
Northumbria Research Link

Citation: Han, Yi, Zuo, Mengjie, Yuan, Huijun, Zhong, Yi, Yuan, Zhenhui and Bi, Ting (2022)
A QoS-Based Fairness-Aware BBR Congestion Control Algorithm Using QUIC. Wireless
Communications and Mobile Computing, 2022. p. 7222030. ISSN 1530-8669

Published by: Hindawi Publishing

URL: https://doi.org/10.1155/2022/7222030 <https://doi.org/10.1155/2022/7222030>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/49071/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Research Article
A QoS-Based Fairness-Aware BBR Congestion Control Algorithm
Using QUIC

Yi Han,1 Mengjie Zuo,1 Huijun Yuan,1 Yi Zhong ,1 Zhenhui Yuan,2 and Ting Bi 3

1School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
2Department of Computer and Information Science, Northumbria University, Newcastle Upon Tyne, UK
3Department of Computer Science, Maynooth University, Co. Kildare, Ireland

Correspondence should be addressed to Yi Zhong; zhongyi@whut.edu.cn

Received 29 October 2021; Accepted 30 March 2022; Published 29 April 2022

Academic Editor: Basem M. Elhalawany

Copyright © 2022 Yi Han et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Congestion control is a fundamental technology to balance the traffic load and the network. The Internet Engineering Task Force
(IETF) Quick UDP Internet Connection (QUIC) protocol has flexible congestion control and at the same time possesses the
advantages of high efficiency, low latency, and easy deployment at the application layer. Bottleneck bandwidth and round-trip
propagation time (BBR) is an optional congestion control algorithm adopted by QUIC. BBR can significantly increase
throughput and reduce latency, in particular over long-haul paths. However, BBR results in high packet loss in low bandwidth
and low fairness in multi-stream scenarios. In this article, we propose the enhanced BBR congestion control (eBCC) algorithm,
which improves the BBR algorithm in two aspects: (1) 10.87% higher throughput and 74.58% lower packet loss rate in the low-
bandwidth scenario and (2) 8.39% higher fairness in the multi-stream scenario. This improvement makes eBCC very suitable
for IoT communications to provide better QoS services.

1. Introduction

The goal of congestion control is to maximize the use of the
bandwidth of the network link, avoid performance loss caused
by network congestion, and achieve higher transmission effi-
ciency. Since the 1980s, the transmission control protocol
(TCP) has been proposed in order to avoid congestion while
improving bandwidth utilization so that the Internet is no lon-
ger affected by continuous overload. Delay-based congestion
control algorithms represented by Vegas [1] will be completely
overwhelmed when competing with loss-based algorithms.
Loss-based algorithms such as NewReno [2] and CUBIC [3]
have been widely used. However, driven by the advancement
of transmission technology and the development of network
equipment, the increase in network transmission capacity
has caused existing loss-based algorithms to experience buffer
bloat [4] and unexpected performance degradation. With the
expansion of the queue depth of network intermediate devices,
the loss-based algorithm is no longer suitable for today’s net-
work environment. The congestion avoidance phase of such
algorithms will gradually increase the sending window until

the bottleneck queue is filled. Even if the link starts to get con-
gested, the sending window will not decrease. The algorithm
can only adopt a speed reduction strategy to relieve congestion
when a packet loss event occurs. But at this time, it has already
caused great fluctuations in network delay and affected the
overall network throughput. Different from loss-based and
delay-based algorithms, BBR [5] tries to achieve high link uti-
lization by estimating available Bottleneck link bandwidth
(BtlBw) and round-trip propagation delay (RTprop) to calcu-
late bandwidth-delay product (BDP) and also avoid creating
queues in bottleneck buffers. BBR is also widely deployed on
Google’s own production platforms such as the B4 WAN
and YouTube. BBR is also open source and integrated into
the Linux kernel.

In today’s network transmission, most Internet traffic uses
TCP as the control protocol of the transport layer to achieve
reliable transmission. But TCP is difficult to meet the user sce-
narios that require higher and higher transmission performance
with the development of the Internet. The QUIC [6] launched
by Google in 2012 has the characteristics of multiplexing, man-
datory encryption, avoiding head-of-line blocking, and can

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 7222030, 16 pages
https://doi.org/10.1155/2022/7222030

https://orcid.org/0000-0002-6233-5362
https://orcid.org/0000-0001-6196-5613
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7222030

establish connections with less round-trip time (RTT), which
solves the most urgent problem of TCP and helps network ser-
vices to further improve the user experience. Although most of
the research related to transport protocols in the past dozen
years has focused on TCP, this exploration is tedious and slow
to develop. The emergence of the QUIC protocol has broken
this rigid situation. It uses UDP as the basic protocol and has
the characteristics of flexible deployment. It does not require
the support of the operating system and the kernel and realizes
the reliable transmission, congestion control, and flow control
of TCP at the application level. QUIC can maintain optimal
network conditions when the number of users, network traffic,
transmission content size, and network interactive services
increase, providing different but more accurate and effective
congestion control for each user, and meeting the high real-
time, high bandwidth utilization, and low latency transmission
requirements of Internet applications.

Both QUIC and BBR have been reported by Google as sig-
nificant performance improvements and have attracted wide-
spread interest. QUIC and BBR have been studied and
evaluated in different network scenarios, respectively [7, 8].
They are both developed by Google and currently used together
in some commercial products, such as Chrome browser and
YouTube. According to [6, 9], as of 2018, 7% of total Internet
traffic and 30% of Google egress traffic are generated by QUIC
connections. At present, CUBIC is still the default congestion
control in QUIC implementations, but BBR is also optional
congestion control in QUIC. BBR uses a feedback-driven
autonomous adjustment mechanism to keep the initial value
of the congestion window consistent with the capacity of the
network so that the network maintains a state of high through-
put and low latency. BBR does not use packet loss events as a
signal of congestion. It controls the sending rate, further reduc-
ing the risk of congestion. Combined with QUIC’s flexible con-
gestion control mechanism, the algorithm can be optimized at
the application layer and have lower transmission delay. BBR
with QUIC is relatively accurate for bandwidth estimation,
which helps to shorten transmission delay. It can cope with
various types of network packet loss, maintain a high transmis-
sion speed when the packet loss rate increases, and cope with
network changes well.

However, BBR also has some deficiencies and defects. In
transmission links with high latency and bandwidth, the char-
acteristics related to the BBR pacing rate and RTT will cause
excessive data transmission rate during the transmission pro-
cess, resulting in packet loss that seriously affects the quality
and efficiency of the transmission. In a multiuser scenario,
the network delay is variable due to multiple concurrent data
senders in the same network. When the network encounters
congestion, the congestion control algorithm must control
the transmission rate of the data flowwhile ensuring the band-
width utilization, to reduce the delay as much as possible and
maintain a high throughput. In this situation where multiple
streams compete in the network link, the streams will interact
with each other, and the network transmission performance of
the multiple streams will be affected. Moreover, BBR deter-
mines the pacing rate based on the bandwidth-delay product
(BDP), and the transmission rate is maintained at high
throughput. When there is a burst of traffic in the network,

it will inevitably cause network congestion, and it may restart
from the initial state of BBR with a low recovery speed and the
cache queue is also cleared.

Combining the characteristics of loss-based and delay-
based algorithms, this paper proposes an enhanced BBR con-
gestion control (eBCC) algorithm, which reduces the packet
loss rate and packet retransmission chance, while also trying
to improve the fairness of the algorithm inmulti-stream trans-
mission. At the same time, when the link suffers from a higher
delay, eBCC has proved to be able to increase the transmission
throughput by reducing the sending rate and packet loss.

