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Abstract

2D and 3D geometric shapes are ubiquitous in computer graphics, computer animation, and

computer-aided design and manufacturing. Two of the fundamental research challenges that

underline these applications are the analysis and synthesis of shapes, with the former aiming

to extract semantically meaningful knowledge of shapes and the latter focusing on generating

plausible-looking shapes based on user inputs. Traditionally, shape analysis and synthesis are

based on representations such as meshes, parameterisations, and Laplacians, which lead to mostly

hand-crafted computation rules that are either suboptimal or treat related tasks separately. In this

work, we propose to represent a 2D/3D shape as a square symmetric matrix that correlates every

pair of geometric points on the shape, which allows us to formulate shape analysis and synthesis

problems as principled optimisation problems that can be globally optimised. To demonstrate the

usefulness of our new metric representation for shape analysis, we first address 3D mesh saliency

detection by representing a shape as a pairwise feature distance matrix, whose principal eigen-

vector is experimentally shown to outperform the traditional saliency detection rules for capturing

ground-truth saliency annotations. Following this work, we then unify saliency detection and non-

rigid shape matching via a jointly learned metric representation, which is shown to improve the

accuracy of both tasks on the existing saliency detection and shape matching benchmarks. To also

demonstrate the usefulness of our metric representation for shape synthesis, we address 2D facial

shape beautification in images by representing a facial shape as the orthogonal projection matrix

onto 2D facial landmarks, which is shown to improve the attractiveness of both frontal-neutral and

non-frontal-non-neutral faces in the user studies. Finally, we show that adversarially learning the

distributions of human shapes and poses in a hidden space produces higher-quality human samples

than in the geometry space. Together, these results show that our metric representation benefits

both the analysis and synthesis of shapes, with the potential of unifying more diverse tasks such

as part segmentation and labelling in the future work.

Keywords: shape analysis, shape synthesis, face beautification, mesh saliency detection, non-rigid

shape matching, generative modelling, pose, motion, metric, sparsity, deformation invariance, or-

thogonal projection metric, Laplacian, eigenvectors, probability distribution, deep learning, recur-

rent neural networks, generative adversarial networks, optimisation
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Chapter 1

Introduction

2D and 3D geometric shapes are perhaps the most expressive digital channels through which real-

world objects can be realistically represented, manipulated, animated, and displayed on comput-

ers. The applications of geometric shapes span a broad range of areas, such as computer graphics

(Schneider and Eberly, 2002), computer-aided design (Farin, 2014), performance capture (Xia

et al., 2017), 3D printing (Zhang et al., 2016), virtual reality (Zhao, 2009), and augmented re-

ality (Billinghurst et al., 2015). Driven by the rapid advances in 3D scanning and sensing tech-

nologies (Zhang, 2012; Hitomi et al., 2015), shape analysis has become one of the central and

most intensively studied research topics in the past, which aims to extract semantically meaning-

ful knowledge (e.g. salient points, semantic part labels, correspondence) from geometric shapes

for understanding and retrieval (Shilane et al., 2004; Bronstein et al., 2011; Zhao et al., 2014).

Shape synthesis, as opposite to shape analysis, concerns with generating visually realistic geo-

metric shapes (e.g. human faces and bodies) from external inputs for performance capture (Cao

et al., 2015), animation (Loper et al., 2015), and image-based 3D reconstruction (Blanz et al.,

1999). Recently, powerful deep learning methods have also been introduced to analyse and syn-

thesise shapes (Wu et al., 2015; Qi, Su, Mo and Guibas, 2017a; Wu et al., 2017; Gkioxari et al.,

2019). Therefore, addressing the two fundamental research topics not only enhances our theoreti-

cal understanding of how real-world shapes are organised and distributed, but also has significant

impacts on diverse practical applications.
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Chapter 1. Introduction

1.1 Motivation

In this thesis, we propose a unified metric framework to address three important yet diverse appli-

cations in shape analysis and synthesis: 2D facial shape beautification in images (Leyvand et al.,

2008), salient points detection for 3D shapes (Lee et al., 2005), and non-rigid matching (i.e. corre-

spondence finding) for 3D shapes (Van Kaick et al., 2011). The underlying theme of our solutions

to the three problems is that we represent a shape as a square symmetric matrix that characterises

the pairwise geometric relationships among all the points on the shape. The foremost motivation

of our metric representations is that they are able to capture the global geometric features of shapes

for holistic analysis and synthesis, which are more effective than traditional local feature represen-

tations that only consider individual points (Meyer et al., 2003) or surface regions (Belongie et al.,

2001; Tombari et al., 2010). While recently there have been some metric representations proposed

for geometry processing (Boscaini, Eynard, Kourounis and Bronstein, 2015; Corman et al., 2017;

Corman and Ovsjanikov, 2019), they actually encode raw mesh connectivity information (e.g. ad-

jacency, edge lengths, dihedral angles) and cannot be directly used for high-level semantic analysis

and synthesis. Instead, our metric representations are derived from higher-level shape features and

therefore enable direct semantic knowledge extraction and user-controlled synthesis.

The second motivation of our metric representations is that they are symmetric and therefore in-

duce a set of mutually orthogonal, semantically informative eigenvectors for shape analysis and

synthesis. Concretely, our representations formulate 1) facial shape synthesis as the projection

onto the eigenvectors of an orthogonal projection metric, 2) saliency detection as computing the

sparse principal eigenvector of a feature distance metric, and 3) non-rigid saliency matching as

computing the Laplacian eigenvectors of a learned feature distance metric. As these eigenvectors

can be optimally computed, our representations fundamentally admit global optimisation for the

three tasks.

The last but not the least motivation of our metric representations is that they 1) allow us to incor-

porate flexible user control in facial shape beautification (e.g. preserving the shape of lips while

enhancing the shape of jawline), 2) provide a theoretical understanding of how saliency can be

well-defined on 3D shapes to accurately explain ground-truth eye fixations, and 3) enable saliency

detection and non-rigid shape matching to help each other generalise better in a deep multi-task

metric learning framework.
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1.2. Problem Statement

Recently, there are an increasing amount of research work on modelling human body shapes and

poses for realistic human synthesis (Loper et al., 2015), which has extensive applications in com-

puter gaming, performance capture, and virtual reality industries. Therefore, we are motivated to

generalise shape synthesis to the joint modelling of human shapes and poses as an extension work

of this thesis. Our key idea is learning the high-dimensional probability distributions of human

shapes and poses in a much lower-dimensional auto-encoding space, where we use generative ad-

versarial networks (GANs) to approximate the manifolds of real-scanned humans. The capacity of

our learned human priors is best applied to virtual human synthesis in games (Zyda, 2005).

1.2 Problem Statement

The central question we want to ask in this thesis is: can we find a global representation of 2D

and 3D shapes for shape analysis and synthesis that are globally optimal in some mathematical

sense? To approach this question, we focus on the following three specific problems that have

wide applications in computer graphics:

• Mesh Saliency Detection: Given an input 3D surface mesh, compute a continuous saliency

map that highlights the semantically important points on the surface.

• Unification of Saliency Detection and Non-rigid Shape Matching: Given a pair of 3D

surface meshes of the same object category (e.g. human body, four-leg animal), compute

two respective saliency maps as well as a discrete correspondence map that pairs up seman-

tically similar points on the two surfaces.

• Facial Shape Beautification: Given an input facial image, synthesise an output image with

improved facial attractiveness by modifying the facial shape to a small extent. Users should

be allowed to flexibly control the level of beautification for individual facial parts (e.g. jaw-

line, lips, nose, and eyes).

As an extension of the work on shape synthesis, we are also interested in synthesising realistic-

looking human shapes and poses at the same time. Therefore, we also consider the problem

of human shape and pose modelling in this thesis. In particular, given a pair of human shape and

pose datasets, the task is estimating the two corresponding probability distributions so that random

sampling from them can synthesise realistic-looking human shapes and poses.
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2D/3D Shape
        Metric 

Representa�on

Seman�c Knowledge

User Inputs

Computa�on

Reconstruc�on

Inference

Synthesis

Figure 1.1: The Overview of Our Unified Metric Framework. For shape analysis, our frame-

work computes a metric representation from input shapes and then derives semantic knowledge

from the metric using optimisation. For shape synthesis, it synthesise a metric representation from

external user inputs and then reconstructs target shapes using optimisation.

1.3 Our Methodology

As illustrated in Fig. 1.1, the central theme of our methodology is formulating shape analysis and

synthesis tasks based on a metric representation. For shape analysis, the benefit of having a metric

representation is that it captures the global geometric features of shapes, which allows us to infer

semantic knowledge solely from the metric using global optimisation. For shape synthesis, the

benefit is that a metric representation allows users to control the global geometric features of gen-

erated shapes while reconstructing output shapes using global optimisation. In the following, we

substantiate this idea into the three problems we focus on in this thesis respectively. Meanwhile,

we also describe our extension work on the joint modelling of human shapes and poses, which

represents a continuum of the work on shape synthesis.

• Metric-based Mesh Saliency Detection: In this work, we propose an accurate and robust

approach to salient region detection for 3D polygonal surface meshes. The salient regions of

a mesh are those that geometrically stand out from their contexts and therefore are semanti-

cally important for geometry processing and shape analysis. However, a suitable definition

of region contexts for saliency detection remains elusive in the field, and the previous meth-

ods fail to produce saliency maps that agree well with human annotations. We address these

issues by computing saliency in a global manner and enforcing sparsity for more accurate

saliency detection. Specifically, we represent the geometry of a mesh using a metric that

globally encodes the shape distances between every pair of local regions. We then pro-

pose a sparsity-enforcing rarity optimisation problem, solving which allows us to obtain a
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compact set of salient regions globally distinct from each other. We build a perceptually mo-

tivated 3D eye fixation dataset and use a large-scale Schelling saliency dataset for extensive

benchmarking of saliency detection methods. The results show that our computed saliency

maps are closer to the ground-truth. To showcase the usefulness of our saliency maps for ge-

ometry processing, we apply them to feature point localisation and achieve higher accuracy

compared to established feature detectors.

• Metric-based Unification of Saliency Detection and Non-rigid Shape Matching: In this

research, we propose a deep metric for unifying the representation of mesh saliency detec-

tion and non-rigid shape matching. While saliency detection and shape matching are two

closely related and fundamental tasks in shape analysis, previous methods approach them

separately and independently, failing to exploit their underlying relation that can mutually

benefit each other. In view of the existing gap between saliency and matching, we pro-

pose to solve them together using a unified metric representation of surface meshes. We

show that saliency and matching can be rigorously derived from our representation as the

principal eigenvector and the smoothed Laplacian eigenvectors respectively. Learning the

representation jointly allows matching to improve the deformation-invariance of saliency

while allowing saliency to improve the feature localisation of matching. To parameterise

the representation from a mesh, we also propose a deep recurrent neural network (RNN) for

effectively integrating multi-scale shape features and a soft-thresholding operator for adap-

tively enhancing the sparsity of saliency. Results show that by jointly learning from a pair

of saliency and matching datasets, matching improves the accuracy of the detected salient

regions on meshes, which is especially obvious for small-scale saliency datasets, such as

those having one to two meshes. At the same time, saliency improves the accuracy of shape

matchings among meshes with reduced matching errors on surfaces.

• Metric-based Facial Shape Beautification: In this research, we propose a method to au-

tomatically beautify the shapes of non-frontal, non-neutral faces in photos, while allowing

users to prescribe beautification weights for individual facial features. Previous methods fo-

cus on the beautification of mostly frontal and neutral faces, without incorporating user con-

trollability in the beautification process. To address these restrictions, we propose the facial

metric representation, which is affine-invariant, captures the pairwise geometric configura-
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tion of facial landmarks, and allows for efficient face beautification with the user-specified

weights of individual facial parts. We also propose an unsupervised beautification method in

the operator space of faces, where an input face is iteratively pulled towards a local nearby

density mode with improved attractiveness. Our method does not require human-annotated

attractiveness scores for beautification. It also preserves the original poses and expressions

for beautified faces. Results show that our method improves facial attractiveness for a range

of poses and expressions, while retaining certain facial features according to user require-

ments.

• From Shape to the Joint Modelling of Shape and Pose. In this study, we propose to

extend shape synthesis to the joint synthesis of shapes and poses for humans. The prior

knowledge of real human body shapes and poses is fundamental in computer games and

animation (e.g. performance capture). Linear subspaces such as the popular SMPL model

have a limited capacity to represent the large geometric variations of human shapes and

poses. What is worse is that random sampling from them often produces non-realistic hu-

mans because the distribution of real humans is more likely to concentrate on a non-linear

manifold instead of the full subspace. Towards this problem, we propose to learn human

shape and pose manifolds using a more powerful deep generator network, which is trained

to produce samples that cannot be distinguished from real humans by a deep discriminator

network. In contrast to previous work that learn both the generator and discriminator in the

original geometry spaces, we learn them in the more representative latent spaces discovered

by a shape and a pose auto-encoder network respectively. Random sampling from our priors

produces higher-quality human shapes and poses. The capacity of our priors is best applied

to applications such as virtual human synthesis in games.

1.4 Our Contributions

Our key contributions in this thesis are as follows:

• We propose a new metric representation of 2D/3D shapes for shape analysis and synthe-

sis. Different from the traditional representations such as meshes, parameterisations, and

Laplacians, our representation captures the global pairwise relationship among all points of
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a shape, which leads to solutions from principled optimisations rather than hand-crafted yet

suboptimal computation rules.

• To demonstrate the usefulness of our metric representation for shape analysis, we propose

a sparse metric-based rarity optimisation method for saliency detection in Chapter 3. Our

method is shown to produce more accurate saliency maps compared to the competing meth-

ods without relying on human annotations. Following this work, we then propose to unify

saliency detection and non-rigid shape matching via a jointly learned metric representa-

tion in Chapter 4. The results show that matching improves the accuracy and deformation-

invariance of saliency via the intra-category consistency of matching, while saliency im-

proves the robustness of matching under non-isometric deformations via the sparsity of

saliency.

• To demonstrate the usefulness of our metric representation for shape synthesis, we propose

to represent the geometry of a face using the orthogonal projection metric onto the subspace

of the facial landmarks for 2D facial shape beautification in Chapter 5. Our method is shown

to improve the attractiveness of both frontal-neutral and non-frontal-non-neutral faces in

the user studies. We also propose to learn the non-linear manifolds of real human shapes

and poses in the low-dimensional auto-encoding spaces rather than in the original high-

dimensional geometry spaces in Chapter 6. We demonstrate the capacity of our learned

priors by generating high-quality human shapes and poses via random sampling.

• We make our datasets and source codes from this thesis publicly available for reproduction

and validation. Our 3D eye fixation dataset and saliency detection source codes can be

downloaded from here∗ and here† respectively. Our source codes for unifiying saliency

detection and shape matching can be downloaded from this link‡. Our face beautification

source codes can be downloaded from this link§. Our human shape and pose modelling

codes can be downloaded from this link¶.

∗https://drive.google.com/open?id=1k88SJOGEGSUKneDQHvBHp5TE2CROA4DK
†https://drive.google.com/open?id=14gzatUYMeRGEb0F 3GOihqD3Y0BojZFF
‡https://drive.google.com/drive/folders/10Vu3ujF-5gPm8h E35VhZR45WCjht18B
§https://drive.google.com/open?id=1NonS5WQedtxejTDh-m Ym3MZSk21H54p
¶https://drive.google.com/open?id=1y-aPe8FGzetxnY3FpSESci3U59KgQSUJ
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Chapter 1. Introduction

1.5 Thesis Structure

The structure of this thesis is as follows. Chapter 2 surveys the related work in the field, including

shape representations in Section 2.1, mesh saliency detection in Section 2.2.1, non-rigid shape

matching in Section 2.2.2, facial shape beautification in Section 2.3.1, as well as human shape and

pose synthesis in Section 2.3.2.

Chapter 3 describes our proposed metric-based approach to mesh saliency detection. The chapter

starts with introducing the problem background, motivations, and our contributions in Section

3.1. It then presents an overview of our saliency detection approach in Section 3.2.1. Following

the order of the four key components of our approach, it presents Mesh Sampling in Section

3.2.2, Shape Descriptor Construction in Section 3.2.3, Sparse Metric-based Rarity Optimisation

in Section 3.2.4, and finally Vertex Saliency Interpolation in Section 3.2.5. After presenting our

approach, the chapter then proceeds to how we constructed our 3D eye fixation dataset for methods

evaluation in Section 3.3. In Section 3.4, the chapter first shows some saliency maps computed

by our approach in Section 3.4.1, and then presents the visual and quantitative comparisons of

our approach with others in section 3.4.2 and 3.4.3 respectively. After that, the chapter presents

the robustness comparison of our approach with others in Section 3.4.4, and also compares our

approach with established methods for feature points localisation on 3D surface meshes in Section

3.4.5. The breakdown of the run-time of our approach is in Section 3.4.6. Finally, the chapter is

concluded with the key findings in Section 3.5.

Chapter 4 presents our metric approach for unifying mesh saliency detection and non-rigid shape

matching. In Section 4.1, the chapter introduces the two problems considered, motivates why they

should be jointly addressed for mutual benefits, and briefly describes our metric contributions for

unifying them. In Section 4.2, the chapter elaborates our unified metric representation, with some

mathematical notations defined in Section 4.2.1 as well as the metric-based inference methods for

saliency detection and shape matching presented in Section 4.2.2 and 4.2.3 respectively. In Sec-

tion 4.3, the chapter presents our proposed deep learning architecture for metric learning. Firstly,

it describes the proposed deep RNN architecture of our approach for multi-scale metric learning

in Section 4.3.1. Secondly, it describes the soft-thresholding operator of our approach for metric

sparsification in Section 4.3.2. Lastly, it describes and analyses the unified loss function of our

approach for metric learning in Section 4.3.3. In Section 4.4, the chapter begins by giving the im-
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plementation details of our approach in Section 4.4.1. It then presents the quantitative evaluation

results of our deep learning architecture in Section 4.4.2, and demonstrates how saliency detec-

tion and shape matching mutually improves each other in Section 4.4.3. After that, the chapter

presents the visual and quantitative comparisons of our approach with others for the two tasks in

Section 4.4.4 and 4.4.5 respectively. Finally, in Section 4.5, the key findings from this study are

discussed.

Chapter 5 presents our metric approach for the task of facial shape beautification in images. Sec-

tion 5.1 introduces the problem background and motivates our metric representation for facial

shape synthesis. Section 5.2 elaborates our approach, which begins with facial landmarks detec-

tion in Section 5.2.1 and then proceeds to our proposed facial metric representation in Section

5.2.2. After that, Section 5.2.3 describes how an input facial metric can be beautified using mean-

shift clustering and Section 5.2.4 shows how the beautified version of the input facial landmarks

can be reconstructed from the beautified metric. In Section 5.2.5, the method of generating beau-

tified facial images is presented. Section 5.3 presents the experimental results, which include

full-face beautification results in Section 5.3.1, quantitative user study results in Section 5.3.2,

user-controlled beautification results in Section 5.3.3, and run-time information in Section 5.3.4.

Finally, the chapter is concluded in Section 5.4.

Chapter 6 presents our extension work on the joint modelling of realistic human shapes and poses.

