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Simple Summary: Cacyreus marshalli is strictly dependent on its host plant (Pelargonium spp.), which 
is widely cultivated as an ornamental plant in mountain areas. An experiment demonstrated that 
the butterfly is able to develop on some wild geraniums, too, making mountain areas highly at risk 
for a potential expansion to natural habitats. We therefore decided to carry out research in a pro-
tected mountain area (Gran Paradiso National Park), focusing on the drivers which determine the 
distribution of C. marshalli using data provided by either an opportunistic approach or a rigorous 
survey protocol. The data collected via the planned survey were more informative than the oppor-
tunistic observations, which were few and narrow. We suggest investing more in citizen science 
projects and combining them with a designed protocol according to an integrated approach. We 
observed that C. marshalli distribution is strictly linked to host plant availability but is constrained 
by cold temperatures, although Pelargonium spp. are abundant. The temperature increase scenario 
showed an increase of butterfly abundance, but halving of the host plant population could drive 
the rate of infestation to return to what it was previously, excluding a countertrend in some high-
altitude sites. It is therefore important to test management actions designed to control alien species 
before implementing them. 

Abstract: Cacyreus marshalli is the only alien butterfly in Europe. It has recently spread in the Gran 
Paradiso National Park (GPNP), where it could potentially compete with native geranium-consum-
ing butterflies. Our study aimed to (1) assess the main drivers of its distribution, (2) evaluate the 
potential species distribution in GPNP and (3) predict different scenarios to understand the impact 
of climate warming and the effect of possible mitigations. Considering different sampling designs 
(opportunistic and standardised) and different statistical approaches (MaxEnt and N-mixture mod-
els), we built up models predicting habitat suitability and egg abundance for the alien species, test-
ing covariates as bioclimatic variables, food plant (Pelargonium spp.) distribution and land cover. A 
standardised approach resulted in more informative data collection due to the survey design 
adopted. Opportunistic data could be potentially informative but a major investment in citizen sci-
ence projects would be needed. Both approaches showed that C. marshalli is associated with its host 
plant distribution and therefore confined in urban areas. Its expansion is controlled by cold temper-
atures which, even if the host plant is abundant, constrain the number of eggs. Rising temperatures 
could lead to an increase in the number of eggs laid, but the halving of Pelargonium spp. populations 
would mostly mitigate the trend, with a slight countertrend at high elevations. 
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1. Introduction 
The introduction of alien species is one of the most important causes of biodiversity 

loss. Their impact on native ecosystems is even more problematic in protected areas, 
where it becomes crucial to understand the distribution of invasive species to undertake 
management strategies that can limit the spread and potential risks to biodiversity [1–3].  

Originally from a wide area of southern Africa (Zambia, Mozambique, Zimbabwe, 
Botswana, South Africa, Swaziland [4,5]), Cacyreus marshalli (Butler, 1898) (Lepidoptera: 
Lycaenidae) was first introduced in Europe through the trade of Pelargonium (Gerania-
ceae), and it currently represents the only non-native butterfly species among 482 Euro-
pean species [6]. In Europe, despite the abundance of Geranium and Erodium species (spon-
taneous Geraniaceae), only the genus Pelargonium (not native to Europe) serves as a host 
plant, facilitating the spread of the species through the commerce of ornamental plants 
[7]. No recording of eggs laid on wild European Geranium spp. has been reported. How-
ever, a previous research demonstrated the ability of C. marshalli to develop on some na-
tive plant species in controlled conditions [8] and to overcome natural barriers such as 
trees to find host plants [9]. Consequently, the risk of naturalisation of this species is high, 
posing an important threat for autochthonous Geranium-consuming butterflies (i.e., Eum-
edonia eumedon and Aricia spp. [8]). In Italy, and particularly in the Alpine area, Pelargo-
nium cultivars are widely used as ornamental plants in both private and public areas be-
cause of their colourful flowers and resistance to drought and cold weather. Thus, the 
Alpine areas are zones with a potential elevated presence of C. marshalli with a high risk 
of naturalisation. For these reasons, the Gran Paradiso National Park (GPNP—where C. 
marshalli was detected for the first time in 2015) activated a monitoring program to assess 
the distribution of this species, involving standardised monitoring projects and opportun-
istic data collection through citizen science (CS). 

GPNP is located in the Western Alps, an area for which models predict significant 
climate warming in the next decades [10], which would have a complex impact on Alpine 
ecosystems [11,12]. Heat-sensitive species usually redefine their range, shifting towards 
higher elevations, with a change in ecosystems that can lead to a decline in populations 
and a risk of extinction in the near future [13,14]. On the other hand, thermophilic or gen-
eralist species can obtain advantages and invade territories that were previously pre-
cluded due to temperature limits [15,16]. Alien species, often generalists and with high 
mobility, can benefit from climate warming [17]. Butterflies are a sensitive taxon to climate 
changes, and, in mountain areas, specialised species particularly suffer reductions in their 
distributions and undergo shifts towards higher elevations [18,19]. Cacyreus marshalli is a 
thermophilic species and it could benefit from these changes since its distribution could 
be limited by low temperatures at high elevations [9]. Given the wide range of factors to 
consider in relation to the potential impact on C. marshalli, it became crucial to obtain deep 
knowledge of the species, utilising all the available data collected, both according to a 
standardised survey design and to an opportunistic way. In our study, we applied two 
different methods of species distribution models (MaxEnt and N-mixture models) to com-
pare different results and approaches in relation to the sampling effort. In the last few 
years, a huge number of studies have focused on species distribution models [20,21], but 
less is known about their employment in predicting the expansion of alien species popu-
lations and the effect of management activities under different scenarios. The protected 
areas have the responsibility to maintain their biodiversity heritage and, moreover, to de-
tect and manage early on the expansion of alien species. Collecting data about the pres-
ence and invasion of species is essential to predict potential expansion in their territories, 
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to set proper management strategies using a science-based approach and to maximise the 
probabilities of success in the control of alien species.  

