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Abstract: Plastic electronic waste (E-waste) is constantly growing around the world owing to the
rapid increase in industrialization, urbanization, and population. The current annual production
rate of E-waste is 3–4% in the world and is expected to increase to 55 million tons per year by 2025.
To reduce the detrimental impact on the environment and save natural resources, one of the best
solutions is to incorporate waste plastic in the construction industry to produce green concrete. This
study examines the use of manufactured plastic coarse aggregate (PCA) obtained from E-waste as a
partial replacement of natural coarse aggregate (NCA) in concrete. Six types of concrete mix with
10%, 20%, 30%, 40%, and 50% substitution of NCA (by volume) with PCA are prepared and tested.
This study investigates the effect of manufactured PCA on the fresh and hardened characteristics of
concrete. The properties of recycled plastic aggregate concrete (RPAC) studied include workability,
fresh density, dry density, compressive strength (CS), splitting tensile strength (STS), flexural strength
(FS), sorptivity coefficient, abrasion resistance, ultrasonic pulse velocity (UPV), and alternate wetting
and drying (W–D). The results indicate that the CS, STS, and FS of RPAC declined in the range
of 9.9–52.7%, 7.8–47.5%, and 11–39.4%, respectively, for substitution ratios of 10–50%. However,
the results also indicate that the incorporation of PCA (10–50%) improved the workability and
durability characteristics of concrete. A significant decrement in the sorptivity coefficient, abrasion
loss, and UPV value was observed with an increasing amount of PCA. Furthermore, RPAC containing
different percentages of PCA revealed better results against alternate W–D cycles with respect to
ordinary concrete.

Keywords: electronic waste; plastic coarse aggregate; green concrete; mechanical properties; durabil-
ity properties

1. Introduction

Concrete is the most broadly used construction material in the building industry [1].
It is an extensively used man-made construction material and is often said to be the sec-
ond most essential substance consumed on Earth, after water [2,3]. The rapidly growing
industrialization, urbanization and population significantly increased the demands and
developments in the construction industry [4]. Concrete has gained a vital role in the
construction industry because of its low price, the convenience of its raw materials, high

Materials 2022, 15, 175. https://doi.org/10.3390/ma15010175 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15010175
https://doi.org/10.3390/ma15010175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-2059-3830
https://orcid.org/0000-0001-7284-7348
https://orcid.org/0000-0003-2419-4172
https://orcid.org/0000-0002-4317-3978
https://doi.org/10.3390/ma15010175
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15010175?type=check_update&version=1


Materials 2022, 15, 175 2 of 19

compressive strength and durability [5]. The properties of concrete are significantly influ-
enced by the characteristics of aggregates which typically occupy a total of 65–80% of its
volume [6]. It is predicted by the global aggregates construction market that aggregate
demand will be increased up to 59% by the end of 2025 [7]. Nowadays, many countries,
due to a shortage of natural resources, are facing problems and depend on imports to
fulfill their demands [8]. Concrete ingredients are used on a large scale, and the usage
of coarse aggregates from rocks causes a particularly fast reduction in natural resources,
thus welcoming disasters in the form of global warming and land sliding. To reduce the
detrimental impacts associated with concrete production [9,10], the conservation of raw
materials needs to be emphasized. Coarse aggregates typically occupy 65–70% of the
concrete’s total volume. Efforts are required by the modern world to take important steps
in order to save nature without compromising on the overall performance of concrete. In
the past, several attempts have been conducted with the aim of replacing natural aggregate
with recycled aggregate [11–15]. Therefore, several other alternatives in concrete to natural
aggregates such as demolition waste, plastic waste, paper, etc. have gained momentum.
The use of recycled solid waste aggregates [16,17], plastic [18], glass [19], scrap tires [20],
cardboard [21], electronic waste [22], etc., in concrete are also investigated in several studies.

Nowadays, the use of modern electronic appliances turns out to be an important
part of our daily life. Due to the technological innovation, upgrade and advancement of
technological products, the rate of obsolescence of electronic equipment has also increased,
thus making E-waste an emerging waste in the world. Compared to other waste products,
the degradation process of E-waste is comparatively more challenging, thereby significantly
damaging the environment. It was reported that in 2013, the production of plastic products
reached around 299 million tons [23]. The Environmental Protection Agency (EPA) of the
United States (US) estimates that annually about 6–10% of E-waste generation increases, out
of which only 5% is recycled globally [24]. Hence, the appropriate recycling and disposal
of E-waste products are needed to protect the environment from its hazardous, adverse,
and detrimental effects. The best solution to challenge this problem is to incorporate waste
plastic in the construction industry. The reuse of E-waste as a substitute for aggregate in
concrete production can help in mitigating and addressing the environmental pollution
problems related to plastic. Recycling E-waste is an effective technique for minimizing
solid waste, reducing the hazardous and harmful environmental impacts [12]. With respect
to natural aggregate, the E-waste aggregate is lighter in weight, and thus it can minimize
fuel consumption during conveyance and its associated costs. Additionally, its production
cost is relatively less. Therefore, plastic concrete can be used as a lightweight material
that is correlated with various advantages, i.e., ease in handling during consumption,
reducing the efforts in manufacturing, and providing adequate thermal insulation [25]. In
addition, earthquake forces depend on the structure’s self-weight and the use of plastic
aggregate can decrease the self-weight of concrete structures, which can minimize the effect
of earthquakes [26].