In this chapter, Section 6.1 introduces the problem background and our key contributions. Section

6.2 describes our proposed system, where we first elaborates shape and pose embedding in Section

6.2.1, then presents our approach of generative modelling in the auto-encoding space in Section

6.2.2, and finally list the implementation details in Section 6.2.3. After that, Section 6.3 presents

the experimental results and Section 6.4 concludes the chapter.

Chapter 7 summarises the key contributions of this thesis and discusses the future work for saliency

detection in 7.1, non-rigid shape matching in 7.2, and facial shape beautification in 7.3.
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Chapter 2

Literature Review

In this chapter, we review the existing work on shape representations in Section 2.1, on shape

analysis in Section 2.2, and on shape synthesis in Section 2.3. For shape analysis, we review mesh

saliency detection and non-rigid shape matching in Section 2.2.1 and 2.2.2 respectively. For shape

synthesis, we review facial shape beautification and human shape and pose modelling in Section

2.3.1 and 2.3.2 respectively. We discuss the existing methods and highlight the contributions of

our proposed ones for shape analysis and synthesis.

2.1 Shape Representations

The representation of geometric shapes is perhaps the most fundamental concept in computer

graphics, geometry processing, and shape analysis. There have been different levels of shape

representations proposed in the past, with their respective most suitable applications. Here, we

broadly classify them into the following categories and highlight the difference of our proposed

metric representation with them.

Polygonal Meshes. Perhaps the most popular shape representation in computer graphics is the

polygonal mesh, which is the standard format for computer graphics rendering system such as

OpenGL and DirectX. A mesh consists of a set of vertices and a set of edges that connect the

adjacent vertices (Botsch et al., 2010), sometimes with the subdivision structure (DeRose et al.,

1998) or the progressive structure (Hoppe, 1996) to capture varying levels of geometric details.

Polygonal meshes are most suitable for graphics rendering and differential properties computation
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(Meyer et al., 2002) because of their low-level structure. However, they are not convenient for

high-level shape analysis because it remains very difficult to infer semantic knowledge directly

from collections of vertices and edges. Differently, our metric representation is free of the low-

level topology constraints and directly captures the pairwise relationship among all points of a

shape, which as a result enables more efficient shape analysis and synthesis.

Parameterisations. Another very popular representation of shapes are their parameterisations,

which can be on the rectangular domain (Gu et al., 2002), the spherical domain (Sheffer et al.,

2004), the cube domain (Tarini et al., 2004), or arbitrary domains (Kraevoy and Sheffer, 2004).

These parameterisations are essentially equivalent to their polygonal mesh counterparts and most

suitable for texturing and storing. However, they still encode low-level geometry details and re-

main difficult for shape analysis and synthesis. In contrast, our metric representation is free of

the underlying domain selection and therefore focuses more on the domain-invariant semantic

knowledge of shapes.

Laplacians. The Laplacian of a mesh is a square symmetric matrix that captures the geometric

relationship among locally adjacent vertices. Applying the Laplacian on the vertex coordinates

produce the so called differential coordinates that represent the displacement from each vertex to

the mean position of its one-ring neighbours (Belkin et al., 2008). As the differential coordinates

encode the local surface details, the Laplacian is widely used for mesh editing (Sorkine et al.,

2004) and mesh optimisation (Nealen et al., 2006). Also, the eigenvectors of the Laplacian cap-

ture the geometry details of varying frequencies and thus are extensively used for surface filtering

(Vallet and Lévy, 2008) and spectral processing (Zhang et al., 2010). Although our metric rep-

resentation is also of the square matrix form, it is different from the Laplacian in that it captures

the global pairwise relationship among all points of a shape, rather than the relationship among

locally adjacent points. Recently, there has been work on recovering shapes from given Laplacians

(Boscaini, Eynard, Kourounis and Bronstein, 2015). However, due to the low-level nature of the

Laplacian, the method cannot incorporate user inputs in the reconstruction process and requires

iterative optimisation. In contrast, our metric representation admits high-level user designs and

permits much more efficient shape reconstruction.

Semantic Representations. More recently, there have been machine learning and deep learning

methods proposed for inferring high-level abstract feature representations from low-level geomet-
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ric data for semantic shape analysis. The features can be learned from raw point clouds (Qi, Su, Mo

and Guibas, 2017a; Qi, Yi, Su and Guibas, 2017), geometry images (Sinha et al., 2016), polygonal

meshes (Masci et al., 2015), or Laplacians (Litman and Bronstein, 2014; Boscaini, Masci, Rodolà,

Bronstein and Cremers, 2016; Boscaini, Masci, Melzi, Bronstein, Castellani and Vandergheynst,

2015). They have been used for a number of tasks such as classification and segmentation but

remain limited for the task of mesh saliency detection we focus on in this thesis. This is because

they mostly formulate shape analysis as per-point regression or classification, without correlating

all points together for a holistic analysis. In contrast, our metric representation derives the saliency

of all points as the principal eigenvector of a metric and therefore naturally allows for a holistic

and more accurate analysis. Also, the previous feature representations are mostly used for analysis

rather than synthesis, while our metric representation enables shape reconstruction from a given

metric effortlessly.

2.2 Shape Analysis

2.2.1 Mesh Saliency Detection

Visual Attention Modelling

The theoretical foundation of visual attention can be traced back to (Treisman and Gelade, 1980),

where Treisman and Gelade proposed “Feature-Integration Theory” which suggests what and how

visual features are combined to direct human visual attention. A feed-forward computational

method to incorporate these features was developed by (Koch and Ullman, 1987), indicating that

salient image locations are visually distinct from their surroundings. A centre-surround operator

on low-level image features was implemented by (Itti et al., 1998) for saliency detection. After

that, a large body of visual saliency methods have been proposed in computer vision (Harel et al.,

2006; Hou and Zhang, 2007; Ji et al., 2019; Borji and Itti, 2013). Our proposed method is also for

visual attention modelling but works on 3D surface meshes instead of 2D images.

Saliency Detection for 3D Scenes

To accelerate realistic rendering, (Yee et al., 2001) used the method of (Itti et al., 1998) to detect

salient regions of coarsely rendered scenes and focused rendering resources on these important
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regions. Similar to (Yee et al., 2001), (Longhurst et al., 2006) controlled per-pixel ray sam-

pling density based on detected salient regions. Afterwards, (Sundstedt et al., 2007) extended

the idea to participating media rendering and achieved realistic results with low computational

costs. (Mantiuk et al., 2003) made an attempt to compress animated scenes with the guidance of

image saliency. By only using salient regions of rendered images, these methods have no access

to any depth information of 3D scenes, which plays an important role in human visual attention

(Howard, 2002). In contrast, our method analyses 3D geometry directly and therefore can detect

structure-related saliency information.

Saliency Detection for Surface Meshes

We classify existing mesh saliency detection methods into the following five categories:

Local Contrast. Inspired by (Itti et al., 1998), (Lee et al., 2005) introduced the concept of mesh

saliency using a centre-surround operator on Gaussian-weighted mean curvatures. (Gal and Cohen-

Or, 2006) defined the saliency of a region based on its relative size, curvatures, and curvature

changes. They detected and segmented salient regions for partial shape matching. (Feixas et al.,

2009) proposed an information-theoretical framework for viewpoint selection and mesh saliency

computation. (Zhao et al., 2016) computed saliency from local normal information for subsequent

refinement. These models compute saliency as local contrast of surface properties, generally by

comparing local regions to their neighbours. (Jeong and Sim, 2017) used normal information to

compute both view-independent and view-dependent saliency. However, local contrast methods

tend to wrongly identify bumpy and noisy regions as salient. Our method addresses this issue by

extending the region comparison from a local to a global context.

Spectral Irregularity. Based on the work of (Hou and Zhang, 2007), (Song et al., 2014) assumed

that saliency is hidden in the irregularity of the log-Laplacian spectrum of a mesh. They extracted

such irregularity and transformed it back to the spatial domain to compute saliency. Mesh simpli-

fication (Garland and Heckbert, 1997) was used to tackle the costly eigendecomposition of a large

Laplacian matrix. Due to the spatial unawareness of spectral basis, this method has difficulties in

capturing some individual local salient regions. Our method, instead, works in the spatial domain

and can capture salient regions from small to large scales.

Shape Discrimination. Analogous to feature selection in classification problems, (Shilane and
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Funkhouser, 2007) detected salient surface regions for distinguishing shapes of different object

categories. The detection results depend not only on a semantically categorised shape database

but also on the object categories of input meshes. In many applications, however, these semantic

annotations remain scarce and their collection is labour-intensive. Our method does not require any

semantic data for saliency detection, thereby allowing the use for geometry processing applications

that do not have semantic annotations.

Learning-based Detection. Through a large-scale online user study, (Chen et al., 2012) obtained

massive amounts of salient surface points for a library of meshes. They used the obtained data to

train regression models for saliency prediction. A variety of low-, middle-, and high-level cues,

such as curvatures, geodesics, segmentation, and symmetries, were incorporated. The trained

models performed well on the training set but showed limited generalisation abilities for novel

meshes out of training datasets. Our method does not require training before use and shows good

generalisation to diverse object categories.

Global Rarity. (Leifman et al., 2012) detected more globally rare surface regions for viewpoint

selection. (Wu et al., 2013) combined local contrast with global rarity to compute mesh saliency.

(Pingping et al., 2015) detected salient regions by identifying non-salient backgrounds via mani-

fold ranking. These methods aim to suppress repeated patterns across a mesh surface by extending

region comparison from a local to a wider context. However, they require mesh segmentation and

geodesic distance computation which are not robust to topological flaws such as holes and non-

manifold structures of meshes. Our method belongs to this category and is based on a global

metric representation, which is robust to underlying potentially poor mesh tessellations.

Mesh Saliency Evaluation

(Howlett et al., 2005) computed saliency maps from human eye fixations to guide mesh simplifi-

cation. They demonstrated that preserving salient details could improve the fidelity of simplified

meshes. Using eye-tracking experiments, (Kim et al., 2010) validated that saliency (Lee et al.,

2005) was better compared to mean curvature for eye fixation prediction. We extend the eye-

tracking experiment of (Kim et al., 2010) from 2D to 3D and build a 3D eye fixation dataset

suitable for public saliency detection benchmarking.
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Mesh Saliency Applications

Numerous graphics applications have benefited from mesh saliency. Kim and Varshney used

saliency to edit surface (Kim and Varshney, 2008) and volume (Kim and Varshney, 2006) regions

for highlighted visualization. (Liu et al., 2007) and (Miao and Feng, 2010) employed saliency

to detect feature points and extremum lines for mesh segmentation and depiction. Recently, (Gu

et al., 2014) combined saliency with Poisson sampling for adaptive depth image compression.

Other applications include mesh simplification (Lee et al., 2005; Shilane and Funkhouser, 2007;

Wu et al., 2013; Song et al., 2014), viewpoint selection (Lee et al., 2005; Shilane and Funkhouser,

2007; Leifman et al., 2012; Secord et al., 2011), shape matching (Gal and Cohen-Or, 2006; Shi-

lane and Funkhouser, 2007), mesh sampling (Wu et al., 2013), surface reconstruction(Song et al.,

2014), and crowd modelling (McDonnell et al., 2009). We apply our method to the task of fea-

ture point detection which is a fundamental building block in many geometry processing applica-

tions.

2.2.2 Non-rigid Shape Matching

Model-based Shape Matching

Non-rigid shape matching finds semantically meaningful surface correspondences across meshes

irrespective of the deformations among them (Van Kaick et al., 2011). Traditional methods mainly

assumed the deformation to be isometric (Ovsjanikov et al., 2012) or conformal (Kim et al., 2011)

and then searched for matchings within the prescribed deformation space. The former assumes that

the deformation between a pair of meshes preserve the curve lengths on the surfaces, while the

latter assumes that only the angles on the surfaces are maintained. Due to the isometry-invariant

property, the surface Laplacian (Rustamov, 2007) has been widely used in the spectral embedding

(Sun et al., 2009), functional mapping (Ovsjanikov et al., 2012), and quadratic matching (Maron

et al., 2016) formulations of shape matching. Both isometric and conformal deformations, how-

ever, are overly restricted and can bias shape matching towards unfavourable solutions.

Learning-based Shape Matching

Recent methods learned deformation-invariant shape embeddings for correspondence search (Cor-

man et al., 2014; Litman and Bronstein, 2014; Boscaini, Masci, Rodolà, Bronstein and Cremers,
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2016; Cosmo et al., 2016; Wei et al., 2016) or directly learned point label classifiers for corre-

spondence prediction using random forests (Rodolà et al., 2014), convolutional neural networks

(CNNs) (Boscaini, Masci, Melzi, Bronstein, Castellani and Vandergheynst, 2015; Boscaini, Masci,

Rodolà and Bronstein, 2016), and multi-layer perceptrons (MLPs) (Litany et al., 2017). Both

streams of methods learned for individual points without considering their saliency information.

Also, the first stream of methods learned embeddings on a per-point basis and lacked orthogo-

nality and smoothness guaranties that hold for the Laplacian embeddings (Rustamov, 2007). Our

method instead guarantees that the learned embeddings are orthogonal and smooth. More impor-

tantly, it exploits saliency to ensure that the resulting embeddings are localised on semantically

important surface regions. This is particularly valuable in improving both the model-based and

learning-based methods for matching non-isometric pairs of shapes.

2.3 Shape Synthesis

2.3.1 Facial Shape Beautification

Facial Modelling and Editing

One approach to face beautification in natural photos is reconstructing 3D faces from 2D images

and applying the 3D face rectification method of (Liao et al., 2012). Despite the development

of statistical shape models (Blanz and Vetter, 1999; Tena et al., 2011; Maleš et al., 2019) and

example-based models (Kemelmacher-Shlizerman et al., 2011; Hassner, 2013), 3D face recon-

struction with a wide range of poses and expressions remains a challenging ill-posed problem.

While the work of (Yang et al., 2011) can be used for facial component transfer, it does not ad-

dress the problem of face beautification. Therefore, following (Leyvand et al., 2008; Chen et al.,

2014), we focus on 2D face beautification in this work.

Textural, expressive, and photometric traits also have important influence on the perception of

facial attractiveness. As a result, a large body of research have been devoted to the editing of these

traits in 2D images, such as face makeup (Guo and Sim, 2009; Scherbaum et al., 2011; Zhang

et al., 2019), expression editing (Yang et al., 2011, 2012), pimples removal (Brand and Pletscher,

2008), photometry correction (Joshi et al., 2010), and hair decoration (Pasupa et al., 2019). Our

work complements these methods in that we focus on editing the geometric trait of faces in 2D
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images.

Facial Attractiveness Analysis

Computer techniques have been used for facial attractiveness analysis over two decades. We refer

the readers to (Laurentini and Bottino, 2014) for an excellent review of the field. (Grammer and

Thornhill, 1994) composed different facial images to verify the effect of symmetry and average-

ness on the perception of facial attractiveness. Later, (Zhang et al., 2011) validated the effect of

averageness using geometrically transformed faces. (Schmid et al., 2008) took a rule-based ap-

proach to examine that human-annotated attractiveness scores were consistent with that predicted

by neoclassical canons, symmetries, and golden ratios. (Eisenthal et al., 2006) represented the

first to use machine learning for facial attractiveness prediction. They employed human subjects

to rate a library of faces and trained attractiveness regression models using the appearance and

geometry features of faces. Following this, a number of learning-based facial attractiveness pre-

diction methods have been proposed (Zhang et al., 2017; Gan et al., 2014; Chen et al., 2014). As

it is ambiguous to rate the attractiveness of non-frontal, non-neutral faces, previous work mostly

focuses on the analysis of frontal portraits. Therefore, we propose an unsupervised beautification

method for non-frontal, non-neutral faces.

Facial Attractiveness Enhancement

Compared with facial attractiveness analysis, the enhancement problem has received relatively

less research attention. (Liao et al., 2012) optimised the shape of a 3D face model by deforming

it towards the beauty cannons summarised by (Schmid et al., 2008). The method works well for

neutral faces but has inherent difficulties of generalising to non-neutral faces. (Leyvand et al.,

2008) was the first to approach attractiveness enhancement using machine learning. Their results

validated the feasibility of a data-driven approach to face beautification. Recently, (Chen et al.,

2014) searched for a convex combination of attractive faces while maximising its resemblance to

the original face. However, both methods require human annotations of attractiveness scores for

training and cannot work for non-frontal, non-neutral faces, which are actually the main subjects

of real-world photos. Deep learning has also been applied to facial attractiveness enhancement

(Li et al., 2015). However, the resulting system does not allow for the controllability of beautifi-

cation due to the black-box nature of deep learning techniques. In contrast from the methods of
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(Leyvand et al., 2008; Chen et al., 2014; Li et al., 2015), our proposed one works for faces with

non-frontal poses and non-neutral expressions in images. Benefiting from the linearity of our met-

ric representation, our method easily allows users to preserve certain facial parts while beautifying

the remaining.

2.3.2 Human Shape and Pose Modelling

Here, we briefly discuss existing work on modelling the prior distributions of human body shapes

and poses. Because human shapes and poses have geometric regularities, they are commonly

assumed to be lying on the underlying low-dimensional manifolds, which are embedded in the

original geometry ambient spaces. Linear subspace methods assume the shape and pose man-

ifolds to be linearly embedded in the geometry spaces (Blanz et al., 1999; Loper et al., 2015),

which can be computed using the linear PCA dimension reduction method. The drawback of lin-

ear methods is that they mostly use Gaussian as the generating distributions, which are globally

supported on the full subspace. Sampling in the full subspace may produce non-realistic results

(Kanazawa et al., 2018). More recent work makes a more realistic assumption of human shape

and pose manifolds, that they are non-linearly embedded in the geometry spaces. The variational

auto-encoding (VAE) framework of (Kingma and Welling, 2013) has been exploited to learn hu-

man shape and pose manifolds in (Tan et al., 2018) and (Habibie et al., 2017) respectively. There

are also methods using GANs (Goodfellow et al., 2014) to model human shape and pose mani-

folds (Gokaslan et al., 2018; Kanazawa et al., 2018; Chen et al., 2017). We prefer GANs over

VAE for non-linear distribution modelling in this work because the former have been extensively

validated to be capable of producing sharp samples (e.g. images and shapes), while the latter tend

to produce over-smoothed results. The main contribution of this work is our finding that learn-

ing the shape and pose manifolds in the auto-encoding spaces with GANs produces high-quality

samples.
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Chapter 3

Metric-based Mesh Saliency

Detection

In this chapter, we propose a metric representation approach for the shape analysis problem of

mesh saliency detection. As shown in Fig. 3.1, the key feature of our approach is that we derive a

saliency map not from the input mesh but from a feature distance metric computed from it. This

allows us to gain a theoretical understanding of how saliency can be well-defined on 3D shapes,

which we elaborate in the following sections.

3.1 Introduction

The human visual system has a remarkable ability to quickly and effortlessly identify a small

number of interesting objects in a visual field. This ability appears mainly stimulus-driven and is

commonly referred to as visual attention, which helps suppress the vast amount of visual inputs

that are not essential to subsequent cognitive processing tasks (Borji and Itti, 2013).

