈ T (4.3g)

∆V m ≤ ∆Vm,t ≤ ∆V m ∀m ∈ B (4.3h)

Pm,n ≤ Pm,n,t ≤ Pm,n ∀m,n ∈ B,∀t ∈ T (4.3i)

4Due to complexity of the proposed problem, cost sharing study in the cooperative game has
not been investigated. In the future work, it is recommended to study cost sharing in a cooperative
game to determine a proper and stable coalition in which players stay together and cooperate
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Q
m,n

≤ Qm,n,t ≤ Qm,n ∀m,n ∈ B,∀t ∈ T (4.3j)

ρre ≤ ρre
t,r ≤ ρ

re ∀t ∈ T,∀r ∈ R (4.3k)

Equations (4.3b) and (4.3c) maintain the balance of active and reactive power at

all times. Thus, sum of the electricity purchased from wholesale electricity market

through retailer r must be equal to the electricity purchased by CS i from retailer

r for active and reactive power at time t. Equations (4.3d) and (4.3e) represent

real and reactive power flows in the network based on voltage magnitude and angle

deviations [7]. Voltages and angles deviations are obtained by Eqs. (4.3f) and (4.3g).

Equation (4.3h) guarantees that bus voltages are within permissible range. Active

and reactive power of the line are constrained by Eqs. (4.3i) and (4.3j). The electricity

prices offered by retailers are limited by Eq. (4.3k) based on their profit margin.

4.4 Simulation Results

To assess the effectiveness of the proposed model and the impact of new practical

constraints and optional trips on the solutions, a comprehensive simulation study is

carried out. The first simulation model contains three retailers, nine CSs, and 600 EVs

in San Francisco, the USA, and IEEE 37-bus distribution test system. Without loss

of generality, all CSs are assumed to have 30 bidirectional fast DC chargers (50kW).

Other simulation parameters are:

• A 65 kW CGU for each CS;

• 16kW, 19.2kW, 24kW, 27.2kW, and 32kW of PV systems randomly assigned to

CSs;

• Five one-hour ESS with the capacity of 45kW, 50kW, 65kW, 70kW, and 85kW

randomly assigned to CSs;

• Four types of EVs with battery capacity of 14.5kWh, 16kWh, 28kWh, and

40kWh are considered; and
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Table 4.1: Different simulation scenarios

Scenario Optional trip? EV drivers’ preferences?
s1 Yes Yes
s2 Yes No
s3 No Yes
s4 No No

• The initial SOC of EVs is randomly generated between 10% and 95% with mean

value of 28%; and

• The desired SOC of EVs at the end of day specified by the drivers is randomly

selected between 70% and 90%.

Without loss of generality, it is assumed that each EV plans two mandatory trips

and one optional trip in a typical day. The first mandatory trip of 90% of EVs in

the fleet is randomly scheduled between 06:00 to 10:00. The optional trip of 90%

of EVs is randomly planned between 11:00 to 15:00. Finally, the second mandatory

trip of 90% of EVs is assumed to take place between 16:00 to 20:00. The shortest

routes between origin of EV e, location of CS i, and destination of EV e for each

trip are determined by ArcGIS® prior to optimisation. Since end-users should pay

network maintenance costs, ancillary services costs, taxes, and etc., the day-ahead

electricity prices of the wholesale market (California ISO [8]) is multiplied by 4.5

homogeneously to obtain the prices offered to the CS operators by the retailers. The

profit margin of the retailers is assumed to be 5-30%, while the CSs profit margin is

varied between 10% to 30%. In addition, electricity prices offered for the V2G service

is between 60-85% less than prices offered by retailers. The electricity prices sold to

the aggregator by CSs is 10% more than what CSs pay for V2G service to the EV

owners. Four simulation scenarios are defined, see Table 4.1, to assess the impact

of optional trips and EV drivers’ preferences on the cost/revenue of all stakeholders,

explained in subsections 4.4.1 and 4.4.2. The optimisation problems are solved by

Branch-and-Bound method using Gurobi® solver in Python on a laptop with Intel

Core i7 CPU with 1.80GHz processor and 8GB RAM. The MIP optimality gap is set

to 0.0001 for all optimisation problems.

A larger ecosystem with 1000 EVs, 18 CSs, and three retailers on IEEE 69-bus

distribution test system is also simulated, where the simulation parameters and results
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are explained in Section 4.4.5.

4.4.1 The Impact of Optional Trips

In order to quantify the significance of optional trips on the net cost of EVs and

the net revenue of CSs and retailers, s1 and s2 can be compared with s3 with s4,

respectively. Table 4.2 shows the cost/revenue of each stakeholder obtained in each

scenario, where the total net cost of EVs decreased from $1240.5 to $1153.4 and the

total revenue of CSs increased from $238.0 in s3 to $256.4 in s1. The reduction in

retailers’ revenue is due to less PV curtailment at CSs (see Figure 4.8) in s1 and thus

less energy purchase from the retailers by the CSs. Also, it can be seen from Table 4.3

that the number of EVs participated in G2V (V2G) increased from 566 (27) in s3 to

688 (32) in s1, and from 556 (297) in s4 to 739 (327) in s2.

The impact of optional trips on the congestion can be seen in Figure 4.5, where

more EVs are scheduled to charge in the middle of the day rather than early morning.

A similar pattern has been observed by comparing scenarios s1 and s3. It shows

that the consideration of optional trips can eliminate/reduce G2V congestion during

the hours of mandatory trips, which consequently affect power system operation as

a whole by avoiding new peaks and voltage issues, although its impact on V2G is

negligible. The optimal hourly averaged electricity prices offered by retailers and CSs

during V2G and G2V operation for scenario s1 are shown in Figure 4.6. Since unique

prices will be obtained for each stakeholder in this framework, only stakeholders with

non-zero prices in an hour are considered in the hourly average calculation. Zero

price in an hour shows that no G2V or V2G activity was scheduled in that hour. The

prices in Figure 4.6 are aligned with the G2V and V2G operation in Figure 4.5. Note

that the higher G2V prices of CSs from 18:00 to 21:00 is consistent with high V2G

prices of CSs and zero prices of retailers to encourage services to the grid by EVs.

The number of EVs who selected VCS during V2G and G2V operation in the

mandatory and optional trips is shown in Figure 4.7 in s1. EVs selected VCS 347

times during optional trips, which means that they didn’t participate in either G2V

or V2G program in those hours. Also, EVs are not scheduled for G2V or V2G 766

times during mandatory trips (176 EV in the first mandatory and 590 in the second
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Table 4.2: Total daily net cost and revenue of the stakeholders with MIP optimality gap
Scenario Total net cost of

EVs [$] (relative
MIP gap)

Total net revenue of
CSs [$] (relative MIP

gap)

Total net revenue of
retailers [$] (relative

MIP gap)
s1 1153.4 (0.0097%) 256.4 (0%) 958.1 (0%)
s2 1000.1 (0.002%) 418.9 (0%) 1333.9 (0%)
s3 1240.5 (0%) 238.0 (0%) 1040.5 (0%)
s4 1118.8 (0.0044%) 389.4 (0%) 1382.6 (0%)

Table 4.3: Total number of charged and discharged EVs

Total # of EVs # of EVs charged (discharged)Scenario Charged Discharged Mandatory trips Optional trip
s1 688 32 434 (30 ) 254 (2 )
s2 739 327 448 (320 ) 291 (7 )
s3 566 27 566 (27 ) –
s4 556 297 556 (297 ) –
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Figure 4.5: Number of EVs charged and discharged under s2 and s4.
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Figure 4.6: Optimal hourly average electricity prices of the stakeholders in s1

mandatory trip) in a day of simulation. In the remaining 687 times, EVs have been

scheduled for either G2V or V2G operation.

The impact of optional trips on the total PV curtailment is shown in Figure 4.8 for

CS#1, CS#2, and CS#6, where considering optional trips led to significant reduction

(49.8%, 16.3%, and 13%, respectively,) in PV curtailment. In other CSs, no PV

generation was curtailed in the four scenarios.

4.4.2 The Impact of EV Drivers’ Travel Preferences

In this subsection, the impact of drivers’ cost/revenue and extra driving distance

preferences are investigated. The simulation results in Table 4.2 show that when the

constraints in Eqs. (4.1i), (4.1j), (4.1k), and (4.1l) are enforced, the total net cost

of EVs increased from $1000.1 in s2 to $1153.4 in s1. Also, the total net revenue

of CSs and retailers decreased from $418.9 and $1333.9 in s2 to $256.4 and $958.1

in s1, respectively. Also, Figure 4.9 shows that significantly fewer EVs participated

in the V2G program due to drivers’ preferences. In particular, the number of EVs

participated in V2G increased from 32 in s1 to 327 in s2, and from 27 in s3 to 297 in

s4. Therefore, eliminating these preferences leads to significant overestimation of the

G2V and V2G services and revenue of retailers and CS, and underestimation of EV’s

costs.
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Figure 4.9: Number of EVs in G2V and V2G operation in s3 and s4.

