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Coordinated Electric Vehicle Active and Reactive
Power Control for Active Distribution Networks
Yi Wang, Student Member, IEEE, Dawei Qiu, Member, IEEE, Goran Strbac Member, IEEE and Zhiwei

Gao, Senior Member, IEEE,

Abstract—The deployment of renewable energy in power
systems may raise serious voltage instabilities. Electric vehicles
(EVs), owing to their mobility and flexibility characteristics, can
provide various ancillary services including active and reactive
power. However, the distributed control of EVs under such
scenarios is a complex decision-making problem with enormous
dynamics and uncertainties. Most existing literature employs
model-based approaches to formulate active and reactive power
control problems, which require full models and are time-
consuming. This paper proposes a multi-agent reinforcement
learning algorithm featuring a deep deterministic policy gradient
method and a parameter sharing framework to solve the EVs
coordinated active and reactive power control problem towards
both demand-side response and voltage regulations. The proposed
algorithm can further enhance the learning stability and scala-
bility with privacy perseverance via the location marginal prices.
Simulation results based on a modified IEEE 15-bus network
are developed to validate its effectiveness in providing system
charging and voltage regulation services. The proposed LMP-
PSDDPG algorithm is evaluated to achieve 38%, 16%, and 25%
speedup, and 1.58, 0.69, and 0.27 times higher reward over the
benchmarks DDPG, TD3 and LMP-DDPG, respectively.

Index Terms—Electric vehicles, active distribution networks,
active and reactive power control, location marginal prices, multi-
agent reinforcement learning.

I. INTRODUCTION

POWER systems are undergoing a significant transition
from fossil fuel resources to the decarbonlization of

renewable energy resources (RESs), promising to a low-carbon
future [1]. However, besides the primary challenges posed by
the intermittent nature of RESs, there are additional difficulties
in voltage stability and reliability of power system operations
due to the lack of voltage compensation devices [2]. To address
above challenges, electric vehicles (EVs) have been deployed
for various ancillary services including demand-side response
and voltage regulations due to their significant advantages
on mobility and flexibility [3]. As such, the research on the
deployment of EVs towards both active and reactive power
control for active distribution networks (ADNs) is a promising
area. And, it is urgent to develop a smart and automatic
control scheme for coordinated EVs active and reactive power
control under such a highly complex environment with various
uncertainties and dynamics.
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A. Literature Review

The literature on EVs scheduling problems has been re-
viewed in [3], few of them however contribute to the co-
ordination effect of EVs active and reactive power support.
More specifically, the existing work focusing on model-based
optimization approaches can be classified into two categories
based on the deployed control mechanisms: centralized control
[4]–[6] and decentralized control [7]–[10]. The centralized
control methods are normally featured by relatively high so-
lution qualities but long computing time and potential privacy
issues, which have been applied to solve the coordinated active
and reactive power control problems of EVs [4] as well as
the voltage regulation and power loss reduction problems [5].
However, system uncertainties are not modeled in above two
papers. To this end, a robust optimization method capturing
uncertainties pertaining to system demand and EV patterns
is proposed in [6] to control the active and reactive power
of EVs towards voltage regulation. Compared to centralized
control, decentralized control does not require central con-
trollers, which can benefit privacy protection and ensure timely
decision making [11]. More specifically, parallel consensus
algorithm [7] and hierarchical coordination framework [8] are
both used to solve the coordinated EVs active and reactive
power control problems in a decentralized manner. Vehicle-
to-Grid (V2G) reactive power dispatch is captured in [9] for
the distributed EVs coordination. However, above papers [7]–
[9] assume the fixed location marginal prices (LMPs), which
cannot effectively capture the spatial benefits of EV fleets
on voltage regulations. As a result, authors in [10] develop
a decomposition method based on branch flow algorithm for
self-dispatched EVs with the ADN towards optimal coordina-
tion adapting to spatiotemporally varying LMPs for real and
reactive power, i.e., P-LMP and Q-LMP respectively.

Despite the aforementioned attempts [4]–[10] in solving the
coordinated EV active and reactive power control problems,
model-based optimization methods exhibit several limitations:
1) distribution system operator (DSO) is difficult to acquire
explicitly the operation models and technical parameters of
all self-controllable EVs in centralized control methods; 2)
EVs are not willing to share local information with each other
to reach a consensus in decentralized control methods; 3)
solving a stochastic optimization problem is normally time
consuming, moreover the uncertainties constructed from the
pre-defined distributions may destroy their nature. In view
of above drawbacks in model-based optimization approach,
reinforcement learning (RL) [12] is a model-free approach that
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studies the sequential and dynamic decision-making process of
agents who can gradually learn the optimal control schemes
by utilizing experiences acquired from its repeated interactions
with the environment, without a prior knowledge. In addition,
RL as an online learning method can make efficient use of
increasing data, thereby capturing system uncertainties and
adapting to various state conditions.

Despite the fact that RL lacks theoretical guarantees of
convergence [12], previous works have successfully applied
RL methods to various EV control problems [13], which can
be classified into two categories based on the deployed EV
numbers: single-agent RL (SARL) [14]–[23] and multi-agent
RL (MARL) [24]–[29]. In SARL, deep Q-network (DQN) has
been widely applied to solve various EV problems, e.g., real-
time charging/discharging strategies [14], optimal EV charging
navigation [15], and fast frequency regulation services [16].
However, DQN estimating the Q-values of finite actions is
only possible for problems with simple discrete control ac-
tions. In order to handle the continuous action space, policy
gradient theorem [12] is proposed to directly compute the
values of control actions. Currently, deep deterministic policy
gradient (DDPG) has been utilized to solve EV real-time
voltage control problem [17], EV aggregator’s bidding strat-
egy problem [18], EV energy management strategy problem
[19], EV optimal charging behaviors for satisfying the user’s
energy requirement [20], and pricing EV demand response
with discrete charging rates [21]. Furthermore, in order to
explore environment more widely and make training more
stable, soft actor-critic (SAC) is also proposed to solve the
EVs optimal charging control strategy [22], [23]. On the
other hand, the research of MARL under EV concept is still
limited. In [24], a multi-deep-Q-network is proposed to solve
the optimal bidding strategy selection for EVs charging in an
auction market. However, directly applying conventional DQN
to each EV agent without extra information may suffer from
instability issue, since all other agents’ policies are implicitly
formulated as part of the environment dynamics while their
policies are continuously adjusted during the training process.
To capture the other agents’ control policy, a collective-policy
model is proposed in [25] based on SAC that learns a fully
decentralized policy for EVs charging strategy constrained by
the transformer overload capacity. A hierarchical and hybrid
MARL method based on proximal policy optimization (PPO)
is proposed in [26] to optimize the multi-service provisions
for EVs in a coupled power-transportation network. In order
to handle the uncertainties of demand and price, a long-short
term memory neural network is integrated with an actor-critic
MARL method in [27] that learns the coordinated charging
behaviors of EVs with privacy perseverance. Finally, a commu-
nication based MARL algorithm named CommNet is proposed
in [28] to solve the energy management problem of distributed
EV charging stations that allows information exchange with
each other. However, this mechanism may destroy the privacy
of local charging stations. As a result, a SAC-based MARL
algorithm (MASAC) is developed in [29] to solve a strategic
charging pricing scheme for EV operators. MASAC owing to
its centralized training and decentralized execution framework
[12] that takes all agents’ information into the training process

