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Computation Efficiency Optimization for
Millimeter-Wave Mobile Edge Computing Networks

with NOMA
Xiangbin Yu, Fangcheng Xu, Jiali Cai, Xiao-yu Dang, Kezhi Wang

Abstract—In this paper, the millimeter-wave (mmWave) com-
munications and non-orthogonal multiple access (NOMA) are
exploited for mobile edge computing (MEC) networks to improve
the performance of task offloading. Aiming at improving the
computation efficiency (CE) and ensuring the fairness among
users, we study the CE optimization for mmWave-MEC with
NOMA, where both the analog beamforming (ABF) and hybrid
beamforming (HBF) architectures under the partial offloading
mode are considered. Firstly, according to the max-min fairness
criterion, the CE optimization problem is formulated to jointly
optimize the ABF at the base station and the local resource
allocation of each user in mmWave-MEC with ABF. An efficient
algorithm based on the penalized successive convex approxima-
tion is proposed to solve this non-convex problem. Then, the
max-min CE optimization problem in mmWave-MEC with HBF
is studied, where the joint design of the HBF at the BS and
the local resource allocation of each user is carried out. By
using the penalty function and the inexact block coordinate
descent method, a feasible optimization algorithm is developed
to tackle this challenging problem. Simulation results verify
the convergence of the proposed algorithms and show that the
proposed resource allocation schemes can improve the system CE
effectively, and the mmWave-MEC with HBF scheme can obtain
higher CE than that with ABF scheme. Besides, the NOMA
scheme exhibits superior performance over the conventional
orthogonal multiple access scheme in terms of CE.

Index Terms—Mobile edge computing, millimeter-wave com-
munications, non-orthogonal multiple access, computation effi-
ciency, resource allocation.

I. INTRODUCTION

RECENTLY, the technologies in mobile communications
and Internet of Things have been developed rapidly and

widely applied in various fields of our daily life. Most of new
applications (such as augmented reality, virtual reality, etc.)
require real-time processing and computation, which may be
challenge for resource-constrained mobile devices to provide
expected quality of service [1]. Mobile edge computing (MEC)
has been considered as a promising technology to deal with
these challenges. In MEC, the decentralized computing servers
are deployed at the edge of wireless networks to provide
computing services for nearby mobile devices.

In MEC networks, the computational tasks can be of-
floaded to the edge servers that have available computational
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resources. However, the offloading actions are limited by
the available spectrum resources. Due to the rich spectrum
resources, millimeter-wave (mmWave) communications have
been recognized as an attractive solution for increasing the
above-mentioned applications. In mmWave communications,
since the number of radio frequency chains (RFCs) is usually
much smaller than that of antennas, multiple access is still
a crucial issue that affects the spectrum utilization and the
number of accessing users. Therefore, it is a feasible solution
to apply non-orthogonal multiple access (NOMA) in mmWave
communications to form the so-called mmWave-NOMA com-
munication system [2]. As a promising multiple access tech-
nology, NOMA can exhibit superior performance than the con-
ventional orthogonal multiple access (OMA). By multiplexing
the power-domain, NOMA can realize the efficient utilization
of one orthogonal resource block to improve the number of
accessing users, spectral efficiency and energy efficiency [3].
Moreover, the users in mmWave communications are highly
correlated, which is conducive to the integration of NOMA.
Owing to these unique advantages, mmWave-NOMA has great
potential to support ultra-high bandwidth services and massive
connectivity [2] [3].

With the development of MEC technology, the integration of
MEC and other emerging mobile communication technologies
has become one of research trends in recent years, such as
MEC combines with mmWave communications [4], MEC
combines with NOMA [5]. The potential of MEC technol-
ogy has stimulated the extensive efforts of academia and
industry in various fields [6]–[11]. Several literatures have
comprehensively reviewed the standardization work in MEC,
and discussed the existing problems, challenges and future
research directions [6]–[8]. The previous contributions [9] and
[10] respectively studied the latency optimization problems
for the cases of single-user and multi-user in the mmWave-
MEC system and exhibited the advantages of combining MEC
with mmWave communications. Reference [11] analyzed the
impact of NOMA on MEC and demonstrated that NOMA
can reduce the latency of computation offloading and energy
consumption by the theoretical and simulation results.

With the development of green communication, improving
resource utilization is becoming more and more important
for MEC [12]–[14]. In [12], computation efficiency (CE),
i.e., the ratio of the computation bits (CBs) to the energy
consumption, was proposed to evaluate the efficiency of com-
putation and communication per joule in MEC. Moreover, [13]
studied the maximization of the sum CE in MEC based on
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orthogonal frequency division multiple access (FDMA), where
the partial offloading mode and the binary offloading mode
were considered and closed-form solutions of the optimal
subchannel and power allocation scheme were derived for
given Lagrange multipliers. Furthermore, [14] extended the CE
maximization framework under the max-min fairness criterion
to the wireless-powered MEC with time division multiple
access (TDMA) and NOMA.

Nevertheless, the above contributions only focused on the
traditional communication frequency band. Against this back-
ground, based on the mmWave communication, by exploit-
ing the NOMA scheme, we study the CE optimization of
mmWave-MEC for improving the system CE and guaranteeing
the user fairness. Specifically, we consider the analog beam-
forming (ABF) and hybrid beamforming (HBF) architectures
under the partial offloading mode with NOMA to design
the corresponding resource allocation schemes. The main
contributions of this paper are summarized as follows.

1) The computation-efficient resource allocation scheme
in mmWave-MEC with ABF (mmWave-MEC-ABF) is firstly
studied. For the purpose of improving CE and guaranteeing
user fairness, the max-min CE optimization under the partial
offloading mode with NOMA is formulated to maximize
the minimum CE of the users subject to the minimum
computation-bit rate and the maximum power consumption
constraints, where the ABF at the base station (BS) and the
local resource allocation of each user are jointly optimized.
By introducing auxiliary variables, this non-convex problem
is transformed into an equivalent form, which is easier to be
addressed. Accordingly, an efficient CE optimization algorithm
based on the penalized successive convex approximation (S-
CA) method is proposed to obtain a local optimal solution and
the corresponding computation-efficient resource allocation
scheme.

2) Then, the computation-efficient resource allocation
scheme in mmWave-MEC with HBF (mmWave-MEC-HBF) is
further studied. According to the max-min fairness criterion,
the CE optimization problem under the partial offloading mode
is established to jointly optimize the HBF at the BS and
the local resource allocation of each user. Considering that
the optimization variables are highly coupled, this challeng-
ing problem is transformed into the penalty form by using
the penalty function method. Since the problem has block
structure, a feasible CE optimization algorithm is proposed
to obtain the computation-efficient resource allocation scheme
by means of the inexact block coordinate descent (IBCD)
method combined with majorization-minimization (MM) and
SCA algorithms.

3) Extensive simulation results are presented to evaluate
the validity of the proposed CE optimization frameworks. The
results first verify the convergence of the proposed algorithms,
then demonstrate that the proposed computation-efficient re-
source allocation schemes can achieve good performance, and
the system with HBF scheme can attain higher CE than that
with ABF scheme. Moreover, NOMA scheme can boost CE
significantly compared with the conventional OMA scheme.

Notations: The upper-case and lower-case boldface letters
denote matrices and vectors, respectively. (·)∗, (·)T, (·)H and

(·)† denote conjugation, transpose, Hermitian transpose, and
pseudo inversion, respectively. ∥ · ∥, ∥ · ∥F, and ∥ · ∥∞ denote
the 2-norm, Frobenius norm and infinite norm, respectively.
| · | denotes the absolute value of a real scalar or the modulus
of complex scalar. [·]i is the i-th entry of a vector. [·]i,j is the
i-th row and j-th column entry of a matrix. λmax(A) denotes
the maximum eigenvalue of a Hermitian matrix A. CN (a, b)
denotes the complex Gaussian distribution with the mean a
and the variance b. U[a, b] denotes the uniform distribution in
the range of a to b. CA×B denotes the complex matrix with the
size A×B. Re{·} denotes the real part of a complex number.
|A| denotes the number of elements in the set A. A\B denotes
the different set of the sets A and B.

II. SYSTEM MODEL OF MMWAVE-MEC WITH ABF
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Fig. 1: System model of mmWave-MEC-ABF.