Table 4.4: Total daily net cost and revenue of the stakeholders after eliminating V2G
service

Scenario Total net cost of
EVs [$]

Total net revenue
of CSs [$]

Total net revenue of
retailers [$]

s1 1166.1 (0%) 245.8 (0%) 941.3 (0%)
s2 1154.7 (0.007%) 242 (0%) 933.7 (0%)
s3 1250 (0%) 235.1 (0%) 1037.4 (0%)
s4 1249 (0%) 234.1 (0%) 1037.7 (0%)

4.4.3 The Impact of V2G Services

To show the impact of V2G services, the iterative three-layer optimisation prob-

lems is solved in all scenarios by eliminating V2G services from the framework. A

comparison between Table 4.2 and Table 4.4 reveals 6.8% increase in the total net

cost of EVs on average, and 26.5% and 16.2% decrease in the total net revenue of CSs

and retailers on average, respectively, in the absence of V2G services. It depicted the

sheer magnitude of V2G impact on the financial interests of all stakeholders in the

ecosystem.
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Table 4.5: Total net cost and revenue of all stakeholders in s1

Cost/Revenue Case I Case II
Total net cost of EVs ($) 1153.4 1172.4

Total net revenue of CSs ($) 256.4 198.7
Total net revenue of retailers ($) 958.1 920.3

4.4.4 The Impact of Three-Layer Iterative Optimisation

Table 4.5 shows a comparison between cost/revenue of three stakeholders for two

different cases as defined below:

◇ Case I: This the case in which the proposed three-layer optimisation problem is

solved iteratively to find equilibrium based on the flowchart in Figure 4.4.

◇ Case II: The optimisation problems in the three layers are solved individually,

not iteratively. Thus, G2V and V2G prices are not updated and the impact of

G2V prices offered by retailers and V2G prices offered by CSs are not considered.

Similar optional trips and EV drivers’ preferences are considered in both cases. It

can be observed in Table 4.5 that the total net cost of EVs in Case II increased by

1.65% and the total net revenue of CSs and retailers decreased by 22.5% and 3.95%,

respectively, compared to Case I. It should be mentioned that when the optimisation

problems in the three layers are solved individually, fewer EVs participated in G2V

and the V2G program, which led to significant decrease in the total net revenue of

CSs.

The optimisation algorithms convergence for the three layers is shown in Fig-

ure 4.10 in scenario s1, where optimal results are obtained after 18 iterations of the

outer loop in 37 minutes.

4.4.5 Scalability and Convergence of the Proposed Solution

In this section, a larger e-mobility ecosystem with 1000 EVs, 18 CSs, three retailers

on the IEEE 69-bus distribution test system is designed to show the scalability of the

proposed solution. In this simulation study, the first mandatory trip of 88.5% of EVs

in the fleet is randomly scheduled between 06:00 to 10:00. The optional trip of 85%
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Figure 4.10: (a) EV layer, (b) CS layer, and (c) retailer layer objective function values at
different iterations
of EVs is randomly planned between 11:00 to 15:00. Finally, the second mandatory

trip of 76.8% of EVs is assumed to take place between 16:00 to 20:00. Simulation

parameters of CSs and EVs are identical to the first simulation study with 600 EVs.

The optimal results are obtained after only 19 iterations of the outer loop in 113

minutes on average. The total net cost of EVs and total net revenue of CSs and

retailers for all scenarios are given in Table 4.6. It shows that the proposed solution

can manage to solve scheduling problem of a larger ecosystem in a reasonable time.

The trends in the cost and revenue changes of the stakeholders from one scenario to

another are similar to those observed in the smaller ecosystem in Section 4.4.1.

Furthermore, a sensitivity analysis is performed for 10 cases with different simula-

tion parameters to demonstrate the convergence of the proposed iterative algorithm.

The simulation parameters (# of EVs and CSs and trips planning) are presented

in Table 4.7. The total net cost of EVs and total net revenue of CSs and retailers

as well as the corresponding relative MIP Gap are reported in Table 4.7 for s1. In

Figure 4.11, the convergence rates for total net cost of EVs and optimal total net

revenue of CSs and retailers are illustrated. The average computation time for c1-c6

and c7-c10 was 39 and 115 minutes, respectively. It can be seen that the proposed
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Table 4.6: Total daily net cost and revenue of the stakeholders for larger e-mobility ecosys-
tem

Scenario Total net cost of
EVs [$] (relative

MIP gap)

Total net revenue of
CSs [$] (relative MIP

gap)

Total net revenue of
retailers [$] (relative

MIP gap)
s1 1653.2 (0%) 400.8 (0.0015%) 1422.61 (0%)
s2 1413.3

(0.0083%)
649.3 (0%) 1960.8 (0%)

s3 2050.1
(0.0096%)

375.5 (0.0016%) 1545.5(0%)

s4 1986.7
(0.0041%)

417.2 (0%) 1612.1 (0%)

solution solved all cases in a reasonable time with a near-zero relative MIP gap.

4.5 Conclusion

In this chapter, a comprehensive day-ahead scheduling framework is proposed

for the future e-mobility ecosystem including EVs, CSs, and retailers by considering

both G2V and V2G operation. Two kinds of trips, namely mandatory and optional

trips, as well as EV drivers’ preferences are formulated to enhance practical aspects

of the proposed algorithm. The proposed tool finds the best CS for EV’s G2V and

V2G operation and the best retailers for CSs to purchase electricity. Also, electricity

prices offered by CSs for G2V and V2G services and optimal charging and discharging

scheduling of EVs are determined considering the impacts of prices offered by retailers

through a three layer optimisation problem. An iterative solution is proposed to solve

the three-level Stackelberg game. Simulation results confirm the value of optional

trips to reduce total cost of EVs and congestion at CSs during early morning peak.

Furthermore, the proposed scheduling system helped to reduce the cost of EVs and

to increase the revenue of CSs and retailers. The drivers’ preferences are proven to

have an immense impact on the solutions and financial benefits of the stakeholders.

In the next chapter, different sources of uncertainties are modeled, e.g., EV drivers

and PV generation, and solve a stochastic optimisation.
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Figure 4.11: Objective function values of (a) EV layer, (b) CS layer, and (c) retailer layer
for cases c1 to c10
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5 | Three-Layer Joint Distributionally

Robust Chance-Constrained Frame-

work for Optimal Day-Ahead Schedul-

ing of E-mobility Ecosystem

Nomenclature

Indices

e,i,r Index for EVs, CSs, and retailers, respectively

m,n Index of buses of distribution network

t Index for hours

Parameters

∆t Time step (s)

εEV
th /εCS

th /εreth Theoretical risk parameter in each layer

ηGUi /ηCHi Efficiency of CGU/chargers at CS i (p.u.)

η+e /η
−
e Efficiency of EV e’s battery in G2V/V2G mode (p.u.)

γe Power consumed by EV e per km (kWh/km)

P Probability distribution

Dt,e,i Shortest driving distance between CS i and destination of EV

e at time t, (km)

136
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Ot,e,i Shortest driving distance between origin of EV e and CS i at

time t (km)

α/α Profit margin of the retailer

ρ−/ρ− Maximum/Minimum electricity prices offered by CSs for V2G

service ($/kWh)

ρre/ρre Maximum/Minimum electricity prices offered by retailers to

CSs ($/kWh)

E
GU

i /E
PV

i Capacity of CGU/PV system at CS i (kW)

E
ESS

i Capacity of ESS at CS i (kW)

Ee Capacity of EV e’s battery (kWh)

Ei Capacity of CS i (kW)

E
CH

i Capacity of chargers at CS i (kW)

N
CH

i Maximum number of chargers in CS i

Pm,n,t/Pm,n,t Maximum/Minimum active power flow between bus m and n

(kW)

Qm,n,t/Qm,n,t
Maximum/Minimum reactive power flow between bus m and

n (kVar)

rPV
i /rPV

i Maximum/Minimum ramping rates of PV generation

SOCe/SOCe Maximum/Minimum SOC of EV e (p.u.)

SOC
ESS

i /SOCESS
i Maximum/Minimum SOC of ESS at CS i (p.u.)

