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Abstract

Cerebral Palsy (CP) is currently the most common chronic motor disability occurring in infants,

affecting an estimated 1 in every 400 babies born in the UK each year. Techniques which can

lead to an early diagnosis of CP have therefore been an active area of research, with some very

promising results using tools such as the General Movements Assessment (GMA). By using video

recordings of infant motor activity, assessors are able to classify an infant’s neurodevelopmental

status based upon specific characteristics of the observed infant movement. However, these as-

sessments are heavily dependent upon the availability of highly skilled assessors. As such, we

explore the feasibility of the automated prediction of CP using machine learning techniques to

analyse infant motion.

We examine the viability of several new pose-based features for the analysis and classification

of infant body movement from video footage. We extensively evaluate the effectiveness of the

extracted features using several proposed classification frameworks, and also reimplement the

leading methods from the literature for direct comparison using shared datasets to establish a new

state-of-the-art. We introduce the RVI-38 video dataset, which we use to further inform the design,

and establish the robustness of our proposed complementary pose-based motion features. Finally,

given the importance of explainable AI for clinical applications, we propose a new classification

framework which also incorporates a visualisation module to further aid with interpretability. Our

proposed pose-based framework segments extracted features to detect movement abnormalities

spatiotemporally, allowing us to identify and highlight body-parts exhibiting abnormal movement

characteristics, subsequently providing intuitive feedback to clinicians.

We suggest that our novel pose-based methods offer significant benefits over other approaches

in both the analysis of infant motion and explainability of the associated data. Our engineered

features, which are directly mapped to the assessment criteria in the clinical guidelines, demon-

strate state-of-the-art performance across multiple datasets; and our feature extraction methods

and associated visualisations significantly improve upon model interpretability.
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Chapter 1

Introduction

The recognition, analysis and reconstruction of complicated motion, such as human activity, has

been a popular topic of research for many years. In an early study, Johansson et al. [1] conducted

a series of experiments which assessed the ability of humans to perceive the movement patterns

of living organisms in motion. The study found that the motion of the human body could be

represented as a number of elements which, if temporally visualised in specific motion combina-

tions, allowed for the subject to successfully establish the actions being carried out. This research

subsequently contributed towards the idea that human action recognition could be undertaken by

computers, allowing for the automation of various activities traditionally requiring human input.

Since then significant research has been carried out in the field of computer-vision, specifically

relating to human action recognition [2].

The automated recognition of human activity has wide-ranging applications including visual surveil-

lance, content-based video indexing, intelligent monitoring, human-machine learning and virtual

reality [3]. This evolving technology also has the potential to have a profound impact upon human

computer interaction, subsequently affecting the way we interact with the world [4]. The idea

of automating these processes has subsequently been an area of interest for researchers in many

varied fields, due to the inherent ability of these techniques to streamline traditionally intensive

manual operations. In this thesis, we propose that technology such as this should be considered

within the neonatal healthcare domain, to aid with the early diagnosis of movement disorders, such

as Cerebral Palsy (CP).
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CHAPTER 1. INTRODUCTION

CP is a condition which primarily affects movement, posture and coordination, and describes a

group of lifelong neurological disorders usually caused by a brain injury occurring before, during

or shortly after birth. CP is one of the most common chronic motor disabilities that can occur in

infants, with an estimated 1 in every 400 babies born in the UK receiving a confirmed diagnosis

each year [5]. CP is a complex neurological condition, and the severity of the symptoms can

vary quite significantly [6]. In order to provide the best possible outcome, early diagnosis is

seen as a key area of interest as it has the potential to allow for early intervention clinical care

[7]. Early intervention clinical care is particularly beneficial as it allows for opportunities to fully

take advantage of the neuro-plasticity found in the early stages of the developing infant brain

[8]. Whilst early interventions can take a variety of forms, common challenges are found in the

prediction and subsequent diagnosis of CP [9].

The pursuit of early diagnosis of CP has subsequently been an active research area, with some

very promising results using tools such as the General Movements Assessment (GMA), the Lacey

Assessment of Preterm Infants (LAPI) and the Hand Assessment for Infants (HAI). In practice,

the ability to apply these assessments is typically dependent upon the availability of fully trained

clinicians. Not only is the training required for assessment using these tools considerable, it is

also susceptible to observer fatigue, contains a degree of personal subjectivity and is reliant upon

a suitable behavioural state of the infant [10].

We suggest that there is scope to improve the accuracy, accessibility, and availability of existing

diagnostic assessments through computer-based evaluations, to provide quantifiable evidence to

clinicians and further information relating to neurological development. We propose that, through

the use of state-of-the-art human motion analysis, computer-vision and machine learning tech-

niques, fully automated processes can be developed with suitable accuracy for clinical use. The

development of such automated systems will help to significantly reduce the time and subsequent

cost associated with current manual diagnostic practices and improve clinical outcomes for infants

at risk of CP.
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CHAPTER 1. INTRODUCTION

1.1 Key Challenges and Proposed Approaches

In the healthcare domain, there is increasing motivation to utilise technology to aid with clinical

decision making, increase predictive accuracy, and target early intervention [11]. In the case of

automated CP assessment, there is the potential not only to yield both time and cost savings,

but also the opportunity to provide a structure by which clinicians would be able to make earlier

and more confident decisions, and a framework which could allow for fully remote diagnostic

assessment. Additionally, a machine learning framework could substantiate the decision making

process, allowing for intuitive, quantitative, cost-effective, evidence-based assessment [12]. We

suggest that by improving automated assessment, such that greater numbers of infants can be

assessed using methods based around the GMA, improved outcomes through early intervention

care will be evident.

The clinical GMA is seen as the top performing individual examination for the prediction of later

CP. This was highlighted in a recent systematic review of the predictive accuracy of assessments

to assist in the diagnosis of CP by Bosanquet et al. [13]. In their comparison it was suggested that

summary estimates of sensitivity and specificity for the GMA were 98% (95% confidence interval

(CI) 74–100%) and 91% (95% CI 83–93%) respectively. This compares well with the other re-

ported methods such as: cranial ultrasound (74% (95% CI 63–83%) and 92% (95% CI 81–96%)

respectively), neurological examination (88% (95% CI 55–97%) and 87% (95% CI 57–97%) re-

spectively), and MRI (sensitivity ranging from 86 to 100% and specificity ranging from 89 to

97%). This predictive accuracy, particularly in terms of sensitivity, make the GMA an exception-

ally useful tool in the early identification of at-risk infants. This being particularly true, given that

the combined sensitivity of assessments such as the GMA and MRI is 100% [14].

By using tools such as automated GMA to help identify the need for further investigation, rather

than waiting for children to fail to meet motor developmental milestones, the benefits of early

enrichment through neuroplasticity have a greater probability of being seen. In our work, we

therefore make use of the GMA, as well as elements from the related Optimality Score, due to

the accessibility and simplicity of these tests, as well as their relevance to machine-learning based

classification, and the availability of appropriately trained and experienced clinicians to provide

ground truth data.

3



CHAPTER 1. INTRODUCTION

(a) Normal movement (FM+) (b) Abnormal movement (FM-)

Figure 1.1: Left wrist joint coordinates from two example videos. We observe that the motion
representation in the FM+ video shows constant, fluid and controlled movements, rather than the
erratic movements shown in the FM- video, aligning well with the GMA.

Several studies have proposed automated solutions to help address the challenges faced, typi-

cally making use of frameworks to automatically assess infants based upon the movement patterns

associated with the GMA. These methods have been developed over a number of years and now

generally incorporate computer-vision techniques to undertake these automated assessments, since

these approaches offer greater practicality than physical accelerometers, motion capture systems,

and marker-based systems, as discussed in greater detail in Section 2.3. However, due to the

limitations inherent in these traditional computer-vision methods, we propose the use of alternate

approaches to analyse infant motion, such as automated pose estimation [15, 16, 17, 18] and part-

based segmentation [19, 15, 20], since these methods typically represent the state-of-the-art in

human activity recognition and motion analysis.

Through the adoption of deep-learning techniques, these new methods of representing human

forms from video are typically more robust, accurate, and reliable than previous methods [21].

They are also better able to overcome the previous challenges faced by other methods from the

literature, namely, sensitivity to camera movement, object scale, image resolution, self-occlusion,

illumination variance, inconsistencies in object size, larger movements between frames, external

influences, and manual pre-processing requirements [22]. As such, in our proposed framework,

we implement pose estimation as a means of extracting motion data from video footage. Since

pose-estimation provides localised joint estimation it is also better able to deal with external influ-

ences, meaning that inconsistencies in the footage, like parent/clinician intervention will also be

disregarded, as such, there is less requirement for screening the footage prior to analysis.

4
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The localised nature of pose-based analysis can also provide important motion information based

upon individual body-part movements (refer to Figure 1.1), requiring comparatively minimal man-

ual tuning [23, 24]. Pose-based analysis also offers lower dimensionality of features, meaning that

body movement data can be represented in an abstract manner whilst retaining the most impor-

tant movement data, contributing to reduced ambiguity in the classification process and greater

interpretability.

Given the inherent advantages, our work has therefore focused upon implementing pose-based

analysis for infant movement assessment. In our work, we aim to take advantage of these im-

provements in motion analysis performance by incorporating state-of-the-art methods, such as the

OpenPose framework [17], to examine the viability of a pose-based approach for classification.

We propose multiple specifically engineered features based upon the GMA, and assess the robust-

ness of each using several machine learning classifiers.

Additionally, since pose-based data is still represented in a format that is human interpretable

and simultaneously fully anonymised, this presents an opportunity for data sharing and remote

assessment without the requirement for recognisable video data to be transferred, thus ensuring

patient confidentiality. Our proposed approach has therefore also allowed us to develop a shareable

real-world dataset consisting of labelled skeleton pose data which we have made available to the

community.

Finally, given the importance of model explainability within the healthcare domain, we incorpo-

rate body-part segmentation as a means of providing additional contextual detail throughout the

classification process. Similar to pose-estimation-based methods, body-part segmentation has also

been proposed as a means of generating comparable motion information data whilst retaining in-

terpretability. In our case the body is segmented into relevant sections which we suggest can be

used for both analysis and visualisation to further improve model interpretability. In our works we

examine the feasibility of using the CDCL segmentation method [25] for visualisation such that

we can investigate the benefit of this added interpretability for machine learning methods.
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1.2 Summary of Contributions

The contributions generated throughout this project can be summarised as follows:

• We propose a series of new pose-based features extracted from 2D video sequences, and

engineered based upon specific criteria set out in the GMA, for the analysis and classification

of infant body-part movements for the prediction of CP.

• We present the analysis of a new automated feature extraction, fusion, and classification

pipeline, for the prediction of CP based upon the GMA. We also make this framework

available to the community to further encourage research in this field.

• We propose five deep-learning-based frameworks for the classification of infant body move-

ments based upon our established pose-based features. We make the code and annotated

dataset from our deep learning work freely available as an open-source project, to further

encourage research in this area.

• We propose a new body-part-based classification and visualisation framework. Our frame-

work uses pose-based features extracted from RGB videos for the spatio-temporal detection

of Fidgety Movements (FMs), and is able to highlight pertinent infant body-parts for im-

proved clinical interpretability of machine learning models.

• We present the challenging new RVI-38 video dataset, composed of complex real-world

patient data. We make the extracted pose dataset and associated GMA labels available to

the community. Given the difficulty in acquiring data in this sensitive area, this is the first

real-world clinical dataset made available for this task.

• Finally, we provide experimental re-implementation, comparative evaluation, and discus-

sion of several prominent previous methods, using shared datasets, for unbiased assessment

and the generation of a new benchmark. To our knowledge, a comparison of the different

proposed methods has not been carried out to quantitatively evaluate the effectiveness of

each method on shared datasets.
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1.3 Thesis Structure

The remainder of this thesis is structured as follows:

In Chapter 2 we provide an extensive literature review for the task of automated CP prediction.

We discuss the background of the project and contextualise the research area by examining the

literature relating to the prevalence, diagnosis, and treatment of CP. We then discuss machine

learning methods, with a view to how these might be implemented in a CP prediction framework.

We then explore the related works and examine several methods which make use of machine

learning frameworks for the automated prediction of CP.

In Chapter 3 we provide an overview of our proposed methodology and a discussion of the tech-

niques used, we also discuss how our proposed methods and how are able to overcome several

challenges faced by the related works presented in Section 2.3.

In Chapter 4 we provide details of our study design, ethical approvals, data collection procedures,

datasets used, selected pose-estimation techniques, and data pre-processessing methods.

In Chapter 5, we provide full details of the feature engineering undertaken to inform our pro-

posed GMA-based features for CP prediction. We also discuss our re-implementation of several

prominent methods from the literature to serve as comparative baselines.

In Chapter 6 we provide details of each of our proposed frameworks. We provide information

relating to the experimental performance of the proposed features, classification frameworks, and

baselines, and how our proposed pipeline evolved throughout the the project development pro-

cess.

In Chapter 7 we discuss the importance of explainable AI in clinical applications. We examine

how we can improve interpretability in the classification pipeline, and propose a new visualisation

framework to aid with this task.

In Chapter 8 we provide a conclusion for this thesis and discuss the potential future work in this

research area.
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Chapter 2

Literature Review

In this chapter we discuss the symptoms of CP, along with the prevalence within different popu-

lations, methods of treatment, and the outlook for those affected. We then provide an overview

of machine learning methods and examine the leading proposed automated systems for the early

identification of CP. Finally we discuss the importance of interpretability in machine learning

frameworks within healthcare settings and examine some relevant techniques which have been

developed to aid with this, whilst improving upon the performance of previous computer-vision

methods.
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CHAPTER 2. LITERATURE REVIEW

2.1 Cerebral Palsy

This section introduces the clinical aspects of CP. We discuss the prevalence, outlook, relevant

developmental milestones, and the effect that CP has on the life of people diagnosed with the

disorder. We discuss the current diagnostic tools for the prediction of CP, the importance of early

intervention care, and the different methods of treatment and rehabilitation available.

Cerebral Palsy and the Associated Symptoms

CP is an umbrella term that describes a group of lifelong neurological conditions. CP primar-

ily affects mobility, muscle tone, posture, and coordination, although it can also present a range

of other complications, such as difficulties with swallowing, problems with speech-articulation,

hearing loss, vision impairment, seizures, gastro-oesophageal reflux disease, and learning disabil-

ities which can contribute towards a reduced ability to learn new skills [26]. The severity of the

symptoms of CP can vary significantly, with some individuals presenting with relatively minor

symptoms, whilst other are severely disabled and subsequently face great challenges in undertak-

ing routine daily activities [27].

Diagnostically, there are four main categories of CP: Spastic CP, where the muscles are stiff and

tight subsequently inhibiting the range of movement and reducing mobility; Dyskinetic CP, where

the muscles move involuntarily resulting in muscle spasms and uncontrolled body movements;

Ataxic CP, which results in tremors, clumsy movements, and problems with balance and coordi-

nation; and Mixed CP which is used to describe someone exhibiting multiple different categories.

CP can also be further sub-categorised into hemiplegia, which affects one side of the body; diple-

gia, in which two limbs are affected; monoplegia, which affects one limb; and quadriplegia, where

all four limbs, and often the whole body, are affected [28].

CP is usually attributed to non-progressive damage to the brain in early infancy [26, 29]. Whilst

growing in the womb, the developing infant brain can be damaged by incidents such as periven-

tricular leukomalacia; infections caught by the mother during pregnancy, such as cytomegalovirus,

rubella, chickenpox, or toxoplasmosis; perinatal stroke; or a direct injury the unborn baby’s head.

Additionally, CP can be caused by damage to the brain shortly after birth through asphyxiation; in-

fections of the brain, such as meningitis; head injuries; or very low blood sugar levels [30].
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CP is one of the most prevalent physical disabilities found in children, with around 1,800 new cases

diagnosed every year [27]. A recent study [31], supported this figure by statistically reporting that

there are 2.11 diagnoses of CP per 1000 live births, however their research also suggests that there

is a significant correlation between an increased prevalence of CP and infants born prematurely.

This observation was supported in another study [32], which reported diagnosis rates in the order

of 32.4 diagnoses per 1000 infants born very preterm (28-32 weeks gestation), and 70.6 diagnoses

per 1000 infants born extremely preterm (<28 weeks gestation).

Increased risk of CP is also associated with other factors, such as, babies born with low birth-

weight, babies being part of a multiple birth, or the mother smoking, drinking alcohol or taking

drugs during pregnancy [30]. It is also suggested that whilst the continual development and en-

hancement of neonatal care has provided a significant decline in infant mortality rates, this has

also contributed towards an increase in the incidence and associated severity of cerebral palsy

[33]. An indication of this is provided through the figures relating to infant survival rates and the

associated rate of severe disability. In the UK, one-in-ten of those surviving at 26 weeks gestation

(survival rate 80%) will have a severe disability, with this figure increasing to one-in-four of those

surviving at 23 weeks gestation (survival rate 40%), and rising again to one-in-three of those sur-

viving at 22 weeks gestation (survival rate 30%) [34, 35]. As such, multidisciplinary research is

ongoing into methods which can provide an early diagnosis and subsequently, lead to enhanced

early intervention care.

Early Intervention

In order to provide opportunities for the best possible outcome for an infant’s development, early

diagnosis of CP is considered essential. This is largely because an early diagnosis can lead to early

intervention care which is particularly important for those with emerging and diagnosed CP [36].

Early interventions look to optimise the neuroplasticity of the developing infant brain, thereby

inhibiting the impact of impairment. This subsequently increases the infant’s short and long term

functional ability by minimising the potential development of associative conditions [37].

Additionally, early diagnosis offers an improved clinical structure for treatment [37]. It also pro-

vides a more efficient deployment of the associated social, educational and parental support re-

sources, which often rely upon a diagnosis [38]. However, early diagnosis can be difficult and
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time consuming, with a confirmed diagnosis rarely made before 18 months of age [9]. This dif-

ficulty in providing an early diagnosis is problematic, as the opportunity to capitalise upon the

neuroplasticity of the infant brain becomes progressively more limited the later a diagnosis is

made [39]. Clinicians and researchers are therefore pursuing methods whereby the conditions

causing movement difficulties can be accurately and efficiently diagnosed earlier [10].

Typical signs that an infant may have some form of cerebral palsy include:

• delays in reaching standard developmental milestones;

• hypotonia, where the infant muscle tone can make the infant appear stiff or floppy;

• muscular weakness in the arms or legs;

• jerky or clumsy movements;

• muscle spasms;

• walking on tiptoes;

• tremulous hand movements.

However, many of these signs can be difficult to determine at an early stage in an infant’s devel-

opment, leading to a desire for the development of targeted assessments [30].

Physical examinations of motor control and coordination, such as the General Movements As-

sessment (GMA) [40], the Lacey Assessment of Preterm Infants (LAPI) [41], the Hammersmith

Neurological Examinations [42], the Hand Assessment for Infants (HAI) [43], the Bayley In-

fant Neurodevelopmental Screener (BINS) [44], and the Segmental Assessment of Trunk Control

(SATCo) [45] have subsequently been developed to identify the emerging signs of CP.

Additionally, neurological imaging techniques, such as Magnetic Resonance Imaging (MRI),

Computerised Tomography (CT), Electroencephalogram (EEG) and Cranial Ultrasound, are em-

ployed to look for lesions or abnormalities in the brain and to monitor brain activity, as a means

of providing a confirmed diagnosis of CP [30].
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2.1.1 Physical Examinations

The means of providing reliable early diagnosis of CP has been investigated for a number of years,

with several physical examinations producing promising results in identifying the emerging signs

of CP. Physical examinations typically evaluate muscle tone, interaction, and coordination, as well

as the quality, complexity and fluidity of an infant’s spontaneous movements at specific windows

in their development. Here, we discuss serveral of the most prominent physical examinations

currently used as part of both routine clinical care, and neuro-developmental research.

General Movements Assessment

Prechtl’s General Movements Assessment (GMA) [46], is a non-invasive and non-intrusive phys-

ical examination, developed for the identification of infants exhibiting signs of the neurological

anomalies associated with CP. It has a high predictive power for the neuro-developmental out-

come of preterm and term infants, subsequently enabling the early detection of infants who are at

increased risk of CP, neurological deficits, autism spectrum disorders, or impairments to cognitive

function [47].

The assessment is based upon the gestalt visual perception of infant movement patterns, known

as General Movements (GMs). GMs are spontaneous, with a complex repertoire, fluidity between

transitions, and a controlled quality to the movements. GMs encompass the whole body, mani-

festing in a diverse range of arm, leg, neck, and trunk movements with specific spatio-temporal

motion sequences, which vary in intensity over time [48]. Rotations and frequent minor directional

deviations of motion make GMs appear intricate, smooth and elegant. GMs can be recognised in a

developing infant from early fetal life through to approximately 4 to 5 months post term, at which

point infants start to exhibit intentional, anti-gravity movements [49].

Whilst GMs are present throughout this early period of development, they can be further sub-

categorised based upon the developmental age of the infant. From term age until approximately

8 weeks post-term GMs assume the form of ‘Writhing Movements’ (WMs), in which abnormal

movements are further classified as as poor-repertoire, cramped-synchronized or chaotic. As the

infant ages, WMs begin to dissipate and are replaced by movements which are more fidgety in

nature. These ’Fidgety Movements’ (FMs) are observable from around 8 weeks to 20 weeks post-

term and typically form the basis of the GMA [39].
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In a typically developing infant, FMs wax and wane in intensity, speed, frequency, amplitude, and

range of motion. There should be notable fluctuations to the rotation, orientation, and displacement

around the limb axes [50]. FMs should also have sufficient duration to be observed properly, and

have a consistency to their appearance [40]. Conversely, abnormal GMs are identified by the

absence of FMs, with a lack of duration, variability, and complexity throughout the movement

sequence [51]. Based upon these observations, Prechtl’s ’Method on the Qualitative Assessment

of General Movements in Preterm, Term and Young Infants’ [52] formed the foundation of the

GMA by exploring the specific composition of infant GMs in detail. Prechtl suggests that, in the

case of infants with an impaired nervous system, GMs lose their complex and variable character,

becoming less fluid and smooth. FMs are seen as a reliable indicator of brain function, and as such,

the presence of abnormal GM patterns is seen as a strong predictor that the infant will receive a

confirmed diagnosis of CP in later life [52], consequently allowing for abnormal FM patterns to

be identified and subsequently classified [48].

The GMA is carried out by analysing video recordings, ideally captured between 12 and 14 weeks

post-term. The video is filmed from above, with the baby lying on their back in a supine position.

In the videos, the baby should be lightly dressed, not interacting with any objects such as a dummy

or toys, and in a calm state. The baby’s spontaneous movements are filmed for 3 to 5 minutes,

ensuring that their hands and feet are fully in shot for the full duration. The videos are then

examined by trained assessors, who aim to identify the abnormal motion patterns associated with

neurological impairment [53].

The GMA has evolved over a number of years and has recently been identified as a leading

method of predicting later CP, reporting a sensitivity of 98% and a specificity of 94% [54]. It

has also proven highly reliable and transferable, with inter-scorer reliability values of 89-93%

[55]. Indeed, it has been reported that the GMA outperforms other methods, such as cranial ultra-

sound and neurological examination, by producing more consistent and reliable individual results

[13]. This places the GMA at the forefront of early detection of neuro-developmental impairment,

providing evidence to allow for early intervention care and a subsequent reduction in associated

sequelae[47].
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Lacey Assessment of Preterm Infants

The Lacey Assessment of Preterm Infants (LAPI) [56] is a tool which was developed for clinical

use as part of a longitudinal assessment to monitor an infant’s development over an extended period

of time, and to identify features which may indicate an increased risk of neuro-developmental

abnormalities. Changes to clinical practice have lead to earlier discharges, and as such prolonged,

repeated assessment becomes impractical, as such the LAPI has been evaluated for its diagnostic

capacity at predicting normal motor outcome or CP prior to term age [41].

Similar to the GMA, an evaluation of the infant’s motion characteristics are carried out. Move-

ments and responses are grouped in supine, prone, supported sitting, and stance reaction. The

assessment requires the completion of specific documentation which evaluates muscle tone (sym-

metry and caudocephalic maturation of limb) and spontaneous activity (varied movements vs re-

peated synergistic patterns). This documentation is then used to generate an overall classification

of ‘normal, ’unusual’ or abnormal’ based upon a scoring system set out in the documentation

checklist.

Research suggests that the LAPI is capable of providing good predictive accuracy (86% sensitiv-

ity, 83% specificity, and 96% negative predictive value for subsequent cerebral palsy) for infants

assessed > 33 weeks post-mentrual age [41], but is less accurate when applied to infants < 33

weeks post-menstrual age. However, although it is widely used in clinical practice and validation

data is limited to the original study [57], the LAPI is currently the only clinical assessment tool

designed to assess preterm infants prior to term corrected age [6].

Hammersmith Neurological Examinations

The Hammersmith Neurological Examinations consist of 2 physical examinations used to identify

signs of neuro-developmental abnormalities; The Hammersmith Neonatal Neurological Exami-

nation (HNNE) and The Hammersmith Infant Neurological Examination (HINE). Due to their

accessibility and inter-observer reliability, both the HNNE and the HINE are used throughout the

world in clinic and for research.

The HNNE, is an exam which can be used up to the age of 3 months post-term to record neurolog-

ical findings and to define normality and outcome predictions, but is not currently used for the de-
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Figure 2.1: An example of the the Hammersmith Neonatal Neurological Examination [42]

tection and prediction of later CP. It encompasses 34 items assessing tone, motor patterns, observa-

tion of spontaneous movements, reflexes, visual and auditory attention and behaviour [42].

The HINE is based upon the same principles as the neonatal exam, and consists of 26 items that

assess different aspects of neurological function: cranial nerve function, movements, reflexes and

protective reactions and behaviour, as well as some age-dependent items that reflect the devel-

opment of gross and fine motor function [58]. The HINE is typically used in infants between

the ages of 3 and 24 months post-term to identify children at risk of CP, but can also provide

information on the associated type and severity of the motor sequelae. Additionally, the exam

incorporates supplementary aspects related to neurological function, such as cerebral visual im-

pairment or feeding abnormalities, allowing for an improved definition of the severity of CP, not

limited to motor impairment.