Considering all these aspects, we hypothesized that climate variables could be key 
drivers of C. marshalli distribution and that a temperature increase could exacerbate infes-
tation, even in the colder sites located at high elevations. However, we believe that reduc-
ing the number of host plants could mitigate the climate warming effect and lower the 
risk of potential invasions in new areas. Thus, the aims of our study were to: (1) assess the 
main drivers of the distribution of the species in Alpine areas; (2) obtain a potential species 
distribution, comparing different modelling approaches based on different quality da-
tasets (MaxEnt vs. N-mixture models) in order to compare predictions; and (3) evaluate 
different future scenarios to understand the impact that climate warming may have in the 
coming years and the possible mitigation effects of management strategies aimed to re-
duce the presence of the host plant. 

2. Materials and Methods 
2.1. Study Area 

Our research focused on GPNP, an Alpine protected area in northwest Italy. Its ter-
ritory extends for 71,043 hectares in two Italian regions (52% of the surface in the Aosta 
Valley and 48% in Piedmont) and it is mainly mountainous, including the Western Alps. 
Its elevation ranges between 800 and 4061 m a.s.l. (Gran Paradiso mountain). Thanks to 
its diversity in terms of habitat types, geological and lithological characteristics, elevation 
and temperature excursions, the Park hosts a huge amount of biodiversity.  

GPNP includes 37 natural habitat types of community interest, listed in Annex I of 
the European Commission Habitats Directive (92/43/CEE). More than 1120 floristic species 
are present, of which 81 are endemics and 6 are protected by the Habitats Directive (Annex 
II, IV and V). The park is part of the Natura 2000 network and contains 168 vertebrate 
species (52 mammal, 101 bird, 8 reptile, 3 amphibian and 4 fish species), among which the 
International Union for Conservation of Nature (IUCN) has classified, at national level, 2 
species as critically endangered (CR), 3 species as endangered and 18 as vulnerable (VU). 
The park has a long tradition of studying invertebrates, mostly butterflies. The park but-
terfly community includes 121 species, of which 4 are listed in the annexes of the Habitats 
Directive and are threatened at a European level according to the Red List [6]. Unfortu-
nately, the park is not exempt from alien species invasions. Several alien fish species were 
introduced in the past for fishing, for example, Salvelinus fontinalis Mitchill (1814) (Salm-
oniformes: Salmonidae), which heavily impacted alpine lake ecosystems and for which 
the park has launched many projects [22]. Less is known about the presence of alien in-
vertebrates in the protected area. C. marshalli is the only alien insect species currently stud-
ied, whose presence is recorded inside the park as the focus of a research project under-
taken in collaboration with the Zoology Laboratory (ZooLab) of the Department of Life 
Sciences and Systems Biology (Turin University).  

The Park’s area includes five mountain valleys split between two Italian regions (two 
valleys in the Piedmont region and three valleys in the Aosta Valley region). Since most 
of the urban areas are outside of the protected area, we decided to extend the study area 
to the bordering municipalities because we considered them operational to study the dis-
tribution of C. marshalli (Figure 1). 
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Figure 1. The study area in Gran Paradiso National Park (GPNP). The green dotted line shows the 
park boundaries that are under the jurisdiction of two regions. Piedmont region: Val Soana (villages: 
Valprato Soana 12 and Ronco Canavese 10); Valle Orco (villages: Ceresole Reale 2, Noasca, Locana 
5, Sparone 11 and Ribordone (9). Aosta Valley region: Valle di Cogne (villages: Cogne 3 and Ayma-
villes 1); Valsavarenche (villages: Valsavarenche 13, Introd 4 and Villeneuve 14); Val di Rhêmes 
(villages: Rhêmes-Notre-Dame 7 and Rhêmes-Saint-Georges 8). 

2.2. Habitat and Climatic Variables 
The habitat and climatic variables were calculated in a grid with a 250 × 250 m reso-

lution covering the entire surface of the study area. We selected seven explanatory varia-
bles, two of which were bioclimatic, two related to the host plant and three related to land 
cover (Table S1): (1) annual mean temperature (bio01), (2) temperature seasonality (bio04), 
(3) number of Pelargonium pots (pel_abu), (4) neighbouring Pelargonium abundance 
(pel_neigh), (5) woodland (wood), (6) ecotone (eco) and (7) grassland (grass). We tested the 
same variables in both analyses using the MaxEnt and N-mixture models. 

Annual mean temperature (bio01) and temperature seasonality (bio04) were extracted 
from the high-resolution temperature map (250 m spatial resolution) created by Metz et 
al. [23]. Since the spread of C. marshalli is potentially favoured by warm temperatures 
[9,24], we decided to test the effect of annual mean temperature on butterfly distribution. 
We then included temperature seasonality in order to better understand how temperature 
stability or variability among seasons could affect species distribution, probably via influ-
encing phenology and survival at different developmental stages. We did not consider 
additional climatic variables because the owners of Pelargonium usually protect and look 
after the ornamental plants, balancing the water supply and storing the pots during win-
ter.  
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To calculate pel_abu and pel_neigh variables, we counted the number of ornamental 
Pelargonium pots in all the inside and bordering municipalities of the Gran Paradiso Na-
tional Park, carrying out the survey in 2017 and following it with two updates in 2018 and 
2019. We conducted an exhaustive census during which we counted and georeferenced 
all the pots containing Pelargonium cultivars (see [9] for details). Through the Pelargonium 
census we obtained 247 cells containing Pelargonium plants in the study area, with the 
highest number of 519 pots being located in Cogne Valley. All cells with at least one Pel-
argonium perfectly overlapped the urban environment, confirming the fact that the host 
plant is unable to spread in nature in our study area. Using the counts of the census, we 
calculated the number of pelargoniums in the neighbouring cells,considering only the 
nine cells contiguous to each focus cell. Consideration of food plant abundance is crucial 
for understanding C. marshalli populational trends in relation to the increase in the num-
ber of ornamental plants. At the same time, we chose to include in the analysis the number 
of Pelargonium plants in the neighbouring cells to better understand how host plant spatial 
availability around the focal site (isolated vs. wide availability) could affect ovipositional 
behaviour and, consequently, C. marshalli distribution. 