but requires only local information when executing actions,
thereby protecting the private information in the execution
process. Nevertheless, it is still problematic to apply MASAC
to a large-scale system since the joint information increases
proportionally with the agent size.

B. Contributions

To overcome these limitations, this paper proposes a novel
MARL method to solve the coordination effect of EVs active
and reactive power control problem in an ADN in responding
to both P-LMPs and Q-LMPs, in which the specific contribu-
tions are outlined as below:

1) Formulating the active and reactive power control prob-
lem among multiple EVs in an ADN as a Decentralized
Partially Observable Markov Decision Process (Dec-POMDP)
[30]. In this case, EVs can maximize their utilization in
distribution system operation to guarantee the active power
supply and support the reactive power compensation.

2) Proposing a novel MARL method to efficiently solve
the Dec-POMDP by constructing an actor-critic architecture-
based DDPG method [31] to generate the continuous action
spaces; abstracting a new Q-value function via P-LMPs and
Q-LMPs to stabilize the training performance with enhanced
scalability and protected privacy; and adopting a parameter
sharing (PS) framework [32] to reach the distributed control
with accelerated training speed.

3) Solving the MARL-based Dec-POMDP does not require
the exact mathematical models and technical parameters of
the distribution network system. Furthermore, the system
uncertain and dynamic characteristics associated with the grid
prices, demand, and PV generation can be learned during
the training process without constructing any hypothetical
probability distribution.

4) Training an on-line MARL-based control policy that can
be directly deployed to the test dataset in milliseconds without
any optimization. The trained policy is also generalized and
automatic that can adapt to various uncertain conditions.

II. PROBLEM FORMULATION

A. Problem Setting

The problem is focusing on the coordination of a group of
EVs in an ADN, depicted in Fig. 1, which can be divided into
two layers: communication layer and power layer. In detail, the
communication layer is operated by an EV aggregator who can
communicate with individual EVs and exchange the limited
information to help EVs make more informed decisions. Inside
the power layer, distributed energy resources (DERs) including
electric demand (ED), diesel generators (DGs), as well as the
RES-based solar photovoltaics (PVs) and wind turbines (WTs)
are appropriately deployed. EVs can move between different
buses for two trips (work from home in the morning and
back from office at night) per day and exhibit both G2V and
V2G flexibility through charging stations. DSO is responsible
for managing the controllable DERs and performing OPF to
ensure the stable and secure operation.
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Fig. 1. Scheme of EV coordination in an ADN.

Unlike the centralized control that EVs are owned and
managed by DSO, this paper assumes that all EVs are private-
owned having their own traveling patterns and operation
characteristics. Therefore, these EVs operate in a distributed
manner without a central controller that can preserve their
private information. However, we still introduce an aggregator
who can provide proper information and incentives for EVs to
reach a cooperative fashion. At each time step, after reading
the local (active and reactive) power information of EDs and
RESs as well as the battery information of energy content,
each EV with a smart control algorithm can optimally manage
its active and reactive power in the ADN. The objective
of this problem is twofold: 1) EVs maximize the energy
arbitrage by charging (discharging) active power at low (high)
P-LMP periods; 2) EVs maximize the income by injecting or
consuming reactive power at high Q-LMP periods.

B. Decentralized Partially Observable Markov Decision Pro-
cess

We formulate the coordinated effect of EVs active and
reactive power control problem as a finite Dec-POMDP
with discrete time steps. The Dec-POMDP is defined by
⟨I,S,O,A,R, T , γ⟩, which includes I agents (EVs), a set
of global states s ∈ S, a collection of local observations
{oi ∈ O1:I}, a collection of action sets {ai ∈ A1:I}, a
collection of reward functions {ri ∈ R1:I}, and a state tran-
sition function T (s, o1:I , a1:I , ω), where ω is the environment
(ADN) stochasticity representing uncertain parameters. The
time interval between two consecutive steps ∆t = 1 hour. At
time step t, each agent i chooses an action ai,t according to
its control policy µ(o) based on its local observation oi,t. The
environment then moves into the next state st+1 according
to the state transition function T . Each agent i obtains a
reward ri,t and a new local observation oi,t+1. Such process
continues and then emits a trajectory of observations, actions,
and rewards for each agent i: τi = oi,1, ai,1, ri,1, oi,2, ..., ri,T
over Oi × Ai × Oi → R. Each agent i aims to maximize
its cumulative discounted reward Ri =

∑T
t=1 γ

tri,t, where
γ ∈ [0, 1) is the discount factor and T = 24 hours is the daily
horizon. The components of the Dec-POMDP are detailed as:

1) Observation: Each agent i at time step t has its local
observation

oi,t = [Nev
i,t , P

ed
i,t , Q

ed
i,t, P̃

res
i,t , Eev

i,t ] ∈ Oi, (1)

comprising two parts: 1) the exogenous state unaffected by
actions includes the bus location of charging station Nev

i,t

where agent i is plugging in, the nodal active and reactive
ED P ed

i,t , Q
ed
i,t as well as the nodal RES active power P̃ res

i,t ;
and 2) the endogenous state serving as the feedback signals
of actions is modeled as the battery energy content Eev

i,t .