As shown in Fig. 1, the proposed mmWave-MEC-ABF sys-
tem model consists of NU single-antenna users and a mmWave
BS connected to a high-performance MEC server, where the
BS adopts the ABF architecture and is equipped with N
antennas, one RFC, N power amplifiers (PAs) and N phase
shifters (PSs), in which each antenna is connected to the same
RFC via the corresponding PA and PS. Accordingly, the ABF
vector w ∈ CN×1 of the BS is constricted by the constant
modulus (CM) constraint, i.e., |[w]n| = 1/

√
N, ∀n ∈ N ,

{1, . . . , N} [15] [16]. Each user can upload its computation
task to the MEC server via the block-fading mmWave channel
with the narrow bandwidth B and the coherent time TC.
n ∈ CN×1∼CN (0, σ2IN ) is the Gaussian white noise vector
at the BS, in which σ2 = n0B and n0 is the single-side power
spectral density. Define the set U , {1, . . . , NU}, then the k-th
user (k ∈ U) is denoted by Uk.

Assuming that the BS adopts the uniform linear array with
half-wavelength spacing, the mmWave channel hk ∈ CN×1

between Uk and the BS can be modeled as [17]

hk = hLOS
k + hNLOS

k ,

hLOS
k = ϑLOS

√
βLOS
k ξLOS

k a(N, θLOS
k ),

hNLOS
k = ϑNLOS

k

√
βNLOS
k

Lk∑
l=1

ξNLOS
k,l a(N, θNLOS

k,l ),

(1)

where ϑLOS
k =

√
N , βLOS

k = (c/(4πfc))
2
d−α

LOS

k , αkLOS,
ξLOS
k ∼CN (0, 1) and θLOS

k ∼U[0, 2π] are the normalized coef-
ficient, average path loss, path loss exponent, complex gain
and angle of arrival (AoA) of the line-of-sight (LOS) path,
respectively, ϑNLOS

k =
√
N/Lk, βNLOS

k = (c/(4πfc))
2
d−α

NLOS

k ,
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αk
NLOS, ξNLOS

k,l ∼CN (0, 1) and θk,l∼U[0, 2π] are the normal-
ized coefficient, average path loss, path loss exponent, complex
gain and AoA of the l-th non-line-of-sight (NLOS) path,
respectively, Lk is the number of the NLOS paths, dk is the
distance between Uk and the BS, c is the light speed, fc is
the mmWave carrier frequency, and a(·, ·) is the normalized
steering vector function defined as

a(N, θ) = 1√
N

[
1, ejπ sin θ, . . . , ejπ(N−1) sin θ

]T
. (2)

Without loss of generality, it is supposed that ∥h1∥ ≥ ... ≥
∥hK∥.

The partial offloading mode is employed, i.e., the computa-
tional task of each user can be divided into two parts, in which
one part is computed locally and another part is uploaded to
the MEC server [12]–[14]. Specifically, the frame under this
mode is composed of three stages and its duration T is set
as T < TC . At the first stage, the uplink NOMA protocol
is used for the transmission from the users to the BS. At
the second stage, the BS decodes the signal of each user
and the MEC server computes the uploaded tasks of users.
At the final stage, the BS feedbacks the computed results
to users. Following the assumption in [12]–[14], the time of
the first stage can be approximated as T , since the MEC
server has much stronger computation capability than users
and the data size of computed results is relatively small. For
the local computing of Uk, the number of CBs Lloc

k and the
corresponding energy consumption Eloc

k can be expressed as
[12]–[14]

Lloc
k = Tfk/Ck, (3a)

Eloc
k = Tξkf

3
k + TPk,c, (3b)

where Ck, fk, ξk and Pk,c represent the CPU cycles per bit,
CPU frequency, CPU chip coefficient and fixed circuit power
consumption of Uk, respectively.

With the uplink NOMA protocol, the received signal at the
BS after the processing of ABF can be expressed as

y =
K∑
k=1

wHhk
√
pkxk +wHn, (4)

where xk∼CN (0, 1) and pk denote the transmission signal
and the transmission power of Uk, respectively.

To deal with the superposed signal in (4), the BS adopts the
successive interference cancellation (SIC) to decode the signal
of each user. In general, the SIC decoding order of the uplink
NOMA is the descending order of the effective channel gains
of the users [3]. Therefore, when designing w, the following
SIC decoding constraint can be considered as

|hH
1w|2 ≥ ... ≥ |hH

Kw|2, (5)

where the effective channel gain of Uk is given by |wHhk|
2
=

|hH
kw|2. According to the above decoding order and utilizing

the SIC, the signal-to-interference-and-noise ratio (SINR) of
Uk can be attained as

SINRk =
pk|hH

kw|2
K∑

i=k+1

pi|hH
iw|2+σ2

. (6)

Accordingly, the achievable rate for the upload computing
of Uk is given by R̄k = Blog2(1 + SINRk). Based on this,
the number of CBs and the corresponding energy consumption
can be respectively expressed as

Loff
k = TR̄k, (7a)

Eoff
k = Tζkpk, (7b)

where ζk is the PA coefficient of Uk [16].
Therefore, according to the definition of CE in [12]–[14],

the CE of Uk in the mmWave-MEC-ABF is written as

ηk =
Lloc
k + Loff

k

Eloc
k + Eoff

k

=
Blog2(1 + SINRk) + fk/Ck

ζkpk + ξkf3k + Pk,c
. (8)

III. CE OPTIMIZATION FOR MMWAVE-MEC WITH ABF
In this section, we study the CE optimization based on

the max-min fairness criterion for mmWave-MEC-ABF and
propose an efficient iterative algorithm to solve the non-convex
CE optimization problem.

A. Problem Formulation and Transformation

In order to improve the CE of the mmWave-MEC-ABF and
ensure user fairness, the max-min fairness criterion can be used
[14]. Following this criterion, the max-min CE optimization
problem can be formulated as

(P1) :
max

{w,pk,fk}
min
k∈K

{ηk}

s.t. C1 : |[w]n| = 1/
√
N, ∀n ∈ N ,

C2 : |hH
1w|2 ≥ · · · ≥ |hH

Kw|2,
C3 : Blog2(1 + SINRk) + fk

Ck
≥ Rmin

k , ∀k ∈ K,
C4 : ζkpk + ξkf

3
k + Pk,c ≤ Pmax

k , ∀k ∈ K,
C5 : 0 ≤ fk ≤ fmax

k , ∀k ∈ K,
C6 : Pmin

k ≤ pk ≤ Pmax
k ,∀k ∈ K,

(9)
where C1 denotes the CM constraint, C2 denotes the SIC
decoding constraint, C3 denotes the computation-bit rate con-
straint, Rmin

k is the minimum computation-bit rate of Uk,
C4 denotes the power consumption constraint, Pmax

k is the
maximum power consumption of Uk, C5 denotes the CPU
frequency constraint, fmax

k is the maximum CPU frequency
of Uk, C6 denotes the transmission power constraint, Pmin

k is
the minimum transmission power of Uk, which is close to 0.

It can be found that the CE optimization problem (P1) is a
non-smooth and non-convex fractional optimization problem,
and the number of the real optimization variables is 2(N+K).
Since N is large at the BS, the complexity of directly searching
the global optimal solution is extremely high. Therefore,
we will design an efficient CE optimization algorithm with
polynomial computation complexity to find the suboptimal
solution of the problem (P1). To this end, an equivalent form
of the CM constraint C1 in the problem (P1) can be derived
as

C1,a : |[w]n| ≤ 1/
√
N, ∀n ∈ N ,

C1,b : ∥w∥2 ≥ 1.
(10)

The derivation is shown as follows: In the problem (P1),
it is obvious that C1 is equivalent to C1,a in (10) and C1,c :
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|[w]n| ≥ 1/
√
N(∀n ∈ N ). Moreover, it can be derived from

C1,c that ∥w∥2 =
∑N
n=1 |[w]n|

2 ≥ 1. Thus, the sufficient
condition holds. Next, for C1,a and C1,b in (10), let us assume
that there is at least one element whose modulus is less than
1/
√
N in the ABF vector w, that is,

|[w]i| < 1/
√
N, ∀i ∈ N1,

|[w]j | = 1/
√
N, ∀j ∈ N2,

(11)

where the sets N1 and N2 satisfy N = N1∪N2,N1 ̸= ∅,N1∩
N2 = ∅. Thus, we have

N∑
n=1

|[w]i|
2

=
∑
i∈N1

|[w]i|
2
+

∑
j∈N2

|[w]j |
2

< |N1|
N + |N2|

N = |N |
N = 1.