While investigating the strength properties of E-waste plastic concrete, Needhidasan
et al. [27] studied the effect of shredded E-waste on concrete performance. The replacement
ratios of plastic waste ranged from 0 to 20% by volume of coarse aggregate. It was examined
that the decline in compressive strength (CS) and flexural strength (FS) occurs with the rise
of E-waste, but the tensile strength increased. Additionally, the usage of grinded E-waste
in concrete production is an environmentally friendly solution and reduces the cost and
unit weight of concrete. Sabau et al. [28] examined the decrement in CS when the coarse
aggregates were partially substituted by different proportions of E-waste, i.e., 40%, 50%,
and 60%. Compared to the control mix, a maximum decrease in CS and density of 44%
and 22%, respectively, was observed. Tafheem et al. [29] reported the influence of plastic
waste such as high-density polyethylene (HDPE) and polyethylene terephthalate (PET) on
the performance of concrete. The replacement ratios of plastic waste ranged from 0 to 10%
of coarse aggregate (by volume). The results describe that at 10% substitution of coarse
aggregate by PET aggregate, the minimum decrement in CS was 35%, whereas in splitting
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tensile strength (STS), a 21% increase was observed. Additionally, a 4% reduction in fresh
unit density was reported. Kumar et al. [30] found that when coarse aggregate is partially
substituted by plastic aggregate up to 50% with an increment of 10%, the mechanical
properties compared with the control concrete were remarkably reduced. Rathore et al. [31]
investigated the influence of different percentages of E-waste plastic, i.e., 5%, 10%, 15%,
20%, 25%, and 30% on the behavior of concrete and found that the CS and FS of concrete
containing 15% E-waste aggregate were, respectively, reduced by 20.35% and 15.69%
with reference to the control mix. They reported that for a construction purpose greater
than 15%, the substitution of E-waste is not satisfactory. Zeeshan et al. [32] performed a
comprehensive experimental analysis by using plastic aggregate as a partial substitution of
coarse aggregate. The replacement ratios of plastic waste ranged from 0 to 20% of coarse
aggregate. It was revealed that the mechanical characteristics were reduced by substituting
10 and 20% of coarse aggregate by E-waste, whereas an enhancement in workability and
durability characteristics was reported.

Several researchers investigated the effect of different additives in E-waste incorpo-
rated concrete. Prasanna et al. [14] investigated the influence of fly ash on the performance
of concrete containing grinded E-waste aggregates. The replacement ratios of E-waste
aggregates ranged from 0 to 20%, with an increase of 5%. It was reported that the CS
declined by 33.7% when 20% of grinded E-waste was incorporated into concrete, which
indicates that substitution beyond 20% is not satisfactory. The results also reveal that when
10% fly ash was introduced in plastic concrete containing 20% E-waste, a decrement in CS
was observed from 33.7% to 16.86%. Nadhim et al. [33] observed the influence of fly ash on
the performance of concrete containing E-waste. Akram et al. [34] studied the influence of
E-waste aggregates on the concrete performance in which NCA has been partially replaced
with shredded plastic aggregates. The results report that a 34% decline in CS was observed
when 15% of E-waste aggregates were incorporated, and it was also observed that the
results resemble those of the control mix when 10% of fly ash was introduced.

Alongside the strength characteristics, durability is an important aspect of structural
concrete. To examine the durability characteristics of plastic concrete, durability tests were
also carried out [35,36], which reported that concrete with plastic aggregate is acceptable
and has better results with respect to control concrete. It was revealed that the plastic
concrete seems to be satisfactory for utilization in aquatic structures as the durability
characteristics are of major concern in marine structures [5], and compared with control
concrete, the plastic concrete has shown higher resistivity against sulfate and chloride
attack [8,37]. Additionally, from previous studies, it was reported that the workability of
concrete containing plastic aggregates increases with respect to control concrete, owing to
the zero water absorption capacity of plastic aggregate [11,15]. The abrasion resistance of
plastic aggregates was rarely investigated and reported as greater than natural aggregates
because of their improved toughness [38]. Zeeshan et al. [32] found that the ultrasonic
pulse velocity (UPV) value declines with increasing proportions of plastic aggregate in
concrete. It was observed that the UPV value decreased by 1.2%, 1.9%, and 3.3% at 10%,
15% and 20% partial substitution of NCA with PCA, respectively. However, the behavior
of manufactured plastic aggregate concrete when exposed to alternate wetting and drying
(W–D) has not been examined to date.