The rest of this article is organized as follows. Section 2
introduces the related research of QUIC protocol and BBR
algorithm. Section 3 analyzes the original BBR algorithm
and elaborates the proposed eBCC algorithm in this paper.
In Section 4, we evaluate the proposed algorithm in different
network scenarios and perform the analysis of the experi-
mental results. Finally, the algorithm and experimental
results are concluded in section 5.

2. Related Work

2.1. Research on Congestion Control Handling. In order to
meet the increasing demand for Internet services and solve
the problem of rapid growth of network traffic, multiple
servers are usually used to improve network performance
[10]. However, the problems of network congestion and over-
loaded servers still arise. Therefore, a load balancer is needed
to overcome these problems, by distributing the load of
requests and traffic among multiple resources such as servers
and network links, in order to improve the overall network
performance. Software-defined networking (SDN) is consid-
ered to solve the problems of traditional load balancers and
plays an important role in network optimization and perfor-
mance improvement. Hamed et al. [11] implement the
“CPU-based” and “CPU-Memory-based” load balancing tech-
niques and evaluate their performance compared to the static
round-robin and random-based load balancing techniques
using Ryu OpenFlow controller. The results show that the pro-
posed schemes achieve more reliability and higher resource
utilization than the round-robin and random-based load bal-
ancing strategies. In addition, they have a lower response time
and higher transaction rate and throughput. The proposed
schemes exhibit more scalability and low-cost characteristics.

In addition to SDN for congestion control and load balan-
cing, there are also congestion control algorithms that can be
used to improve network transmission performance. Conges-
tion control algorithms protect the Internet from continuous
traffic by adjusting the sending rate, reducing congested send-
ing, and improving bandwidth utilization. The classic conges-
tion control algorithms include delay-based and loss-based
algorithms.

Vegas [1] was the first implementation of congestion con-
trol algorithm using delay as a congestion signal. The Vegas
algorithm defines BaseRTT and sets it to the minimum of all
measured RTT. When receiving a duplicate ACK, Vegas
checks whether the difference between the current time and
the recorded timestamp is greater than BaseRTT. If it is, the
packet is retransmitted immediately without waiting for a

2 Wireless Communications and Mobile Computing

third duplicate ACK. When acknowledging a retransmitted
packet, Vegas reduces the congestion window by a factor of
3/4. When a non-duplicated ACK is received and it is the first
or second acknowledgment after data retransmission, Vegas
will check again whether the data transmission interval
exceeds BaseRTT. If Vegas exceeds BaseRTT, it will also per-
form data retransmission operation.

Among the congestion control algorithms based on
packet loss, NewReno and CUBIC are typical algorithms
that are often used for analysis and examples. NewReno
[2] adopts the well-known Additive Increase Multiplicative
Decrease (AIMD) mechanism. During slow start, its conges-
tion window (cwnd) increases exponentially with each RTT
until the slow start threshold ssthresh is reached. After that,
cwnd enters the congestion avoidance phase, adding one
packet per RTT cycle. If three duplicate ACKs are received,
the fast recovery phase is entered, and the new ssthresh is
set to cwnd/2. Then, the cwnd is halved to enter the conges-
tion avoidance phase. However, if a timeout occurs, it will go
into slow start and start over. NewReno can distinguish one-
time congestion from multiple-time congestion, improving
the robustness and throughput after packet loss.

BIC [12] calculates the maximum link capacity and maxi-
mizes the congestion window. It can reduce the calculation of
large link capacity by binary search and quickly find the opti-
mal congestion window size. CUBIC [3] is an enhanced version
of BIC that improves TCP friendliness and RTT fairness and
simplifies BICwindow control. After a packet loss event occurs,
the window growth function of CUBIC is controlled by the
cubic function of time and provides good stability and scalabil-
ity. Compared with AIMD based on cubic function, CUBIC
adopts a different mechanism. After cwnd is decreased, cwnd
rises in a concave shape until it reaches the value of cwnd
before the decrease. After that, CUBIC increases its growth rate
and rises in a convex shape. CUBIC is currently the default
congestion control algorithm in Linux.

2.2. Research on QUIC Protocol. QUIC is developed based on
UDP, and its design philosophy enables it compatible with
the safety and reliability of TCP and the fast speed of
UDP. Kharat et al. [13] explored the QUIC function using
an experiment implemented with a local test bench con-
nected to a wireless access point in the campus network
environment. The experimental results show that QUIC
maintains excellent performance in the form of throughput
and TCP/IP acceleration. The fairness of QUIC under com-
peting traffic conditions was also checked, and it was found
that it performed well in long-lived traffic.

Transmission protocols continue to evolve to meet the
emerging needs of users and new services. Corbel et al. [14]
specifically analyzed the protocol fairness when TCP and
QUIC streams coexist on the wireless link of the mobile net-
work. The results show that when the loss rate of the mobile
network is low, the emulation of multiple TCP connections,
the limitation of the congestion window size, and the use of
hybrid start (hystart) have a great impact on fairness. The
incorrect setting of the default parameters of these mecha-
nisms or the activation of the hystart option will affect the per-

formance of the transmission protocol and therefore also
affect fairness.

With the increasing wide-ranging interest in the flexibil-
ity and rich features of QUIC, Biasio et al. [15] demonstrated
the native implementation of QUIC in ns-3 and illustrated
the implemented functions, the main assumptions, differ-
ences related to QUIC Internet-Drafts, and a set of exam-
ples. Our paper uses this implementation of QUIC in ns-3
to conduct our experiments.

Soni et al. [7] conducted an in-depth study of the QUIC
protocol from the perspective of its implementation and appli-
cation. The authors used Amazon AWS services for test bench
implementation to evaluate the performance of the QUIC pro-
tocol against TCP and UDP protocols. They found that QUIC
performed better than TCP in terms of throughput and data
retrieval time. However, its performance is between TCP and
UDP. In addition, it provides the fast data transmission of
UDP and the reliability of TCP. At the same time, various
problems in the QUIC protocol were discovered, such as for-
ward secrecy, replay attacks, and denial of service attacks.

2.3. Related Research on BBR Congestion Control Algorithm.
Scholz et al. [8] proposed a publicly available framework for
repeatable TCP measurement based on network simulation,
designed to analyze the TCP BBR algorithm. They reproduced
and confirmed the weaknesses of the current BBR implemen-
tation and provided further insights. The two main problems
were discovered: One is that bandwidth may be shared
unfairly and the second problem is that it takes too long before
the bandwidth balance is restored. The behavior on the syn-
chronization between BBR streams was analyzed, showing
that it reached a fair balance of long-lived streams.

Zhang et al. [16] revealed that the aggressiveness of BBR
would reduce the performance of CUBIC and the entire
Internet transmission. They proposed a simple and effective
solution based on BBR, Modest BBR. The core idea of Mod-
est BBR is to reduce retransmission and certain aggression
by sacrificing a small amount of bandwidth, to obtain better
fairness through loss-sensitive methods. Through a large
number of test bench experiments and Mininet simulations,
it is found that Modest BBR can maintain high throughput
and short convergence time when coexisting with Cubic
while improving overall performance and achieving better
fairness for loss-based solutions.