(12)

It can be found that (12) is conflict with C1,b, which indicates
that the modulus of each element in the ABF vector w is
equal to 1/

√
N , i.e., C1 holds for C1,a and C1,b. Thus, the

necessary condition holds. In conclusion, the CM constraint
C1 is equal to (10). Using (10), the CE optimization problem
(P1) can be reformulated as

(P̄1) :
max

{w,pk,fk}
min
k∈K

{ηk}

s.t. C1,a, C1,b, C2, C3, C4, C5, C6.

(13)

Theorem 1: By introducing auxiliary variables
{qk, γk, zk, Rk, Pk, η}(∀k ∈ K), the problem (P̄1) can
be transformed equivalently into the following problem:

(P̃1) : max
{V,η}

η

s.t. C1,a, C1,b, C2, C5,

C̃3,a : q−1
k |hH

kw|2 ≥ γkzk, ∀k ∈ K,

C̃3,b :
K∑

i=k+1

q−1
k |hH

i w|2 + σ2 ≤ zk, ∀k ∈ K,

C̄3,c : log2(1 + γk) +
fk
BCk

≥ Rk

B , ∀k ∈ K,
C̃4,a : ζkq

−1
k + ξkf

3
k + Pk,c ≤ Pk, ∀k ∈ K,

C̃4,b : Pk ≤ Pmax
k , ∀k ∈ K,

C̃6 : 1/Pmax
k ≤ qk ≤ 1/Pmin

k , ∀k ∈ K,
C7 : Rk ≥ Rmin

k , ∀k ∈ K,
C8 : Rk ≥ ηPk, ∀k ∈ K,

(14)
where V , {w, qk, fk, γk, zk, Rk, Pk}(∀k ∈ K).

Proof : See Appendix A.
From Theorem 1, it is seen that (P̃1) is an equivalent form

of the problem (P1). Thus, we can solve (P̃1) to address the
original problem (P1).

B. CE Optimization Algorithm Design

To design an efficient algorithm, we first analyze the struc-
ture of the problem (P̃1). It can be seen that the objective
function of the problem (P̃1) is linear, and the constraints
{C1,a, C̃3,b, C̄3,c, C̃4,a, C̃4,b, C5, C̃6, C7} are convex, but the
constraints {C1,b, C2, C̃3,a, C8} are non-convex. Therefore,
we adopt SCA to approximately transform problem (P̃1) into
a convex optimization. The core idea of SCA is to transform
a non-convex optimization problem into a series of convex

optimization problems, and at each iteration of SCA, the non-
convex terms are replaced by appropriate convex terms [18].

Next, we introduce two Lemmas to find suitable convex sets
to approximate the corresponding non-convex sets.

Lemma 1: For a convex function f(x) whose domain is
x ∈ Ω, the following inequality holds: [19]

f(x) ≥ f(x0) +∇f(x0)
T(x− x0), ∀x,x0 ∈ Ω. (15)

Lemma 2: The following inequality holds: [20]

xy ≤ ỹ
2x̃x

2 + x̃
2ỹy

2, ∀x, y, x̃, ỹ > 0. (16)

Let V(r−1) , {w(r−1), q
(r−1)
k , f

(r−1)
k , γ

(r−1)
k , z

(r−1)
k , R

(r−1)
k

, P
(r−1)
k }(∀k ∈ K) and η(r−1) denote the values of the

optimization variables V and η in (14) at the (r − 1)-th SCA
iteration, respectively.

By applying Lemma 1 and Lemma 2, the non-convex
constraints {C1,b, C2, C̃3,a, C8} can be transformed approx-
imately into the following convex constraints:

C̃1,b : 2Re{(w(r−1))Hw} − ∥w(r−1)∥2 ≥ 1,

C̃2 : 2Re{(w(r−1))
H
hk̃h

H
k̃
w} − |hH

k̃
w(r−1)|2

≥ |hH
k̃+1

w|2,∀k̃ ∈ K\K,

C̄3,a :
2Re{(w(r−1))

H
hkh

H
kw}

q
(r−1)
k

− |hH
kw

(r−1)|2

(q
(r−1)
k )

2 qk

≥ z
(r−1)
k

2γ
(r−1)
k

γ2k +
γ
(r−1)
k

2z
(r−1)
k

z2k, ∀k ∈ K,

C̃8 : Rk ≥ η(r−1)

2P
(r−1)
k

P 2
k +

P
(r−1)
k

2η(r−1) η
2, ∀k ∈ K.

(17)

Therefore, at the r-th SCA iteration, the problem (P̃1)
can be approximated as the following convex optimization
problem:

(P̂1) : max
{V,η}

η

s.t. C1,a, C̃1,b, C̃2, C̄3,a, C̃3,b, C̄3,c,

C̃4,a, C̃4,b, C5, C̃6, C7, C̃8.

(18)

However, if the problem in (18) has a feasible solution ŵ ̸=
w(r−1), then we have ∥ŵ∥2 > 1 and ∥ŵ∥2 ≤ 1 according to
the constraints C1,a and C̃1,b, which violates the assumption
that ŵ is a feasible solution. Thus, due to the constraints C1,a

and C̃1,b, the feasible region of the problem (P̂1) only contains
w = w(r−1), which leads to that w(r) in the SCA algorithm
always equals to its initial value, i.e., w(r) = w(0). In order to
overcome the disadvantage of the above SCA algorithm, we
use the penalty method in [21] [22] to modify the problem
(P̂1). Specifically, we add slack variable u ≥ 0 to transform
the constraint C̃1,b into:

C̄1,b : 2Re{(w(r−1))
H
w} − ∥w(r−1)∥2 + u ≥ 1. (19)

Similarly, we add slack variables {s1,k̃, s2,k, s3,k ≥ 0, ∀k̃ ∈
K\K, k ∈ K} to transform the constraints {C̃2, C̄3,a, C̃8}
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respectively into:

C̄2 : 2Re{(w(r−1))
H
hk̃h

H
k̃
w} − |hH

k̃
w(r−1)|2

+s1,k̃ ≥ |hH
k̃+1

w|2, ∀k̃ ∈ K\K,

Ĉ3,a :
2Re{(w(r−1))

H
hkh

H
kw}

q
(r−1)
k

− |hH
kw

(r−1)|2

(q
(r−1)
k )

2 qk

+s2,k ≥ z
(r−1)
k

2γ
(r−1)
k

γ2k +
γ
(r−1)
k

2z
(r−1)
k

z2k, ∀k ∈ K,

C̄8 : Rk + s3,k ≥ η(r−1)

2P
(r−1)
k

P 2
k +

P
(r−1)
k

2η(r−1) η
2, ∀k ∈ K.

(20)

With (19) and (20), the convex optimization problem at the
r-th iteration of the penalized SCA (PSCA) algorithm can be
formulated as

(P̌1) : max
{V,S,η,u}

η − τ
(r−1)
1 u− τ

(r−1)
2

∑
s∈S

s

s.t. C1,a, C̄1,b, C̄2, Ĉ3,a, C̃3,b, C̄3,c,

C̃4,a, C̃4,b, C5, C̃6, C7, C̄8,

C9 : s ≥ 0,∀s ∈ S,
C10 : u ≥ 0,

(21)

where S , {s1,k̃, s2,k, s3,k}(∀k̃ ∈ K\K, k ∈ K), τ (r−1)
i (i =

1, 2) denotes the penalty variable at the (r− 1)-th iteration of
the PSCA algorithm. τ (r−1)

i (i = 1, 2) is updated by

τ
(r)
i = min{µiτ (r−1)

i , τmax
i }, i = 1, 2, (22)

where µi > 1 and τmax
i denote the increasing coefficient and

upper bound of τ (r−1)
i , respectively.

Therefore, the PSCA-based CE optimization algorithm for
solving the problem (P̃1) can be summarized as Algorithm
1. For the convenience of expression, “MaxMinCE” and
“MaxMinCB” refer to maximizing the minimum CE of the
users and maximizing the minimum CB of the users, respec-
tively. Although Algorithm 1 is designed for the MaxMinCE
scheme, it can be also applied to the MaxMinCB scheme.
For the MaxMinCB scheme, the optimization objective is
maxmin{Rk}, which needs to introduce auxiliary variable
R̃ (such that min{Rk} ≥ R̃) so as to apply the framework of
Algorithm 1.