The HINE has also seen the development of an ’optimality score’ document [58], which is based

upon the frequency distribution of scores found in a normal, low-risk, typically developing popula-

tion of infants. By scoring each of the items separately from 0 to 3 and adding each score together

a global metric is calculated that represents the degree of optimal movements demonstrated. In

doing so a series of thresholds have been established that indicate the infant’s risk of developing

difficulties with neurological function and the associated severity. The scoring criteria suggest
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that the lower the score the more severe the impairment. The optimality score sheet is useful for

identifying specific movement patterns and characteristics associated with later CP, however, it is

stated that the HINE which it is based upon is generally only able to predict later CP using scores

from assessments after 5-6 months of age [59].

Hand Assessment for Infants

In the case of infants with unilateral CP, there is evidence to suggest that a different focus is

required than for those with bilateral CP [37, 55]. In these infants, asymmetric hand-use is com-

monly one of the first distinguishable signs of CP, as such the Hand Assessment for Infants (HAI)

was developed to detect and quantify the hand function of developing infants from 3-12 months of

age. The HAI was designed as a means of (1) identifying early clinical signs of CP, (2) predicting

outcome, (3) following development, and (4) evaluating early intervention approaches [43]. The

HAI measures the degree and quality of goal directed actions of both hands and quantifies their

usage, in doing so clinicians are able to evaluate bimanual hand use, or generate a comparison of

each hand separately. The test produces a separate score for each hand, subsequently allowing for

a quantification of possible asymmetry which is expressed as an asymmetry index representing

general upper limb ability.

A preliminary version of the HAI was created which uses 31 test items to generate an overall

asymmetry score. These 31 test items consist of 13x2 unimanual test items, where each hand

is given a separate score, and 5 bimanual test items, where the combined use of both hands is

scored. Each item is rated between 0 and 2 inclusively, with higher numbers representing more

advanced ability. As such, quantifiable differences between the hands are established allowing

for the asymmetry index to be reported as percentage, with a greater value indicating a larger

asymmetry. Finally, the sum of all items is also used to produce a ‘both hands sum score’. The

HAI has been demonstrated to be a promising tool which can detect and measure asymmetries,

and allow for quantification of development over time for the evaluation of early intervention on

hand function [60].
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Bayley Infant Neurodevelopmental Screener

The Bayley Infant Neurodevelopmental Screener (BINS) is a screening tool developed explicitly

for use in the high-risk infant population. The BINS is carried out by trained assessors who observe

specific tasks based on the Bayley Scales of Infant Development [61]. The BINS tool addresses

several components associated with developmental ability to evaluate neuro-developmental risk,

namely: neurological functions/intactness (posture, muscle tone, movement, asymmetries, abnor-

mal indicators); expressive functions (gross motor, fine motor, oral motor/verbal); receptive func-

tions (visual, auditory, verbal); and cognitive processes (object permanence, goal-directedness,

problem solving) [24].

The BINS consists of 11-13 assessment items for different age levels, with each item being scored

as ‘optimal performance’ or ‘non-optimal performance’ using a pre-defined set of rules. The

sum of the non-optimal items in a category provides a classification, with associated thresholds

of low-risk, moderate-risk, or high-risk relating to the likelihood of developmental delay [44].

Additionally, the inclusion of tone and quality of movement items, such as ratings of active and

passive tone in the upper and lower extremities, and scoring of quality of movement of the upper

and lower extremities, differentiates this screening test from other developmental screening tests

[62].

In a validation study, [63] reported that the BINS shows a moderate predictive validity (67%–76%)

at identifying lower functioning infants, and that it is a satisfactory screening tool for low birth

weight infants, but only when used alongside other known biological and social risk factors.

Segmental Assessment of Trunk Control

Throughout the typical development of an infant, the ability to control sitting balance emerges be-

tween the ages of 2 to 9 months. This development is characterised firstly by the ability to control

head movements, followed by progressive improvements in trunk control. However, in children

with neuro-developmental conditions sitting balance is delayed and, in cases where disability is

more severe, sitting balance may be affected throughout their lives. As such, it is suggested that

an accurate evaluation of a developing child’s head and trunk control is essential in understanding

the controlled sitting ability for children with CP [45].
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In order to comprehensively assess the seated postural control of children the Segmental Assess-

ment of Trunk Control (SATCo) was developed. Based upon the biomechanics of control of verti-

cal trunk posture, the assessment of trunk control is considered by evaluating the many sub-units

that must be coordinated to achieve control when sitting. The assessment includes tests of static,

active and reactive control, through progressively changing the ’level’ of trunk support, from a

high level of support at a shoulder girdle to assess cervical (head) control, through support at the

axillae (upper thoracic control), inferior scapula (mid thoracic control), lower ribs (lower thoracic

control), below ribs (upper lumbar control), pelvis (lower lumbar control), and finally, no support,

in order to measure full trunk control. For each trunk segment level static, active and reactive

control are scored as present, absent or not tested. Static control is scored as present if the child

is able to maintain a neutral trunk posture above the level of hand support; active control is scored

as present if the child can maintain a neutral posture during head movement; reactive control is

present if the trunk above the support remains stable during external influence i.e. a small nudge.

As the degree of support is reduced by lowering the segment levels the number of unsupported

free joints increases, subsequently increasing the amount of voluntary control required.

This systematic assessment enables an in-depth analysis of a child’s trunk control abilities and,

subsequently, allows for early intervention treatments of deficiencies of trunk control [64]. The

validity of the SATCo has been evaluated, with reports suggesting reliability of >.80, and whilst

it has been shown to be a reliable and valid clinical tool, it is geared more towards older children

and those undertaking rehabilitative care rather than infants, and as such is not generally suitable

for the earliest diagnosis [65].

2.1.2 Neurological Imaging Tests

In addition to physical examinations, neurological imaging tests may be used in the case of infants

considered at high risk of developing CP. Imaging tests are typically used to help assess conditions

that occur alongside CP, such as seizures, in order to determine their cause. In practice, imaging

tests are often used in conjunction with physical tests, to conclusively diagnose CP and to rule out

other conditions . The imaging technologies commonly used as part of clinical care to detect and

interpret the severity of brain injury consist of Magnetic Resonance Imaging (MRI), Computerised

Tomography (CT), Cranial Ultrasound, and Electroencephalogram (EEG) [30].
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Figure 2.2: Example MRI patterns: (A & B) spastic CP, (C) dyskinetic CP, (D) ataxic CP [66]

Magnetic Resonance Imaging

MRI is a type of brain scan that makes use of magnetic fields and radio waves to produce a detailed

three-dimensional image of the brain. In the case of CP diagnosis, these scans are typically used

to check for neurological abnormalities in children who may already be be exhibiting symptoms

correlated with CP, and can help to establish the associated causes [67]. Scans usually take ap-

proximately 1 hour to complete, and require the infant to be sedated throughout the procedure, as

it is necessary for them to remain as still as possible throughout the scan. The MRI scanner is a

large and expensive piece of equipment, requiring specialist radiographers to carry out the imaging

investigations [30], as such it is generally only used on those at high risk of CP, or those awaiting

a confirmed diagnosis, and is therefore not routinely used as a screening tool.

Computerised Tomography

A CT scan creates detailed images of inside the body by using a series of x-ray pictures. In this

context the CT scan takes cross-sectional images of the brain to provide a means of detecting

and diagnosing CP or eliminating other conditions which may present similar symptoms. The

imagery generated allows clinicians to identify abnormalities in the brain such as bleeding, skull

fractures, lesions or other anomalies that may have led to the development of CP. The scan is

painless and typically takes around 20 minutes, however as with the MRI scan the infant must

remain still throughout, and as such a mild sedative is administered. The scan is again carried

out by trained radiographers using specialist equipment, however in this case ionizing radiation is

used when performing the tests, which studies suggest may have a negative impact on developing

brains [68]. As such, CT scans are also not used for screening as the risks associated with this

procedure outweigh the potential benefits.
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Cranial Ultrasound

Cranial ultrasounds are carried out using a small handheld device which emits high frequency

sound waves, which can be used to generate images of an infant’s brain [30]. Cranial ultrasounds

are able to show bleeding in the brain, or subtle changes in white matter, which can subsequently

lead to a diagnosis of CP. Whilst the images generated aren’t as detailed as those produce by MRI

or CT, the system is widely used due to its portability and ease of use, and unlike other methods

there is no negative impact upon patients, such as exposure to radiation [69].

Electroencephalogram

An EEG can be used to help diagnose and monitor a number of conditions affecting the brain, and

may help to identify the cause of some symptoms commonly associated with CP, such as epilepsy.

During an EEG, small pads which can detect the brain’s electrical activity are placed upon the

scalp. This electrical activity is then assessed to look for abnormal changes in the brain waves

which are synonymous with CP symptoms [70]. However, this test is typically used on those at

high risk or already suspected of having a brain injury, it is not useful as a screening tool and is

typically used to detect epilepsy which, whilst common, is still only present in 30–40% of all cases

of CP [71].

2.1.3 Treatment and Rehabilitation

Once a confirmed diagnosis has been made, typically through a combination of physical and neu-

rological examinations [7], a treatment plan can be established by the associated healthcare team.

Given that there is no cure for CP, the treatment plan primarily focuses upon helping to ensure that

the patient is able to grow to be as active, independent, and functional as possible; subsequently

improving the quality of life of both the child and their family. By receiving an early diagnosis,

early intervention care can be implemented which looks to optimise motor, cognition, and com-

munication skills, through a multi-disciplinary approach [37, 72]. These interventions typically

attempt to manage weakness, spasticity, cognitive dysfunction, nutritional issues, and seizures

through the application of specific rehabilitation strategies and the application of evidence-based

methods. Research suggests that brain plasticity is integral to the successful treatment of CP, and

as such, studies examining rehabilitation therapies and functional recovery techniques have been
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developed with the aim of capitalising upon this neuroplasticity [8].

For children and infants, treatment primarily aims to increase mobility and promote physical de-

velopment, so that milestones can be met, such as sitting, crawling and walking. The associated

treatments are started as early as possible and usually continue on a regular basis [73].

For motor and cognitive skills, rehabilitation through physical occupational therapy, and physio-

therapy interventions are typically carried out. These interventions use child-initiated movement,

task-specific practice, and environmental adaptations to stimulate independent task performance.

Additionally, interventions are also carried out to try to prevent secondary impairments and to min-

imise associated complications [37]. These physical rehabilitative techniques are supplemented by

pharmacological therapy to help with ongoing pain and procedural pain, as well as muscle stiff-

ness, swallowing, sleeping difficulties, constipation, drooling, and epilepsy [74].

In some cases surgery is also required to aid with movement difficulties or other CP related issues

[30]. Additionally, technological advances such as virtual reality, integrated circuits, wireless com-

munications, physiological sensing, and electromyogram-initiated devices, have been proposed to

promote neurological and physical rehabilitation in patients with CP [8].

Studies suggest that these treatment plans should to be established as early as possible and con-

tinually reassessed based upon the needs of the individual, as they may require different care

and support as they grow older. Specialist knowledge of the cortico-spinal system and the asso-

ciated neuroplasticity development throughout life is essential for the creation of stage-specific

rehabilitation strategies. Combined with early diagnosis, evidence-based therapeutics are key to

optimising the early stages of the associated treatment plans, and as such can significantly lessen

the severity of afflictions associated with CP [8].
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Figure 2.3: Example algorithm for the early diagnosis of CP and an initial treatment plan [37]

2.1.4 Summary

CP is a complex condition with many associative sequelae and as such, management, treatment

and rehabilitation are of the utmost importance. We have discussed the value of early diagnosis as

a means of providing early intervention clinical care, and the benefits associated with this.

We have examined several prominent methods for diagnosis using both physical examination and
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neurological imaging. It is clear that these diagnostic tools have the capacity for accurate diagno-

sis, typically through a combination of examinations [7]. However, the exams are generally only

carried out on those considered high risk, largely due to the associated logistical cost of using these

tools as a method of screening for abnormalities. It is conceivable that, given the accuracy, sim-

plicity and accessibility of many of the physical examinations, a screening tool could be utilised

to identify all those at risk of developing CP at an earlier stage, allowing for further testing to be

undertaken and a confirmed diagnosis reached sooner.

However, whilst physical examinations like the GMA have the potential to provide opportunities

for use as a screening tool, the application of these can be challenging, chiefly due to the availabil-

ity of appropriately skilled clinicians. These clinicians require significant training, as well as years

of practical assessment experience to achieve a suitable level of accuracy [53]. Also, given that

these tests are based around gestalt visual perception of movement [40], quantifiable predictions

are subsequently difficult to specify and discernible diagnostic features can be somewhat specu-

lative. These clinical tests are also heavily reliant upon the infant being in a suitable behavioural

state, making them potentially very time-consuming, which can subsequently lead to observer

fatigue [75]. It is for these reasons that researchers have started exploring the potential for the

automation of these physical examinations, as a means of providing early identification of those at

risk, primarily through the use of machine learning techniques.

2.2 Machine Learning

This section introduces the concept of machine learning by briefly discussing its development,

definitions, and applications. We determine what constitutes machine learning and provide a high

level overview, by comparing the main learning styles and discuss traditional machine learning

methods along with deep learning approaches. We then provide an overview of several common

classification algorithms.

2.2.1 Background

Machine learning is an evolving branch of Artificial Intelligence (AI) and computer science, based

upon computational algorithms that are designed to replicate human intelligence. By gradually

learning from examples and experience in the form of data, the algorithms are subsequently able
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improve performance in a variety of tasks. Rather than solving problems step-by-step using hard-

coded rules, machine learning interprets data to detect patterns and predict desired outputs [76].

Machine learning has seen use in several varied fields, ranging from pattern recognition tasks, to

computer vision, engineering, finance, biology, and medical diagnostics [77].

In some areas, machine learning is now able to exceed that of human performance [78]. The

ability of a machine learning system to process, learn from, and carry out complex tasks based

upon semantic interpretation of specific data, has meant that there has been a significant increase

in its use in areas such as medical image recognition [79]. Given that machine learning systems are

capable of improving accuracy based upon experience, these systems are typically used to learn

from patterns, predict future activity, or make decisions through the integration of components

from computer science, statistics, and data science [76].

Machine learning is generally categorised based upon how the algorithm learns to improve its

predictive performance [80]. With this in mind, we examine the use of supervised vs unsuper-

vised learning, before discussing traditional machine learning and deep learning techniques for

classification.

Supervised Learning

Supervised learning is a subcategory of machine learning which is defined by the use of annotated

or labelled datasets. These datasets are used to train a machine learning algorithm to classify

data, or predict outcomes with increasing accuracy, by allowing the model to measure its accuracy

against ground-truth labels. The algorithm determines any discrepancy between the labels and

prediction through the loss function, which is then adjusted until the error has been minimised.

As input data is fed into the system, weights are adjusted accordingly until the model has been

optimally fitted to the data. This means that the algorithm can then predict the output values

for new unseen data based upon the relationships learned from the previous data [81]. Whilst the

majority of practical machine learning cases make use of supervised learning, these models require

accurately labelled data, which in some cases can be difficult and time consuming to acquire. As

such, systems which are able to circumvent this restriction have been proposed [82].
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Unsupervised Learning

Unsupervised learning can be considered the antithesis of supervised learning. In unsupervised

learning unlabelled data is fed directly into the model. The model then looks for patterns and

underlying structures within the data to establish relationships. The algorithms used here analyse

and cluster unlabelled data without the need for human intervention [82]. This process can be

used for clustering, dimensionality reduction and association, to group data based upon similarities

and differences, to reduce the number of data inputs to a manageable size whilst preserving data

integrity, and to form relationships between variables. As such, these algorithms are particularly

useful in cases where human experts are unsure of exactly what to look for in the data [83].

However, whilst unsupervised learning is helpful in the correct use-case, it also presents several

challenges. Unsupervised learning typically has increased computational complexity due to the

high volume of training data required [84]. Additionally, there is an increased risk of inaccurate

results unless human intervention is included to validate the results. Finally, there is a lack of

transparency as to how the data is grouped, which is particularly troublesome in the medical do-

main [85]. As such, the studies discussed in this thesis make use of supervised learning methods

for classification.

Traditional Machine Learning

In order to carry out tasks such as prediction or classification, machine learning algorithms assess

input data, which can be labelled or unlabelled, to detect patterns. This input data typically consists

of features extracted from the raw data, in the form of structured matrices. An error function is

then used to evaluate the model’s prediction. In the case of labelled training data, a comparison is

made with this ‘ground-truth’ data to assess the prediction accuracy. The model is then optimised

to determine if alterations can be made to better represent the patterns in the data [86].

In traditional machine learning methods, many different algorithms have been proposed, with each

offering differing performance depending upon the type of data and the associated task (for more

information relating to specific classification algorithms refer to Section 2.2.2). In order to func-

tion correctly, traditional machine learning methods rely upon specific characteristics represented

in the raw data to be extracted through feature engineering. The features extracted from the raw

input data are typically engineered to represent the desired prediction and fed to the model for
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Figure 2.4: The relationship between AI, Machine Learning, and Deep Learning

classification. This process ensures that the input data is in a format suitable for classification

using machine learning algorithms, and means that improvements can be made to the model’s

performance by designing optimal feature representations. This also means that the features are

human interpretable, since they have typically been designed to fulfil the needs of the framework

output, and as such should represent the relevant diagnostic characteristics.

Deep Learning

Whilst machine learning can be considered a sub-field of AI, so too can we consider deep learning

to be a sub-field of machine learning (Fig 2.4). In the case of deep learning, the method of extract-

ing meaningful information from input data differs. Where traditional machine learning largely

relies upon engineered features as input, deep learning automates this process, removing the need

for human intervention. By eliminating the requirement for feature engineering, deep learning is

able to automatically determine the most optimal deep features for the associated task.
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Figure 2.5: Machine Learning vs Deep Learning [90]

Deep learning is customarily associated with the development of artificial neural networks, which

were designed to mimic the inter-connectivity of the human brain through layers of nodes. Each

node consists of 4 components; an input, a weight, a bias, and an output. The framework calcu-

lates the output of each node, and if the output value exceeds a given threshold it activates, passing

data to the next layer in the network. An artificial neural network becomes a deep neural network

when three or more layers of nodes, inclusive of input and output layers, are incorporated into the

framework [86]. This standard architecture feeds the data from the input to the output in one direc-

tion, and is called a feed-forward network, however in order to further improve the performance

of the framework, backpropogation was introduced and is now commonplace. Backpropogation,

passes the data through the network in reverse, moving from output to input, in order to calculate

the error associated with each node. This means that the framework can be further optimised, to

adjust and fit to the data appropriately [87].

Deep learning can make use of both supervised and unsupervised learning, but generally requires

significantly more data to function, since it is does not typically make use of human engineered fea-

tures. However with more data, we also generally see improved performance in a multitude of ma-

chine learning tasks, and as such deep learning represents the state-of-the-art in computer-vision,

natural language processing, and speech recognition [88]. However, the use of deep features in

deep learning frameworks can cause problems with interpretability, particularly in the medical

domain, since the automated decision making process must be transparent and understandable to

clinicians [89]. As such, this is an active area of research and is a key consideration when deciding

upon a suitable framework for a diagnostic pipeline in healthcare related applications.
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2.2.2 Machine Learning Algorithms for Classification

In this section we discuss several of the most commonly used machine learning algorithms and

their relevance to binary classification with a view to how they might be implemented within a CP

prediction framework.

Logistic Regression (LR)

LR attempts to model probability by determining the correlation between the input independent

feature vectors and the categorical predefined class labels by fitting the data to a logistic curve. It is

considered to be an extension of linear regression and can be used to solve classification problems

and provide the associated probabilities [91].

Support Vector Machine (SVM)

SVM uses supervised learning to analyse data for regression, classification, and outlier detection

problems. A hyperplane is generated by the algorithm to separate training data with the maxi-

mally permissible margin in high dimensional space. This optimal hyperplane is then used for

classification on unseen data by modelling similar patterns contained within the data. Addition-

ally, non-linear classification can be performed using a nonlinear kernel function to replace every

dot product, allowing the algorithm to fit the hyperplane within a transformed feature space, sub-

sequently classifying vectors in multidimensional space [92].

Decision Tree (DT)

DT is a non-parametric supervised learning method that determines the class of a given feature

vector using a branching node-based structure. Each node of the DT is referred to as either a

decision node or a leaf node. The decision nodes consist of two or more branches, and the leaf

node represents a classification decision. This method learns conditional control statements which

consist of simple decision rules inferred from the data features. The final output is a leaf node

which represents the classification of feature vector [93].
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Linear Discriminant Analysis (LDA)

LDA is similar to Principal Component Analysis (PCA) in that both are linear transformation

techniques typically used for dimensionality reduction. However, where PCA’s goal is to find the

components that maximize the variance in a dataset in an unsupervised capacity, LDA’s goal is to

compute the axes that will maximally separate two or more classes using supervision, making it

suitable for classification. LDA works using three distinct steps, the first step is to calculate the

separability between classes (between-class variance) using the distance between the associated

mean of each class, the second step is calculating the distance between the mean of each class and

the samples of each class (within-class variance), the third step is to lower the dimensional space

to maximize between-class variance and minimize with-class variance [94].

Ensemble of Classification Models (ENS)

ENS methods are learning algorithms which use a combination of multiple other learning algo-

rithms as a means of improving classification performance. The ENS method uses a weighted vote

of all the predictions in order to calculate a final prediction. This was originally carried out through

Bayesian averaging, but more recently bagging and boosting methods, such as AdaBoost (AB) and

LogitBoost (LB), have been implemented to further improve performance. AdaBoost (AB) boosts

performance by combining several weak classifiers. It initialises with unweighted feature vectors

and raises the weight of the training data for misclassified samples. As such, the next classifier

in the sequence is constructed using different weights and misclassified training data gets their

weights boosted, with this process subsequently repeated. A majority vote across all classifier

predictions are then combined for the final prediction [95]. LogitBoost (LB) further extends AB

by using binomial log-likelihood to modify the loss function linearly rather than modifying the

loss function exponentially, which helps deal with noise and outliers in the data [96].

k-Nearest Neighbour (kNN)

kNN is a non-parametric classification method which uses similarity measures within the training

dataset to classify test data. Essentially, kNN uses the k closest samples that are involved in the

majority voting process to predict a data point. kNN typically performs well with data that is small

in size, labelled and noise free [97].
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Convolutional Neural Network (CNN)

A CNN is a feed-forward deep learning neural network which is most commonly used to analyse

visual data. CNNs are widely used in computer vision tasks and have come to represent the state

of the art for many visual applications, such as image classification. The construction of a CNN is

analogous to the connectivity pattern of neurons in the human brain, with input imagery processed

in a manner similar to that of the visual cortex. The CNN uses stacked convolutional layers to

convolve input maps, to generate deep feature map representations for classification [98].

2.2.3 Summary

In this section we have discussed machine learning by outlining supervised learning, unsupervised

learning, traditional machine learning and deep learning. We have discussed several machine

learning algorithms and briefly introduced the concept of interpretable AI, a notion which we

discuss in greater detail in Section 3.1.4.

The development of machine learning has provided opportunities for the application of automated

decision making processes in several varied fields, including medical diagnostics. In the next

section we examine several studies which propose the use of machine learning, specifically for

the purpose of predicting later CP based upon the movement data provided through the physical

examinations discussed in Section 2.1.1.

2.3 The Application of Machine Learning for CP Prediction

Whilst many of the physical examinations associated with the prediction of later CP have proven to

be accurate, non-invasive and non-intrusive diagnostic tools, each requires a significant investment

in terms of both time and resources. Additionally, the assessments themselves are subjective,

and whilst the diagnostic accuracy amongst experienced assessors is high, the gestalt nature of

the assessments make it difficult to quantify discernible diagnostic features manually [40]. The

assessments also require the infants to be examined whilst in a suitable behavioural state [75],

as such these assessments can prove to be time-consuming, which can therefore lead to observer

fatigue [99]. In practice, the challenges of applying these assessments primarily relates to the

availability of appropriately trained and skilled clinicians. These clinicians require considerable
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additional training and as such, physical examinations are currently only carried out on infants at

high risk of developing CP, and to support a diagnosis where there are existing medical concerns;

they are not currently used as a screening tool for healthy babies [100].

A system which can quantify an early diagnosis has the potential not only to support the deci-

sions and diagnoses made by healthcare professionals, but the development of a suitably reliable

automated tool would mean that the analysis of all babies could be carried out. It is feasible that

through the adoption of digitally enabled care, the development of an AI-based automated system

could help to alleviate the aforementioned issues; easing current workforce pressures, enhancing

care quality, improving patient outcomes and providing cost effectiveness.

2.3.1 Automated Assessment

Automated assessments could conceivably provide measurable evidence to clinicians to support

decisions made about care and to track the progress of physical rehabilitation. There is also scope

for these systems to help reduce the time and cost associated with current diagnostic practices, and

potentially become part of wide scale screening programs.

The importance of reassuring parents that their child is developing normally has also been high-

lighted, as such quantifiable diagnosis presents an opportunity to achieve this in an interpretable

manner. As such, several studies have been carried out which attempt to assess the viability of au-

tomating the diagnostic processes used to predict motor impairment, based upon observed motion

quality (refer to Table 2.1). In a recent study, Marcroft et al. [10] discussed the use of several tech-

nologies which analyse recorded movement data for this purpose. They suggest that the adoption

of these technologies could potentially help with the prediction of motor impairment in infants.

The study also highlighted the need for the early identification of those most at risk, and pro-

posed that the application of these technologies within neonatal and paediatric practice could also

contribute towards a better understanding infant neurological development.

