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Abstract. Crowd simulations are used extensively to study the dy-

namics of human collectives. Such studies are underpinned by specific

movement models, which encode rules and assumptions about how peo-

ple navigate a space and handle interactions with others. These models

often give rise to macroscopic simulated crowd behaviours that are sta-

tistically valid, but which lack the noisy microscopic behaviours that are

the signature of believable real crowds. In this paper, we use an exist-

ing “Turing test” for crowds to identify realistic features of real crowds

that are generally omitted from simulation models. Our previous study

using this test established that untrained individuals have difficulty in

classifying movies of crowds as real or simulated, and that such peo-

ple often have an idealised view of how crowds move. In this follow-up

study (with new participants) we perform a second trial, which now in-

cludes a training phase (showing participants movies of real crowds). We

find that classification performance significantly improves after training,

confirming the existence of features that allow participants to identify

real crowds. High-performing individuals are able to identify the fea-

tures of real crowds that should be incorporated into future simulations

if they are to be considered realistic.
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1 Introduction1

A significant amount of artificial life research is concerned with studying the collective2

dynamics ofmobile agents operating in a spatially-explicit environment. Relevant domains3

include the flocking behaviour of birds and other “animats” (“boids” being the archetypal4

example (Reynolds, 1987)), the power of distributed swarm robotics (Brambilla et al., 2013),5

and the engineering of biological cell populations (Gorochowski, 2016). In all such cases,6

agents (whether simulated or physically realised) are situated in Cartesian space, and may7

interact both with one another and with their environment.8

One specific area of growing interest is the study of crowd dynamics (Adrian et al., 2019);9

that is, the behaviour of large numbers of human individuals moving through and interact-10

ing in a given environment. The need to understand collective human behaviour in physical11

space is pressing, as it has significant implications for events planning and management12

(Crociani et al., 2016), urban design (Feng et al., 2016), and incident response and analysis13

(Harding et al., 2011; Pretorius et al., 2015). During and after the COVID pandemic, with14

potentially long-lasting and profound structural and behavioural changes being made, the15

need to understand the crowd will persist (Pouw et al., 2020).16

Due to the inherent difficulty of performing large-scale experiments with human partic-17

ipants, crowd simulations (Thalmann & Musse, 2013) (usually using an agent-based ap-18

proach) are often used to investigate collective behaviour and the impact of physical or19

behavioural interventions on crowd dynamics. Two features of simulations are of interest;20

validity and believability. Validity describes how closely the output of the model matches21

data obtained from the real world (Klüpfel, 2007; Pettré et al., 2009; Seer et al., 2014).22

Believability is subtly different, and concerns the human perception of whether or not a23

crowd’s behaviour is realistic, or plausible. We are not concerned with “cinematic”, photo-24

realistic believability of the rendering of a crowd, but whether or not observers are able to25

detect characteristic patterns of behaviour in real crowds which are absent in simulated26

1



crowds. Fundamentally, we assume that a simulation is valid, and are interested in whether27

or not it also looks realistic.28

The rest of the paper is organised as follows; we give some background motivation, outline29

our hypothesis, and describe our crowd Turing test framework for its investigation. We30

then describe our experimental method for the current study, and describe our results. We31

conclude with a discussion of the implications of our findings, and suggest possible future32

work.33

2 Background and Motivation34

Crowd simulations are now used extensively in a wide range of application domains, from35

urban planning (Aschwanden et al., 2011), emergency response (Mahmood et al., 2017),36

games and training simulations (Mckenzie et al., 2008), and the CGI generation of Holly-37

wood movie scenes (a classic example being the large-scale battle scenes in The Lord38

of the Rings series) (Ricks, 2013). Most crowd simulations are underpinned by a be-39

havioural/movement model, which makes simplifying assumptions about individuals, and40

which is used by agents to determine their trajectories through the simulated space.41

The Social Forces Model (SFM) (Helbing &Molnar, 1995) lies at the heart of many scientific42

and commercial crowd simulation packages, such as FDS+EVAC (Korhonen et al., 2010),43

PedSim (Gloor, 2016), SimWalk (Kimura et al., 2003) and MassMotion (Rivers et al., 2014).44

However, there are well-established deficiencies in this and other existing movement mod-45

els. As (Lerner et al., 2007) argue, “While such approaches may capture the broad overall46

behaviour of the crowd, they often miss the subtle details displayed by the individuals. The47

range of individual behaviours that may be observed in a real crowd is typically too com-48

plex for a simple behavioural model... Simple things such as walking in pairs, stopping to49

talk to someone, changing one’s mind and heading off in a different direction or aimlessly50

wandering about, are just a few examples which are difficult to capture.” The emphasis51
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here is less on the locomotion model of avatars or the cosmetic appearance of the agents,52

and more on the patterns and “quirks” of movement that distinguish a real crowd from a53

simulated one.54

Why is this important? After all, emergency planners (to take one significant user group)55

will generally be satisfied if the overall outcome of a simulation (in terms of the time re-56

quired to evacuate a stadium, for example) is broadly valid, and will usually not concern57

themselves with micro-level “turbulence” and other localised phenomena. However, as58

(Fuchsberger et al., 2017) argue, crowd simulations still meet with resistance from deci-59

sion makers in some significant industrial and societal domains, and this may be due to a60

lack of trust in their outputs (caused, in turn, by a lack of realism). Specific concerns iden-61

tified of relevance to the current paper include “unnatural motion paths”, so if we can go62

some way towards addressing this, then it may lead to increased acceptance and uptake63

of these techniques.64

As we argue in (Webster & Amos, 2020), there is still a need for more realistic behavioural/65

movement models in crowd simulation, and “This is motivated by a widely-acknowledged66

need for crowd simulations to include more realistic features derived from individual and67

social psychology (such as group-level behaviours, indecision, etc.) (Lemercier & Auberlet,68