C. Convergence and Complexity Analysis
The convergence and complexity of Algorithm 1 are ana-

lyzed here. On one hand, from the constraints of problem (P̃1),
it can be concluded that: 0 < Rk < Blog2(1 + pmax

k ∥hk∥2)+
fmax
k /Ck, Pk,c < Pk ≤ Pmax

k , ∀k ∈ K. On the other hand,
we have: η ≤ min{Rk/Pk}. Thus, the objective function
of problem (P̃1) has an upper bound. Based on the above
analysis, if the feasible region of problem (P̃1) is not empty,
then Algorithm 1 can converge to a local optimal solution of
problem (P̃1) [21] [22]. Next, the complexity of Algorithm 1
mainly comes from solving the convex optimization problem
(P̌1). The standard convex optimization tools based on the
interior point method (such as CVX [23]) can be used to
obtain the optimal solution of the problem (P̌1). Since the
number of real optimization variables in the problem (P̌1) is
2N +9K+1, the complexity of the interior point method can
be expressed as O((2N + 9K + 1)

3.5
ln(1/δ)), where δ is the

solution accuracy [24]. Hence, the complexity of Algorithm 1
is given as O(I1(2N + 9K + 1)

3.5
ln(1/δ)), where I1 denotes

the iterations of Algorithm 1.

Algorithm 1 PSCA-based CE Optimization Algorithm for
Solving the Problem (P̃1)

1: Initialize: An initial point {V(0),S(0), η(0), u(0)} in the
problem (P̌1), iteration index r = 0, maximum iteration
number rmax, iteration tolerance ϵi > 0(i = 1, 2), penalty
parameters {τ (0)i , µi, τ

max
i }(∀i = 1, 2), the sum of slack

variables Γ
(0)
1 = 0 and the objective value Γ

(0)
2 = 0 in the

problem (P̌1);
2: repeat
3: r = r + 1;
4: Compute the optimal solution {Vopt,Sopt, ηopt, uopt} of

the problem (P̌1);
5: Update V(r) = Vopt,S(r) = Sopt, η(r) = ηopt, u(r) =

uopt;
6: Update Γ

(r)
1 = u(r) +

∑
s(r)∈S(r)

s(r),Γ
(r)
2 = η(r) −

τ
(r−1)
1 u(r) − τ

(r−1)
2

∑
s(r)∈S(r)

s(r);

7: if |Γ(r)
1 | < ϵ1 and |Γ(r)

2 − Γ
(r−1)
2 | < ϵ2 then

Set flag = 1;
else:

Update τ (r)i (i = 1, 2) using (22);
end if

8: until flag = 1 or r > rmax

9: Output: A local optimal solution {V(r), η(r)}.

IV. SYSTEM MODEL OF MMWAVE-MEC WITH HBF

In the section above, the CE optimization of mmWave-
MEC-ABF is presented, but the performance may be limited.
This is because only the ABF is used and a single RFC is
considered, where only one data stream can be processed at
each time, which may result in the limited CE. Next, we
give the CE optimization of mmWave-MEC-HBF. By jointly
designing the digital BF and analog BF, the CE performance
will be increased obviously.

Fig. 2: System model of mmWave-MEC-HBF.

The system model of mmWave-MEC-HBF is shown in Fig.
2, where the BS is equipped with N antennas, NRF RFCs,
N PAs and NRFN PSs, in which each antenna is connected
to all RFCs via one PA and NRF PSs. The HBF of the BS
is composed of the ABF matrix A ∈ CN×NRF and the DBF
matrix D ∈ CNRF×NS , where NS denotes the number of data
streams. Accordingly, A needs to satisfy the CM constraint
[25], i.e., |[A]i,j | = 1/

√
N, ∀i ∈ N , {1, . . . , N}, j ∈
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NRF , {1, . . . , NRF}. We suppose that NS = NRF, while
all NU users are divided into G groups and each group
corresponds to an independent data stream, i.e., G = NS
[25]. Hence, D can be rewritten as D = [d1, ...,dG], where
dg ∈ CNRF×1, ∀g ∈ G , {1, . . . , G}. Specifically, the users in
the g-th group (∀g ∈ G) is represented by Gg, and the number
of the users in the g-th group is |Gg|, where the k-th user in
the g-th group is denoted by Ug,k(∀g ∈ G, k ∈ Gg).

According to the uplink NOMA protocol, the received
signal of the g-th group at the BS after the user grouping
and the processing of HBF can be expressed as

yg =
G∑

m=1

|Gm|∑
n=1

dH
gA

Hhm,n
√
pm,nxm,n + dH

gA
Hng, (23)

where xi,j∼CN (0, 1) and pi,j denote the transmission signal
and power of Ui,j(∀i ∈ G, j ∈ Gg), respectively. Besides, the
mmWave channel between Ug,k and the BS hg,k ∈ CN×1, the
number of CBs Lloc

g,k, and the corresponding energy consump-
tion Eloc

g,k are similar to (1) and (3), respectively, in which the
subscripts k of variables in (1) and (3) need to be revised as
{g, k} for consistency.

For the uplink NOMA, the decoding order of SIC is the
descending order of the effective channel gains of the users
in the group [26] generally. Similar to (5), the following SIC
decoding constraint is necessary when designing A:

|hH
g,1Adg|

2 ≥ · · · ≥ |hH
g,|Gg|Adg|

2
,∀g ∈ G, (24)

where the effective channel gain of Ug,k is defined as
|dH
gA

Hhg,k|2 = |hH
g,kAdg|2. With the decoding order above,

and using the SIC, the SINR of Ug,k can be expressed as

SINRg,k =
pg,k|hH

g,kAdg|
2

|Gg|∑
k̃=k+1

pg,k̃|hH
g,k̃

Adg|2+
G∑

m̸=g

|Gm|∑
n=1

pm,n|hH
m,nAdg|2+Ig,k

,

(25)
where Ig,k = ∥Adg∥2σ2. For the upload computing of Ug,k,
its achievable rate is given by R̄g,k = Blog2(1 + SINRg,k).
Then, the number of CBs Loff

g,k and the energy consumption
Eoff
g,k are given by

Loff
g,k = TR̄g,k, (26a)

Eoff
g,k = Tζg,kpg,k, (26b)

where ζg,k denotes the PA coefficient of Ug,k [26].
Therefore, the CE of Ug,k in the mmWave-MEC-HBF can

be defined as

ηg,k =
Blog2(1 + SINRg,k) + fg,k/Cg,k
ζg,kpg,k + ξg,kf3g,k + Pg,k,c

. (27)

V. CE OPTIMIZATION FOR MMWAVE-MEC WITH HBF

In this section, we will further study the CE optimization
based on the max-min fairness criterion for mmWave-MEC-
HBF and propose an efficient iterative algorithm to tackle this
more complicate optimization problem.

A. Problem Formulation and Transformation

Aiming at the joint design of the DBF matrix D and the
ABF matrix A at the BS and the local resource allocation
of each user, the max-min CE optimization problem for the
mmWave-MEC-HBF can be formulated as
(P2) : max

V0

min
g∈G,k∈Gg

{ηg,k}

s.t. C1 : |[A]i,j | = 1/
√
N, ∀i ∈ N , j ∈ NRF,

C2 : |hH
g,1Adg|

2 ≥ · · · ≥ |hH
g,|Gg|Adg|

2
, ∀g ∈ G,

C3 : Blog2(1 + SINRg,k) + fg,k/Cg,k
≥ Rmin

g,k , ∀g ∈ G, k ∈ Gg,
C4 : ζg,kpg,k + ξg,kf

3
g,k + Pg,k,c

≤ Pmax
g,k , ∀g ∈ G, k ∈ Gg,

C5 : 0 ≤ fg,k ≤ fmax
g,k , ∀g ∈ G, k ∈ Gg,

C6 : Pmin
g,k ≤ pg,k ≤ Pmax

g,k ,∀g ∈ G, k ∈ Gg,
(28)

where V0 , {D,A, pg,k, fg,k}(∀g ∈ G, k ∈ Gg), C1 denotes
the CM constraint, C2 denotes the SIC decoding constraint,
C3 denotes the computation-bit rate constraint, Rmin

g,k is the
minimum computation-bit rate of Ug,k, C4 denotes the power
consumption constraint, Pmax

g,k is the maximum power con-
sumption of Ug,k, C5 denotes the CPU frequency constraint,
fmax
g,k is the maximum CPU frequency of Ug,k, C6 denotes

the transmission power constraint, Pmin
g,k is the minimum

transmission power of Ug,k, which is close to 0.
Compared with the problem (P1), the number of re-

al optimization variables in problem (P2) is increased to
2(NRFG+NNRF +NU). Moreover, the optimization vari-
ables D and A in problem (P2) are coupled with each other.
Hence, we aim to design an computation-efficient algorithm
with polynomial computation complexity to find a suboptimal
solution of problem (P2). To this end, we give an equivalent
form of problem (P2) shown in Theorem 2.