Land cover variables were calculated using a local land cover map developed by the 
botanical service of the protected area (GIS GPNP Habitat Map 2016—restricted use—
www.sit.parco.gran-paradiso.g3wsuite.it (accessed on 1 September 2021)). We obtained, 
for each cell, land cover percentages for three main habitat categories (woodland, ecotone 
and grassland) in order to investigate the potential role of macrohabitat structure in de-
termining C. marshalli site preferences. The calculation of all the variables was performed 
with QGIS “Hannover” Version 3.16.11 (2020).  

2.3. Cacyreus marshalli Data 
2.3.1. Opportunistic Data 

We chose to collect opportunistic data (Figure S1) from all the available open access 
datasets: iNaturalist, Global Biodiversity Information Facility (GBIF) and the national dis-
tribution dataset CKmap [25]. 

We found 138 georeferenced occurrences of C. marshalli only in the CkMap dataset. 
CkMap is a database developed for the publication of distributional data for Italian fauna. 
It includes an annual updated version of the initial database provided by the Italian Min-
istry for the Environment [26]. The dataset includes over 210,000 individual records (the 
2007 version comprised 60,000 records) mapped on a 10 × 10 km Universal Transverse 
Mercator (UTM) grid from data available in the scientific literature, from museum collec-
tions and from recent reports. Given the fine-grained resolution of our study (250 × 250 
m), for our analysis we considered only precisely georeferenced observations (Table S2) 
and we deleted all occurrences for which only the UTM grid code was known. These ob-
servations were of adults, caterpillars and eggs collected from previous studies conducted 
in the area and from other researchers. 

We also considered in the analysis three observations collected by the Gran Paradiso 
CS project (“Diventa citizen scientist per il Parco”; http://www.pngp.it/en/node/15302 (ac-
cessed on 1 September 2021)), in which C. marshalli is one of the focal species. 

2.3.2. Standardised Sampling Data 
In 2018, we collected egg abundance data for C. marshalli in the Orco Valley (GPNP) 

using stratified random sampling. We considered an altitudinal range between 500 and 
2000 m and the sampling was based on a grid composed of 3116 cells (250 × 250 m). We 
grouped our cells in three altitudinal bands: 500–1000 m (band 1), 1000–1500 m (band 2) 
and 1500–2000 m (band 3). For each cell we calculated the average altitude with QGIS 
(“Hannover” Version 3.16.11) software using TINITALY DEM, provided by Tarquini et 
al. [27]. Then, we selected cells that included open areas (meadows, pastures, cultivated 
areas) covering at least a quarter of the cell’s surface and urban areas (towns and villages). 
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In the higher altitudinal band, for logistical reasons, we only selected cells that included 
paths to obtain a representative sample for band 3. We defined the sampling sites by ran-
domly selecting 25 cells for each altitudinal band—206, 140 and 220 cells, respectively. 
Field activities were carried out from July to September to detect eggs during the flight 
periods of the species. We planned three repetitions for each of the 75 cells on different 
days to increase the probability of sampling eggs, and we counted the eggs on host plants 
(ornamental Pelargonium spp.). Considering the phenology of the species, we completed 
the three repetitions within each altitudinal range within a month to count a single gener-
ation of the species. Furthermore, the three bands were sampled in a staggered way, start-
ing from the lowest band, in order to follow the different flight periods of C. marshallifor 
each altitudinal band. 

2.4. Data Analysis 
2.4.1. MaxEnt Model 

To produce a species distribution model inside the park territories and its neighbour-
ing village using opportunistic data, we used the R package biomod2 [28], employing the 
algorithm MaxEnt [29]. MaxEnt is a species distribution model based on a max entropy 
approach that defines the relations between presence distribution points and explanatory 
variables. This method only analyzes presence data and it is largely used to map species 
distributions and predict species occurrence correlates; some governmental and non-gov-
ernmental organizations have adopted MaxEnt as a tool to map biodiversity at large-scale 
levels (https://www.pointblue.org (accessed on 20 March 2022)). MaxEnt estimates the rel-
ative occurrence rate (ROR) or the relative probability that each cell in a study area has a 
suitable predicted condition for the species in question [30]. 

It calculates the values of the environmental covariates under species points and 
compares them with values under background points (pseudo-absence points in which 
the species’ presence is not assessed). The output of the model predicts the probability of 
potential distributions [29]. 

First of all, we randomly selected the pseudo-absence points in a restricted back-
ground environment considering a buffer of 2.5 km around the presence points in order 
to correct the spatial bias occurring in the sampling effort [31]. We chose to create a model 
including the whole dataset and another using 80% of the data as a training set and the 
remaining 20% as a test set to evaluate the model following a train–test split procedure. 
For this last model, we performed 100 replicas in which the training set was chosen ran-
domly for each replica. 