Accelerometer and Sensor Data Methods

Motion sensors have seen extensive use in human motion analysis research as a means of detecting

and tracking physical activity, particularly in healthcare related works. Physical motion sensors

make use of a range of technologies including gyroscopes, accelerometers, and magnetometers,
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Table 2.1: Overview of related works, methods used, features extracted, and reported accuracy

Method Author Features Extracted Accuracy
Accelerometer Heinze et al. [101] Velocity, Acceleration 89%
Accelerometer Singh et al. [102] Acceleration 70-90%
Accelerometer Gravem et al. [103] Acceleration 70-90%
Accelerometer Fan et al. [104] Acceleration 82%

Electromagnetic Tracking Karch et al. [105] Temporal Stereotypy n/a
Magnetic Tracking, Acc Philippi et al. [106] Kinematic Stereotypy n/a

Accelerometer Rahmati et al. [107] Frequency 85%
Depth Sensor Olsen et al. [108] 3D Reconstruction n/a
Depth Sensor Olsen et al. [109] Velocity, Acceleration 92%
Accelerometer Rahmati et al. [110] Frequency 88%

CV/Accelerometer Machireddy et al. [111] Multi-modal 84%
Marker-based Meinecke et al. [112] Skewness, Periodicity 73%
Marker-based Kanemaru et al. [113] Vel, Acc, Periodicity n/a

Frame Differencing Adde et al. [114] CoM, QoM, CPP 90%
Frame Differencing Adde et al. [115] CoM, QoM 88%

Optical Flow Stahl et al. [116] AMD, Freq, Wav 94%
Optical Flow Rahmati et al. [110] FFT Mean, FFT StD 92%
Optical Flow Orlandi et al. [117] Velocity-based 92%
Optical Flow Raghuram et al. [118] Velocity-based 66%
Optical Flow Ihlen et al. [119] CoM for 5s segments 87%
Optical Flow Baccinelli et al. [120] Vel, Acc, CoM n/a

Deep Learning Schmidt et al. [121] Deep Features 65%
Deep Learning Cunningham et al. [64] SATCo Point features 92%
Deep Learning Tsuji et al. [122] Movement indices 90%
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however, processing techniques have also been utilised to interpret visual data, such as depth

sensor outputs, to reconstruct human motion. Each of these sensor types have seen prominent use

in the functional observation of motor movements; for the assessment of neuro-muscular disorders

(such as stroke and Parkinson’s disease); for the evaluation of physical activities to identify disease

patterns; for the quantification of rehabilitation therapy; and for the prevention of injury through

motion analysis [123]. Recently the evaluation of infant movement has also been carried out using

similar sensor data, to attempt to establish the viability of using these methods for the prediction of

CP. These approaches typically analyse infant movements based upon the criteria specified in the

physical examinations discussed in Section 2.1.1, here we discuss several of the most prominent

sensor-based methods.

In [101], Heinze et al. used wired accelerometers to extract data for the production of a new

feature set, which was based upon modelling the velocity and acceleration of infant movements.

The dataset used consisted of motion data from 23 infants, composed of 19 healthy and 4 high-risk

infants. A decision tree classifier was used and an overall accuracy of 89% was reported.

Singh et al. [102] also proposed a system which used accelerometers for the analysis of abnormal

infant movements using a dataset consisting of 10 premature babies. Features based upon the max-

imum observed acceleration magnitude for the arms, the legs and the whole body were generated

for classification, and accuracies of 70% to 90% were reported depending upon the relative cost

of false positives and false negatives. However manual annotation of the data using additional ac-

companying videos was required to generate accurate labelled data. In an extension to this method,

Gravem et al. [103] proposed a system consisting of five accelerometers which were placed on

each of the infants’ limbs and on their forehead. 10 infants were filmed for 1 hour, with the video

data again used by assessors to provide annotation for the corresponding accelerometer motion

data. The annotations were based upon the presence of Cramped Synchronised GMs, which were

used to determine a binary classification of normal or abnormal. Once the motion data had been

pre-processed, 166 features were extracted for classification. The study also reported a classifi-

cation accuracy of between 70% and 90%, specifically in the detection of Cramped Synchronised

GMs on this dataset. Fan et al [104] also extend this work by making use of this same dataset

to assess statistical and temporal features for each measurement. They showed improved perfor-

mance over the previous related method through the integration of AdaBoost and Naive Bayes
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Figure 2.6: Example of kinematic recording using a magnetic tracking system [106]

classifiers. Additionally, the Erlang-Cox Dynamic Bayes Networks were also compared using

Area-Under-the-Curve (AUC) for each model, with each providing comparable results.

Inspired by the successes in the previous methods, Karch et al. [105] attempted to model the limb

movement of infants using an Electromagnetic Tracking System (EMTS). By attaching sensors

to the limbs they calculated the joint centres based upon the Cartesian coordinates of the limb

segments. In doing so they were able to establish the position and rotation of each joint centre from

the captured motion data. After calculating the position and the rotation for each joint centre from

the captured movement data, they assessed the recording accuracy by evaluating the differences

between recorded and estimated sensor positions and orientations. Using a dataset consisting of 20

infant motions they suggest that they are able to demonstrate the segmental kinematics associated

with abnormal infant movement using dynamic time warping. Using the stereotypy score and

manual evaluation, they report a sensitivity of 90% and a specificity of 96%, but only using upper

limb movements and on a small dataset. Additionally, distinctive individual motion features were

not specified or quantified for this study and automated classification was not proposed.

In a subsequent study, Philippi et al. [106] used an accelerometer and magnetic tracking system

to establish kinematic features to model repetitive movements in the limbs. They suggested that

the repetitive movements shown in the upper limbs of infants in their dataset provided a predictive
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indicator of later CP but did not propose an automated classification framework, instead providing

a statistical analysis of the feature stereotypy as a means of manually predicting later CP based

upon graphical representations of the associated feature data.

Given the success in the predictive capability of limb movements through the analysis of ac-

celerometer data, Rahmati et al. [107] also attempted to model these movements using motion

sensors, also making use of accompanying RGB video camera data. They carried out motion

segmentation and extracted three features: area out of standard deviation from moving average;

periodicity; and correlation between trajectories. These features were then used to classify the

sensor data using the SVM classifier. Following on from this, in [110] they carried out frequency-

based analysis on the accelerometer data. The accelerometers were again attached to the limbs

of the infant and a set of features were extracted which reflected the frequency component of the

movements in an effort to model the repetitive nature of the motion for further classification. They

carried out a comparison with video-based features and reported that the results from the sensor

data were not as accurate as those of the computer-vision features.

In an effort to bridge the gap between motion sensors and computer-vision, advanced range imag-

ing techniques have subsequently been implemented, which use specific sensor technologies to

produce depth images. These RGB-D cameras, such as the Microsoft Kinect, provide estimated

3D joint positions using a random forest [124], which can be further enhanced by introduc-

ing human prior knowledge [125], allowing them to be used effectively for motion monitoring

[126].

In [108] and [109], Olsen et al. proposed the use of the Microsoft Kinect depth sensor to generate

RGB-D imagery of infants for motion analysis. This RGB-D video data was used to construct a

simplified 3D model of the infant, based on simple geometric shapes and a hierarchical model,

for tracking. Using a dataset of 7 RGB-D videos of infants, they manually annotated frames to

serve as ground truth and used this to evaluate the accuracy of their 3D model by calculating the

euclidean distance between each. This model was then used to compute several features based on

the angular velocities and acceleration to detect spontaneous infants movements for classification

using annotated data to identify infants at risk of CP. However, whilst depth sensors offer a high

temporal resolution, privacy preservation, and the potential for comprehensive analysis, the imple-

mentation of such as system can also pose significant practical problems, as they require complex
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setup, can be difficult to use with infants, require dedicated equipment, and are often unsuitable

for clinical use. This is also true of electromagnetic tracking systems and wearable sensors (ac-

celerometers and IMUs) which are generally expensive, large, logistically difficult to utilise with

infants, and are impractical for both in clinic and remote analysis; as such researchers started to

explore purely image-based techniques in an effort to tackle these challenges.

Marker-based Methods

Marker-based motion capture is an image-based technique which is used to track movement using

recognisable markers which are attached to an object or person, allowing for proprietary systems to

interpret the associated motion. These systems are commonly used for human motion analysis by

placing markers at import parts of the body, such as joints, and tracking spatio-temporal variations

in body-part movement. This form of motion capture has also been widely used commercially and

has recently been implemented to assess infant movement.

One of the first marker-based systems proposed for the detection of CP was the study by Meinecke

et al. [112]. In this study, 7 infrared cameras fed by 20 reflective markers (Figure 2.7) were used

to capture the 3D motion of 22 infants to assess the associated spontaneous motor activity. Quan-

titative features were then extracted from the motion data, and a combination of 8 features were

used to differentiate between normal and abnormal infant movements based upon data annotations

provided by GMA assessors. They reported a classification accuracy of 73% using a quadratic

discriminant analysis algorithm.

A similar approach was used by Kanemaru et al. [113], where reflective markers were tracked and

different kinematic features established. The aim in this study was to determine if the movements

of infants who were later diagnosed with CP were ‘jerkier’ than those of healthy ones. However

the main concern with using these techniques is that a sufficient number of markers/cameras must

be used for reconstruction, and self occlusion can therefore cause significant problems. To address

this Machireddy et al. [111], proposed a hybrid system which combined inertial measurement

units (IMU) with marker-based video imagery. The aim here was to combine these techniques

to overcome the shortcomings of each by producing a synchronised multi-modal dataset. They

report a classification accuracy of 84% in identifying fidgety movements using a SVM classifier

on a dataset consisting of 20 infants.
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Figure 2.7: Motion analysis system, measurement setup and marker placement [112]

However, motion capture systems such as these are typically costly, cumbersome, complex to

install, require significant fine-tuning, and have high computational complexity. Moreover, similar

to the the use of sensors, to extract the spontaneous movement data from infants, markers may

hinder or influence their movements, subsequently affecting the value of the data collected. Whilst

these systems can produce reasonable results at modelling human motion, these detrimental factors

are exacerbated by use on infants, making them largely impractical and subsequently limiting

their viability for infant motion analysis in clinical environments [127]. To address this, marker-

free approaches have been developed which make use of advanced computer-vision techniques

to extract motion data from 2D RGB video. This approach offers cost-effective, non-invasive,

non-intrusive alternatives, which address many of the challenges mentioned. Additionally, given

the proclivity of 2D RGB video-capture equipment, it is suggested that this approach could much

more easily be implemented at a significantly larger scale, supporting the proposed suggestion of

viable infant screening programmes.

Frame Differencing Methods

One of the earliest examples of computer vision-based automated prediction of CP was the prelim-

inary study by Adde et al.[128], who proposed a system in which “frame differencing” techniques

were employed to assess the feasibility of undertaking automated GMA. In this study, infants were
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videoed from above whilst lying in a supine position per GMA guidelines. Using this 2D RGB

video as input, a representation of the associated motion was created by removing the background

and calculating the difference between two consecutive frames in the video sequence. A point

value per pixel of 0 or 1 was then assigned to represent the presence of movement, generating a

“motion image”. These motion images, which represented the amount of infant movement present

in each video frame, were then used to generate relevant features for binary classification of normal

or abnormal infant movements.

Figure 2.8: Frame differencing example. In the image on the right, pixels displayed in black
indicate no movement occurred between the frames, pixels displayed in white represent movement
[128]

This frame differencing method was evaluated in several subsequent studies to establish the via-

bility of automated assessment using this approach, and to develop a feature set for further classi-

fication [114, 115, 129]. The engineered features consist several variants based upon the Centroid

of Motion (CoM), and the Quantity of Motion (QoM), where the CoM is the spatial centre point of

the motion image and the QoM is the sum of the associated motion of the centroid (further details

of these extracted features are discussed in Section 5.1)

However the use of frame differencing images is subject to several limitations, such as sensitivity

to camera movement, issues with self-occlusion, strict background pre-processing, and a lack of

information about the speed and direction of objects moving in frame [116, 130]. As such, several

studies have subsequently attempted to further evaluate the viability of automated examination

through more advanced computer vision-based techniques, such as optical flow.
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Figure 2.9: Example of motion trajectories obtained by tracked grid points using optical flow [116]

Optical Flow Methods

Optical flow is a method by which the motion intensities of an image may be calculated, as such

the motion of objects within a scene can subsequently be detected and tracked across adjacent

frames. Optical flow has been shown to be sensitive enough to be used to detect and delineate

objects which are independent of one another, allowing for additional contextual information to

be generated [131].

In optical flow based methods, the motion is represented by a vector field showing the displace-

ment of the pixels between consecutive frames of an image sequence; rather than simply calculat-

ing the gross quantity of motion present in the frame and localising this centrally, as previously

proposed in the frame differencing methods [116]. This allows for more detailed tracking of infant

body-parts and the associated movements, subsequently providing opportunities for deeper analy-

sis of the correlated motion. This approach is also better able to deal with camera motion through

improved contextual understanding of the image composition, something which is particularly

troublesome for the frame differencing methods discussed.

In the study by Stahl et al. [116], an optical flow-based method was produced which predicted

cerebral palsy based upon statistical analysis and pattern recognition of the infant’s spontaneous

movements. Wavelet frequency analysis was used to evaluate the time-dependant trajectory signals

found in the optical flow data. However, using this optical flow method presented issues with

tracking larger movements, and as such it was suggested that video captured at a higher frame rate

would be required for future analysis.
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In order to address this problem, several works implemented Large Displacement Optical Flow

(LDOF) to track infant body movements and extract features for classification [110, 117, 118,

119]. The LDOF method extends optical flow to better deal with large displacements of fore-

ground objects and camera movement [132], making it more suitable for detailed infant motion

analysis. Inspired by this and by previous sensor-based methods, Rahmati et al. [110] used LDOF

to generate new motion features. In this case the use of features derived from frequency analysis

to classify infant motion into one of two groups was proposed. Using video sequences as input, a

motion segmentation algorithm was used to extract motion data from each limb. Their proposed

feature selection method, which determined features with significant predictive ability, was then

used prior to classification.

Similarly, Orlandi et al. [117] used LDOF to calculate the displacement of each pixel every 10

frames, in order to track movements and obtain the associated velocities. Background subtraction

was also implemented, and features were extracted and classified as typical or atypical based

upon the GMA, using several classification algorithms. Following on from this Raghuram et al.

[118], used the same LDOF feature extraction techniques and motor parameters. In this case a

skin model was also applied to the the infant silhouette in each video frame and the velocity was

extracted using only pixels associated with the silhouette. These features were then used as a basis

for predicting and screening for motor impairment.

The study by Ihlen et al. [119], also proposed the use of an LDOF model to track infant movements

through a pixelwise representation. However in this case, short 5-second long segments were used

as input with each annotated for the presence of risk-related movements characterised as normal

or abnormal. The centroid of motion, rather than the centre of mass or anticipated joint position,

of these tracked movements was then fed into a classification pipeline to determine the likelihood

of cerebral palsy based upon the proportion of CP risk-related movements, allowing for statistical

analysis of the data, rather than direct comparison with a predefined set of rules governing the

classification. However this method attempts to model the proportion of risk related movements,

and as such requires extensive labelled training data to determine the risk associated with each 5-

second movement. Additionally holistic classification is compared with manual assessment rather

than comparable automated models, and the use of CoM limits the interpretability and possibility

of more comprehensive analysis.
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The proposed methods suggest that the enhancement provided by LDOF allows for improvements

to existing motion quantity features, the development of velocity-based features, and the intro-

duction of frequency-based features for infant motion analysis and binary classification. Through

comprehensive analysis of these movement-based features, it was subsequently determined that

dynamic features are typically more predictive than the previous statistical features [110]. How-

ever, similar challenges are still present, such as issues with occlusion, drift, noise and computa-

tionally complexity [133], as well as susceptibility to unrelated movements (such as equipment,

parents or clinicians in shot), and sensitivity to illumination changes [130]. Additionally, the low

generalisability and difficulty providing suitable interpretability of extracted features make trans-

lation to clinical practice less viable [130, 110].

Deep Learning Methods

Recently the field of deep learning has provided state-of-the-art performance in many classification

tasks. Deep learning is seen as advantageous as it is able to automatically learn features from input

data without the need for feature engineering or specific domain knowledge. Deep learning can

extract high level representations from complex data to produce a desired output classification

and learn correlations and dynamic relationships that can be difficult to model through engineered

features. As such, deep learning has seen extensive use in the field of Human Action Recognition,

with its popularity continuing to grow in this area of research [134]. There have therefore been

efforts to make use of deep learning frameworks for infant motion analysis [135].

In an initial study, Schmidt et al. [121] propose the use of a recurrent deep neural network to anal-

yse a video dataset to classify infant fidgety movements. This study made use of transfer learning

using the Keras VGG19 model, trained on the 1,000 classes of the ImageNet database. Image

features were extracted from the framework and passed through an LSTM layer for classification.

This resulted in a classification accuracy of 65% using a 10-fold cross validation strategy with an

80% training 20% test/holdout data split. They suggest that these results, whilst comparatively

poor, are not unexpected as the project is in the early stages and with further work a more robust

result is expected.

In a similar project, Cunningham et al. [64] used deep learning to undertake the clinical SATCo

examination. In this work 13 keypoint features were identified and used to estimate the location
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and orientation of the head, multi-segmented trunk and arms from videos of the clinical test.

Experts manually annotated the 13 keypoint features for the image frames used and a CNN was

then used to generate keypoints for unseen data. The generated data was then used to calculate

segment angles for classification based upon the SATCo testing criteria. However, whilst a high

accuracy of 92% was reported, poorer precision (84.2%) and F-Score (76.0%) were also reported,

with these being more insightful metrics given the imbalance in the associated dataset.

In the paper by Tsuji et al. [122] a markerless movement measurement and evaluation system was

proposed for the identification of GMs in infants. The proposed system uses an artificial neural

network with a stochastic structure to calculate 25 movement indices related to GMs for further

analysis. A log-linearized Gaussian mixture network (LLGMN) is then used as the classifier for

the movements, reporting a classification accuracy of 90.2%. Whilst this method makes use of

deep learning for classification, the manually extracted features are of low detail, since a similar

method to that of the CoM is used. In future works they suggest that their proposed method could

be further improved by the inclusion of additional detail in the feature extraction process, such as

through the pose-estimation methods we propose.

2.3.2 Summary

In this section, we have discussed several automated methods for the prediction of CP, based upon

the physical examinations discussed in Section 2.1.1. We discussed that whilst accelerometer,

sensor-based, and marker-based methods can provide notable predictive accuracy, the logistics of

implementing such approaches make clinical adoption impractical. As such, computer vision-

based approaches have been explored, and are now largely considered to be the preferred method

of conducting such assessments.

The computer vision-based approaches discussed range in complexity from the initial frame differ-

encing methods, which provide a simplified interpretation of infant movement, through to optical

flow based methods which are capable of extracting significantly greater levels of motion detail,

and finally through to deep learning based methods which typically represent the state-of-the-art

in image analysis. The evolution of these methods has largely been driven by challenges specific

to each approach.

In the case of frame differencing, it was determined that there was a lack of information relating
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to the speed and direction of objects in frame for suitably reliable prediction, as well as technical

limitations, such as sensitivity to camera movement and issues with self-occlusion.

In the case of optical flow, difficulties with tracking larger movements became apparent, as well

as issues with self occlusion, sensitivity to lighting changes, lack of contextual awareness (i.e.

the motion data does not easily assess body parts separately, typically relying upon whole body

movement analysis), and difficulty dealing with external influences (such as the parent or assessor

being present in frame).

In the case of deep learning, whilst excellent performance is theoretically possible, the main chal-

lenges relate to the amount of data required for this predictive task and the lack of interpretability.

Typically, deep learning methods rely upon significantly more data than traditional machine learn-

ing frameworks to extract meaningful features, and this is often not available in this particular do-

main. Additionally, the extraction of these deep features means that clinicians are largely unable

to extrapolate the reasons why a deep learning framework might arrive at a classification decision,

which, whilst acceptable in standard computer-vision tasks, is not suitable for medical assessment.

Based upon these observations, we suggest that new methods are required, which make use of ad-

vances in the fields of computer-vision and human activity recognition, yet retain interpretability

and robustness to the specified challenges, such as pose-estimation, body-part segmentation, and

histogram representation techniques.

2.4 Relevant Techniques

2.4.1 Pose-Estimation

Inspired by the results in human motion analysis using accelerometer and marker-based meth-

ods, computer-vision researchers designed systems capable of estimating human skeletal pose

from RGB video. These pose estimation techniques make use of advances in computer-vision

and machine learning, to detect human figures in images and video, and determine their pose by

estimating the spatial locations of key body joints.

The automated estimation of human pose from 2D images is an active research area, with several

significant recent contributions [15, 16, 17, 18]. With the continued progression in deep learning

techniques, various robust frameworks have been proposed which can accurately estimate human
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Figure 2.10: Example pose estimation results obtained using OpenPose [17].

poses from 2D images. One of the most widely known methods is the work by Cao et al. [17],

who present a framework, known as OpenPose, which can accurately detect the 2D pose of people

from a single RGB image. The OpenPose framework provides excellent pose estimation perfor-

mance from 2D RGB video input, producing an output consisting of the Cartesian coordinates of

joint positions, based upon pre-defined keypoints, allowing for an output which incorporates both

the joint position and orientation of the associated connecting bones (Figure 2.10). This allows

for localised analysis of the motion data, subsequently addressing many of the challenges faced

by other methods in the literature. The use of 2D RGB video data is particularly pertinent to our

use case as it encourages accessibility through a reduced requirement for any specialist equip-

ment, and interpretability through the use of human recognisable data which is also inherently

anonymised.

2.4.2 Body-part Segmentation

The aim of human body-part segmentation is to partition individuals within an image into multiple

semantically consistent regions (head, arms, legs, etc) [136]. This process is considered vital for

many human-centric analysis applications [137]. Several recent studies [138, 139, 140, 141] have

proposed methods to improve body-part segmentation through the combined training of human

body-part segmentation and human pose estimation frameworks. However, these approaches are

largely successful due to supervised training using pixel-wise manual labelling. Given that this

is impractical for the large datasets required to train such a system, other methods have been

developed to aid with this labelling requirement.

In the paper by Fang et al. [142], a semi-supervised approach is proposed, which uses data aug-

mentation to transfer the human-labelled part segmentation from an existing dataset to a separate

unlabelled dataset. In the work by Bearman et al. [143], a point-level supervision is used to

create object priors which generate foreground masks. Whilst these approaches provides good
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Figure 2.11: Example segmentation results obtained using [25].

performance in extracting foreground information, it has difficulty in determining the boundaries

between foreground objects, this being particularly true of self occlusion. Given the nature of the

data analysed in our project, the capability to adequately deal with self occlusion is important in

this task. To address these issues, a recent work on multi-person part segmentation [25] proposed

cross-domain complementary learning (CDCL), which provides state-of-the-art performance in

human body-part segmentation tasks without the need for human-annotated segmentation labels.

By using synthetic data to learn the boundaries between different parts, the CDCL system is also

better able to deal with self occlusion. In order to extract meaningful body-part information from

an input image, the CDCL pre-trained body segmentation model produces 6 contextual segments,

or image masks, relating to the head, torso, upper arms, lower arms, pelvis and upper legs, and

lower legs which can be used for both tracking body-parts and visualisation. An example of the

segmentation output result is illustrated in Figure 2.11.

2.4.3 Histograms for Human Action Recognition

Histogram-based approaches have seen wide use in several fields for a number of years, and have

been found to perform well in visual recognition tasks. Histogram-based approaches, such as
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[144], have been successfully implemented in human action recognition tasks by condensing data

into a lower dimensional range whilst also retaining the most useful information, providing a full

but manageable impression of the associated data. Furthermore, the combined use of different

kinds of histogram features has been shown to improve the accuracy of action recognition frame-

works significantly [145, 146, 147].

A recent successful and relevant implementation of these techniques can be found in the work

by Xia et al. [148]. In this paper, a histogram-based method was used in conjunction with joint

positions extracted from Microsoft Kinect RGB-D depth data, to undertake classification of human

actions into one of ten indoor activities. This approach allowed for the generation of feature

descriptors, which were used to examine the distribution of both the orientation and displacement

of each of the joints over a period of time. In doing so, this method bypassed the need to solve

the time misalignment and variations in speed between two frames, as well as offering a robust

solution to differing video durations. This approach makes it particularly well suited to the analysis

of infant motion data due to the variability of the associated input video, further encouraging

accessibility throughout the pipeline.

2.4.4 Summary

In this section, we have discussed that due to the limitations inherent in the related works, a new

approach is required that takes advantage of advances in human motion analysis. As such, we

examined pose estimation techniques and discussed how this approach would be advantageous

over previous methods, particularly in addressing factors the previously discussed methods had

difficulty dealing with, such as camera movement, external influences, varying illumination, res-

olution inconsistencies, differing subject scales, and larger body-part displacements. We explored

the practical aspects of using pose estimation, with regards to retaining interpretability and al-

lowing for data sharing through the built-in anonymity of the extracted pose information. We

examined how image segmentation techniques might be used to provide additional contextual

feedback and visualisation, affording greater interpretability to the classification process. Finally,

we discussed that by employing histogram-based methods we can extract meaningful informa-

tion from the raw data, whilst reducing dimensionality, and retaining human explainable feature

representations which can be engineered to reflect specific assessment criteria.

47





Chapter 3

Methodology

In this chapter we provide an overview of the relevant methods that we employ within our pro-

posed frameworks and how these might fit together to form a feature extraction, diagnostic classi-

fication, and visualisation pipeline. Our proposed frameworks seek to address several of the issues

highlighted in the review of the related works, and as such we also discuss our intention for full

re-implementation of several methods from the literature for comparative testing across multiple

datasets, including videos captured in a real-world clinical setting.
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3.1 Overview of the Proposed Methodology

In this thesis we propose and evaluate several new pose-based features which are directly mapped

to motion criteria set out in the associated physical clinical assessments. We generate a real-

world dataset, to inform and evaluate each of our proposed features, and use these features to

verify the predictive value of our proposed computer-vision-based frameworks for the prediction

of CP. Importantly, given that this study is based within the medical domain, we also incorporate

interpretability into all stages of the proposed pipeline, such that the feature extraction, generation

and classification frameworks remain transparent and explainable throughout. Additionally, one of

the added benefits of our proposed pose-based method is that the extracted pose-data is inherently

anonymised, and as such we are able to share the labelled pose dataset with the community.

The research aims in this thesis can therefore be summarised as:

• A pose-based method which can suitably represent infant motion to facilitate classification

and subsequent prediction of CP.

• The collection of a real-world dataset to inform our feature design, and for evaluation of our

proposed frameworks and baselines from the literature.

• Pose-based features which are mapped directly to the motion characteristics of clinical as-

sessments for classification with suitable accuracy for clinical adoption.

• Interpretability incorporated into the proposed features and classification frameworks.

• A series of features which are robust enough to generalise well across multiple datasets and

achieve state-of-the-art performance.