Theorem 2: By introducing auxiliary variables
{wg, qg,k, γg,k, zg,k, Rg,k, Pg,k, η}(∀g ∈ G, k ∈ Gg), problem
(P2) can be transformed equivalently into the following
problem:

(P̄2) :
max
V1

η

s.t. C1, C5

C̃2 : |hH
g,1wg|

2 ≥ · · · ≥ |hH
g,|Gg|wg|

2
,∀g ∈ G

C̃3,a : q−1
g,k|hH

g,kwg|
2 ≥ γg,kzg,k, ∀g ∈ G, k ∈ Gg

C̃3,b :
|Gg|∑

k̃=k+1

q−1

g,k̃
|hH
g,k̃

wg|
2
+

G∑
m̸=g

|Gm|∑
n=1

q−1
m,n|hH

m,nwg|
2

+∥wg∥2σ2 ≤ zg,k, ∀g ∈ G, k ∈ Gg
C̄3,c : log2(1 + γg,k) +

fg,k
BCg,k

≥ Rg,k

B , ∀g ∈ G, k ∈ Gg
C̃4,a :

ζg,k
qg,k

+ ξg,kf
3
g,k + Pg,k,c ≤ Pg,k, ∀g ∈ G, k ∈ Gg

C̃4,b : Pg,k ≤ Pmax
g,k , ∀g ∈ G, k ∈ Gg

C̃6 : 1/Pmax
g,k ≤ qg,k ≤ 1/Pmin

g,k ,∀g ∈ G, k ∈ Gg
C7 : wg = Adg, ∀g ∈ G
C8 : Rg,k ≥ Rmin

g,k ,∀g ∈ G, k ∈ Gg
C9 : Rg,k ≥ ηPg,k, ∀g ∈ G, k ∈ Gg,

(29)
where V , {wg, qg,k, fg,k, γg,k, zg,k, Rg,k, Pg,k} (∀g ∈ G,
k ∈ Gg) and V1 , {D,A,V, η}.
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Proof : See Appendix B.
In view of Theorem 2, we can solve the problem (P̄2) to

tackle the original problem (P2).

B. CE Optimization Algorithm Design

Note that the optimization variables D and A only appear
in C7. In order to deal with the equality constraint, we use
the penalty function method in [27] to add a quadratic penalty
term into the objective function of the problem (P̄2), which
yields the following optimization:

(P̃2) : max
V1

η − 1
2ϱ

(l−1)
G∑
g=1

∥wg −Adg∥2

s.t. C1, C̃2, C̃3,a, C̃3,b, C̄3,c, C̃4,a, C̃4,b,

C5, C̃6, C8, C9,

(30)

where ϱ(l−1) is the penalty variable of the (l − 1) iteration,
which is updated by ϱ(l) = ϖϱ(l−1)(ϖ > 1).

By analyzing the structure of the problem (P̃2), we can find
that the optimization variables in the problem (P̃2) have block
structure. Thus, the problem (P̃2) can be solved efficiently by
using the IBCD algorithm [28].

Let {D(r−1),A(r−1),V(r−1), η(r−1)} denote the values
of the optimization variables {D,A,V, η} in the problem
(P̃2) at the (r− 1)-th iteration of the IBCD algorithm, where
V(r−1),{w(r−1)

g , q
(r−1)
g,k , f

(r−1)
g,k , γ

(r−1)
g,k , z

(r−1)
g,k , R

(r−1)
g,k , P

(r−1)
g,k

}(∀g ∈ G, k ∈ Gg). Then, the following steps need to be
performed at the r-th iteration of the IBCD algorithm:

1) Solving D for fixed {A,V, η}
When {A,V, η} is fixed, the subproblem for solving D is

(P2.1) : min
D

G∑
g=1

∥wg −Adg∥2. (31)

The above problem can be decomposed into G subproblem,
in which the g-th (∀g ∈ G) subproblem is

(P2.1.1) : min
dg

∥wg −Adg∥2. (32)

Since the closed-form optimal solution of the problem
(P2.1.1) can be derived as dopt

g = (AHA)†AHwg , the D(r) is
updated by

D(r) = [dopt
1 , ...,dopt

G ]. (33)

2) Solving A for fixed {D,V, η}
When {D,V, η} is fixed, the subproblem for solving A is

(P2.2) : min
A

G∑
g=1

∥wg −Adg∥2

s.t. |[A]i,j | = 1/
√
N, ∀i ∈ N , j ∈ NRF.

(34)

Next, we apply the MM algorithm in [30] to tackle
this problem. Firstly, letting A = [a1, ...,aN ]H, ai ∈
CNRF×1(∀i ∈ N ), the problem (P2.2) can be rewritten as

(P̄2.2) :

min
{ai}

G∑
g=1

N∑
i=1

|[wg]i − aH
i dg|

2
=

N∑
i=1

G∑
g=1

|dH
gai − [wg]

*
i |
2

s.t. |[ai]j | = 1/
√
N, ∀i ∈ N , j ∈ NRF.

(35)

Moreover, the problem (P̄2.2) can be decomposed into N
subproblem, in which the i-th (i ∈ N ) subproblem is

(P2.2.1) : min
ai

aH
i D̃ai − 2Re{aH

i d̃i}+
G∑
g=1

|[wg]
*
i |
2

s.t. |[ai]j | = 1/
√
N, ∀i ∈ N , j ∈ NRF,

(36)
where D̃ =

∑G
g=1 dgd

H
g and d̃i =

∑G
g=1 dg[wg]

*
i .

Let Ã(t−1) = [ã
(t−1)
1 , ..., ã

(t−1)
N ]H denote the value of A =

[a1, ...,aN ]H at the (t− 1) iteration of the MM algorithm. A
tight upper bound of aH

i D̃ai at the t-th iteration of the MM
algorithm can be expressed as [29]

aH
i D̃ai ≤ aH

i D̂ai − 2Re{aH
i b

(t−1)
i }+ (ã

(t−1)
i )Hb

(t−1)
i ,

(37)
where b

(t−1)
i = (D̂− D̃)a

(t−1)
i , D̂ = λmax(D̃)INRF , and

λmax(D̃) represents the maximum eigenvalue of D̃.
Note that aH

i D̂ai is equal to a constant λmax(D̃) for any
feasible solution ai in the problem (P2.2.1). Therefore, at the
t-th iteration of the MM algorithm, using the problem (P2.2.1)
and discarding constant terms, the problem (P2.2.1) can be
approximated as

(P̄2.2.1) : max
ai

Re{aH
i b̃

(t−1)
i }

s.t. |[ai]j | = 1/
√
N, ∀i ∈ N , j ∈ NRF,

(38)

where b̃
(t−1)
i = b

(t−1)
i + d̃i.

Then, we decompose the problem (P̄2.2.1) into NRF sub-
problems, in which the j-th (∀j ∈ NRF) subproblem is

(P̃2.2.1) : max
ψi,j

cos(φ
(t−1)
i,j − ψi,j)

s.t. 0 ≤ ψi,j ≤ 2π,
(39)

where φ(t−1)
i,j and ψi,j denote the angle of [b̃(t−1)

i ]j and [ai]j ,
respectively. Obviously, the optimal solution of the problem
(P̃2.2.1) is ψopt

i,j = φ
(t−1)
i,j , so the optimal solution of the

problem (P̄2.2.1) can be expressed as

ãopt
i = 1√

N
[ejψ

opt
i,1 , . . . , e

opt
i,NRF ]T. (40)

Based on the above analysis, the MM algorithm for solving
(34) can be summarized as Algorithm 2.