2.4.2. N-Mixture Models 
We generated N-mixture models to assess C. marshalli egg abundance and its rela-

tionship with climatic and environmental predictors accounting for imperfect detection. 
N-mixture models rely on certain key assumptions: closed populations among sampling 
surveys, no false-positive errors, independence and homogeneity of detectability among 
individuals. 

Since C. marshalli’s eggs are easily recognizable and laid uniformly rather than in 
clustered patterns [8], we can assume that no false positives occurred and that counts were 
made without a violation of the independence and homogeneity of detection probability 
assumptions. 

In order to respect the closed population assumption, for each altitudinal band we 
performed egg counts (three sampling repetitions) within 30 days, which corresponded 
to one flight generation period considering the study area [9]. Moreover, C. marshalli lar-
vae do not eat egg chorion, so we would not miss hatched eggs during the counts among 
sampling surveys. Despite these precautions, adult individuals are mobile animals capa-
ble of laying eggs among sampling repetitions, therefore leading to a potential lack of 
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closure. However, N-mixture models could still be an efficient method to evaluate rela-
tionships between abundance, climate and environment [32], as it is possible to change 
the perspective about the estimates of abundance obtained, considering them as the num-
ber of individuals (eggs in our case) occurring in the sites during the sampling period 
rather than as values for absolute egg abundance definitively present in the sites [33]. 
Therefore, as we could not define the assessed abundances as total egg abundances, we 
defined them as the numbers of eggs by means of which the level of infestation of each of 
the sites would be determined, allowing us to assess C. marshalli egg distribution over the 
study area. 

Prior to analysis, to avoid collinearity issues, we selected only the explanatory varia-
bles showing a Pearson correlation r < |0.7| [34]. We then scaled and centred all the co-
variates to make them comparable and to facilitate model fitting [35]. 

Model building was based upon biological hypotheses adding covariates to the null 
model (ρ. λ.) through the unmarked package [36] in the statistical software R 4.1.0 (R Core 
Team, 2021). We applied a two-step modelling approach which consisted of, first, testing 
predictors for detectability (ρ) while keeping abundance (λ) constant at null [37]. As we 
considered only the pelargoniums accessible in each of the sites (Pelargonium availability; 
pel_ava) as the variables influencing egg detectability, model testing involved, firstly, a 
comparison between this simple detection model (ρ pel_ava λ.) and the null model (ρ. λ.). 
Once the importance of Pelargonium availability had been tested, as a second step, we pro-
ceeded with modelling abundance, keeping constant the best model structure for detec-
tion probability [38]. Following different biologically relevant combinations, we tested as 
important predictors of C. marshalli egg abundance the following climatic and habitat var-
iables: annual mean temperature (bio01), temperature seasonality (bio04), Pelargonium 
abundance (pel_abu), neighbouring Pelargonium abundance (pel_neigh), woodland cover 
(wood), ecotone cover (eco) and grassland cover (grass). Model selection was based on the 
Akaike information criterion corrected for small sample sizes (AICc), the best model con-
sidered to be the one which showed the lowest AICc value and a ΔAICc > 2 compared to 
the other candidate models [39]. We then focused on a suitable variance structure of the 
best model by testing and comparing three different distributions for the λ parameter [40]: 
Poisson (P), negative binomial (NB) and zero-inflated Poisson (ZIP). 

To evaluate the predictive ability of the three N-mixture models, we performed a 
graphical fit assessment by comparing residuals, fitted values and observed data with the 
plot.Nmix.resi function in the R package AHMbook [41]. Lastly, we conducted a parametric 
bootstrap chi-square test of goodness of fit (1000 replicates) for each of the three mixture 
models using the function Nmix.gof.test in the AICcmodavg package [42]. Besides the Gof 
test, the Nmix.gof.test function provided a calculation of the overdispersion factor (ĉ), 
which is important to assess model robustness and, in case of moderate lack of fit [42], to 
adjust the uncertainties of our estimates [43]. 

Once all the model diagnostics were performed, we created a distribution map of C. 
marshalli egg abundance over the study area according to the predictions of the best 
model. 

2.4.3. Distribution Maps and Scenarios 
Following the outputs of the best species distribution model provided by each ap-

proach (MaxEnt vs. N-mixture), we predicted the potential distribution of C. marshalli oc-
currence and egg abundance over the protected area and the bordering municipalities. At 
first, we created two distribution maps (250 × 250 m cells) representing the predicted val-
ues of ROR (as percentages) and the estimated egg abundances of MaxEnt and N-mixture 
models, respectively. We then looked ahead, mapping C. marshalli distribution under a 
climate warming scenario and applying a management strategy to mitigate a potential 
climate-induced populational expansion. For the climate warming scenario, we selected a 
temperature increase of 1.5 °C (RCP 2.6, IPPC 2014) based on the forecast by Gobiet et al. 
[10] for the year 2050 in the European Alps, and for the mitigation strategy we reduced 
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the host plant species (Pelargonium spp.) numbers by 50%, supposing an efficient aware-
ness campaign involving municipalities and citizens. All the maps were created with 
QGIS software (“Hannover” Version 3.16.11). 

3. Results 
3.1. Cacyreus marshalli Data 

We collected 138 occurrences in the national dataset CKmap from 2017 to 2019, in-
cluding the 55 cells that were used for training in the MaxEnt model. Otherwise, we did 
not find any target species sightings in the two most important CS platforms (iNaturalist 
and GBIF) for the study area, while only three presence points were found in the park CS 
project. 

Regarding standardised sampling data collection, we counted 685 eggs (in 21 cells) 
during 225 surveys (sampling repetitions) carried out over 44 days of field work. 