An overview of our proposed general pipeline is provided in Fig 3.1. In this pipeline we make

use of 2D RGB video sequences as input. When it comes to capturing infants movements, we

suggest that the use of 2D RGB video is preferred to that of RGB-D for two main reasons. Firstly,

RGB video is much more accessible as it requires no specialist equipment (a camera-phone is

sufficient), and secondly, RGB-D requires the emission of infrared light, which may have a health

impact upon infants. The first stage in our pipeline is to extract pose data, consisting of 2D joint

positions, from the 2D video sequences using the OpenPose framework. We then automatically

pre-process the extracted pose data to ensure compatibility and consistency throughout the re-
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Figure 3.1: The overview of the proposed prediction and visualization framework.

mainder of the pipeline. Inspired by the work in human action recognition by Xia et al. [148],

we propose techniques to produce histogram representations of infant movements from the pro-

cessed data to generate motion features for binary classification. We then generate visualisations

of the classification decisions with a view to highlighting motion abnormalities, such that asses-

sors are better able to interpret the data thus improving model explainability. As such, we propose

that through our use of pose-based assessment we aim to extract meaningful, human understand-

able data from standard 2D RGB video data, which is more robust and better able to deal with

real-world clinical situations than existing methods.
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3.1.1 GMA Informed Motion Features

To accurately analyse infant movements for the subsequent prediction of CP, suitable features

must be generated for the classification algorithms to make use of. These features need to fully

represent the motion characteristics of the dataset used, and as such the quality of the features has

a significant impact upon any insights provided by the machine learning framework.

To generate features which are not only informative, discriminative, and robust, but also directly

mapped to the assessment criteria in the clinical guidelines, we employ feature engineering tech-

niques to generate features based upon domain knowledge provided by clinicians. Given that

GM assessors typically look for specific movement patterns, we attempt to model these patterns

through a set of orientation-based, displacement-based, and frequency-based features. Specifi-

cally we aim to model the movements associated with the assessment criteria set out in the GMA

checklist [47], and the passive movement assessment section of the Optimality Score neurological

examination [42]. Namely, we extract the following features, which we discuss in more detail in

Section 5.2:

• Histograms of Joint Orientation (HOJO2D)

• Histograms of Joint Displacement (HOJD2D)

• Angular Displacement (HOAD2D)

• Relative Joint Orientation (HORJO2D)

• Relative Joint Angular Displacement (HORJAD2D)

• Fast Fourier Transform of Joint Displacement (FFT-JD)

• Fast Fourier Transform of Joint Orientation (FFT-JO)

Each of these features provides a histogram-based representation, comprised of an n-dimensional

vector, which is used as the input for classification. These new histogram-based features therefore

represent various motion characteristics extracted from 2D skeletal poses, specifically for infant

motion analysis related to physical clinical examinations. By approaching this problem in this

way we are able to flexibly assess infant motion both temporally and spatially, by looking at

the distribution of the orientation, displacement, and frequency components of the joints over a

specified period of time. We are also able to analyse part-specific motion for greater insight into
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the movement associated with physical examination; and through temporal segmentation we can

both explore the sequential aspect of these assessments, and also holistically examine the overall

movement structure. The histograms generated also retain an element of human interpretability,

allowing clinicians to intuit differences in distributions that align with manual observations found

in the clinical physical assessments, as discussed in Section 6.2.5.

In addition to individual feature analysis we fuse complementary features to improve the overall

performance and robustness of the extracted features across multiple datasets. By concatenat-

ing different features as early fusion, it is expected that better classification performance can be

achieved if the classifier is capable of handling and learning the input data with higher dimension-

ality when compared with the individual features. The case-specific methods used for feature fu-

sion, and the progressive classification evolution of our extracted features are discussed in greater

detail in Chapter 6.

3.1.2 Binary Classification for CP Prediction

Once we have extracted the features, we then feed them into our machine learning classification

framework to obtain an overall analysis of the movement characteristics and subsequent predic-

tion of CP based upon the annotations provided by the GMA assessors. These annotations are

based upon the observed motion characteristics derived from the physical examinations discussed

in Section 2.1.1. The classification framework categorises the data into classes labelled as ‘nor-

mal’ or ‘abnormal’ based upon the annotations and the automated observation of the patterns in

the associated feature data. In our works we experiment with both traditional machine learning

frameworks and deep learning frameworks for this classification task, full details of which are

provided in Chapter 6. Our aim here being to improve upon the diagnostic performance of other

reported methods to ensure clinical viability whilst utilising relevant, human understandable fea-

tures.

3.1.3 Baseline Re-implementation for Comparative Evaluation

Another issue found in the many of the existing methods in the literature is a lack of direct compar-

ison in classification performance between different approaches. Whilst reasonable results have

been reported in the related works, evaluation of the robustness of the proposed methods has not
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been adequately demonstrated. Moreover, due to the sensitive nature of the video data recorded,

the datasets used in the previous works are not available to the public. As a result, it is difficult for

researchers to have a fair comparison and evaluation on the performance of different methods due

to the unavailability of benchmark datasets. In our work, we re-implement several prominent CP

prediction frameworks and compare the classification performance on different datasets. Details

of the datasets used in our evaluations are discussed in Section 4.2 and Section 4.3, details of the

baselines used in our comparisons are provided in Section 5.1, and full comparative evaluation the

frameworks are discussed in Chapter 6.

3.1.4 Visualisation for Interpretability

One of the main issues with using machine-learning approaches for healthcare related tasks is

the problem of interpretable AI. Whilst machine learning-based frameworks have obtained excel-

lent performance in a wide range of visual understanding tasks, most of the existing frameworks

are considered ‘black-box’ approaches, since most classification frameworks only output the pre-

dicted label without specifying exactly what influences the classification decision. As such, it is

becoming increasingly important for the frameworks to ensure that the decision making process is

transparent and fully understandable [149].

In order to make our proposed frameworks more interpretable, we include automatically gener-

ated visualization modules to aid the user/assessor. These modules highlight and provide addi-

tional pertinent information relating to the body-parts which are showing movement abnormali-

ties. We are able to do this through the part-based assessment provided by our pose-estimation

based method and through the use of GMA relevant features, transparent classification methods,

and data visualisation techniques, meaning that interpretability is present throughout all stages of

our pipeline. Details of the visualisations produced in our works and the associated quantitative

and qualitative evaluations are provided in Chapter 7.
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Data Collection and Pre-processing

In this chapter we discuss the data collection methods used, the study design and ethical approval

details, the composition of the datasets gathered, and the pose estimation and pre-processing un-

dertaken on the datasets prior to further analysis.
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4.1 Study Design and Ethical Approvals

For this collaborative project, a retrospective cohort study design was implemented for data collec-

tion, to produce the RVI-GMA dataset (detailed in Section 4.3). Full ethical approval was obtained

from the host organisation, the Research Ethics Committee (REC), the Health Research Authority

(HRA), and Health and Care Research Wales (HCRW) with the following reference numbers and

dates of approval:

• Northumbria University Ethics Online: Ref:9865, approval granted 04/10/2018.

• Caldicott Approval: ID:6935, approval granted 17/12/2018.

• Northumbria University internal IRAS review: Research and Innovation Services approval

granted 01/03/2019.

• REC: Ref:19/LO/0606, IRAS project ID: 252317, favourable opinion granted 21/05/2019.

• HRA and HCRW: REC Ref:19/LO/0606, IRAS project ID: 252317, approval granted 21/05/2019.

A study specific consent form, parent information sheet, and research protocol were produced (re-

fer to Appendix A) and approved prior to data collection, so that fully informed consent could be

obtained from the parents/legal guardians of all participating infants for the use of video record-

ings. Written informed consent was obtained by the clinical staff associated with the project prior

to data collection. The study population included infants who had a clinical GMA, with a video

recording at 3–5 months post-term, as part of their routine follow-up care.

The Moving INfants In RGB-D dataset (detailed in Section 4.2) is an open source dataset which

was also used throughout the development of our project. All terms specified in the author’s

license agreement [150] were met.

4.2 Moving INfants In RGBD Dataset

One of the challenges facing researchers attempting to automate the GMA is the availability of

suitable data. Given that the video data required for the GMA is of a sensitive nature, baseline

datasets are not currently publicly available. Additionally, since human pose estimation frame-

works are almost exclusively trained and tested using images of adults, a dataset consisting of
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images of infants for research purposes can understandably be difficult to obtain.

To address this problem the Moving INfants In RGB-D (MINI-RGBD) dataset was generated

and made publicly available to the community [150]. This dataset maps real-world 3D infant

movements, captured in a clinical setting, to virtual 3D models of infants. Photo-realistic videos

of the 3D infant models were produced using computer graphics rendering (640x480 resolution),

allowing for the generation of anonymised, and subsequently shareable footage, which retains

the real-world movement characteristics required for the GMA. This dataset consists of 12 top

down videos of infants lying in a supine position, each 40 seconds in duration (1000 frames at 25

frames per second). We make use of this synthetic dataset and label each of the video sequences as

‘normal’, where fidgety movements are present (FM+), or ‘abnormal’, where fidgety movements

are absent (FM-), based upon the GMA. The data labelling was carried out by two assessors highly

experienced in the clinical application of the GMA, resulting in 8 videos being annotated as FM+

and 4 videos being annotated as FM-.

4.3 Royal Victoria Infirmary - General Movements Assessment Dataset

An important part of this study is that the framework has to have the ability to generalise well

across different datasets, particularly when processing real-world video data. To reflect this, the

challenging new Royal Victoria Infirmary - General Movements Assessment (RVI-GMA) dataset

was collected to inform the design of our framework, and for evaluative analysis. This dataset

is composed of real patient video data gathered as part of routine clinical care at the NHS Royal

Victoria Infirmary, Newcastle upon Tyne, UK. As such, this dataset reflects the genuine intra-class

variance and subsequent complexity present in the real-world clinical setting. The RVI-GMA

dataset currently consists of 38 videos, of 38 different infants aged between 3 and 5 months post-

term.

The videos were recorded using a standard 2D RGB handheld video camera (Sony DSC-RX100

Advanced Compact Premium Camera with 1.0-Type Sensor, 28-100 mm F1.8-4.9 Zeiss Lens,

recording with a resolution of 1920x1080 @ 25 FPS). The duration of each video varied between

a minimum of 40 seconds and a maximum of 5 minutes, with an average duration of 3 minutes and

36 seconds. The footage was captured from above, in a top-down orientation, with the infant lying
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in a supine position, during active wakefulness, per the GMA guidelines. However, unlike many

of the related works (e.g [128, 115, 24, 119, 117]), all video recordings were used as part of our

evaluation, with no prior screening for inconsistencies such as poor lighting, camera movement,

external factors, or significant shadows. Whilst this produced a more challenging dataset, it also

represents a real-world evaluation of footage captured in a clinical setting. By including this

challenging footage we hope to demonstrate that our proposed systems are more capable of being

robust to variations in data capture, making them more suitable for clinical implementation. The

videos were classified by two experienced assessors, using the GMA, into one of two categories;

1) FM+ where the infant demonstrates normal movements indicative of typical development; and

2) FM- where the infant demonstrates abnormal movement patterns that may be of concern to

clinicians. This resulted in 32 videos being annotated as FM+ and 6 videos being annotated as

FM-. In our published works two variants of this dataset were used, the first was the RVI-25

dataset which consists of the first 25 videos transferred from the Royal Victoria Infirmary (19

videos annotated as FM+ and 6 videos annotated as FM-), and the RVI-38 dataset which consists

of all 38 videos. We implemented two variants of the dataset due to logistical constraints and as

such were able to publish papers using both versions stated.

4.4 Pose Estimation and Data Pre-processing

Whilst the infant movement data is captured as raw RGB video, directly analyzing these videos is

a challenging task since a wide range of factors contributes towards the intra-class variations, in-

cluding: illumination, the background of the video, the appearance of the infant (body shape, skin

color, with or without clothing), and external influences such as parental or clinician intervention

etc. To address these issues we use the raw video as input for a pose estimation framework to

compute joint positions, as discussed in Section 4.4.1. The extracted pose data is then corrected

to remove outliers and inconsistencies, as discussed in Section 4.4.2. This corrected data is then

used to generate features based upon the GMA for further analysis, details of the features used and

the extraction processes are discussed in Section 5.2. These extracted features are then fed into

classification frameworks, consisting of several different classification algorithms, for evaluation

as discussed in Chapter 6 and Chapter 7.
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4.4.1 Pose Estimation from Video

With the advancement of convolutional neural networks (CNNs), high performance can be achieved

in solving a wide range of visual recognition tasks such as object detection, image segmentation

and pose estimation. For pose estimation, the locations of body parts (e.g. joints) can be detected

from an image. In particular, OpenPose [151] is one of the top-performing approaches proposed in

recent years. OpenPose is based on Part Affinity Fields, which learn the association between body

parts and their appearance in the image. Such an approach is also referred to as a ‘bottom-up’

approach that recognizes lower level features (e.g. body parts) first, in order to reconstruct the

higher level skeletal posture.

18 Keypoint Pose Estimation

In this method, the official OpenPose implementation (https://github.com/CMU-Perceptual-Computing-

Lab/openpose) is used for extracting the 2D locations of the joints from the video. Specifically,

each video is converted into a sequence of images and a skeletal pose is extracted from each image.

For each posture, 18 keypoints including body joint locations and facial landmarks are detected.

An example of the skeletal pose extracted using OpenPose is shown in Figure 4.1. Each keypoint

contains the x and y coordinates of the joint location within the image. In this method, 14 joints,

consisting of head, neck, left and right shoulders, left and right elbows, left and right wrists, left

and right hips, left and right knees, and left and right ankles were used.

25 Keypoint Pose Estimation

In order to extract further meaningful features for subsequent analysis and classification, we again

make use of the OpenPose framework [151] to extract joint positions from 2D RGB video data.

This time the extracted joint positions form a skeletal pose representation consisting of 25 prede-

fined keypoints, as shown in Figure 4.1. We implement the updated 25 joint version of OpenPose

since the authors suggest that this modified version provides improved accuracy. As such, each

frame of each video is represented by 25 sets of 2D (x and y) coordinates and an associated con-

fidence score for the prediction. In this method, we make use of all the extracted joints with

the exception of the facial landmarks (joints 16 to 19), and the feet (joints 20 to 25), as it was

determined that these joints were less reliable than the other body landmarks acquired through
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Figure 4.1: Examples of the extracted 18 keypoint and 25 keypoint pose estimation using Open-
Pose [151], with associated joint reference numbers overlaid on an example input RGB image
from the MINI-RGBD dataset [150].

OpenPose due to occlusion/framing errors, and were found to play a less important role in the

final GMA-based classification results.

4.4.2 Automatic Data Correction

To ensure consistency throughout the pipeline, the exported OpenPose data is pre-processed prior

to feature extraction. This is because the accuracy of joint location prediction can be affected by

factors such as self-occlusion of body parts. To alleviate this problem, an automatic data correc-

tion pre-processing approach is used. This pre-processing involves remapping anomalous joint

positions caused by self occlusion or inaccuracies in the OpenPose joint prediction process. An

example of this is shown in Figure 4.2. Given that OpenPose returns a confidence score associ-

ated with each predicted joint location, the first stage is a qualitative evaluation of the extracted

OpenPose data, to check that predicted joint positions and the associated confidence scores cor-

rectly align, and are consistent with the input video. We then use the predicted confidence scores

to calculate a confidence threshold. Since different confidence score distributions are obtained

from different videos, due to the different movements as well as environmental conditions (such

as lighting, video quality, etc), we adaptively adjust the threshold of the confidence score to decide
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Figure 4.2: An example of our proposed automated pose data correction approach

whether the predicted joint location is ’usable’ or correction is required. As such, the confidence

threshold is calculated by taking the average confidence score, per joint, across each video se-

quence, and subtracting 5% from this. This means that we are able to remove joint positions with

a lower confidence score than the confidence threshold, removing outliers on a frame by frame

basis, for each joint, in each video sequence. As such, we compute the confidence threshold value

ti for joint i by

ti = (
1

n

n∑
j=1

ci,j)× 95% (4.1)

where n is the total number of frames (or postures), ci,j is the confidence score of joint i at frame

j returned by OpenPose. From our experiments we empirically found that a manual threshold of

5% provided the best results.

Next, the trajectory of each joint is computed separately by curve fitting based on the joints with

confidence scores which are above the threshold. In doing so, the location of the joint with a con-

fidence score below the threshold at a frame will be estimated by the locations in the neighbouring

frames with a higher confidence score. This aligns with the observation that human motion is

continuous and the videos are captured at a high frame rate (25 FPS or above). As a result, the

changes of the joint locations over time should be small and a curve function can approximate the

joint trajectory over time. Among a wide range of curve fitting functions, the modified Akima

interpolation [152] is selected in our work, since using this spline function can effectively avoid
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the overshooting issues found in other spline functions. This results in a more natural interpo-

lated trajectory, closer to the original signal. The joint locations with a confidence score above the

threshold will then be used as the control point Xj as the input of the modified Akima interpola-

tion.

Xj = [xj,0, ..., xj,m] (4.2)

where m is the number of frames with a confidence score above the threshold, xj,i is the location

of the joint j on the i-th ’usable’ frames. The slope δi on interval between xi and xi+1 can then

be determined. The derivative di at the sample point xi, which is used for the modified Akima

interpolation, can be calculated by:

di =
w1

w1 + w2
δi−1 +

w2

w1 + w2
δi (4.3)

and the weights w1 and w2 are determined by:

w1 = |δi+1 − δi|+
|δi+1 + δi|

2
(4.4)

w2 = |δi−1 − δi−2|+
|δi−1 + δi−2|

2
(4.5)

.

We then applied a moving-average filter between frames on a per joint basis to reduce jitter present

in the sequence. With the filter, smoother, more reliable movements were generated for motion

analysis. Empirically, we found that using a filter calculated over a 5 frame sliding window pro-

vided the best results.

4.4.3 Data Normalization

The joint locations returned from OpenPose are presented as the x and y coordinates on the image.

Since differences in body size may impact upon the magnitude of body movement, subsequently

affecting classification accuracy, all of the extracted infant pose data is scaled to to a standardized

height. We do this by computing the height of the infant from the skeletal pose. The height can
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be estimated by the sum of the lengths of the following body segments: lower leg, upper leg,

hip-to-neck and head (refer to Figure 4.1).

In addition to the scaling factor, the orientation of the infant also affects the performance of the

machine learning process. As such, we transform the extracted pose sequence so that the infant

pose data is vertically aligned and centred in each frame, as illustrated in Figure 4.2. We do this

by computing the acute angle between the medial axis of the torso, which can be represented by

a straight line between the middle of the hip joints (i.e. left hip and right hip for the 18 keypoint

variant or joint 9 in the 25 keypoint variant) and the neck joint, and a vertical line in the coordinates

system. Using the root joint as an example, we amend all joint coordinates so that the root is fixed

at 0,0 whilst the relative distance of each of the joints is unchanged. We then calculate the rotation

θfalign required at frame f to align the spinal column (i.e. the central line between joints 2 and 9)

with the yaxis = (0, 1) by

θfalign = dir × arccos
(fpf2 − fp

f
9) · yaxis

‖(fpf2 − fp
f
9)‖‖yaxis‖

(4.6)

where fpf2 and fpf9 are the filtered 2D coordinates of joint 2 and 9, respectively, and dir =

sign(fpf2 − fpf9) × yaxis) is used to determine the direction of the rotation (i.e. clockwise or

counter-clockwise). Finally, the normalized position p of each joint can be computed by

pfi =

cos(θfalign) −sin(θfalign)

sin(θfalign) cos(θfalign)

 (fpfi − fp
f
9)T (4.7)

where i ∈ [1, 15].

This means that each posture in the motion sequence is rotated and centred according to the com-

puted acute angle. We then apply these techniques to all of the extracted posture sequences. The

pose-estimation methods utilised, the automatic data correction approaches used to deal with out-

lying anomalous data points, and the data normalisation techniques used ensure data consistency

throughout, meaning they are normalized and ready for further analysis. With the data processed

in this manner, we are then able to feed it directly into the next stage of our pipeline, namely

feature extraction for classification.
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Feature Engineering

In this chapter we discuss several prominent methods from the literature, which are reimplemented

and used as baselines for comparison. We also provide information relating to the feature engineer-

ing used to generate our proposed meaningful features, based upon the GMA, for the automated

prediction of CP. Finally, we examine our proposed feature fusion methods and how these might

further improve performance, and provide details of the required normalisation carried out prior

to classification.
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5.1 Baseline Features for Comparison

In order to assess the effectiveness and robustness of our system, we reimplement several video-

based methods from the literature to serve as baselines for comparison, namely Centroid of Mo-

tion and Quantity of Motion [115] [129] [128]; Cerebral Palsy Predictor [114]; Absolute Motion

Distance, Relative Frequency, and Magnitude of Wavelet Coefficients [116]; Frequency Analysis

[110]; and the Movement Complexity Index [153]. We also compare our results with the meth-

ods reported in [154], [155] and [156] using the source code provided by the authors. From our

literature review and the analogous survey paper by Irshad et al. [157], we suggest that these

baseline methods represent the most prominent and comparable methods from the related works.

To our knowledge, a comparison of the different proposed approaches has not been carried out to

quantitatively evaluate the effectiveness of each method on shared datasets.

Centroid of Motion

In order to generate the Centroid of Motion (CoM), a motion image was first produced for each

frame in the video sequence. A motion image is created by identifying the pixel variance between

two sequential frames, and then assigning a pixel-wise point value of 0 or 1 based upon this vari-

ance. This process generates a frame-based image sequence, where white represents movement

calculated between frames, and black represents no movement.

The CoM is the spatial centre point of the motion image which highlights the pixels with detected

changes (i.e. body movement), and in our case, represents the the centre point of the movements of

the infant. As discussed in the literature, the mean and standard deviation of the CoM in the x-and

y-directions (CXmean, CXSD, CYmean and CYSD) were then calculated and exported as features for

classification.

Quantity of Motion

The Quantity of Motion (QoM) is also calculated through the generation of a motion image. It is

the sum of all pixels with positive values from the motion image, divided by the total number of

pixels contained within the image. The standard deviation (QSD) and mean (Qmean) of the QoM

were calculated and used for classification. Both the CoM and the QoM were extracted using the

musical gestures toolbox discussed in the literature (https://www.arj.no/2018/09/28/mgt/).
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Cerebral Palsy Predictor

The Cerebral Palsy Predictor (CPP) [114] is the concatenated combination of the centroid of mo-

tion standard deviation (CSD), the quantity of motion mean (Qmean), and the quantity of motion

standard deviation (QSD). Adde et al. [114] suggest that this feature combination is their best

motion image based method of predicting of later CP. We concatenated the features as discussed

and again carried out classification.

Absolute Motion Distance

The Absolute Motion Distance (AMD), Relative Frequency (RF), and Magnitude of Wavelet Co-

efficients (MWC) methods are all based upon optical flow information, which is used for motion-

based tracking. For re-implementation, we followed the technical details presented in [116]. A

regular grid was initialised and optical flow was used to track the motion of these grid points

across a specified sequence of frames. Individual trajectories were therefore obtained for each of

the tracked grid points allowing for further analysis of the motion.

The AMD is proposed as a holistic measure of activity, as it captures the absolute values of the

optical flow velocities and stores them in histogram format. The histogram features are then

classified. Since the bin size is not specified in [116], we empirically selected 64 as the size in

our implementation. These histograms therefore represent the relevant statistical data about the

amount of observed infant activity, and were used for classification.

Relative Frequency

Using the grid based optical flow data previously discussed, the Relative Frequency (RF) is gen-

erated by analysing the time dependent trajectory signals. The RF of the signal represents the

occurring frequencies found in the movement patterns, this information is converted into a his-

togram for classification [116]. We followed [116] in our implementation. Again, the bin size of

the histogram is not specified, so we use 64 in our work, as this was empirically found to pro-

vide the best results. In order to extract discriminative information relating the the frequencies,

the time-distance between consecutive maxima is computed. A histogram representation of these

measured time-distances is then generated and used as the relative frequency measurement and

subsequently classified.
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Magnitude of Wavelet Coefficients

The previously created optical flow trajectories were again used, this time to generate the Mag-

nitude of Wavelet Coefficients (MWC). The wavelet power spectrum is used to demonstrate the

variety of the observed movement at different resolution levels, providing insight into the com-

plexity of the movement. We followed [116] to compute the histogram features from the wavelet

power spectrum. The Meyer wavelet transform was used to convert the discrete sampled signal

into a series of wavelet coefficients, which represent the amplitude of the wavelet function at a

particular scale and location. A spectrogram of the trajectories was generated at specified power

levels, computed as the the square sum of the detail coefficients of that level. The magnitude was

then used as a measure of the movement activity and a histogram representation was once again

generated and used for classification.

Frequency Analysis

Given that normal FMs are defined as an ongoing and variable stream of movements, Rahmati et

al. [110] suggest that these motions can be better studied in frequency domain. As such, FFT was

used to obtain the frequency components of the motion. We followed [110] to extract the mean

and standard deviation values of the Fourier coefficients in horizontal (FFT-Xmean and FFT-XStD)

and vertical directions (FFT-Ymean and FFT-YStD) as features for classification, using 100 bins

with non-uniform sizes as specified in the literature.

Movement Complexity Index

Inspired by our work, Wu et al. [153], also make use of pose-based features for the prediction

of CP using a feature extraction and classification pipeline. They proposed the Movement Com-

plexity Index (MCI) which makes use of 2D keypoints extracted from RGB video alongside depth

camera (RGB-D) footage to model infant movements in 3D space as a means of determining the

complexity and correlation of the whole-body movement characteristics. This method primarily

makes use of the joint angles as a means of extracting useful features using the Spearman Correla-

tion Coefficient Matrix. However, this method focuses upon analyzing the features to predict the

risk level of CP in the infant. The features are computed from 3D skeletal data which requires spe-

cialized image sensing devices to capture those data. Furthermore, the method requires the user to
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specify a threshold level of the computed index to separate normal/abnormal, and determining this

threshold automatically is not discussed. Whilst we report the result from this method in Sections

7.3 and 6.2.4, we are unable to fully verify the proposed framework on other datasets since it relies

upon depth coordinate information provided by a Microsoft Kinect sensor or similar.

5.2 Proposed Features

In our work, we suggest that pose-based histogram features can effectively represent the motion

and distribution of postures over time related to the GMA. Using the corrected and normalised pose

data we therefore propose several new pose-based histogram features, for the analysis of infant

body movements. The features presented here represent our continued refinement in modelling

infant body movements and the evolution of our framework for the prediction of CP. As such, we

provide details of the proposed features and their specific relevance to the motion characteristics

and assessment criteria from the GMA.