A brief assessment of the current literature indicates that the several types of research
carried out on plastic concrete have focused on aspects of non-manufactured E-waste
aggregates such as cleaning, sorting, and grinding or shredding the E-waste. The literature
review suggests that a comprehensive study associated with the behavior of recycled
plastic aggregate concrete (RPAC) containing manufactured plastic coarse aggregate (PCA)
is missing. This study focused on utilizing the manufactured PCA through the proper
heating procedure [32] of shape and size comparable to NCA. To introduce plastic concrete
as a practical alternative, it is crucial to investigate the several important characteristics of
this new concrete type. This study intended to explore the fresh properties (i.e., workability
and fresh density) and hardened properties in terms of mechanical properties (dry density,
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CS, STS, and FS), and durability properties (abrasion resistance, alternate wetting and
drying, sorptivity coefficient, and UPV) of concrete by incorporating different percentages
of PCA (10–50%) by volume of NCA.

2. Materials and Methods
2.1. Materials

Ordinary tap water is used in concrete mixes for hydration purposes, having a pH
value range between 6.5 and 7, as per ASTM C1602/C1602M-12 standard [39]. Ordinary
Portland cement (OPC) Type-I, as per ASTMC150 [40] standard, was used as a binder.
Table 1 shows the physical and chemical properties of cement. The oxide composition
of cement was obtained experimentally through the X-ray fluorescence (XRF) technique
(JEOL, Tokyo, JAPAN). The physical properties of cement such as consistency and setting
time were determined using Vicat’s apparatus (Gilson Company, Lewis Center, OH, USA),
whereas fineness modulus, soundness, compressive strength, and specific gravity were
determined using the particle size distribution method, Le-Chatelier method, 50 mm cube
strength, and Le-Chatelier’s flask method, respectively. Locally available “Lawrencepur
sand” was utilized as fine aggregate, having a fineness modulus of 2.27, and the maximum
size of particle was 4.72 mm as per ASTM C-33 standard. The coarse aggregate used in
this research work had minimum and maximum particle sizes of 4.75 mm and 20 mm,
respectively, and was obtained from Taxila (Margalla brand) (Stone Crush Supply Company,
Taxila, Pakistan), Pakistan. The general characteristics of the aggregates are summarized in
Table 2.

Table 1. General properties of OPC used.

Chemical
Composition

(Oxides)

Content
(% Weight) Physical Properties Results

CaO 63.58 Specific gravity 3.14(g·cm−3/g·cm−3)
SiO2 20.4 Specific surface area 321 (m2/kg)

Al2O3 5.10 Consistency 29.15%
FexOy 4.10 Initial setting time 185 min

SO3 2.74 Final setting time 241 min
MgO 2.56 Fineness modulus 93.30%
K2O 0.88 Compressive strength (28 days) 46.56 (MPa)

Na2O 0.23 Soundness 0.103%
Loss on ignition

(LOI) 0.41 - -

Table 2. General properties of aggregates.

Property NCA PCA Sand

Max. nominal size (mm) 20 20 4.72
Min. nominal size (mm) 4.75 4.75 0.074

SSD water Absorption (%) 1.08 0 0.5
Specific gravity 2.71 1.21 2.78

Color Dark Black brown Dark
Shape Angular Angular _

Aggregate crushing value 27.42 1.3 NIL
Aggregate impact value (%) 25.43 8.108 NIL

Fineness modulus NIL NIL 2.27
Bulk density (g/cm3) 1.51 0.49 1.60

2.2. Manufacturing Procedure of E-Waste PCA

The E-waste utilized in this research work belongs to the family of acrylonitrile buta-
diene styrene (ABS) plastic, which consists of polycarbonate and acrylonitrile butadiene
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styrene. In previous works, ABS plastic was studied and its composition and other features
were documented [41]. The plastic used for manufacturing artificial aggregate was ob-
tained from E-waste, i.e., it was derived from the casing of different electronics equipment.
Scrap/waste electronic equipment, keyboards, TVs, computers, mouse, LCDs, monitors,
etc., created the E-waste plastic. These plastics are non-biodegradable and were procured
locally and changed to the appropriate size and shape of plastic coarse aggregate (PCA),
comparable to natural coarse aggregate (NCA) through a suitable manufacturing procedure.
Figure 1 displays the schematic illustration of the whole manufacturing technique. The
plastic aggregates are manufactured in four different stages from raw E-waste. Firstly, by
using tap water, the raw plastic E-waste (Figure 2a) is washed, cleaned, and dried. Secondly,
raw E-waste is crushed into small flakes or shredded particles through an electric crusher,
and grinded E-waste particles were screened out to eradicate objects other than plastic such
as steel, wires, leather, etc., as shown in Figure 2b. In the third step, shredded particles
of waste plastic were heated at 200 ◦C in a kiln and the shredded particles were melted.
After melting, plastic rocks were obtained on cooling as indicated in Figure 2c. Finally, the
plastic rocks were crushed to obtain PCA of size and shape equivalent to NCA, as given
in Figure 2d,e. Table 2 displays the general properties of manufactured PCA. Figure 3
indicates the granulometry analysis of sand, NCA and PCA.
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2.3. Concrete Mix Proportions