In computer vision, numerous computational methods have been proposed to mimic the visual

attention mechanism for efficient image understanding (Itti et al., 1998; Harel et al., 2006; Hou and

Zhang, 2007; Ji et al., 2019). Inspired by the idea of saliency-guided image processing, (Lee et al.,

2005) introduced the concept of mesh saliency to computer graphics, highlighting its advantages

over traditional geometric quantities (e.g. curvatures) for assessing the perceptual importance of

mesh regions. By prioritising the processing of mesh regions according to their saliency values,
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3D Surface Mesh
        Metric 

Representa�on
Saliency Map

Computa�on Inference

Figure 3.1: The Overview of Our Unified Metric Framework for Mesh Saliency Detection.

Given an input 3D surface mesh, our framework first computes a metric representation and then

derives a saliency map from the metric using global optimisation.

the perceptual quality of processed meshes can be largely retained and the processing time can

be effectively reduced. Such examples include shape simplification (Lee et al., 2005; Shilane and

Funkhouser, 2007; Wu et al., 2013; Song et al., 2014), shape matching (Gal and Cohen-Or, 2006;

Shilane and Funkhouser, 2007), realistic rendering (Kim and Varshney, 2006, 2008; Miao and

Feng, 2010; Sundstedt et al., 2007), shape segmentation (Liu et al., 2007; Song et al., 2014), shape

reconstruction (Song et al., 2014), and crowd modelling (McDonnell et al., 2009).

Despite the vast use of mesh saliency in geometry processing and computer graphics, the definition

of what constitutes saliency remains elusive in the field. The fundamental challenge is that the

attention mechanism of human vision is far from being fully understood (Borji and Itti, 2013).

Regarding this, many efforts have been devoted to hand-crafting some computational methods

that take a 3D polygonal mesh as input and produce a saliency map as output. For example, the

local contrast methods of (Lee et al., 2005; Gal and Cohen-Or, 2006; Feixas et al., 2009) compute

the saliency of a local region as the difference of its differential properties from its surroundings.

The global rarity methods of (Leifman et al., 2012; Wu et al., 2013; Pingping et al., 2015; Song

et al., 2014) compute the saliency of regions in wider surroundings and are able to highlight more

distinct shape features. However, the former mainly respond to local geometric variations and

suffer from surface noises and bumps, while the latter are sensitive to topological flaws due to the

use of mesh connectivity for saliency computation.

There are also methods using high-level semantic annotations for saliency computation. One ex-

ample is the method of (Shilane and Funkhouser, 2007) that detects salient regions effective at dis-

tinguishing shapes of different object categories. The other example is the tree-regression-based

method of (Chen et al., 2012), which learns to predict saliency from low- and high-level geometric

properties such as curvatures and symmetries. However, both methods require category-specific

human annotations for saliency computation and therefore cannot generalise to more object cate-

gories without annotations.
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3.1. Introduction

In view of the above challenges, we propose a new saliency detection method that does not re-

quire human annotations, generates accurate saliency maps much closer to ground-truth, and is

robust to mesh noises, simplification and holes. Our method is mathematically derived from two

fundamental principles of saliency: rarity and sparsity. The rarity principle regards those regions

distinct from others to be salient, and the sparsity principle ensures that only a small number of

truly distinct regions can pop out from the saliency computation process. Without enforcing spar-

sity while optimising rarity, the computed saliency maps would become overly uniform and very

few regions can stand out and be correctly recognised as salient.

Specifically, we propose a sparse metric-based rarity optimisation problem for saliency compu-

tation. The optimisation variable of the problem is the optimal saliency map to be solved for,

and the optimisation objective is the continuous rarity of a metric encoding the shape distance be-

tween every pair of local regions. We incorporate the sparsity principle of saliency by constraining

the L0-norm of any feasible saliency map solutions. As a result, our saliency detection method

amounts to solving a sparse eigenvalue problem (Yuan and Zhang, 2013), with the optimal saliency

map being the sparse eigenvector of the metric of a mesh. By averaging multi-scale metrics into a

scale-free metric, our method is able to discover a compact set of multi-scale salient regions from

raw geometric features. By avoiding the use of mesh connectivity in metric representation, our

method is robust to mesh flaws such as simplifications, noises, and holes.

To evaluate the performance of saliency detection methods, we build a perceptually motivated 3D

eye fixation dataset from 50 graphics meshes and 8 human subjects through a 3D eye-tracking

experiment. We also implement the highly cited saliency detection methods of (Lee et al., 2005;

Leifman et al., 2012; Pingping et al., 2015), whose original source codes are not publicly avail-

able for large-scale quantitative benchmarking. We perform extensive evaluations on competing

methods, such as (Lee et al., 2005; Leifman et al., 2012; Song et al., 2014; Pingping et al., 2015),

using our eye fixation dataset and the Schelling saliency dataset of (Chen et al., 2012). The results

show that our computed saliency maps are closer to the ground-truth than that generated by the

competing methods of (Lee et al., 2005; Leifman et al., 2012; Song et al., 2014; Pingping et al.,

2015). To showcase the usefulness of our computed saliency maps, we apply them to feature point

localisation (Dutagaci et al., 2012) and compare to the established feature detectors of (Lee et al.,

2005; Novatnack and Nishino, 2007; Castellani et al., 2008; Sun et al., 2009). The results show
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(a) (b) (c) (d) (e)

Mesh Sample Points Shape Descriptors Metric Sample Saliency Vertex Saliency

Figure 3.2: The Overview of Our Metric-based Mesh saliency Detection Method. The steps

from (a)-(e) are mesh sampling, shape descriptor construction, metric computation, saliency opti-

misation, and vertex saliency interpolation respectively. We use red and blue colours to indicate

high and low saliency values respectively.

that our saliency-guided feature detector outperforms others in terms of feature point localisation

accuracy.

We propose three contributions in this study:

• We propose a sparse metric-based rarity optimisation method for saliency detection. Our

method is shown to be able to produce accurate saliency maps without relying on human

annotations while being robust to mesh simplifications, noises, and holes.

• We build a perceptually motivated 3D eye fixation dataset for saliency detection bench-

marking. The dataset extends the eye fixation experiment of (Kim et al., 2010) from 2D to

3D, and complements the Schelling saliency dataset of (Chen et al., 2012) that is not con-

structed from real captured human eye movements. Our publicly available dataset can be

downloaded from this link∗.

• We perform a comprehensive evaluation of our approach and the distinctive previous meth-

ods of (Lee et al., 2005; Leifman et al., 2012; Pingping et al., 2015) on our eye fixation

dataset and the Schelling saliency dataset of (Chen et al., 2012). The results show that our

computed saliency maps are closer to the ground-truth annotations compared to that of (Lee

et al., 2005; Leifman et al., 2012; Song et al., 2014; Pingping et al., 2015). Our open-source

codes can be downloaded from this link†.
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3.2. Our Metric Approach to Mesh Saliency Detection

3.2 Our Metric Approach to Mesh Saliency Detection

3.2.1 Overview

We illustrate the computation steps of our proposed saliency detection method in Fig. 3.2. Given

a 3D polygonal surface mesh as input, we first sample a set of random points on the surface

(a). For each sample point, we construct a shape descriptor that characterises its local shape

information (b). We then compute a matrix of squared Euclidean distances among all sample

points using their shape descriptors (c). From this metric representation, we derive the optimal

saliency map by solving a sparse metric-based rarity optimisation problem (d). Finally, we map

the computed saliency from the sampled points back to the underlying mesh vertices via Gaussian

filtering (e).

3.2.2 Mesh Sampling

To achieve the translation and uniform scaling invariance of saliency detection, we normalise an

input mesh by locating its centroid at the origin and uniformly scaling its radius (i.e. the half

diagonal length of its tight bounding box) to 1. As a surface mesh is sometimes either under-

or over-tessellated, we randomly sample a set of points on the surface of the normalised mesh

(Shilane and Funkhouser, 2007), so that the quality of computed saliency maps is maintained

while the computational cost remains invariant to the original size of the mesh. We sequentially

sample a triangle of the mesh with the probability proportional to the area of the triangle, and

then generate a sample point on the triangle using randomly generated barycentric coordinates.

We denote the sample point set as P = {pi}Ni=1 and empirically find that N = 5000 points are

sufficient to cover the whole surface. We use this value in all of our experiments. We note that

the fixed-size sampling method may have difficulty capturing the fine-scale geometric details of

highly complex meshes or scenes. In the future work, we plan to adjust the sample size based

on the ratio of the surface area of a mesh to the volume of its tight bounding box, so that sample

points can be more efficiently allocated to sufficiently represent surface details.

As observed in (Lee et al., 2005; Shilane and Funkhouser, 2007), salient regions can range from

small surface details to large surface parts. To accommodate the multi-scale nature of saliency,

∗https://drive.google.com/open?id=1k88SJOGEGSUKneDQHvBHp5TE2CROA4DK
†https://drive.google.com/open?id=14gzatUYMeRGEb0F 3GOihqD3Y0BojZFF
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Chapter 3. Metric-based Mesh Saliency Detection

we define a succession of increasingly larger regions for each sample point on the surface, S =

{0.02, 0.04, 0.06, 0.08, 0.1}. We denote a region pi,τ as a spherical volume of the radius τ ∈ S ,

with the volume centered at the sample point pi ∈ P . We use this region representation be-

cause it is independent of the underlying potentially poor mesh tessellation (i.e. irregular meshes,

non-manifold edges, and disconnected components) and easily supports multi-scale saliency com-

putation by iterating through each scale in S . We find that S works well for capturing both small-

and large-scale salient features in practice.

3.2.3 Shape Descriptor Construction

For each region pi,τ defined in the above, we compute a feature vector f i,τ to characterise its

local shape information. We choose the harmonic shape descriptor (Kazhdan et al., 2003) for

three reasons. First, it is rotation-invariant and therefore does not require orienting a mesh before

saliency computation. Second, it has a theoretically guaranteed minimal information loss, which

is not met by other shape descriptors (Kortgen et al., 2003; Salti et al., 2014). Third, it has a

spherical construction and naturally supports multi-scale saliency computation by adjusting the

radius of the sphere.

To compute the descriptor, we convert a mesh into a Gaussian distance field of resolution 256 ×

256 × 256 and partition each region (i.e. a spherical volume) into 8 equally-spaced concentric

shells (Shilane and Funkhouser, 2007). We sample the Gaussian distance field on these shells and

compute the amplitudes of the first 8 spherical harmonic frequency bands for each shell (Kazhdan

et al., 2003). Therefore, the shape descriptor length of each region is 8× 8 = 64. We find that this

feature granularity is sufficient to discriminate regions for effective saliency computation.

3.2.4 Sparse Metric-based Rarity Optimisation

Traditionally, the methods of (Lee et al., 2005; Gal and Cohen-Or, 2006; Feixas et al., 2009;

Leifman et al., 2012; Wu et al., 2013; Pingping et al., 2015; Shilane and Funkhouser, 2007; Zhao

et al., 2016; Jeong and Sim, 2017) compute saliency from some hand-crafted rules, lacking a

principled goal of optimisation. In contrast, we derive saliency from optimising the rarity of a

global metric representation while enforcing the sparsity of saliency. The rarity principle regards

those regions that have the maximum distinction from others as salient, while the sparsity principle
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Figure 3.3: Saliency Detection With and Without Sparsity. Left: our computed saliency map

without sparsity. Middle: our computed saliency map with sparsity. Right: Lorenz curves and

Gini indices of saliency maps. Our map without sparsity is both visually and quantitatively sim-

ilar to the uniform one, while our map with sparsity is quantitatively sparser and visually more

concentrated on distinct regions.

ensures that only a compact set of truly distinct regions can stand out. To this end, we propose the

following optimisation problem:

argmaxR(ϕ(P)) = ϕ(P)TM(P)ϕ(P), s.t. ϕ(P) ≥ 0 , ‖ϕ(P)‖ = 1 and ‖ϕ(P)‖0 ≤ µN

(3.1)

where ϕ(P) ∈ RN is the saliency map of the sample points P to be solved for (ϕi(P) is the

saliency value of point pi), and M(P) ∈ RN×N is the metric representation that encodes the

pairwise shape contrasts among all sample points. Additionally, the first constraint ensures the

solution saliency map to be element-wise non-negative, and the second constraint ‖ϕ(P)‖ =
√∑

iϕ
2
i (P) = 1 requires the map to have a unit Euclidean norm.

The Rarity Principle of Saliency. We refer to the objective of the optimisation problem (3.1)

as the rarity principle of saliency. After rewriting it as R(ϕ(P)) =
∑

i,j ϕi(P)ϕj(P)Mij(P)

and assuming that the saliency map ϕ(P) is binary (i.e. 1 for salient points and 0 otherwise),

we can see that the objective exactly sums the shape contrasts among all sample points together.

By globally optimising this combinatorial problem with the sparsity constraint, we would obtain

a set of salient regions (associated with the salient points) that are the most distinct from others.

However, this problem is known to be NP-hard to solve (Feige et al., 2001) and the resulting map

is not continuous for many applications. Therefore, we relax a saliency map to be continuous-

valued and arrive at our continuous metric-based rarity optimisation problem (3.1), so that it can

be much more efficiently solved and the optimal saliency map is inherently continuous.
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Chapter 3. Metric-based Mesh Saliency Detection

The Sparsity Principle of Saliency. We refer to the third constraint of the optimisation problem

(3.1) as the sparsity principle of saliency. The constraint ‖ϕ(P)‖0 =
∑

i I[ϕi(P) 6= 0] ≤ µN

enforces the fraction of detected salient regions to be less than 0 < µ ≤ 1, where I[·] is the

indicator function. When µ = 1, it has no use because all sample points are feasible to be identified

as salient. When 0 < µ < 1, it guarantees that only a fraction of truly unique salient regions can

be retained. We find that setting µ to 0.2 works well in practice. In the future work, we plan to

continuously adjust this hyper-parameter from 1 to 0 to track the salient points that are persistent

through the process, which can be identified as the true salient points.

To finely quantify and compare the sparsity patterns of saliency maps, we consider the Lorenz

curves and Gini indices of them for analysis (Farris, 2010). Let ϕ(1)(P) ≤ ϕ(2)(P) ≤ · · · ≤

ϕ(N)(P) be the non-decreasing order statistics of a saliency map ϕ. The Lorenz curve is a piece-

wise linear function interpolating N + 1 points (Fi, L(Fi)), where for 0 ≤ i ≤ N , Fi = i
N

denotes the proportion of the i least salient regions and L(Fi) =
∑i

j=1 ϕ(j)(P)
∑N

j=1 ϕ(j)(P)
encodes the propor-

tion of saliency values assigned to these regions. As Fi varies evenly from 0 to 1, L(Fi) grows

increasingly from 0 to 1, tracing out a concave curve from the origin to (1, 1). The Gini index

associated with a Lorenz curve is one minus two times the area under the curve. As shown in

Fig. 3.3, the Lorenz curve of a uniform saliency map is the straight line from the origin to (1, 1),

with the lowest Gini index of 0 indicating the absolutely even distribution of saliency values to all

regions. The other extreme is the singular saliency map, which distributes all the saliency values

only to a single region and produces the highest Gini index of 1. We also show the saliency maps

of the Dragon with and without sparsity in Fig. 3.3. It can be seen that the map without sparsity is

visually and quantitatively very close to the uniform one, suggesting very weak discrimination be-

tween salient (i.e. the long body) and non-salient (i.e. the head and claws) regions of the Dragon.

By enforcing the sparsity constraint in (3.1), we dramatically push the map away from the uniform

one and highlight the salient regions of the Dragon much more clearly.

Multi-Scale Saliency Computation. To capture small- and large-scale salient regions, we use

a metric for each scale to represent the global pairwise shape contrasts among all sample points

for saliency computation. Specifically, we compute M τ
ij(P) = ‖f i,τ − f j,τ‖2 as the squared

Euclidean distance between the descriptors of a pair of regions, and M τ (P) ∈ RN×N as the

metric consisting of these descriptor distances among all points at scale τ . Due to the use of such

28



3.2. Our Metric Approach to Mesh Saliency Detection

a global metric representation, we are able to avoid the ambiguity of manually choosing a suitable

context for saliency detection, as traditionally done in the methods of (Lee et al., 2005; Gal and

Cohen-Or, 2006; Feixas et al., 2009; Leifman et al., 2012; Wu et al., 2013; Pingping et al., 2015;

Shilane and Funkhouser, 2007; Zhao et al., 2016; Jeong and Sim, 2017). More importantly, the

representation is decoupled with the underlying mesh tessellation, which may contain topological

flaws that prevent robust saliency computation.

Without the sparsity constraint in (3.1), the objective is the Rayleigh quotient of a metric M τ (P)

and the saliency map ϕτ (P) globally optimising it is the principal eigenvector of M τ (P) (Godsil

et al., 2001). Due to the non-negativity of M τ (P), its principal eigenvector is guaranteed to be

non-negative and unique. It can be efficiently computed from M τ (P) using the power method

(Yuan and Zhang, 2013). With the sparsity constraint, we can also efficiently solve the problem

(3.1) using the truncated power method (Yuan and Zhang, 2013). We describe the solution process

as follows:

• Initialisation. We shift all the eigenvalues of M τ (P) to (0,∞) to make it positive definite,

M̃ τ (P) ←M τ (P) + νI , where ν is the principal eigenvalue of M τ (P) computed from

the power method and I is the identity matrix.

• Iteration. We start from the principal eigenvector of M τ (P) computed from the power

method ,and then alternate between setting the (1−µ)N smallest values of the current map

to zeros and multiplying it by M̃ τ (P) followed with normalisation, until converging to the

optimal sparse saliency map.

Multi-Scale Saliency Integration To capture both small- and large-scale salient features, we in-

tegrate multi-scale shape information by summing the metrics of all scales together: M(P) =

∑
τ M

τ (P). We then compute the integrated saliency map ϕ(P) from M(P) by solving the

problem (3.1) using the method described in the above. This way, we obtain a scale-free saliency

map that fully adheres to the rarity and the sparsity principles of saliency. We also successfully

avoid the cost of computing, summing, and then discarding multi-scale saliency maps as tradition-

ally done in (Lee et al., 2005; Gal and Cohen-Or, 2006; Feixas et al., 2009; Leifman et al., 2012;

Wu et al., 2013; Pingping et al., 2015; Song et al., 2014; Shilane and Funkhouser, 2007).

As shown in Fig. 3.4, the smallest-scale saliency map responds strongly to the local surface bumps
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Scale 1 (0.02) Scale 2 (0.04) Scale 3 (0.06)

Scale 4 (0.08) Scale 5 (0.1) Integrated

Figure 3.4: Multi-scale Saliency Integration. The saliency map of each scale is computed from

the corresponding metric and the integrated map is computed from the sum of the metrics of all

scales.

and textures of the Bunny. As the scale is increased, larger salient regions such as the mouth, eyes,

ears, and feet are accurately captured. The final scale-free map effectively retains these visually

salient regions while suppressing other undesirable local surface variations.