2) Action: Each agent i at time step t controls its action

ai,t = [api,t, a
q
i,t] ∈ Ai, (2)

comprising two parts: 1) the active power action api,t ∈
[−1, 1] represents the magnitude of charging (positive) and
discharging (negative) active power as a percentage of its
active power capacity P ev

i,t ∈ [−P ev

i , P
ev

i ]; and 2) the re-
active power action aqi,t ∈ [−1, 1] represents the magni-
tude of consuming (positive) and providing (negative) re-
active power as a percentage of its reactive power limit

Qev
i,t ∈ [−

√
(S

ev

i )2 − (P ev
i )2),

√
(S

ev

i )2 − (P ev
i )2)]. The de-

tailed EV charger model and its structure as well as the
derivations of power limits are presented in Appendix section.

3) State Transition: The state transition is governed by
st+1 = T (st, o1:I,t, a1:I,t, ωt), influenced by the combination
of environment current state st, all agents’ local observations
o1:I,t and actions a1:I,t, as well as environment stochasticity
ωt = [πP

t , π
Q
t , Nev

i,t , P
ed
d,t, Q

ed
d,t, P̃

res
g,t ]. In this problem, ωt is

decoupled from the agents’ actions and are characterized by
inherent variability. For instance, the main grid active and re-
active prices πP

t , π
Q
t are determined by the market conditions,

the parked location Nev
i,t is related to the EV users’ residence,

the active and reactive demand P ed
d,t, Q

ed
d,t are influenced by

the energy usage behaviors, and the RES generation P̃ res
g,t is

affected by the solar radiation or wind speed. As a result, it
is very difficult to explicitly model the distributions of these
uncertain parameters. In machine learning area, RL remedies
this problem in a data-driven approach that does not rely on
accurate models of the underlying uncertainties but learns the
dynamic characteristics directly from data sources [12].

By contrast, the state transition for endogenous state feature
Eev

i,t can be directly determined by action api,t. More specifi-
cally, we reformulate the EV active power P ev

i,t = P c
i,t + P d

i,t,
where P c

i,t and P d
i,t represent the charging and discharging

active power, respectively. Considering that EV cannot charge
and discharge simultaneously as well as needs to ensure its
battery energy capacity E

ev

i , we have these two mutually
exclusive quantities as

P c
i,t = [min(api,tP

ev

i , (E
ev

i − Eev
i,t)/(η

c
i∆t)]+, (3)

P d
i,t = [max(api,tP

ev

i , − Eev
i,tη

d
i /∆t]−, (4)

where operators [·]+/− = max /min{·, 0}, ηci , ηdi are charging
and discharging efficiencies. Based on (3)-(4), we have the
state transition Eev

i,t from time step t to t+ 1 expressed as

Eev
i,t+1 =

{
Eev

i,t + (P c
i,tη

c
i + P d

i,t/η
d
i )∆t if uev

i,t = 1

Eev
i,t − Etp

i if uev
i,t = 0

, (5)

where binary uev
i,t ∈ {0, 1} represents the status of agent i

connected with the network at time step t, uev
i,t = 1 when
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connected and uev
i,t = 0 when traveling. Etp

i indicates the
energy consumption of EV agent i in the traveling.

4) Reward: At the end of time step t, each agent i obtains
its reward ri,t. First of all, EVs connected with charging sta-
tions in the grid aims to maximize the revenue obtained from
providing both active and reactive power services. This can
be calculated based on the charging and discharging behaviors
(i.e., actions) of EVs as well as the LMPs of charging stations
EVs are connected with. Secondly, all EVs need to ensure
the sufficient battery energy level for traveling purpose of two
typical journeys per day. Since Dec-POMDP is a dynamic
decision process, of which the physical constraint (sufficient
traveling energy requirement) is a part of environment that can
not obtained by the EV agents. A reward shaping mechanism
that penalizes the constraint violation to such sufficient charg-
ing behavior is needed and can be assumed to be effective to
address this challenge. As a result, given the above discussions,
the reward function ri,t in equation (6) can be designed as
two parts conditioned on two different situations: 1) the cost
(revenue) of charging (discharging) active power P ev

i,t at P-
LMP λP

i,t together with the revenue of providing (consuming)
reactive power Qev

i,t at Q-LMP λQ
i,t when EV is connected to

the grid (uev
i,t = 1); 2) the penalty of insufficient charging upon

departure, i.e., Eev
i,t ≥ Etp

i may not be satisfied when EV is
traveling (uev

i,t = 0).

ri,t =

{
−λP

i,tP
ev
i,t + λQ

i,t|Qev
i,t| if uev

i,t = 1

κ[Eev
i,t − Etp

i ]− if uev
i,t = 0

, (6)

where λP
i,t, λ

Q
i,t are shadow prices (dual variables) of the active

and reactive demand-supply equality constraints in the ADN. κ
is a penalty factor to penalize the extent of constraint violation,
which its sensitivity study will be performed in Section IV-C.

More specifically, we introduce a branch flow algorithm
for the ADN operated by DSO [10], [33]. For each time
step t, once EV i is parked to its specific charging station
(i.e., home or office) at bus set Bev and makes the real-time
active and reactive power P ev

i,t , Q
ev
i,t, the DSO can solve the

following algorithm and calculates the nodal P-LMP and Q-
LMP λP

b,t, λ
Q
b,t.{

min
Ξopf

∑
g∈G

(
cPg P

dg
g,t+cQg |Q

dg
g,t|

)
+

∑
b∈Gird

(
πP
t P

gd
b,t+πQ

t Qgd
b,t

)
, (7)

where

Ξopf = {P gd
b,t , Q

gd
b,t, P

dg
g,t, Q

dg
g,t, P

res
g,t , Q

res
g,t ,

P ex
b,t , Q

ex
b,t, Pbp,t, Qbp,t, V

2
b,t, δbp,t},

(8)

subject to∑
b∈Bgd

P gd
b,t +

∑
g∈Bdg

P dg
g,t +

∑
g∈Bres

P res
g,t =

∑
d∈Bed

P ed
d,t+∑

i∈Bev

P ev
i,t −

∑
(p,b)∈L

Ppb,t +
∑

(b,p)∈L

Pbp,t : λP
b,t, ∀b ∈ B,

(9)