2016; Seitz et al., 2017; Templeton et al., 2015), which are generally not included in software69

packages, and which give rise to rather unrealistic or “robotic” patterns of behaviour at the70

population level”.71

Much work has already been done on making crowd simulations more realistic; here we72

highlight some representative contributions. (Lerner et al., 2007) describes the construc-73

tion of a database of behavioural “motifs” which may be incorporated into an agent’s be-74

haviour. (Peters & Ennis, 2009) used manual annotation of observations to extract in-75

formation about group-level behaviours that were then incorporated into simulations (this76

study also included human trials of perception of realism). More recently, (Wei et al., 2018;77
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Yao et al., 2020) used machine learning to extract features of observed crowds, which were78

then incorporated into a crowd simulation, but neither study assessed whether or not these79

modifications actually made the overall crowd behaviour more realistic.80

Fundamentally, what passes for realistic is inherently subjective. To our knowledge, until81

we performed this study no extensive work had been done on capturing the “essence” of82

what makes a crowd realistic from the perspective of human observers.83

Our previous work (Webster & Amos, 2020) showed that crowd simulations that employ the84

most commonly-used movement model are valid (in terms of their outputs having the same85

statistical properties as observed crowds), but they still possess a “signature” that allows86

them to be distinguished from real crowds. Simply put, to human observers, simulated87

crowds are still perceived differently to real crowds. Importantly, though, we also found that88

although people are able to reliably partition crowds into real/simulated, they are unable89

to tell which is which. That is, individuals are able to separate crowd movies into two90

categories, but they are unable to reliably label the real crowds. We found that individuals91

tend to have an idealised view of the behaviour of real crowds, which is often at odds92

with reality. These findings confirm the observation that real and simulated crowds have93

different microscopic features that allow them to be partitioned, if not classified.94

To summarise, our previous work established the existence of features that are present in95

real crowds but not in simulated crowds; the aim of the current paper is to identify those96

features. In (Webster & Amos, 2020) we argue that “Our results suggest a possible frame-97

work for establishing a minimal set of collective behaviours that should be integrated into98

the next generation of crowd simulation models.” Here, we use the “Turing test” classi-99

fication task to identify that specific set of features that allow trained viewers to reliably100

classify (not just partition) real and simulated crowds. Our results show that classification101

performance over a population of observers increases significantly after an initial training102

phase, and that individuals are able to identify a core set of realistic behaviours that are103
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present in real crowds, but which are absent in simulated crowds. This immediately sug-104

gests new features that must be incorporated into future crowd simulations if they are to105

be considered realistic.106

3 Hypothesis107

In a landmark paper (Turing, 1950), Alan Turing proposed a method to investigate what108

would become known as “artificial intelligence”. Rather than directly answering the some-109

what ambiguous question “Can machines think?”, Turing preferred to reframe the issue in110

terms of an “imitation game”, in which an interrogator engaged in conversation with two111

agents via “teletypes”. One of the agents (A) is a man, and the other (B) a woman, and112

the interrogator’s objective is to decide which is which by asking questions of both and113

assessing their responses. The task of A is to cause the interrogator to guess incorrectly114

(that is, persuade them that he is a woman), and the task of B is to “help” the interrogator115

to guess correctly, generally by giving truthful answers. We may, therefore, interpret the116

imitation game (commonly referred to as the “Turing test”) more generally, with the role of117

A being played by an artificial system that seeks to persuade a human observer that it is118

the “genuine article”, and B being played by an actual “real world” example of the system119

under study. Importantly, the test does not seek to establish the “truth” of A’s outputs120

(that is, their validity), but simply whether or not A could be said to represent a reasonable121

facsimile of the system represented by B.122

This conceptual framework has been proposed for biological modelling (Harel, 2005) and123

artificial life (Cronin et al., 2006) as a way of investigating the realistic properties of arti-124

ficial systems. We previously used the same approach to investigate crowd simulations,125

basing our approach on a related Turing test for collective motion in fish (Herbert-Read126

et al., 2015). In (Webster & Amos, 2020), we describe the results of initial experiments,127

using a total of 540 in-person participants. The first set of trials presented individuals with128
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a sequence of paired movies, using a side-by-side representation. In each pair, one of the129

movies represented the movement of a real crowd, and the other represented a computer130

simulation of the same scenario (the ordering was randomised). All observations were of131

the same physical space, and both movies were generated using the same custom render-132

ing engine. For each pair (over six pairs in total), participants were asked to specify which133

of the pair they thought was the real crowd (that is, they had to identify the real crowd). For134

the second set of trials, participants were presented with the movies individually, and this135

time they were asked to classify each movie as either real or simulated.136

We found that participants performed better when they were asked to classify crowds rather137

than having to choose between the two, but a striking feature of our results was that neither138

mode allowed participants to perform better than random guessing. A simplistic interpre-139

tation of this result could be that existing simulations are good enough to “pass” the crowd140