Kim and Cho [17] proposed a delay-aware BBR (DA-BBR)
congestion control algorithm to alleviate the RTT fairness
problem among streams using BBR. A network simulation
was carried out using Mininet; the results showed that DA-
BBR increased the fairness index by 1.6 times of the original
BBR, and the number of packet retransmissions was greatly
reduced. Even in competition with RTT five times higher,
DA-BBR streams with short RTT exhibit fair throughput.

To improve the fairness between the streams using TCP-
BBR congestion control algorithm and the ones using delay-
based congestion control algorithm, Jia et al. [18] proposed a
TCP-BBR-based congestion control algorithm, which has mod-
erate fairness and is called Modest Fairness BBR (MFBBR). The
simulation results on Mininet showed that the algorithm can
improve the fairness of BBR when coexisting with Westwood

3Wireless Communications and Mobile Computing

(a congestion control algorithm based on time delay) [19] and it
has better fairness than the delay-based congestion control
algorithm.

Song et al. [20] proposed a BBR congestion window scal-
ing (BBR-CWS) scheme, which uses a loss-based congestion
control algorithm to improve the interprotocol fairness of
BBR. The results of Mininet experiments can confirm that
the fairness between BBR-CWS and CUBIC is improved by
73% and has a value of 0.9 or higher in most bottleneck buffer
scenarios. In addition, compared with the original BBR, the
number of packet retransmissions is reduced by 96%.

2.4. Research on BBR Based on QUIC. In the mobile network
environment, due to the common but uncertain fluctuations
in round-trip time and random loss events in the air, the
congestion window growth is unexpectedly hindered. The
single-connection strategy still leads to degraded and highly
variable completion time interfaces. To maintain a flexible
congestion window for networks with such fluctuations,
Qian et al. [21] proposed an intelligent connection manage-
ment scheme based on QUIC. According to the performance
evaluation results obtained from the LTE-A/Wi-Fi test net-
work, the proposed multi-QUIC scheme can effectively
overcome the existing limitations in congestion control algo-
rithms such as NewReno, CUBIC, and BBR. The median
completion time of a piece of web content can be improved
up to 59.1%, and the 95th percentile completion time is
improved by up to 72.3%. The significance of this work is
to achieve highly robust short-term content download per-
formance in response to the uncertainty of various network
conditions and different congestion control schemes.

Wang et al. [22] conducted a preliminary evaluation of the
performance of QUIC and BBR congestion control algorithm
through GEO satellite Internet access on a private network
simulation testbed. The obtained results and analysis confirm
that compared with the classic CUBIC, the performance of the
new satellite Internet using QUIC with BBR is improved.

Due to the strong interest of the ns-3 community in the
QUIC module, Paro et al. [23] proposed some extensions of
the ns-3 QUIC module to make it more flexible. Integrate
BBR into the QUIC module, and implement the necessary
pacing and rate sampling mechanisms, as well as a new sched-
uling interface with three different scheduling styles. Use the
network traffic model in the literature to test the new features
to verify whether their performance meets expectations. Our
paper uses the code of the extension module BBR when con-
ducting the BBR experiment based on QUIC.

Haile et al. [24] used the scalability of QUIC to enhance
BBR; instead of using the ACK rate observed at the sender, it
applied a more desirable transfer rate calculated at the
receiver. Simulation experiments based on 5G tracking in
CloudLab proved that the modified QUIC can significantly
reduce latency without any significant impact on through-
put. In particular, a 39% reduction in round-trip time
(RTT) can be observed in some cases, and the throughput
is also reduced by 2.7% in the worst case.

The improvement of the BBR algorithm proposed above
is an improvement in the fairness of BBR. The eBCC algo-
rithm proposed in this study can achieve higher throughput

and lower packet loss rate than the BBR algorithm in the
case of low bandwidth in both single and multiple streaming.

3. Proposed Congestion Control Algorithm

3.1. Calculation of Fairness Index. Since multiple links in the
network share the network bandwidth, when congestion
occurs, the fairness between various congestion control algo-
rithms and the fairness within the same congestion control
algorithm is very important. At present, the standard for
judging whether the network is fair has not been uniformly
stipulated. There are two mainstream standards for judging
whether the network is fair. The first standard is that for
links with different round-trip delays or using different con-
gestion control algorithms, each link should occupy the
same throughput so that it is fair among the links. Another
standard is that each link should have the same network
throughput when competing, and sources of the same level
should get the same amount of network resources, such as
response time, throughput, bandwidth, and cache. This stan-
dard uses the Jain’s fairness index [25] as an evaluation
matrix, which is adopted by this paper as a fairness index.
The formula is as follows:

Jain xð Þ = ∑n
i=1xið Þ2

n ×∑n
i=1x

2
i

� � , ð1Þ

where n represents n senders and xi is the throughput of
the i-th link. When multiple data streams compete for band-
width, the result ranges from 1/n to 1. When all connections
are competing for network bandwidth, JainðxÞ = 1 indicates
the fairest situation, while JainðxÞ = 1/n reaches the mini-
mum, that is, the most unfair situation. And when all users
share the same allocated bandwidth, it is the maximum value.

The fundamental reason for the need to pay attention to
fairness is that congestion will inevitably lead to data packet
loss and thus cause competition among data streams for lim-
ited network resources, and data streams with weaker compet-
itiveness will suffer further degradation in QoS. For example, if
a congestion control algorithm is based on packet loss when
the sender detects that one data packet is lost, it considers that
the network is congested and immediately adopts a congestion
avoidance strategy to halve the sending window, actively
reducing the sending rate of data packets to avoid network
congestion. When there are multiple senders and receivers
on the transmission link using traditional congestion control
algorithms, multiple data streams with different round-trip
times compete for the limited bandwidth of the bottleneck
link. The duration of the streams with long round-trip time
occupying the bottleneck bandwidth is significantly lower
than the streams with short round-trip time. This will result
in unfair use of network resources. The BBR congestion con-
trol algorithm is the opposite of the traditional congestion
control algorithm. The calculation of the sending window of
the BBR algorithm is related to RTT. Different RTT streams
will lead to different sending windows. Long RTT streams
are more aggressive than short RTT streams, and they can
send more data in a longer period than short RTT streams,

4 Wireless Communications and Mobile Computing

occupying a lot of bandwidth during transmission. This fea-
ture enables it to steal bandwidth from other streams, seize
more link bandwidth, impair the transmission performance
of short RTT streams simultaneously transmitted on the same
path, and in the end, result in a decrease in fairness within the
protocol.

3.2. BBR Congestion Control Algorithm. Congestion often
occurs in the smallest bandwidth section of a link. This
smallest bandwidth is the bottleneck bandwidth of the link,
and its size determines the maximum transmission through-
put. Packet loss and RTT are not considered congestion con-
trol factors in BBR. In BBR, the network link is regarded as a
“pipe.” The diameter and length of this “pipe” are repre-
sented by BtlBw and RTprop, respectively, to estimate the
maximum bandwidth and minimum delay of the current
network. The volume is BDP (the product of BtlBw and
RTprop). When the total amount of data in the link equals
BDP, that is, when the sending window is equal to BDP,
the throughput is maximized. When the sending window is
smaller than BDP, the RTT is a fixed value because the buffer
is not occupied at this time. So there is no queuing delay,
and the throughput will increase as the sending window
increases. When the sending window exceeds BDP, it starts
to fill the buffer. At this time, the RTT will increase when
the sending window increases, and the throughput reaches
the maximum and stop increasing. When the buffer is full,
the excess data packets will be discarded. The BBR algorithm
always maintains the sending window size near the BDP
value, which can guarantee higher throughput and lower
delay. However, when the buffer is full, it is already con-
gested before the buffer overflows, which will cause greater
delay and introduce a large number of packet retransmis-
sions [5, 26]. Such a large number of retransmissions will
also occupy link bandwidth and cause waste of bandwidth
resources. It will not only reduce its transmission efficiency
but also bring great damage to the flow of loss-based conges-
tion control algorithms.