∑
b∈Bgd

Qgd
b,t +

∑
g∈Bdg

Qdg
g,t +

∑
g∈Bres

Qres
g,t =

∑
d∈Bed

Qed
d,t+∑

i∈Bev

Qev
i,t −

∑
(p,b)∈L

Qpb,t +
∑

(b,p)∈L

Qbp,t : λQ
b,t, ∀b ∈ B,

(10)

νb,t − νp,t = 2(rbpPbp,t + xbpQbp,t)

−(r2bp + x2
bp)lbp,t, ∀bp ∈ L,

(11)

P 2
bp,t +Q2

bp,t ≤ lbp,tνb,t, ∀bp ∈ L, (12)

ν ≤ νb,t ≤ ν, ∀b ∈ B, (13)

lbp,t ≤ lbp, ∀bp ∈ L, (14)

P dg
g ≤ P dg

g,t ≤ P
dg

g , ∀g ∈ G, (15)

(P dg
g,t)

2 + (Qdg
g,t)

2 ≤ (S
dg

g )2, ∀g ∈ G, (16)

|Qdg
g,t| ≤ P dg

g,t tan(cos
−1 δdgg ), ∀g ∈ G, (17)

P gd
b ≤ P gd

b,t ≤ P
gd

b , ∀b ∈ Grid, (18)

Qgd

b
≤ Qgd

b,t ≤ Q
gd

b , ∀b ∈ Grid, (19)

(P gd
b,t )

2 + (Qgd
b,t)

2 ≤ S
gd

b , ∀b ∈ Grid, (20)

0 ≤ P res
g,t ≤ P̃ res

g,t , ∀g ∈W, (21)

(P res
g,t )

2 + (Qres
g,t )

2 ≤ (S
res

g )2, ∀g ∈W, (22)

|Qres
g,t | ≤ P res

g,t tan(cos−1 δresg ), ∀g ∈W, (23)

P res
g,t =Qres

g,t =0, if t /∈ T res,∀g∈W
}
, t ∈ T (24)

where the objective function (7) towards cost minimization
involves two parts: 1) the active power supply cost from
DGs given the production cost cPg of DG unit g, the active
power cost (revenue) by the positive (negative) exchange P gd

b,t

between the main grid and the ADN at the grid active power
price πP

t ; 2) the reactive power support cost from DGs given
the reactive power support cost cQg of DG unit g, the reactive
power cost (revenue) by the positive (negative) exchange Qgd

b,t

between the main grid and the ADN at the grid reactive power
price πQ

t .
The problem is then subject to the active and reactive

power balances at bus b presented in (9)-(10), where their
dual valuables λP

b,t and λQ
b,t constitute the system P-LMPs

and Q-LMPs, respectively. The sets Bgd, Bed, Bdg , Bres

and Bev correspond to the bus sets connected with the main
grid, EDs, DGs, RESs and EVs located at bus b, respectively.
Notably, the active and reactive power of EVs (i.e., Pi,t and
Qi,t) are made by the EVs’ actions defined in (2), that can
be directly incorporated into (9) and (10) as parameters when
solving the branch flow algorithm. Constraint (11) restricts the
voltage magnitudes between the two buses, while constraint
(12) describes the relationship between line flow, current and
voltage. Constraints (13)-(14) are related to the operational
constraints of voltage limit at bus b and ampacity limit for line
b− p, while constraints (15)-(17) describe the feasible region
of each DG, including the active and reactive power limits of
DG unit g influenced by the rated power factor δdgg [33], [34].
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Constraints (18)-(20) correspond to the active/reactive power
exchange limits between the ADN and main grid respectively.
Furthermore, constraint (21) indicates the active power limit
of RES g at time step t, which is related to solar irradiation
or wind speed. Constraints (22)-(23) impose limits on the
apparent power of RESs, reflecting their nameplate capacity
S
res

g and rated power factor δresg . Equation (24) imposes zero
generation when P̃ res

g,t = 0, where T res corresponds to the
subset of time periods when RES generation is greater than 0.

III. MULTI-AGENT REINFORCEMENT LEARNING METHOD

To efficiently solve the above Dec-POMDP, we propose a
novel MARL method named LMP-PSDDPG with its general
architecture being shown in Fig. 2. LMP-PSDDPG derives
three concrete implementation details that are insightful and
particularly critical to our proposed problem: 1) featuring an
actor-critic architecture-based DDPG method [31] with its pol-
icy (actor) network outputting continuous actions and Q-value
(critic) network correcting the weights of policy network; 2)
incorporating LMPs into the Q-value function to stabilize the
training performance and enhance the training scalability by
capturing the system dynamics with privacy perseverance; 3)
adopting a parameter sharing (PS) framework [32] to reach the
distributed control manner without sharing local information.
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Fig. 2. Architecture of the proposed LMP-PSDDPG method.

A. Deep Deterministic Policy Gradient
The proposed method is constructed based on DDPG that

contains two networks for different purposes. The actor net-
work µϕi

(oi), parameterized by ϕi, takes as input the local
observation oi and outputs the continuous action ai for each
agent i. Here, the actor network is based on the deterministic
policy gradient theorem [35] that specifies the current policy
by deterministically mapping observation to a specific action.
The critic network Qθi(oi, ai), parameterized by θi, takes as
input the concatenation of local observation oi and executed
action ai of agent i, and outputs a scalar estimate of the Q-
value to perform the policy evaluation task. More specifically,
we update the weights of critic network with temporal differ-
ence (TD) learning [12] as

L(θi) = E
[
(ri + γQ′

θ′
i
(o′i, a

′
i)−Qθi(oi, ai))

2
]
, (25)

where Q′
θ′
i
(·) is the target critic network whose parameters

θ′i are updated by having them softly tracking the online

critic network θi, to give consistent target during TD learning.
Furthermore, a′i is the executed action according to the next
observation o′i of agent i using its target actor network µ′