ρgast Natural gas price at time t ($/m3)

Σe Covariance of initial SOC of EV e

ΣPV
t,i Covariance of PV generation in CS i at time t

τt Covariance of wholesale electricity market prices at time t

∆V /∆V Lower/Upper limit of voltage deviation at bus m

ϑe EV e’s driver preference for minimum cost reduction in G2V

operation ($)

X̂+
t,e,i/X̂

−
t,e,i Charging/discharging power of EV e in the nearest CS at time

t

D̂Ot,e Driving distance of EV e to closest CS at time t (km)

Ot,e,i Shortest driving distance between origin of EV e and CS i at

time t (km)
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ρ̃WM
t Mean wholesale electricity market price at time t ($/kWh)

S̃OC0e Mean of initial SOC of EV e

ΞEV /ΞCS/Ξre Ambiguity set in EV/CS/retailer layer

ζt,e Shortest driving route to reach the destination directly from

origin of EV e at time t without stopping at any CS (km)

a SOC target

b, c, d, f Cost of battery degradation parameters

bm,n/gm,n Susceptance/conductance of transmission line between bus m

and n

HV Heat value of fuel on the operation of gas turbine-generator

(kWh/m3)

itCS/itre Number of iterations in CS/retailer layer

SOCend
e SOC of EV e at the end of the day (p.u.)

V CS Virtual charging station

Sets

B,E,R,S,T,F1, F2 Sets of Nodes, EVs, retailers, CSs, hours, first optional trip

time, and second optional trip time, respectively

Variables

βt,i,r Binary variable for retailer r by CS i at time t

∆θm,t Voltage angle deviation on bus m at time t

∆Vm,t Voltage magnitude deviation on bus m at time t

∆V̂m,t Voltage magnitude deviation obtained from the lossless power

flow solution on bus m at time t

Γt,e,i/Πt,e,i Binary variable for CS i for charging/discharging EV e at time

t

κt,r A random variable with zero mean and covariance matrix τt

for retailer r at time t

ωe A random variable with zero mean and covariance matrix Σe

for EV e

ψt,i Binary variable for charging/discharging ESS at CS i

ρAGt,i Electricity price sold to the aggregator by CS i at time t

($/kWh)
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ρ+t,i/ρ−t,i Electricity price offered by CS i at time t for charg-

ing/discharging EVs ($/kWh)

θm,t Voltage angle of bus m and time t

θm,t Voltage angle of bus m and time t

ρ̂+t,e/ρ̂−t,e Electricity price offered by the closest CS to EV e at time t

in G2V/V2G mode ($/kWh)

Ỹ PV
t,i Mean local PV generation of CS i at time t (kW)

ξt,i A random variable with zero mean and covariance matrix ΣPV
t,i

for CS i at time t

At,e,i Sum of charging and discharging power of EV e in CS i at

time t

Pm,n,t/Qm,n,t Active/Reactive power flow between bus m and n at time t

(kW/kVar)

PWM
t,r /QWM

t,r Active/Reactive power purchased/provided from/by the

wholesale market by retailer r at time t (kW/kVar)

SOCt,e SOC of EV e at time t (p.u.)

Vm,t Voltage magnitude of bus m and time t

X+
t,e,i/X−

t,e,i Charging/Discharging power of EV e at CS i at time t (kW)

Y +
t,i/Y −

t,i Charging/Discharging power of ESS of CS i at time t (kW)

Y GU
t,i Power produced by CGU/PV system of CS i at time t (kW)

Y re
t,i,r/Qre

t,i,r Active/Reactive power purchased/provided from/by retailer

r by CS i at time t (kW/kVar)

ρret,r Electricity price sold to CSs by retailer r at time t ($/kWh)

5.1 Introduction

In this chapter, a three-layer joint DRCC framework is proposed to schedule V2G

and G2V operation in the day ahead for an e-mobility ecosystem including EVs, CSs,

and retailers in an uncertain environment with unknown probability distributions.

In order to investigate an uncertain e-mobility ecosystem, the interactions between
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stochastic nature of the three stakeholders are considered in the proposed model. In

fact a family of probability distributions with the same mean and covariance matrix is

defined, called a moment-based ambiguity set, to solve a stochastic program without

relying on a specific distribution function. Furthermore, an exact second-order cone

programming reformulation of joint DRCC day-ahead scheduling framework is devel-

oped to ensure that violation of both upper and lower limits of a constraint remains

small for the worst-case probability under the ambiguity set. Moreover, the temporal

correlation of the PV system generation in each time interval is applied in the joint

DRCC model. The temporal correlation is considered between PV power generation

at t and t − 1.

Based on the comprehensive literature review presented in Chapter. 2, four gaps

in knowledge concerning EV scheduling in an e-mobility ecosystem are identified (G6,

G7, G8, and G9). In this chapter the proposed framework has been dealt with the

gaps.

The rest of this chapter is structured as follows: Section 5.2 presents problem

definition and describes the stochastic G2V and V2G framework including the three

stakeholders, followed by the proposed three-layer joint DRCC formulation in Sec-

tion 5.3. In Section 5.4, an ecosystem based on 600 EVs, nine CSs, and three retailers

is devised for simulation study and the results are discussed. The conclusion remarks

are expressed in Section 5.5. In addition reformulation of the single-sided and double-

sided CCs in EV, CS, and retailer layers is explained and demonstrated in Appendix

of this paper.

5.2 Problem Definition

This chapter offers a three-layer joint DRCC scheduling framework in the day

ahead, where the DRCC model of each stakeholder is developed in each layer. In

particular the uncertainty of each player is modelled by means of an ambiguity set,

which consists of a family of probability distributions of each uncertain parameter

with the first- and second-order moments, i.e, mean and covariance of available his-

torical data. In this proposed ecosystem, R number of retailers is considered, indexed
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by r ∈ {1,2, ...,R}. Retailers sell electricity to CSs from the wholesale electricity

market. Therefore, the wholesale electricity price at time t is the major source of un-

certainty in this layer. Further, there are S number of CSs in the ecosystem, indexed

by i ∈ {1,2, ..., S}, physically located in the scheduling area. They operate at the dis-

tribution network level and provide V2G and G2V services to EVs. Without losing

the generality, it is assumed that each CS possesses small gas turbine/diesel genera-

tor as a CGU, PV, and ESS to supply electricity to EVs during G2V operation. In

addition, the CSs purchase electricity from EVs and sell it to the wholesale electricity

market through aggregators. PV generation is the main source of uncertainty in the

CS layer. During a typical day, it is assumed that EVs can have multiple mandatory

trips and optional trips, which are explained in detail in Chapter 4. In this study, EVs

have two mandatory trips, which must be fulfilled at any cost. However, as opposed

to mandatory trips, an optional trip is selected if it offers a possibility for EV drivers

to benefit from cheap G2V or expensive V2G services outside of the mandatory trip

hours. Each EV driver may select only one or two optional trips during a day to

reduce its cost. In addition, EVs with a known location and initial SOC, which is

the source of uncertainty in EV layer, seek G2V and V2G plans for the combined

mandatory and optional trips, such that it minimises their overall cost while fulfilling

their preferences. A day before the scheduling day, EV drivers send their trip plans

to the scheduling centre. Then, the scheduling problem is solved for the entire day

ahead. The driving routes between CS i and origin of EV e in each trip are known and

only one of CSs might be selected for EV e. Thus, two binary variables are assigned

to each CS for G2V and V2G operation of the EV e at each time interval. The VCS

is considered when the most economic decision for EV e is not to be charged nor

discharged in a trip. Thus by selecting a VCS, EV e reaches to the destination from

its origin without charging or discharging, while the EV’s preferences and constraints

are satisfied. Therefore, in a mandatory trip, charging and discharging power of a

VCS are equal to zero for EV e. The only difference between mandatory and optional

trips is that, the driving route of a VCS is considered zero for the optional trips.

Please see Chapter 4 for further details on this modelling approach.
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5.3 Modeling Framework

In this section, the day-ahead joint DRCC V2G and G2V scheduling framework,

which includes several uncertain and deterministic constraints, is presented for each

layer based on the deterministic model developed in Chapter 4. A general formulation

is expressed in Eq. 5.1, which finds minimisers x to f ∶ Rn Ð→ R as the objective func-

tion of a CC program subject to a set of deterministic constraints (D) and stochastic

constraints (H (x,λ) ≤ 0,H ∶ Rn ×ΛÐ→ Rm). H satisfies any probability distribution

(P) from the ambiguity set (Ξ) at a given confidence level (1 − ε) ∈ (0,1).

c∗ =min{f(x) ∶ x ∈D, inf
P∈Ξ

P[λ ∈ Λ ∶ {H(x,λ) ≤ 0}] ≥ 1 − ε}. (5.1)

In the joint DRCC, the uncertain parameter is modeled by µ + ω, where µ is the

first-order mean of the uncertain parameter and ω is a random variable with zero

mean and covariance matrix Σ. The ambiguity set is defined by

Ξ = {P ∈ Ξ(Rυ) ∶ EP[ω],EP[ωω
T ] = Σ}. (5.2)

The DRCC models for EV, CS, and retailer layers are presented in Section 5.3.1,

5.3.2, and 5.3.3, respectively. The exact reformulation of the single-sided and double-

sided CCs are defined by in Theorem 1 and Theorem 2 in [1]. The reformulation of

the problem are described in Appendix.