3.2.5 Vertex Saliency Interpolation

After computing the saliency values of sample points, we map them back to the underlying mesh

vertices using Gaussian filtering. Let ξv denotes the saliency of a vertex v. We compute ξv as the

Gaussian-weighted average of the saliency values of the sample points close to v:

ξv =

∑
i∈N (v,3σ) exp[−

∣∣∣∣pv − pi
∣∣∣∣2/(2σ2)]ϕi(P)

∑
i∈N (v,3σ) exp[− ||p

v − pi||2/(2σ2)]
(3.2)

where N (v, 3σ) = {i |
∣∣∣∣pv − pi

∣∣∣∣ < 3σ} and σ is the scale parameter of the Gaussian filter. We

use a KD-tree to organise and query sample points for more efficient Gaussian filtering. We find

that σ = 0.02 works well in practice.

3.3 Our 3D Eye Fixation Dataset

As visual saliency is inherently a pre-attentive mechanism of the human visual system (Borji and

Itti, 2013), it is important to evaluate the performance of saliency detection methods using real
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captured human eye movements on 3D surface meshes. However, the previously constructed

saliency datasets are either too small (Howlett et al., 2005), only for 2D rendered images of 3D

meshes (Kim et al., 2010), or not captured from real human eye movements on 3D meshes (Chen

et al., 2012). Therefore, we propose our 3D eye fixation dataset for public saliency detection

benchmarking, which is built as follows (see an example mesh and the collected eye fixations on

the left of 3.7):

Mesh Dataset. We collected 50 meshes that are popularly used in computer graphics research

from the Stanford 3D Scanning Repository (The Stanford 3D scanning repository, n.d.) and the

SHREC2007 Challenge (SHREC’2007 watertight mesh database, n.d.). For each mesh, we fixed

the non-manifold edges and remeshed the surface into good quality, so that all of our evaluated

saliency detection methods can work well on it (Lee et al., 2005; Leifman et al., 2012; Pingping

et al., 2015; Song et al., 2014). In the future, we will include meshes of poorer qualities (e.g.

with holes and non-manifold structures) for more realistic benchmarking in real-world applica-

tions.

Participating Subjects. We hired 8 undergraduate and master students from Beihang University

as human subjects for our study. They were aged 23-28 and have normal or corrected visions. They

were kept unknown about the purpose of our study to reduce the bias of collected data.

Eye-Tracking Experiments. To capture 3D eye movement data, we generated a 48s video for

each mesh that shows its whole surface from 12 key viewpoints. We kept each viewpoint static for

3s and then smoothly switched to the next viewpoint in 1s, so that the visual attention of a subject

can be directed through the whole surface of a mesh. For each subject, we instructed him/her to

sit in a distance of 95-110cm from a 1680 × 1050 LED display. Before the onset of each video

stimulus (corresponding to each mesh in our dataset), we calibrated our used SMI RED250 eye-

tracker by letting the subject gaze at 9 successive black dots on the screen. We considered the

calibration successful if the gaze error was less than 0.8◦, otherwise we repeated the calibration

process. After calibration, we let the subject freely view the displayed video of a mesh and used

the eye-tracker to capture his/her gaze positions on the screen at 250HZ sampling rate, with a gaze

capturing accuracy of 0.4◦.

Data Pre-processing and Aggregation. For each mesh in our dataset, we discarded the first two
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Figure 3.5: Comparison of Our Saliency Maps with the Ground-truth of (Chen et al., 2012).

Each of the 18 shown meshes belongs to a different object category from the dataset of (Chen

et al., 2012). Following (Song et al., 2014), we take the rendered pseudo ground-truth images

from (Chen et al., 2012) because we do not have access to their source code.

and the last two eye fixations of each subject because they can be noisy due to the onset and offset

of the video stimulus. We only retained the 15 2D eye fixations of the longest duration (average

≥ 300ms) for each subject, because these eye fixations were much less noisy and represented

where a subject was gazing towards on the screen. To obtain 3D eye fixations on the surface, we

synchronised the timestamps of the captured 2D eye fixations with camera viewpoints and then

projected them back to the nearest mesh vertices on the surface. Finally, we aggregated the 15

3D eye fixations from each of the 8 subjects to form 120 ground-truth eye fixations on each mesh

surface in our dataset.

3.4 Results

3.4.1 Saliency Detection Results

We show the saliency maps of 18 meshes computed by our method in Fig. 3.5, along with the

ground-truth maps provided by (Chen et al., 2012). Each mesh is randomly chosen from the 20 of

the corresponding object category (Chen et al., 2012). These results indicate several strengths of

our method for saliency detection:
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Figure 3.6: Comparison of Our Saliency Maps with that Generated by Other Methods. The

competing methods include Local Contrast (Lee et al., 2005), Shape Discrimination (Shilane and

Funkhouser, 2007), Global Rarity 1 (Leifman et al., 2012), Global Rarity 2 (Pingping et al., 2015),

Learning-based Detection (Chen et al., 2012), and Spectral Irregularity (Song et al., 2014). Fol-

lowing (Leifman et al., 2012; Pingping et al., 2015; Song et al., 2014), we take the rendered

saliency maps from the original papers of (Leifman et al., 2012; Pingping et al., 2015; Song et al.,

2014; Shilane and Funkhouser, 2007; Chen et al., 2012) because we do not have access to their

source codes. For the method of (Lee et al., 2005), we generate the saliency maps using our own

implementation and visualise them to match the original colour themes.
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• Shape Distinction. Our method successfully detects the globally distinct regions of surface

meshes, such as the protruded parts (the horns, ears, and legs of the Cow), shape extremities

(the hands, feet, and head of the Human), sharp edges (the perpendicular borders of the

Mech), and corners (the claws of the Armadillo).

• Curvature Insensitivity. Our method is shown to be robust to the local curvature changes

of surface regions. As shown for the legs of the Armadillo, they are bumpy and textured but

are effectively suppressed by our method.

• Compactness of Saliency. The saliency maps computed by our method are visually quite

compact, which only highlight a small number of salient regions with a clear boundary

between non-salient ones.

We can also see that our saliency maps are visually close to the ground-truth. This suggests that

they capture the true unknown human visual attention towards surface meshes to some extent.

We note that our method fails to capture some ground-truth salient regions, such as the chest of

Armadillo and the face of Teddy. This is because our method is purely unsupervised without

using any semantic annotations for training or fine-tuning. In Chapter 4, we show that this can be

addressed by learning metric from ground-truth saliency annotations.

3.4.2 Visual Comparisons with Other Methods

We compare our saliency maps with those generated by 6 representative methods in Fig. 3.6. We

choose these methods for comparison because they are the most cited in the field and have distinct

methodologies. We highlight the merits of our method over each of them as follows:

• Local Contrast. The method of (Lee et al., 2005) computes saliency as the local contrast

of mean curvatures and is thus unable to suppress bumpy surface regions such as the body

of the Bunny. In comparison, our method only detects the globally rare mouth, eyes, ears,

and feet regions.

• Shape Discrimination. The method of (Shilane and Funkhouser, 2007) detects category-

specific distinctive regions and only marks the whole heads of the Horse and the Dog as

salient. Our method more finely captures the individual salient regions, including their

mouths, eyes, ears, and legs.
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• Global Rarity. While the method of (Leifman et al., 2012) used shape extreme points,

patch distinction and patch association for saliency detection, the method of (Pingping et al.,

2015) induced saliency from their dissimilarities to non-salient backgrounds. As shown for

the facial features of the Horse and the Bunny, our method highlights them more accurately

compared to that of (Leifman et al., 2012). For the body of the Dragon and the head of the

Igea, our method is more robust to the noisy surface variations.

• Learning-based Detection. The method of (Chen et al., 2012) trains a tree-regression

function for saliency detection. However, the trained function shows limited generalisation

abilities for novel meshes. For example, the handles of the Vase and the legs of the Camel

are not well detected. Our method captures these regions without using any semantic data.

• Spectral Irregularity. The method of (Song et al., 2014) leverages the residuals of the

Laplacian spectrum for saliency detection. Due to the spatial unawareness of spectral basis,

the method has difficulty in localising individual salient regions. While the forelegs of the

Dog and the centres of the Glasses are of interest, they are erroneously neglected. Our

method recovers them correctly.

3.4.3 Quantitative Comparison with Other Methods

We also evaluate saliency detection methods on our own 3D eye fixation dataset and the Schelling

saliency dataset of (Chen et al., 2012). We choose the two datasets because the former is directly

captured from our human eye tracking experiments and the latter reflects human subjective agree-

ments on what constitute semantically prominent regions on surface meshes. Both characterise

human visual attention on surface meshes to some extent.

Implementing Other Methods for Comparison. Since the introduction of mesh saliency to

computer graphics (Lee et al., 2005), a number of saliency detection methods have been proposed

in the past (Lee et al., 2005; Gal and Cohen-Or, 2006; Feixas et al., 2009; Zhao et al., 2016;

Jeong and Sim, 2017; Shilane and Funkhouser, 2007; Chen et al., 2012; Leifman et al., 2012;

Pingping et al., 2015; Wu et al., 2013), which show some progress of the visual quality of the

generated saliency maps. However, their source codes are not publicly available, preventing a

large-scale quantitative benchmarking of their true performance. (Kim et al., 2010) only evaluated

the performance of the method of (Lee et al., 2005) and the evaluation is only based on 2D eye
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Figure 3.7: Performance of Eye Fixation Prediction. Left: The Dragon and our captured ground-

truth 3D eye fixations on the surface. Right: The Human method uses the captured eye fixations

of half subjects to predict that of the other halves, thereby measuring the self-consistency of our

eye fixation dataset. The competing methods are MC (Meyer et al., 2002), MS (Lee et al., 2005),

SRI (Leifman et al., 2012), MR (Pingping et al., 2015), and SI (Song et al., 2014). The peak AUC

scores of these methods are displayed in the plot legend.

fixation data. Therefore, we have made efforts to implement the highly cited methods of (Lee

et al., 2005; Leifman et al., 2012; Pingping et al., 2015) and use the source code of (Song et al.,

2014) for quantitative evaluation. For the methods of (Lee et al., 2005; Song et al., 2014), we

use the original parameters and find that the reproduced results align well with that reported in

the original papers. For the methods of (Leifman et al., 2012; Pingping et al., 2015), we have

tried to tune their shape descriptor construction and saliency computation parameters to match

the reported images in the original papers. To our knowledge, this is the first time that saliency

detection methods are quantitatively evaluated in the field. In the future, we plan to implement

other methods for more thorough evaluation.

Evaluation on Our Eye Fixation Dataset. As described in Section 4, we build a 3D eye fixation

dataset from 50 meshes and 8 human subjects, who were instructed to freely view these meshes on

a computer screen while wearing a high-precision eye-tracking device. After data pre-processing

and aggregation, we retain 120 most frequently attended points on each mesh in our study. We use

the popular Area Under Curve (AUC) metric to quantify how well a saliency map captures these

eye fixations on a surface (Borji and Itti, 2013).

We present an example mesh with the captured eye fixations and the evaluation results on our eye

fixation dataset in Fig. 3.7. As pointed out by (Borji and Itti, 2013), the AUC metric is sensitive
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to the blurring of saliency maps, so we filter each saliency map on a surface using the Gaussian

kernels with scales from 0 to 0.2 and compute the corresponding AUC score for each scale. The

Human method amounts to filtering the eye fixations of randomly selected half subjects into a

saliency map and evaluating on the other half subjects for each mesh. A stable AUC score is

computed by averaging the results of this random process.

It can be seen from Fig. 3.7 that the Human method detects the captured eye fixations very ac-

curately, achieving the peak score around scale 0.05. This shows that our recorded eye fixations

agree well among subjects and therefore qualify as ground-truth for method benchmarking. By

focusing on the peak scores, it is surprising to see that MC performs better than MS on eye fixation

prediction, which appears to contradict the findings of (Kim et al., 2010). This may be because

Kim et al. (Kim et al., 2010) did not take blurring into consideration for evaluation. It is also inter-

esting to see that the more global SRI and MR methods achieve lower accuracy compared to that

by the local MC and MS methods, indicating their limited eye fixation localisation performance.

The spectral SI method, compared to them, performs slightly better but is still worse than the opti-

mally blurred MC method. In contrast, our method achieves much higher eye fixation localisation

accuracy around the optimal blur scale 0.04.

Evaluation on the Saliency Dataset of (Chen et al., 2012). We also use the Schelling saliency

dataset of (Chen et al., 2012) for method benchmarking. This dataset has 400 meshes evenly

split into 20 object categories, with a collection of human-annotated salient points on each mesh

and the corresponding filtered saliency map. We use the AUC score and the Linear Correlation

Coefficient (LCC) to quantify the accuracy of a saliency map for predicting discrete salient points

and continuous saliency values respectively (Borji and Itti, 2013). The LCC score of two saliency

maps is computed by first normalising each map using its respective mean and standard deviation

and then calculating the inner-product of the two normalised maps.

To finely compare different methods, we report their AUC scores for each object category sepa-

rately and the scores for all categories together in Table 3.1. It can be seen that overall our method

is the best performing one, and the followings are the MS, MC, SRI, SI, and MR methods. It is

interesting to see that the AUC scores achieved by these methods are generally higher than that on

our eye fixation dataset. This may be because the salient points in the dataset of (Chen et al., 2012)

are fewer and less spread on mesh surfaces. The sparsity of salient points can explain the poor
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Table 3.1: The Performance (AUC) of Salient Point Detection on the Dataset of (Chen et al.,

2012). The first row is the list of evaluated methods: MC (Meyer et al., 2002), MS (Lee et al.,

2005), SRI (Leifman et al., 2012), MR (Pingping et al., 2015), SI (Song et al., 2014), and Ours.

The second row shows the scores computed on all 20 categories of the dataset of (Chen et al.,

2012) together. The remaining rows show the scores computed on each category separately. The

highest score is highlighted in each row.
MC MS SRI MR SI Ours

All Categories 0.7839 0.8028 0.7605 0.6826 0.7097 0.8168

Airplane 0.8952 0.8356 0.9004 0.7404 0.8690 0.8790

Ant 0.7728 0.8806 0.7975 0.7331 0.7039 0.7925

Armadillo 0.8620 0.9022 0.7603 0.8165 0.7858 0.8878

Bearing 0.7814 0.8313 0.6350 0.6445 0.5312 0.8555

Bird 0.8442 0.7792 0.8468 0.7532 0.7878 0.8232

Bust 0.8134 0.8120 0.7696 0.6307 0.6714 0.7690

Chair 0.7570 0.7821 0.8398 0.6665 0.7154 0.8012

Cup 0.7845 0.7829 0.7888 0.5622 0.7891 0.8031

Fish 0.9432 0.9109 0.9231 0.8451 0.8950 0.9015

Fourleg 0.8613 0.8394 0.7682 0.7996 0.8281 0.8331

Glasses 0.5201 0.5981 0.7057 0.4969 0.5226 0.6947

Hand 0.7895 0.8242 0.8159 0.6977 0.7440 0.8066

Helix 0.8771 0.8702 0.6089 0.8025 0.8188 0.8462

Human 0.7515 0.8015 0.6661 0.6745 0.7085 0.6890

Mech 0.8880 0.8231 0.8060 0.6098 0.5934 0.8780

Octopus 0.7295 0.8339 0.7534 0.7063 0.6059 0.8796

Plier 0.5677 0.7083 0.8718 0.5119 0.6370 0.9128

Table 0.7734 0.7458 0.8123 0.7102 0.7355 0.8317

Teddy 0.6909 0.7131 0.5457 0.6160 0.6775 0.6975

Vase 0.7747 0.7822 0.7874 0.7201 0.7819 0.8299

performance of the SI and MR methods, which produce overly large patches of salient regions

and therefore lack feature localisation ability. In contrast, our method localises salient points more

accurately by optimising the rarity and sparsity principles together.

We report the LCC scores of these methods for predicting continuous saliency distributions in Ta-

ble 3.2. We note that continuous saliency distributions are generally harder to predict than discrete

points because a method needs to discriminate salient and non-salient regions more finely. There-

fore, we expect the LCC metric to be a more comprehensive performance metric than AUC. It can

be seen that our method produces saliency maps that correlate with the ground-truth considerably

better compared to other methods. We observe that while MS and SRI may be good at localising

sparse salient points, they have limited abilities to finely separate less salient from totally non-

salient ones. As expected, SI and MR remain the worst-performing methods because they produce

overly large patches of salient regions that contain many non-salient backgrounds as well.
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Table 3.2: The Performance (LCC) of Saliency Value Prediction on the Dataset of (Chen

et al., 2012). The first row is the list of evaluated methods: MC (Meyer et al., 2002), MS (Lee

et al., 2005), SRI (Leifman et al., 2012), MR (Pingping et al., 2015), SI (Song et al., 2014), and

Ours. The second row shows the scores computed on all 20 categories of the dataset of (Chen

et al., 2012) together. The remaining rows show the scores computed on each category separately.

The highest score is highlighted in each row.
MC MS SRI MR SI Ours

All Categories 0.3442 0.3131 0.2898 0.2158 0.1987 0.4303

Airplane 0.4908 0.3270 0.4271 0.2221 0.3049 0.6049

Ant 0.3779 0.4648 0.3349 0.3324 0.2116 0.6138

Armadillo 0.4248 0.4801 0.1690 0.3096 0.2417 0.4658

Bearing 0.2949 0.3055 0.1835 0.0760 0.0213 0.3578

Bird 0.4594 0.3496 0.3738 0.2381 0.2371 0.5319

Bust 0.3018 0.2979 0.2614 0.1005 0.1577 0.2295

Chair 0.2484 0.2441 0.3574 0.2130 0.1803 0.4618

Cup 0.4011 0.3624 0.3789 0.2094 0.3455 0.3306

Fish 0.5824 0.4708 0.4412 0.3745 0.3499 0.5303

Fourleg 0.4211 0.2945 0.3004 0.2558 0.2794 0.4089

Glasses 0.1736 0.1499 0.2662 0.0680 0.1648 0.3825

Hand 0.3904 0.2714 0.3669 0.2806 0.2013 0.4208

Helix 0.4377 0.4616 0.0732 0.2528 0.2381 0.4448

Human 0.3914 0.3404 0.2579 0.2017 0.2020 0.2528

Mech 0.3862 0.2903 0.2166 -0.0082 0.0670 0.4329

Octopus 0.3029 0.3623 0.3319 0.1833 0.1048 0.5367

Plier 0.2799 0.1426 0.3719 0.3532 0.1330 0.5450

Table 0.3233 0.2315 0.3279 0.2484 0.2033 0.5225

Teddy 0.2137 0.2419 0.0942 0.1302 0.1466 0.2282

Vase 0.3810 0.3303 0.3160 0.2981 0.3300 0.3830
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Figure 3.8: Comparison of the Robustness of Our Method with that of Others. The columns

from left to right correspond to the original Armadillo mesh, the noisy version (20% noises in ver-

tex normal directions), the simplified version (with 5k vertices), and the broken version with holes.