Multiple QUIC connections of a single user may be ini-
tiated from a host, and when they send data at the same
time, this may squeeze the bandwidth of the same shared
link. Multi-streaming methods designed to improve
throughput usually increase queuing delay and packet loss
rate. The increased queuing delay leads to a higher BDP
value and thus gives more advantage in its bandwidth com-
petition. The retransmission caused by packet loss is a waste
of bandwidth. Both of the above will damage other streams
on the bottleneck of the shared link. What’s more, in the
multiuser scenarios, the streams from different users and
multi-QUIC connections from the same user are overlapped
and compete in the link, which will cause the loss of fairness
not only among streams but also among users [27].

3.3. Enhanced BBR Congestion Control Algorithm. The
essence of a loss-based congestion control algorithm is still
to attribute packet loss to network congestion. To achieve
the maximum throughput, these algorithms continuously
increase cwnd until the link buffer is filled, causing packet
loss, and then reduce the cwnd to perform congestion con-

trol. The delay-based congestion control algorithms act based
on queues. When the queue exceeds the set threshold, cwnd is
processed to reduce the growth rate of cwnd. If packets are still
lost after adaptation, the size of cwnd is reduced.

The compound TCP (CTCP) congestion control algo-
rithm [28] combines loss-based and delay-based congestion
control methods, allowing the algorithm to quickly increase
the sending rate while obtaining high bandwidth scalability
and improved TCP fairness. CTCP is designed and usually
used in high bandwidth environment, and it is disabled by
default [29]. eBCC adjusts the algorithm transition state and
congestion control window using loss and queuing status as
decision factors. Instead, CTCP runs the legacy TCP’s AIMD
algorithm and a delay-based high speed congestion control
algorithm. The idea of the eBCC algorithm is to use both
packet loss and delay as rate control signals. It is different from
the CTCP algorithm for the operation after packet loss and the
way of judging the delay as a congestion signal. Packet loss is
used as the primary factor for adaptation decisions. The gain
of eBCC’s cwnd is no longer a fixed value of 2 but is adaptively
changed according to whether the packet is lost and whether
the queue exceeds the threshold.When there are other streams
in the link, eBCCwill not always fill the bottleneck link and the
buffer. It will reduce the sending rate promptly to reduce the
packet loss rate. The role of the queuing status is to judge
the buffer. eBCC judges the queuing status by calculating the
sending window and RTprop. This is to avoid inaccurate mea-
surement of RTprop when the buffer is being occupied by
other streams, preventing the depletion of the buffer. In mul-
tiuser/multi-QUIC streaming cases, eBCC makes full use of
bandwidth when it is radical. When competing with other
streams or having congestions, eBCC will respond in time to
reduce the sending rate to relieve congestion, reduce packet
loss, and sacrifice a small amount of throughput to improve
fairness. Enhanced BBR congestion control algorithm pro-
posed by this article is described in the Algorithm 1. The
parameters and symbols used in the algorithm are explained
in Table 1.

When there is no packet loss and the queue is empty, the
growth of the congestion window refers to the idea of the
binary search congestion control algorithm [12]. Because
all link connections wish to obtain bandwidth resources
quickly and fairly, a faster convergence speed is required.
The binary search method can converge faster when it
approaches the optimal adaptation point after experiencing
packet loss. The size of cwnd can be calculated as follows:

cwnd = cwnd + targetCwndð Þ/2, ð2Þ

where targetCwnd indicates the maximum limit of the
congestion window.

The CTCP algorithm is deduced by Vegas, using
baseRTT as the estimated value of the packet transmission
delay on the network path, and baseRTT will be updated
according to the minimum RTT value measured during
the transmission process. The following algorithm can be
used to estimate the number of data that are waiting to be
sent in the queue:

5Wireless Communications and Mobile Computing

Expected = cwnd
baseRTT

, ð3Þ

Actual = cwnd
RTT

, ð4Þ

dif f = Expected − Actualð Þ ∗ baseRTT: ð5Þ
where RTT is the currently measured RTT value and d

if f is the size of the data packet in the queue. Expected refers
to the throughput estimate obtained without exceeding the
network path, and Actual represents the real throughput.

γ is a compromise between fairness and throughput with
a value of 30 according to [26+2]. If dif f < γ, the network
link is considered to be underutilized. If dif f > = γ, eBCC
perceives that the network is fully utilized and the number

of data packets in the queue exceeds the specified threshold,
and the data transmission rate needs to be reduced accord-
ingly.

pf Cwnd = 2cwnd − targetCwnd, ð6Þ

cwnd = pf Cwnd + cwndð Þ/2: ð7Þ

Equations (6) and (7) change the size of the current con-
gestion window to the average value of current cwnd and p
f Cwnd. pf Cwnd is the size of the last congestion window,
that is, the size of cwnd when the queue does not exceed
the specified threshold. This enables the cwnd to increase
smoothly when data packets are accumulated in the queue
without packet loss.

Input:t, Time, targetCwnd.
Output:Throughput, delay.
Time: the total time of transmission;
diff: the extra packets in the queue;
isLost: the packet loss signal;
1: Initialize t⟵ 0
2: while t < = Time do
3: if diff < γ and isLost = false and in ProbeBW state then
4: keep in ProbeBW state
5: cwnd = ðcwnd + targetCwndÞ/2
6: elseif diff >= γ and isLost = false and in ProbeBW state then
7: keep in ProbeBW state
8: cwnd = ðpf Cwnd + cwndÞ/2
9: elseif diff >= γandisLost = true and in ProbeBW state then
10: change to ProbeRTT state
11: elseif diff >= γandisLost = true and in ProbeRTT state then
12: cwnd = cwndð1 − βÞ
13: end if
14: end while
15: returnThroughput, delay.

Algorithm 1: Enhanced BBR Congestion Control Algorithm.

Table 1: Description of parameters and symbols.

Parameter/symbol Description

n Number of senders

xi Throughput of the i-th link (mbps)

diff The extra packets in the queue

γ The compromise number of packets in the queue

baseRTT The estimated value of the packet transmission delay (ms)

targetCwnd The maximum limit of the congestion window

pf Cwnd The size of the last congestion window

β The proportion of cwnd size decrease

access_bandwidth The bandwidth of the transmission link

bottleneck_bandwidth The bandwidth of the bottleneck link

access_delay The delay of the transmission link

bottleneck_delay The delay of the bottleneck link

6 Wireless Communications and Mobile Computing

When a packet loss is detected, the transmission enters
the congestion avoidance phase. When the BBR is still in
the stable state of ProbeBW, the ProbeBW state is trans-
ferred to ProbeRTT. If the BBR is already in the ProbeRTT
state, adjust the congestion window size:

cwnd = cwnd 1 − βð Þ, ð8Þ

where the value of β is 0.5 according to TCP Reno and
NewReno algorithms so that the congestion window can
converge to the optimal point faster while the transmission
rate is reduced.

4. Experimental Results and Analysis

4.1. General Experimental Setup. The general experimental
setup of this paper uses a virtual machine of the Ubuntu oper-
ating system with a Linux kernel version of 20.04. We mainly
use the extension modules of QUIC [15] and BBR [23] in the
network simulator version 3 (ns-3) to simulate the network
environment [30]. Two network topologies are created to
study the performance of the proposed eBCC algorithm in
single-stream and multi-stream scenarios, respectively.