Algorithm 2 MM Algorithm for Solving the Problem (P2.2)

1: Initialize: iteration index t = 0, maximum iteration
number tmax, iteration tolerance ε > 0, initial point
Ã(t) = A(r−1);

2: repeat
3: t = t+ 1;
4: for i = 1 : N

Update ã
(t)
i according to (40);

end for
5: Update Ã(t) = [ã

(t)
1 , ..., ã

(t)
N ]H;

6: until ∥Ã(t) − Ã(t−1)∥F < ε or t > tmax

7: Output: A(r) = Ã(t).

3) Solving {V, η} for fixed {D,A}
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When {D,A} is fixed, the subproblem for solving {V, η}
is

(P2.3) :

max
{V,η}

η − 1
2ϱ

(l−1)
G∑
g=1

∥wg −Adg∥2

s.t. C̃2, C̃3,a, C̃3,b, C̄3,c, C̃4,a, C̃4,b,

C5, C̃6, C8, C9.

(41)

The optimization problem in the problem (P2.3) can be
solved approximately by the SCA algorithm. Firstly, we an-
alyze the structure of the problem (P2.3) and know that the
objective function of the problem (P2.3) is concave, and the
constraints {C̃3,b, C̄3,c, C̃4,a, C̃4,b, C5, C̃6, C7, C8} are convex,
but the constraints {C̃2, C̃3,a, C9} are non-convex.

Then, using Lemma 1 and Lemma 2, the non-convex
constraints {C̃2, C̃3,a, C9} can be approximated as

C̄2 : 2Re{(w(r−1)
g )

H
hg,kh

H
g,kwg} − |hH

g,kw
(r−1)
g |2

≥ |hH
g,k+1wg|2, ∀g ∈ G, k ∈ Gg\|Gg|,

C̄3,a :
2Re{(w(r−1)

g )
H
hg,kh

H
g,kwg}

q
(r−1)
g,k

− |hH
g,kw

(r−1)
g |2

(q
(r−1)
g,k )

2 qg,k

≥ z
(r−1)
g,k

2γ
(r−1)
g,k

γ2g,k +
γ
(r−1)
g,k

2z
(r−1)
g,k

z2g,k, ∀g ∈ G, k ∈ Gg,

C̃9 : Rg,k ≥ η(r−1)

2P
(r−1)
g,k

P 2
g,k +

P
(r−1)
g,k

2η(r−1) η
2, ∀g ∈ G, k ∈ Gg.

(42)
Therefore, the problem (P2.3) can be approximated as the

following convex optimization problem:

(P̄2.3) :

max
{V,η}

η − 1
2ϱ

(l−1)
G∑
g=1

∥wg −Adg∥2

s.t. C̄2, C̄3,a, C̃3,b, C̄3,c, C̃4,a, C̃4,b,

C5, C̃6, C8, C̃9.

(43)

Accordingly, the {V(r), η(r)} is updated by

V(r) = Vopt, η(r) = ηopt, (44)

where {Vopt, ηopt} represent the optimal solution of the prob-
lem (P̄2.3).

With the analysis above, the CE optimization algorithm
based on the penalty function method and the IBCD method
for solving the problem (P̄2), namely the penalized IBCD
(PIBCD) algorithm is proposed, and it is summarized as
Algorithm 3. Moreover, Algorithm 3 can be also applied to
the MaxMinCB scheme. For the MaxMinCB scheme, the
optimization objective is maxmin{Rg,k}, which needs to
introduce auxiliary variable R̃ (such that min{Rg,k} ≥ R̃)
so as to apply the framework of Algorithm 3.

C. Convergence and Complexity Analysis

Here, we analyze the convergence and complexity of Al-
gorithm 2 and Algorithm 3. For Algorithm 2, its conver-
gence comes from the convergence of the MM algorithm
[30]. Besides, the complexity of Algorithm 2 is given as
O
(
N3

RF + I1NN
2
RF

)
, where I1 is the iterations of Algorithm

2 [30]. For Algorithm 3, we first show its convergence and
then give the complexity. On one hand, similar to the problem

Algorithm 3 PIBCD-based CE Optimization Algorithm for
Solving the Problem (P̄2)

1: Initialize: outer iteration index l = 0, outer maximum
iteration number lmax, outer iteration tolerance ϵ1 > 0,
inner iteration index r = 0, inner maximum iteration
number rmax, inner iteration tolerance ϵ2 > 0, penalty
parameters {ρ(0) > 0, ϖ > 1}, constraint violation Ξ(0);

2: repeat
3: l = l + 1;
4: Set r = 0, the initial point {D(0),A(0),V(0), η(0)} and

the objective value Γ(0) = 0 in the problem (P̃2);
5: repeat
6: r = r + 1;
7: For given {A(r−1),V(r−1), η(r−1)}, update D(r) us-

ing (33);
8: For given {D(r),V(r−1), η(r−1)}, update A(r) using

Algorithm 2;
9: For given {A(r),D(r)}, update {V(r), η(r)} using

(44);
10: Γ(r) = η(r) − 1

2ϱ
(l−1)

∑G
g=1 ∥w

(r)
g −A

(r)
g d

(r)
g ∥

2
;

11: until |Γ(r) − Γ(r−1)| < ϵ2 or r > rmax

12: Ξ(l) = max
g∈G

{∥w(r)
g −A

(r)
g d

(r)
g ∥∞};

13: if Ξ(l) < ϵ1 then
Set flag = 1;

else:
Update ϱ(l) = ϖϱ(l−1);

end if
14: until flag = 1 or l > lmax

15: Output: A suboptimal solution {D(r),A(r),V(r), η(r)}.

(P̃1), the objective function of the problem (P̄2) has an upper
bound. On the other hand, for given ρ(l−1), we have:

Υ1 : f(D(r),A(r−1),V(r−1), η(r−1)) ≥
f(D(r−1),A(r−1),V(r−1), η(r−1)),

Υ2 : f(D(r),A(r),V(r−1), η(r−1)) ≥
f(D(r),A(r−1),V(r−1), η(r−1)),

Υ3 : f(D(r),A(r),V(r), η(r)) ≥
f(D(r),A(r),V(r−1), η(r−1)),

(45)

where Υ1 holds because (33) is the optimal solution of the
problem (P2.1), Υ2 holds due to the convergence of Algorithm
2, Υ3 holds due to the convergence of the SCA algorithm.
Therefore, if the feasible region of the problem (P̄2) is not
empty, Algorithm 3 can converge to a local optimal solution
of the problem (P̄2) [27]. As for the complexity of Algorithm
3, it mainly comes from the matrix inversion in (33) whose
complexity is O(GN3

RF), the implementation of Algorithm 2
and the solving of the convex optimization problem in the
problem (P̄2.3). The standard convex optimization tools based
on the interior point method (such as CVX [23]) can be used
to obtain the optimal solution of the problem (P̄2.3). Since the
number of real optimization variables in the problem (P̄2.3) is
2NG+6NU +1, the complexity of the interior point method
can be expressed as O((2NG+ 6NU + 1)

3.5
ln(1/δ)), where

δ is the solution accuracy [24]. Let I2 and I3 de-
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note the outer and inner iterations of Algorithm 3, re-
spectively, then the complexity of Algorithm 3 is given
as O(I2I3(GN

3
RF +N3

RF + I1NN
2
RF + (2NG+ 6NU + 1)

3.5

ln(1/δ))).

VI. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of NOMA-based mmWave-MEC systems in
terms of CE and verify the convergence and effectiveness of
the proposed CE optimization algorithms. In simulation, we
consider that all users are uniformly distributed within the
range of 10 m to 30 m from the BS, and the parameters of
mmWave channel in (1) are given as [31]: mmWave carrier
frequency fc = 28 GHz, the number of LOS paths is 1, the
path loss exponent of LOS is αLOS = 2, the number of NLOS
paths is 3, the path loss exponent of NLOS is αNLOS = 2.92.
Besides, the noise power spectral density is n0 = −174 dBm.
Unless otherwise specified, the default simulation parameters
for the mmWave-MEC-ABF and the mmWave-MEC-HBF are
listed in Table I and Table II, respectively [12]–[14].