Histograms of Joint Orientation (HOJO2D)

In this representation the 2D space is segmented into n bins that represent the prevailing angle of

joint orientation. The joint orientation is computed by calculating the spatial relationship between

a joint and its associated parent joint, subsequently allowing for the calculation of the alignment

of the connecting bone:

bone = ji − ji−parent. (5.1)

where ji and ji−parent are the vectors containing the 2D coordinates of the i-th joint and its parent

joint. We manually select the joint range (e.g. grouping joints 6, 7 and 8 to extract data pertaining

to the left arm) to extract part specific information before a suitable bin is assigned for each joint

per frame. As a result, the pose is represented by an n bin histogram of normalised data. Given

that a key characteristic of abnormal infant movements is a lack of variability, this feature is there-

fore able to represent the uniformity of the infant pose, highlighting the prevalence of repetitive

postures.
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Histograms of Joint Displacement (HOJD2D)

In this representation the displacement of each joint (i.e. the euclidean distance travelled across

a specified frame range) is extracted and recorded every 5 frames. Again a histogram-based ap-

proach is used to represent the displacements, with a relevant bin, each of which represents a

regular incremental increase, being assigned based upon the degree of displacement. Again, a

range of joints is selected manually for part-based analysis. In this way the displacement can be

represented by an n bin histogram of normalised data. This feature is engineered to represent the

quantity and variety of body-part specific movements exhibited by the infant.

Histograms of Angular Displacement (HOAD2D)

HOAD2D represents the change in angular orientation across a specified time interval for each

body part in the video. This histogram-based feature captures the distribution of the angular dis-

placement between a predefined regular offset interval, in which our experiments found 8 frames

to be optimal. As such, the smoothness of the body part movements can be represented, for exam-

ple, a smooth movement should be characterised by a histogram which has only a small number of

bins having high values. This feature is therefore designed to help identify spasmodic, abrupt, and

sporadic movements of short duration. The orientation of each joint is essentially the 2D vector

pointing from the parent joint to the child joint:

ofi = pfi − p
f
j (5.2)

where ofi is the orientation (2D vector) of joint i at frame f , pfi and pfj are the 2D coordinates of

joint i and j, respectively, and joint j is the parent of joint i. Here, we further compute the angular

displacement θfi of joint i at frame f by:

θfi = arccos
ofi · o

f−∆t
i

‖ofi ‖‖o
f−∆t
i ‖

(5.3)

where ∆t is a predefined regular offset interval of 8 frames, the value of which we determined em-

pirically from our experiments. Equation 5.3 is essentially the cosine similarity of ofi and of−∆t
i .

By this, the direction (i.e. clockwise or counter-clockwise) of the angular displacement will be dis-

carded such that the feature will solely focus on the magnitude of the orientation change.
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Having computed the angular displacements of every joint in the whole pose sequence, the HOAD2D

for each joint is computed by quantizing the displacements into a finite number of bins. There-

fore, the number of bins and the size (i.e. range of values) of each bin will significantly affect

the discriminative power of the feature. We observed that most of the angular displacements are

very small, while the maximum theoretical displacement is 180◦. As a result, we propose using

non-uniform bin sizes to better represent the distribution for the angular displacements:

bsi =
180◦

2n−i
(5.4)

where bsi is the bin size for the i-th bin and n is the total number of bins for the histogram feature.

For HOAD2D, we empirically found that n = 16 yields the best results.

Histograms of Relative Joint Orientation (HORJO2D)

To analyse the coordination and synchronisation of different body part movements, it is important

to extract features from different joints simultaneously. Inspired by Rueangsirarak et al. [158],

we propose representing the distribution of the relative orientation of the joints using a histogram-

based feature. Here, the pairwise relative joint orientation is computed in a similar manner as in

Equation 5.2:

ofi→j = pfj − p
f
i (5.5)

, although the two joints are not necessarily physically connected. In order to capture the syn-

chronisation of different parts of the body, we compute the relative orientation for all pairs of

joints.

Since the relative joint orientation with a range of 0◦ to 359◦ can be obtained, a uniform bin size

is used and we empirically found n = 16 produced the best performance. Once the individual

joint histograms have been extracted, we combine these to form histogram representations for

each limb prior to concatenation for classification. HORJO2D intuitively represents the body

synchronisation, as such, a histogram which has only a small number of bins having high values

means that the joints are moving in the same direction together.
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Histograms of Relative Joint Angular Displacement (HORJAD2D)

To further capture the change in body part movement synchronisation over time, the angular dis-

placement of the relative joint orientation is also extracted as a histogram feature. This feature

is crafted to evaluate the relationship between body parts, such that whole body coordination,

dystonia, and ataxic movements can be assessed. As with extracting the HORJO2D feature, the

pairwise relative joint orientation (RJO) is computed and similarly combined. We further compare

the RJOs before and after the predefined frame offset interval, and angular displacement is calcu-

lated using the cosine similarity of the two RJO vectors similar to the calculation of HOAD2D, as

in Equation 5.3.

Again, most of the angular displacements computed are having a small value. As a result, the non-

uniform bin size (Equation 5.4) is used to increase the discriminative power of the HORJAD2D

feature. From our experiments, we empirically found that n = 8 provides the best results.

Fast Fourier Transform of Joint Displacement (FFT-JD)

Whilst the aforementioned histogram features represent the distribution of different kinds of spatial

features at a coarse level, the temporal ordering information is being discarded. Inspired by the pre-

vious work in analysing body movements in the frequency domain [110], we propose the FFT-JD

feature. This feature contains the magnitude of each of the frequency components extracted from

the motion such that the variability of the motion can be better assessed. By using the Fast Fourier

Transform (FFT) we convert the extracted joint displacement signal Di = [‖ṗ2
i ‖, ‖ṗ3

i ‖,· · · , ‖ṗmi ‖]

of joint i from a motion with m frames to a representation in the frequency domain, allowing

us to model the complexity, fluidity, and variability of the movements, whilst highlighting any

repetitive, athetoid, tremulous, or myoclonic characteristics. Additionally it is reported that an-

alyzing human motion in the frequency domain is more robust to noisy data [159], and as such

helps with the task of assessing some of the smaller, more detailed movements associated with the

GMA.

We extract the FFT-JD by applying FFT to the vector Di:

Y k
i =

1

m

m−1∑
f=0

Die
−l2πkf
m (5.6)

72



CHAPTER 5. FEATURE ENGINEERING

where Y k
i is a vector which contains the magnitude of the frequency component at index k for

joint i, e
l2π
m is a primitive mth root of 1.

Having computed the frequency component Yi from Di, Yi is partitioned into 16 bins with non-

uniform bin sizes:

bsFFT−JD,b =


F b2

n2 , if b = 1,

F b2

n2 −
∑b−1

k=1 bsFFT−JD,k, if 2 ≤ b < n,

F −
∑b−1

k=1 bsFFT−JD,k, if b = n.

(5.7)

where bsFFT−JD,b is the size of the b-th bin and F is the number of frequency components ob-

tained fromDi using FFT. The last bin (i.e. bsFFT−JD,n) will occupy the remaining space.

Fast Fourier Transform of Joint Orientation (FFT-JO)

Similar to the FFT-JD feature we once again make use of FFT to model repetitive movements by

looking into the frequency components. This feature provides information relating to the rigid-

ity, directional variation, and range of movement associated with the infant’s posture. In this

case we model the repetition and frequency of similar postures from a joint orientation sequence

Oi = [o1
i , o

2
i ,· · · , omi ] for joint i using FFT as in Equation 5.6. The histogram-based FFT-JO is

computed using the same method described in Equation 5.7, where the frequency components

are computed using Oi instead. In this case, the bins for the lower frequency components will

be smaller and can more effectively represent the low frequency components, since GMs from

infants are mostly in lower frequencies, while the high frequency motion signals likely contain

noise, allowing us to use this feature to further remove potentially anomalous noisy data from the

classification process.

Revised HOJO2D and HOJD2D

In our initial iteration of these features, we explained that HOJO2D and HOJD2D are the his-

togram representations of the infant pose based upon the orientation of selected joints and their

displacements respectively. We further improve upon this previously reported method by extract-

ing individual joint histograms and concatenate these to form limb-based representations. This

method means that we are able to incorporate a greater range of motion data than the previous
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method, which extracts an individual per-limb histogram representation grouping and amalgamat-

ing several joints together. This approach allows us to assess movements in finer detail such that

we are able to gain a better understanding of the underlying motion characteristics.

Feature Fusion

In addition to evaluating the classification performance of each of the individual features, we also

fuse our selected features together for further analysis. Our aim in applying feature fusion is

that better classification performance will be achieved over using only the individual histogram

features, and that better robustness across datasets will be evident. In our experiments we apply

early fusion by concatenating relevant feature vectors creating a fused feature set for classification.

We experiment on several combinations of fused features, with the results reported in Chapter 6

and Chapter 7.

To generate our first group of fused features we concatenate HOJO2D and HOJD2D. In this group-

ing, we focus on evaluating 3 features, consisting of Arms, Legs and Limbs, with both 8-bin and

16-bin variants of the individual features.

Our second group of fused features consists of pose-based features. This grouping represents

the angular feature information extracted from the pose data, as such these representations are

indicative of the overall quality of the infant posture and the predominant directions of movement.

The pose-based features consist of a concatenation of HOJO2D, HOAD2D, HORJO2D, and FFT-

JO.

Our third group of fused features consists of the velocity-based features. This feature set represents

the displacement of the joints over predefined time intervals, and as such model the speed, fluidity,

coordination, and complexity of the infant movements. The velocity-based features consist of a

concatenation of HOJD2D, HORJAD2D, and FFT-JD.

Lastly, we fuse the pose-based feature set with the velocity-based feature set such that we can

generate a holistic representation of the infant motion patterns.
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5.3 Histogram Normalisation

With the features extracted, we need to ensure they are on the same scale prior to further analysis

for consistency. In order to do this we use Z-score to standardise the feature data h, by

z =
h− µ
σ

(5.8)

where µ and σ are the mean and standard deviation of all samples in the training set, and z contains

the normalized features. In our implementation we use Z-score as this allows our system to retain

the shape properties of the original dataset, with our initial classification results showing improve-

ments using this method over min-max normalization. We empirically found that this provided us

with the most robust solution across all of the proposed methods and the different datasets, as such

we employ this in each of the frameworks discussed in Chapter 6 and Chapter 7.

5.4 Concluding Remarks

In this chapter we have examined our proposed pose-based features. Specifically we have dis-

cussed the theory behind the feature extraction processes for each of our proposed features, namely:

Histograms of Joint Orientation (HOJO2D), Histograms of Joint Displacement (HOJD2D), His-

tograms of Angular Displacement (HOAD2D), Histograms of Relative Joint Orientation (HORJO2D),

Histograms of Relative Joint Angular Displacement (HORJAD2D), Fast Fourier Transform of

Joint Orientation (FFT-JO), and Fast Fourier Transform of Joint Displacement (FFT-JD). We have

also discussed the baseline features selected for comparison, namely: Centroid of Motion (CoM),

Quantity of Motion (QoM), Cerebral Palsy Predictor (CPP), Absolute Motion Distance (AMD),

Relative Frequency (RF), Magnitude of Wavelet Coefficients (MWC), Frequency Analysis, and

Movement Complexity Index (MCI). These baselines represent the most prominent methods from

the literature, and as such, an explanation of our implementation of each is provided. With the

proposed features and baseline features extracted from the video data, we are able to feed each

into our proposed machine learning frameworks, for classification.
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Machine Learning

In this chapter, we discuss our proposed machine learning frameworks for the prediction of CP.

We provide details relating to the architecture of our frameworks, the evolution of our proposed

diagnostic machine learning pipeline, and the metrics used to evaluate performance. We then pro-

vide further discussion concerning our evaluation of classification performance, feature robustness

and generalisability across multiple datasets.
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6.1 Proposed Machine Learning Frameworks

The overall motivation for our project is to evaluate the feasibility of using our proposed pose-

based features, for the task of identifying CP in infants based upon the GMA and associated phys-

ical examinations. Our classification frameworks consist of several traditional machine learning

algorithms and deep learning frameworks. Given that the optimal selection of a classification algo-

rithm can be dependant upon several factors, we simultaneously assess both the proposed features

and the selected classification algorithms. This approach allows us to generate an interpretation of

the strength of the features assessed, and the relative performance of each classifier.

Each of the following sections represents a step forward in our overall framework’s design. The

framework discussed in Section 6.1.1 focuses upon the introduction and classification of our initial

HOJO2D and HOJD2D features, and serves as a feasibility study into the viability of classification

using pose-based assessment. In Section 6.1.2, we expand upon this and examine several deep

learning architectures for classification of the HOJO2D and HOJD2D features, to establish the

viability of a hybrid classification approach. In Section 6.1.3, we discuss the introduction of our

proposed supplementary features, and how these fit into our improved classification framework.

Finally, in Section 6.2 we provide extensive evaluation and discussion relating to classification

performance of each of the discussed frameworks, and analysis of the effectiveness of the proposed

features.

6.1.1 Initial Traditional Machine Learning Framework

In out initial feasibility study, the extracted pose data is based upon the 18 keypoint pose estimation

variant of OpenPose as discussed in Section 4.4.1. We evaluate the effectiveness of using the the

proposed pose-based features HOJO2D and HOJD2D, discussed in Section 5.2, for classifying

video footage into two categories (normal and abnormal). In our experiments, the ground truth for

comparison is the data annotation carried out by the independent expert reviewer using the clinical

GMA.

To generate meaningful features, in this work, we manually select the joint range to extract part

specific information before a suitable bin is assigned for each joint per frame. As a result, body-

parts from each selected joint range are represented by an n bin histogram of normalised data.
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Figure 6.1: Our initial feature extraction and classification framework

This means that we are able to generate a part-specific histogram for each joint range selected,

allowing us to feed these individually as inputs into the classification framework to get a part-

specific classification result.

The proposed feature extraction and classification framework diagram (Fig 6.1) shows our ex-

tracted 8 and 16 bin features, in which LA refers to Left Arm, RA refers to Right Arm, LL refers

to Left Leg, and RL refers to Right Leg. We train the k-Nearest Neighbour (kNN) (where k=1

and k=3), Linear Discriminant Analysis (LDA) and Ensemble (ENS) classification algorithms for

binary classification, using different combinations of HOJO2D and HOJD2D, details of which are

provided in the experimental results discussed in Section 6.2.2.

6.1.2 Proposed Deep Learning Architectures

Whilst the initial results in determining the feasibility of using our proposed HOJO2D and HOJD2D

features using traditional classifiers were promising, we also wanted to evaluate the effectiveness

of using a deep learning framework for this classification task. However, the holistic application

of deep learning in the healthcare domain faces several challenges, most notably the large amount

of data usually required for suitable results, and the problem of interpretable AI. Understanding

how a framework arrives at a decision is particularly important in the healthcare domain, and this
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is often very difficult, if not impossible to do with an end-to-end deep learning framework as deep

features are typically incomprehensible for human perception. With this in mind, in this section we

propose several deep learning frameworks which act simply to classify the hand-crafted features

HOJO2D and HOJD2D, which we generate from the normalised, pre-processed data discussed in

Section 4.4, using the methods discussed in Section 5.2.

The individual features as well as the fused feature sets are exported for evaluation in our clas-

sification experiments using five separate deep learning architectures. In particular, three distinct

types of network architectures are proposed. We first introduce a fully connected network ar-

chitecture which serves as a basic classification framework, we then further propose 1D and 2D

convolutional neural network architectures. We carry out extensive experiments and ablation stud-

ies to determine the effectiveness of each proposed framework, details of which are discussed in

Section 6.2.3.

The proposed deep neural network architectures are implemented in the PyTorch framework. We

ran all experiments on a desktop computer with a single NVIDIA TITAN XP graphics card. Addi-

tional parameters such as epochs = 4000, learningrate = 0.0005 and batchsize = 3 were used

in all tests.

Fully Connected Deep Networks

Fully connected deep network architectures are considered a generic framework for handling dif-

ferent problems since they are robust to different kinds of inputs (such as text, extracted features,

images, videos, etc). Our proposed fully connected network architecture (Figure 6.2), namely FC-

Net, is designed with gradually decreasing layer sizes. The input of the network is a 1D vector

of the histogram-based features. The output of the last fully connected layer is fed into a softmax

layer for classification. To reduce the negative impact of overfitting, we have constructed a system

where each fully connected layer is followed by a dropout layer.
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Figure 6.2: The proposed FCNet network architecture consisting of fully connected (fc) layers and
dropout layers.

1D Convolutional Neural Networks

In the proposed pose-based features, the neighboring values are actually capturing similar body

postures (i.e. with body part orientation in HOJO2D) and movements (i.e. with body part displace-

ment in HOJD2D). In this framework, the limb-level and fused features are created by appending

the histogram features of individual body parts resulting in a long 1D vector:

histcombined1D = [histpart1 , histpart2 , ..., histpartn ] (6.1)

where histcombined1D is the final feature vector concatenated from the histogram features extracted

from individual body parts and n is the number of body parts included in this feature.

To exploit the spatial information from the features, we propose two 1D convolutional neural net-

work architectures, namely Conv1DNet-1 (Figure 6.3) and Conv1DNet-2 (Figure 6.4), to attempt

to learn any deep representations and subsequently improve performance.

Due to the relatively low dimensionality of the input feature vector, both of the proposed archi-

tectures contain two 1D convolution layers. To further improve the performance, each 1D convo-

lution layer is followed by a max pooling layer to down-sample the output, further feeding into a

dropout layer to avoid overfitting. Similar to FCNet, the input of our network is a 1D vector of

the histogram-based features. The output of the last dropout layer is flattened into a 1D vector and

the dimensionality is reduced by a fully connected layer before feeding into a softmax layer for

classification.
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Figure 6.3: The proposed Conv1DNet-1 network architecture which consists of 1D convolution,
max pooling and dropout layers.

Figure 6.4: The proposed Conv1DNet-2 network architecture which consists of 1D convolution,
max pooling and dropout layers. Note the gradually increasing output channel sizes.

Each of the convolutional layers use the same group of settings, with kernel size = 3 and

stride = 3. For the max pooling layers, kernel size = 3 and stride = 3 are also used. The

main difference between the two networks is that Conv1DNet-1 (Figure 6.3) has a constant output

channel size while Conv1DNet-2 (Figure 6.4) increases the output channel sizes gradually.

2D Convolutional Neural Networks

To further exploit the spatial information among different body parts in the motion, we further

propose two 2D convolutional neural network architectures. To learn the spatial correlation within

the 2D convolutional neural network, the input vector has to be converted into a 2D matrix shape.

This is done by reshaping the 1D feature vector to a 2D matrix with each row containing the
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histogram features extracted from a single body part:

histcombined2D =



histpart1

histpart2
...

histpartn


(6.2)

The two 2D convolutional neural network architectures we propose, namely Conv2DNet-1 (Figure

6.5) and Conv2DNet-2 (Figure 6.6), share a common design, with two 2D convolution layers.

Similar to the proposed 1D convolutional neural networks, each 2D convolution layer is followed

by a max pooling layer to down-sample the output and further feed into a dropout layer to avoid

overfitting. The output of the last dropout layer is flattened into a 1D vector and the dimensionality

is reduced by a fully connected layer before feeding into a softmax layer for classification. All the

convolutional layers are using the same group of settings with kernel size = 3 and stride = 1.

For the max pooling layers, kernel size = 3 and stride = 2 are used.

Figure 6.5: The proposed Conv2DNet-1 network architecture which consists of 2D convolution,
max pooling and dropout layers.

The main difference between the two networks is that Conv2DNet-1 (Figure 6.5) has a constant

output channel size while Conv2DNet-2 (Figure 6.6) increases the output channel sizes gradu-

ally.
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Figure 6.6: The proposed Conv2DNet-2 network architecture which consists of 2D convolution,
max pooling and dropout layers. Note the gradually increasing output channel sizes.

6.1.3 Improved Traditional Machine Learning Framework

In our previous frameworks we evaluated the feasibility of using the HOJO2D and HOJD2D pose-

based features. In this section we provide details on how we integrate additional pose based

features to enhance the predictive accuracy of our prediction pipeline. Given that GM assessors

typically look for specific movement patterns, we attempt to model these patterns through a set of

orientation-based, displacement-based and frequency-based features. As such, we propose several

new features, specifically HOAD2D, HORJO2D, HORJAD2D, FFT-JD, FFT-JO, as well as the

revised versions of HOJO2D, HOJD2D, as discussed in Section 5.2. These features are used as

input to our improved machine learning pipeline (Figure 6.7) for further analysis.

Figure 6.7: Overview of the pose estimation, feature extraction and classification framework.
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In this proposed framework we again make use of traditional machine learning classification algo-

rithms for practicality and interpretability. In this case, in addition to the classifiers used in our ini-

tial framework (Linear Discriminant Analysis (LDA), Ensemble (ENS), and k-Nearest Neighbour

(kNN) where k = 1 and k = 3), we are using several other classification algorithms (specifically,

Logistic Regression (LR), Support Vector Machine (SVM), and Decision Tree (DT)), details of

which are provided in Section 2.2.2.

We train the classification algorithms for binary classification, using different combinations of the

extracted features, and evaluate the classification performance across multiple datasets to subse-

quently establish the feature robustness for this classification task. In order to do this we introduce

a new real-world dataset which we use to inform and evaluate our newly proposed features. Fi-

nally, we implement several prominent baseline methods from the literature, which we use for

comparison on shared datasets for an unbiased review of current assessment techniques. Full

details of these experimental results are discussed in Section 6.2.2.

6.2 Experimental Results

In this section we evaluate the results of the various experiments on each of the proposed frame-

works discussed in Section 6.1. We provide full details of the metrics, datasets, comparative

baselines, relevant ablation tests, and feature analysis used in our evaluations. We also discuss our

overall observations and assessment of the robustness of the proposed features and classification

frameworks.

6.2.1 Performance Measures

In this project we make use of several evaluation metrics to assess the performance of each feature

and the associated classifier; in this section we provide details of each of the metrics used.

AC =
TP + TN

TP + FN + TN + FP
(6.3)

SE =
TP

TP + FN
(6.4)
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SP =
TN

TN + FP
(6.5)

In our evaluation, True Positive (TP) is a measure of the cases in which impaired infants are cor-

rectly classified as impaired, True Negative (TN) represents unimpaired infants correctly classified

as unimpaired, False Positive (FP) represents unimpaired infants incorrectly classified as impaired,

and False Negative (FN) represents impaired infants incorrectly classified as unimpaired. Based

upon these metrics, the Sensitivity (SE) is defined as the percentage of correctly identified positive

classifications amongst the positive population of the dataset, the Specificity (SP) is defined as

the percentage of correctly identified negative classifications amongst the negative population of

the dataset, and the Accuracy (AC) is defined as the holistic percentage of all correctly classified

instances.

PR =
TP

TP + FP
(6.6)

RE =
TP

TP + FN
(6.7)

F1 = 2 · PR ·RE
PR+RE

(6.8)

We also calculate the Precision (PR) , Recall (RE) , and F1 Score (F1) , since accuracy metrics

alone are generally considered to be insufficient to suitably determine the robustness of a classi-

fication model. PR represents the percentage of correctly identified positive cases from all of the

positive predictions, RE measures the correctly identified positive cases from all of the actual pos-

itive cases, and F1 is the harmonic mean of PR and RE and as such conveys the balance between

the precision and the recall.
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MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(6.9)

Finally, we also calculate the Matthews Correlation Coefficient (MCC). The MCC is generally re-

garded as a particularly reliable statistical test since it only produces a high score if the prediction

obtains good results in all of the four confusion matrix categories (i.e. TP, TN, FP, FN), propor-

tionally both to the size of positive elements and the size of negative elements in the dataset. This

characteristic makes it the preferred method of evaluating binary classification tasks on imbalanced

datasets [160].

6.2.2 Initial Machine Learning Framework Classification Performance

In our evaluation of the initial framework discussed in Section 6.1.1 we make use of the MINI-

RGBD dataset. Since this dataset has a limited number of video sequences (12 in total), we employ

leave-one-out cross-validation to evaluate the performance. We train each classifier using different

combinations of the HOJO2D and HOJD2D features extracted from 11 video clips and used these

trained classifiers to predict the class label of the remaining unseen video clip. This process is

repeated 12 times to make sure every video clip is evaluated. The average accuracy for each of the

different feature combinations is reported in in Table 6.1, Table 6.2, and Table 6.3.

Evaluation of HOJO2D

In our experiments, we evaluate the HOJO2D feature at different levels based on the human body

hierarchy. Specifically, we first extract the HOJO2D on each limb. Then, we apply feature fusion

to the limb-based features to create a wide range of features: Arms – fusing features from both

arms; Legs – fusing features from both legs; Limbs – fusing features from all 4 limbs. We also

construct a single histogram, called Full body, by using the joint orientation from all body parts.

Additionally, we further extract the features using both 8 bins and 16 bins, the results of which

are presented in Table 6.1. The best classification accuracy (91.67%) is obtained using the 8 bin

variants of the Arms and Limbs features, using the ENS classifier. In this setting, we generally

find that individual features or fused features which contain the joint orientation computed from
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Table 6.1: Classification accuracy using the HOJO2D feature

Features Classification Accuracy (%)
Type Bins kNN (k=1) kNN (k=3) LDA ENS

Left Arm

8

50.00 66.67 66.67 83.33
Right Arm 58.33 16.67 25.00 25.00
Left Leg 33.33 66.67 58.33 33.33

Right Leg 50.00 50.00 33.33 83.33
Left Arm

16

75.00 75.00 83.33 83.33
Right Arm 50.00 16.67 33.33 33.33
Left Leg 16.67 41.67 58.33 3.33

Right Leg 33.33 41.67 66.67 33.33
Arms

8

75.00 75.00 66.67 91.67
Legs 25.00 41.67 50.00 41.67

Limbs 41.67 58.33 58.33 91.67
Full Body 66.67 50.00 50.00 58.33

Arms

16

66.67 66.67 75.00 66.67
Legs 25.00 8.33 41.67 33.33

Limbs 66.67 66.67 83.33 66.67
Full Body 83.33 50.00 66.67 75.00

the arms leads to better classification performance. In most cases, applying feature fusion achieves

a better result than the basic individual part-based features. We also observe that, with this small

dataset, features extracted using the 8-bin setting perform better than the 16-bin setting. This

could be caused by the large pose variations, resulting in a diverged joint orientation distribution

and therefore a reduction in the discriminative power as the number of bins increases.