The proposed three-layer scheduling framework is solved by an iterative approach

shown in Fig. 5.1. Particularly the retailers estimate wholesale electricity prices by

historical data in the first iteration. The prices are passed on to the CS layer. In

this iteration, the prices are only inflated to consider the CSs’ profit margin. Then,

the CSs’ will determine their prices accordingly and pass them on to the EV layer,

where the first DRCC problem will be solved in the first iteration. In addition, the

V2G prices are estimated by the CS layer in the first iteration. In the EV layer,

under the uncertainty of the EV’s initial SOC, the decision variables including EVs’

charging and discharging power and CS selection for each trip will be determined by

solving the joint DRCC problem. The inner loop, which is between CS and EV layers,
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will continue until the convergence criterion of the DRCC problem in the CS layer

under PV generation uncertainty is satisfied. Afterwards, the selected retailers and

the amount of purchased power from each retailer will be communicated back to the

retailer layer. Then, the DRCC problem in the retailer layer is solved considering the

uncertainty of the wholesale electricity prices. Further, in retailer layer, new electricity

prices offered by retailers to CSs will be determined according to the reactions from

the CSs and EVs to the original prices. Second iteration of the outer loop starts with

the new retailers’ prices. The iterative process will be terminated once the difference

between the relevant objective functions in the last two iterations for both inner and

outer loops is less than or equal to 0.001.

5.3.1 Joint DRCC Model in EV Layer

The proposed DRCC model in EV layer has included Eqs. (5.3)-(5.3r) to minimise

the net cost of EV operation during V2G and G2V services. The proposed problem re-

stricted by a set of distributionally robust chance constraints in Eqs. (5.3d), (5.3e), (5.3j),

and (5.3k). Equations (5.3b) and (5.3c) indicate sum of the charging and discharging

power of EV e in CS i and the nearest CS, respectively, at time t. Equation (5.3d)

signifies that under the worst distribution in ambiguity set for EV layer (ΞEV ), the

probability of maintaining the SOC level of EV e within a lower and upper bound

at all times must be greater than or equal to a given confidence level. Further the

DRCC in Eq. (5.3e) is expressed to fulfil target SOC of EV e at the end of the day

within a permissible range (i.e., between the target and maximum SOC). Permissible

charging and discharging capacity of the chargers at CS i are imposed by Eqs. (5.3f)

and (5.3g). In order to select one CS for either G2V and V2G services by EV e at

time t, sum of the binary variables of CSs must be less than or equal to one, as in by

Eq. (5.3h). Furthermore, Eq. (5.3i) guarantees that the number of used chargers at

a CS for charging and discharging does not exceed the number of existing chargers.

The DRCC in Eqs. (5.3j) and (5.3k) impose driver’s cost/revenue threshold limi-

tations for selecting alternative route instead of the shortest route during V2G and

G2V operation. Further, the driver’s route preferences for charging/discharging EV
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Figure 5.1: Flowchart of the three-layer joint DRCC problem
e at time t in an alternative CS other than the nearest CS are ensured by Eqs. (5.3l)

and (5.3m). The zero power of charging and discharging at a VCS must be set to

zero, which is achieved by Eqs. (5.3n) and (5.3o). Moreover, Equation (5.3p) sets the
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driving route allocated to VCS for the mandatory trip, which is equal to the shortest

route to reach the destination directly from origin of EV e. In addition, the driving

route distance between EV and VCS in the first and second optional trips are set to

zero by Eqs. (5.3q) and (5.3r).

min
X+t,e,i,X

−

t,e,i,

Γt,e,i,Πt,e,i

sup
P∈ΞEV

EP[
T

∑
t=1

E

∑
e=1

X+
t,e,i ⋅ ρ

+
t,i

+ (b ⋅ (SOCt,e − a ⋅ (Γt,e,i +Πt,e,i))
2

+ c.X+
t,e,i − d.X

−
t,e,i + f.X

−2
t,e,i)

−X−
t,e,i.ρ

−
t,i] ∀i ∈ S,

(5.3a)

s.t.

At,e,i =

η+e .
t

∑
t=1
X+
t,e,i.∆t

Ee

−

t

∑
t=1
X−
t,e,i∆t

η−eEe

, (5.3b)

Ât,e,i =

t

∑
t=1
η+e .X̂

+
t,e,i∆t

Ee

−

t

∑
t=1
X̂−
t,e,i∆t

Ee.η−e
, (5.3c)

inf
P∈ΞEV

P[SOCe ≤ S̃OC0e − e
Tωe +At,e,i

−
t

∑
t=1

ζt,e.γe

Ee

.(1 − Γt,e,i −Πt,e,i) −
Ot,e,i.γe

Ee

.

(Γt,e,i +Πt,e,i) ≤ SOCe] ≥ 1 − εEVth

∀t ∈ T,∀e ∈ E,∀i ∈ S,

(5.3d)

inf
P∈ΞEV

P[SOCend
e ≤ S̃OC0e − e

Tωe +AT,e,i

−
T

∑
t=1

ζt,e.γe

Ee

(1 − Γt,e,i −Πt,e,i) −
OT,e,i.γe

Ee

.

(ΓT,e,i +ΠT,e,i) ≤ SOCe] ≥ 1 − εEVth

∀t ∈ T,∀e ∈ E,∀i ∈ S,

(5.3e)

0 ≤X+
t,e,i ≤ E

CH

i .Γt,e,i ∀t ∈ T,∀e ∈ E,∀i ∈ S, (5.3f)
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0 ≤X−
t,e,i ≤ E

CH

i .Πt,e,i ∀t ∈ T,∀e ∈ E,∀i ∈ S, (5.3g)
S

∑
i=1

(Πt,e,i + Γt,e,i) ≤ 1 ∀t ∈ T,∀e ∈ E, (5.3h)

∑e∈E(Γt,e,i +Πt,e,i) ≤ N
CH

i ∀t ∈ T,∀i ∈ S, (5.3i)

inf
P∈ΞEV

P[ρ+t,i.X+
t,e,i ≤ ϑe.Γt,e,i + ρ̂

+
t,i.Ee.Γt,e,i

.(S̃OCe − e
Tωe + Ât,e,i −

Ôt,e,i.γe

Ee

)

− ρ̂+t,i.Ee.(1 − Γt,e,i).
t

∑
t=1

ζt,e.γe

Ee

] ≥ 1 − εEVth

∀t ∈ T,∀e ∈ E,∀i ∈ S,

(5.3j)

inf
P∈ΞEV

P[ρ−t,i.X−
t,e,i ≥ Ge.Πt,e,i + ρ̂

−
t,i.Ee.Πt,e,i

.(S̃OCe − e
Tωe + Ât,e,i −

Ôt,e,i.γe

Ee

)

− ρ̂−t,i.Ee.(1 −Πt,e,i).
t

∑
t=1

ζt,e.γe

Ee

] ≥ 1 − εEVth

∀t ∈ T,∀e ∈ E,∀i ∈ S,

(5.3k)

Γt,e,i.(Ot,e,i +Dt,e,i)≤ (D̂Ot,e +Ke).Γt,e,i

∀t ∈ T,∀e ∈ E,∀i ∈ S,

(5.3l)

Πt,e,i.(Ot,e,i +Dt,e,i)≤ (D̂Ot,e +Ke).Πt,e,i

∀t ∈ T,∀e ∈ E,∀i ∈ S,

(5.3m)

X+
t,e,i= 0 ∀t ∈ T,∀e ∈ E,∀i = V CS, (5.3n)

X−
t,e,i= 0 ∀t ∈ T,∀e ∈ E,∀i = V CS, (5.3o)

Ot,e,i +Dt,e,i= ζt,e∀t ∈ (T − F1 − F2),∀e ∈ E,∀i = V CS, (5.3p)

Ot,e,i +Dt,e,i= 0 ∀t ∈ F1,∀e ∈ E,∀i = V CS, (5.3q)

Ot,e,i +Dt,e,i= 0 ∀t ∈ F2,∀e ∈ E,∀i = V CS. (5.3r)

5.3.2 Joint DRCC Model in CS Layer

The DRCC model in the CS layer is presented in this section the net revenue of

all CSs. As in Eq. (5.4) the sum of the CSs’ revenue is the objective function of
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the DRCC problem in the CS layer. Furthermore, the revenue of CS i is derived

from selling electricity to EV e and the aggregator during G2V and V2G operation,

respectively. In addition, the costs of CS i include the operational cost of CGU, cost of

electricity purchased from retailer r and EV e in G2V and V2G services, respectively.