Associated with the Ethernet protocol, the maximum
transmission unit in TCP is 1500 bytes, which determines
the maximum size of each packet in any transmission. The
packet size of the data stream is set to 1400 Bytes, and the
transmission interval is set to 100ms. The total transmission
duration is 20 seconds. The transmission starts at end of the
first second, which means that the entire process of data
streaming lasts for 19 seconds.

4.2. Experiment 1: Varying CWND, RTT, and Throughput of a
Single Stream. We set the transmission bandwidth and delay
for transmission link and bottleneck link to 50Mbps and
15Mbps and 20ms and 10ms, respectively. The simulated
network scenario of the experiment is shown in Figure 1.

Experiment 1 measured the cwnd, RTT, and transmis-
sion throughput of several different congestion control algo-
rithms over time. The measurement results are shown in
Figure 2, Figure 3, and Figure 4.

It can be seen from Figure 2 that CUBIC and NewReno
regard packet loss events as serious matters. Once the packet
loss occurs, an adaption decision to reduce the congestion
window will be made. The congestion control window of
the BBR algorithm maintains the maximum detected con-
gestion window value most of the time. BBR adjusts the con-
gestion window in the retransmission state when it restores
the original maximum detection window value and then
exits the retransmission state. In addition to adopting the

aggressive transmission strategy of BBR, eBCC considers
packet loss when making decisions to reduce the congestion
control window.

In Figure 3, NewReno’s RTT trend is most stable, followed
by CUBIC with two sawtooth changes. And RTT of the above
two algorithms is low for a relatively long duration. RTT of
BBR and eBCC fluctuates greatly. BBR fluctuates around
larger RTT for a long duration, and eBCC fluctuates in a saw-
tooth shape. The sawtooth peak value of eBCC is close to the
larger RTT value maintained by BBR for a long time.

In Figure 4, the throughput variations of the four algo-
rithms can be mapped with cwnd changes in Figure 2. New-
Reno reduces the congestion control window because of
packet loss in its congestion control mechanism. The
throughput curve encounters twists and turns around at
the 3rd second, and there is a certain drop. The CUBIC algo-
rithm is also for the same reason, because it encounters
packet loss and reduces the congestion window to reduce
the rate, which causes the throughput curve to twist or the
curve has a downward trend at 8th second. The reason for
the drop in throughput of BBR and eBCC is because it
detects serious congestion and restarts directly from the ini-
tial state. BBR is more aggressive in the early stages, but
eBCC recovers much faster than BBR when dealing with
congestion and has higher average throughput.

4.3. Experiment 2: Varying Link Bandwidth and Delay of a
Single Stream. Before conducting multi-stream experiments,
two preliminary studies are performed to understand the
impact of varying network bandwidth and delay of transmis-
sion links and the bottleneck link on the streaming perfor-
mance when using different congestion control algorithms.

First, in the case of varying bandwidth, we have managed
to carry out the experiment using a low bandwidth link.
According to the related research on BBR in [8], the difference
in bandwidth does not affect the validity of the results. The
experiments with high bandwidth can use physical hardware
devices in the future so that high-definition video or virtual
reality video transmission can be performed. This is consid-
ered to be the focus of our following work. Using the same
topology illustrated in Figure 1, the transmission link and
the bottleneck link were tested with four sets of parameters:
75Mbps and 17.5Mbps, 50Mbps and 15Mbps, 30Mbps and
10Mbps, and 15Mbps and 5Mbps, respectively. The delay
of the two links is set to 20ms and 10ms, respectively.

Second, in the case of varying delay, 50Mbps and
15Mbps are selected as the bandwidth of the transmission
link bandwidth and the bottleneck link, respectively. The
delay values of the transmission link and the bottleneck link
are divided into three groups: 20ms and 10ms, 15ms and

Sender Receiver

Bottleneck link
Transmission

link
Transmission

link

50 Mbps, 20 ms 50 Mbps, 20 ms15 Mbps, 10 ms

Figure 1: Network simulation for the single-stream scenario.

7Wireless Communications and Mobile Computing

500000

BBR-CWND CUBIC-CWND

NewReno-CWND eBCC-CWND

400000

300000

CW
N

D
 (b

it)

200000

100000

0

5 10 15 20
Time (s)

500000

400000

300000
CW

N
D

 (b
it)

200000

100000

0

5 10 15 20
Time (s)

500000

600000

400000

300000

CW
N

D
 (b

it)

200000

100000

0

5 10 15 20
Time (s)

400000

300000

CW
N

D
 (b

it)

200000

100000

0

5 10 15 20
Time (s)

Figure 2: Varying congestion window size during transmission.

CUBIC-RTT

NewReno-RTT eBCC-RTT

0.15

RT
T

(s
)

0.10

0.05

0.00

0.15

0.20

RT
T

(s
)

0.10

0.05

0.00

5 10 15 20
Time (s)

0.15

RT
T

(s
)

0.10

0.05

0.00
5 10 15 20

Time (s)

5 10 15 20
Time (s)

BBR-RTT

0.15

0.20

RT
T

(s
)

0.10

0.05

0.00

5 10 15 20
Time (s)

Figure 3: Varying RTT during transmission.

8 Wireless Communications and Mobile Computing

7.5ms, and 10ms and 5ms, respectively. Both of these
experiments were performed under a low link bandwidth
and different delay environments, and the experimental
results were obtained after repeated measurements. The
results are averaged from repeated experiments. The packet
sending rate, packet receiving rate, and packet loss rate are
shown in Table 2 and Table 3:

Access_bandwidth in Tables 2 and 3 represents the
transmission link bandwidth, and bottleneck_bandwidth is
the bottleneck link bandwidth. It can be seen from Table 2,
Table 3, and Figure 5 that the sending rate of BBR is the
highest, but its throughput is not as good as that of eBCC.
Table 3 shows that BBR suffers from great packet loss that

leads to a large number of packet retransmission and thus
its received throughput is lower than the proposed eBCC.

From Figure 5(a) and Table 2, it can be seen that in the four
cases, the throughput of the four algorithms all increase as the
access_bandwidth increases, and eBCC achieves the highest.
The throughput of CUBIC is the lowest when the access_band-
width is low. When the access_bandwidth increases, the
throughput of NewReno becomes the worst among the four
algorithms. From Figure 5(b) and Table 3, it can be seen that
in terms of packet loss rate performance, NewReno’s congestion
control is conservative in a rate increase, so packet loss rate is
the lowest among the four algorithms, remaining at about 1%.
The CUBIC algorithm has the worst packet loss performance

14

12

10

8

6
Th

ro
ug

hp
ut

 (M
bp

s)

4

2

0

2.5 5.0 7.5 10.0
Time (s)

12.5 15.0 17.5 20.0

NewReno
CUBIC

BBR
eBCC

Figure 4: Variation of throughput in real-time transmission.

Table 2: Packet sending/receiving rate (Mbps) for varying bandwidth of different links.

Varied bandwidth(Mbps) NewReno CUBIC BBR eBCC

access_bandwidth =15; bottleneck_bandwidth =5 4.220/4.188 3.245/3.160 4.776/4.697 4.776/4.697

access_bandwidth =30; bottleneck_bandwidth =10 6.845/6.801 6.509/6.386 9.661/8.870 9.576/9.2662

access_bandwidth =50; bottleneck_bandwidth =15 7.743/7.692 8.840/8.672 14.731/12.465 14.353/13.820

access_bandwidth =75; bottleneck_bandwidth =17.5 8.769/8.708 10.055/9.855 17.413/14.631 16.634/16.087

Table 3: Packet loss rate (%) for varying bandwidth of different links.