Evaluation of HOJD2D

Again, we evaluate HOJD2D using features extracted from different limbs and apply feature fu-

sion to generate new features for classification. The results are listed in Table 6.2. In this setting,

the best classification accuracy (100.00%) is obtained with the 16 bin variants of the Right Leg

and Legs features, using the ENS and LDA classifiers. Again, applying feature fusion generally

achieves a better result than the basic limb-based features, which is consistent with the results ob-

tained from classifying the HOJO2D features. In this case, features which contain joint displace-

ment computed from the legs provide better classification performance. Also, the classification

results obtained from features extracted using 16-bins perform better than the 8-bin setting. This

indicates that for this feature set the 16-bin features are more discriminative and suggests that the

magnitude of joint displacement is more consistent than the joint orientation.
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Table 6.2: Classification accuracy using the HOJD2D feature

Features Classification Accuracy (%)
Feature Bins kNN (k=1) kNN (k=3) LDA ENS

Left Arm

8

83.33 50.00 66.67 75.00
Right Arm 50.00 66.67 66.67 83.33
Left Leg 41.67 66.67 66.67 50.00

Right Leg 83.33 58.33 58.33 66.67
Left Arm

16

66.67 50.00 66.67 75.00
Right Arm 58.33 33.33 33.33 33.33
Left Leg 66.67 75.00 50.00 75.00

Right Leg 83.33 58.33 83.33 100.00
Arms

8

66.67 50.00 33.33 50.00
Legs 50.00 58.33 58.33 91.67

Limbs 75.00 75.00 75.00 91.67
Full Body 58.33 58.33 58.33 66.67

Arms

16

58.33 50.00 50.00 50.00
Legs 66.67 58.33 100.00 91.67

Limbs 58.33 58.33 83.33 91.67
Full Body 58.33 58.33 66.67 75.00

Table 6.3: Classification accuracy using the fused HOJO2D + HOJD2D features

Features Classification Accuracy (%)
Feature Bins kNN (k=1) kNN (k=3) LDA ENS
Arms

8
75.00 50.00 66.67 91.67

Legs 50.00 58.33 50.00 91.67
Limbs 66.67 58.33 83.33 91.67
Arms

16
75.00 58.33 75.00 66.67

Legs 41.67 50.00 58.33 91.67
Limbs 66.67 66.67 83.33 66.67

Evaluation of Fusing HOJO2D and HOJD2D

In our next experiment, we evaluate early fusion of HOJO2D and HOJD2D. The results listed in

Table 6.3 generally indicate that fusing HOJO2D and HOJD2D achieves better classification ac-

curacy compared with using HOJO2D or HOJD2D individually. The best performance is obtained

with all features with the 8-bin setting and the Legs feature with the 16-bin setting using the ENS

classifier. This suggests that, through this consistency of performance, more robust classification

is obtained by using the proposed fused features. Based upon these reported results, the fusion

of both the part-based features and the different feature sets can therefore be considered to be the

optimal grouping for future works.
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6.2.3 Proposed Deep Learning Architectures Classification Performance

In our next series of experiments, we evaluate the proposed motion classification performance

of the different deep neural network architectures discussed in Section 6.1.2. The MINI-RGBD

dataset [161] is again used in all experiments. We compare the classification accuracy obtained

from the proposed methods with baseline approaches and we employ a leave-one-out cross-validation

approach, with the averaged classification accuracy again reported. We obtained the classification

accuracy of all methods using three types of input features: 1) HOJO2D, 2) HOJD2D, and 3)

fusing HOJO2D and HOJD2D (i.e. concatenating). Due to the random initialization of our newly

proposed deep learning frameworks, the performance of the classifier may vary in different tri-

als, as such we report the best performance of the classifiers in each setting. We also justify the

selection of the hyper-parameters in the proposed network architectures by conducting a series

of ablation studies to determine the effect the hyper-parameters have upon classification perfor-

mance.

Performance using HOJO2D

The results using the HOJO2D features are presented in Table 6.4. In general, the newly proposed

deep learning classification frameworks perform better than previous methods, as the majority of

the highest accuracies (highlighted in bold) are obtained using our methods. In particular, FCNet

performs well consistently achieving 83.33% across all of the different features. This highlights

the generality of the fully connected neural network. The proposed Conv1D-2 and Conv2D-2 with

gradually increasing output channel size in the convolutional layers also demonstrated high per-

formance with most of the features having the same classification accuracy as FCNet. Accuracy

obtained using Conv1D-1 and Conv2D-1 are lower than the other proposed frameworks, but they

are more consistent and robust than the baseline approaches. For the baselines, the results are

highly inconsistent. While some of the classification accuracies are high (such as the 8-bin Arms

and 8-bin Limbs features with LDA), classifying some other features can result in very low accu-

racy (such as Legs with 16 bins). The results on this features set have subsequently demonstrated

the high performance and robustness of the proposed deep learning frameworks.

90



CHAPTER 6. MACHINE LEARNING

Table 6.4: HOJO2D feature set: Classification accuracy comparison between our proposed deep
learning methods and baseline machine learning methods

Histograms of Joint Orientation 2D (HOJO2D)
Bins 8 16

Features Arms Legs Limbs Arms Legs Limbs Average
LDA 100.00% 75.00% 100.00% 75.00% 41.67% 75.00% 77.78%
SVM 66.67% 66.67% 66.67% 66.70% 66.70% 66.70% 66.70%
Tree 75.00% 0.00% 75.00% 75.00% 33.33% 75.00% 55.56%

kNN (k=1) 83.33% 25.00% 58.33% 83.33% 8.33% 33.33% 48.61%
kNN (k=3) 83.33% 25.00% 41.67% 83.33% 41.67% 58.33% 55.56%
Ensemble 75.00% 25.00% 75.00% 75.00% 8.33% 75.00% 55.56%

FCNet 83.33% 83.33% 83.33% 83.33% 83.33% 83.33% 83.33%
Conv1D-1 83.33% 75.00% 83.33% 83.33% 75.00% 75.00% 79.17%
Conv1D-2 83.33% 83.33% 75.00% 75.00% 83.33% 83.33% 80.55%
Conv2D-1 75.00% 83.33% 75.00% 83.33% 83.33% 75.00% 79.17%
Conv2D-2 83.33% 83.33% 83.33% 83.33% 75.00% 83.33% 81.94%

Performance using HOJD2D

The results using the HOJD2D features are presented in Table 6.5. Again, the newly proposed deep

learning frameworks are more robust and performed more consistently. Whilst kNN (k=1) and

LDA achieved some of the best accuracies with 91.67% on the 8-bin Arms feature and 100% on

16-bin Arms feature, the accuracy on other features are much lower (such as 50.00% and 41.67%

on both Legs features). For our approaches, FCNet performed well and obtained 91.67% accuracy

in Limbs features whilst achieving 83.33% in the rest of the features. The other deep learning

frameworks are performing in a predictable manner, with variations in classification accuracy

being between 75.00% and 91.67%, representing a smaller range than the other methods. This

again highlights the robustness of the proposed deep learning frameworks.

Performance using Fused Features - HOJO2D + HOJD2D

The results using the fused features are presented in Table 6.6. Since the input feature size is dou-

bled in this experiment, deep learning frameworks generally demonstrated a significant advantage

in processing features due to this higher dimensionality. In particular, Conv1D-2 achieved an ex-

cellent performance by having 91.67% classification accuracy in 5 out of 6 feature types. Whilst

the LDA method obtained excellent classification accuracy on the 8-bin Arms and Limbs features,

the results obtained in other features are significantly lower highlighting the inconsistency of the

baseline methods, with accuracies ranging from 58.33% to 100%. Conv1D-1 demonstrated a solid
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Table 6.5: HOJD2D feature set: Classification accuracy comparison between our proposed deep
learning methods and baseline machine learning methods

Histograms of Joint Displacement 2D (HOJD2D)
Bins 8 16

Features Arms Legs Limbs Arms Legs Limbs Average
LDA 91.67% 41.67% 50.00% 100.00% 50.00% 75.00% 68.06%
SVM 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67%
Tree 83.30% 50.00% 83.33% 66.67% 41.67% 66.67% 65.28%

kNN (k=1) 91.67% 50.00% 75.00% 100.00% 41.67% 75.00% 72.22%
kNN (k=3) 66.67% 41.67% 83.33% 58.33% 58.33% 66.67% 62.50%
Ensemble 83.33% 58.33% 83.33% 66.67% 58.33% 66.67% 69.44%

FCNet 83.33% 83.33% 91.67% 83.33% 83.33% 91.67% 86.11%
Conv1D-1 83.33% 75.00% 83.33% 83.33% 83.33% 83.33% 81.94%
Conv1D-2 83.33% 75.00% 83.33% 83.33% 83.33% 83.33% 81.94%
Conv2D-1 75.00% 83.33% 83.33% 91.67% 83.33% 75.00% 81.94%
Conv2D-2 83.33% 83.33% 83.33% 75.00% 75.00% 83.33% 80.55%

performance in achieving 91.67% using the 8-bin Legs feature and 83.33% using the remaining

features. FCNet showed a robust performance again by obtaining 83.33% classification accuracy

in all feature types. For the 2D convolutional neural networks Conv2D-1 and Conv2D-2, the per-

formance is once again consistent, with a small range of accuracy from 75.00% to 83.33%. We

also observe that, in most cases, applying feature fusion achieved a better classification perfor-

mance than the individual histogram features.

In summary, the experimental results on different feature types highlight the performance gain

in both accuracy and robustness with the use of the proposed deep learning frameworks over the

baseline approaches. The results also show that FCNet performed in a highly predictable manner

with a relatively simple network architecture.

We also observe that, in general, the 16-bin variant is better for the proposed deep methods whilst

the 8-bin version is better in the non-deep baseline methods. This is due to the fact that deep

networks can better handle features in higher dimensionality than non-deep methods. This also

suggests that the 16-bin features are more discriminative, particularly in the case of joint displace-

ment, where the magnitude of the joint displacement appears to be more consistent for classifica-

tion than the joint orientation.

We also note that when the dimiensionality of input features becomes higher, the benefits of using

convolutional neural networks can be observed, as seen when using Conv1D-1 and Conv2D-1
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Table 6.6: Fusing the HOJO2D and HOJD2D feature sets: Classification accuracy comparison
between our proposed deep learning methods and baseline machine learning methods.

Fused features - HOJO2D + HOJD2D
Bins 8 16

Features Arms Legs Limbs Arms Legs Limbs Average
LDA 100.00% 66.67% 100.00% 91.67% 58.33% 83.33% 83.33%
SVM 66.67% 66.67% 66.67% 66.67% 66.67% 66.67% 66.67%

Decision Tree 75.00% 50.00% 75.00% 75.00% 25.00% 75.00% 62.50%
kNN (k=1) 91.67% 33.33% 83.33% 91.67% 50.00% 75.00% 70.83%
kNN (k=3) 91.67% 33.33% 83.33% 66.67% 58.33% 66.67% 66.67%
Ensemble 75.00% 58.33% 75.00% 75.00% 33.33% 75.00% 65.28%

FCNet 83.33% 83.33% 83.33% 83.33% 83.33% 83.33% 83.33%
Conv1D-1 83.33% 91.67% 83.33% 83.33% 83.33% 83.33% 84.72%
Conv1D-2 83.33% 91.67% 91.67% 91.67% 91.67% 91.67% 90.28%
Conv2D-1 83.33% 83.33% 83.33% 75.00% 75.00% 75.00% 79.17%
Conv2D-2 83.33% 75.00% 83.33% 83.33% 75.00% 83.33% 80.55%

to classify fused features. This can be explained by the abstraction power of the convolutional

layers in the network. We believe the performance gain of 2D convolutional networks will be even

greater when the input features have even higher dimensionality (e.g. by incorporating time-series

movement data).

Ablation studies

We conducted ablation studies to investigate the impact of the hyper-parameters on the classifi-

cation performance. Since we have already compared the effect different layer sizes have on the

proposed 1D (i.e. Conv1D-1, and Conv1D-2) and 2D (i.e. Conv2D-1, and Conv2D-2) network

architectures, in this section, we focus on another hyper-parameter, namely the dropout rate. We

picked the fused features setting in this ablation study, while training the networks with different

dropout rates (i.e. 0.1, 0.3, 0.5, 0.7 and 0.9). The results are plotted in Figures 6.8 to 6.12.

The results show that the different dropout settings result in similar classification accuracy. Typi-

cally, the best performance occurs when the dropout rate equals 0.5 or 0.7, while some good per-

formance can be obtained when the dropout rate equals 0.3. For the more extreme values we see a

drop in accuracy, with 0.1 being unlikely to produce the best performance, and 0.9 producing the

worst performance. Whilst there are some variations in the classification accuracy using dropout

rate settings, the range is relatively small when compared with the inconsistent performance from

baseline approaches, showing less sensitivity to hyper-parameters changes.
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Figure 6.8: FCNet ablation testing using the fused HOJO2D and HOJD2D feature sets: The effect
of dropout rate on classification performance.

Figure 6.9: Conv1D-1 ablation testing using the fused HOJO2D and HOJD2D feature sets: The
effect of dropout rate on classification performance.
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Figure 6.10: Conv1D-2 ablation testing using the fused HOJO2D and HOJD2D feature sets: The
effect of dropout rate on classification performance.

Figure 6.11: Conv2D-1 ablation testing using the fused HOJO2D and HOJD2D feature sets: The
effect of dropout rate on classification performance.
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Figure 6.12: Conv2D-2 ablation testing using the fused HOJO2D and HOJD2D feature sets: The
effect of dropout rate on classification performance.

6.2.4 Improved Machine Learning Framework Classification Performance

In our next series of experiments, we evaluate the proposed improved traditional machine learning

framework discussed in Section 6.1.3. In addition to evaluating the classification performance of

each of the individual features we also evaluate the performance of the fused features for compar-

ison as discussed in Section 5.2. In this case, the fusion process concatenates features into two

separate feature sets: pose-based features, and velocity-based features, which are used for clas-

sification. Additionally, we then fuse the pose-based and velocity-based feature sets together to

create a more robust representation, since we have found that fused features have typically demon-

strated the best performance. We then evaluate this against both the individual features, and the

selected baselines from the literature as discussed in Section 5.1; on both the publicly available

MINI-RGBD dataset [150], and the RVI-38 dataset, a challenging new video dataset gathered as

part of routine clinical care. We again employ leave-one-out cross-validation throughout and fur-

ther evaluate the performance of each method by using several additional metrics, as discussed in

Section 6.2.1. We provide a full discussion on our observations and interpretations of the results,

as well as a full analysis of the proposed features and classification algorithm hyper-parameter

optimisation.
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Table 6.7: Classification accuracy comparison between our proposed supplementary features and
the selected baselines on the MINI-RGBD dataset [150].

Feature Class. AC SE SP F1 MCC
CXm [115] Ens 83.33 50.00 100.00 66.67 63.25
CXSD [115] Ens 83.33 75.00 87.50 75.00 62.50
CYm [115] LDA 33.33 100.00 0.00 50.00 0.00
CYSD [115] k=3 75.00 75.00 75.00 66.67 47.81
Qm [115] Ens 58.33 50.00 62.50 44.44 11.95
QSD [115] k=3 75.00 75.00 75.00 66.67 47.81
CPP [128] Tree 66.67 75.00 62.50 60.00 35.36
AMD [116] LDA 91.67 100.00 87.50 88.89 83.67
MWC [116] LDA 83.33 75.00 87.50 75.00 62.50
RF [116] LDA 91.67 100.00 87.50 88.89 83.67
FFTxm [110] Tree 83.33 75.00 87.50 75.00 62.50
FFTxSD [110] Ens 58.33 50.00 62.50 44.44 11.95
FFTym [110] Tree 91.67 75.00 100.00 85.71 81.65
FFTySD [110] Tree 75.00 75.00 75.00 66.67 47.81
FFTm [110] Tree 83.33 75.00 87.50 75.00 62.50
FFTSD [110] LR 75.00 75.00 62.50 72.73 59.76
MCI [153] n/a 91.67 100.00 87.50 88.89 83.67
CA [154] DNN 91.67 - - - -
BPB [156] DNN 100.00 100.00 100.00 100.00 100.00
STAM [155] DNN 91.67 100.00 87.50 88.89 83.67
HOJO2D Ens 91.67 75.00 100.00 85.71 81.65
HOJD2D Ens 83.33 75.00 87.50 75.00 62.50
FFT-JO Ens 100.00 100.00 100.00 100.00 100.00
FFT-JD LR 91.67 75.00 100.00 85.71 81.65
HOAD2D LR 66.67 100.00 50.00 66.67 50.00
HORJO2D LDA 91.67 75.00 100.00 85.71 81.65
HORJAD2D Ens 83.33 75.00 87.50 75.00 62.50
Pose Ens 100.00 100.00 100.00 100.00 100.00
Velocity Ens 91.67 100.00 87.50 88.89 84.32
Pose & Vel. Ens 100.00 100.00 100.00 100.00 100.00
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Classification Performance on Individual Features

From Table 6.7, we observe that our proposed feature FFT-JO achieved a 100.00% classification

accuracy on the MINI-RGBD dataset. Only one of the 20 baseline methods (BPB [156]) eval-

uated achieved this perfect classification result in our tests, highlighting the remarkable perfor-

mance of this new feature. Encouraging results are also obtained using our other frequency-based

feature FFT-JD, with 91.67% classification accuracy, 85.71% F1 score, and 81.65% MCC. This

performance is higher than all of the 20 baselines in the experiments, with the exception of AMD

(F1:88.89%, MCC:83.67%), RF (F1:88.89%, MCC:83.67%), FFT-Ym (F1:85.71%, MCC:81.65%),

MCI (F1:88.89%, MCC:83.67%), and STAM (F1:88.89%, MCC:83.67%). Similarly, our newly

proposed HORJO2D feature achieved the same performance of 91.67% classification accuracy,

85.71% F1 score, and 81.65% MCC. However, the other relative orientation-based feature HOR-

JAD2D is not performing as well on this dataset with 83.33% classification accuracy, an F1 Score

of 75% and MCC of 62.50%. Although this performance still outperforms most of the baselines,

the noticeably lower specificity (87.50%) results in a lower overall classification performance for

this feature. For the angular displacement based feature HOAD2D, an average performance is

obtained on this dataset with an F1 score of 66.67%, matching or outperforming 8 of 20 base-

lines.

For the RVI-38 dataset, we note a general drop in performance due to the challenging nature of

the dataset, as shown in Table 6.8. This is particularly noticeable in the baseline methods where

we see a significant drop for each baseline, with the exception of MWC (F1:75%, MCC:62.50%).

This drop is most likely associated with the challenging nature of the captured data and the full

frame analysis of these methods. We are seeing that methods which are able to deal with external

influences better, such as the pose-based methods, are generally producing more accurate results.

This is also reflected in the results produced using our proposed individual features. In this set-

ting we note that the HOAD2D feature is performing particularly well, representing the strongest

individual feature on this dataset, recording the highest F1 Score (83.33%) and MCC (80.21),

along with the joint highest accuracy (94.74%) and sensitivity (83.33%). The reworked HOJO2D

(F1:72.73%, MCC:68.54) and HOJD2D (F1:80.00%, MCC:79.21%) again perform well, showing

the robustness of these improved features. The HORJO2D feature is also performing well, with an

accuracy of 92.11%, F1 score of 76.92%, and MCC of 72.51%. We note that FFT-JD is once again
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Table 6.8: Classification accuracy comparison between our proposed supplementary features and
the selected baselines on the RVI-38 dataset.

Feature Class. AC SE SP F1 MCC
CXm [115] LR 50.00 83.33 43.75 34.48 20.20
CXSD [115] Ens 68.42 33.33 75.00 25.00 6.90
CYm [115] k=3 84.21 50.00 90.63 50.00 40.63
CYSD [115] LR 63.16 66.67 65.63 36.36 21.54
Qm [115] LR 52.63 50.00 53.13 25.00 2.28
QSD [115] k=1 86.84 50.00 93.75 54.44 47.19
CPP [128] Ens 84.21 50.00 90.63 50.00 40.63
AMD [116] LDA 83.33 50.00 100.00 66.67 63.25
MWC [116] Tree 83.33 75.00 87.50 75.00 62.50
RF [116] LDA 84.21 66.67 87.50 57.14 48.45
FFT-Xm [110] Ens 84.21 50.00 90.63 50.00 40.63
FFT-XSD [110] LR 63.16 66.67 62.50 36.36 21.54
FFT-Ym [110] k=1 81.58 33.33 90.63 36.36 25.84
FFT-YSD [110] LDA 55.26 50.00 56.25 26.09 4.58
FFTm [110] Tree 84.21 50.00 90.63 50.00 40.63
FFTSD [110] LR 42.11 66.67 37.50 26.67 3.15
BPB [156] DNN 84.21 33.33 93.75 40.00 32.18
STAM [155] DNN 81.58 33.33 90.63 36.36 25.85
HOJO2D Ens 92.11 66.67 96.88 72.73 68.54
HOJD2D Ens 94.74 66.67 100.00 80.00 79.21
FFT-JO LDA 84.21 83.33 84.38 62.50 56.07
FFT-JD Ens 92.11 66.67 96.88 72.73 68.54
HOAD2D Ens 94.74 83.33 96.88 83.33 80.21
HORJO2D Tree 92.11 83.33 93.75 76.92 72.51
HORJAD2D LR 86.84 66.67 90.63 61.54 53.89
Pose Ens 94.74 83.33 96.88 83.33 80.21
Velocity Ens 94.74 66.67 100.00 80.00 79.21
Pose & Vel. Ens 97.37 83.33 100.00 90.91 89.89

performing well, with an accuracy of 92.11%, an F1 score of 72.73%, and MCC of 68.54%. We

also observe that whilst FFT-JO and HORJA2D achieve a reasonable performance on the RVI-38

dataset, with 84.21% and 86.84% classification accuracy respectively, the F1 and MCC scores are

lower than our other proposed features. However, whilst the scores for these features are not class

leading, they are still higher than those achieved by 16 of the 18 baseline methods evaluated in

this setting.

Classification Performance on Feature Fusion

From Table 6.7, we observe that on the MINI-RGBD dataset the pose-based fusion is extracting

the strongest feature representation and retaining the perfect classification performance provided
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by the FFT-JO individual feature. Our evaluation also suggests that whilst the pose-based fused

features are generally outperforming the velocity-based features, fusing both of these feature sets

further improves performance on both the MINI-RGBD dataset (F1: 100%, MCC 100.00%) and

the RVI-38 dataset (F1: 90.91%, MCC: 89.89%). From Table 6.8, we note that on the RVI-38

dataset, the strengths from each feature set combine to provide this improved overall classification

performance, with the higher sensitivity found in the pose-based features (83.33%) and the higher

specificity found in the velocity-based features (100.00%) directly translating to the concatenated

fusion of these feature sets. This observation aligns well with our feature design, which looks to

incorporate the combined positional, directional, postural, and transitory information specified in

the GMA guidelines. We also note that on the fused features we are seeing a consistently high

performance using the ENS classifier, with the best results obtained on both datasets for all fused

feature sets using this classification method. The evaluation metrics also highlight the robustness

of the proposed feature fusion method, given that only one sample video was misclassified across

both datasets.

Hyperparameter Optimisation

To refine the framework performance, we further investigate hyper-parameter optimisation using

Bayesian Optimisation [162]. By using Bayesian Optimisation we efficiently utilise past results

to inform the decisions made relating to minimising the cross-validation loss. The optimisation

searches over the ensemble aggregation methods for binary classification to produce an output

with the minimum estimated cross-validation loss, and due to its ability to learn from previous

iterations, is seen as more effective than other optimisation methods such as grid search and ran-

dom search. Using this method, we evaluate the results of optimisation in an informed manner,

by tuning the learning rate, the number of learning cycles, the minimum observations per leaf,

and the maximum number of branch nodes, to minimize the cross-validation loss of the classi-

fier. We conducted the hyperparameter optimisation on the ENS classifier using the fused features

for both pose and velocity, and carried optimisation out using both the RVI-38 and MINI-RGBD

datasets.

We present several plot representations of our Bayesian Optimisation in Figure 6.13. In the plots,

the number of function evaluations relates to the iteration number of the objective function, the
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Figure 6.13: Hyperparameter optimisation plots on the RVI-38 dataset

min objective is the minimum value that the objective function has reached up to the current

iteration, and the estimated minimum objectives are the mean values of the posterior distribution

of the Gaussian process model of the objective function [163]. We also map the hyper-parameter

variables to provide visual interpretation of the classification performance metrics relative to the

optimal hyper-parameters. In the plots shown in we generally observe improved performance in

line with a reduction in the calculated objective function values.

In Figure 6.14, we show the results of each iteration along with the associated hyperparameter

values, followed by the finalised model hyperparameters that produced the best classification per-

formance. In this setting, we found the optimal hyper-parameters to be: 0.1045800 learning rate,

11 learning cycles, 1 minimum observation per leaf, and 32 split branch nodes, providing an ob-

jective function of 0.026316 and an accuracy of 100% on the MINI-RGBD dataset, and 97.37%

on the RVI-38 dataset, per our reported results.
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Figure 6.14: Hyperparameter optimisation results on the RVI-38 dataset
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6.2.5 Analysis of the Proposed Features

Chi-squared Tests

To further evaluate the discriminative power of the newly proposed features, chi-square tests are

used for testing if the predictor variables (i.e. the multi-dimensional features proposed in this

work) and the response variable (i.e. the label of each video) are related. In particular, such

tests have been widely used for feature selection and are thus able to reflect the quality of the

features we propose. We conducted the chi-square tests on both the MINI-RGBD and the RVI-

38 datasets to highlight the differences between these two datasets. Specifically, the p-value for

each predictor variable is calculated and the median values are reported in Table 6.9. Here, we

consider the predictor variables as significant predictor (sp) if p <0.05. Since the features used

in the experiments are mostly multi-dimensional, the dimensionality (dim.), number of sp (# sp)

and percentage of sp (% sp) are also reported in Table 6.9. We also include the top performing

baselines from our experiments (i.e. AMD, MWC and RF proposed in [116]) in this analysis to

further highlight the effectiveness of the proposed features.

Table 6.9: The p-values of the features computed from chi-square tests on the MINI-RGBD and
RVI-38 datasets.