max
Y re
t,i,r,Y

GU
t,i ,Ỹ PV

t,i

Y +t,i,Y
−

t,i,ρ
−

t,i,

βt,i,r,ψt,i

sup
P∈ΞCS

EP[
T

∑
t=1

S

∑
i=1

∑e∈E(X
+
t,e,i.ρ

+
t,i

+X−
t,e,i.ρ

AG
t,i )

−Y re
t,i,r.ρ

re
t,r −∑e∈EX

−
t,e,i.ρ

−
t,i

−
Y GU
t,i .ρ

gas
t

ηGU
i .HV

] ∀r ∈ R,

(5.4a)

s.t.

inf
P∈ΞCS

P[Ỹ PV
t,i − 1Tξt,i + Y

GU
t,i + Y re

t,i,r + Y
−
t,i +∑e∈EX

−
t,e,i

+ ε ≥
∑e∈EX

−
t,e,i

ηCH
i

+
∑e∈EX

+
t,e,i

ηCH
i

+ Y +
t,i] ≥ 1 − εCSth

∀t ∈ T,∀i ∈ S,∀r ∈ R,

(5.4b)

0 ≤ Y GU
t,i ≤ E

GU

i ∀t ∈ T,∀i ∈ S, (5.4c)

inf
P∈ΞCS

P[0 ≤Ỹ PV
t,i − 1Tξt,i ≤ E

PV

i ] ≥ 1 − εCSth ∀t ∈ T,∀i ∈ S, (5.4d)

inf
P∈ΞCS

P[rPV
i ≤

Ỹ PV
t,i − Ỹ PV

t−1,i − ξ̂t,i

∆t
≤ rPV

i ] ≥ 1 − εCS
th , (5.4e)

0 ≤ Y re
t,i,r ≤ Ei.βt,i,r ∀t ∈ T,∀i ∈ S,∀r ∈ R, (5.4f)

R

∑
r=1

βt,i,r ≤ 1 ∀t ∈ T,∀i ∈ S, (5.4g)

0 ≤ Y +
t,i ≤ E

ESS

i .ψt,i ∀t ∈ T,∀i ∈ S, (5.4h)

0 ≤ Y −
t,i ≤ E

ESS

i .(1 − ψt,i) ∀t ∈ T,∀i ∈ S, (5.4i)

SOCESS
i ≤

t

∑
t=2

(Y +
t,i − Y

−
t,i).∆t

E
ESS

i

≤ SOC
ESS

i ∀t ∈ T,∀i ∈ S, (5.4j)

ρ− ≤ ρ−t,i ≤ ρ
− ∀t ∈ T,∀i ∈ S. (5.4k)
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A set of DRCC is presented in Eqs. (5.4b), (5.4d), (5.4e) in this layer. The

probability of maintaining power balance between supply and demand at CS i under

the worst distribution in ambiguity set for CS layer (ΞCS) is imposed by Eq. (5.4b).

Moreover, the lower and upper capacity limit of CGU are enforced by Eq. (5.4c).

In Eq. (5.4d), the DRCC for ensuring the lower and upper capacity limit of PV

generation at CS i is given. Equation (5.4e) represents temporal correlation between

renewable energy generation uncertainty by restricting the ramping of PV generation.

For this constraint, the uncertainty parameter contains both ξt,i and ξt−1,i as:

ξ̂t,i =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ξt,i

ξt−1,i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (5.5)

In order to consider the effect of temporal correlation on Eq. (5.4e), covariance

matrix should be defined as [2]:

Σ̂PV
t,i =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ΣPV
t,i ΥPV

(t,t−1),i

ΥPV
(t,t−1),i ΣPV

t−1,i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (5.6)

The electricity purchased from retailer r is constrained by Eq. (5.4f). Equa-

tion (5.4g) guarantees that only one retailer is selected by CS i at time t. The limita-

tion of charging and discharging power of ESS at CS i are established by Eqs. (5.4h)

and (5.4i). Furthermore, the SOC of ESS must be within a permissible range, which

is enforced by Eq. (5.4j). Equation (5.4k) ensures that the electricity prices in V2G

services is limited by minimum and maximum bounds for the DRCC problem in CS

layer.

5.3.3 DRCC Model in Retailer Layer

The DRCC model in retailer layer is presented in this section to maximise the net

revenue of all retailers. In fact, it consists of the difference between revenue obtained

by selling electricity to CS i, and the cost of electricity purchased from the wholesale

electricity market, as given in Eq. (5.7). Moreover, the wholesale electricity prices is
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the stochastic parameter in this layer.

max
ρ̃ret,r

sup
P∈ΞCS

EP[
T

∑
t=1

R

∑
r=1

∑i∈S Y
re
t,i,r.ρ

re
t,r

− PWM
t,r .(ρ̃WM

t − 1Tκt)] ∀i ∈ S,

(5.7a)

s.t.

PWM
t,r = ∑i∈S Y

re
t,i,r, (5.7b)

QWM
t,r = ∑i∈SQ

re
t,i,r, (5.7c)

Pm,n,t= gm,n.(1 +∆V̂m,t).(∆Vm,t −∆Vn,t)

−bm,n.(θm,t − θn,t) ∀m,n ∈ B,∀t ∈ T ,

(5.7d)

Qm,n,t= −bm,n.(1 +∆V̂m,t).(∆Vm,t −∆Vn,t)

−gm,n.(θm,t − θn,t) ∀m,n ∈ B,∀t ∈ T ,

(5.7e)

Vm,t = 1 +∆Vm,t ∀m ∈ B,∀t ∈ T , (5.7f)

θm,t = 0 +∆θm,t ∀m ∈ B,∀t ∈ T , (5.7g)

∆V m ≤ ∆Vm,t ≤ ∆V m ∀m ∈ B, (5.7h)

Pm,n ≤ Pm,n,t ≤ Pm,n ∀m,n ∈ B,∀t ∈ T , (5.7i)

Q
m,n

≤ Qm,n,t ≤ Qm,n ∀m,n ∈ B,∀t ∈ T , (5.7j)

inf
P∈Ξre

P[αt × ρ̃WM
t − 1Tκt ≤ ρre

t,r ≤ αt × ρ̃
WM
t − 1Tκt]

≥ 1 − εreth.

(5.7k)

Equations (5.7b) and (5.7c) enforce the active and reactive power balance at all

times, respectively. Thus, the electricity purchased from the wholesale electricity

market through retailer r must be equal to sum of the electricity purchased by CSs

from retailer r for active and reactive power at time t. Equations (5.7d) and (5.7e)

satisfy real and reactive power flows in the network considering voltage magnitude and

angle deviations determined by Eqs. (5.7f) and (5.7g). Equation (5.7h) enforces the

node voltages between minimum and maximum bounds. Equations (5.7i) and (5.7j)

guarantee that active and reactive power are maintained within a standard range.

In addition, the probability of maintaining the electricity prices offered by retailers
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between maximum and minimum bounds under the worst distribution ambiguity set

in Retailer layer (Ξre) is imposed by Eq. (5.7k).

5.4 Simulation Results

The simulation is carried out with the proposed day-ahead DRCC scheduling

framework along with three retailers, nine CSs, and 600 EVs in an small area of San

Francisco, the USA, deploying IEEE 37-node distribution test system to assess its

performance under different conditions. Here, 30 bidirectional fast DC chargers with

the capacity of 50 kW are considered in all CSs. Each CS is equipped with a 65 kW

CGU, a PV system with the capacity of {16,19.2,24,27.2,32} kW and one-hour ESS

with the capacity of {45,50,65,70,85} kW. Furthermore, the mean value of the initial

SOC of 600 EVs is between 10% and 95% and the standard deviation of initial SOC

of each EV is equal to 5%. It is assumed that each EV plans two mandatory trips

and two optional trips in a typical day. As depicted in Fig. 5.2, the first mandatory

trip of 88.3% of EVs in the fleet is randomly scheduled between 06:00 to 10:00. The

first optional trip of 93.5% of EVs is randomly planned between 11:00 to 15:00, while

the second optional trip of 88.8% of EVs is assumed to occur between 13:00 to 18:00.