3.2. MaxEnt Model Results 
We obtained high values of TSS for both MaxEnt models (the full model including 

the whole dataset and the model with the test set)—0.88 and 0.87, respectively. 
Pel_abu was found to be the most important variable in the models, with a percentage 

contribution of 90% in the full model and 88% in the second model (Table 1). Indeed, the 
cells with high ROR values overlapped perfectly the cells containing pelargoniums (Fig-
ure 2). The pel_negh variable played a marginal role in the model, considering the contri-
bution of 7.2% in the full model and 9.7% in the model using a test set. The variables 
regarding temperature data (bio01, bio04) did not make a relevant contribution to the mod-
els, showing percentage contributions of less than 2% and 0.5% for temperature seasonal-
ity and annual mean temperature, respectively. Habitat variables (woodland, ecotone and 
grassland) proved not to be significant variables (contributions < 0.01%); thus, we did not 
report them in Table 1. 

Table 1. The table shows the importance of each variable for the full MaxEnt model (including all 
the data) but also the mean and the standard error for the 100 interactions tested on the split dataset 
that included 80% of the data and 20% used as a test set: annual mean temperature (bio01), temper-
ature seasonality (bio04), Pelargonium abundance (pel_abu), neighbouring Pelargonium abundance 
(pel_neigh). 

Variables 
Full Model Test Set Model 

Percent 
Contribution 

Permutation 
Importance 

Percent 
Contribution 

Permutation 
Importance 

pel_abu 90.7 70.7 88.1 74.8 
pel_neigh 7.2 6.3 9.7 8.6 

bio04 1.9 22.7 1.8 15.7 
bio01 0.1 0.3 0.4 0.8 
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Figure 2. The graphs show the response curves (black lines) obtained with the MaxEnt model, in-
cluding the confidence intervals (grey lines). (A) Along the x-axis: the number of Pelargonium plants; 
along the y-axis: the relative occurrence rate (ROR). (B) Along the x-axis: the number of Pelargonium 
plants in the neighbouring cells; along the y-axis: the ROR. 

Thanks to the MaxEnt algorithm, we obtained the response curves for each variable. 
ROR values rapidly increased, even with a low number of food plants in the cell (Figure 
2). At the same time, ROR value decreased in the cells when the number of neighbouring 
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plants was higher than 600 units (Figure 2). Due to the insignificance of the climatic vari-
ables, we chose to not report them. 

The MaxEnt analysis did not provide relevant ecological information about C. mar-
shalli distribution. Indeed, the variables that made the most important contributions were 
linked to the host plant (Table 1), as we could have expected, since species presence is 
obviously dependent on Pelargonium. Therefore, we did not run the scenario models using 
the MaxEnt algorithm. 

3.3. N-Mixture Model Results 
The first step of our modelling approach highlighted, as we supposed, the im-

portance of the pel_ava variable for detecting C. marshalli eggs (Figure 3). Indeed, looking 
at model selection, we noticed that the detection model ρ pel_ava λ. showed a definitely 
higher AICc value than the null model (ΔAICc = 1089.19; Table 2). 

 
Figure 3. Single covariate responses in relation to the expected abundance and detection predicted 
by the best N-mixture model. Grey lines indicate 1-SE bounds. 

  



Biology 2022, 11, 563 11 of 22 
 

 

Table 2. Model selection of N-mixture models for Cacyreus marshalli egg abundance. Annual mean 
temperature (bio01), temperature seasonality (bio04), Pelargonium abundance (pel_abu), neighbour-
ing Pelargonium abundance (pel_neigh), woodland cover (wood), ecotone cover (eco) and grassland 
cover (grass). K = number of parameters, AICc = Akaike information criterion corrected for small 
samples, ΔAICc = AICc difference, Wi = weight of each model, Cum.Wi = cumulative weight. 

Models K AICc ΔAICc Wi Cum.Wi 

ρ pel_ava λ bio01 + pel_abu + pel_abu:bio01 + pel_neigh 7 979.54 0.00 1 1 
ρ pel_ava λ bio01 + pel_abu + pel_neigh 6 1099.16 119.61 <0.01 1 

ρ pel_ava λ bio01 + pel_abu 5 1102.05 122.51 <0.01 1 
ρ pel_ava λ bio01 + pel_abu + wood 6 1102.58 123.04 <0.01 1 

ρ pel_ava λ bio01 4 1135.79 156.24 <0.01 1 
ρ pel_ava λ bio01 + pel_neigh 5 1136.25 156.70 <0.01 1 

ρ pel_ava λ bio01 + wood 5 1138.09 158.54 <0.01 1 
ρ pel_ava λ bio04 4 1186.08 206.53 <0.01 1 

ρ pel_ava λ pel_neigh 4 1273.59 294.05 <0.01 1 
ρ pel_ava λ wood 4 1275.42 295.88 <0.01 1 
ρ pel_ava λ eco 4 1281.87 302.33 <0.01 1 
ρ pel_ava λ eco 4 1282.99 303.45 <0.01 1 
ρ pel_ava λ. 3 1286.70 307.15 <0.01 1 

ρ pel_ava λ grassland 4 1287.91 308.36 <0.01 1 
ρ. λ. 2 2375.88 1396.33 <0.01 1 

Once the observation process structure had been defined, we focused on testing the 
predictors for the state process. Firstly, we observed that bio01, pel_abu and pel_neigh were 
the most important variables affecting egg abundance (Table 2). We then hypothesised a 
potential synergistic action between the bio01 and pel_abu variables; thus, we added to the 
previous best model (ρ pel_ava λ bio01 + pel_abu + pel_neigh ; Table 2) an interaction term. The last model 
structure (ρ pel_ava λ bio01 + pel_abu + pel_abu:bio01 + pel_neigh) definitely proved to be the best one (Table 2), 
highlighting positive effects of bio01, pel_abu and the interaction term pel_abu: bio01 on egg 
abundance, while pel_neigh was shown to have a negative effect (Table 3). The model’s 
output showed that a rise in temperature and host plant abundance favoured egg abun-
dance, while an increase in neighbouring Pelargonium availability resulted in a decreasing 
number of eggs (Figure 3). The positive synergistic action between bio01 and pel_abu re-
vealed that the more temperature increases, the more Pelargonium abundance positively 
affects C. marshalli egg abundance. 