Turing test, as human observers are unable to distinguish between them, but here we em-141

phasise that the imitation game, as originally described by Turing, requires the interrogator142

to be able to specify which agent is the man.143

Strikingly, the most common score in the first trial was zero, meaning that a significant144

proportion of participants (36.46%) failed to identify a single real crowd. That is, their145

entire perception of what constitutes a real crowd was perfectly “flipped” compared to re-146

ality. This sizeable group of participants were able to perfectly partition movies into real or147

simulated, but were utterly unable to say which was which. This confirmed the existence of148

a set of real crowd behaviours (informally described by participants in terms of “standing149

around” and “moving with purpose”) that allowed individuals to separate real from sim-150

ulated, but which were incorrectly ascribed to the simulation as generating “unrealistic”151

crowd behaviour. Our conclusion was that participants had an idealised view of real crowd152

behaviour, and preferred to think that it was much less “messy” and unpredictable than153

observations would suggest.154
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Our hypothesis, therefore, is that participants in a crowd Turing test will improve their155

classification performance after being trained by viewing real crowds, as a result of being156

able to identify and ascribe only to real crowds the realistic features that are manifested157

in the training set.158

4 Experimental Methods159

Our protocol was largely modelled on that of (Webster & Amos, 2020), but limitations160

imposed by the COVID pandemic required us to perform our trials online, as opposed161

to in-person. We do not believe that this modification had any significant impact on our162

results; indeed, it actually allowed us to recruit a more diverse range of participants, rather163

than using only University students (which was a possible criticism of the original study).164

We performed two sets of Turing test experiments; the first (Test 1) was an online-only165

repetition of the second (classification) test from (Webster & Amos, 2020), with entirely166

new participants. We attracted 232 participants, who were recruited via social media.167

This first test allowed us to assess the ability of each untrained participant to classify168

crowds as either real or simulated, thus assigning each one a baseline score. We allowed169

an appropriate period of time to pass (4 months) in order to ensure that the tests were170

independent (that is, any learning effects from the first test would not be carried over to171

the second). We then contacted every Test 1 participant who supplied an email address172

to invite them to participate in the follow-up Test 2 (they were each offered a 10 GBP gift173

card as an incentive); 50 participants accepted our invitation. Test 2 participants were then174

“trained” by asking them to first watch six rendered movies of crowds that were explicitly175

described as real. Participants then performed a second version of the classification task176

(as in Test 1), using a different set of real and simulated clips to those used previously (in177

order to avoid effects induced by familiarity with the clips).178

Given that each participant had a known baseline score from Test 1, we were able to es-179
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Figure 1: Single movie frame of the Edinburgh Informatics Forum, taken from (Majecka,

2009).

Figure 2: Diagram of Edinburgh Informatics Forum (ingress and egress points numbered),

taken from (Webster & Amos, 2020)

tablish whether or not the training phase had a significant effect on classification ability.180

Participants were specifically asked to identify features that they thought allowed them to181

distinguish between real and simulated crowds.182

Test 1 was performed at the end of June-start of July 2020, and Test 2 was performed in183

December 2020. Our trial protocol was approved by the Northumbria University Faculty184
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of Engineering and Environment Ethics Committe, application number 24623. We now185

describe each component of the trial in more detail.186

4.1 Pedestrian motion dataset187

As we employed the same dataset used in our previous study, we take our description of188

it from (Webster & Amos, 2020). We used data on real pedestrians from the University of189

Edinburgh School of Informatics (Majecka, 2009). This public dataset, captured in 2010,190

contains over 299,000 individual trajectories corresponding to the movement of individ-191

uals through the School Forum, and is one of the largest open datasets of its type. It has192

been used in several studies of pedestrian movement and tracking; (Fernando et al., 2018)193

used the dataset to pre-train short and long term trajectory prediction models, proposing194

a “light-weight” sequential Generative Adversarial Network (GAN) architecture for person195

localisation, which “overcomes issues related to occlusions and noisy detections”. In a196

case study on the Edinburgh Informatics forum, (Lovreglio et al., 2017) developed a “mi-197

croscopic calibration procedure” for floor field cellular automaton models, comparing two198

floor field specifications to identify the best model for simulating pedestrians in the forum.199

However, this study was only concerned with individual trajectories, and did not consider200

the crowds as a collective. Finally, recurring activity patterns that “appear, peak, wane and201

disappear over time” were identified using non-parametric Bayesian methods which cou-202

ple spatial and temporal patterns with “minimal” prior knowledge (H. Wang & O’Sullivan,203

2016).204

4.1.1 Environment205

A photo of the Forum space is shown in Figure 1, and a diagram is shown in Figure 2. The206

Forum is rectangular in shape (measuring approximately 15.8 × 11.86 metres), has eleven207

ingress/egress points, and is generally clear of obstructions. Images were captured (9208

per second) by a camera suspended 23m above the Forum floor, from which individual209
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trajectories were extracted and made available (extraction was performed by the author of210

(Majecka, 2009)). We note that only the trajectories have been made publically available,211

and not the original video recordings, for ethical and practical reasons (these files require212

several terabytes of storage). Importantly, none of the individuals whose trajectories were213

captured were actively participating in movement studies; the trajectories, therefore, are214

as close to “natural” as possible (i.e., they have “behavioural ecological validity” (Lovreglio215

et al., 2017)).216

4.1.2 Pedestrian dataset217

The dataset is stored across a number of files, each file representing a day’s worth of crowd218

recordings. Each file stores a list of “sightings” over that period, where a sighting is defined219

as an individual entering (but not necessarily leaving) the frame (of course, individuals220

may also leave and then re-enter the frame, which would be interpreted as an entirely new221

sighting). Each row in the file therefore corresponds to a “sighting”. Every sighting during222

the time period covered by the file is assigned a unique “agent ID”, and the individual’s223

trajectory is stored as a list of 3-tuples of the form< x, y, timestep >. Each time step codes224

for one frame in the original footage (recorded at 9fps). (Majecka, 2009) note that “the225

sample rate can vary over short periods” due to errors with the capture program; however226