The competing methods are MS (Lee et al., 2005), SRI (Leifman et al., 2012), MR (Pingping et al.,

2015), and SI (Song et al., 2014).
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3.4.4 Robustness Comparison with Other Methods

To show the robustness of our method, we compare our saliency maps of corrupted meshes with

those computed by the competing methods of (Lee et al., 2005; Leifman et al., 2012; Pingping

et al., 2015; Song et al., 2014) in Fig. 3.8. We add noises to the Armadillo mesh by randomly

displacing the position of each vertex along the normal direction, with the displacement amount

proportional to the unit distance. This generates roughly consistent noises on meshes when they

are normalised to have the same radius. It can be seen that our method copes well with surface

noises, simplifications, and holes. The computed saliency maps remain very close to that of the

original Armadillo. In contrast, the method of (Lee et al., 2005) is fairly sensitive to curvature

changes, responding strongly to the bumps around the legs of the Armadillo. The methods of

(Leifman et al., 2012; Pingping et al., 2015) are also not sufficiently resilient to the introduced

mesh flaws, producing inconsistent saliency maps for the damaged versions of the Armadillo (e.g.

at the claws and facial regions). The method of (Song et al., 2014) appears more robust than that

of (Leifman et al., 2012; Pingping et al., 2015) but fails to localise small-scale salient features such

as the eyes, knees, and claws of the Armadillo.

3.4.5 Feature Points Localisation

To showcase the usefulness of our computed saliency maps, we apply them to the task of fea-

ture point localisation on surface meshes and evaluate on the dataset of (Dutagaci et al., 2012).

We choose this task as our application because it is a fundamental building block of geometry

processing and shape analysis.

The dataset of (Dutagaci et al., 2012) consists of 43 commonly used graphics meshes and the

feature points annotated by 16 human subjects for each mesh. We evaluate six feature detectors:

MS (Lee et al., 2005), SP (Castellani et al., 2008), SDC (Novatnack and Nishino, 2007), HKS (Sun

et al., 2009), and ours. For MS, SP, SDC and HKS, Dutagaci et al. (Dutagaci et al., 2012) detected

feature points using the published source codes. For our method, we classify a mesh vertex to be a

candidate feature point if it has a local maxima saliency value that is also higher than the average

of all local maxima saliency values. After sorting these candidates in the descending order of

saliency, we sequentially retain each point with the constraint that it has at least 0.15 geodesic

distances to the already selected points. This way, we obtain a set of feature points that are spread
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Figure 3.9: Performance of Feature Point Localisation on the Dataset of (Dutagaci et al.,

2012). Four competing methods that are highly cited in the field are included: MS (Lee et al.,

2005), SP (Castellani et al., 2008), SDC (Novatnack and Nishino, 2007), and HKS (Sun et al.,

2009). We use the popular Recall, Precision, and F-measure for performance evaluation (Dutagaci

et al., 2012).

out on mesh surfaces. We use the popular Recall, Precision, and F-measure scores for detector

performance evaluation (Dutagaci et al., 2012).

We show the Recall, Precision, and F-measure scores of the evaluated feature detectors in Fig. 3.9.

The Recall score of a detector measures the fraction of true feature points it correctly finds in the

ground-truth, and the Precision score measures the fraction of true feature points in the detector

output. The F-measure score is the harmonic mean of Recall and Precision, which indicates the

overall performance of a detector. As the localisation error threshold is increased, all three scores

of the evaluated detectors grow because the output points become more probably to be identified

as correct matches. The MS, SP, and SDC methods achieve higher Recalls compared to HKS and

our method by detecting excessive numbers of points. The cost, however, is that they produce

many non-salient points and therefore score considerably lower on Precision. HKS, on the other

end, sacrifices Recall for Precision by only generating sufficiently prominent points. Our method

is shown to strike the best balance between Recall and Precision, identifying many true feature

points while not incurring many false positive ones. This can be seen from the F-measure plot,

where our method is shown to outperform other feature detectors from very small localisation

threshold.

3.4.6 The Run Times of Our Method

Table 3.3 reports the run times of our method on a commodity PC with a Dual Core 3.1GHZ

CPU and a 4GB RAM. For each mesh, the run times of the main steps and the total time used

are listed. It can be seen that our method scales well from medium-size meshes (e.g. the Bunny

and the Dinosaur) to very large meshes (e.g. the Buddha and the Lucy). This high scalability
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Table 3.3: The Run Time of Our Method in Seconds. A: multi-scale metric computation from a

mesh. B: saliency computation from a metric. C: vertex saliency interpolation.

Mesh #Vertices A B C Total

Bunny 35k 40.32 3.01 0.13 43.46

Dinosaur 56k 42.02 2.76 0.39 45.17

Armadillo 172k 40.45 3.05 0.75 44.25

Dragon 437k 41.39 3.03 1.58 46.00

Buddha 543k 40.47 2.87 1.92 45.26

Lucy 604k 43.34 2.94 2.57 48.85

would allow it to be used as an efficient preprocessing tool for many saliency-guided graphics

applications.

3.5 Summary

In this chapter, we have proposed an accurate and robust sparse metric-based saliency detection

method for 3D polygonal surface meshes. Our method was rigorously derived from optimising the

rarity principle of saliency while enforcing the sparsity principle of saliency. This makes it able

to optimally discover a compact set of salient regions that have the maximum distinction from

others. Our method was formulated as solving for the sparse eigenvector of a global metric, which

enjoys the robustness to the flaws of surface noises, simplifications, and holes. The results on our

eye fixation dataset, the Schelling saliency dataset of (Chen et al., 2012), and the feature local-

isation dataset of (Dutagaci et al., 2012) show that our method produces more accurate saliency

estimations compared with existing ones.
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Chapter 4

Metric-based Unification of Saliency

Detection and Non-rigid Shape

Matching

In this chapter, we propose a unified metric representation framework for the joint analysis prob-

lems of saliency detection and non-rigid shape matching. This generalises the work in Chapter

3 that is rule-based shape analysis and only considers one task at a time. As shown in Fig. 4.1,

the key idea of our approach is inferring saliency and matching from a single shared metric repre-

sentation, which is learned from the input surface meshes using deep learning. This allows us to

improve the generalisation of both tasks under non-rigid shape deformations, which we present in

the following sections.

4.1 Introduction

The fundamental challenge of shape analysis is extracting knowledge from surface meshes that is

not only understandable to humans but also invariant to complex shape deformations. Only with

such invariance can a method work well consistently on the deformed versions of shapes. In this

work, we narrow this challenge down to two fundamental shape analysis tasks: mesh saliency

detection (Lee et al., 2005) and non-rigid shape matching (Van Kaick et al., 2011). We shall

develop their underlying relation that is unknown to the field before, and exploit it for mutual
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Figure 4.1: The Overview of Our Unified Metric Framework for the Unification of Saliency

Detection and Shape Matching. While previous research approaches saliency detection and

non-rigid shape matching separately and independently (left), we unifies them via a shared metric

representation of surface meshes to better handle intra-category shape deformations for both sides

(right).

improvements of saliency detection and shape matching using deep learning.

The first task we are interested in is saliency detection, which aims to compute a saliency map

for an input mesh that signifies the perceptual or semantic importance of surface regions (Lee

et al., 2005; Chen et al., 2012). Despite highlighting semantically important regions, saliency

maps are also found to be consistent on surfaces of the same object category (Chen et al., 2012).

However, the intra-category consistency of saliency has been ignored by the previous saliency

detection methods (Lee et al., 2005; Chen et al., 2012; Song et al., 2014; Jeong and Sim, 2017)

that compute saliency only for each mesh individually and separately without enforcing the con-

sistency among meshes, which limits their generalisation abilities under complex intra-category

shape deformations.

The other task we focus on is non-rigid shape matching, which finds semantically meaning-

ful surface correspondences across meshes irrespective of the shape deformations among them

(Van Kaick et al., 2011). As found in (Chen et al., 2012), human annotators tend to agree

on a consistent set of semantically important regions on surfaces of the same object category,

without communicating with each other during annotation. This shows that saliency is a strong

deformation-invariant cue of shape matching within a category. However, existing shape match-

ing methods mostly work on the matching task solely (Ovsjanikov et al., 2012; Kim et al., 2011;

Boscaini, Masci, Rodolà and Bronstein, 2016), without exploiting the saliency cue for more robust
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Figure 4.2: The Mutual Benefits of Saliency and Matching. Our method produces more

deformation-invariant saliency maps with matching (left, using red and blue colours to visualise

high and low saliency values respectively). It also produces more accurate shape matchings with

saliency (right, colourising each target mesh vertex with its computed corresponding reference

vertex’s (X,Y,Z) coordinates).

matching.

In view of the existing gap between saliency and matching, we propose to unify the two tasks

in the same framework so that they can help each other generalise better under complex intra-

category shape deformations. To do this in a principled way, we need a unified representation

of surface meshes that is geometry-aware, supports the joint modelling of saliency and matching,

and most importantly enables the knowledge transfer between saliency and matching for mutual

improvements. Towards this goal, we propose a unified metric representation that measures the

pairwise semantic distances among all points on a mesh. Through two principled optimisation

problems, we show that the saliency map and the shape embeddings of a mesh can be derived

from the principal eigenvector and the smoothed Laplacian eigenvectors of the metric respectively

(Fig. 4.1). Our joint modelling allows us to transfer the deformation-invariance (i.e. intra-category

consistency) from matching to saliency for more accurate saliency detection. It also allows us to

transfer the sparsity (i.e. semantic feature localisation) from saliency to matching for more robust

correspondence solutions.

Having found a unified metric representation for saliency detection and shape matching, we need

a way to compute the metric from the low-level geometry features of all points on an input mesh.

More importantly, we wish the computation process to be differentiable so that it can be automat-

ically learned from a given pair of saliency and matching datasets. Witnessing the success of deep

neural networks for shape analysis (Boscaini, Masci, Rodolà and Bronstein, 2016), we propose a

deep metric learning architecture that maps the low-level geometry features of all points on a mesh
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to a semantics-aware metric representation for saliency detection and shape matching. The core

of our architecture is a multi-layer RNN that can be learned to effectively integrate small-to-large

scale shape features for each point. The other essential component of our architecture is a soft-

thresholding operator, which can be learned to produce a sparse metric from the pooling result

of the metrics computed from the RNN features of each scale. Our architecture is able to more

effectively exploit multi-scale shape information and the sparsity of saliency, producing higher

performance on saliency detection than alternatives.

To learn the deep metric representation from a pair of saliency and matching datasets, we propose

a unified loss function with three terms: (1) the saliency fitting term to penalise the difference

between the predicted and the ground-truth saliency maps of a mesh from the saliency dataset; (2)

the saliency consistency term to penalise the difference between the predicted saliency maps of any

pair of meshes from the matching dataset; (3) the metric consistency term to penalise the difference

between the two metrics of any pair of meshes from the matching dataset. We minimise this

loss function using our proposed eigenvector reparameterisation trick with the stochastic gradient

descent (SGD) method (Bottou, 2010).

We jointly evaluate our method on saliency detection (Chen et al., 2012) and non-rigid shape

matching (Anguelov et al., 2005; Vlasic et al., 2008; Bogo et al., 2014) datasets. The results

show that it outperforms exiting rule-based and learning-based saliency detection methods in both

the small and large sample training scenarios. It is also shown to improve both the model-based

and learning-based methods for matching non-isometric pairs of shapes (Fig. 4.2). Our publicly

available source code can be downloaded from this link∗.

Our contributions include:

• We validate the mutual benefits between mesh saliency detection and non-rigid shape match-

ing. Matching improves the accuracy and deformation-invariance of saliency via the intra-

category consistency of matching, while saliency improves the robustness of matching under

non-isometric deformations via the sparsity of saliency.

• We propose a unified metric representation for joint modelling of saliency and matching.

The saliency map of a mesh is computed as the principal eigenvector of the metric and the

∗https://drive.google.com/drive/folders/10Vu3ujF-5gPm8h E35VhZR45WCjht18B
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4.2. Our Unified Metric Representation

shape embeddings of the mesh are computed as the smoothed Laplacian eigenvectors of

the metric. Our formulation allows matching to enforce the intra-category consistency for

more accurate and deformation-invariant saliency detection, while exploiting the sparsity of

saliency to induce semantically localised embeddings for more robust matching.

• We propose a multi-layer RNN architecture for more effectively integrating multi-scale

shape information in metric computation, and an effective soft-thresholding operator for

incorporating the sparsity of saliency in metric representation. We also propose a unified

loss function for joint metric learning from a pair of saliency detection and shape matching

datasets.

4.2 Our Unified Metric Representation

In this section, we propose a unified metric representation of surface meshes that enables the

joint modelling of saliency detection and non-rigid shape matching. While multi-task learning is

traditionally formulated as learning shared feature representations, it would be based on individual

points on a surface and therefore lack a global geometry characterisation of the whole surface

(Chen et al., 2012; Qi, Su, Mo and Guibas, 2017a; Qi, Yi, Su and Guibas, 2017; Yi et al., 2017).

In contrast, we propose to represent the geometry of a mesh using a metric that characterises the

pairwise learned distances among all points on the surface. We will show that such a global metric

representation is essential to guaranteeing some desirable properties for saliency detection and

shape matching.

4.2.1 Notations, Inputs, and Outputs

We denote a surface mesh as P = {pk ∈ R3}Nk=1 with N surface points. One quantity we want to

compute for P is a non-negative-valued saliency map ϕ(P) ∈ RN
≥0, which assigns to each point

pk the saliency value ϕk(P). The higher the value, the more semantically important the point.

The other quantity we want to compute is the shape embeddings E(P) ∈ RN×m, which maps

each 3D point pk to a m-dimensional feature vector Ek·(P) where non-rigid shape deformations

can be simplified to rigid ones for more efficient matching (Maron et al., 2016). We denote the

metric representation that leads to the two quantities as a non-negative-valued, symmetric, and

zero-diagonal distance matrix M(P) ∈ RN×N
≥0 . It assigns a distance Mij(P) to every pair of
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Figure 4.3: The Sparsity of Saliency. As human-annotated saliency maps only highlight a few

semantically important regions on surfaces (Chen et al., 2012), our system automatically learns to

produce sparse metrics whose principal eigenvectors (i.e. computed saliency maps) are sparse as

well. Here, a redder matrix element represents a larger learned distance between the corresponding

pair of surface points it visualises.

points pi and pj on the surface of P .

In order to learn the metric M(P) for saliency detection and non-rigid shape matching, we require

a pair of saliency and matching datasets, {〈Pi, ϕ̄(Pi)〉}
Ns

i=1 and {〈Pi,P
′
i〉}

Nc

i=1, for training. In the

former, each mesh Pi has the ground-truth saliency map ϕ̄(Pi). In the latter, every pair of meshes

Pi and P ′
i have a natural one-to-one semantic correspondence between their surface points.

As will be elaborated in Section 4.3, we use a stack of RNNs and a soft-thresholding operator to

compute the metric from raw shape features. Therefore, the trainable parameters of our system

include the RNN parameters and the threshold parameter. We train the system end-to-end using

the SGD method (Bottou, 2010).

4.2.2 Saliency Detection from a Metric

In this subsection, we propose a differentiable saliency definition based on the metric represen-

tation of a mesh. We formulate the saliency map of a mesh as the global optimal solution to a

metric-based optimisation problem, obtaining the solution as the principal eigenvector of the met-

ric. This solution is differentiable and thus learnable, guarantees the non-negativity of saliency,

and inherently encodes the sparsity of saliency for saliency detection and shape matching.
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To begin with, we first consider ϕ(P) as a binary saliency map: ϕk(P) = 1 if pk is a salient point

and ϕk(P) = 0 otherwise. We then consider the problem of labelling a set of salient points so

that the sum of their mutual distances, ϕTM(P)ϕ =
∑

i

∑
j ϕiϕjMij(P), can be maximised.

Finally, since solving this problem is difficult and only produces a binary saliency map, we relax

it as follows by replacing the binary saliency labels with continuous saliency values:

ϕ(P) = argmaxϕTM(P)ϕ, s.t. ϕ ≥ 0 and ‖ϕ‖2 = 1, (4.1)

where we enforce the unit Euclidean norm† constraint for solution well-posedness. Without the

non-negativity constraint, the objective of the problem is known as the Rayleigh quotient of the

metric M(P) and the solution that globally maximises it is the principal eigenvector of M(P).

Since the metric is symmetric and non-negative-valued by definition, its principal eigenvector

is unique and guaranteed to be non-negative-valued according to the Perron-Frobenius theorem

(Berman and Plemmons, 1994; Harel et al., 2006). Therefore, the optimal saliency map ϕ(P) is

the principal eigenvector of the metric M(P).

Compared to existing saliency detection methods of (Lee et al., 2005; Leifman et al., 2012; Song

et al., 2014; Pingping et al., 2015; Chen et al., 2012; Sinha et al., 2016; Qi, Su, Mo and Guibas,

2017a; Qi, Yi, Su and Guibas, 2017; Yi et al., 2017; Jeong and Sim, 2017), our metric-based

saliency detection method has the following desirable properties:

• Non-negative-Valued. This is trivial but is not automatically satisfied by existing learning-

based saliency detection methods, without the use of some non-linear activation functions

that squash regression outcomes to non-negative saliency values. In contrast, our saliency

map ϕ(P) is non-negative-valued by definition.

• Differentiable. As the metric M(P) is symmetric, ϕ(P) being one of its eigenvectors is

continuously differentiable with respect to it (Berman and Plemmons, 1994). This allows

us to fit ϕ(P) to the ground-truth saliency map ϕ̄(P) and the map of any corresponding

mesh P ′, producing more accurate and deformation-invariant saliency maps than existing

rule- and learning-based methods.

• Encoding Sparsity. Apart from the intra-category consistency, the other characteristic of

†‖x‖2 =
√

∑

i
x2

i
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the Schelling saliency maps is that they are sparse (Chen et al., 2012). When fitted to them,

our saliency map ϕ(P) becomes sparse as well and drives a large fraction of the entries

of the metric M(P) to zeros, which encode distances among non-salient points (Fig. 4.3).

This sparsification mechanism is key to deriving semantically localised shape embeddings

for more robust shape matching (4.2.3).

4.2.3 Non-rigid Shape Matching from a Metric

Having formulated the saliency map as the principal eigenvector of a metric in Section 4.2.2, we

now describe how to obtain a shape embedding matrix E(P) from the same metric for robust

shape matching. Our idea is to exploit the sparsity of saliency to learn better discrimination for

salient points and more invariance for non-salient points. To do this, we formulate E(P) as the

Laplacian embeddings with the metric M(P) and the surface connectivity of a mesh, so that they

can be smooth, orthogonal, semantically localised, and deformation-invariant.

Following the setting of (Maron et al., 2016), we aim at computing a set of discriminative and

deformation-invariant embedding coordinates Ek·(P) for each surface point pk, so that the non-

rigid shape deformation between a pair of meshes P and P ′ in the original 3D space can be

simplified to a rigid one in the higher-dimensional embedding space. While existing methods

strive on the discrimination and invariance of shape embeddings (Corman et al., 2014; Litman and

Bronstein, 2014; Boscaini, Masci, Rodolà, Bronstein and Cremers, 2016; Cosmo et al., 2016; Wei

et al., 2016), they learn for each individual surface point separately and therefore cannot guarantee

that the obtained embeddings are orthogonal or smooth. Moreover, they treat all points equally

and ignore the fact that salient points are semantically more important and geometrically more

consistent within a shape category (Chen et al., 2012).