M25-grade concrete having a mix ratio of 1:2.14:3.08 (cement: fine aggregate: coarse
aggregate) was prepared in this work [30]. The maximum size of fine and coarse aggregate
was 4.72 mm and 20 mm, respectively, and the water cement ratio was kept at 0.49. Six
concrete mixes were prepared with one control mix and five mixes of RPAC, including 10%,
20%, 30%, 40% and 50% PCA by volume of NCA, respectively. These mixes were named
CM, PCA10, PCA20, PCA30, PCA40, and PCA50. The mix names were designated as such
because the PCA is plastic coarse aggregate, CM is control mix, and 10, 20, 30, 40, and 50 are
the different percentages of PCA. Table 3 shows the details of the concrete mix proportions.
The preparation method adopted was in accordance with the previous study [32]. To mix
concrete, a tilting drum was used having a revolving speed of 35 rpm (revolutions per
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minute). The concrete mix was prepared in 2 stages. Initially, the aggregates such as fine
aggregate, NCA and PCA were mixed for 4 min along with 75% water. Furthermore, for
the next 4 min, cement was also added along with 25% water.
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Table 3. Concrete mix proportions in kg/m3.

Mix ID W/C Cement Water Fine
Aggregate

Coarse
Aggregate PCA

CM 0.49 367.34 180 789.14 1133.32 0
PCA10 0.49 367.34 180 789.14 1019.99 52.40
PCA20 0.49 367.34 180 789.14 906.66 104.80
PCA30 0.49 367.34 180 789.14 793.32 157.20
PCA40 0.49 367.34 180 789.14 679.99 209.60
PCA50 0.49 367.34 180 789.14 566.66 262.00

2.4. Test Methods

The experimental program of the present study, along with the number of specimens
tested and standards used, is listed in Table 4, whereas Table 5 shows the list of equipment
details alongside the corresponding manufacturer country. The workability of RPAC was
determined using the slump test as per standard ASTM C143 [42]. The fresh density of
RPAC was carried out as per standard ASTM C138/C138M [43]. The dry density of RPAC
was evaluated in the saturated surface dry (SSD) condition after 28 days by using an
analytical balance determining its size and weight. For each test result, 3 samples were
tested, and the average result was considered.

Table 4. Testing details.

Test Type Standard Used
Mix ID

0% 10% 20% 30% 40% 50%

Slump test ASTM C143/C143M-20 3 3 3 3 3 3
Fresh density ASTM C138/C138M 3 3 3 3 3 3
Dry density BS EN12390-7 3 3 3 3 3 3

Compressive strength ASTM C39/C39M 3 3 3 3 3 3
Split tensile strength ASTM C496/C496M-17 3 3 3 3 3 3

Flexural strength ASTM C78/C78M-18 3 3 3 3 3 3
Abrasion resistance ASTM C131/C131-20 3 3 3 3 3 3

Sorptivity coefficient ASTM C1585-13 3 3 3 3 3 3
UPV ASTM C597-16 3 3 3 3 3 3

Alternate wetting and drying _ 6 6 6 6 6 6

Table 5. Equipment details for each test.

Testing Type Equipment’s Name Manufacturer’s Country

Workability Slump Cone Turkish Exporter, Istanbol,
Turkey

Fresh/dry density Analytical balance Pakistan
Compressive strength Universal Testing Machine (UTM) Japan
Split tensile strength Universal Testing machine (UTM) Japan

Flexural strength Flexural testing machine Japan

Sorptivity co-efficient Cylinder (200 mm thickness &
100 mm dia) Pakistan

Abrasion resistance Los Angeles (LA) apparatus Turkey
Ultrasonic pulse rate PUNDIT/UPV Apparatus Japan

Alternating wetting and
drying (W–D)

100 mm in side cubes tested using
UTM Pakistan

The mechanical characteristics of concrete containing plastic aggregate were deter-
mined based on CS, STS, and FS tests. To determine the CS and STS, cylindrical samples of
standard dimension (150 mm in diameter × 300 mm in height) after a 28-day curing period
were tested as per ASTM C39/C39M-12 and ASTM C496/C496M-17 [44,45], respectively.
For CS and STS tests, a total of 36 samples were prepared. Samples were cast and finished
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in a laboratory. Demoulding of samples was carried out after 24 h and kept in water until
tested. A universal testing machine (UTM) (Aoki construction equipment, Okayama, Japan)
was used for CS and STS tests having a 1000 kN load capacity. The FS test determines the
ability of a concrete specimen to counter bending loads and it was carried out as per stan-
dard ASTM C78/C78M-18 [46]. A flexural testing machine working under the principle of
three-point loading was used to determine the flexural strength of cementitious composites.
Eighteen prismatic specimens having dimensions of 100 × 100 × 400 mm3 were prepared
and tested after a 28-day curing period to determine their bend strength.