Finally, the second mandatory trip of 89.7% of EVs is supposed to take place between

16:00 to 20:00. Before solving the scheduling problem, the shortest driving routes

between the origin of EV e, the location of CS i, and the destination of EV e for each

trip are determined by ArcGIS®. The ambiguity sets for PV generation and wholesale

electricity prices, which include a family of probability distribution functions with the

same mean and covariance, are constructed from historical data. The mean value of

PV generation (Ỹ PV
t,i ) and the covariance matrix of PV generation (ξt,i and ξ̂t,i) for

each hour are calculated from data of 100 days extracted from Renewables.ninja

for the same area in San Francisco [3]. In addition, for calculating the mean value

(ρ̃WM
t ) and covariance (κt) of the wholesale electricity prices, 100 days worth of prices

are utilised from California ISO [4]. To obtain the prices offered to CSs by the

retailers, the day-ahead electricity prices of the wholesale market is multiplied by

4.5 homogeneously in order to consider network maintenance costs, ancillary services
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costs, taxes etc. Moreover, the profit margin of the retailers (α and α) is assumed

to be 5-50% in the G2V operation, while the CSs seek profit in the range of 10% to

30% of the true energy prices. Furthermore, during the V2G service, electricity prices

offered by CSs are between 60-85% less than the prices offered by the retailers. The

electricity prices sold to the aggregator by CSs is 10% greater than what CSs offered

to EV drivers during V2G service.
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Figure 5.2: Number of EVs in different trips

5.4.1 Evaluation of Low- to High-Risk Cases

First, the DRCC problem in different layers for various confidence levels (ν = 1−ε)

is solved to investigate the changes in cost and profits of the stakeholders. For the

low-risk (conservative) case study, the confidence level is high and the constraints

in Eqs. (5.3d), (5.3e), (5.3j), and (5.3k) in EV layer, and Eqs. (5.4b), (5.4d), and

(5.4e) in CS layer will be satisfied 95% of the time or more. In the same case study,

Eq. (5.7k) in retailer layer will be considered with a probability that is higher than or

equal 90% because the DRCC model will not be converged at 95% confidence level. It

means that the retailers cannot supply CSs under the most conservative condition of

the entire ecosystem. It shows the importance of the proposed sequential framework

to capture the impact of different layers on each other.

The total net cost of EVs, and the total net revenue of CSs and retailers are

illustrated in Fig. 5.3 for different confidence levels. By increasing the confidence level

from 0.5 (high-risk case study) to 0.95 (low-risk case study), the total net cost of EVs

increased from $231 to $803 while the total net revenue of CSs and retailers decreased

from $678 and $852 to $498 and $762, respectively. This is because that at the lower

confidence levels, constraints are relaxed for all stakeholders resulting more options
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Figure 5.3: (a) Total net cost of EVs, (b) total net revenue of CSs, and (c) total net revenue
of retailers for different confidence levels from 0.5 (high-risk case) to 0.95 (low-risk case)

are available to choose the most optimal V2G and G2V operation. Consequently,

the risk of failing the day-ahead commitment for all stakeholders is comparatively

higher in this case in the real-time operation. However, at higher confidence levels,

the feasible solution space is much smaller for all stakeholders. This way, they pay

a premium for a higher confidence (lower risks) at the time of delivery of services.

Since the DRCC problem for the three layers are solved iteratively, the impact of

conservative operation of one layer leads other players to behave more conservatively,

which resulted in disproportionately higher prices. The number of EVs scheduled for

G2V and V2G operations in each trip is shown in Fig. 5.4 for 0.95 confidence level in

EV and CS layer, and 0.9 in retailer level.

5.4.2 Validation of DRCC Formulation

In this subsection, the quality of the proposed three-layer joint DRCC framework

and the solutions are investigated. The DRCC solutions are valid when the actual

confidence level (νac = 1− εac) is more than or equal to the theoretical confidence level

(νth = 1 − εth). For this investigation, as shown in Fig. 5.5(a), firstly it is needed to

consider a theoretical confidence level, νth, to solve the DRCC problems at different
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Figure 5.4: Number of EVs schedule for (a) G2V and (b) V2G operation
layers iteratively based on the mean value and covariance of stochastic parameters.
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Figure 5.5: Flowchart of determining actual confidence level in (a) the DRCC problem
and (b) the deterministic problem

Afterwards, the optimal solutions jointly used with the samples created for the

stochastic parameters (representing the realised value of the parameters in real-time

operation) to run a daily operation of the ecosystem. Then, the number of times in

which the CCs (Eqs. (5.3d), (5.3e), (5.3j), and (5.3k) in EV layer, Eqs. (5.4b),

(5.4d), and (5.4e) in CS layer, and Eq. (5.7k) in retailer layer) have been violated is
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checked to obtain the actual confidence level, νac. This process is repeated for different

values of theoretical confidence level in each layer, i.e., νth ∈ [0.5,0.9], to obtain the

mean values of the actual confidence level, νac. While normal distribution is used

in this part of the simulation study, it should be noted that the reformulation of

the single-sided and double-sided CCs, presented in Appendix, is independent of the

type of probability distribution function. Also, the CCs violations in a deterministic

day-ahead scheduling framework are calculated using the process shown in Fig. 5.5(b).

The actual confidence levels obtained by the proposed stochastic framework are

illustrated in Fig. 5.6 for each layer in comparison with the theoretical ones. Please

note that for determining the actual confidence level of each layer, the theoretical

confidence level of other layers are kept constant at 0.9. It can be seen from the figure

that the actual confidence level is always higher than the theoretical one. In addition,

Fig. 5.6 shows that the DRCC programming is more conservative on the lower range of

theoretical confidence levels. The simulation results for the deterministic scheduling

framework show actual confidence levels of 0.71, 0.79, and 0.75 for EV, CS, and

retailer layer, respectively, which are lower than the lowest actual confidence level of

the proposed stochastic framework.
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Figure 5.6: DRCC validation for EV, CS, and Retailer layers

In addition, the number of unique EVs that violated the CCs (Eqs. (5.3d), (5.3e),
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(5.3j), and (5.3k)) in the proposed DRCC framework are shown for different con-

fidence levels in Fig. 5.7. According to the figure, the number of unique EVs with

constraint violation is decreased by increasing the confidence level in EV layer. Fur-

thermore, Fig. 5.8 depicts the number of unique EVs that have not reached their

destination (due to lower SOC limit violation) at different confidence levels, which

expectantly decreases by increasing the confidence level. It shows the importance of

the proposed framework in reducing the EV drivers frustration, which contributes to

lowering range anxiety. In addition, 272 unique EVs could not reach their destina-

tion in the deterministic problem, which is more than the one obtained at the lowest

confidence level, 0.5, in the proposed DRCC framework.
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Figure 5.7: Number of unique EVs violating their CCs at least once a day at different
confidence level in EV layer in the proposed DRCC framework.

5.4.3 Impact of Temporal Correlation of PV Generation

In this section, the impact of considering the temporal correlation of PV generation

in CSs are investigated. First, the root mean square error (RMSE) of PV generation

with and without considering the temporal correlation is calculated in Eq. (5.4e) for

all CSs. It shows that the RMSE has improved from 17.8% to 16.3% by considering

PV temporal correlations. In addition, the number of unique EVs that could not fulfill

their mandatory trip due to violating lower SOC limit at different confidence levels
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Figure 5.8: Number of unique EVs which does not fulfill their mandatory trips in the
proposed DRCC framework at different confidence level.
is calculated after removing the PV correlation effect in CS layer, which are shown

in Fig. 5.9. It can be seen that an additional 2 EVs won’t reach their destination at

0.95 confidence level. By decreasing the confidence level in the CS layer from 0.95

to 0.5 in the absence of PV correlation, the number of EVs that cannot fulfill their

mandatory trips increases to 9. It shows the impact of PV temporal correlation on

the successful scheduling of the ecosystem.
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Figure 5.9: Number of unique EVs that could not reach their destination in the absence
of PV correlation constraint at the CS layer.
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5.5 Conclusion

This chapter proposes a three-layer joint DRCC model for the future e-mobility

ecosystem including EVs, CSs, and retailers to schedule V2G and G2V services in

the day ahead system under an uncertain environment with unknown probability

distribution functions. In particular, the interactions between stochastic parameters

of the three stakeholders are considered in the proposed iterative model to improve the

performance of the scheduling system for the entire e-mobility ecosystem. Further,

second-order cone programming reformulation of the DRCC model is implemented to

reformulate the double-sided CCs. In addition, the impact of temporal correlation of

uncertain PV generation on the CSs operation is considered. The simulation results

confirm that the choice of confidence level significantly affects the cost and revenue of

the stakeholders as well as the accuracy of the schedules in real-time operation. For a

low-risk case study, the model estimates 247.3% increase in the total net cost of EVs

compared to a high-risk case study, and a 26.6% and 10.6% reduction in the total

net revenue of CSs and retailers, respectively. In addition, the number of unique EVs

failed to reach their destination has decreased from 272 in deterministic scheduling

model to 61 in low-risk case study. The simulation results prove the necessity of such

planning frameworks to reduce the risks for all stakeholders, which in turn facilitates

higher adoption of EVs by the end-users and investors.
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6 | Conclusions and Future Works

The future e-mobility ecosystem will be a complex structure with different stake-

holders seeking to optimise their operation and benefits. This thesis highlighted the

technical challenges, motivations behind conducting this study and the contributions

made to knowledge in Chapter 1. A comprehensive literature review has been per-

formed in five groups in Chapter 2 and the gaps in knowledge and the comparison

between the existing literature and this study have also been highlighted at the end

of each group.