Varied bandwidth (Mbps) NewReno CUBIC BBR eBCC

access_bandwidth =15; bottleneck_bandwidth =5 1.0617 4.8268 2.0855 2.0855

access_bandwidth =30; bottleneck_bandwidth =10 1.008 3.4845 11.1037 4.9245

access_bandwidth =50; bottleneck_bandwidth =15 1.2216 3.4133 19.7338 5.6094

access_bandwidth =75; bottleneck_bandwidth =17.5 1.2343 3.4354 19.9143 5.0625

9Wireless Communications and Mobile Computing

16

14

12

10

8
Th

ro
ug

hp
ut

 (M
bp

s)

6

4

2

0
15/5 30/10

Access_bandwidth/bottleneck_bandwidth (Mbps)

Varied bandwidth

50/15 75/17.5

NewReno
CUBIC

BBR
eBCC

(a)

Pa
ck

et
 lo

ss
 ra

te

15/5 30/10
Access_bandwidth/bottleneck_bandwidth (Mbps)

Varied bandwidth

0.200

50/15 75/17.5

NewReno
CUBIC

BBR
eBCC

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

(b)

Figure 5: Network performance test results for different link bandwidths and bottleneck link bandwidths. (a) Received throughput. (b)
Packet loss rate.

Table 4: Packet sending/receiving rate (Mbps) for different link delays and bottleneck link delays.

Varied delay (ms) NewReno CUBIC BBR eBCC

access_delay =20; bottleneck_delay =10 7.743/7.692 8.840/8.672 14.126/12.037 14.353/13.823

access_delay =15; bottleneck_delay =7.5 11.737/11.678 10.717/10.593 14.650/13.099 14.469/14.036

access_delay =10; bottleneck_delay =5 12.860/12.827 11.154/11.058 14.448/14.290 14.220/14.079

10 Wireless Communications and Mobile Computing

Table 5: Packet loss rate (%) for different link delays and bottleneck link delays.

Varied delay(ms) NewReno CUBIC BBR eBCC

access_delay =20; bottleneck_delay =10 1.222 3.217 18.928 5.609

access_delay =15; bottleneck_delay =7.5 0.661 2.118 14.023 4.617

access_delay =10; bottleneck_delay =5 0.456 1.573 1.712 1.744

Th
ro

ug
hp

ut
 (M

bp
s)

20/10
Access_delay/bottleneck_delay (ms)

Varied delay

15/7.5 10/5

NewReno
CUBIC

BBR
eBCC

0

16

14

12

10

8

6

4

2

(a)

Pa
ck

et
 lo

ss
 ra

te

20/10
Access_delay/bottleneck_delay (ms)

Varied delay

15/7.5 10/5

NewReno
CUBIC

BBR
eBCC

0.000

0.175

0.150

0.125

0.100

0.075

0.050

0.025

(b)

Figure 6: Network performance test results for different link delays and bottleneck link delays. (a) Throughput. (b) Packet loss rate.

11Wireless Communications and Mobile Computing

when the access_bandwidth is low. But when the access_band-
width increases, the packet loss of CUBIC is stable, maintaining
around 3.4%. The packet loss rate of BBR and eBCC is better
than CUBIC only when the bandwidth is low, i.e., 15Mbps
and 5Mbps. In other cases, the packet loss rate of both is rela-
tively high. BBR has the worst performance in terms of packet
loss, more than twice that of eBCC.

In Tables 4 and 5, access_delay refers to the transmission
link delay, and bottleneck_delay refers to the bottleneck link
delay. It can be noted from Tables 4 and 5 and Figure 6 that
when the transmission access_delay and bottleneck_delay
are 10ms and 5ms, BBR has the best throughput perfor-
mance. eBCC has lower throughput and higher packet loss
rate than BBR. When the transmission access_delay and bot-
tleneck_delay are 20ms and 10ms and 15ms and 7.5ms, the
throughput of eBCC is the highest among several algo-
rithms, and the performance of eBCC’s packet loss rate is
also better than BBR. In these three cases, NewReno main-
tains the lowest packet loss rate.

Tables 4 and 5 record the packet sending/receiving rate
and packet loss rate of NewReno, CUBIC, BBR, and eBCC
for different transmission link delays and bottleneck link
delays. Inferring from the packet loss rate, in the two sets
of experiments with higher delay, the throughput of BBR is
lower than eBCC due to retransmission, but in the group
with low delay, the performance gap between the through-
put and the packet loss rate of the two is not significant.

As shown in Figure 6, Table 4, and Table 5, as the
access_delay and bottleneck_delay decrease, the throughput
of the four algorithms has different degrees of improvement.
The throughput of NewReno and CUBIC is worse than that
of BBR and eBCC. Among them, CUBIC performs better
than NewReno when the access_delay is 20ms and the bot-
tleneck_delay is 10ms, and the throughput of NewReno is
higher when the delay is lower. In terms of packet loss, New-
Reno and CUBIC are lower than BBR and eBCC but also
have lower throughput. NewReno performs particularly well
in terms of packet loss (around 0.5%) when the delay is low.
In the case of higher latency, eBCC reduces cwnd when
packet loss is detected to reduce unnecessary data packet
retransmissions by slightly slowing the sending rate, which
is not implemented by BBR. This not only reduces the
packet loss rate but also improves the overall transmission

throughput. In the case of lower latency, BBR can maintain
high throughput, and the utilization of network links has
reached a high peak. In this case, high throughput is a
reward for a high packet loss rate risk.

From Figures 5–6, the delay has a greater impact on
packet loss rate, and bandwidth has a greater impact on
throughput performance. In the case of higher bandwidth
and higher latency, eBCC performs better in throughput,
and the performance of packet loss is much better than BBR.

4.4. Experiment 3: Performance Study of Multi-Stream
Transmission. The multi-stream transmission experiment
sets up multiple nodes in a dumbbell network topology.
The experimental network topology is shown in Figure 7.
Multiple pairs of clients and servers are defined to simulate
different numbers of streams sending and receiving data
packets simultaneously. Four congestion control algorithms

1

Senders Receivers

50
 M

bp
s, 2

0 m
s50 Mbps, 20 ms

Bottleneck link

15 Mbps, 10 ms

1

n n

2 2

Figure 7: QUIC multi-stream transmission dumbbell network topology.

Table 6: Average packet sending/receiving rate (Mbps) per flow in
multi-stream transmission.

Number of
flows

NewReno CUBIC BBR eBCC

3 flows 4.234/4.209 4.511/4.452 5.245/4.076 5.005/4.527

5 flows 2.796/2.779 2.602/2.554 3.281/2.415 3.105/2.677

Table 7: Average packet loss rate (%) in multi-stream
transmission.

Number of flows NewReno CUBIC BBR eBCC

3 flows 0.857 2.392 28.135 14.488

5 flows 0.929 2.721 35.430 20.443

Table 8: Average fairness index in multi-stream transmission.

Number of flows NewReno CUBIC BBR eBCC

3 flows 0.999 0.962 0.951 0.996

5 flows 0.994 0.991 0.910 0.986

12 Wireless Communications and Mobile Computing

are adopted independently to study their performance. The
link bandwidth of transmission and bottleneck link is set
to 50Mbps and 15Mbps, respectively. The experiment is
repeated to conduct 3 and 5 different numbers of flows in
the network transmission to be compared against a single-
stream scenario in Experiments 1 and 2. The experimental
results are also the average value obtained through repeated
experiments. The fairness index in the multi-stream experi-
ment is calculated by Equation (1).