“since each captured frame is relatively independent of captured frames more than 10-20227

seconds later”, this did not significantly impact on the quality of the resulting trajectories.228

In what follows, we use the term “clip” to specifically refer to a time-limited sequence of229

trajectory data (whether taken from the Edinburgh dataset or from the output of a simula-230

tion), as opposed to a movie visualisation. We first wrote a script to convert a list of tra-231

jectories into a frame-by-frame representation of agent locations over time. This outputs232

co-ordinates for all of the visible agents at each time step, which is required for rendering233

the trajectories into videos, as well as for analysing the crowds at each point in time. We234

also wrote another script to essentially reverse this process (extracting individual trajec-235
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tories from time step data), which is necessary for analysing certain features of individual236

trajectories in clips (both real and simulated).237

4.1.3 Data cleaning238

Occasionally lossy detection by the camera means that some trajectories have missing239

sections for several time steps; once rendered, these individuals temporarily disappear240

from the frame and then reappear. To address this, we automatically detected such sit-241

uations and interpolated co-ordinates for the missing time steps when parsing the Edin-242

burgh dataset. Each new co-ordinate is placed proportionally between the surrounding243

co-ordinates, depending on the number of missing time steps. As the Edinburgh data244

trajectories were recorded at 9 frames per second these additional co-ordinates prevent245

agents from disappearing in renders, but do not alter the overall shape of trajectories.246

Across the estimated 7.9 million coordinates in the dataset, a total of 230,046 trajec-247

tory time gaps were identified. Of these, 128,660 (55.93%) were made up of 1 frame and248

49,794 (21.65%) were 2 frames in duration. The largest observed time gaps were 13 and249

14 frames; however these were each only identified once, and were not present in the real250

crowd data clips used in this research. Approximately 99.20% of all identified time gaps251

were of 9 frames or fewer (approximately one second of camera tracking), and interpolation252

of these time gaps did not result in any observable issues. We also increased the number253

of frames per second of both sets of trajectories (real and simulated), from 9 to 72, by254

interpolating co-ordinates. This improved the “smoothness” of the trajectories once ab-255

stracted and rendered into video clips. This enables smooth video playback for the purpose256

of comparisons, but does not alter the shape of the trajectories, as the distance between257

co-ordinates is negligible. Figure 3 shows all co-ordinate trajectories in one crowd clip258

rendered to single images at both 9 and 72 frames per second.259
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Figure 3: All trajectories in a crowd clip rendered to single images at 9 (left) and 72 (right)

frames per second.

4.1.4 Visualisation260

We wrote a utility to search the Edinburgh dataset and extract clips of a specific duration261

containing a specific number of individuals. Both simulated and real individuals were ren-262

dered in a uniform fashion, using a tool coded in Java. This allowed us to produce “top263

down” visualisations of both real and simulated clips that were identical in appearance,264

with individuals represented as filled circles, and headings depicted by an arrow (see Fig-265

ure 4). Stationary agents in real crowd clips appear to “flick” their headings rapidly due to266

inaccurate camera detection, so headings are only rendered when an agent is in motion.267

The use of abstract, simplified shapes, and a top-down, two-dimensional presentation is268

relatively common in crowd studies (N. Bode et al., 2015; Singh et al., 2009; Smith et al.,269

2009; Wagner & Agrawal, 2014; W. L. Wang et al., 2017; Zhang et al., 2019), although three-270

dimensional representations are also used (Loscos et al., 2003; Luo et al., 2008; Moussaı̈ d271

et al., 2016; Pelechano et al., 2007).272

As in (Webster & Amos, 2020), we decided against using realistic body shape rendering273

and 3D views, as initial tests suggested that such a presentation scheme (using animated274
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Figure 4: Example rendering of a crowd scene, taken from (Webster & Amos, 2020).

avatars) would actually distract viewers from the main aim of the experiment, which was275

to look for patterns of behaviour in the crowd. Additionally, at least one study has shown276

that crowds that are viewed from the top-down are perceived as being just as realistic as277

those viewed from eye-level (Ennis et al., 2011).278

The simulated crowd trajectories were converted into the same format as the real crowds279

for rendering. Each time step has a corresponding set of co-ordinates representing a real280

or simulated person in the Edinburgh forum, as well as their heading. At every time step in281

a clip, our rendering tool generates a PNG image, and the sequence was then combined282

into a video. The staircase represented in blue is an obstacle which simulated agents283

avoid, and the staircase represented in black is an egress point located slightly inside the284

forum.285

4.1.5 Clip analysis286

For each clip, we extracted the route choice distribution and the entry time distribution287

for all individuals. This allowed us to initialise our simulations with the same distributions,288

ensuring that the runs closely matched the macroscopic properties of the real-world ob-289

servations (while leaving room for the microscopic differences in which we are interested).290

In a later Section, we show heatmaps of the entry and exit distributions of the real crowd291
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clips.292