Table 3. β estimates for the best fitting N-mixture model. 

Variables Egg Abundance (SE) Detectability (SE) 
Intercept 3.095 (0.249) ** −2.632 (0.182) ** 

bio01 0.446 (0.209) *   
pel_abu 0.320 (0.058) **   

pel_neigh −0.343 (0.067) **   
pel_abu:bio01 0.592 (0.119) **   

pel_ava  0.399 (0.049) ** 
* p value < 0.05; ** p value < 0.01. 

Once we had identified the best N-mixture model, we tested the best mixture for 
abundance comparing P, NB and ZIP distributions. Model selection found NB to have the 
best λ distribution (ΔAICc = 97.43), while ZIP and P showed the second and third AICc 

values, respectively (Table S3). Since NB distribution is generally favoured by AICc selec-
tion [41] and it could sometimes provide higher abundance estimates [32,44,45], we exam-
ined the residuals, fitted values and observed data of the three models. The graphical fit 
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assessment highlighted that the ZIP model had a much better predictive ability than the 
NB and P models (for details, see Figure S2). Moreover, the ZIP model was the only model 
to pass the goodness of fit test for chi-squared statistics (p = 0.06) and, considering the 
many zeros characterising our egg counts (zeros = 80%), we felt confident in selecting the 
ZIP mixture as a suitable distribution for abundance. Although the ZIP model adequately 
fitted the data, the goodness of fit test showed weak model robustness, as highlighted by 
the c-hat parameter (ĉ = 2.68), too. We therefore used calculated overdispersion (OD) to 
multiply the variance–covariance matrix of the ZIP model in order to inflate the uncer-
tainties of our estimates according to an OD factor. 

3.4. Distribution Maps and Scenario Results 
The MaxEnt map highlighted that most of the cells showed high ROR values, indi-

cating a wide potential distribution of C. marshalli over the study area considered (Figure 
4). This result is not surprising since the host plant is present in all the cells and even low 
Pelargonium abundance determines a high percentage of site suitability (ROR = 64%). 

 
Figure 4. The map shows the output of the MaxEnt model ROR,  or the relative probability that 
each has a suitable predicted condition for Cacyreus marshalli. The borders of the municipalities in-
cluded in the analysis are shown in green, while the streets are in grey. The grey polygon marks the 
Park territory, in which only one sampled valley is included entirely. The colour scale, in the top 
right corner, indicates the ROR values. 

Concerning N-mixture model projections, we noticed a high level of infestation in 
the low- and middle-elevation municipalities, while we found low egg abundances in cells 
overlapping the high-altitude municipalities in both regions (Figure 5). The Aosta Valley 
side of GPNP showed an overall low rate of egg infestation compared to the Piedmont 
region (Figure 5). 
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Figure 5. Expected abundance of eggs in the study area (250 m grid) obtained from the best N-mix 
model, ρ pel_ava λ bio01 + pel_abu + pel_abu:bio01 + pel_neigh. 

The potential rise in temperatures (1.5 °C) revealed that nearly all the cells experi-
enced increases in egg abundance (Table 4; Figure 6) along the whole elevational gradient, 
while there were some exceptions at high elevations (Figure 7). Only a few cells showed 
new egg infestations (Table 4), but all the newly infested sites were located in high-altitude 
municipalities (Rhêmes-Notre-Dame and Cogne). We then tested the climate change mit-
igation strategy (50% Pelargonium reduction) and we noticed that the hypothetical man-
agement action affected egg abundance in most of the cells (Table 4; Figure 8), with a sig-
nificant egg reduction in the low- and middle-elevation municipalities (Table 5). How-
ever, the changes observed were not restricted solely to egg decreases but, surprisingly, 
also to slight increases (Table 4; Figure 7), which were restricted mainly to high-elevation 
sites (Table 5). Generally, the 50% Pelargonium reduction restored C. marshalli egg distri-
bution to the pre-temperature increase scenario, with a slight signal of a countertrend in 
the high-elevation municipalities (Table 5; Figure 7). Considering the temperature eleva-
tion relationship (higher elevation–colder temperatures; [46]), we reported the results of 
the distribution maps and the scenarios following municipalities and elevation because 
we considered them easily interpretable and more informative for management planning. 
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Table 4. Percentages of cells showing changes in egg abundance under different scenarios. 

Change Categories 
Starting Distribution  

vs.  
+1.5 °C Scenario 

+1.5 °C Scenario  
vs.  

−50% Pelargonium Scenario 
Percentage of cells with egg 

abundance changes 98.1 (264) 74 (199) 

Percentage of cells with egg 
increases 

98.1 (264) 22.7 (61) 

Percentage of cells with egg 
decreases 0 51.3 (138) 

Percentage of cells with new 
egg infestations 3.3 (9) 0 

Percentage of cell with no 
changes 

5.2 (14) 29.7 (80) 

 
Figure 6. Expected abundance of eggs in the study area (250 m grid) in the future scenario of climate 
warming (increase of 1.5 °C). 