The durability properties of RPAC were examined based on the abrasion resistance,
alternate wetting and drying (W–D), sorptivity coefficient, and UPV test. The sorptivity
coefficient was determined as per ASTM C1585-04 [47] and the dimensions of the tested
sample were of 50 mm thickness and 100 mm diameter. The samples were sealed along
with their thickness and uppermost top surface, to prevent the ingression of the side water,
and only the lower surface of sample was unsealed, which was subjected to water. The
ingression of the water in the sample took place through the capillary rise and an increase
in the weight of the sample was observed and measured [4]. The coefficient of sorptivity
was evaluated using Equation (1).

S =
I

t
1
2

(1)

where I denotes the water absorption (cumulative) per unit area of the exposed surface, and
t represents the time of exposure (in a minute). The parameter S measured in mm/min1/2

is the coefficient of sorptivity, and I = ∆W/Ad, ∆W = W2 − W1 where W1 denotes the
dry weight of specimen (in grams), W2 represents the specimen’s weight after 4 hours
ingression of water through the capillary rise, A denotes the surface area of the unsealed
surface exposed to water, and d is the water density

The abrasion resistance of RPAC was measured as per ASTM C131/C131-20 stan-
dard [48]. Cylindrical specimens of dimension 100 mm × 150 mm were prepared. Los
Angeles (LA) apparatus (Turkish Exporter, Istanbol, Turkey) was used to measure the
abrasion resistance of specimens. The LA apparatus rotates at the speed of 30 rpm for
300 revolutions without using a steel ball. As a result of the abrasion test, the percentage
reduction in mass of the concrete specimen was evaluated using Equation (2).

Loss in Mass(%) =

[
M1 − M2

M1

]
× 100 (2)

where M1 is the specimen mass before the abrasion test and M2 is the specimen mass after
the test.

To examine the influence of alternate wetting and drying (W–D) on the CS of plastic
concrete, cubic specimens of 100 mm in size were prepared. Samples were subjected to 25
and 50 alternate W–D cycles after a curing period of 28 days. The duration of one complete
cycle was 48 h (two days), in which the specimens were kept in water for the first 24 h, and
then for the next 24 h, the samples were taken out from the water and then exposed to the
air in the lab to dry [32,49]. The specimens were tested after 25 and 50 cycles, and the loss
of CS for each specimen was recorded.

To determine the consistency, quality, and uniformity of concrete specimens, the UPV
test was carried out [4]. Cylindrical samples of dimension 150 mm in diameter × 300 mm
in height were used to evaluate the UPV value as per ASTM C597-09 standard. This test
was conducted after a curing period of 28 days. In this test, both sides of the cylindrical
specimen were provided with transducers (transmitter and receiver) of the frequency range
55 kHz. The time of travel of the ultrasonic pulse between the two transducers was noted
and the UPV value was obtained by dividing the length of the specimen by time of travel.
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3. Results and Discussion
3.1. Workability

Workability measures the ability of freshly mixed concrete to flow without segregation.
It is a vital property of concrete that ensures proper handling and controls concrete’s
strength and durability. The workability of RPAC was examined via slump test and Figure 4
displays the results for different concrete mixes. The results reveal that the workability of
RPAC significantly increased with the increase in the substitution ratio of PCA compared
to the control mix. The presence of non-absorbent plastic aggregate in concrete increased
the workability of RPAC. The zero water absorption capacity of PCA results in excess water
in the paste, thereby increasing the workability. Past works also reported a similar finding
of an increase in workability [33,50,51]. However, few studies [52–54] mentioned a decline
in the workability of concrete containing plastic aggregates owing to the irregular size
and shape of shredded plastic aggregates. In the present study, manufactured PCA was
used with proper control over the size and shape, thus yielding higher workability with
respect to mineral aggregate concrete. The detailed procedure for the manufacture of PCA
is presented above (Section 2.2). With reference to control mix, the workability of plastic
concrete increased by 16.4%, 46.3%, 83.2%,113%, and 140.9%, respectively, at 10%, 20%,
30%, 40%, and 50% replacement of NCA with PCA. The existence of PCA in the range of
0% to 50% increased the slump value from 42.5 mm to 102.4 mm, an increase of 140.9%.
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3.2. Fresh and Dry Density