After rendering real crowd clips from the Edinburgh dataset for the first time, we saw a clear293

difference in the maximum velocity and acceleration of agents in several clips, with some294

agents moving unnaturally quickly. This was attributed to the variability in camera capture295

rate discussed earlier. To adjust for this variability, we calculated the average velocity of296

individuals in each clip, and used this to scale the clip’s length (by modifying the video297

playback speed), thus normalizing the velocity of individuals relative to expected walking298

speed (Bohannon, 1997).299

4.2 Simulation construction300

Each test required participants to classify a number of clips of pedestrian movement as ei-301

ther real or simulated. We began by selecting, at random, a number of clips (30s duration)302

from the Edinburgh dataset, and extracting information about the number of individuals303

visible and the entry/exit point distribution. This information was then used to “seed”304

a simulation. In this way, we obtained both real and simulated versions of the same sce-305

nario; the real version was a rendered version of the actual observations, and the simulated306

version was a rendered version of the output of the model.307

In order to model the scenarios captured in each real Edinburgh clip, we simulated pedes-308

trian movement using the Vadere package (Zönnchen et al., 2020). This is an open-source309

package, which means that (unlike commercial software) its movement models are open310

to inspection. Importantly, it also allows for easy exporting of simulated pedestrian trajec-311

tories, which is necessary for rendering.312

A crucial component of the simulation is the crowd motion model. This defines the rules313

of interaction between individuals (e.g., avoidance), and between individuals and their en-314

vironment (e.g., repulsion from walls and physical obstacles), as well as route choice be-315

haviour and differential walking speed. Many different crowd motion models exist (Duives316
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et al., 2013), but perhaps the most commonly-used type is based on social forces. Helbing317

and Molnar’s social force model (SFM) (Helbing & Molnar, 1995) is a microscopic, contin-318

uous model which uses “attractive” and “repulsive” force fields between individuals (and319

between individuals and their environment) to guide movement.320

We selected the SFM as the baseline model for our simulations, as (1) it is very well-321

established and available for use in most open-source crowd simulation software, (2) “op-322

timal” parameters have been refined over time, and (3) it is “recommended for pedestrian323

crowd movement research” following the thorough review by (Duives et al., 2013). We also324

compared the SFM with the Gradient Navigation Model (GNM) (Dutra et al., 2017), in order325

to avoid potential bias imposed by only using one motion model. The GNM is available as326

a default model type in Vadere, and we found that GNM simulation outputs have similar327

statistical properties to SFM outputs.328

Table 1: Vadere simulation model parameters for SFM/GNM.

Parameter SFM Value GNM Value

ODE Solver Dormand-Prince Dormand-Prince

Pedestrian body potential 2.72 2.72

Pedestrian recognition distance 0.3 0.8

Obstacle body potential 20.1 20.1

Obstacle repulsion strength 0.25 0.25

Pedestrian radius (m) 0.2 0.2

Pedestrian speed distribution mean (m/s) 1.4 1.4

Pedestrian minimum speed (m/s) 0.4 0.4

Pedestrian maximum speed (m/s) 3.2 3.2

Pedestrian acceleration (m/s) 2 2

Pedestrian search radius (m) 1 1

For all simulations, we use the pre-supplied Vadere templates for the SFM/GNM, with de-329

fault attributes and parameters (listed in Table 1). We note that all default parameter values330

are the same across both models, with the exception of “Pedestrian recognition distance”331

(0.3 for SFM, and 0.8 for GNM), but we do not believe this had any significant impact on332
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our results.333

Vadere stores its simulation input files in JSON format, and these files specify the topog-334

raphy of the simulation space and initial spawn parameters for each agent (or group of335

agents). This makes it possible to write a script which generates a JSON file for each sim-336

ulation, including the Edinburgh forum topography, as well as a JSON object for each agent337

to be simulated. We ran each simulation in Vadere using the new simulation input files,338

and then imported each resulting file of crowd trajectories into MATLAB to be processed.339

In Test 1 we used only the SFM movement model; in Test 2, we divided the simulations340

between the SFM and the GNM, in order to test whether different movement models have341

unique movement “signatures”.342

As discussed in (Webster & Amos, 2020), we added small amounts of noise to the sim-343

ulated trajectories in order to replicate noise in the real crowd data. Typically, in crowd344

videos, shoulder “swaying” can account for perceived side-to-side movement of pedes-345

trians; however, the Edinburgh individuals were detected by an overhead camera running346

at 9fps (placed too high to detect shoulder sway). However, occasionally faulty detection347

caused very short-term errors in the extracted trajectories. Once rendered, this caused348

individuals to appear to rapidly “flick” between two headings. As we had no reliable way349

to quantify the (by inspection, small) amount of noise in the trajectories, we adjusted this350

by eye until the apparent noise in the simulated data matched the noise level observed351

in the real data. At any time step, a simulated agent has a 15% chance of temporarily352

“flicking” their heading by a randomly selected value up to 45 degrees (without changing353

their trajectory). The inclusion of noise in simulations has been shown to replicate real be-354

haviour in animal models (N. W. Bode et al., 2010) whilst “preserving emergent behaviours355

of previous models”. In this case, the noise added to simulated trajectories only served to356

replicate faulty detection artefacts in the data, without altering the overall trajectories of357

the agents.358
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4.3 Simulation validation359

It is important to ensure that simulations (regardless of the movement model) produce360

outputs that are valid, so we first calculated several statistical properties for a set of sim-361

ulations and the Edinburgh observations on which they were based.362

As in (Webster & Amos, 2020), we used twometrics (Herbert-Read et al., 2015); polarization363

and nearest neighbour distance (NND). The first metric is particularly useful for describing364

the existence of large groups who might be moving together along the same heading (e.g.,365

leaving a lecture room and moving together towards an exit), while the second metric is366

used for estimating overall crowd density. Although these metrics have tended to be used367

in “swarming” models (e.g., of birds or fish) in which agents are supplied with local infor-368

mation about other agents in their vicinity, they have recently also been used effectively369

to assess a model of collective behaviour based purely on vision, which is perhaps better370

aligned to our current model (Bastien & Romanczuk, 2020).371

Polarisation measures the level of “order” in a crowd, in terms of the heading alignment372

of members. Polarisation is zero when the crowd is completely disordered (everyone is373

pointing in a different direction), and has a maximum value of 1 when all members of the374

crowd have the same heading:375

ϕ =
1

N

∣∣∣∣∣
N∑
i=1

exp(ιθi)