TABLE I: Simulation parameters for mmWave-MEC with
ABF

Parameters Default Values
Number of users K = 4

Number of antennas at the BS N = 16
System bandwidth B = 2 MHz

Maximum power consumption Pmax
k = Pmax

Fixed power consumption Pk,c = 50 mW
PA coefficient ζk = 1/0.38

CPU chip coefficient ξk = 10−28

CPU cycles per bit Ck = 103 cycles/bit
Minimum computation-bit rate Rmin

k = 104 bits/s
Maximum local CPU frequency fmax

k = 1 GHz

TABLE II: Simulation parameters for mmWave-MEC with
HBF

Parameters Default Values
Number of users K = 4

Number of antennas at the BS N = 32
Number of RFCs NRF = 2

Number of user groups G = 2
System bandwidth B = 2 MHz

Maximum power consumption Pmax
g,k = Pmax

Fixed power consumption Pg,k,c = 50 mW
PA coefficient ζg,k = 1/0.38

CPU chip coefficient ξg,k = 10−28

CPU cycles per bit Cg,k = 103 cycles/bit
Minimum computation-bit rate Rmin

g,k = 104 bits/s
Maximum local CPU frequency fmax

g,k = 1 GHz

A. Convergence behaviors of the algorithms

In this subsection, the convergence behaviors of the pro-
posed two optimization algorithms (i.e., Algorithm 1 and
Algorithm 3) are illustrated. Specifically, Fig. 3 and Fig. 4
show the convergence behaviors of the proposed Algorithm
1 and Algorithm 3, respectively, where Pmax = 0.052 W.
It can be seen that the objective values of two algorithms
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Fig. 3: Convergence behavior of Algorithm 1.

0 10 20 30
150

160

170

180

190

200

210

220

230

240

250
(a)

0 10 20 30
10-6

10-5

10-4

10-3

10-2

10-1
(b)

Fig. 4: Convergence behavior of Algorithm 3.

can achieve convergence after a certain number of iterations.
Meanwhile, the constraint violations of two algorithms tend
to be smaller and finally decrease to a predefined acceptable
level, e.g., 10−5, which indicates that the solution obtained
by the algorithm is a feasible one of the problem. The
above results verify the convergence of the proposed two CE
optimization algorithms.
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Fig. 5: Convergence behaviors of Algorithm 1 and Algorithm
3 under different numbers of users.
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Fig. 6: Convergence behaviors of Algorithm 1 and Algorithm
3 under different numbers of antennas.

Fig. 5 illustrates the convergence behaviors of Algorithm
1 and Algorithm 3 with different number of users, where
Pmax = 0.052W, N = 32, K = 4, 6. From Fig. 5, it is found
that the CE is gradually increasing and finally saturated as the
iteration increases. Namely, these two algorithms can converge
to their respective stable points after some iterations. Thus, the
convergence of Algorithm 1 and Algorithm 3 are guaranteed
for different numbers of users. Besides, in Fig. 6, we give
the convergence behaviors of Algorithm 1 and Algorithm 3
with different numbers of antennas, where N = 16, 32, and
Pmax = 0.052W. From Fig. 6, we can observe the results
similar to those in Fig. 5. Namely, for different numbers of
antennas, Algorithm 1 and Algorithm 3 can still converge
to their respective optimized values after a few number of
iterations, and the CE with N = 32 is higher that with
N = 16 after convergence, as expected. The results above
further confirm that the proposed two algorithms can converge
well under different system parameters.

B. CE performance with different multiple access schemes

In this subsection, we provide the CE performances of
the systems with different multiple access schemes, where
NOMA, FDMA and TDMA are considered. In Fig. 7, the CE
comparison between NOMA and FDMA with the MaxMinCE
and MaxMinCB schemes under the partial offloading mode are
shown, where the CEs of mmWave-MEC-ABF and mmWave-
MEC-HBF are presented in Fig. 7(a) and Fig. 7(b), respective-
ly. Specifically, each user is allocated by the same bandwidth
for FDMA scheme in Fig. 7(a). While for FDMA scheme in
Fig. 7(b), the users are divided into G groups using the same
user grouping strategy as NOMA, and users in the same group
perform FDMA with equal bandwidth allocation [25]. On the
one hand, it can be observed that the CE of NOMA scheme
is significantly higher than that of FDMA scheme, which
indicates the effectiveness of NOMA scheme in the mmWave-
MEC system. The reason is that NOMA scheme allows the
users to share the system bandwidth B by multiplexing the
power domain, which improves the achievable rates for the
upload computing of the users, and thus it attains higher
CE than FDMA scheme. On the other hand, the MaxMinCE
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Fig. 7: (a) CE comparison between NOMA and FDMA in
mmWave-MEC-ABF; (b) CE comparison between NOMA and
FDMA in mmWave-MEC-HBF.

scheme outperforms the MaxMinCB scheme in terms of CE.
In particular, when Pmax is small, due to the constraint of
Pmax, the CE of the MaxMinCE scheme is slightly higher
than that of the MaxMinCB scheme since they have similar
resource allocation strategies. However, with the increase of
Pmax, the CE of the MaxMinCE scheme rises to a stable
level, but the CE of the MaxMinCB scheme first increases
and then decreases. Different from the MaxMinCE scheme,
the MaxMinCB scheme does not take into account the trade-
off between the CBs and the power consumption. Thus, for
the MaxMinCB scheme, the improvement of the CBs may be
less than the improvement of the power consumption when
Pmax is large, which results in the decrease of CE.

Fig. 8 gives the CE comparison between NOMA and TDMA
schemes under the partial offloading mode with different
bandwidths, where B=5MHz, 2MHz, the CEs of mmWave-
MEC-ABF and mmWave-MEC-HBF are shown in Fig. 8(a)
and Fig. 8(b), respectively. In particular, each user is allocated
by the same time slot for TDMA scheme in Fig. 8(a). While
for TDMA scheme in Fig. 8(b), the users are divided into
G groups with the same user grouping strategy as NOMA,
and users in the same group perform TDMA with equal
time slot allocation. As illustrated in Fig. 8, the NOMA-
based mmWave-MEC system has better CE performance than
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Fig. 8: (a) CE comparison between NOMA and TDMA in
mmWave-MEC-ABF; (b) CE comparison between NOMA and
TDMA in mmWave-MEC-HBF.

TDMA-based mmWave-MEC system. The reason is that NO-
MA scheme can allow the users to share the time resource
of the system by multiplexing the power domain, i.e., higher
multiplexing gain can be attained when NOMA is applied.
Thus, it has higher CE than TDMA scheme. Besides, with the
increase of bandwidth, the gap between the NOMA scheme
and the TDMA scheme becomes larger. This is because
NOMA scheme can upload more computational bits as the
broadband increases under the same time resource block. Thus,
the system CE is obviously increased.

C. CE performance with different system parameters and
computing modes

In this subsection, we give the CE performances of the sys-
tems with different system parameters and computing modes,
where different antenna numbers, user numbers, computational
capabilities, system bandwidths, RFC numbers, and computing
modes are considered. In Fig. 9, we compare the CE per-
formance of the systems with different numbers of antennas,
where mmWave-MEC systems with ABF and HBF are respec-
tively considered in Fig. 9(a) and Fig. 9(b), and the antenna
number N = 8, 16, 32. From Fig. 9, it is found that the CE
performance becomes better with the increase of the antenna
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Fig. 9: (a) CE of mmWave-MEC-ABF with different antenna
numbers; (b) CE of mmWave-MEC-HBF with different anten-
na numbers.

number, as expected. This is because the higher diversity gain
can be attained as the number of antennas increases. As a
result, the CE performance is effectively improved. These
results indicate that the proposed optimization schemes are
effective for different antenna numbers.

In Fig. 10(a) and Fig. 10(b), we plot the CE performances of
mmWave-MEC-ABF and mmWave-MEC-HBF with different
numbers of users, respectively, where K = 2, 4, 6. As shown
in Fig. 10(a) and Fig. 10(b), with the increase of number
of user K, the CE performance becomes worse. This is
because the number of users with worse link increases when
K becomes larger, which results in the degradation of the
CE performance. The results above show that the proposed
optimization schemes are valid for different numbers of users.

Fig. 11 compares different computing modes (i.e., the local
computing mode, the partial offloading mode, and the full
offloading mode) in terms of the system CE with ABF and
HBF, where the resource allocation scheme under the local
computing mode comes from [32], the resource allocation
schemes under the partial offloading mode and the full of-
floading mode are obtained by using the framework of the
proposed algorithms. It can be seen from Fig. 11 that the
partial offloading mode has higher CE than the other two
computing modes, especially it is much higher than the local
computing mode. This is because the partial offloading mode
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Fig. 10: (a) CE of mmWave-MEC-ABF with different user
numbers; (b) CE of mmWave-MEC-HBF with different user
numbers.

can dynamically adjust the resource allocation ratio of the
local computing and upload computing. In fact, the partial
offloading mode covers the local computing mode and the full
offloading mode. Limited by the local computing capacities
of the users, the CE of the local computing mode is the
worst. Moreover, the CEs of the partial offloading mode and
the full offloading mode are much higher than that of the
local computing mode, which indicates that the application of
mmWave-NOMA greatly improves the efficiency of the upload
computing of the users. Therefore, it is beneficial to combine
MEC with mmWave-NOMA.