Table 6, Table 7, and Table 8 show the average sending
rate, average packet loss rate, and average fairness index of
NewReno, CUBIC, BBR, and eBCC congestion control algo-

rithms. When the packet loss rate is always low, NewReno
has good throughput performance in 5 streams. CUBIC
has a higher packet transmission rate and throughput in
the 3 streams case, but the fairness is the second-lowest. In
the case of the 5 streams case, its packet sending rate and
throughput are relatively low, but the fairness performance
is better than that in the case of 3 streams. The packet send-
ing rate of BBR and eBCC are both very high, but the high
packet loss rate damages BBR’s throughput significantly.
eBCC achieves higher throughput performance in all cases
including the single-streaming case compared with BBR by
reducing the packet loss rate. While NewReno has the

Th
ro

ug
hp

ut
 (M

bp
s)

3 flows

Varied flows

5 flows

NewReno
CUBIC

BBR
eBCC

0

4

3

2

1

(a)

Pa
ck

et
 lo

ss
 ra

te

3 flows

Varied flows

5 flows

NewReno
CUBIC

BBR
eBCC

0.00

0.35

0.30

0.25

0.20

0.15

0.10

0.05

(b)

Figure 8: Multi-stream transmission experimental test results. (a) Throughput. (b) Packet loss rate.

13Wireless Communications and Mobile Computing

highest fairness in both multi-streaming cases, the fairness of
BBR is the lowest as a consequence of its radical transmis-
sion strategy.

Figure 8 demonstrates a visual performance comparison
of these four congestion control algorithms. In multi-stream
transmission, the throughput of BBR has always been the
lowest. The packet loss rate is the highest among all algo-
rithms. NewReno has always been the holder of the lowest
packet loss rate (around 1%). In Figure 8(a), eBCC has the
best throughput in the case of 3 streams, and its Jain fairness
index is only smaller than NewReno. In Figure 8(b), in the

case of 5 streams, NewReno has the highest throughput and
the lowest packet loss rate. The throughput of eBCC is only
lower than NewReno and higher than CUBIC and BBR. The
reason that eBCC’s throughput is not as good as NewReno’s
is due to the high packet loss rate of eBCC. In this case, eBCC’s
sending rate has not been greatly improved, which leads to a
slight gap in the final throughput of eBCC compared to
NewReno.

From Figure 9, although the throughput curves of New-
Reno, BBR, and eBCC have twists and turns, the overall
trend is a gradual increase. After the throughput rises to a

4

3

Th
ro

ug
hp

ut
 (M

bp
s)

2

1

0
2.5 5.0 7.5 10.0

Time (s)
12.5 15.0 17.5 20.0

NewReno
CUBIC

BBR
eBCC

(a)

2.5

Th
ro

ug
hp

ut
 (M

bp
s)

0.5

2.5 5.0 7.5 10.0
Time (s)

12.5 15.0 17.5 20.0

NewReno
CUBIC

BBR
eBCC

2.0

1.5

1.0

(b)

Figure 9: The real-time change of the average throughput in the multi-stream transmission experiment. (a) Three streams case. (b) Five
streams case.

14 Wireless Communications and Mobile Computing

certain value, CUBIC starts to decrease due to its congestion
control mechanism. Through the comparison of the average
throughput curves of 1, 3, and 5 streams, the average
throughput curve of a larger number of streams is more
aggregated, and the throughput curve of a single stream is
more scattered. The throughput curve of NewReno has a
smaller decline and a greater rise as the number of streams
increases. The throughput of BBR only fluctuates around
the value after it reaches a certain value, which is consistent
with its control method for obtaining BDP as the sending
rate. The throughput curves of eBCC are similar varying
from single stream to 3 and 5 streams. In a 5-stream sce-
nario, 5 streams are competing in the link, and aggressive
BBR flows can easily cause packet loss, which greatly
increases the number of lost packets in the link and ulti-
mately leads to a decrease in throughput performance. Com-
pared with the BBR algorithm, the eBCC algorithm reduces
packet loss and improves the throughput performance. The
NewReno algorithm does not have a high utilization rate
of the link, so it is easy to lead to waste of bandwidth
resources. However, the simultaneous transmission of 5
streams makes up for this shortcoming. Therefore, the New-
Reno algorithm achieves the best throughput performance.
The CUBIC algorithm is more aggressive than the NewReno
algorithm, and it is easier to lose packets in the competition,
resulting in performance loss. Its throughput degrades in the
presence of massive packet loss due to stream contention.

Base on the analysis of the three experiments, we noticed
that the eBCC algorithm improves the BBR algorithm in two
aspects: (1) 10.87% higher throughput in experiment 1 and
74.58% lower packet loss rate in experiment 2 in the low-
bandwidth scenario and (2) 8.39% higher fairness in experi-
ment 3 in the multi-stream scenario. In comparison to New-
Reno and Cubic algorithms, eBCC outperforms both in
throughput in most cases while maintaining a high level of
fairness. The eBCC algorithm provides better quality for trans-
mission in low bandwidth scenarios, which is applicable IoT
communications.

5. Conclusions

In this paper, we proposed the eBCC algorithm under the
QUIC protocol. Several experiments were performed to com-
pare its performance against BBR, CUBIC, and NewReno algo-
rithms in multiple network scenarios. In the low-bandwidth
link scenario, through changing the bandwidth and delay on
both transmission link and bottleneck link, we measured the
transmission throughput and packet loss rate of four algo-
rithms. In the simulation, the transmission throughput, packet
loss rate, and fairness of the four algorithms were measured.
The simulation results show that in the experiment of changing
the bandwidth and the delay of the low-bandwidth network
link scenario, eBCC achieves the best transmission throughput
among the four algorithms. Although its packet loss rate is
slightly higher than CUBIC and NewReno, but significantly
lower than that of BBR. In the 3-stream scenario under the
multi-stream transmission simulation, eBCC also gains the
highest throughput, and second-highest fairness, only slightly
lower than that of NewReno. In the 5-stream scenario, the

throughput performance of the four algorithms is not much
different. eBCC is slightly worse than NewReno in throughput
performance and still performs better than BBR in fairness,
throughput, and packet loss. In view of the above advantages,
eBCC can obtain better QoS quality in the transmission of
low-bandwidth links in IoT communications.

The experiment of the high bandwidth link will be car-
ried out in the future. At the same time, our multi-stream
experiment in this article is only an experiment between
the same congestion control algorithm and the same RTT
flow, and it does not compare the network performance
between different congestion control algorithm flows and
different RTT flows. Moreover, the experiment in this article
is carried out in a wired dumbbell network simulated by ns-3
and has not been tested in a wireless network, a wide area
network, or a cellular network. It is expected that these parts
of the experiment will be completed in our following work.

Data Availability

The simulation data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by a grant from the National Natural
Science Foundation of China (Grant No. 61801341). This
work was also supported by the Research Project of Wuhan
University of Technology Chongqing Research Institute and
the Science Foundation Ireland (SFI) Industry Fellowship Pro-
gramme under Grant Number 19/IFA/7445(T).

References

[1] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to end con-
gestion avoidance on a global internet,” IEEE Journal on
Selected Areas in Communications, vol. 13, no. 8, pp. 1465–
1480, 1995.