∣∣∣∣∣ , (1)

where N is the number of individuals in the frame, ι is the imaginary unit, and θi is the376

heading of each individual.377

Nearest-neighbour distance (NND) measures the level of “clustering” in a crowd. The av-378

erage NND for a single “frame” (derived from either the real dataset or the simulation) is379

calculated from the sum of nearest-neighbour distances of all N individuals:380
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ν =
1

N

N∑
i=1

di, (2)

where di is the nearest neighbor distance between point i and the closest individual in the381

frame, as calculated by the standard distance formula,382

di =
√
(x2 − x1)2 + (y2 − y1)2. (3)

We selected 20 random Edinburgh clips with varying crowd sizes, and then simulated each383

scenario 20 times with each movement model. Results are presented in Figure 5; these384

confirm that both movement models produce high-level outputs that are comparable to385

the real-world scenarios, and that there are no significant differences between the outputs386

of each movement model.387

4.4 Classification tests388

For both tests, we constructed a web-based application1 which presented users with an389

information screen, asked them to click to confirm their consent to participate, and then390

presented participants with a randomised sequence of movies. For each movie, partic-391

ipants were asked to click either a “Real” or “Simulated” button, according to their own392

perception and opinion. At the end of the sequence, users were asked in a free text box393

to supply short notes on any features that they thought allowed them to identify the real394

crowd, to specify their level of expertise in crowd science (“High”, “Medium” or “Low”), and395

to supply their email address (this was used as a participant ID to allow for tracking across396

the two tests). Once the user submitted their information, their responses were stored on397

the server, and they were told how many real crowds they had correctly identified (this may398

have inadvertently helped with recruitment, as some particularly high-scoring participants399

1Available at http://www.martynamos.org/TTFC2/
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Figure 5: Movement models/real crowd statistical comparisons: Nearest Neighbour Dis-

tance (NND) (top) and polarisation (bottom) as a function of crowd size. The outputs of

both movement models have properties that are close to those of the real crowds.

shared screenshots of their success on social media...)400

4.4.1 Test 1401

This was the “baseline” test to give each participant an initial score of their ability to classify402

movies as either real or simulated. We showed participants a sequence of 12 movies, 6 of403

which were based on real trajectories, and 6 of which were generated using the SFM-based404

simulation of that scenario. Each movie was 30s in duration (in all cases, participants were405

free to choose “early”, before the end of the movie, and move on to the next one).406
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For each real clip, the total number of individuals observed and average entry time interval407

is shown in Table 2 (the simulations were set up to reflect these). We present heatmap408

visualisations of the route choice distribution for each clip in Figure 6. The forum has 11409

ingress points, and the 12th row and column represent individuals who start or end their410

observed trajectories inside the forum space.411

Clip Number of individuals Mean entry time interval (s) Standard deviation (s)

1 194 0.34 0.22

2 149 0.46 0.26

3 112 0.67 0.38

4 104 0.62 0.34

5 150 0.48 0.24

6 125 0.55 0.33

Table 2: The total number of individuals observed and mean entry time interval of each

clip from Test 1.

Figure 6: Heatmap representations of entry/exit point distributions for clips 1-3 (top) and

4-6 (bottom) from Test 1.

4.4.2 Test 2412

We first required participants to undertake a training phase, in which they were shown413

6 representative clips generated from Edinburgh observations. Participants were made414
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Clip Number of individuals Mean entry time interval (s) Standard deviation (s)

1 149 0.49 0.27

2 122 0.54 0.28

3 132 0.47 0.26

4 162 0.38 0.24

5 144 0.39 0.26

6 133 0.47 0.47

Table 3: The total number of individuals observed and mean entry time interval of each

clip from Test 2.

Figure 7: Heatmap representations of entry/exit point distributions for clips 1-3 (top) and

4-6 (bottom) from Test 2.

explicitly aware that they were watching real crowds. They were then shown 18 movies in415

total; 6 based on observations, 6 derived from SFM-based simulations, and 6 from GNM-416

based simulations.417

For each real clip, the total number of individuals observed and average entry time interval418

is shown in Table 3 (again, the simulations were set up to reflect these). We present419

heatmap visualisations of the route choice distribution for each clip in Figure 7.420
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Set Test 1 s.d.

P1 − P2 31.21% 20.19%

P2 27% 19.31%

Table 4: Test 1 average scores for P1 − P2 and P2. Scores are presented as “% correctly

classified”, as the number of movies differed between tests. Analysis confirms that P2 is

representative.

5 Results421

In this Section we present our trial results. In what follows, we adopt the following notation422

for participant groups; P1 is the initial set of 232 participants who took Test 1 (to establish423

their baseline scores, with no training) and P2 is the subset of 50 participants in P1 who424

went on to take Test 2 (the new test that included a training phase to establish whether or425

not performance improves after viewing real crowd videos).426

5.1 Classification accuracy427

We first consider whether or not group P2 is representative of the larger set of participants.428

In both Test 1 and Test 2, participants were scored according to their ability to correctly429

classify movies, and received 1 point for every correct classification. We calculate the430

average Test 1 scores for both P1 − P2 (that is, participants who only took Test 1) and P2431

(participants who took both Tests), and present them in Table 4 (scores are presented as432

% due to the fact that the number of movies differed between tests).433

A Lilliefors test confirms that neither dataset is normally distributed, so we use a two-434

sided Wilcoxon rank sum test to confirm that data in P1 − P2 and P2 are samples from435

continuous distributions with equal medians (p = 0.0724). We conclude, therefore, that P2436

is a representative group.437

We then calculate the average Test 1 and Test 2 classification scores for P2 only; these are438

shown in Table 5. This reveals a significant improvement in overall correct classification439

score after training (from 27% to 60%). In Trial 2, participants correctly identified SFM-440
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Test 1 s.d. Test 2 s.d

27% 19.31% 60.22% 26.35%

Table 5: Test 1 and Test 2 average scores for P2 only.