MINI-RGBD RVI-38
Feature Dim. Median # sp % sp Median # sp % sp

AMD [116] 8 0.1020 0 0% 0.1280 2 25%
MWC [116] 18 0.6456 0 0% 0.8931 6 33.33%

RF [116] 16 0.1020 4 25.00% 0.2388 6 37.50%
HOJO2D 64 0.1020 18 28.13% 0.1370 10 31.25%
HOJD2D 128 0.0860 52 40.63% 0.1849 45 35.16%
FFT-JO 48 0.1020 8 16.67% 0.1849 18 32.14%
FFT-JD 64 0.1020 23 35.94% 0.1849 18 28.13%

HOAD2D 64 0.0847 17 26.56% 0.1849 22 34.38%
HORJO2D 32 0.1020 5 15.63% 0.050 14 43.75%

HORJAD2D 32 0.1020 9 28.13% 0.071 8 25%
Pose & Vel. 792 0.1020 228 28.78% 0.1849 260 32.83%

From Table 6.9, it can be seen that HOJD2D and HORJO2D achieve the highest % sp on the MINI-

RGBD and RVI-38 datasets, respectively. On the MINI-RGBD dataset, our proposed features are

producing the same or lower median p-values when compared with AMD, MWC and RF. On the

RVI-38 dataset, HORJO2D and HORJAD2D achieved significantly lower median p-values than

the other top performers. Whilst AMD performed better than some of our proposed features in
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(a) MINI-RGBD

(b) RVI-38

Figure 6.15: Boxplots of the p-values of different features on each dataset.

terms of the median p-values, we observe that the results from the 2 datasets demonstrate the

robustness of our proposed features, since our features achieve more consistent results.

To better visualize the distribution of the p-values, boxplots of the p-values of different features

on both the MINI-RGBD and RVI-38 datasets are shown in Figure 6.15a and 6.15b, respectively.

In particular, the maximum, minimum, first quartile, third quartile and median (red line) values

are illustrated in the figures. It can be seen that the majority (from the first to third quartile) of

the predictor variables in our proposed features are producing a small range with low p-values.

This indicates the majority of our proposed features are of higher importance and quality when

compared with the the top performing baseline methods.

Histogram Variance Tests

As an additional means of assessing the discriminative power of the proposed features, we also

analyze the variance of each histogram feature extracted from different body parts on both of the

datasets. The variance is evaluated since the scalar value indicates whether the values are evenly

spread across the range or only have a small number of bins with high values, aligning with the
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Figure 6.16: Boxplots of the variance computed from the proposed histogram feature. The results
are grouped by FM+/FM- samples extracted from different body parts on the MINI-RGBD dataset.

design of our features, as explained in Section 5.2. In this experiment, we separate the videos

into FM+ and FM- groups for each dataset, and present the variance computed from each of the

histogram features using box plots (refer to Figure 6.16 for MINI-RGBD and Figure 6.17 for RVI-

38), which include the maximum, minimum, first quartile, third quartile, median values (the red

line) and outliers (the ’+’ signs).

For HOAD2D, we selected 4 key body parts, LW: Left Wrist, RW: Right Wrist, LA: Left Ankle and

RA: Right Ankle, as they represent the limb movements. In general, the variance of HOAD2D

is consistent across the 2 datasets in which the medians of the FM+ samples are higher than the

FM-. This suggests that the FM+ samples have large values in a small number of bins, which

refers to a narrower range of angular displacements (speed). This shows the FM+ samples are

generally having smoother movement with less speed change over the FM- samples. In Figure

6.18a, we selected a sample HOAD2D feature with median variance to illustrate the difference in

the distribution of the angular displacement between FM+ and FM- samples.

For the relative joint orientation based features, HORJO2D and HORJAD2D, we follow the de-

sign by computing the variance for the histograms extracted from the 4 limbs, LAr: Left Arm,

RAr: Right Arm, LL: Left Leg and RL: Right Leg. A similar trend can generally be observed for

both of the features, as the FM+ samples have a higher median value than the FM- samples on
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Figure 6.17: Boxplots of the variance computed from the proposed histogram feature. The results
are grouped by FM+/FM- samples extracted from different body parts on the RVI-38 dataset.

the MINI-RGBD dataset, although the difference between the FM+ and FM- sample is less pro-

nounced on the RVI-38 dataset. This highlights the performance of the relative joint orientation

based features is better on the MINI-RGBD dataset when compared with the RVI-38 dataset. A

sample of the HORJAD2D feature with the median variance is illustrated in Figure 6.18c. It can

be observed that the relative joint orientation displacements tend to have smaller values for FM+

when compared with FM-. This shows the FM+ samples have less changes in angular displace-

ment resulting in smoother body movements. In Figure 6.18b, the sample HORJO2D feature with

the median variance shows different distributions in FM+ and FM- samples.

(a) HOAD2D (b) HORJO2D (c) HORJAD2D (d) FFT-JO (e) FFT-JD

Figure 6.18: Visualizing examples of the proposed histogram features. FM+ and FM- samples are
colored in blue and orange, respectively.

For FFT-JO and FFT-JD, the variance of the histogram is less informative as the distribution of the

values towards the lower or higher frequency bands is more crucial in representing the underlying
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motion pattern. Here, median value histograms of FFT-JO and FFT-JD are illustrated in Figure

6.18d and 6.18e, respectively. The FFT-JO of the FM+ sample shows more low-frequency an-

gular movement at the joints, which aligns with the anticipated smoother motion characteristics.

Conversely, the FM- sample shows an opposite pattern with more high-frequency movements. The

FFT-JD histograms show a different trend when compared with FFT-JO and the FFT features [110]

extracted from the x-y trajectory of each limb, by having higher values towards the high-frequency

bins for both FM+ and FM-. This is because the FFT-JD is primarily capturing the pattern of the

change of joint displacement over time. Nevertheless, we observe a different distribution of the

values in the histograms for FM+ and FM- samples.

6.3 Discussion

In our an initial experiments we examined the validity of using pose-based methods to analyse

and classify infant part-based body movements from video footage. To do this we evaluated the

effectiveness of our proposed pose-based features, HOJO2D and HOJD2D, by conducting a series

of experiments to classify the body-part movement into two categories, ‘normal’ and ‘abnormal’.

Encouraging results were obtained, with high accuracy (91.67%) achieved in several different

settings with the ENS classifier, with some part-based settings attaining 100% accuracy.

The proposed features demonstrate the benefits of pose-based analysis by dealing with information

which can traditionally affect classification results, such as loose clothing, illumination changes,

body-part variation, and background clutter. Our initial results suggest that our histogram-based

method is capable of mapping infant movements associated with the GMA for further classifica-

tion. This study also highlights that this method of motion analysis is viable on an infant popu-

lation and as such represents a step towards the automated classification of infant movements for

the prediction of later CP using the GMA.

In our next series of experiments we evaluated our proposed deep learning based frameworks for

this same classification task. The proposed frameworks were evaluated and compared with our

previous methods. Our experimental results show that the proposed fully connected neural net-

work FCNet performed robustly across different feature sets. Furthermore, the proposed 1D con-

volutional neural network architectures demonstrated excellent performance in handling features
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in higher dimensionality, with more consistent performance throughout. However, the implemen-

tation of deep learning frameworks still affects the interpretability of the model, and whilst we

use these purely for classification, they remain less human explainable than traditional machine

learning models. Also, given that the quantity of video sequences used in these experiments is

relatively small, and since deep learning methods are still typically reliant on having more data

than traditional machine learning approaches, there is still merit in pursuing traditional methods

as a viable alternative.

Given the importance of clinical interpretability in our pipeline, for our next experiments, we

evaluated the integration of several new interpretable pose-based features, as well as several ad-

ditional traditional machine learning classifiers. Our proposed features were developed relating

directly to the criteria associated with the GMA checklist [47] and HINE Optimality Score [164],

as discussed in Section 5.2. Additionally, based upon our previous improved performance through

feature fusion, we fused these features together to produce a more robust representation of infant

body movement for classification. We compared these features with several other methods from

the literature by re-implementing them for assessment using shared datasets.

From our evaluation, we observe that our individual features are typically performing at a similar

level to or exceeding that of the best methods proposed in the related works. However, we note

that the fusion of our proposed features is providing state-of-the-art performance across both of the

datasets used in our experiments. Our results on the RVI-38 dataset in particular represent a par-

ticularly robust performance given the difficulty of the associated dataset, with only one misclas-

sified video. In this case the misclassified video was one of the positive samples which, in practice

presents a greater issue than a misclassified negative sample, but this performance on a particularly

challenging dataset is extremely encouraging. Additionally, our pose and velocity-based method

is simpler to understand, retains understandable information, and has less parameters to tune than

the related methods, making it more accessible in a clinical setting. We also suggest that, due to the

relative assessment of joint motion, our framework is better able to deal with camera movement,

changes in resolution, variable infant sizes, and larger motion changes between frames. As such,

we suggest that our proposed pose-estimation based approaches provide several advantages over

the previously proposed methods in data acquisition and analysis, whilst simultaneously providing

state-of-the-art performance.
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6.4 Concluding Remarks

In this chapter, we have discussed how we evaluated the performance of our proposed features

and classification frameworks, and the metrics used in our experiments. We examined how our

proposed methods compared with baselines derived from the literature and discussed the advan-

tages of our frameworks over the existing methods. We found that our proposed features and

frameworks achieved state-of-the-art performance across two datasets, whilst retaining signifi-

cantly greater clinical interpretability than the related works. We also suggested that since the

video sequences used in our earliest works are synthetic, the appearance of the images used as

an input for the OpenPose framework may differ slightly from that of real-world video data. As

such, we also evaluated our improved framework against methods from the literature using data

captured from real-world video footage of infants.

We have established the viability of our pose-based method for infant motion analysis. However,

through our collaborative relationship with healthcare professionals, it has become also apparent

that, in addition to high accuracy, explainability and interpretability at all stages in the automated

predictive framework is key. As such, in the next chapter we investigate the feasibility of including

visualisation components to inform clinicians of pertinent information throughout the classifica-

tion process to further enhance interpretability.
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Visualisation to Enable Explainable

AI

In this chapter we consider the importance of explainable AI for the automated prediction of CP.

We discuss our proposed approach to enable explainable AI, and provide details of our proposed

framework relating to the generation of spatio-temporal features for classification and visualisa-

tion to improve clinical interpretablity. We then evaluate the effectiveness of our proposed frame-

work both quantitatively and qualitatively, and discuss how our method fits withing the clinical

setting.
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7.1 The Importance of Explainable AI for Clinical Applications

The studies discussed thus far suggest that an automated system could potentially help to reduce

the time and cost associated with current manual clinical assessments, and also assist clinicians

in making earlier and more confident diagnoses by providing additional information about the

assessed infant movements. Whilst machine learning-based frameworks have obtained excellent

performance in a wide range of visual understanding tasks, these methods are also not without

their setbacks. One of the main issues with using machine-learning approaches in the medical

domain is the problem of interpretable AI. Models are often seen as ‘black boxes’ in which the

underlying structures can be difficult to understand, since most of the classification frameworks

only output the predicted label without specifying exactly what influences the classification deci-

sion. Whilst this is acceptable in typical computer vision tasks, it is less preferable in healthcare

applications, since it is essential for the clinicians to verify the prediction as well. There is there-

fore an increasing requirement for the mechanisms behind why systems are making decisions to

be transparent, understandable and explainable.

Figure 7.1: The overview of the proposed prediction and visualization framework.

7.2 The Proposed Approach

In this work, our framework again takes the processed video data as the input, but this time an-

alyzes the movement of individual body parts from temporal segments to determine if FMs are

present (FM+) or absent (FM-), subsequently identifying normal or abnormal general movements

from sub-sections of the sequence. To make our proposed framework fully interpretable, an im-

portant aspect is the integration of an automatically generated visualization capable of relaying

pertinent information to the assessor. The visualization highlights body-parts which are showing
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movement abnormalities, and are subsequently providing the most significant contribution towards

the classification result. This new approach not only allows us to take advantage of additional

body-part specific information as a means of improving classification accuracy, but also affords us

the opportunity to include finer detail than previous methods allowing for greater interpretability

and enhanced classification performance on the proposed HOJO2D and HOJD2D features.

Pose-based motion features

The first step of our proposed framework is to make use of the extracted pose-based HOJO2D and

HOJD2D features, which we established the validity of in Chapter 6. In this work, an early fusion

(i.e. concatenation) of HOJO2D and HOJD2D is used as the input, since we have found that fused

features have consistently demonstrated the best performance.

Spatiotemporal Fidgety Movement Detection

In order to detect the presence of FMs spatiotemporally, the motion features have to be extracted

from 1) different body-parts and 2) different temporal segments individually. As such, we propose

motion feature extraction from 5 different body-parts in the spatial domain, namely left arm, right

arm, left leg, right leg, and head-torso. For the temporal domain, we compute HOJO2D and

HOJD2D features (8 bins) for the 5 body parts from every 100-frame segment. In doing so, each

video is represented by multiple histogram-based motion features accordingly. For example, a

1000-frame video will be represented by 50 fused features of HOJO2D and HOJD2D.

In this work, we formulate the FMs detection problem as a binary classification. Since each video

is annotated with FM+ or FM-, we label all the fused features extracted according to the holistic

annotation of the video. When training the classifier all features are used, while the temporal

location information is not used. In other words, no matter whether the features are extracted

from the beginning or near the end of the video, they will be used to train a single classifier. This

proposed approach provides distinct advantages over previous methods, i.e. 1) the classifier will

be trained by more data samples rather than using only one histogram representation for the whole

video, and 2) a focus on the presence/absence of FMs while ignoring the temporal information

when training the classifier.

113



CHAPTER 7. VISUALISATION TO ENABLE EXPLAINABLE AI

We make use of the ENS classifier, which consists of a range of classifiers to boost the perfor-

mance of the classification results. Given the multiple fused features extracted from a video, all

the features will be classified as FM+ or FM-, this information is then used in visualizing the

results (Section 7.1). As the features were extracted in sequential order in the temporal domain,

the classification result on each histogram-based motion feature is essentially detecting FMs spa-

tiotemporally.

Late Fusion for Cerebral Palsy Prediction

While the method presented in Section 7.2 provides precise information on the presence/absence

of FMs spatiotemporally, directly using all motion features as a CP prediction for the whole video

will result in sub-optimal performance since the temporal ordering is less important in the GMA

than the presence/absence of sustained FMs at any point in the sequence. To tackle this problem,

we propose representing each of the 5 body parts using a single scalar score s, with this being the

average score of the classification result (FM+ as 0 and FM- as 1) across all temporal segments

for each body-part. Therefore, the range of s will be between 0 and 1.

Here, we propose to use a late fusion approach to train an ensemble classifier for cerebral palsy

prediction. Specifically, each video is represented by using the 5 scores obtained from the body

parts. The binary classifier will predict whether the motion in the video is considered normal or

abnormal.

Visualisation

In order to make our proposed framework more interpretable, we include a visualization module

that highlights the body-parts that are contributing to the classification decision. Our proposed

method highlights the body-parts in red to indicate the absence of fidgety movements based on

the scores computed in the body part abnormality detection explained in Section 7.2, providing

clinicians with an intuitive visualization such as the examples illustrated in Figure 7.3.

To extract body part information from an input image, the CDCL [25] pre-trained body segmenta-

tion model is used in this work. The body is segmented into 6 parts; head, torso, upper arms, lower

arms, pelvis and upper legs, and lower legs. An example of the segmentation result is illustrated in

Figure 7.2. Specifically, given an input infant image, CDCL [25] returns an image mask for seg-
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Figure 7.2: Segmentation result obtained using CDCL [25].

mentation. To align with the 5 body parts used in this work, we separate the segmentation masks

for the arms and legs into the left and right masks. Here, k-means clustering is used to divide the

pixels on each segment mask into two groups.

7.3 Classification and Visualisation Results

In this section, we evaluate the effectiveness of our proposed method using the MINI-RGBD

dataset. We first compare the performance of our method on fidgety movement detection with our

baseline methods. Next, we present the visualization results as qualitative analysis in Section 7.3.

We follow the standard protocol as in [165, 166, 153] to conduct a leave-one-subject out cross-

validation to ensure the results presented in this section are obtained based on unseen data during

the training process.

Quantitative Evaluation on the Fidgety Movement Detection Results

To demonstrate the overall performance of our proposed framework, we first evaluate the CP pre-

diction of the whole input video as explained in Section 7.2. We compare our results with the

existing methods using additional performance metrics, and present this in Table 7.1. Using our

framework, we achieved a perfect prediction with 100% accuracy, which highlights the effec-

tiveness of our proposed framework over the previous work ([165, 166, 153]). In this instance
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Table 7.1: Classification accuracy comparison between our proposed visualisation framework and
the selected baseline methods.

Method Accuracy Sensitivity Specificity
[165] w/ LDA 66.7% 50.0% 75.0%
[165] w/ SVM 83.3% 50.0% 100.0%

[165] w/ Decision Tree 75.0% 50.0% 87.5%
[165] w/ kNN (k=1) 75.0% 25.0% 100.0%
[165] w/ kNN (k=3) 50.0% 00.0% 75.0%
[165] w/ Ensemble 66.7% 50.0% 75.0%

FCNet [166] 83.3% 75.0% 87.5%
Conv1D-1 [166] 83.3% 75.0% 87.5%
Conv1D-2 [166] 91.7% 75.0% 100.0%
Conv2D-1 [166] 83.3% 75.0% 87.5%
Conv2D-2 [166] 83.3% 75.0% 87.5%

Movement Complexity Index [153] 91.7% 100.0% 87.5%
Our method 100.0% 100.0% 100.0%

we were able to outperform both the results from our initial feasibility study and our previously

proposed deep learning methods across the three selected performance metrics. We note that the

sensitivity metric is particularly important in this case, since it represents the percentage of cor-

rectly identified positive cases i.e. cases of those with absent FMs and subsequently at higher risk

of developing CP. Given that this is the minority class within the dataset we find that our perfect

classification performance here is particularly encouraging.

Qualitative Evaluation on the Visualization Results

We further provide qualitative results to demonstrate the effectiveness of our proposed framework.

As presented in Section 7.1, we detect the absence (FM-) or presence (FM+) of FMs for each body

part in each temporal segment. The body parts with a prediction of FM- will be highlighted in red,

an example of which is illustrated in Figure 7.3. From the results, it can be seen that the highlighted

body-parts generally show less complex or more repetitive movements in the videos annotated as

FM-. As shown in Figure 7.3 (a), the arms are showing a lack of movement and are subsequently

predicted as FM- using our framework. Additionally, the legs are predicted as FM+ as they are

correspondingly showing some movements in that temporal segment. Figure 7.3 (c) shows an

example with monotonous arm and leg movements and our method highlights those body parts

as FM- accordingly. For the videos annotated as FM+, such as the example shown in Figure 7.3

(b), it can be seen that a much wider variety of movements can be observed. We suggest that our
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(a) Positive (abnormal) example

(b) Negative (normal) example

(c) Positive (abnormal) example

Figure 7.3: Examples of the visualization module. Body-parts where FMs are absent are high-
lighted in red.

proposed visualization method provides effective visual feedback to the user, as such clinicians

can pay greater attention to the highlighted segments for further analysis.

7.4 Concluding Remarks

In this work, we present a new framework for detecting fidgety movements of infants spatiotem-

porally using the pose-based features previously established and extracted from 2D RGB videos.

Experimental results demonstrated that the new method not only achieves perfect prediction, with

100% accuracy, but also provides the user with visualization on how the machine-learning based

framework made the overall prediction relating to the abnormality of the infant’s movement.
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Our proposed approach also enables further exploration of the temporal aspects of the GMA

through the extraction of additional spatio-temporal features for further analysis and improved

interpretability.

However, whilst our system is able to provide rudimentary visual feedback to the user, additional

visualization tools would be useful to exploit the extracted spatiotemporal information, and pro-

vide additional predictive aid to clinicians for this complex diagnostic task. We intend to further

implement our method on the data gathered in a real-world clinical setting, as well as experiment

with our other proposed features and explore additional GMA relevant features and visualisation

methods to provide meaningful and explainable feedback to the user.
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Chapter 8

Conclusion and Future Work

In this chapter, we provide a retrospective overview of the project. We touch upon the motivation

for our work and the related works, and discuss our proposed methods, the results of our experi-

ments, and the overall conclusions we have drawn from the project. Finally we present some ideas

relating to possible future work in this field.
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8.1 Conclusion

CP is an umbrella term used to describe a group of lifelong neurological conditions, attributed to

non-progressive damage to the brain in early infancy, which cause movement difficulties. These

movement difficulties typically affect mobility, posture and coordination, but can also cause prob-

lems with speech articulation, swallowing, vision, and can contribute towards a reduced ability to

learn new skills. In order to provide opportunities for the best possible outcome for an infant’s

development, early diagnosis of CP is considered essential.

We examined several prominent methods for the diagnosis of CP using both physical examination

and neurological imaging. We established that the challenges of applying these assessments relate

to the availability of appropriately trained and skilled clinicians, but that one of the leading meth-

ods of diagnosis was the GMA, and that it was feasible that this test could be adopted to form the

basis of an automated prediction tool using machine learning techniques.

Whilst several approaches for automated assessment exist, we identified that these methods typi-

cally faced several challenges based upon the techniques used. As such, we suggest that there is a

requirement for the adoption of new state-of-the-art methods, which make use of advances in the

fields of computer-vision and human activity recognition, in this domain.

We suggest that pose-estimation, image segmentation and histogram representations offer signif-

icant benefits over other methods in both the analysis of human motion and interpretability of

the associated data. As such, we present several new pose-based histogram features which re-

tain human interpretability and are directly mapped to the assessment criteria in the clinical GMA

guidelines and HINE Optimality Score. We also present the need for unbiased evaluation of both

our proposed frameworks and existing methods using shared datasets, and the importance of real-

world clinical data in this evaluation.

In our first series of experiments, we established and evaluated two new pose based features,

namely HOJO2D and HOJD2D. We determined the viability of this method and concluded that

pose-based assessment is a feasible alternative to other methods from the literature, providing

suitable information to allow for classification. We also evaluated the strengths of body-part based

assessment and determined that the most discriminative body parts in this setting were the limbs.

We concluded that pose-based assessment is well suited to the task of infant motion analysis, re-
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porting state-of-the-art performance of 91.67% accuracy on the MINI-RGBD dataset, when using

several combinations of fused (i.e. concatenated) features.

In our next work, we extended and enhanced the previous feature extraction and classification

pipeline to incorporate deep learning frameworks. In this study we wanted to assess the possibility

of using deep learning frameworks simply to classify the extracted hand-crafted features. In doing

so we are able to retain the interpretability of the framework through the use of feature engineer-

ing, but also capitalise upon the potential benefits of improved classification performance brought

about by the adoption of deep learning. Our experimental results showed that the application of

deep learning in this domain is viable, providing a robust performance of 91.67% across varying

feature sets. However, we did not achieve class leading performance in all areas, which may have

been due to the limited size of the synthetic dataset, but this is somewhat offset by the improved

consistency demonstrated throughout. Our ablation tests support these observations, and we sug-

gest that with a larger dataset greater performance improvements may also be evident.

In our next and perhaps most comprehensive work, we proposed several new and improved in-

terpretable pose-based features, namely: Histograms of Angular Displacement (HOAD2D), His-

tograms of Relative Joint Orientation (HORJO2D), Histograms of Relative Joint Angular Dis-

placement (HORJAD2D), Fast Fourier Transform of Joint Orientation (FFT-JO), Fast Fourier

Transform of Joint Displacement (FFT-JD), Histograms of Joint Orientation (HOJO2D), and His-

tograms of Joint Displacement (HOJD2D). We also reimplemented several methods from the lit-

erature to serve as baselines for comparison using shared datasets. Notably, in this work we also

made use of our newly constructed RVI-38 dataset, which consists of real-world clinical data. This

allowed us to assess the robustness of each method on two separate datasets for a more representa-

tive comparison. Our extensive evaluation, using a full suite of performance metrics and statistical

analytics, suggests that the performance of our individual new features generally outperforms the

previous methods. However, based upon our previous work, our motivation was also to evaluate

the performance of our features when fused, since this should provide greater generalisability and

more accurately represent the complexity associated with the GMA. Our findings suggest that our

fused features provide state-of-the-art results on both the MINI-RGBD dataset (F1: 100%, MCC

100.00%) and the RVI-38 dataset (F1: 90.91%, MCC: 89.89%), which highlights their improved

performance and greater robustness over all previous methods.
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In our final work, we presented a new framework which was capable of detecting FMs of in-

fants spatiotemporally. This meant that we were able to augment our classification pipeline with

visualisation data in order to further improve the interpretability. We again used the same fea-

tures extracted previously but in this case we segmented the motion sequence and annotated each

segment allowing for us to evaluate risk related movements spatiotemporally. We evaluated our

framework using standard metrics and again achieved a state-of-the-art performance of 100% ac-

curacy on the MINI-RGBD dataset. However in contrast with each of the previously proposed

methods, we were also able to qualitatively evaluate a visualisation component within the frame-

work, which allowed us to visualise and evaluate specific risk related movements, subsequently

providing meaningful feedback to clinicians.

We suggest that by utilising pose-based features, we make the likelihood of collaborative working

within the healthcare domain more viable, due to the inherently anonymised and unidentifiable

patient data. As such, we have made the pose data, the GMA based dataset annotations, and the

feature extraction and classification code for each of our frameworks, available to the community

in an effort to help stimulate research in this impactful area. In the next section we discuss our

potential future works and how these might lead to further improvements in this field.

8.2 Future Work

In this thesis we have explored several methods for the prediction of CP based upon infant move-

ments. Whilst the results we have achieved thus far are encouraging, there are several areas which

we would like to address in future works.

Firstly, we hope to explore further improving the interpretability of CP prediction models by al-

lowing clinicians to form a more significant part of the feedback loop. We would like to extend

the implementation of our proposed features by producing additional visualisations, which could

include input from clinicians. This would also potentially allow us to identify additional spatio-

temporal features with a higher degree of accuracy through improved annotation, meaning that

we are able to extract more meaningful features from the data through approaches such as active

learning or weakly supervised learning, allowing further exploration of the temporal aspect of

physical assessments.
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Additionally, we would like to gather more video data from clinical settings, and additional anno-

tations relating to FMs. This could allow us more opportunities to experiment with other options,

and to minimise model overfitting problems, to help consolidate our results, and to improve the

data imbalance. Our goal is to improve the overall sensitivity of the proposed frameworks such

that we are better able identify to the positive samples, which would be essential as part of a

screening programme. As such we may also explore data augmentation to help deal with any class

imbalance and further enhance the credibility of our results.