[2] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno modi-
fication to TCP’s fast recovery algorithm,” Technical Report,
2004.

[3] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-
speed TCP variant,” ACM SIGOPS operating systems review,
vol. 42, no. 5, pp. 64–74, 2008.

[4] J. Gettys and K. Nichols, “Bufferbloat: dark buffers in the inter-
net,” Communications of the ACM, vol. 55, no. 1, pp. 57–65,
2012.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “BBR: congestion-based congestion control: mea-
suring bottleneck bandwidth and round-trip propagation
time,” Queue, vol. 14, no. 5, pp. 20–53, 2016.

[6] A. Langley, A. Riddoch, A. Wilk et al., “The QUIC transport
protocol: design and internet-scale deployment,” in Proceed-
ings of the Conference of the ACM Special Interest Group on
Data Communication, pp. 183–196, CA, Los Angeles, USA,
2017.

15Wireless Communications and Mobile Computing

[7] S. Mukesh and B. S. Rajput, Security and Performance Evalua-
tions of QUIC Protocol, Data Science and Intelligent Applica-
tions. Springer, Singapore, 2021.

[8] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of TCP BBR con-
gestion control,” in IFIP Networking Conference (IFIP Net-
working) and Workshops, pp. 1–9, Zurich, Switzerland, 2018.

[9] J. Iyengar andM. Thomson, “QUIC: a UDP-based multiplexed
and secure transport,” Internet Engineering Task Force,
Internet-Draft draft-ietf-quic-transport-27, 2020.

[10] S. Kaur and J. Singh, “Implementation of server load balancing
in software defined networking,” in Information Systems
Design and Intelligent Applications, pp. 147–157, Springer,
New Delhi, 2016.

[11] M. I. Hamed, B. M. ElHalawany, M. M. Fouda, and A. S. T.
Eldien, “A novel approach for resource utilization and man-
agement in SDN,” in 2017 13th International Computer Engi-
neering Conference (ICENCO), pp. 337–342, Cairo, Egypt,
2017.

[12] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion
control (BIC) for fast long-distance networks,” IEEE Confer-
ence on Computer Communications (INFOCOM), vol. 4, 2004.

[13] P. K. Kharat, A. Rege, A. Goel, and M. Kulkarni, “QUIC pro-
tocol performance in wireless networks,” in IEEE International
Conference on Communication and Signal Processing (ICCSP),
pp. 0472–0476, 2018.

[14] R. Corbel, S. Tuffin, A. Gravey, A. Braud, and X. Marjou,
“Impact of QUIC on fairness in mobile networks,” in IEEE
10th International Conference on Networks of the Future
(NoF), pp. 82–89, 2019.

[15] A. De Biasio, F. Chiariotti, M. Polese, A. Zanella, and M. Zorzi,
“a QUIC Implementation for ns-3,” Proceedings of the 2019
Workshop on ns-3, 2019.

[16] Y. Zhang, L. Cui, and F. P. Tso, “Modest BBR: enabling better
fairness for BBR congestion control,” in IEEE Symposium on
Computers and Communications (ISCC), pp. 00646–00651,
Natal, Brazil, 2018.

[17] G. H. Kim and Y. Z. Cho, “Delay-aware BBR congestion con-
trol algorithm for RTT fairness improvement,” IEEE Access,
vol. 8, pp. 4099–4109, 2020.

[18] M. Jia, W. Sun, Z. Wang, Y. Yaohua, Q. Hongyu, and
M. Kelong, “MFBBR: an optimized fairness-aware TCP-BBR
algorithm in wired-cum-wireless network,” in IEEE Confer-
ence on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 171–176, Toronto, ON, Canada, 2020.

[19] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang,
“TCP Westwood: bandwidth estimation for enhanced trans-
port over wireless links,” in Proceedings of the 7th annual inter-
national conference on Mobile computing and networking,
2001.

[20] Y. J. Song, G. H. Kim, and Y. Z. Cho, “BBR-CWS: improving
the inter-protocol fairness of BBR,” Electronics, vol. 9, no. 5,
p. 862, 2020.

[21] P. Qian, N. Wang, and R. Tafazolli, “Achieving robust mobile
web content delivery performance based on multiple coordi-
nated QUIC connections,” IEEE Access, vol. 6, pp. 11313–
11328, 2018.

[22] Y. Wang, K. Zhao, W. Li, J. Fraire, Z. Sun, and Y. Fang, “Per-
formance evaluation of QUIC with BBR in satellite internet,”
in 6th IEEE International Conference on Wireless for Space
and Extreme Environments (WiSEE), pp. 195–199, Huntsville,
AL, USA, 2018.

[23] U. Paro, F. Chiariotti, A. A. Deshpande, M. Polese, A. Zanella,
and M. Zorzi, “Extending the ns-3 QUIC module,” in Proceed-
ings of the 23rd International ACM Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems,
pp. 19–26, Alicante, Spain, November 2020.

[24] H. Haile, K. J. Grinnemo, S. Ferlin, P. Hurtig, and
A. Brunstrom, “WIP: leveraging QUIC for a receiver-driven
BBR for cellular networks,” in 22nd IEEE International Sympo-
sium on aWorld of Wireless, Mobile and Multimedia Networks
(WoWMoM), pp. 252–255, Pisa, Italy, 2021.

[25] K. R. Jain, W. M. D. Chiu, and W. R. Hawe, “A quantitative
measure of fairness and discrimination,” Eastern Research
Laboratory, Digital Equipment Corporation, Hudson, MA,
vol. 21, 1984.

[26] M. Hock, R. Bless, andM. Zitterbart, “Experimental evaluation
of BBR congestion control,” in IEEE 25th International Con-
ference on Network Protocols (ICNP), pp. 1–10, Toronto, ON,
Canada, 2017.

[27] G. Kim, I. Mahmud, and Y. Cho, “Fairness improvement of
BBR congestion control algorithm for different RTT flows,”
in International Conference on Electronics, Information, and
Communication (ICEIC, pp. 1-2, Auckland, New Zealand,
2019.

[28] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound
TCP approach for high-speed and long distance networks,”
in IEEE Conference on Computer Communications (INFO-
COM), 2006.

[29] X. Wu, M. C. Chan, A. L. Ananda, and C. Ganjihal, “Sync-
TCP: a new approach to high speed congestion control,” in
17th IEEE International Conference on Network Protocols,
pp. 181–192, 2009.

[30] T. Bi and G. Muntean, “Location-aware network selection
mechanism in heterogeneous wireless networks,” in IEEE con-
ference on computer communications workshops (INFOCOM
WKSHPS), Atlanta, GA, USA, May 2017.

16 Wireless Communications and Mobile Computing

	A QoS-Based Fairness-Aware BBR Congestion Control Algorithm Using QUIC
	1. Introduction
	2. Related Work
	2.1. Research on Congestion Control Handling
	2.2. Research on QUIC Protocol
	2.3. Related Research on BBR Congestion Control Algorithm
	2.4. Research on BBR Based on QUIC

	3. Proposed Congestion Control Algorithm
	3.1. Calculation of Fairness Index
	3.2. BBR Congestion Control Algorithm
	3.3. Enhanced BBR Congestion Control Algorithm

	4. Experimental Results and Analysis
	4.1. General Experimental Setup
	4.2. Experiment 1: Varying CWND, RTT, and Throughput of a Single Stream
	4.3. Experiment 2: Varying Link Bandwidth and Delay of a Single Stream
	4.4. Experiment 3: Performance Study of Multi-Stream Transmission

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