In Chapter 3, a comprehensive day-ahead G2V and V2G scheduling framework

is proposed including EVs, CSs, and retailers to achieve an economically rewarding

operation for the ecosystem of EVs, CSs and retailers using a comprehensive optimal

charging/discharging strategy that accounts for the network constraints. To do so,

an equilibrium problem is solved using a three-layer iterative optimisation problem

for all stakeholders/agents in the ecosystem. EV routing problem is solved based on

a cost-benefit analysis rather than choosing the shortest route. The proposed method

can be implemented as a cloud scheduling system that is operated by a non-profit

entity, e.g., distribution system operators or distribution network service providers,

whose role is to collect required information from all agents, perform the day-ahead

scheduling, and ultimately communicate the results to relevant stakeholders. To

evaluate the effectiveness of the proposed framework, a simulation study, including

three retailers, one aggregator, nine CSs and 600 EVs, is designed based on real data

from San Francisco, the USA. The simulation results show that the total operating

cost of electric vehicles including battery degradation cost decreased by 17.6%, and

the total revenue of charging stations and retailers increased by 21.1% and 22.6%,

respectively, in comparison with a base case strategy.
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An iterative process is proposed in Chapter 4 to solve the non-cooperative Stack-

elberg game by determining the optimal routes and CS for each EV, optimal opera-

tion of each CS and retailers, and optimal V2G and G2V prices. To facilitate V2G

services and to avoid congestion at CSs, two types of trips, i.e., mandatory and op-

tional trips, are defined and formulated. Also, EV drivers’ preferences are added to

model economically-irrational decisions that may be taken by the EV drivers. This

is based on the fact that EV drivers (similar to other consumers and products) re-

spond differently to economic incentives. The EV drivers’ preferences are modelled as

cost/revenue threshold and extra driving distance. Driver’s cost/revenue threshold

represents the drivers’ expectation regarding minimum cost reduction during G2V

and minimum revenue increase during V2G operation. Additionally, using driver’s

route preference as a constraint, a CS other than the nearest CS would be selected

only when the extra required driving distance is equal to or less than what is speci-

fied by the driver in driver’s route preference. Therefore, driver’s route preference is

a constraint in the economic benefit problem, which is aiming to respect driver’s wel-

fare in the decision-making process. Extensive simulation studies are carried out for

two different e-mobility ecosystems of multiple retailers and CSs as well as numerous

EVs. The simulation results show that the optional trips not only reduces the cost

of EVs and PV curtailment by 8.8-24.2% and 26.4- 28.5% on average, respectively, in

different scenarios, but also mitigates congestion during specific hours while respect-

ing EV drivers’ preferences. Moreover, the simulation results revealed the significant

impact of EV drivers preferences on the optimal solutions and cost/revenue of the

stakeholders.

In Chapter 5, the proposed framework accounts for the stochastic nature of all

stakeholders’ operation and their mutual interactions. In this chapter, a three-layer

joint DRCC model is developed to plan G2V and V2G operation in day-ahead for mo-

bility ecosystems. The proposed stochastic model does not rely on a specific probabil-

ity distribution for stochastic parameters. To solve the problem, an iterative process

is proposed using joint DRCC formulation. To achieve computational tractability, the

exact reformulation is implemented for double-sided and single-sided CCs. Further-

more, the impact of temporal correlation of uncertain PV generation on CSs operation
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is considered. The simulation results shows the necessity and applicability of such a

scheduling method for the e-mobility ecosystem in an uncertain environment.

The application of the proposed framework is to develop a mobile app for the EV

drivers. An EV driver with access to the mobile app can find a CS easily such that

the collective social welfare of all agents in the e-mobility ecosystem is maximised.

6.1 Future Works

Even though the goals mentioned in Chapter 1 have been accomplished, the fol-

lowing future work is recommended in order to improve and extend the work reported

in this thesis.

• It is recommended to study cost sharing in a cooperative game to determine a

proper and stable coalition in which players stay together and cooperate;

• It is recommended to explore different reformulation of DRCC in each layer

that is less conservative at lower confidence levels;

• It is recommended to make the scheduling problem more flexible for the EV

drivers, a new formulation will be developed to automatically select the best

time for optional trips within a pre-defined range of time by the EV drivers.
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Appendix

Reformulation of Three-Layer Joint Distributionally Robust

Chance-Constrained Framework for Optimal Day-Ahead Scheduling of

E-mobility Ecosystem

In this appendix, the reformulation of the single- and double-sides CCs of EV,

CS, and retailer layers are presented based on the two Theorems developed in [1].

Nomenclature

Indices

e,i,r Index for EVs, CSs, and retailers, respectively

t Index for hours

Parameters

εEV
th /εCS

th /εreth Theoretical risk parameter in each layer

ηCH
i Efficiency of chargers at CS i (p.u.)

γe Power consumed by EV e per km (kWh/km)

P Probability distribution

Ge EV e’s driver preference for minimum revenue increase

during V2G operation ($)

Ot,e,i Shortest driving distance between origin of EV e and CS

i at time t (km)

α/α Profit margin of the retailer

E
PV

i Capacity of PV system at CS i (kW)

Ee Capacity of EV e’s battery (kWh)

rPV
i /rPV

i Maximum/Minimum ramping rates of PV generation

SOCe/SOCe Maximum/Minimum SOC of EV e (p.u.)

Σe Covariance of initial SOC of EV e
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ΣPV
t,i Covariance of PV generation in CS i at time t

τt Covariance of wholesale electricity market prices at time

t

ϑe EV e’s driver preference for minimum cost reduction

during G2V operation ($)

Ôt,e,i Shortest driving distance between origin of EV e and

the nearest CS at t (km)

ρ̃WM
t Mean wholesale electricity market price at time t

($/kWh)

ζt,e Shortest driving route to reach the destination directly

from origin of EV e at time t (km)

SOCend
e SOC of EV e at the end of the day (p.u.)

Sets

B,E,R,S,T,F1, F2 Sets of Nodes, EVs, retailers, CSs, hours, first optional

trip time, and second optional trip time, respectively

Variables

Γt,e,i/Πt,e,i Binary variable for CS i for charging/discharging EV e

at time t

κt,r A random variable with zero mean and covariance ma-

trix τt for retailer r at time t

ωe A random variable with zero mean and covariance ma-

trix Σe for EV e

ρ+t,i/ρ−t,i Electricity price offered by CS i at time t for charg-

ing/discharging EVs ($/kWh)

At,e,i Sum of charging and discharging power of EV e in CS i

Ât,e,i Sum of charging and discharging power of EV e in the

nearest CS at time t

ρ̂+t,i/ρ̂−t,i Electricity price offered by the closest CS to EVs at time

t in G2V/V2G mode ($/kWh)

Ỹ PV
t,i Mean local PV generation of CS i at time t (kW)

ξt,i A A random variable with zero mean and covariance

matrix ΣPV
t,i for CS i at time t
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PWM
t,r /QWM

t,r Active/Reactive power purchased/provided from/by the

wholesale market by retailer r at time t (kW/kVar)

qt,e,i/It,e,i Additional variables for double-sided CC reformulation

in EV layer

SOCt,e SOC of EV e at time t (p.u.)

X+
t,e,i/X−

t,e,i Charging/Discharging power of EV e at CS i at time t

(kW)

xt,r/lt,r Additional variables for double-sided CC reformulation

in retailer layer

Y +
t,i/Y −

t,i Charging/Discharging power of ESS of CS i at time t

(kW)

Y GU
t,i Power produced by CGU system of CS i at time t (kW)

zt,i/µt,i/Ut,i/Vt,i Additional variables for double-sided CCs reformulation

in CS layer

ρre
t,r Electricity price sold to CSs by retailer r at time t

($/kWh)
A. Reformulation of single-sided and double-sided chance

constraints
As mentioned before, the aim is to reformulate the single-sided and double-sided

CCs of EV, CS, and retailer layer based on the two Theorems developed in [1].

Theorem 1. Suppose the ambiguity set defined as Ξ in Eq. (5.2) in colorred-

Chapter 5, then the equivalents of single-sided chance constraints in Eqs. (1a) and

(1b) are as Eqs. (2a) and (2b), respectively.

inf
P∈Ξ

P[a(x)TΩ + b(x) ≤ L] ≥ 1 − ε, (1a)

inf
P∈Ξ

P[a(x)TΩ + b(x) ≥ −L] ≥ 1 − ε, (1b)

b(x) +

√
1 − ε

ε

√
a(x)TΣa(x) ≤ L, (2a)

− b(x) +

√
1 − ε

ε

√
a(x)TΣa(x) ≤ L, (2b)
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where a(x) and b(x) are affine mappings, and Ω is a random variable with zero mean

and covariance matrix, Σ.