Figure 8: Slopegraph plot of changes in individual classification performance between Test

1 and Test 2 (50 individuals shown in total). Green lines show significant improvements,

purple lines show small changes, and red lines show significant reductions in performance.

derived movies 63% of the time, and GNM-derived movies 59% of the time, so we cannot441

say that there exists a significant difference between the two models in terms of the overall442

characteristics of their outputs.443

In Figure 8 we depict the individual changes in performance for the 50 members of P2;444

visual inspection alone confirms that the vast majority of participants showed a marked445

improvement in classification performance after training. The average absolute change446

between Test 1 and Test 2 was 33.22%. If the participants had guessed at random in each447

test we would expect an average absolute change of 0%. A two-sided Wilcoxon signed448

rank test rejects the null hypothesis of a zero median in the distribution of average absolute449

change in our participant’s test scores (p < 0.001). In Figure 9 we show the direction of450

improvement, confirming the bias towards an increase.451
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Figure 9: Trendline of absolute performance changes between Test 1 and Test 2 for P2

participants.

These results confirm the first part of our hypothesis; that suitably trained individuals im-452

prove their classification performance after viewing movies of real crowds.453

5.2 Narrative findings454

We now move on to consider the free text supplied by members of P2, and extract com-455

mon themes that enable us to identify specific features of real and simulated crowds. We456

performed an initial version of this analysis in (Webster & Amos, 2020), but extracted only457

a small number of general themes, and did not correlate them with classification perfor-458

mance (as we do here). Our informal hypothesis is that participants who demonstrate459

significantly improved performance will correctly identify (in their free text responses) the460

characteristic features of both real and simulated crowds.461

All 50 participants supplied feedback, so this provides useful additional context to explain462

the general uplift in performance. Given the relatively small amount of text, we performed463

manual thematic analysis to extract the predominant features highlighted in the supplied464

corpus. Each line of free text was broken down into thematic “atoms”, which were then465

semantically mapped onto over-arching themes. These are summarised in Table 6, par-466
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Real crowds Freq. %

Heterogenous/diverse paths/speeds (R1) 9.21

Chaotic/unpredictable/erratic movement - rapid changes (R2) 21.05

Decisiveness/purposefulness - direct movement (R3) 6.56

Stop-start movement (R4) 7.89

Static individuals/groups (R5) 2.63

Groups/flocking/close proximity/collisions (R6) 7.89

Collision avoidance (R7) 5.26

Simulated crowds Freq. %

Homogeneous behaviour (S1) 5.26

Rapid direction/speed changes (S2) 3.95

Goal-driven (S3) 3.95

Smooth/continuous movement (S4) 15.79

Clusters (S5) 1.32

Long interactions/collisions and close proximity (S6) 6.58

Collision avoidance (S7) 2.63

Table 6: Themes identified in narrative comments (labels given in brackets), and their ob-

served frequencies. Related themes across “real” and “simulated” are numbered similarly,

although there may not always be an exact correlation.

titioned into those features ascribed to real crowds, and those to simulated crowds. We467

also give the relative frequency of each feature/theme (a link to the full dataset is supplied468

at the end of the paper). We label each feature for ease of presentation/discussion.469

We immediately notice two dominant features; R2 (real crowds exhibit chaotic or unpre-470

dictable movement, sometimes with rapid changes in speed/direction) accounted for 21%471

of thematic atoms, and S4 (simulated crowds show smooth/continuous movement) ac-472

counted for nearly 16% of all atoms. These observations are clearly complementary, in473

that (after training) observers believe that real crowds are more unpredictable than simu-474

lated crowds, which move more smoothly. The real dataset does include many examples of475

unpredictable/rapid changes in movement, where (we assume, not having access to the full476

video datasets) an individual is “dashing” across the space and adjusting their movements477

to avoid others, or where they double-back on themselves.478

However, it is not sufficient to simply analyse the frequency of themes, since dominant479

features may not necessarily correlate with good classification performance in the partici-480
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Figure 10: Thematic frequency versus average relative change in classification perfor-

mance. The upper-right quadrant shows two themes (S4 and R2) which both appear fre-

quently and which are correlated with significant positive relative change in classification

performance in those participants who mention those themes.

pants who identify them. We also need to extract the features that have been identified by481

the participants who perform best (or who show the best relative improvement) in the clas-482

sification task. We first consider relative changes in scores, and then look at the absolute483

changes, as each perspective yields insights.484

In Figure 10 we plot each theme against both their frequency of mentions and the average485

relative change in classification performance of participants who specifically mention that486

theme. All scores are expressed in terms of the percentage of movies that were correctly487

classified, not the “raw” score (as previously stated, the number of movies differs between488

tests). For each participant, only where score1 > 0, the relative change in score is calculated489

by ((score2 − score1)/score1 ∗ 100). For example, a participant who scored 3/12 (25%) in490

Test 1 and 15/18 (83%) in Test 2 would have their relative change calculated as ((83 −491

25)/25) ∗ 100) = 232%.492

When calculating the average relative change, we discard 4 participants with a Test 1 score493

of zero, as the notion of relative change is not defined for a zero reference value (however,494

these participants are still included in the discussion of actual score differences, below).495
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Figure 11: Thematic frequency versus average absolute change in classification perfor-

mance. S2 and R7 are low -frequency themes that are nonetheless associated with reduc-

tions in classification performance.