The density of concrete depends upon the unit weight of concrete’s ingredients and
their mix proportions. Figure 5 displays the fresh and dry density of RPAC containing
different percentages of PCA. With reference to the control mix, the fresh and dry density
of plastic concrete declined. This decrement in density is owing to the presence of PCA,
which has a lower unit weight compared to NCA. The results show that the fresh density
of concrete containing PCA as alternative coarse aggregate was 2600 kg/m3, 2495 kg/m3,
2429.7 kg/m3, 2347.7 kg/m3, and 2272 kg/m3, respectively, at 10%, 20%, 30%, 40%, and 50%
substitution level. With respect to the control mix, the maximum and minimum reduction
in fresh density was 13.6% and 1.10%, respectively, at 50% and 10% replacement of NCA
with PCA. In the literature, there is agreement that the density of concrete containing PCA
decreases because of the low specific gravity of plastic aggregates with respect to mineral
aggregates. A similar pattern of decrease in fresh density is well reflected in previously
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published works [30,50]. Reduction in density is directly related to the substitution level of
aggregates [51]. In the current study, the maximum reduction in dry density is 18.2% for
the PCA50 specimen with reference to the control mix. Even though the PCA decreased the
concrete’s density, the values were still well above the utmost limit for lightweight concrete.
A comparatively smaller decrement in dry density was observed in the current study with
manufactured PCA with respect to grinded plastics in past works, ascribed to the size and
shape of PCA, which was similar to NCA.
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3.3. Mechanical Properties
3.3.1. Compressive Strength

Compressive strength (CS) is an essential property of concrete that measures its
ability to carry loads and is considered as one of the essential parameters in reinforced
concrete design [52]. The CS of cylindrical specimens containing different proportions
of PCA was evaluated as per ASTM C39 [45] standard. The CS of 28 days of cured
concrete containing different percentages of PCA is shown in Figure 6. CS of control
mix came out to be 41.2 MPa, while concrete with 10%, 20%, 30%, 40%, and 50% PCA
revealed compressive strengths of 37.1 MPa, 32.5 MPa, 27.71 MPa, 22.89 MPa, and 19.5 MPa,
respectively. The maximum reduction in CS was 52.7%, observed at 50% replacement level,
whereas a minimum reduction of 9.95% was observed at 10% replacement level compared
to the control mix. The results show that as the substitution level of NCA with PCA
increased, the CS of RPAC decreased significantly with respect to the control mix, which is
in compliance with the past works [14,34,51]. Figure 7 shows the CS test assembly along
with a cylindrical specimen before and after the test. The failure mode of the specimen is
indicated in Figure 6b, which shows that rupture failure occurs in the specimen containing
PCA, ascribed to the weak bond formation between PCA and concrete ingredients. The
plastic aggregates examined after failure revealed that the plastic aggregate does not break
because of its flexible nature. Due to the smooth texture of PCA, weak adhesion develops
between plastic aggregate and cement paste, thereby resulting in a decrement in strength.
Additionally, the strength decrement may be due to the presence of non-absorbent plastic
aggregate, which results in excess free water in cementitious composites. In addition,
plastic aggregate has less density, unit weight, rigidity, and strength compared to NCA,
thus creating a high-stress region and facilitating the spread of damage, which may also be
one of the reasons for the decline in strength [53,54]. Therefore, a replacement proportion
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of manufactured PCA up to 50% can be utilized as the CS obtained is more than 17.24 MPa,
which is the lowest compression capacity normally suggested for structural concrete [55].
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3.3.2. Splitting Tensile Strength

Figure 8 shows the variation in split tensile strength (STS) results for RPAC mixes
containing different percentages of PCA. The STS of the control mix came out to be 3.22 MPa
at 28 days, while concrete with 10%, 20%, 30%, 40%, and 50% PCA replacement of NCA
showed STS of 2.93 MPa, 2.69 MPa, 2.46 MPa, 2.14 MPa, and 1.88 MPa, respectively. The
maximum reduction in STS was 47.5%, observed at the 50% replacement level, whereas
a minimum reduction of 7.8% was reported at the 10% replacement level, with respect
to the control mix. The results show that the STS of RPAC declined significantly as the
substitution level of NCA with PCA increased. This decrement in the STS is owing to the
weak bond or adhesiveness between PCA and cement paste. Due to the smooth texture
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of PCA, weak adhesion/bonding develops between plastic aggregate and cement paste,
thereby resulting in a decrement in strength [56]. Additionally, PCA has less density, unit
weight, rigidity, and strength with respect to NCA, hence producing a high-stress zone
that facilitates the spread of damage, which is also considered as the reason for strength
reduction [53,54]. The influence of manufactured plastic aggregates on the STS of RPAC is
consistent with the findings of past studies [11,56].
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3.3.3. Flexural Strength Test

The flexural strength (FS) test, also known as transverse rupture strength, measures the
ability of concrete to counter bending loads and was carried out as per ASTM C78/C78M-
18 [46] standard. Figure 9 shows the FS results of RPAC with different replacement levels
of NCA with PCA and the effect of PCA on FS. The results show that similar to CS and
STS, the FS of RPAC reduced with the increase in the plastic aggregate content. The results
show that the FS of concrete containing PCA as alternative coarse aggregate was 7.21 MPa,
6.42 MPa, 5.71 MPa, 5.22 MPa, 4.93 MPa, and 4.37 MPa when the substitution level was
10%, 20%, 30%, 40%, and 50%, respectively. With reference to the control mix, the maximum
reduction in FS was 39.4%, observed at the 50% replacement level, whereas a minimum
reduction of 10.9% was observed at the 10% replacement level. The reduction in FS of
RPAC is ascribed to the smooth surface of the plastic aggregate, thereby yielding a weak
bond/adhesiveness between cement paste and PCA. The effect of PCA upon the FS of
RPAC is well reflected in previously published works [27,30,36].