To address these issues, we consider the following Laplacian embedding problem (Belkin and
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Figure 4.4: Our Saliency-induced Embeddings. The columns from left to right show individ-

ual embedding components computed by three different methods, with the colour visualising the

smoothness and localisation of the embeddings on the surface. On top of being as locally smooth

as the Laplacian spectral embeddings, our embeddings are further globally localised on the seman-

tically important surface regions (i.e. eyes, ears, and limbs). Therefore, they are able to enforce

additional constraints for robust shape matching.
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Figure 4.5: The Deformation Stability of Our Embeddings. Both the Laplacian spectral and

our saliency-induced embeddings have non-zero eigengaps. Therefore, they can be made stable

under complex intra-category shape deformations if the two metrics of any pair of meshes can be

learned to be consistent within a shape category.
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Figure 4.6: The Overview of Our Deep Metric Learning Architecture. The steps (a)-(e) are

to compute a metric from the raw multi-scale features of a mesh and the steps (f)-(g) are to form

the saliency fitting loss, saliency consistency loss, and metric consistency loss for metric learning.

As our method uses a metric for joint modelling of saliency detection (principal eigenvector) and

shape matching (Laplacian embeddings), it naturally incorporates the structure of all surface points

for inference and learning.

Niyogi, 2002):

E(P) = argmin tr[ET∆[A(P)]E], (4.2a)

= argmin
1

2

m∑

k=1

N∑

i=1

N∑

j=1

Aij(P)(Eik −Ejk)
2

︸ ︷︷ ︸
affinity-weighted smoothness penalties

, (4.2b)

subject to E ⊥ 1 and ETE = I︸ ︷︷ ︸
orthogonality constraints

, (4.2c)

where tr[·] is the matrix trace‡, ∆[·] is the graph Laplacian, and A(P) = (1− θ)C(P) + θϕ(P)

is a convex combination of the cotangent affinity matrix C(P) (Rustamov, 2007) and the salient

affinity matrix ϕ(P) of a mesh. We compute S(P) by setting the diagonals of 1−M(P) to zeros.

While C(P) captures the affinities of adjacent surface points and S(P) encodes considerably

large affinities among non-salient points, A(P) is a balance of them. As ∆[A(P)] is symmetric

and non-negative-definite, it is known that the optimal embeddings E(P) are its eigenvectors

associated with the m+1 smallest eigenvalues (excluding the constant eigenvector corresponding

to the eigenvalue of 0) (Belkin and Niyogi, 2002).

Compared with the shape embeddings of (Corman et al., 2014; Litman and Bronstein, 2014;

‡tr[X] =
∑

i
Xii, ∆[X]ii =

∑

j
Xij and ∆[X]ij = −Xij if i 6= j
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Boscaini, Masci, Rodolà, Bronstein and Cremers, 2016; Cosmo et al., 2016; Wei et al., 2016),

our saliency-induced ones have the following desirable properties:

• Orthogonal. Because ∆[A(P)] is symmetric, the embedding coordinates E(P) beingm of

its eigenvectors are orthogonal to each other by definition. Therefore, our shape embeddings

are mutually uncorrelated as the Laplacian spectral embeddings (Rustamov, 2007).

• Smooth. When setting θ to 0, we recover the Laplacian spectral embeddings of a mesh from

(4.2a,4.2b,4.2c), which are the smoothest orthogonal functions on the surface (Rustamov,

2007) (Fig. 4.4, top). By setting θ to 0.1 to account for the affinities of adjacent surface

points, we are able to ensure that our embeddings are smooth and orthogonal at the same

time (Fig. 4.4, bottom).

• Semantically Localised. When setting θ to 1, we obtain embeddings that are localised on

salient points (Fig. 4.4, middle), as the embedding smoothness among non-salient points is

heavily enforced due to their much larger learned mutual affinities. Empirically, by setting

θ to 0.1, we obtain both smooth and semantically localised embeddings (Fig. 4.4, bottom).

Setting θ to a larger or a smaller value would weaken the smoothness or the localisation

property.

• Deformation-Invariant. According to the Davis-Kahan theorem described in (Von Luxburg,

2007), we have the following bound on the distance between the shape embeddings of two

meshes:

d(E(P),E(P ′)) ≤
‖∆[A(P)]−∆[A(P ′)]‖F

λm+1 − λm
, (4.3)

where d(·, ·) is the Euclidean norm of the sines of the principal angles between E(P) and

E(P ′), and 0 ≤ λ1 ≤ · · · ≤ λN−1 are the non-decreasing eigenvalues of ∆[A(P)]. To

lower this bound, we need to decrease its numerator by enforcing the deformation-invariance

of the pair of learned metrics M(P) and M(P ′). We also set θ = 0.1 to ensure its denom-

inator (the eigengap) is non-negligible, preventing divergence of the bound (Fig. 4.5). This

ensures that our embeddings are sufficiently deformation-invariant for shape matching.
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4.3 Our Deep Metric Learning Architecture

In Section 4.2, we have proposed a unified metric representation of surface meshes whose principal

eigenvector and smoothed Laplacian eigenvectors can be used for saliency detection and non-rigid

shape matching respectively. In this section, we propose a deep neural network architecture for

computing the metric from an input mesh. The reason we need a deep architecture is that it is

learnable and sufficiently powerful to extract high-level features from low-level geometry data for

shape analysis (Boscaini, Masci, Rodolà and Bronstein, 2016; Litany et al., 2017; Qi, Su, Mo

and Guibas, 2017a; Yi et al., 2017). As shown in Fig. 4.6, for each point on a surface mesh, we

first (a) extract a set of raw multi-scale feature vectors and then (b) feed them into our proposed

multi-layer RNN for multi-scale feature embedding. We then (c) compute a set of multi-scale

Euclidean metrics to (d) derive a scale-free metric via max-pooling. Afterwards, we (e) use our

proposed soft-thresholding operator to adaptively sparsify this metric and (f) compute the principal

eigenvector to (g) form three loss terms. Finally, we minimise these terms together using our

proposed eigenvector reparameterization trick with the SGD method (Bottou, 2010).

4.3.1 Our RNN for Multi-scale Feature Embedding

In this section, we describe our RNN method for multi-scale feature embedding. The inputs to

our method are the raw multi-scale shape descriptors of a mesh P , {F τ,0(P) ∈ RN×d}Nτ

τ=1,

where Nτ is the number of scales from small to large and d is the feature dimension of each

surface point at each scale τ . The outputs produced by our method are the embedded multi-scale

features {F τ (P) ∈ RN×d}Nτ

τ=1, which are used for subsequent metric computations. As the shape

information of each surface point naturally spans increasingly larger contexts and these contexts

are not independent of each other (Sun et al., 2009; Kazhdan et al., 2003), it is difficult for some

hand-crafted rules to discover the optimal correlation among multiple contexts and integrate them

effectively (Qi, Yi, Su and Guibas, 2017). This motivates us to consider the multi-step RNN

architecture that is usually popular for temporal sequence modelling.

Our idea is to learn features in two directions: the vertical direction that maps features from one

layer to the next and the horizontal direction that propagates features from one scale to the next.

More specifically, we propose to order shape features from small to large scales and then treat

each scale as one step of an RNN in the scale sequence (Fig. 4.7, bottom right). This allows us to
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Figure 4.7: Multi-scale Feature Embedding Architectures. The image shows three baselines

and our RNN method for multi-scale feature embedding. A single MLP can transform the con-

catenated features of all scales jointly (top left) or the features of each scale individually (top

right), and multiple MLPs can work on each scale separately with no feature sharing among each

other (bottom left). In contrast, our RNN method works on a sequence of small-to-large scale fea-

tures and explicitly learns the transition between scales for more effective scale integration (bottom

right).

parameterise our feature embedding architecture as a multi-layer function f = fNl ◦· · ·◦f1, each

layer of which is an RNN with our specially designed scale interpolation cell structure as follows:

Oτ,l = tanh[Υ(F τ−1,lW ⋄,l + F τ,l−1M⋄,l)]︸ ︷︷ ︸
predicting candidate output features

, (4.4a)

P τ,l = sigmoid[Υ(F τ−1,lW ◦,l + F τ,l−1M◦,l)]︸ ︷︷ ︸
predicting scale interpolation weights

, (4.4b)

F τ,l = Υ[(1− P τ,l)⊙ F τ−1,l + P τ,l ⊙Υ(Oτ,l)]︸ ︷︷ ︸
interpolating features via convex combination

, (4.4c)

where l is the layer of each RNN, {W ⋄,l,M⋄,l}Nl

l=1 are the learnable matrix parameters of the

RNN, and Υ(·) is the feature-wise standardisation operator (Ioffe and Szegedy, 2015). To our

knowledge, this is the first time that RNNs are used for multi-scale feature learning in shape

analysis.

Compared with the alternatives shown in Fig. 4.7, our RNN learns scale integration explicitly

to yield more powerful multi-scale features for shape analysis. Compared with long short-term
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memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU) (Cho et al.,

2014), our cell has a simpler and more effective scale integration mechanism for multi-scale fea-

ture embedding.

4.3.2 Our Soft-thresholding Operator for Metric Sparsification

Human-annotated saliency maps only highlight a few semantically important regions on surfaces

(Chen et al., 2012). However, existing saliency detection methods of (Lee et al., 2005; Leifman

et al., 2012; Song et al., 2014; Pingping et al., 2015; Chen et al., 2012) do not enforce the sparsity

of saliency, producing excessive amounts of regions that are actually not salient (Fig. 4.14). This

motivates us to directly incorporate the sparsity of saliency into metric representation for more

accurate saliency detection (Fig. 4.8). Our idea is to adaptively soft-threshold a metric using a

parametric threshold learned from ground-truth saliency maps. We propose our soft-thresholding

operator as follows:

M(P) = max{Ṁ(P)−Θt, 0}, (4.5)

where Ṁ(P) is the scale-free metric computed via max-pooling described below, and Θt is a

scalar parameter that can be learned to truncate the small elements of Ṁ(P) to exact zeros (see

Section 4.3.3 for analysis). This way, we can learn to sparsify Ṁ(P) based on ground-truth

saliency maps and ensure that its derived saliency map ϕ(P) is properly sparsified as well.

We now describe how to compute Ṁ(P). From the embedded features F τ (P) of each scale

τ , we can compute a squared Euclidean distance matrix M̈ τ (P) among the N points of a mesh

(Dokmanic et al., 2015). We choose this representation because it is simple, differentiable, and

analytically computable via fast matrix and vector operations. To address the rank-deficiency

of a single Euclidean metric (Dokmanic et al., 2015), we compute a scale-free metric by max-

pooling the Euclidean metrics of all scales, Ṁ(P) = max{M̈1(P),M̈2(P), . . . ,M̈Nτ (P)},

where the output is no longer low-rank as the linear independence of its rows (or columns) is

greatly strengthened by the non-linear element-wise pooling operation.

Compared with traditional methods that enforce sparsity via a sparsity-inducing norm (Yuan and
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Figure 4.8: The Effect of Our Soft-thresholding Operator. We learn a soft-thresholding (ST)

operator to adaptively truncate the small elements of a metric to exact zeros, improving the sparsity

and accuracy of computed saliency maps significantly.
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Zhang, 2013), ours learns sparsity by optimising Θt adaptively, without the need of weighting a

sparsity-inducing norm by trial-and-error. This leads to much more accurate and sparser saliency

maps (Fig. 4.8).

4.3.3 Our Multi-objective Loss Function for Metric Learning

Finally, we propose a loss function for metric learning from a given pair of saliency and matching

datasets:

L(P,P ′) = αLα(P) + βLβ(P,P
′) + γLγ(P,P

′), (4.6a)

Lα(P) = 1−ϕ(P)T ϕ̄(P), (4.6b)

Lβ(P,P
′) = 1−ϕ(P)Tϕ(P ′), (4.6c)

Lγ(P,P
′) = 1− tr[M(P)M(P ′)], (4.6d)

where the saliency fitting term Lα(P) penalises the difference between the predicted and ground-

truth saliency maps of a mesh from the saliency dataset, the saliency consistency term Lβ(P,P
′)

penalises the difference between the predicted saliency maps of any pair of meshes from the match-

ing dataset, and the metric consistency term Lγ(P,P
′) penalises the difference between the two

metrics computed from any pair of meshes from the matching datasets. α, β, and γ are their re-

spective weights.

Our Eigenvector Reparameterisation. As the derivatives of ϕ(P) with respect to M(P) require

matrix pseudo-inverse (Magnus, 1985), Lα(P) and Lβ(P,P
′) cannot be minimised directly. We

tackle this by approximating ϕ(P) as follows:

ϕ(P) ≈
M(P)ν̃

ν̃TM(P)ν̃
, (4.7)

where ν̃ is a numerical version of ϕ(P) computed by the power method. This approximation

holds because ν̃ is associated with the largest eigenvalue of M(P) and is thus orthogonal to the

other eigenvectors. Compared with the low-order approximation of (Leordeanu et al., 2012), ours

has a much simpler form and is significantly more accurate.

Our Saliency Fitting Term. To analyse learning dynamics, we insert (4.7) into (4.6b) to obtain
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the partial derivatives of Lα(P) with respect to M(P) and Θt:

∂Lα(P)

∂Mij(P)
= C1ν̃iν̃j − C2ϕ̄i(P)ν̃j , (4.8a)

∂Lα(P)

∂Θt

=
N∑

i=1

N∑

j=1

I{Mij(P) > Θt}
∂Lα(P)

∂Mij(P)
, (4.8b)

where 0 < C1 ≤ C2 and I{·} is the indicator function. If the system wrongly predicts a low

saliency value for pi, i.e. ν̃i < ϕ̄i(P), it will increase the distances of pi to the other points

because the derivatives { ∂Lα(P)
∂Mij(P)}

N
j=1 are negative. Conversely, its distances to the other points

will decrease. Sparse ground-truth saliency maps therefore lead to the sparsification of M(P).

Because
∂Lα(P)
∂Θt

is the sum of mostly negative partial derivatives from pairs of salient points whose

distances are large enough to exceed the threshold, Θt increases during the training to drive the

sparsification of M(P) further (Fig. 4.4 and 4.8).

Our Saliency Consistency Term. The form of Lβ(P,P
′) is the same as that of Lα(P), except

that we treat ϕ(P) and ϕ(P ′) as each other’s learning target. This allows us to enforce the intra-

category consistency of saliency by pushing the predicted saliency maps of any pair of meshes

closer to each other in a shape category.

Our Metric Consistency Term. To obtain deformation-invariant embeddings, we need to control

the bound in (4.3) by minimising Lγ(P,P
′). This ensures that the learned metrics are sufficiently

deformation-invariant. As the saliency consistency term Lβ(P,P
′) can only regularise the prin-

cipal eigenvector of the learned metric, we add the metric consistency term Lγ(P,P
′) to control

the remaining eigenvectors.

4.4 Results

4.4.1 Implementation Details

We implement our proposed system in TensorFlow (V0.12). Throughout our experiments, we

stack three layers of RNNs with an input and an output dimension of 256 each. We initialise the

matrix parameters of each RNN to be orthogonal, and we initialise the soft-thresholding parameter

to zero. We set the learning rates for the matrix and threshold parameters to 0.1 and 1× 10−4

respectively, and decay them by a rate of 0.1 every 5,000 steps with a momentum of 0.9 for 20,000
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SGD steps. We set the batch size to 1. At each training step, we randomly retrieve a mesh and

its ground-truth saliency map from a saliency dataset, as well as a pair of meshes from a shape

matching dataset. We resample each mesh to 500 surface points for efficient learning.

To learn a metric from a mesh, we use its spatial rather than spectral raw features, as the former

capture both intrinsic and extrinsic geometry for shape analysis (Corman et al., 2017). Specifically,

we use the spherical harmonic (SH) descriptors of (Kazhdan et al., 2003), which are derived from

a raw distance field and have a theoretical guarantee of minimal information loss. We encode

the local shape of each vertex with 16 SH amplitudes for each of 16 concentric shells of equally

increasing radii, with the radius of the outmost shell being one-eighth of the mesh diameter. We

pad the raw features of each scale with zeros to create a dimension of 256.

4.4.2 Evaluation of Our Deep Learning Architecture

In this section, we validate that our RNN method is more effective at learning multi-scale shape

features compared with the baselines in Fig. 4.7, and that our soft-thresholding operator further

improves the performance via adaptive metric sparsification. We train on an 80% random sample

of the 20 meshes from each of the 20 categories of the Schelling saliency dataset (Chen et al.,

2012) and test on the remaining meshes at each training step. Here, we use only the saliency

fitting loss for large-scale evaluation because none of the 20 categories apart from the Human and

Fourleg has corresponding shape matching datasets (Anguelov et al., 2005; Vlasic et al., 2008;

Bogo et al., 2014). We use the Gini index to measure the sparsity of saliency maps and metrics

(Hurley and Rickard, 2009).

Evaluation of Our RNN. First, we evaluate our RNN method for multi-scale feature learning.

To match our architecture, we stack 3 layers of MLPs with an input and an output dimension of

256 for each of the three baselines in Fig. 4.7, and use the tanh activation function and feature

standardisation for them. We find that the SGD parameters of our architecture work well for all

of them as well. As shown in Fig. 4.9, neither a shared MLP nor multiple independent MLPs

perform well, because the former ignores the feature characteristics of different scales and the

latter fail to integrate features across scales. A single MLP performs much better as it transforms

the features of all scales simultaneously. Still, our RNN achieves the lowest saliency testing error

by explicitly learning scale transition and integration, both with and without the soft-thresholding
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Figure 4.9: RNN Evaluations. Our RNN method of learning and integrating multi-scale shape

features produces the lowest saliency testing error, among the four feature embedding architectures

in Fig. 4.7, both with (left) and without the soft-thresholding operator (right).
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Figure 4.10: Soft-thresholding Evaluations. Learning a threshold value (bottom right) to adap-

tively truncate the small elements of a metric to exact zeros considerably improves the sparsity

of metric and drive the sparsity of saliency closer to that of the ground-truth (left). The resulting

saliency testing error is also considerably lower (top right).
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operator.

Evaluation of Our Soft-thresholding Operator. We then evaluate our soft-thresholding operator

by training with and without it, as shown in Fig. 4.10. Without the soft-thresholding operator,

although the ground-truth saliency maps gradually sparsifies the learned metric, the predicted

saliency maps have relatively lower sparsity and considerable higher saliency testing error. Our

operator improves the sparsification of the learned metric significantly by gradually learning a

threshold to truncate small values, producing much better saliency maps with higher sparsity and

lower testing error.

4.4.3 Mutual Benefits of Saliency and Matching

Here, we validate that jointly learning saliency and matching via our unified metric loss function

enables each other to generalise better: while matching improves the accuracy and deformation-

invariance of our computed saliency maps, saliency improves the semantic localisation of our

learned shape embeddings for more robust matching. We evaluate the saliency fitting loss, saliency

consistency loss, and metric consistency loss all together, on the Human category of the Schelling

saliency dataset (Chen et al., 2012) and the SCAPE matching dataset (Anguelov et al., 2005) (80%

for training and 20% for testing). We perform another evaluation on the Fourleg category of the

Schelling saliency dataset and the TOSCA matching dataset (Vlasic et al., 2008).