ϕ′
i
(o′i)

whose parameters ϕ′
i are also updated by having them softly

tracking the online actor network ϕi. Different from TD
learning in critic network, the actor network is updated via
the policy gradient theorem [12] as

∇ϕiJ(µϕi) = ∇ϕiµϕi(oi)∇aiQθi(oi, ai)|ai=µϕi
(oi). (26)

B. Capturing System Dynamics via Location Marginal Prices

Directly applying DDPG to the multi-agent setup may
become problematic, since independently learning algorithm
treating other agents as part of the environment appears
non-stationary from the view of any agent. As a result, a
centralized Q-value Qθi(o1:I , a1:I) with access to all agents’
local observations and actions is introduced in MADDPG [36]
and is widely used in the existing MARL algorithms that can
stabilize the training performance. However, it is difficult to
directly acquire other agents’ local observations and actions
in our proposed problem, since EVs with privacy concern are
not willing to exchange their traveling patterns and charging
activities with each other. To this end, this paper assumes
the aggregator as a trusted third party that can make use
of the LMPs and incorporate them into the centralized Q-
value function to epitomize the key information of the system
dynamics. In this context, the centralized Q-value function for
each agent i can be approximated as

Qθi(o1:I , a1:I) ≈ Qθi(oi, ai, λi), (27)

where λi = [λP
i , λ

Q
i ] denote the P-LMP and Q-LMP for agent

i. It can be observed that λi is an embedded function that cap-
tures the system dynamics through the branch flow algorithm.
First, the observations of nodal demand and PV generation
as well as the actions of EVs active and reactive power are
integrated into the active and reactive power balances (9) and
(10). Second, λi is a systematic index that not only represents
the local demand-supply status but also is influenced by the
other agents’ information and activities. Third, λi is critical for
agents to adjust their control behaviors. In detail, the higher
value of λP

i encourages EV agent i to reduce/increase its active
charging/discharging behavior in G2V/V2G status, and vice
versa. Similarly, the higher value of λQ

i encourages EV agent
i to inject or consume reactive power into the grid for voltage
regulations. As a result, incorporating λi into the centralized
Q-value function, agent i can make informed decisions on the
basis of the impact of other agents’ actions in the ADN, albeit
not knowing their specific information, thereby protecting the
EV privacy and also improving the scalability.

C. Parameter Sharing Framework

Since we consider a Dec-POMDP of I agents with the same
observation, action and reward function, their policies can be
trained with enhanced efficiency by using a PS framework
[32]. PS allows all agents to share the parameters of a
single control policy. This enables the shared policy to be
trained with the sample experiences gathered by all agents,
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while still allowing different behaviors among different agents,
since each agent receives different local observations. In order
to realize this framework, we assume that the experiences
acquired from the environment of all local EV agents are
transmitted to the central aggregator for updating the shared
policy µϕ = µϕi

,∀i ∈ I parameterized by ϕ. This policy µϕ

is then broadcast to all local EV agents to compute actions
executed to the environment. Similarly, the critic network used
to estimate Q-value function can be also trained in a PS
framework Qθ = Qθi ,∀i ∈ I parameterized by θ.

LMP-PSDDPG is an off-policy MARL method that requires
the past experiences to update the networks. Thus, an expe-
rience replay buffer D is employed. The buffer is a cache
storing the past experiences of all agents acquired from the
environment. In detail, an experience is a transition tuple that
contains ei,t = (oi,t, ai,t, ri,t, oi,t+1) used to update policy and
λi,t used to abstract the Q-value function. On every iteration of
training process, we sample uniformly a minibatch of J mixed
experiences from the shared replay buffer {(ej , λj)}Jj=1 ∼ D
to compute the mean-squared TD error of online critic network

L(θ) = 1

J

J∑
j=1

[(
yj −Qθ(oj , aj , λj)

)2]
, (28)

where the target Q-value

yj = rj + γQ′
θ′

(
oj+1, µ

′
ϕ′(oj+1), λj+1

)
, (29)

here Q′
θ′(·) and µ′

ϕ′(·) are respectively the target critic and
actor networks, softly updated with their online networks.
λj+1 is calculated from the branch flow algorithm given
the target actions µ′

ϕ′(oj+1) conditioned on next observations
oj+1.

On the other hand, the online actor network employs the
policy gradient theorem, which can be expressed as

∇ϕJ(µϕ) =
1

J

J∑
j=1

[
∇ϕµϕ(oj)∇aj

Qθ(oj , aj , λj)|aj=µϕ(oj)

]
.

(30)

The following updates are then applied to the weights of
the online and target networks, where αθ, αϕ are the learning
rates of gradient descent algorithm for online critic and actor
networks, and τ is the soft update rate for target networks.

θ ← θ − αθ∇θL(θ) and θ′ ← τθ + (1− τ)θ′, (31)

ϕ← ϕ+ αϕ∇ϕJ(µ) and ϕ′ ← τϕ+ (1− τ)ϕ′. (32)

Moreover, in order to help the agents explore the environ-
ment and acquire more valuable experiences, we add a random
Gaussian noise N (0, σ2

i,t) to the online actor network (policy)
µϕ(oi,t), constructing an exploration policy

µ̂(oi,t) = µϕ(oi,t) +N (0, σ2
i,t). (33)

Finally, the pseudo-code of the proposed LMP-PSDDPG is
presented in Algorithm 1:

Algorithm 1 LMP-PSDDPG for I agents
1: Initialize parameters θ, ϕ for online shared networks and copy

them to their respective target network weights θ′, ϕ′

2: Initialize a shared replay buffer D for all agents
3: for episode (i.e., day) = 1 to M do
4: Initialize a random process N (0, σ2

i,t) for action exploration
5: Initialize global state s0 and local observation oi,0
6: for time step (i.e., hour) t = 1 to T do
7: For each agent i, selects action ai,t = µ̂(oi,t) according to

current observation oi,t using (33)
8: Execute all agents’ actions at = [a1,t, ..., aI,t] to ADN
9: DSO solves branch flow algorithm (7)-(24) and obtains