Furthermore, given that our method relies upon the OpenPose framework [151], which is trained

using adult data, we would like to investigate enhancing this framework through domain adaptation

or the generation of synthetic training data to further improve the raw pose output, which would

help to address any potential inconsistencies in the data. Although the results demonstrated suggest

that these inconsistencies are largely dealt with by our qualitative assessment and automated pre-

processing techniques, we would still like to enhance the pose-estimation output to make the

framework more specific to infant body dimensions and posture.

Also, we would like to explore the possibility of implementing some of our findings in other

projects into the pipelines proposed in this work. Specifically, we would like to adapt our work on

assessing facial symmetry using augmented reality [167] as a means of tracking the body asymme-

try associated with hemiplegic CP. We would also like to investigate the 2D to 3D prior-less recon-

struction method proposed in our work [168] to generate additional motion data in three dimen-

sions, potentially allowing us to assess the infant movements even more comprehensively.

Finally, given that there are several tests available for the prediction of CP, we may evaluate

these individually using specific annotation generated using each method. In doing so we may be

able to quantify the features associated with each of these tests and subsequently combine several

tests to generate a more holistic understanding of the infant body movements and neurological

development. Whilst we did this in a limited manner in our final work, we would like to further

expand upon this. It could therefore be conceivable that a combined test such as this would provide

greater robustness and generalisability than existing methods, and potentially offer greater insight

into infant neurodevelopment.
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Research Protocol 

 

Sensing Movement using Action Recognition Technology in Babies 

 

Investigators 

• Professor Nicholas Embleton, Consultant Neonatal Paediatrician, Newcastle 

Neonatal Service, Newcastle upon Tyne Hospitals NHS Foundation Trust  

(Principle Investigator) 

 

• Ms Claire Marcroft, Senior Paediatric Physiotherapist, Newcastle Neonatal Service, 

Newcastle upon Tyne Hospitals NHS Foundation Trust 

 

• Mr Kevin McCay, PhD Student, Northumbria University 

 

• Dr Edmond Ho, Senior Lecturer, Northumbria University 

Background 

The automated recognition of human activity has wide ranging applications and is widely 
used in healthcare. This project proposes that this technology could be used in paediatric 
practice to aid with early diagnosis of movement disorder such as cerebral palsy in infancy. 

Making an early diagnosis of cerebral palsy or other movement disorders is important but 
current methods lack sensitivity and specificity and are time consuming. Applying current 
tools and assessments is dependent upon the availability of fully trained practitioners - these 
skills take many years to develop. However, all tools are susceptible to observer fatigue, 
contain a degree of personal subjectivity and are reliant upon a suitable behavioural state of 
the infant. If infants are upset or too tired when they attend clinic then the assessment may 
have to be stopped or repeated. 

There is scope to improve the accuracy and accessibility of existing tests through computer-
based evaluations; these evaluations could also conceivably provide quantifiable evidence 
to clinicians. The development of automated systems could also help to significantly reduce 
the time and subsequent cost associated with these current diagnostic practices. We want to 
try and develop techniques that will use non-invasive film/video assessments of normal 
movement in babies at rest. Our pilot work will use existing film clips that were collected 
during our routine clinic visits.   

Study Design 

Observational study. 

Sample 

Up to 200 preterm infants born <30 weeks gestational age (GA) or <1000g birth weight. 
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Method for Study 

Between 35 weeks GA and 5 months post term corrected age, in the routine neonatal 
developmental clinic, infants undergo video assessment (GM assessment). The video 
assessment is undertaken by a clinician trained experienced in the GM Assessment and 
involve the infant’s movements being videoed for up to 15 minutes when the infant is in an 
awake and alert state.  

The video recording is observed and categorised based on the quality of the general 
movements observed using Gestalt perception. The first step is to differentiate between 
normal GMs and abnormal GMs. Secondly, further sub categorisation of abnormal GMs 
such as ‘abnormal fidgety movements’, ‘absence of fidgety movements’ and ‘cramped 
synchronised GMs’ is undertaken. 

Members of the direct healthcare team who provide follow up for these infants (Dr Embleton 
and Ms Claire Marcroft, Physio) will identify infants whom we have existing film footage of 
and will screen clips for suitability. Dr Embleton will write to parents and include an 
information sheet and consent form. Parents will return the consent form by post but will be 
given an opportunity to meet with Dr Embleton and team in person at the RVI if they wish. 
We are also asking parents who are attending routine developmental clinics, if we can share 
the video gathered as part of routine clinical care for use in this study, an information sheet 
and consent form will again be provided. 

The video footage will then be securely transferred to Dr Edmond Ho and Kevin McCay at 
Northumbria University for use in training, testing and validating a system to help automate 
the identification of infants at risk of developing movement disorders. 

Study Population 

The study group will be recruited from the Special Care Baby Unit at the Royal Victoria 
Infirmary, Newcastle. Infants who fit the inclusion/exclusion criteria will be invited to 
participate 

Inclusion Criteria 

• Preterm infants born between 23-29 weeks gestation and aged between 12 and 20 

weeks corrected age at the time of assessment. 

• Parents with adequate understanding of English to ensure informed consent. 

Exclusion Criteria 

• Infants with a suspected or diagnosed genetic abnormality 

• Infants considered medically unstable by attending medical staff (e.g. frequent 

apnoea, poor thermoregulation) 

• parents who are incapable of giving informed consent 

Data Analysis 

We will be attaining visual features automatically through a computer vision framework. 
These features will then be mapped to the existing manual assessment schemes. The 
accuracy of the resultant prediction provided by the framework will be quantitatively 
compared with the existing assessment scheme and expert analysis. The intention is that 
this could also provide quantitative evidence of a standardised assessment scheme. We 
anticipate measurably improved accuracy in automated pose estimation and action 
recognition for infants. 
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Ethical Considerations 

Ethical approval will be obtained from National Research Ethics Committee Service and 
Newcastle upon Tyne Hospitals NHS Foundation Trust Joint Research Office prior to 
commencing the study. Caldicott Approval will also be obtained.  

In this pilot study we will be using existing video data, of infants born preterm, from Ward 35 
(SCBU), Level 4, Leazes Wing, Royal Victoria Infirmary, Queen Victoria Road, Newcastle 
upon Tyne, NE1 4LP.  

Data used after parental consent and will be anonymised by masking faces/body parts or 
only including the computer-generated skeleton in any external work. No identifiable clinical 
information will be shared outside of clinical records. Personal data will remain in the NHS 
record with the subject identified by a unique study code. Data will be analysed in a code-
linked, anonymised fashion by the team at Northumbria University (Dr Edmond Ho and 
Kevin McCay) and the team at the RVI in Newcastle (Dr Nick Embleton and Claire Marcroft).  

The data will be analysed both within the secure premises of the RVI and Ellison Building at 
Northumbria University. Data will be transferred from the internal NHS system at the RVI to a 
hardware encrypted portable hard drive at a specified time. This hard drive will then be taken 
directly to the secure computing facility at Northumbria University where the data will be 
transferred to a local drive on a secure, un-networked PC. The data contained on the 
portable hard drive will then be destroyed. 

We do not consider that the study raises any important ethical issues over and above the 
need to follow information governance issues. We will ask parents for consent to use 
existing footage and do not think this will be burdensome or upset parents in any way. 

Ethical approval will be obtained from a local research ethics committee prior to commencing 
the study. Approval will also be sought from the Newcastle Joint research Office on behalf of 
the Newcastle Hospitals NHS Foundation Trust. We do not consider there to be any risk to 
the infants taking part. 

Informed Consent 

The study will be explained in detail to the person(s) with parental responsibility for the 
infant. A comprehensive participant information leaflet will be provided. Written consent for 
the infant’s video assessments to be included in this study must be granted by the person(s) 
with parental responsibility. The person(s) with parental responsibility will have the 
opportunity to remove consent at any time without giving reason. 

Data Management 

All clinical data obtained during the video capture sessions has be documented and stored in 
electronically on a networked Newcastle upon Tyne Hospitals NHS Foundation Trust 
(NUTH) drive. This drive is automatically backed-up and only accessible by NUTH login. 

No identifiable clinical information will be shared outside of clinical records. Personal data 
will remain in the NHS record, participants will be assigned a unique study number and this 
log will be kept in the investigator site file. The computer research team have no access to 
personal data. 

The data will be analysed both within the secure premises of the RVI and Ellison Building at 
Northumbria University. Data will be shared with the research team in Northumbria 
University under the supervision of the PI (Dr Nick Embleton) and subsequently will be 
included in publication - in an anonymised and non-identifiable form. This is included in the 
patient information sheet and on the consent form. SOPs for the NHS Trust will apply, and 
the data protection act principles will be adhered to at all times. 



Address Line 1 
Address Line 2 
Address Line 3 

Postcode 
 
 

Date: 06/06/2019 
Address Line 1 
Address Line 2 
Address Line 3 
Postcode 
 
 
 
Dear Parent/Guardian, 
 
We are inviting babies and their families who have received care in the Special Care Baby Unit at the 
Royal Victoria Infirmary in Newcastle to be involved in a clinical research study. We hope this 
research will help improve our care in the future. 
 
As part of your baby’s routine clinical care, you will probably remember that the physio team took 
video recordings of them moving. This may have been done either on the neonatal unit or during 
one of your developmental follow-up appointments. We use these videos to help us understand 
how your baby’s movements develop over time.  
 
We are writing to ask for your consent to use the videos we have already taken of your baby to help 
us learn more about how babies born prematurely develop their movement skills. We are working 
with computer scientists at Northumbria University who are trying to develop computer software to 
help us better assess babies movement.   
 
If you would like to know more about the project, please read through the enclosed information 
sheets. If you have any queries relating to this study, please feel free to contact any of the members 
of the research team for more information. 
 
If you have read the information sheets and would like to help us with our study, please fill out and 
return the enclosed consent form using the stamped self-addressed envelope. Thank you for helping 
with this important research. 
 
Kind regards, 
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PARENT INFORMATION SHEET 
 

Sensing Movement using Action Recognition Technology in Babies 
IRAS ID Number: 252317 

 
We would like to invite your baby to take part in a research study. Before you decide you 
need to understand why the research is being done and what it would involve for you.  
 

• Part 1 tells you the purpose of the study and what will happen if you choose to take part. 
 

• Part 2 gives you more detailed information about the conduct of the study. 
 

Contact Information 
 

Please ask if you would like more information or if anything is not clear. 
 
Professor Nick Embleton   
Consultant Neonatal Paediatrician – Royal Victoria Infirmary, Newcastle upon Tyne 
Email: nicholas.embleton@newcastle.ac.uk 
 
Claire Marcroft 
Academic Physiotherapist – Royal Victoria Infirmary, Newcastle upon Tyne   
Email: claire.marcroft@newcastle.ac.uk 
 
Kevin McCay  
PhD Student – Northumbria University, Newcastle upon Tyne    
Email: kevin.d.mccay@northumbria.ac.uk 
 
Edmond Ho  
Senior Lecturer – Northumbria University, Newcastle upon Tyne 
e.ho@northumbria.ac.uk  
 
If you have any additional queries or complaints that have not been dealt with by the above 
research team, please contact the Northumbria University Research Policy Manager Laura 
Hutchinson by email at laura.hutchinson2@northumbria.ac.uk.  

  

PART 1 
Research Overview 
 

Babies who are born prematurely have an increased risk of developmental difficulties 
including the way they move. It is important that healthcare professionals can identify which 
babies may go on to have difficulties, so they can offer support to parents and access 
therapy services (such as physiotherapy).  Additionally, it is also important that professionals 
can reassure parents of babies who are progressing without difficulties.  
 
We are computer scientists based at Northumbria University, Newcastle and hope that by 
working closely with healthcare professionals (physiotherapists and doctors) based at the 
Royal Victoria Infirmary in Newcastle, we can use state of the art human motion analysis to 
develop new ways to identify which babies are most at risk. 
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What will be happen if my baby takes part? 
 

The physiotherapists in Newcastle routinely use video recordings to monitor the 
developmental progress for all babies born < 30 weeks gestation. This is part of routine care. 
They set up a video camera on a tripod at the end of a cot space in the neonatal unit or on a 
comfy mat on the floor during a clinic appointment and record your baby’s spontaneous 
movements for up to 3 minutes. They also collect details of your baby’s gestational age, 
weight, sex and corrected age (this is the age of your baby calculated from their due date).  
 

Why has my baby been invited to take part? 
 
We are inviting infants, from the Special Care Baby Unit at the Royal Victoria Infirmary in 
Newcastle, who have been born prematurely (under 30 weeks gestation) to be involved. We 
are writing to the parents of infants who have already had video recordings taken as part of 
routine clinical care, to ask permission to share the recordings for use in this study. We are 
also asking parents who are attending routine developmental clinics, if we can share the 
video gathered as part of routine clinical care for use in this study. 
 
If you think you would like your baby to take part, you will be asked to sign a consent form. If 
you choose to take part, there will be NO change to the routine care your baby will 
receive. We will use the video recordings of your baby taken during the routine 
physiotherapy assessments. 
 

Does my baby have to take part? 
 
No. It is up to you to decide. If you do decide to participate, we will then ask you to sign a 
consent form to show you have agreed to take part. Whether you choose to participate or 
decide not to take part will not affect the standard of care your baby will receive in the NHS 
at any time. 
 
 

What are the possible benefits of taking part? 
 
There is no direct benefit to your baby from taking part. The study will help us to gather 
information about the effectiveness of the assessments we routinely use. In the longer term 
it might help us look after babies more effectively. 

 

PART 2 
 
Time Commitment 
 

The recording session typically takes 15 minutes, but no additional recording will be required 
at this stage. 

 
Participant’s rights  
 

You may decide to stop being a part of the research study at any time without explanation. 
You have the right to access the information gathered at any time. You have the right to ask 
that any data you have supplied to that point be withdrawn and/or destroyed. If you have any 
questions you should ask the researcher before the study begins.  If you wish to contact the 
research team at any time, please use email the addresses provided above. 
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There is no risk to your baby taking part as all data gathered is collected as part of 
routine care. However, if you have a concern about any aspect of this study, you should ask 
to speak to a member of the research team who will do their best to answer your questions 
(please see contact information). 
 

What will happen to the data? 
 

All data will be treated confidentially and will be stored securely on an encrypted, password 
protected computer. The data will only be accessible to those directly associated with the 
research and approved by all relevant ethical approval bodies. If the data is to be used 
directly in published works (such as academic journals), it will be fully anonymised prior to 
publication. Data collected can be anonymised by masking faces/body parts or only 
including images of the computer-generated skeleton. If a request is received to have data 
withdrawn and destroyed it will be deleted from the secure device immediately. 
 

How your information may be used  
 
If you agree to take part in this research study, we will collect the minimum personally-
identifiable information needed for the purposes of the research project. Information about 
your baby will be used in the ways needed to conduct and analyse the research. NHS 
organisations may keep a copy of the information collected. Depending on the needs of the 
study, the information may include personal data that could identify you. You can find out 
more about the use of patient information for the study from the research team. 
 
Your baby’s personal information (initials, date of birth, contact details and your consent 
form) will be assigned a unique identification number and all data collected will be linked to 
this number. This will ensure that your details remain anonymous as personal details will not 
be transferred outside of the RVI i.e. the computer science team will not know your baby’s 
name, date of birth, address etc. 
 
The video recording taken in developmental clinic will also be kept on a password protected 
Newcastle Upon Tyne Hospital Network networked computer. The video transferred to 
Northumbria University will be kept on a password protected networked computer. Only 
study team members will be able to access the video. 
 
You may be asked to provide information about your child’s health to the research team, for 
example in a questionnaire. Sometimes information about you will be collected for research 
at the same time as for your clinical care. In other cases, information may be copied from 
your health records. Information from your health records may be linked to information from 
other places such as central NHS records, or information about you collected by other 
organisations. You will be told about this when you agree to take part in the study. 
 

Will any information be stored? 
 
Yes, but only with your permission.  
 

What will happen to the results of the research study? 
 
It is intended that the results will be published in medical/scientific journals and presented at 
medical/scientific meetings. Your baby will not be identified in any of the reports or 
publications. A summary of the findings of the study will be available to you at the end of the 
project. 
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Keeping information for future research 
 
Information about your baby that is collected during a research study may be kept securely 
to be used in future research in any disease area, including research looking at social and 
economic factors affecting health. This may include combining it with information about you 
held by other health or government organisations such as NHS Digital. Usually the 
information is combined by matching information that has the same NHS number. Doing this 
makes maximum use of the information you have provided and allows researchers to 
discover more. 
 
Researchers may not be able to specify all the possible future uses of the information they 
keep. It could include providing the information to other researchers from NHS organisations, 
universities or companies developing new treatments or care. Wherever this happens it will 
be done under strict legal agreements. The information about you will be depersonalised 
wherever possible so that you cannot be identified. Where there is a risk that you can be 
identified your data will only be used in research that has been independently reviewed by 
an ethics committee. 
 
On rare occasions NHS organisations may provide researchers with confidential patient 
information from your health records when we are not able to seek your agreement to take 
part in the study, for example because the number of patients involved is too large or the 
NHS organisation no longer has your contact details. Researchers must have special 
approval before they can do this. 
 

Your choices about health and care research 
 
If you are asked about taking part in research, usually someone in the care team looking 
after you will contact you. People in your care team may look at your health records to check 
whether you are suitable to take part in a research study, before asking you whether you are 
interested or sending you a letter on behalf of the researcher. 
 
It’s important for you to be aware that if you (or your baby) are taking part in research, or 
information about you is used for research, your rights to access, change or move 
information about you are limited. This is because researchers need to manage your 
information in specific ways in order for the research to be reliable and accurate. If you 
withdraw from a study, the sponsor will keep the information about you that it has already 
obtained. They may also keep information from research indefinitely. 
 
If you would like to find out more about why and how patient data is used in research, please 
visit the Understanding Patient Data website https://understandingpatientdata.org.uk/what-
you-need-know. 
 
 

Who has reviewed the study?  
 
All research in the NHS is looked at by an independent group of people called a Research 
Ethics Committee to protect your safety, rights, wellbeing and dignity. This project has been 
reviewed by the Bromley Research Ethics Committee. 
 
Thank you for reading this information sheet and considering taking part. If you wish to 
participate then you can discuss this with a member of the research or clinical team and they 
will help to you proceed to signing the consent form. Or you can return the consent form in 
the envelope provided after you have had time to consider it.  
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CONSENT FORM 
 

 
Project Title:    Sensing Movement using Action Recognition Technology in Babies  
 
IRAS ID Number:   252317 
 
Principal Investigators: Professor Nick Embleton 
     Claire Marcroft 
     Kevin McCay     
 

Please initial in each box if you agree with the following statements: 

I have carefully read and understood the Parent Information Sheet 
dated……….…... (version ………….) which contains important safety, privacy 
and other information about the study. 

 

I have had an opportunity to consider the information presented to me, ask 
questions, discuss the study and I have received satisfactory answers. 

 

I understand that participation is entirely voluntary and that I am free to 
withdraw from the study at any time, without having to give a reason for 
withdrawing, and without prejudice.  

 

I understand that no payment will be received for participation in the study.  

I understand that all information collected will be held in confidence, and that if 
presented, identities will not be disclosed (i.e. data will be codified). 

 

I hereby confirm that I give consent for recordings captured in previous 
sessions to be made available to the research team as discussed in the Parent 
Information Sheet. 

 

I understand that relevant sections of my baby’s medical notes, test results and 
other routinely-collected electronic health records may be looked at by my 
doctor and the associated care team. I give permission for relevant information 
to be provided to collaborating researchers once all identifiable information is 
hidden (codified). 

 

I agree to take part in the study.  

 
Please initial in each box if you agree with the following Northumbria University clauses: 
 

Clause A: I understand that other individuals may see the recording(s) and be 
asked to provide ratings/judgments. The outcome of such ratings/judgments 
will not be conveyed to me. My name or other personal information will never 
be associated with the recording(s).  

 



 
V004 –29/11/2021  Page 2 

 

Clause B: I understand that the recording(s) may also be used for 
teaching/research purposes and may be presented to students/researchers in 
an educational/research context. My name or other personal information will 
never be associated with the recording(s). 

 

Clause C: I understand that the recording(s) may be published in an appropriate 
journal/textbook or on an appropriate Northumbria University webpage, which 
would automatically mean that the recordings would potentially be available 
worldwide. My name or other personal information will never be associated with 
the recording(s). I understand that I have the right to withdraw consent at any 
time prior to publication, but that once the recording(s) are in the public domain 
there may be no opportunity for the effective withdrawal of consent 

 

Clause D: I also consent to the retention of this data under the condition that 
any subsequent use also be restricted to research projects that have gained 

ethical approval from Northumbria University. 

 

 
 
Name of the parent/guardian of the participant 
 
 
             
 
 
Signature of the parent/guardian of the participant 
 
 
         Date    
 
 
 
Name of researcher taking consent 
 
 
             
 
 
Signature of researcher taking consent 
 
 
         Date    
 
 
 
Reference Number 
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Acronyms

AC Accuracy 86

AI Artificial Intelligence viii, 24, 27, 31, 54, 79

AMD Absolute Motion Distance 67, 75, 98, 103

BINS Bayley Infant Neurodevelopmental Screener 12, 18

CNN Convolutional Neural Network 31, 43, 59

CoM Centroid of Motion 41, 43, 66, 75

CP Cerebral Palsy iii, 1–3, 6, 7, 9–24, 29, 31, 34, 36, 37, 41, 43, 50, 52, 65, 67–69, 77, 78, 107, 111, 114–116, 120, 122, 123

CPP Cerebral Palsy Predictor 67, 75

CT Computerised Tomography 12, 19–21

DT Decision Tree 29, 85

EEG Electroencephalogram 12, 19, 21

ENS Ensemble 30, 79, 85, 87–89, 100, 107, 114

F1 F1 Score 86, 98–100, 121

FFT Fast Fourier Transform 68, 72, 73

FFT-JD Fast Fourier Transform of Joint Displacement 72–75, 84, 97–99, 103, 106, 107, 121

FFT-JO Fast Fourier Transform of Joint Orientation 73–75, 84, 97–100, 103, 106, 107, 121

FM+ Fidgety Movements Present 57, 58, 105–107, 112–114, 116

FM- Fidgety Movements Absent 57, 58, 105–107, 112–114, 116
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Acronyms Acronyms

FMs Fidgety Movements 6, 13, 14, 68, 112–114, 116, 117, 122, 123

FN False Negative 86, 87

FP False Positive 86, 87

FPS Frames Per Second 61

GMA General Movements Assessment iii, 2–5, 7, 12–15, 24, 37–39, 41, 53, 56–58, 60, 65, 69, 72, 78, 107, 118, 120–122

GMs General Movements 13, 14, 34, 73

HAI Hand Assessment for Infants 2, 12, 17

HINE Hammersmith Infant Neurological Examination 15–17, 108, 120

HNNE Hammersmith Neonatal Neurological Examination 15

HOAD2D Histograms of Angular Displacement 70–72, 74, 75, 84, 97–99, 103, 105, 121

HOJD2D Histograms of Joint Displacement ix, 73–75, 78–80, 84, 87–89, 91, 97–99, 103, 107, 113, 120, 121

HOJO2D Histograms of Joint Orientation ix, 73–75, 78–80, 84, 87–90, 97–99, 103, 107, 113, 120, 121

HORJAD2D Histograms of Relative Joint Angular Displacement 72, 74, 75, 84, 97–99, 103, 105, 106, 121

HORJO2D Histograms of Relative Joint Orientation 71, 72, 74, 75, 84, 97–99, 103, 105, 106, 121

kNN K-Nearest Neighbour 30, 79, 85

LAPI Lacey Assessment of Preterm Infants 2, 12, 15

LDA Linear Discriminant Analysis 30, 79, 85, 88

LDOF Large Displacement Optical Flow 41, 42

LR Logistic Regression 29, 85

MCC Matthews Correlation Coefficient 87, 98–100, 121

MCI Movement Complexity Index 68, 75

MINI-RGBD Moving INfants In RGB-D 57, 87, 90, 96, 98–101, 103–106, 115, 121, 122

MRI Magnetic Resonance Imaging 3, 12, 19–21

MWC Magnitude of Wavelet Coefficients 67, 68, 75, 98, 103
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Acronyms Acronyms

PCA Principal Component Analysis 30

PR Precision 86

QoM Quantity of Motion 66, 75

RE Recall 86

RF Relative Frequency 67, 75, 103

RVI-38 Royal Victoria Infirmary-38 Dataset iii, 6, 96, 98–101, 103–106, 108, 121

RVI-GMA Royal Victoria Infirmary - General Movements Assessment 57

SATCo Segmental Assessment of Trunk Control 12, 19, 42, 43

SE Sensitivity 86

SP Specificity 86

SVM Support Vector Machine 29, 37, 85

TN True Negative 86, 87

TP True Positive 86, 87

WMs Writhing Movements 13
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Tamara Stanković. The importance of the prechtl method for ultra-early prediction of neu-

rological abnormalities in newborns and infants. AMM, pages 111–115, 09 2019.

[40] Christa Einspieler, Heinz F.R. Prechtl, Fabrizio Ferrari, Giovanni Cioni, and Arend F. Bos.

The qualitative assessment of general movements in preterm, term and young infants. Early

Human Development, 50(1):47 – 60, 1997. Spontaneous Motor Activity as a Diagnostic

Tool Functional Assessment of the Young Nervous System.

[41] Joan L. Lacey, Sian Rudge, Ingrid Rieger, and David A. Osborn. Assessment of neuro-

logical status in preterm infants in neonatal intensive care and prediction of cerebral palsy.

Australian Journal of Physiotherapy, 50(3):137–144, 2004.

[42] Lilly Dubowitz, Eugenio Mercuri, and Victor Dubowitz. An optimality score for the neuro-

logic examination of the term newborn. The Journal of Pediatrics, 133(3):406–416, 1998.

[43] Lena Krumlinde-Sundholm, Linda Ek, Elisa Sicola, Lena Sjöstrand, Andrea Guzzetta,
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