Quantitative Evaluations. As shown in Fig. 4.11, training with only the saliency fitting loss

(α = 1, β = 0, γ = 0) leads to the high saliency and metric consistency errors, indicating that

neither the predicted saliency maps nor the metrics are sufficiently invariant to human body shape

variations. Adding the saliency consistency loss alone (α = 1, β = .02, γ = 0) improves the

deformation-invariance of the predicted saliency maps a lot, but the metric remains sensitive to

shape variations because only its principal eigenvector (i.e. saliency map) is regularised to be

consistent. This can be seen from the high other consistency error, which measures the difference

of the metric without its principal eigenvector between two corresponding meshes. Oppositely,

adding the metric consistency loss alone (α = 1, β = 0, γ = .02) leads to a more deformation-

invariant metric by regularising all eigenvectors together, but is less effective compared with the

saliency consistency loss for inducing a deformation-invariant saliency map. In contrast, training

with all three losses together (α = 1, β = .02, γ = .02) produces the most deformation-invariant
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Figure 4.11: The Quantitative Evaluations of Saliency and Matching. Learning with the

saliency fitting loss, saliency consistency loss, and metric consistency loss together (α = 1, β =
.02, γ = .02) produces the lowest errors on all criteria, compared with that when either one of the

saliency and metric consistency losses or both are disabled. The other consistency error measures

the difference of the metric without its principal eigenvector between two corresponding meshes.
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Figure 4.12: The Benefits from Matching to Saliency. With matching, our computed saliency

maps are less noisy and more sharply highlighted, especially in the extreme case of using one (5%)

or two (10%) meshes for saliency training. The visual quality improvement of our saliency maps

with matching is still noticeable with more meshes for saliency training.

metrics and saliency maps, while achieving the lowest saliency testing error. The low metric

consistency error along with the non-zero eigengaps (Fig. 4.5) ensures that our saliency-induced

embeddings are deformation-invariant for shape matching.

Qualitative Evaluations. To compare the predicted saliency maps with and without matching,

we train on a 5% (1 mesh), 10% (2 meshes), 20% (4 meshes), 40% (8 meshes), and 80% (16

meshes) samples of the respective dataset with and without the saliency and metric consistency

losses. As shown in Fig. 4.12, under the extreme case of a single training mesh, the predicted

saliency maps without consistency learning is full of unrecognisable noises. Remarkably, training

with shape matchings reduces the noises to a huge extent, allowing the identification of the salient

66



4.4. Results

regions of ears, hands, feet, and facial features. With more training meshes, the predicted saliency

maps without consistency learning become less noisy, but they appear quite different between the

two testing meshes, which suggests that they are sensitive to the non-rigid shape deformation. In

contrast, the maps with consistency learning are much clearer and more consistent, even under

the challenging settings of 2 and 4 training meshes. This confirms that overcoming intra-category

shape variations via matching is the key to helping saliency detection generalise better, in both

small and large sample training scenarios.

We evaluate how saliency can help matching generalise better. We compare our embeddings with

the Laplacian spectral embeddings because both of them are eigenvector solutions to the Laplacian

embedding problem (4.2a) (4.2b) (4.2c) with salient affinity for the former and cotangent affinity

for the later. As shown in Fig. 4.4, our embeddings are perfectly localised on the salient regions

of ears, facial features, hands, and feet, while the spectral embeddings are globally supported on

the mesh surface. Compared with the existing learned embeddings (Corman et al., 2014; Litman

and Bronstein, 2014; Boscaini, Masci, Rodolà, Bronstein and Cremers, 2016; Cosmo et al., 2016;

Wei et al., 2016), ours are the first to achieve semantic localisation while guaranteed to be smooth

and orthogonal as the spectral embeddings. The semantic localisation property would be difficult

to obtain without the use of saliency that agree with human annotations (Chen et al., 2012). As

shown in Fig. 4.13, our embeddings discriminate salient points more accurately (left), while

maximising the feature invariance among non-salient points since they are less reproducible under

intra-category shape deformations (right). In contrast, the spectral embeddings provide an equally

rough discrimination accuracy for each point on the shape, irrespective of whether it is salient or

not. Our embeddings can therefore be used to prevent erroneous matchings from salient to non-

salient points and vice verse, based on the consistency of saliency within a shape category (Chen

et al., 2012).

4.4.4 Comparison with Saliency Detection Methods

Here, we compare our method with the highly-cited saliency detection methods, including mesh

saliency (MS) (Lee et al., 2005), surface regions of interest (SRI) (Leifman et al., 2012), manifold

ranking (MR) (Pingping et al., 2015), spectral irregularity (SI) (Song et al., 2014), tree-based re-

gression (TBR) (Chen et al., 2012), point neural networks (PointNet and PointNet++) (Qi, Su, Mo
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Figure 4.13: The Benefits from Saliency to Matching. The red circle on each mesh highlights the

reference point, and from there the distances to other points are represented using a blue (small)

to red (large) scale. Using salient points as references (left), due to the semantic localisation

property, our saliency-induced embeddings discriminate these semantically important and thus

deformation-stable points much better compared with the isometry-invariant spectral embeddings.

Using non-salient points as references (right), we achieve maximum invariance for these points

that are sensitive to non-isometric deformations.
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Figure 4.14: Visual Comparisons for Saliency Detection without Matching. The image shows

the saliency maps generated by MS, SRI, MR, SI, TBR, PointNet, PointNet++, SurfCNN and

our method, without the use of matching for saliency detection. Note that while PointNet, Point-

Net++ and SurfCNN are trained on an 80% sample for all the categories of the Schelling saliency

dataset jointly, TBR is trained using leaving-one-out for each category separately in the original

work. Our method is trained on varying fractions of samples for all the categories jointly to better

visualise progression of generalisation.

and Guibas, 2017a; Qi, Yi, Su and Guibas, 2017), and surface CNN (SurfCNN) (Yi et al., 2017).

Among them, MS is local contrast-based, SRI, MR, and SI are global rarity-based, and TBR is tree

regression-based. Unlike PointNet that works on a raw 3D point cloud, PointNet++ and SurfCNN

learn features using the geodesic metric and in the Laplacian spectral domain respectively. We in-

put our raw SH features to PointNet++ and SurfCNN for a fair comparison. Note that our method

does not use intrinsic geodesics or Laplacian but may incorporate them in the future.

Saliency Detection without Matching. As MS, SRI, MR, and SI are rule-based and cannot in-

corporate the intra-category consistency into saliency computation, we first train PointNet, Point-

Net++, and SurfCNN on an 80% sample (for each category) of the Schelling dataset and our

method on a 5%, 10%, 20%, 40%, and 80% sample respectively. We find that our method pro-

duces the most accurate saliency maps using 80% training meshes.

Fig. 4.14 shows that MS responds strongly to local geometric variations while SRI, MR, and SI

detect more globally distinct regions. As ground-truth saliency maps are spatially localised on

surfaces, they must be densely distributed on the frequency dimension due to the well-known un-
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Figure 4.15: Quantitative Comparisons for Saliency Detection without Matching. On aver-

age, the saliency maps predicted by our method with an 80% training sample are more accurate

compared with that by PointNet, PointNet++, and SurfCNN with the same meshes for saliency

training.

certainty principle. They are therefore not accurately captured by SI as it involves high-frequency

cutoff in spectral computation. TBR produces good saliency maps with leave-one-out training,

but fails to well reproduce the sparsity of ground-truth maps (e.g., on the face region of the human

body shape). PointNet fails to identify most of ground-truth salient points, which are captured by

PointNet++ and SurfCNN to some extent. However, PointNet++ and SurfCNN still misses some

important regions such as the mouth and ears of the human body and the eyes of the cow. These

regions are accurately captured by our method trained on an 80% sample. Even with as few as 5%

or 10% training meshes, our method is shown to detect a succinct set of most important regions

such as the facial features and claws of the armadillo.

Fig. 4.15 shows that our method produces more accurate saliency maps than PointNet, PointNet++

and SurfCNN. It is interesting to see that our method achieves equally good quantitative results

with a 20% and an 80% sample respectively, but adding more training meshes leads to visually

smoother and more accurate saliency maps (Fig. 4.14).

Saliency Detection with Matching. We compare our method with PointNet, PointNet++, and

SurfCNN by training with and without the saliency and metric consistency losses on the Human

category of the Schelling saliency dataset (Chen et al., 2012) and the SCAPE matching dataset
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Figure 4.16: Visual Comparisons for Saliency Detection with Matching. The image shows the

saliency maps generated by PointNet, PointNet++, SurfCNN, and our method, with and without

matching. PointNet, PointNet++, and SurfCNN are trained on an 80% sample of the Human

category of the Schelling dataset and an 80% sample of the SCAPE dataset, and our method is

trained in the same way but with varying fractions of meshes from the Schelling dataset.
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Figure 4.17: Quantitative Comparisons for Saliency Detection with Matching. Compared with

the saliency maps computed by PointNet, PointNet++, and SurfCNN, ours are more accurate (left)

and deformation-invariant (right). We mark * to indicate the use of matching.

(Anguelov et al., 2005).

Fig. 4.16 shows the predicted saliency maps with and without matching for one testing mesh from

the Schelling dataset on the left and another from the TOSCA dataset on the right. Incorporating

matching into saliency detection reduces the noises on surfaces to a large extent, especially when

there is only 1 training mesh providing no hints about the shape variations of testing meshes.

When there are more training meshes, matching is shown to sharpen our detected salient regions

such as the facial features of the human body on the left. PointNet fails to detect most of the

salient regions, while PointNet++ does not highlight the facial features of the human body clearly.

For the centaur shape on the right, PointNet++ and SurfCNN roughly capture the eyes, nose, and
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mouth of it with the help of matching. Our method highlights these regions more accurately when

matching is used.

Fig. 4.17 shows that enforcing the intra-category consistency of saliency improves the saliency

prediction accuracy of all methods except PointNet. The improvement is significant when there

are only 1 (5%) or 2 (10%) training meshes but remains noticeable when there are more. Mean-

while, the considerably lower saliency consistency errors indicate that the predicted saliency maps

are much more deformation-invariant with matching. Overall, our method achieves the lowest

saliency prediction error using 80% of both saliency and matching training meshes.

4.4.5 Comparison with Shape Matching Methods

Here, we compare our method with the highly-cited blended intrinsic maps (BIM) (Kim et al.,

2011), semi-definite programming (SDP) (Maron et al., 2016), random forests (RF) (Rodolà et al.,

2014), heat kernel CNN (HKCNN) (Boscaini, Masci, Rodolà and Bronstein, 2016), and deep

functional maps (DFM) (Litany et al., 2017) for non-rigid shape matching. We group the methods

into model-based and learning-based due to their different data requirements - the latter requires

one-to-one vertex correspondences for training, while the former does not. We match each of the

last 20 testing meshes to the first on the FAUST dataset for performance benchmarking, using the

protocol of (Kim et al., 2011). We obtain the correspondences by RF, HKCNN, and DFM for

these meshes from the original authors, and run BIM and SDP for the same set of meshes using

the released codes.

Saliency for Model-based Matching. We first incorporate our saliency-induced point embed-

dings (of dimensions 30, Fig. 4.4 bottom) into SDP, in addition to the originally used Laplacian

spectral embeddings (of dimensions 30, Fig. 4.4 top), for better handling non-isometric shape

deformations. We name our method of SDP with saliency as SDP-SAL. Fig. 4.18 shows some

predicted correspondence error maps. It can be seen that BIM is inferior to SDP for matching the

limbs of human bodies because it has no notion of length on surfaces. SDP produces patches of

wrongly matched points due to its sensitivity to surface length-changing (non-isometric) deforma-

tions. Our SDP-SAL method reduces the matching errors of SDP at the limbs and chests using

the saliency-induced embeddings. Fig. 4.19 shows that our SDP-SAL method achieves higher

correspondence accuracy compared with SDP and BIM on the FAUST testing set. The consistent
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Figure 4.18: Visual Comparisons for Shape Matching with Saliency. Visualisation of the pre-

dicted correspondence error, i.e. geodesic distances between predicted and ground-truth corre-

spondence points, from three source meshes to a target mesh on the FAUST testing set. Hotter

colours indicate larger errors.

improvement from SDP to SDP-SAL indicates that saliency reduces the non-isometric correspon-

dence errors that cannot be handled by the isometry-invariant spectral embeddings.

Saliency for Learning-based Matching. We then incorporate our saliency-induced embeddings

into a three-layers plain MLP (of dimensions 256 for each layer) for correspondence prediction

using our SH features on the FAUST training set (the first 80 meshes). We name our method of

MLP with saliency as MLP-SAL. As RF and HKCNN refine the predicted correspondences using

the functional maps of (Ovsjanikov et al., 2012) and DFM uses the geodesic smoothing method

of (Vestner et al., 2017), we refine our MLP results using the method of (Vestner et al., 2017)

for a fair comparison. Our MLP-SAL method exploits both geodesic (as used by DFM) and our

saliency-induced embedding distances (Fig. 4.13) for correspondence refinement. Fig. 4.18 shows

that our MLP-SAL method reduces the matching errors produced by MLP at the shoulders and

hands of human bodies. Fig. 4.19 shows that our MLP-SAL improves on MLP and achieves

higher correspondence accuracy compared with RF and HKCNN.
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Figure 4.19: Quantitative Comparisons for Shape Matching with Saliency. The comparison of

the shape matching accuracy obtained by BIM, SDP (without saliency), RF, HKCNN, DFM, MLP

(without saliency), as well as by our saliency-enhanced SDP-SAL and MLP-SAL on the FAUST

testing set.

More Non-Isometric Matching Results. To demonstrate the use of our saliency-induced embed-

dings for handling more complex intra-category shape variations, we compute shape matchings for

the Fourleg category of the Schelling dataset using the isometry-invariant SDP and our saliency-

enhanced SDP-SAL respectively. We extract our embeddings by training with an 80% sample of

the Fourleg category and an 80% sample of the animal category of TOSCA shape matching dataset.

Fig. 4.20 shows that these animal body shapes have strong non-isometric shape variations, which

explains the failure of SDP to find semantically meaningful yet highly non-isometric shape match-

ings. Our SDP-SAL, in contrast, identifies correct matchings from the limbs of the horse, wolf, and

pig to that of the cow. It also considerably reduces the matching errors of SDP at the face and back

regions of the wolf and pig. For the even more challenging giraffe-to-cow example, only our SDP-

SAL can identify correct matchings for the head region of the giraffe. We note that there are some

incorrect discontinuity matchings between the source and the target meshes, which are caused by

the used Laplacian embeddings that are sensitive to highly non-isometric shape deformations. In

the future work, we plan to address this shortcoming by replacing the Laplacian embeddings with

more deformation-invariant embeddings learned from correspondence meshes.
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Figure 4.20: Matching Highly Non-Isometric Shapes with Saliency. The image shows the

shape matchings generated by SDP and our SDP-SAL from four source meshes to a target mesh.

These meshes are from the Fourleg category of the Schelling dataset, which is known to exhibit

intra-category shape deformations that are far from being isometric.
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4.5 Summary

In this chapter, we tackled mesh saliency detection and non-rigid shape matching together for mu-

tual benefits. We proposed a unified metric representation from which the saliency map and the

shape embeddings of a mesh can be jointly inferred as the principal eigenvector and the smoothed

Laplacian eigenvectors respectively. We also proposed a multi-layer RNN for effectively integrat-

ing multi-scale shape features, together with a soft-thresholding operator that adaptively enforces

the sparsity of metric representation. We performed metric learning on saliency detection and

shape matching datasets at the same time. Results validated that matching improves the accuracy

and intra-category consistency of derived saliency maps, especially when the saliency training set

is of small size (i.e. with only 1 or 2 meshes). They also showed that saliency improves the match-

ing accuracy of both model-based and learning-based methods, which is more noticeable when

large non-isometric deformations are involved.
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Chapter 5

Metric-based Facial Shape

Beautification

After addressing shape analysis using our metric representation in Chapter 3 and 4, we now pro-

ceed to the task of shape synthesis in this chapter. In particular, we propose a novel metric rep-

resentation for the synthesis problem of 2D facial shape beautification in images. As shown in

Fig. 5.1, the theme of our approach is synthesising a beautified metric representation in the fa-

cial metric space from the input face dataset and user controls, from which the beautified facial

shape can be reconstructed using global optimisation. We detail our approach in the following

sections.

5.1 Introduction

Driven by the culture of social media, the need of appearing attractive (Seidman and Miller, 2013)

has stimulated a body of research on facial attractiveness analysis (Zhang et al., 2017). Because the

geometry of faces has significant influences on the perceived attractiveness (Leyvand et al., 2008),

we focus on facial shape beautification in this work (Leyvand et al., 2008), without altering the

original makeups and skin textures. This is desirable in many cases where users want to preserve

the original skin appearances and only adjust the facial shapes to a minimum extent.

While facial attractiveness is a subjective notion, some studies have shown that regardless of the

ages, genders and races of human observers, their preferences towards more attractive faces share
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Figure 5.1: The Overview of Our Unified Metric Framework for Facial Shape Beautification.

Given an input 2D facial image dataset and some user controls, we first synthesise a beautified

facial metric representation and then reconstruct the beautified face from the metric.

some objective natures (Cunningham et al., 1995; Slater et al., 1998; Winston et al., 2007). This

motivates the use of computer techniques for facial attractiveness analysis and enhancement. There

have been studies on the impact of the geometry of faces on attractiveness evaluation (Schmid

et al., 2008) and enhancement (Liao et al., 2012). However, their rule-based methods cannot

quantify how much a face departs from or conforms to the average of a group of face, which is

hypothesised to be attractive (Grammer and Thornhill, 1994). In contrast, data-driven methods

that require human-annotated attractiveness scores for face analysis and beautification have been

proposed (Eisenthal et al., 2006; Leyvand et al., 2008). Despite their good results on frontal

and neutral faces, these methods cannot generalise well to non-frontal, non-neutral faces because

the annotation of attractiveness scores is ambiguous when poses and expressions are confounded

(Zhang et al., 2017). More recently, deep learning techniques have been applied to the evaluation

and enhancement of facial attractiveness (Gan et al., 2014; Li et al., 2015). They suffer from

the lack of interpretability of deep neural networks, which prevents users from understanding and

controlling the computational process of beautification.

In view of the above challenges, we propose to approach the beautification of non-frontal, non-

neutral faces in a geometrically controllable way. Departing from the coordinate-based face rep-

resentations of (Leyvand et al., 2008; Liao et al., 2012; Chen et al., 2014), we propose to encode

the geometry of a face using the orthogonal projection metric onto the subspace of the facial land-

marks. Due to the affine-invariance of our metric representation, it frees the face beautification

process from the underlying nuisance facial landmarks transformations, such as translation, ro-

tation, and scaling. Furthermore, it fully encodes the pairwise geometric configuration of facial

landmarks, which enables users to prescribe different levels of beautification for individual fa-

cial parts. Comparing with the non-linear face reconstruction methods in (Leyvand et al., 2008;

Liao et al., 2012; Chen et al., 2014), the reconstruction of facial landmarks from our metric rep-

resentation is a linear projection, which is much more efficient and guaranteed to be globally
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optimal.