LMPs λb,t = [λP
b,t, λ

Q
b,t] (dual variables of (9)-(10))

10: For each agent i, observes current reward ri,t and next
observation oi,t, then transits local experience ei,t =
(oi,t, ai,t, ri,t, oi,t+1) to EV aggregator

11: EV aggregator concatenates LMPs λi,t and local experience
ei,t together and store them to buffer D

12: Update state st ← st+1 and observation oi,t ← oi,t+1

13: Sample a minibatch (ej , λj)
J
j=1 from D

14: Update online critic and critic networks in (28) and (30)
15: Update weights of online and target networks in (31)-(32)
16: end for
17: end for

IV. CASE STUDIES

A. Experimental Setup

Case studies are carried out on an IEEE 15-bus distribution
network modified from [37], which includes 8 EDs, 1 DG,
2 PVs, 2 WTs and 2 charging stations (home and office)
for EVs. More specifically, its network topology is provided
in Fig. 3. We implement all the experiments on a real-
world open-source dataset recorded from Open Energy Data
Initiative (OEDI) [38]. We collect the corresponding electric
loads and PV & wind power generations of residential and
commercial areas with hourly resolution for over a yearly
horizon our experiments. The electricity prices are collected
from Nord-Pool group [39]. To evaluate the proposed MARL
method, we split these time-series data into the training (first
11 months) and test (last 1 month) sets. The apparent power
capacities of 2 PVs and 1 WT are set as 400 kVA and 50
kVA, respectively. A power factor of 0.95 (0.85) is assumed
for residential (commercial) nodes [10]. Nodal voltage level
is limited between 0.95 and 1.05 p.u. [10]. The technical
parameters of 2 (identical) DGs and 2 real-world EV models
(Tesla Model-S and Nio ES 8) are provided in Table I and
II, respectively. Here, the initial battery energy levels and the
departure time of two trips are both constructed from the
truncated normal distributions representing the EVs traveling
uncertainties. In addition, the reactive power cost is assumed
equal to 10% the value of active cost for both grid prices and
DG generation costs [10].

TABLE I
TECHNICAL PARAMETERS OF IDENTICAL DG

P dg (kW) P
dg (kW) S

dg (kVA) cP (£/kWh)
0 400 400 0.055

We compare the proposed LMP-PSDDPG with three bench-
mark MARL methods: 1) DDPG [31]: each agent adopts
a DDPG method independently, the critic network does not
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Fig. 3. Network structure of the modified 15-bus power system.

TABLE II
TECHNICAL PARAMETERS OF 2 REAL-WORLD EV MODELS

Parameters Tesla Model S Nio ES 8
S
ev (kVA) 16.7 17.6

P
ev (kW) 16.7 17.6

E
ev (kWh) 100 100

ηc/ηd (%) 90 90
Eev

t=0 (kWh) T N (30, 102, 10, 50) T N (30, 102, 10, 50)

Departure time
from home (h)

T N (7, 22, 5, 9) T N (7, 22, 5, 9)

Departure time
from office (h)

T N (18, 22, 16, 20) T N (18, 22, 16, 20)

Etp (kWh) 16.7 17.6

incorporate P-LMPs and Q-LMPs into the Q-value function,
there is thus no PS framework, each agent trains its own
policy based on its individual experiences; 2) TD3 [40]: based
on DDPG, another critic network is applied to obtain the
target Q-value (taking the minimum value between these two
estimates), with the aim of overcoming the Q-value overesti-
mation issue in DDPG and stabilize the training performance.
3) LMP-DDPG: based on DDPG, each agent incorporate
P-LMPs and Q-LMPs into its individual Q-value function
without the shared experience replay buffer and policy. For
each MARL method, we run 1,000 episodes with the same 10
random seeds for environment and weights initialization.

All MARL methods use the parameters from original DDPG
paper [31]. Adam optimizer is used for both actor and critic
networks with learning rates αϕ = 10−4 and αθ = 10−3,
respectively. The soft update rate τ = 10−2. A discount factor
of γ = 0.99 is used for the critic network. The minibatch size
J = 64 and the replay buffer size |D| = 106. For both actor
and critic networks we use Multilayer Perceptrons with two
hidden layers with 400 and 300 units, respectively.

B. Training and Test Performance

This section lies in comparing the training and test perfor-
mance of four examined MARL methods in terms of policy
quality and convergence speed for the proposed problem. Fig.
4 illustrates the convergence curve of episodic reward of 3
utilized EVs for different MARL methods, where the solid
lines and the shaded areas respectively depict the moving
average over 50 episodes (smoothing learning curves) and
the oscillations of the original reward, dots on the lines
indicate the numbers of episodes to reach convergence. Finally,

Tables III and IV present the number of episodes to reach
convergence during the training process and the averaged
cumulative rewards over 31 test days for 3 EVs, respectively.
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Fig. 4. Episodic reward of 3 EVs for different MARL methods.

TABLE III
CONVERGED EPISODES OF 3 EVS FOR DIFFERENT MARL METHODS

Method EV1 EV2 EV3 In Average
DDPG 1000* 1000* 850 950
TD3 500 620 1000+ 707
LMP-DDPG 780 800 800 793
LMP-PSDDPG 580 600 600 593

* EV1 and EV2 fail to reach convergence.
+ EV3 fails to reach convergence.

The first observation in Fig. 4 is that DDPG (blue) exhibits
the lowest reward levels and the highest oscillations for all
3 EVs, where EV1 and EV2 even fail to reach convergence
within 1,000 episodes, EV3 converges within 850 episodes.
This is because the independent learning algorithm that fo-
cuses on local information while ignoring the system dy-
namics, rendering the environment non-stationary and conse-
quently an unstable learning behavior. Although TD3 (orange)
is able to improve the policy quality and stabilize the training
performance given by its double critic networks, EV3 still
fails to reach convergence within 1,000 episodes. In addition,
the rewards of all 3 EVs are relatively low. In this context,
LMP-DDPG (green) integrating with LMPs (capturing system
dynamics) can effectively mitigate such non-stationary issue
and exhibits the superior performance in both policy quality
and stability compared to DDPG and TD3. However, LMP-
DDPG relies on individual replay buffer to update the policy
that may not fully explore the environment, thereby resulting
in the sub-optimal policy and the slow convergence speed. To
this end, our proposed LMP-PSDDPG (red) owing to its PS
framework learns a shared policy from a shared replay buffer.
As a result, the experiences acquired from the environment
by all agents can be used to update one common policy. In
this case, more valuable experiences are possible to be used
to improve the policy quality and the shared policy is more
frequent to be updated to accelerate the convergence speed.