We notice, from inspection, a cluster of themes that are relatively infrequently mentioned496

(< 10%), but which are associated with significant improvements in classification perfor-497

mance. However, we see that the two themes that are mentioned with frequency > 15% -498

S4 (smooth/continuous movement in simulated crowds) and R2 (unpredictable movement499

in real crowds) - are both also associated with performance improvements of around 400%.500

As noted earlier, these themes are complementary.501

This finding is entirely consistent with our earlier informal narrative results (Webster &502

Amos, 2020), where participants who had “flipped” the real and simulated crowds believed503

that erratic movement was characteristic of “fake” (simulated) crowds, and that real crowds504

moved smoothly and predictably. After training on real crowds, however, the participants505

in this second trial correctly identified that real crowds are actually more noisy and unpre-506

dictable, and that overwhelmingly smooth, predictable trajectories are a characteristic of507

simulations.508

We now consider absolute changes in classification score between tests. We see roughly509

the same clustering of labels as before (S5: presence of clusters in simulated crowds is510
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an outlier, in that it was mentioned only by a single person, albeit one who saw a sig-511

nificant improvement in their classification score). Here we draw particular attention to512

the (albeit infrequently mentioned) themes that are correlated with negative shifts in per-513

formance. That is, the features that are mentioned by participants whose classification514

performance got worse after training. The two features to which this applies are S2 (rapid515

direction/speed changes in simulated crowds) and R7 (collision avoidance in real crowds).516

Again, these findings are entirely consistent with both the current results and our previous517

study. If high-performing participants correctly spot that simulated crowdsmove smoothly,518

then it is entirely to be expected that low-performing participants will (incorrectly) ascribe519

S2 to them. Collision avoidance in real crowds (R7) is also specifically mentioned in our520

previous study; participants who performed badly assumed that individuals in real crowds521

would naturally avoid one another. As we observe in (Webster & Amos, 2020), “In reality,522

the opposite is true, as the real dataset contains multiple instances of individuals coming523

into close proximity. Moreover, the social forces model explicitly tries to keep individu-524

als apart unless close proximity is unavoidable, so the behaviour (distance keeping) that525

participants attributed to real people was actually an in-built feature of the simulation.”526

However, we must approach these findings with a degree of caution, as it may be the527

case (for example) that the high-performing individuals are simply better learners, or some528

videos may be inherently easier (or more difficult) to classify. All we claim here is that529

there would appear to be a correlation between high classification performance and a530

small set of identifiable features of crowds. An investigation of the fundamental underlying531

process(es) is beyond the scope of the current paper, but may be performed in future work.532

Based on these findings, we conclude that the primary feature of real crowds that allows533

trained individuals to correctly distinguish them from simulated crowds is their higher de-534

gree of unpredictability in terms of individual trajectories. A secondary feature is collision535

avoidance (specifically, proximity). Based on this work, our main suggestion (if what we536
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seek is realistic believability in crowd simulations) is that models should include the facility537

to add a degree of unpredictability to the movement of individual agents (surprisingly, this538

feature is not generally provided). Models might also benefit from a relaxation of collision539

detection radii to allow for closer proximity of agents. In this way, we might easily replicate540

the appearance of at least some of the micro-level behaviours referenced by (Lerner et al.,541

2007).542

6 Discussion and Conclusions543

In this paper we report the results of a human trial to identify the “signature” characteristics544

of real crowds that allow them to be distinguished from simulated crowds. We find that545

unpredictability in terms of individual trajectories is by far the best discriminator, and546

proximity in collision detection is also relevant. We note some limitations of our study;547

the underlying crowd dataset is based on a relatively small physical space which is quite548

regular in nature, but we point out that it is actually much larger than the arenas used for549

artificial crowd experiments. Moreover, the observations have a higher level of ecological550

validity, as the recorded pedestrians were not consciously aware of being participants in551

an experiment. Our second test used a relatively small number of participants, but we552

have established that they were representative of a larger set. Finally, our findings are553

only applicable to “routine” crowds (that is, where people are going about their everyday554

business), and not to “emergency” or “evacuation” crowds, where behaviours will be very555

different.556

However, there is still significant value in updating simulation of such routine crowds to557

render them more realistically, especially if important policy or design decisions are to be558

made based on how they are perceived. With this in mind, there may be value in training559

decision-makers who use such simulations as part of their process (in a manner similar to560

that performed in our Test 2), in order to ensure that they can first detect the characteristic561
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features of real crowds (as opposed to making decisions based on flawed assumptions of562

how crowds behave). Fundamentally, the value of additional realism in crowd simulations563

may only be realised if end-users are able to recognise it.564

This study has provided empirical evidence to support the inclusion of relatively straight-565

forward modifications to any and all of the movement models underpinning both scientific566

and commercial crowd simulation packages. Importantly, the addition of noise to individ-567

ual trajectories and the relaxation of collision detection radii are entirely generic updates,568

but ones that could significantly improve the believability of crowd simulations across a569

range of applications.570

Future work may include the automatic detection of features of real crowds from larger571

and more complex datasets, consideration of the impact of changing movement model572

parameters, and the integration of identified features into commercial crowd simulation573

packages in order to test their impact on believability (thus “closing the circle”).574

7 Materials575

All code (simulations and analysis scripts) and datasets generated are available at http:576

//doi.org/10.6084/m9.figshare.c.5280902577
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