Theorem 2. Suppose the ambiguity set defined as Ξ in Eq. (5.2) in Chapter 5,

then the equivalent of a double-sided chance constraint in Eq. (3) can be reformulated

as in Eqs. (4) with two additional variables (y and π).

inf
P∈Ξ

P[∣a(x)TΩ + b(x)∣ ≤ L] ≥ 1 − ε. (3)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

y2 + a(x)TΣa(x) ≤ ε(L − π)2,

∣b(x)∣ ≤ y + π,

L ≥ π ≥ 0, y ≥ 0

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

. (4)

A.1: Reformulation of Chance Constraints of EV layer
According to reformulation of single-sided and double-sided chance constraints

explained in Eqs. (1a)-(4), the reformulation of the constraints in Eq. (5.3d) in

Chapter 5 will be as of Eqs. (5a), (5b), and (5c).

For example, in Eq. (5.3d):

a(x) = 1T ,

b(x) = S̃OCe+At,e,i−
t

∑
t=1

ζt,e.γe

Ee
.(1 − Γt,e,i −Πt,e,i)−

Ot,e,i.γe

Ee
.(Γt,e,i+Πt,e,i)−

SOCe+SOCe

2 ,

L =
SOCe−SOCe

2 .

In Eq. (5.3e):

a(x) = 1T ,

b(x) = S̃OCe + AT,e,i −
T

∑
t=1

ζt,e⋅γe
Ee

.(1 − Γt,e,i −Πt,e,i) −
OT,e,i⋅γe

Ee
⋅ (ΓT,e,i + ΠT,e,i) −

SOCend
e +SOCe

2 ,

L =
SOCe−SOCend

e

2

In Eq. (5.3j):

a(x) = 1T ⋅Ee ⋅ Γt,e,i ⋅ ρ̂+t,i,

b(x) = ρ+t,i.X
+
t,e,i − ϑe ⋅ Γt,e,i − ρ̂

+
t,i ⋅Ee ⋅ Γt,e,i ⋅ (S̃OCe + Ât,e,i −

Ôt,e,i.γe

Ee
) + ρ̂+t,i ⋅Ee ⋅

(1 − Γt,e,i) ⋅
t

∑
t=1

ζt,e⋅γe
Ee

L = 0

In Eq. (5.3k):

a(x) = 1T .Ee.Πt,e,i.ρ̂−t,i,
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b(x) = ρ−t,i.X
−
t,e,i − Ge.Πt,e,i − ρ̂−t,i.Ee.Πt,e,i.(S̃OCe − Ât,e,i +

Ôt,e,i.γe

Ee
) + ρ̂−t,i.Ee.(1 −

Πt,e,i).
t

∑
t=1

ζt,e.γe

Ee
,

L = 0

In addition, Eq. (5.3e) in Chapter 5 is converted to Eqs. (5d), (5e), and (5f), as

well as Eq. (5.3j) and (5.3k) is converted to (5g), and (5h), respectively.

q2
t,e,i + 1TΣe1 ≤ ε

EV
th (

SOCe − SOCe

2
− It,e,i)

2

, (5a)

∣S̃OCe +At,e,i −
t

∑
t=1

ζt,e.γe

Ee

⋅ (1 − Γt,e,i −Πt,e,i)

−
Ot,e,i ⋅ γe

Ee

.(Γt,e,i +Πt,e,i) −
SOCe + SOCe

2
∣

≤ qt,e,i + It,e,i,

(5b)

SOCe − SOCe

2
≥ It,e,i ≥ 0, qt,e,i ≥ 0, (5c)

q2
T,e,i + 1TΣe1 ≤ ε

EV
th (

SOCe − SOC
end
e

2
− IT,e,i)

2

, (5d)

∣S̃OCe +AT,e,i −
T

∑
t=1

ζt,e ⋅ γe

Ee

.(1 − Γt,e,i −Πt,e,i)

−
OT,e,i ⋅ γe

Ee

⋅ (ΓT,e,i +ΠT,e,i) −
SOCend

e + SOCe

2
∣

≤ qT,e,i + IT,e,i,

(5e)

SOCe − SOC
end
e

2
≥ IT,e,i ≥ 0, qT,e,i ≥ 0, (5f)

ρ+t,i.X
+
t,e,i − ϑe ⋅ Γt,e,i − ρ̂

+
t,i ⋅Ee ⋅ Γt,e,i ⋅ (S̃OCe + Ât,e,i

−
Ôt,e,i.γe

Ee

) + ρ̂+t,i ⋅Ee ⋅ (1 − Γt,e,i) ⋅
t

∑
t=1

ζt,e ⋅ γe

Ee

+

¿
Á
ÁÀ1 − εEVth

εEVth
⋅Σe ⋅ 1T ⋅Ee ⋅ Γt,e,i ⋅ ρ̂

+
t,i ≤ 0,

, (5g)



Appendix Page 167 of 170

−ρ−t,i.X
−
t,e,i + Ge.Πt,e,i + ρ̂

−
t,i.Ee.Πt,e,i.(S̃OCe + Ât,e,i

−
Ôt,e,i.γe

Ee

) − ρ̂−t,i.Ee.(1 −Πt,e,i).
t

∑
t=1

ζt,e.γe

Ee

+

¿
Á
ÁÀ1 − εEVth

εEVth
.Σe.1T .Ee.Πt,e,i.ρ̂

−
t,i ≤ 0.

(5h)

A.2: Reformulation of chance constraints of CS layer

Using Theorem 1, Eq. (5.4b) in Chapter 5 is reformulated as Eq. (6a). Also, Eqs.

(5.4d) and (5.4e) in Chapter 5 are converted to Eqs. (6b)-(6d) and Eqs. (6e)-(6g),

respectively, based on Theorem 2.

In Eq. (5.4b):

a(x) = 1T ,

b(x) = Ỹ PV
t,i + Y GU

t,i + Y re
t,i,r + Y

−
t,i +∑e∈EX

−
t,e,i −

∑e∈EX
−

t,e,i

ηCH
i

−
∑e∈EX

+

t,e,i

ηCH
i

− Y +
t,i,

L = ε

In Eq. (5.4d):

a(x) = 1T ,

b(x) = Ỹ PV
t,i −

E
PV
i

2 ,

L =
E

PV
i

2

In Eq. (5.4e):

a(x) = 1T ,

b(x) = Ỹ PV
t,i − Ỹ PV

(t−1),i −
rPV
i +rPV

i

2 ,

L =
rPV
i −rPV

i

2 ,

−Ỹ PV
t,i − Y GU

t,i − Y re
t,i,r − Y

−
t,i −∑e∈EX

−
t,e,i +

∑e∈EX
−
t,e,i

ηCH
i

+
∑e∈EX

+
t,e,i

ηCH
i

+ Y +
t,i +

¿
Á
ÁÀ1 − εCSth

εCSth
.ΣPV

t,i + ≤ ε

∀t ∈ T,∀i ∈ S,∀r ∈ R,

(6a)

z2
t,i + 1

T .ΣPV
t,i .1 ≤ ε

CS
th (

E
PV

i

2
− µt,i)

2

, (6b)

∣Ỹ PV
t,i −

E
PV

i

2
∣ ≤ zt,i + µt,i, (6c)



Appendix Page 168 of 170

E
PV

i

2
≥ µt,i ≥ 0, zt,i ≥ 0, (6d)

Ut,i − 1T Σ̂t,i1 ≤ εCSth (
rPVi − rPVi

2
− Vt,i)

2

, (6e)

∣Ỹ PV
t,i − Ỹ PV

(t−1),i −
rPVi + rPVi

2
∣ ≤ Ut,i + Vt,i, (6f)

rPVi − rPVi
2

≥ Vt,i ≥ 0, Ut,i ≥ 0, (6g)

A.3: Reformulation of chance constraints of retailer layer
Based on Theorem 2, the double-sided CC in Eq. (5.7k) in Chapter 5 is reformulated

as Eqs. (7a)-(7c).

In Eq. (5.7k): a(x) = 1
ρ̃WM
t

,

b(x) =
ρret,r
ρ̃WM
t

−
αt+αt

2 ,

L =
αt−αt

2 ,

x2
t,r +

1

ρ̃WM
t

2
.τt ≤ ε

re
th(
αt − αt

2
− lt,r)

2
, (7a)

∣
ρret,r
ρ̃WM
t

−
αt + αt

2
∣ ≤ xt,r + lt,r, (7b)

0 ≤ lt,r ≤
αt − αt

2
, xt,r ≥ 0. (7c)
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