3.4. Durability Properties
3.4.1. Abrasion Resistance

Abrasion resistance measures the ability of the concrete surface to counter wearing
forces. Concrete abrasion allows the concrete to degrade over time, reducing its toughness
by rendering it vulnerable to weathering. The poor resistance of concrete to abrasion makes
it more vulnerable to deterioration, which is a common phenomenon. When a concrete
structure is subjected to floating ice, a rapid movement of hard and pointed objects, friction,
grinding behavior, or other factors, the surface of concrete slowly deteriorates thereby
influencing the durability. This test was conducted as per the ASTM C-131 [57] standard.
Figure 10 shows the abrasion loss values of RPAC with different percentages of PCA by
volume of NCA. The results report that plastic concrete has a considerably high abrasion
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resistance as compared to the control mix. It can be observed that weight loss reduces
with increasing content of PCA. This decremented trend in weight loss with the increasing
content of plastic aggregate can be ascribed to the high toughness and greater abrasion
resistance of PCA with respect to NCA [7,32,38]. The abrasion resistance of RPAC increased
by 32.3%, 38.9%, 42.3%, 46.1%, and 51.6% at 10%, 20%, 30%, 40%, and 50% substitution of
NCA, respectively.
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3.4.2. Alternate Wetting and Drying

Alternative wetting and drying (W–D) is a durability test conducted to determine
the ability of concrete to counter weathering when exposed to W–D conditions such as
sea tidal waves. As a result of the alternative W–D of concrete, the stresses are induced
in the concrete structure, which cause crack formation. Due to this phenomenon, the
reinforcement is subjected to environmental factors such as moisture, air, etc., therefore
leading to a decline in the durability characteristics of a structure. In this research work, the
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28 days cured concrete specimens of concrete specimens of 100 mm in size were subjected
to 25 and 50 alternate W–D cycles. The duration of one complete cycle (two days) means
exposing the specimens to wetness for one day and then allowing them to dry for the
next day.

Table 6 shows the alternate W–D test results of RPAC after 25 and 50 cycles, along
with the average loss in CS. Additionally, Figure 11 shows the comparative CS of RPAC
having 0%, 10%, 20%, 30%, 40%, and 50% PCA after 0, 25, and 50 cycles. The results show
that wetting and drying the RPAC alternatively significantly influences the CS; however,
the decrease in strength declined with the increasing content of plastic aggregates. In other
words, increasing the percentage of PCA in concrete increases the resistance of concrete to
the CS degradation after subjecting RPAC to alternate wetting and drying. This improved
behavior can be attributed to the non-absorbent nature of plastic aggregate. Table 6 shows
that the loss of CS in the control mix is 19.17% and 31.55%, respectively, at 25 and 50 cycles
while at mix PCA10, the loss of CS reduces to half after 25 and 50 cycles. Similarly, the loss
in CS was further reduced at PCA20, PCA30, and PCA40. Finally, the compressive capacity
of RPAC containing 50% PCA decreased by only 5.74% and 9.23% with respect to control
mix values of 19.17% and 31.55% for 25 and 50 cycles, respectively.

Table 6. Variation in CS after W–D cycles.

Mix ID
After 25 Cycles

(MPa)
After 50 Cycles

(MPa)

Loss of CS (%)

After 25 Cycles After 50 Cycles

CM 33.3 28.2 19.2 31.6
PCA10 33 31.4 11.1 15.4
PCA20 29.8 28.4 8.31 12.6
PCA30 25.81 24.2 6.86 12.6
PCA40 21.35 20.2 6.73 11.8
PCA50 18.38 17.7 5.74 9.23
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3.4.3. Sorptivity Coefficient

Sorptivity measures the capacity of porous media to absorb water through capillary
action. It provides a good measure of the durability of concrete as there are many chemicals
that can penetrate the microstructure of concrete from soils and water by capillary action.
The sorptivity coefficient is evaluated by determining the rise in the specimen’s weight as a
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result of the absorption of water through capillary rise with regard to time. The quantity of
water absorbed by the samples comprising various proportions of PCA (i.e., 10%, 20%, 30%,
40% and 50%) through capillary rise per unit area is shown in Figure 11. The results show
that the sorptivity (mm/min1/2) for all the concrete mixes containing plastic aggregates for
28 days of curing has a lesser value than the control mix. This reduction in sorptivity values
with reference to the control mix is owing to the zero water absorption capacity PCA [13,32].
With reference to the control mix, the percentage reduction in sorptivity coefficient values
of RPAC containing 10%, 20%, 30%, 40% and 50% PCA was 11.81%, 18.89%, 29.92%, 36.2%
and 41.7%, respectively, and is shown in Figure 12. Zeeshan et al. [32] found that the
incorporation of E-waste plastic aggregate in concrete significantly reduced the sorptivity
coefficient value, and observed that at 10%, 15%, and 20% replacement level of PCA with
NCA, the sorptivity values decreased by 12.2%, 14.5% and 29%, respectively. Hence, it
can be concluded that with the increase in the content of PCA in concrete, the sorptivity
coefficient values significantly reduced.
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3.4.4. Ultrasonic Pulse Velocity (UPV)