Biology 2022, 11, 563 15 of 22 
 

 

 
Figure 7. Scatter plot with three trend lines (loess) showing egg abundance distributions in relation 
to elevation for the three scenarios. The black line represents the initial potential distribution, the 
red line the climate warming scenario (+1.5 °C) and the green line the climate warming scenario 
combined with management action (50% reduction in Pelargonium plants). Extreme values (n = 250) 
were omitted to improve the graphical representation. 
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Figure 8. Expected abundance of eggs in the study area (250 m grid) in the future scenario of climate 
warming (increase of 1.5 °C) combined with the management strategy (50% reduction in Pelargo-
nium plants). 

Table 5. Percentages of cells that showed a decrease or increase in egg abundance once the 50% 
Pelargonium reduction was applied. 

Municipality Elevation 
Percentage of Cells with 

Egg Decreases 
Percentage of Cells with 

Egg Increases 
Sparone 614 72.7 (24) 9.1 (3) 
Locana 714 70.5 (55) 15.4 (12) 

Villeneuve 966 100 (1) 0 
Ronco Canavese 1050 56.7 (17) 3.3 (1) 

Introd 1063 0 0 
Noasca 1071 53.8 (14) 11.5 (3) 

Ribordone 1127 52.2 (12) 8.7 (2) 
Rhêmes-Saint-

Georges 1249 75 (3) 0 

Valprato Soana 1268 66.7(10) 13.3 (2) 
Ceresole Reale 1581 0 40.6 (13) 

Cogne 1586 9.5 (2) 66.7 (14) 
Valsavarenche 1635 0 75 (6) 

Rhêmes-Notre-Dame 1699 0 83.3 (5) 
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4. Discussion 
4.1. Opportunistic Data and Standardised Sampling 

Our research and the relative statistical analyses performed (MaxEnt vs. N-mixture 
models) highlighted different results obtained with the two approaches (opportunistic vs. 
standardised sampling). The comparison between methods revealed how N-mixture anal-
ysis, supported by a standardised sampling design, provided much more relevant ecolog-
ical information compared to MaxEnt. This difference could have been caused by the mi-
nor sampling effort which characterised the opportunistic data collection [47]. Indeed, we 
found 141 C. marshalli presence points, the majority of which came from the national da-
taset (CKmap and integration from Balletto and colleagues), with only three sightings 
coming from the Park’s CS project. Therefore, we noted some difficulties with respect to 
citizens’ reports of species occurrence, probably due to the fact that the focal species is not 
particularly conspicuous and so not as easy for local people to detect [48]. C. marshalli is a 
small and cryptic butterfly [4]. The larvae exhibit mimetic behaviour and imitate Pelargo-
nium stem colours; the adult is tiny and brown and, because of its erratic flight pattern 
and the variety of nectar feeding sources, it is difficult to observe and photograph. To 
obtain a large number of observations, it is important to improve citizen scientists’ en-
gagement by increasing training activities with the fundamental support of the Park [49]. 
CS data have become more and more important in the last few years, and they have 
largely been employed in species distribution models [50]. Furthermore, among CS pro-
jects, butterflies are often used as target groups because they are easily recognisable at the 
species level, well known and highly charming for the general public [51]. Indeed, nowa-
days, butterflies are the only group of invertebrates that are monitored at the European 
level through the involvement of citizens in a standardised monitoring scheme (see the 
European Butterfly Monitoring Scheme). Projects run by local institutions are mostly de-
signed to obtain opportunistic observations, which have great potential use value in mod-
elling approaches. However, without an efficient communication campaign, these pro-
jects generally collect few and narrow data with an unknown sampling effort [47], while, 
in order to obtain relevant ecological information, it is fundamental to obtain a high num-
ber of observations over vast territories [52]. A significant difference between opportun-
istic and standardised sampling is surely the sampling effort, but it is fundamental to con-
sider the role of sampling design, too. The N-mixture analysis provided much more rele-
vant ecological information due to the stratified random sampling design adopted, which 
allowed us to investigate an equal number of sites over different altitudinal bands char-
acterised by heterogeneous temperature regimes. Such site variability, in harmony with 
the N-mixture analysis, revealed the important relationship between temperature, host 
plant presence and egg infestation, underlining the important role of a planned survey 
design in investigations of species habitat relationships and their distributions. Obviously, 
a rigorous survey protocol needs expert researchers, logistical support, time and a large 
amount of resources [53], often covering a limited spatial extent, nevertheless. 

For these reasons, we argue that the truth lies in the middle, so an integrated ap-
proach that combines opportunistic data with counts from a designed protocol could be 
the way [54] to optimise the amount of information achievable with sustainable efforts 
and resources. 

4.2. Drivers of Cacyreus marshalli Distribution  
The MaxEnt analysis mainly suggested that urban areas are suitable habitats for Ca-

cyreus marshalli because of the considerable presence of the food plant (Pelargonium) 
widely used as an ornamental plant in the municipalities inside and bordering the Park. 

Our results indicate that the species prefers its native host plant; when Pelargonium is 
available, the exotic butterfly is not driven to naturalise itself on spontaneous food sources 
such as native Geraniaceae, although it could have the potential to do so [8,9]. An analo-
gous relationship between urban habitats and distribution was found for another alien 
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insect, the Asian tiger mosquito (Aedes albopictus (Skuse, 1894) (Diptera: Culicidae)). This 
species has rapidly adapted to the newly invaded areas but has never been observed using 
spontaneous trees as oviposition sites because it prefers sub-pots or tires that are typical 
cavities in the urban areas [55]. The strong connection between C. marshalli and its food 
plant was confirmed by the high contribution of the pel_abu variable in explaining both C. 
marshalli occurrence and egg abundance, even with low levels of Pelargonium abundance. 
The host plant demonstrated its importance in shaping C. marshalli distribution, also, in 
terms of spatial availability. Indeed, the more Pelargonium abundance increases in neigh-
bouring cells, the less the alien butterfly lays its eggs in focal cells. This negative relation 
could be explained by the propensity of the females to spread their eggs on different 
plants due to the strong territorial behaviour of offspring [4]. Therefore, when the host 
plant is widely distributed, the number of eggs in a site tends to decrease as they are 
evenly propagated. 