In Fig. 12, we further compare the full offloading mode
and partial offloading mode under different computational
capabilities of users in terms of the system CE with ABF and
HBF, where Ck= {0.3, 0.5, 1} × 103 cycles/bit is considered
in Fig. 12(a), and Cg,k= {0.3, 0.5, 1} × 103 cycles/bit is
considered in Fig. 12(b). From Fig. 12, it can be found that
when Ck and Cg,k are small, the local processing capability
will be strong, the computing task is preferred to be processed
locally at the users since high time efficiency can be attained.
Moreover, the computing tasks can be executed locally and
on the MEC server simultaneously. Thus, the CE performance
of partial offloading mode is improved greatly. While for full
offloading mode, the energy consumption for data transmission
is high and the corresponding savings accomplished by the
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Fig. 11: (a) CE comparison among different computing modes
in mmWave-MEC-ABF; (b) CE comparison among different
computing modes in mmWave-MEC-HBF.

computation offloading become low when the users have
strong computational capabilities. Hence, the performance gap
between partial offloading mode and full offloading mode
increases with the decrease of Ck and Cg,k.

Fig. 13 provides the CE comparison of full offloading
mode and partial offloading mode with different system band-
widths, where mmWave-MEC-ABF and mmWave-MEC-HBF
are respectively considered in in Fig. 13(a) and Fig. 13(b),
the bandwidth B=3, 2, 0.5MHz. As shown in Fig. 13, the
partial offloading mode still exhibits superior performance
over full offloading mode, and has higher CE. This is because
the computing task can be performed locally and on the
MEC server simultaneously, which is energy-saving and then
improves CE. With the increase of B, the CE performances
under full offloading mode and partial offloading mode both
improve, since large bandwidth can achieve high data rate,
and thus increasing CE. Moreover, their CE gap becomes
smaller due to relatively weaker computational capability of
users when B is larger. However, when B is smaller, their CE
gap will be larger because the achievable data rate becomes
low for small bandwidth, which limits the performance of full
offloading mode. Besides, from Fig. 11-Fig. 13, it is found that
the full offloading mode can obtain the CE performance close
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Fig. 12: (a) CE comparison of the ABF scheme under full
offloading mode and partial offloading mode with different
computational capabilities of user; (b) CE comparison of the
HBF scheme under full offloading mode and partial offloading
mode with different computational capabilities of user.

to that of partial offloading mode when the computational
capabilities of users are weak and/or the system bandwidth
is large. Conversely, its performance becomes worse.

Fig. 14(a) presents the CE comparison of the ABF scheme
and the HBF scheme under the partial offloading mode, where
the number of RFCs in the HBF scheme is NRF = 1, and the
parameters of the ABF scheme are consistent with those of
the HBF scheme. When the number of RFCs is 1, the ABF
matrix in the HBF scheme is actually degenerated into the
ABF vector in the ABF scheme. However, the DBF matrix
in the HBF scheme can provide additional performance gain
and improve the CE of the HBF scheme. Thus, the CE of the
HBF scheme is higher than that of the ABF scheme, which
is verified by the simulation result in Fig. 14(a). Furthermore,
Fig. 14(b) gives the CE of the partial offloading mode with
different numbers of RFCs in the HBF scheme, where the
number of RFCs is NRF ∈ {1, 2, 3}. It can be seen from Fig.
14(b) that the CE is significantly improved with the increase
of NRF. This is due to that the larger NRF is, the more CBs
can be transmitted, thereby improving the CE.
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Fig. 13: (a) CE comparison of the ABF scheme under full
offloading mode and partial offloading mode with different
bandwidths; (b) CE comparison of the HBF scheme under
full offloading mode and partial offloading mode with different
bandwidths.

D. CE performance with different optimization schemes

In this subsection, we provide the CE performances with
different optimization schemes, where the proposed subop-
timal scheme, the existing scheme, the upper bound of the
suboptimal scheme are considered. In Fig. 15, we compare
the CE performance between the presented NOMA-based
mmWave-MEC network and the NOMA-based conventional
MEC network without considering mmWave in [14], which
are referred as “mmWave NOMA” and “non-mmWave NO-
MA” in Fig. 15, respectively, where different bandwidths
(i.e., B=2, 3, 4MHz) are also considered. For the fairness,
we set N = 1 and remove the ABF optimization for the
proposed algorithm considering that the algorithm in [14]
is based on single receive antenna. As illustrated in Fig.
15, the “mmWave NOMA” scheme has higher CE than the
“non-mmWave NOMA” scheme due to the LoS existence
of mmWave for the same bandwidth B=2MHz. Moreover,
with the increase of the bandwidth, the “mmWave NOMA”
scheme exhibits superior performance over the “non-mmWave
NOMA” scheme, and their performance gap becomes larger as
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Fig. 14: (a) CE comparison between mmWave-MEC-ABF and
mmWave-MEC-HBF; (b) CE versus the number of RFCs in
mmWave-MEC-HBF.
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Fig. 15: CE comparison between NOMA-based mmWave-
MEC system and NOMA-based MEC system.

well, especially when B=4MHz. This is due to the fact that the
mmWave communication can possess larger bandwidth. Thus,
much higher rate can be achieved, and corresponding higher
CE is attained. The above results further demonstrate that the
integration of the mmWave in the MEC system is beneficial.

To further evaluate the effectiveness of the proposed sub-
optimal optimization schemes, in Fig. 16, we give the upper

0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
215

220

225

230

235

240

245

250

0.06 0.07 0.08 0.09 0.1
5

6

7

8

9

local offloading mode

Fig. 16: CE comparison with different computing modes.

bound performance of the suboptimal scheme based on ABF
considering the simplicity, where K=2. This upper bound per-
formance can be attained by optimizing the following problem

max
{w,pk,fk,ek}

min
k∈K

ηk = ekBlog2(1+SINRk)+(1−ek)fk/Ck

ekζkpk+(1−ek)(ξkf3
k+Pk,c)

, where

ek ∈ [0, 1] is the weighted parameter and can be optimized to
maximize the minimal CE of users. It is shown that the above
problem includes the CE optimizations of three computing
modes as special cases. For ek=0 and ek=1, the optimization
is reduced to the one of local computing mode and the one of
full offloading mode, respectively. When ek=1/2, it is reduced
to the optimization of our partial offloading mode. Since {ek}
are generated by the optimization and not fixed, the obtained
CE is higher than the above three modes. For the optimization
of {ek}, we can employ the multidimensional search method
to find their values, and for each search, Algorithm 1 is used to
achieve the suboptimal solution of other optimized parameters.
Thus, the superior CE performance can be attained, but the
complexity will be much higher since it needs to perform
K dimensional search. This weighted optimization scheme
is referred as “weighted partial offloading mode” for ease
of comparison with other modes. As seen from Fig. 16, the
proposed scheme has the performance close to that of its upper
bound, and is better than that under the full offloading mode
and local computing mode. These results above further verify
the effectiveness of the proposed scheme.

VII. CONCLUSION

In this paper, we have studied the CE optimization in
mmWave-MEC with NOMA, where both of the ABF and HBF
architectures are considered. For mmWave-MEC with ABF,
a CE optimization problem based on the max-min fairness
criterion is formulated to jointly optimize the ABF vector at
the BS and the local resource allocation of each user. A PSCA-
based CE optimization algorithm is proposed to obtain a local
optimal solution of this non-convex problem. Besides, the
max-min CE optimization problem for mmWave-MEC with
HBF is further studied by jointly optimizing the HBF at the
BS and the local resource allocation of each user. A double-
loop CE optimization algorithm based on the PIBCD algorithm
is developed to tackle this challenging problem. Simulation
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results verify the convergence of the proposed algorithms and
demonstrate the effectiveness of the proposed computation-
efficient resource allocation schemes. As a result, the superior
CE performance is achieved.
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