The UPV test was performed to analyze the uniformity, consistency, and quality of the
concrete. It also evaluates the imperfections and compactness, i.e., cracks and voids inside
a concrete sample. The UPV value has a direct relationship with concrete density, i.e., the
denser the concrete, the higher will be its UPV value, and vice versa. The concrete specimen
is considered to be of good quality if its UPV value lies in the range of 3.66–4.57 km/s
(i.e., 3660–4575 m/s) [58]. Figure 13 shows the UPV values of RPAC containing different
percentages of PCA. The results show that with the increase in the percentage of PCA
in concrete, the UPV values of RPAC decreased. With reference to the control mix, the
UPV values of RPAC containing 10%, 20%, 30%, 40%, and 50% PCA decreased by 1.61%,
3.44%, 5.23%, 7.81%, and 12.14%, respectively. The presence of greater air void content in
concrete containing PCA was considered to be the reason for UPV reduction. Therefore, a
reduction in the propagation of pulse waves by acoustic impedance occurs. In addition,
the UPV value also depends on the elastic properties and volumetric concentration of the
various concrete constituents, hence reducing the UPV value when PCA is utilized instead
of natural aggregates [32,51]. In the present study, the results reveal that the UPV values
for all the specimens lie in the range from 3669 to 4575 m/s; therefore, it is concluded that
up to 50% substitution of PCA can be utilized without significantly affecting the quality
of concrete.
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4. Conclusions

This study examined the effect of PCA on the fresh and hardened properties of concrete,
including workability, fresh and dry density, CS, STS and FS. Furthermore, durability
properties of RPAC such as abrasion resistance, alternate wetting and drying, sorptivity
coefficient, and UPV were also explored. In the current study, PCA was used to replace
NCA at replacement levels of 10%, 20%, 30%, 40% and 50%. Based on the findings, the
following conclusions can be drawn:

1. The incorporation of PCA in concrete significantly increased the workability (16.4–
141% for 10% to 50% replacement ratios) due to the zero-water absorption of plastic
aggregate. Moreover, the incorporation of PCA in concrete decreased the fresh and
dry density of concrete composites for a maximum of 13.6% and 18.2%, respectively,
reported at the 50% replacement level of NCA with PCA.

2. The CS, STS and FS of RPAC were considerably reduced by increasing the percentage
of PCA. The maximum percentage reduction in CS, STS and FS was achieved as 52.7%,
47.5% and 39.4%, respectively, for 50% replacement.

3. The appreciable reduction (41.7%) in sorptivity value was observed for the maximum
replacement of PCA considered in the study. The UPV values also remained within
the required range of quality concrete after incorporating the full replacement of
PCA. This suggests enhanced durability against the penetration of chemicals into
the concrete.

4. The incorporation of PCA in concrete improved the concrete abrasion resistance.
Abrasion resistance increased in the range of 32–51% for different substitution ratios.
This can be ascribed to the higher abrasion resistance and toughness of plastic aggre-
gate with respect to natural aggregate. Moreover, loss in CS was also reduced after
exposure to alternate wetting and drying cycles with respect to the control mix.

5. The manufactured E-waste plastic aggregate can be used to substitute NCA in con-
crete by volume (10–50%); however, 30% substitution is recommended because up
to this level, the characteristic strength of M25 concrete was obtained. Furthermore,
the substitution level of 40% and 50% is recommended to be utilized in nonstructural
lightweight elements. Additionally, the use of plastic aggregate is recommended to
be used in marine conditions owing to its non-absorption capacity, which resists the
ingress of hazardous chemicals such as chloride and sulphate, etc. The conventional
steel and fiber-reinforced polymer (FRP) rebars in PCA-incorporated concrete are
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expected to perform better under an alkaline environment; however, more insights
regarding the durability of FRPs in PCA-incorporated concrete shall be investigated
first from the relevant literature [59,60]. In addition, machine learning techniques are
widely used for investigating material properties [61–67] and general engineering
problems [68,69]. Therefore, for the PCA-incorporated concrete, a machine learning
regression model can be developed to accurately forecast the strength and durability
characteristics for variable input parameters. Future studies need to explore other
properties of RPAC, alone or in combination with reinforcing agents such as nano-
materials or fibers, to investigate the mechanical and durability properties, including
salt scaling, carbonation, freeze–thaw cycles, concrete to steel bond properties, fire
resistance of RPAC, etc.
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