As C. marshalli is a species native to southern Africa, we hypothesised that tempera-
ture could play an important role in driving species distributions, as suggested by Para-
diso et al. [9]. N-mixture models supported our hypothesis, highlighting a clear preference 
of C. marshalli for mild temperatures, while, contrarily, it suffers in cold temperatures. 

With annual mean temperatures below 4 °C, egg abundance shows very low values. 
Thus, we can definitely assert that cold temperatures constrain butterfly distribution. For 
insect groups, it is generally recognized that temperatures are important with respect to 
limiting or facilitating the invasion process [56], and C. marshalli is not an exception. The 
importance of temperature in limiting C. marshalli distribution is underlined, furthermore, 
by the positive interactive effect with Pelargonium abundance. Temperature regulates the 
effect of the host plant variable which is weaker in colder sites than in warmer ones. In-
deed, with an equal number of Pelargonium plants, the areas showing high temperatures 
are definitely more heavily infested than areas with low temperatures. 

4.3. Distribution Maps, Future Scenarios and a Potential Management Strategy 
The potential distribution of C. marshalli obtained by the N-mixture model analysis 

showed that high-elevation areas present low levels of egg infestation. This is largely be-
cause the high-elevation sites are characterised by cold temperatures, so that egg abun-
dance is consequently limited. For the same reason, in the Aosta Valley region we noticed 
a lower number of eggs compared to the Piedmont region. Indeed, most of the Aosta Val-
ley municipalities are located in a territory with a mean elevation higher than Piedmont 
(see Table 5), and therefore cold temperatures, typical of high elevations, constrain egg 
abundance. 

The role of temperature in shaping C. marshalli distribution is also supported by the 
temperature increase scenario. A 1.5 °C increase in temperature positively affected egg 
abundance over the whole study area, with a slight signal of expansion even in some high-
elevation sites. Climate change is a crucial driving factor in the invasion process of alien 
species [57]. In particular, warming temperatures are strictly related to the expansion and 
establishment of exotic insect species [58]. Our research is in accordance with this state-
ment. A potential temperature rise would increase the establishment rate of C. marshalli 
and favour a weak expansion trend in areas at high elevations that, due to the temperature 
increase, would become more suitable as habitats. 

To overcome the consequences of climate warming on C. marshalli distribution, we 
considered a 50% Pelargonium reduction which resulted in a mitigation of egg infestation 
in most of the sites located at low and middle elevations. The tested management action 
demonstrated that it could be possible to reduce the climate warming effect in the areas 
mainly affected by high rates of infestation, resulting in an egg distribution similar to the 
pre-temperature increase scenario. However, focusing on high-elevation areas, we no-
ticed an opposite trend which indicates that a Pelargonium containment would result in an 
increase in egg abundance, even though only very slight. This countertrend could be likely 
caused by low Pelargonium availability on a wide spatial scale (host plants in neighbouring 
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cells) in high-elevation sites which are less likely to have urban characteristics. Indeed, a 
further reduction in Pelargonium numbers could diminish the negative effect of pel_neigh 
on egg abundance, which therefore could lead to increases in focal cells. A potential in-
crease in egg numbers in a focal cell may lead to a saturation process which could stimu-
late the alien butterfly to explore new adjacent sites where native host plants are reduced 
or absent and thus lay eggs on native Geraniaceae. The potential naturalisation risk could 
be exacerbated by the integration of high-elevations cells in a matrix of proximal natural 
habitats. 

We therefore face a paradoxical effect caused by the management action which, act-
ing on the abundance and the availability of such a vital requirement as the host plant, 
should have theoretically reduced the rate of infestation over the whole study area. Ac-
cording to this result, we argue that it is important to previously test management actions 
designed to control alien species because they could be counterproductive. However, alt-
hough we have highlighted these contrasting signals, we suggest being cautious in inter-
preting these results because the changes in egg abundances in high-elevation sites are 
really slight. 

5. Conclusions 
In conclusion, the field survey protocol proved more informative than the opportun-

istic data collection because of the higher sampling effort and the planned sampling de-
sign. However, opportunistic data derived from CS projects could have a great potential 
if they are supported by investments and efficient communication campaigns. In this 
framework, protected areas could play a crucial role in organizing and promoting CS ac-
tivities combined with research projects according to an integrated approach. 

Temperature is a key driver in the establishment, expansion and restriction of C. mar-
shalli. The modelling results showed that high-elevation areas were generally protected 
by low temperatures, even if temperatures increased by 1.5 °C and the host plant was 
abundant, while low- and middle-elevation sites showed a dramatic increase in egg infes-
tation rates under the climate warming scenario. We suggest that awareness ought to be 
raised of the risks associated with a potential higher temperature scenario (>1.5 °C). A 50% 
reduction in host plant numbers could mitigate the effect of the rising temperatures, but 
at high elevations we noticed a slight countertrend. We therefore urge that management 
actions not be applied without first testing the effects in the local territorial context. 

Supplementary Materials: The following are available online at https://www.mdpi.com/arti-
cle/10.3390/biology11040563/s1, Table S1: Summary of the explanatory variables used for MaxEnt 
and N-mixture analysis, Table S2: Details on the occurrence data used for Maxent analysis, Table 
S3: Model selection of the selected N-mixture model with different distributions for the λ parameter, 
Figure S1: Cacyreus Marshall presence points, Figure S2: Model residual diagnostics for the N-mix-
ture models. 
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