TABLE IV
CUMULATIVE REWARDS OF 3 EVS OVER 31 TEST DAYS FOR DIFFERENT

MARL METHODS
Method DDPG TD3 LMP-DDPG LMP-PSDDPG
Test reward (£) 108 165 219 279

In test process, we first freeze and load the learned weight
parameters of actor networks in all four MARL methods, and
then apply them to determine the active and reactive power
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schedules for each EV across the 31 test days based on its
local observations. In other words, during test process, the
agents do not communicate with the aggregator, the decision-
making process is performed in a fully distributed and privacy-
preserving fashion via the deployed actor networks. The
numerical results in Table IV show that the test rewards of all
3 EVs are the highest in LMP-PSDDPG, followed by LMP-
DDPG, TD3, and the lowest in DDPG, which exhibits the
same trend in the training performance.

In relative terms, the proposed LMP-PSDDPG achieves
38%, 16%, and 25% speedup (Table III), and 1.58, 0.69, and
0.27 times higher test reward (Tables IV) over the benchmarks
DDPG, TD3, and LMP-DDPG, respectively.

C. Sensitivity on Penalty Factor in Reward Function

Since MARL is a model-free control algorithm that cannot
handle the physical constraint (e.g., traveling energy require-
ment Eev

i,t ≥ Etp
i when EV i is departing) in conventional

optimization approach, penalizing such constraint violation
thus is an effective way to address such issue. To this end,
selecting a suitable penalty factor κ (in £/kWh) becomes
important, since a relatively small value of κ is not efficient to
penalize the constrain violation; while a relatively large value
of κ may destroy the policy quality of original MARL method.
This section aims to investigate the impact of penalty factor
κ in the reward function (6) by doing the sensitivity analysis
on a set of values κ = [0, 0.1, 0.5, 1.0, 5.0]. In detail, Fig.
5 shows the converged reward (blue) and constraint violation
(orange) of 3 EVs (in total) for different values of κ.
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Fig. 5. Converged reward and constraint violation of 3 EVs (in total) for
different penalty factors.

It can be seen that the constraint violation and reward both
decrease with the increase of penalty factor κ. When κ ≥ 0.5,
the constraint violation will be significantly reduced to zero,
which means the constraint of traveling energy requirement is
completely guaranteed. It can be further observed that reward
is the highest when κ = 0, this is because EVs (saving cost)
never charge for the traveling purpose, but only for the power
supply. More specifically, the reward decreases significantly
as the penalty factor κ increases, until it decreases slightly
when κ ≥ 0.5. The continued downward trend of reward
indicates that the control policy is not being optimal, although
the constraint is fully satisfied. To this end, we would like to
select κ = 0.5 as the suitable value for our experiment.

D. Active and Reactive Power Analysis

This section lies in analyzing the learned policy of LMP-
PSDDPG for 3 EVs’ active and reactive power schedules as
well as their daily SoC dynamics for one test day, as depicted

in Fig. 6. Additionally, the corresponding results of P-LMPs
and Q-LMPs, voltage profiles at bus 3 (home) and bus 7
(office), as well as the demand-supply balances of system
active and reactive power are illustrated in Fig. 7.

Regarding the active power control, 3 EVs mainly choose to
charge power in the morning (at home) and mid-day (at office),
as depicted in Fig. 6(a-c). The charging behaviors in these two
periods can increase their SoC (Fig. 6(g-i)) to ensure sufficient
energy for the two trips of going to work and returning home,
respectively. From the economic perspective, EVs are trying
to maximize the energy arbitrage by firstly charging power
in the low P-LMP periods of morning and mid-day, and then
discharging power in the high P-LMP periods of evening, as
depicted in Fig. 6(a-c). It is noted that P-LMPs in the mid-
day periods of hours 11-14 are zero (Fig. 7(a)), since the PV
generation is extremely large during this period. In this case,
the system demand in active power is fully supplied by 100%
PV resources (Fig. 7(c)) with zero P-LMPs.

On the other hand, Q-LMPs follow the similar trends to
the P-LMPs, high in the morning and evening and zero in the
mid-day, as shown in Fig. 7(a). This is driven by the reactive
power injection from PV resources into the grid, as shown in
Fig. 7(d). Observing such Q-LMP trends, all 3 EVs aiming
to obtain higher revenue choose to provide reactive power
support for the system in the morning and evening as well
as several hours in the afternoon before returning home (Fig.
6(d-f)) when Q-LMPs are relatively high.

Go further, let us analyze the voltage profiles of buses 3
(home) and 7 (office). As shown in Fig. 7(b), the voltages
at buses 3 and 7 exhibit the complementary profiles in the
morning and evening. More specifically, the voltages are much
higher at bus 3 than these at bus 7 for these two periods, since
EVs parking at bus 3 can provide sufficient reactive power for
the grid in the morning and evening (Fig. 6(d-f)). However, the
reactive power in the mid-day is fully supported by renewable
energy resources (Fig. 7(d)), the voltages thus in the mid-day
are much flatter and exhibit similar levels at both buses 3
and 7. The interesting results show that the voltages at bus 3
(blue) dramatically decrease from hours 8 to 9 when EVs leave
home, and further decrease during hours 16-18 when there are
almost no PV resources, but start increasing after hour 18 when
EVs park at home to support reactive power. In contrast, the
voltages at bus 7 (orange) dramatically increase after hour 7
when PV resources are abundant, and further increase from
hours 14 to 17 when EVs park at office to inject a certain
level of reactive power, but start dramatically decreasing after
hour 17 when both EVs (leaving office) and PV (the sun going
down) cannot provide reactive power support.

Thus, it can be found that the proposed LMP-PSDDPG is
able to learn an effective active and reactive power scheduling
policy for all 3 EVs to coordinately integrate with the DSO.

E. Scalability Analysis and Evaluation of EV Benefits

To further analyze the scalability of the proposed LMP-
PSDDPG and quantify the benefits of EVs on system active
and reactive power control, a detailed comparison for different
numbers of EVs (3, 30 and 100) is developed in this section,
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Fig. 6. Active (a-c) and reactive (d-f) power schedules as well as SoC dynamics (g-i) of 3 EVs, yellow areas indicate the mobility of EVs on the travelling.
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Fig. 7. P-LMPs and Q-LMPs at buses 3 and 7 (a), voltage profiles at buses 3 and 7 (b), active (c) and reactive (d) power supply for the ADN.

where the aggregated active (a) and reactive (b) power sched-
ules of all EVs, the net demand and generation profiles of the
ADN (c), as well as the voltage profiles at home bus 3 (d) and
office bus 7 (e) for different EV numbers are illustrated in Fig.
8. It is noted that the proposed LMP-PSDDPG is constructed
on a PS framework, which means the trained control policy
(i.e., actor network) is common and can used by all EVs once
the policy is well trained. As a result, we do not need to retrain
LMP-PSDDPG for 30 and 100 EV cases, while directly using
the policy trained in Section IV-B.

TABLE V
BUSINESS CASES OF EVS, DSO, AND SOCIAL WELFARE (SUM OF EVS
NET PROFIT AND DSO NEGATIVE COST) FOR DIFFERENT EV NUMBERS

Number
of EVs

Active
revenue (£)

Reactive
revenue (£)

EV net
profit (£)

DSO
cost (£)

Social
welfare (£)

0 - - - 130.93 -130.93
3 6.24 3.18 9.42 105.66 -96.24
30 40.71 16.90 57.61 36.11 21.50
100 57.27 20.23 77.50 13.16 64.34

Firstly, it can be observed from Fig. 8(a) that both ac-
tive charging and discharging power are enhanced when EV
numbers are increased to 30 and 100, which results in the
significant increase of off-peak demand in the morning and
the higher effect of absorbing PV resources in the mid-day

as well as the significant reduction of peak demand in the
evening, as shown in Fig. 8(c). The interesting results show
that DSO starts exporting power to the main grid in the evening
under the 30 and 100 EVs scenarios (orange and green line
in Fig. 8(c)), since the EV flexibility exceeds the system peak
demand and EVs can sell their surplus back to the grid at
high P-LMP periods to obtain the extra discharging revenue
(Table V). Besides the economic benefits of EVs themselves,
DSO also benefits from the large-scale EVs deployment in
reducing RES curtailment in the mid-day, and can acquire
more economic benefits at 36.11 £ and 13.16 £ total cost (Table
V), respectively.

Secondly, it can be observed from Fig. 8(b) that the reac-
tive power support is also enhanced when EV numbers are
increased to 30 and 100. However, the flexibility of EVs’
reactive power is not significantly utilized as the case in active
power, since voltages are already at relatively high levels and
even reach to 1.05 p.u. for many periods in the morning and
evening when EVs park at bus 3, as shown in Fig. 8(d). On
the other hand, the voltages are also increased at bus 7 in the
morning and evening under 30 and 100 EVs scenario, which
further demonstrates the benefit of EV flexibility in improving
system overall voltage quality.

Finally, it can observed from Table V that the business
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Fig. 8. EVs’ active (a) and reactive (b) power, system demand/generation
profiles (c), voltage levels at bus 3 (d) and bus 7 (e) for different EV numbers.

cases are all increased under the 30 and 100 EVs scenarios.
However, these quantities do not expect to raise proportionally
as the EV numbers from 3 to 30 and 100, since the DSO does
not require much flexibility to support its active and reactive
power requirements. Nevertheless, the DSO still benefit a
lot from the large-scale deployment of EVs in reducing its
operation cost. Such effect together with EVs’ net profit also
significantly increase the social welfare, resulting in more
efficient network operation. It can be concluded that our
proposed LMP-PSDDPG is able to learn an effective active
and reactive control policy to various EV numbers, thereby
evaluating its scalability performance.

V. CONCLUSIONS

This paper has proposed a novel MARL method named
LMP-PSDDPG to address the coordinated active and reactive
power scheduling problem of multiple self-dispatched EVs
towards both demand-side response and voltage regulations.
The proposed MARL method employs a PS framework incor-
porating LMPs to reach a distributed control matter, enhance
the training scalability and preserve the EVs’ privacy. Un-
certainties associated with RESs, demand and EV traveling
patterns are encompassed in a real-world open-source dataset
through the training procedure of MARL. Experiment results
based on a modified IEEE 15-bus network demonstrate the
effectiveness of EVs in providing demand-side response, regu-
lating voltage profiles, and improving social welfare, while the
superior performance of the proposed LMP-PSDDPG method
in optimality, stability and scalability with respect to the state-
of-the-art MARL methods has been testified.
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Fig. 9. Capability curve of an EV charger.

APPENDIX A
EV CAPABILITY CURVE

The chargers used for EVs in charging stations include
two bidirectional converters, i.e., AC/DC and DC/DC con-
verters. In general, the full-bridge converter and the half-
bridge bidirectional (buck/boost) converter are used to AC/DC
and DC/DC converters, respectively [6]. These converters
facilitate active and reactive power control of EVs that could
be used in the ADN operation, as depicted in Fig. 9. The
capability curve of an EV charger includes four modes: I)
charging and inductive mode, II) discharging and inductive
mode, III) discharging and capacitive mode, and IV) charging
and capacitive mode [8].

As illustrated in Fig. 9 together with the model presented
in [10], [17], EV scheduling is constrained by its active
power limit −P ev

i ≤ P ev
i,t ≤ P

ev

i and apparent power limit
(P ev

i,t )
2+(Qev

i,t)
2 ≤ (S

ev

i )2. Since RL method cannot deal with
the above two coupled operation constraints simultaneously,
we use two-step derivations to sequentially calculate the lower
and upper bounds of active and reactive power P ev

i,t , Q
ev
i,t given

the actions api,t, a
q
i,t as well as the active power capacity P

ev

i

and apparent power capacity S
ev

i .
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