On top of our metric representation of faces, we propose to identify beautiful face patterns as the

local density modes in the metric space of faces. The idea is that these density modes represent

the local clusters of facial shapes and exhibit a stronger tendency of symmetry and averageness

(Grammer and Thornhill, 1994). We observe that to obtain high-fidelity face beautification results,

users typically want to apply minimum changes to the geometry of an input face while keeping

the original pose and expression intact. Therefore, we formulate the beautification process of

an input face as pulling it towards a local nearby density mode, which can be efficiently found

using the mean-shift method (Georgescu et al., 2003). As the method successively averages the

face metrics in a local neighbourhood until convergence, it is locality-sensitive averaging for face

beautification. The locality-sensitive averaging allows us to adapt the beautification of a particular

face to the local vicinity in the metric space of faces, so that the original pose and expression

variations can be preserved.

Results show that our method improves facial attractiveness for a wide range of non-frontal poses

and non-neutral expressions, without relying on any human-annotated attractiveness scores for

training (Leyvand et al., 2008; Chen et al., 2014; Li et al., 2015). 70% of the human subjects we

interviewed prefer our beautified results for 100 frontal portraits, while 65% of the subjects prefer

the beautified results for 100 general facial images. Results also show that our method preserves

user-specified facial parts for face beautification. The whole process takes less than 1 second to

finish on a laptop and therefore allows for continuous user interactions. Our publicly available

source codes can be downloaded from this link∗.

The contributions of this work include:

• We propose to represent the geometry of a face using the orthogonal projection metric

onto the subspace of the facial landmarks. This representation is affine-invariant, captures

the pairwise geometric configuration among facial landmarks, and allows for efficient face

beautification with the user-specified weights of individual facial parts.

• We propose to formulate the beautification process of a face as pulling it towards a local

nearby density mode using the mean-shift method. The method is capable of beautifying

∗https://drive.google.com/open?id=1NonS5WQedtxejTDh-m Ym3MZSk21H54p
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Input Image Detected Landmarks

Computed Facial Metric Op�mized Facial Metric

Reshaped Landmarks Beau�fied Image

(a)

(b) (c) (d)

(e)(d)

Facial Metric Space

Facial Landmarks Space

Figure 5.2: The Overview of Our Metric-based Face Beautification Method. The computa-

tion steps from (a) to (e) are facial landmarks detection, facial metric computation, facial metric

optimisation, facial landmarks reconstruction, and facial image warping respectively.

non-frontal, non-neutral faces by applying minimum changes to input faces via locality-

sensitive averaging.

5.2 Our Metric Approach to Face Beautification

Fig. 5.2 provides an overview of our face beautification method. Given an input facial image,

we first detect (a) a collection of facial landmark points along the jawline and the contours of the

eyebrows, eyes, nose, and mouth. We then compute (b) a metric to capture the input facial shape,

which is the orthogonal projection matrix onto the subspace of the detected landmarks. After

that, we perform (c) face beautification on the metric by pulling it towards a local nearby density

mode in the metric space of faces. We then reshape (d) the original landmarks using the optimised

metric so that the geometric configuration of the input face can be enhanced. Finally, we warp (e)

the input image using the original and the reshaped landmarks to produce a beautified image. We

describe the steps in the following sections.

5.2.1 Facial Landmarks Detection

Given an input facial image, the first step of our approach is to detect a collection of facial land-

marks P ∈ RN×3 for representing the geometry of the input face, where N is the number of

landmark points. The coordinates of the i-th landmark is Pi = (Pi1,Pi2, 1), where Pi1 and Pi2

are the x and y coordinates on the image plane respectively. The last component is the homoge-

neous coordinate 1, which we need to derive our facial metric representation of P in Section 5.2.2.
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5.2. Our Metric Approach to Face Beautification

We adopt the method of (Le et al., 2012) for detecting a number of N = 68 facial landmark points

along the jawline and the contours of the eyebrows, eyes, nose and mouth. This method builds

a local shape model for each individual facial part, which is capable of handling a wide range of

facial expression and pose variations.

5.2.2 Facial Metric Representation

After detecting a collection of facial landmarks P from an input image, we aim at deriving a more

effective representation of P for facial shape manipulation. Our idea is to represent P as the

orthogonal projection metric M ∈ RN×N onto the coordinate subspace of P . Traditionally, the

normalised coordinates of P and the edge lengths of the Delaunay triangulation have been widely

used (Leyvand et al., 2008; Chen et al., 2014). However, these low-level representations cannot

be effectively converted back to the coordinate space, making the facial reshaping process non-

linear with potentially bad local minimas. In contrast, our metric representation M is naturally

invariant to the nuisance affine perturbations of the detected facial landmarks, which geometrically

correlates every pair of landmarks in a human-understandable way. In Section 5.2.4, we show that

it significantly simplifies the facial reshaping process to linear projection, allowing for flexible

user controllability on the beautification process

Formulation. To solve for the metric representation M that geometrically correlates every pair

of facial landmarks, we consider representing each landmark Pi as the linear combination of

all the landmarks. Because the number of landmarks N is normally greater than the coordinate

dimension (i.e. 3), we further minimise the L2-norm of the combination coefficients so that the

representation can be uniquely determined. This leads to the following constrained minimisation

problem for each landmark:

x∗ = argmin ‖x‖22, subject to Pi =
N∑

k=1

xkPk (5.1)

where x ∈ RN is a vector of linear combination coefficients for each landmark and ‖x‖22 =

∑N
k=1 x

2
k is the L2-norm of x to be minimised. Solving (5.1) for each landmark individually
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gives us the metric representation M :

Facial Reshaping Metric︷ ︸︸ ︷
M = P (P TP )−1P T (5.2)

where T is the matrix transpose and each row of M is the optimal solution to (5.1) for the corre-

sponding landmark. We can verify from (5.2) that the representation is symmetric (M = MT ),

idempotent (M = M2), and exact (P = MP ), confirming that it is the orthogonal projection

metric onto the subspace of the facial landmarks. This construction fundamentally changes the

formulation of facial shape manipulation from the traditional non-linear coordinates optimisation

to our linear projection.

Affine-Invariance. Here, we verify that our metric representation M is guaranteed to be affine-

invariant, which allows for efficient facial shape analysis and manipulation without nuisance facial

landmark coordinate transformations involved in the process. For each landmark Pi, it can be seen

from (5.1) that the constraint still holds when we apply any linear transformation L ∈ R3×3 to all

the landmarks, LPi =
∑n

k=1 xk(LPk). This shows that the optimal combination coefficients (i.e.

rows of M ) remain the same under any linear (rotation, uniform scaling, and shearing) perturba-

tion in real-world facial images. By applying any homogeneous translation T = (x, y, 1) ∈ R3

to all the landmarks, we can further obtain Pi + T =
∑N

k=1 xk(Pk + T ) =
∑N

k=1 xkPk +

(
∑N

k=1 xk)T . Because the last coordinate components of all the landmarks are 1, we have

∑N
k=1 xk = 1 from the constraint in (5.1). Therefore, the equation Pi + T =

∑N
k=1 xk(Pk + T )

holds, which confirms that the combination coefficients are also invariant to any translation of the

facial landmarks.

Geometric Significance. On top of the affine-invariance, our metric representation M also has

clear geometric significance that is not provided by deep learning methods (Gan et al., 2014; Li

et al., 2015). This allows it to fully capture the geometric configurations for every pair of facial

landmarks, which enables part-based user control in face beautification. We reveal this by finding

the analytic form of each element of M as follows:

Mij =
(Pi − P )TS−1(Pj − P )

N
+

1

N
(5.3)
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Figure 5.3: The Visualisation of Our Metric Representation of Facial Landmarks. Left: two

faces with different expressions and poses, with the corresponding facial landmarks rendered on

top of the faces; the white numbers on the top left show the indices of the 68 facial landmarks.

Right: the rendered images of the two corresponding metric representations, with blue and red

colours representing low and high values respectively; the black lines separate different facial parts

for clearer visualisation. These parts include the jawline (JL), left eyebrow (LB), right eyebrow

(RB), nose bridge (NB), nostril (NO), left eye (LE), right eye (RE), outer lip (OL), and inner

lip (IL). The pairwise geometric configurations represented by our metric enables part-based user

control in face beautification.
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where P = 1
N

∑N
k=1Pk is the centroid of the face and S = 1

N

∑N
k=1(Pk − P )(Pk − P )T

is the covariance matrix of the landmark coordinates. Now, it becomes clear that the diagonal

elements of M depend on the normalised squared Euclidean distance from each landmark to the

face centroid, while the non-diagonal elements depend on the dot product between the pair of

normalised vectors from the two corresponding landmarks to the centroid.

Facial Metric Visualisations. To demonstrate the geometric significance of our metric represen-

tation, we visualise the metrics of two faces with different expressions and poses in Fig. 5.3. It

can be seen that each facial part has its a distinct pattern within the matrix. These patterns come

from the configurations of the facial parts relative to each other, which vary according to the facial

shape. As the distances from the landmarks to the face centres are encoded in the diagonals of

the metrics, the elements corresponding to the outermost contours (i.e. the jawline and eyebrows)

have relatively larger values. The inner facial parts such as the lips and nose have relatively smaller

values. The main difference between the two metrics are on the rows and columns corresponding

to the jawline and lips, due to the more significant changes caused by expression and pose. It is

also possible to infer the symmetry information of facial parts from the visualised metrics. Taking

the first one for example, the submatrix occupied by the jawline and eyebrows is nearly symmetric

about its main diagonal, signifying the vertical symmetries of the two facial parts. In compari-

son, the symmetry patterns of the second face have been considerably weakened by the changing

expression and pose.

5.2.3 Facial Metric Optimisation

After computing the metric M from an input set of facial landmarks P , the next step of our

approach is to optimise M into M∗ with improved facial attractiveness. The main idea of our

method is to iteratively pull M towards a local nearby density mode in the metric space of faces.

This allows us to preserve the original pose and expression during beautification, while gradually

improving the attractiveness of the represented face. After obtaining the optimised metric, we

apply it to the input facial landmarks to obtain the reshaped landmarks. The reconstructed facial

image is generated by smoothly deforming the input image so that the input facial landmarks are

aligned to the reshaped ones.

We require a dataset of un-annotated facial metricsM = {M i}mi=1 for training, where m is the
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5.2. Our Metric Approach to Face Beautification

number of faces and each metric M i ∈ RN×N is computed from the corresponding face. While

the methods of (Leyvand et al., 2008; Chen et al., 2014; Li et al., 2015) focus on the beautifi-

cation of frontal and neutral faces, our method can enhance the shapes of faces with non-frontal

poses and non-neutral expressions, without requiring human-annotated attractiveness scores for

training.

Feature Transformation. To preserve the major features of faces in beautification, we propose

to transform the original metric representation using the Principal Component Analysis (PCA)

for dimension reduction and selection. By preserving 95% of the dataset variance, we obtain a

low-dimensional close approximation of an input metric M as follows:

M = M +
C∑

c=1

λcΓc (5.4)

where M ∈ RN×N is the mean, {Γc}
C
c=1 are the principal components in the descending order of

the associated variance, and {λc}
C
c=1 are the projection coefficients of M onto these components.

Therefore, the metric can be approximated using the mean metric and a set of mutually uncor-

related details. These details are sorted in the descending order of the corresponding principal

eigenvalues (i.e. data variances).

As the leading coefficients explain more rapidly changing expressions and poses in the dataset, we

choose to use the non-leading coefficients for facial shape optimisation. Empirically, we exclude

the first two coefficients and subject the remaining {λc}
C
c=3 to optimisation. We reconstruct the

optimised metric as M∗ = M +
∑2

c=1 λcΓc +
∑C

c=3 λ
∗
cΓc, where {λ∗c}

C
c=3 are the coefficients

after face optimisation. This is visualised in Fig. 5.4. In the following, we use M to abbreviate

the coefficient representations {λc}
C
c=3 for explaining our face beautification method.

We show an example of face interpolation in Fig. 5.5, where we apply the mean of the facial

metrics of two source faces to an input face with and without feature transformation. We evaluate

this task because the averaging operation is the building block of our unsupervised face beautifica-

tion method. It can be seen that while the two source faces have different expressions and poses,

they share the consistent intrinsic facial geometric configuration. However, when their shapes are

naively interpolated and transferred to a target face, some extrinsic factors creep in and lead to

undesirable face distortions. By excluding the leading PCA coefficients, it can be seen that the
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Mean Metric 1st: 0.024764251 2nd: 0.009485293

3rd: 0.003133052 4th: 0.002582757 5th: 0.0017336803

 Held fixed during 

face beau�fica�on

......

28th: 9.3764e-005 29th: 8.7872e-005 30th: 8.2706e-005

 Op�mized during 

face beau�fica�on

Figure 5.4: The Visualisation of Our PCA Feature Transformation. The images show the

mean facial metric and the discovered PCA components as sorted by their associated eigenvalues

(displayed on the bottom of each small image). We fix the PCA coefficients corresponding to the

first and the second components during face beautification, because they encode large-scale pose

and expression variations and modifying them leads to noticeable facial image distortions. We

only optimise the remaining PCA coefficients that mostly encode intrinsic facial shape features.

(a) Source Face 1 (b) Source Face 2 (d) Without Trans. (e) With Trans. - Ours(c) Input Face

Figure 5.5: The Effect of Feature Transformation on Facial Shape Interpolation. (a): a frontal

and neutral source face. (b): another source face with pose and expression. (c): an input face.

(d): the interpolated face generated by applying the mean of the two source facial metrics to the

input face without feature transformation. (e): the interpolated face generated using our feature

transformation method.
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(a) Input Face (b) Without Trans. (c) With Trans. - Ours

Figure 5.6: The Effect of Feature Transformation on Face Beautification. (a): an input face.

(b): the beautified face without using feature transformation. (c): the beautified face with our

feature transformation method.

transferred face has no noticeable distortions. Furthermore, we show an example of face beautifi-

cation with and without feature transformation in Fig. 5.6. It can be seen that the beautified image

with feature transformation is much more realistic compared with that without feature transforma-

tion. The output images in Fig. 5.5 and 5.6 are generated using the facial image warping method

in Section 5.2.5.

Locality-sensitive Face Beautification. Motivated by the averageness property of facial attrac-

tiveness (Grammer and Thornhill, 1994; Schmid et al., 2008; Zhang et al., 2011), we propose to

optimise an input facial metric M by iteratively averaging its local nearby samples in the metric

space of faces. Our idea is to regard faces at the local cluster centres (i.e. local average faces)

as the locally most attractive, which to our knowledge is first proposed in this work. Different

from the methods of (Grammer and Thornhill, 1994; Schmid et al., 2008; Zhang et al., 2011), we

ensure the locality of the averaging operation so that the averaged faces have improved attractive-

ness while remaining similar to the input. According to the mean-shift formulation of (Comaniciu

and Meer, 2002), this iterative locality-sensitive averaging operation is guaranteed to converge to

a local nearby density mode in the metric space, under mild assumptions of the kernel function

used for measuring the distance between any pair of facial metrics.

We formulate the idea of iterative local averaging and obtain our face beautification formula at one

scale as follows:
Locality-sensitive Face Averaging︷ ︸︸ ︷

Ψ(M) =

∑m
i=1 [h

−C
i e−||M i−M ||2/2h2

i ]M i

∑m
i=1 [h

−C
i e−||M i−M ||2/2h2

i ]
(5.5)

where M is an input facial metric using our PCA feature representation, each M i is a training
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sample from the face dataset M, m is the number of training samples in M, and C is the di-

mension of the PCA representation. It can be seen from (5.5) that the distance between M and

M i is measured as the Gaussian kernel function e−||M i−M ||2/2h2
i , which assigns higher weights

to geometrically more similar faces and lower weights to faces that are farther away from the in-

put. Compared with the equal or linear weighting kernels, the exponential locality of the Gaussian

kernel function allows for better preservation of the input pose and expression during beautifica-

tion.

To account for varying sample densities, we associate an adaptive scale hi with each face in the

dataset:

hi = ||M
i −Mγm||2 (5.6)

where γ ∈ (0, 1) and Mγm is the γm-nearest neighbour to M i in the dataset. When γ is set to

a small value, only very close samples can contribute to the averaging and thus only small-scale

facial features will be modified. When γ is set to a larger value, more distant samples will be con-

sidered and larger-scale facial features will be enhanced. Empirically, we choose the set of scales

γ ∈ {0.005, 0.01, 0.02, 0.04, 0.08} because they are able to cover both local nearby and more

distant training samples for facial shape optimisation. For each γ, we compute the corresponding

adaptive scale hi for each training sample M i and iteratively evaluate the locality-sensitive av-

eraging operation in (5.5) until convergence. The final optimised metric M∗ is computed as the

mean of the convergent solutions of all scales.

5.2.4 Facial Landmarks Reshaping

With the original facial landmarks P and the optimised facial metric M∗ computed by our

locality-sensitive averaging method, the next step of our approach is to find a set of new land-

marks P ∗ that is consistent with the enhanced facial shape represented by M∗. We show that our

metric representation reduces the process to a linear projection, which is significantly less costly

compared with the non-linear optimisation method of (Leyvand et al., 2008; Chen et al., 2014).

Besides the global optimality of our method, it allows users to flexibly control the beautification

weight of each individual facial part, thereby achieving user-satisfied beautification results.

Formulation. To ensure the quality of face beautification, we minimise the distance between the

original and the new landmarks while enforcing the consistency of the new landmarks with the
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(a) Source Face (b) Input Face (c) Beau�fied Face

Figure 5.7: The Example of Face Beautification via Shape Transfer. (a): a source face. (b): an

input face to be beautified. (c): the beautified face with the shape coming from the example. The

shape transfer is efficiently done by applying the metric of the source face to the input as linear

projection.

optimised metric:

P ∗ = argmin ‖X − P ‖2F , subject to X = M∗X (5.7)

where X ∈ RN×3 is a set of new landmarks to be found and ‖X−P ‖2F =
∑N

i=1

∑2
j=1 (Xij − Pij)

2

measures the deviation of the two sets of landmarks. The constraint enforces that the new land-

marks should be within the subspace corresponding to the metric M∗, thereby reconstructing the

encoded pairwise geometric configurations of the facial landmarks. The optimal solution to (5.7)

is the linear projection of the original facial landmarks onto the new optimised metric:

Facial Reshaping︷ ︸︸ ︷
P ∗ = M∗P (5.8)

Essentially, M∗ acts as the facial reshaping metric that enhances an input face via linear projec-

tion, which is significantly more efficient than the non-linear optimisation process of (Leyvand

et al., 2008; Chen et al., 2014).

Fig. 5.7 shows an example of face beautification via shape transfer. It can be seen that the modified

face appears to resemble the source face as indicated by the thinner jawline, longer eyebrows,

bigger eyes and mouth. This is efficiently done by linearly projecting the input facial landmarks

using the metric of the source face.

User Controllability. Now, we consider the problem of user controllability in face beautification.

Sometimes, users may want to prescribe different levels of beautification for individual facial

89



Chapter 5. Metric-based Facial Shape Beautification

(a) Input Face (b) Full Average (c) Jawline Fixed (d) Nostril Fixed (e) Eyebrows Fixed

Figure 5.8: The Example of User-controlled Face Averaging. (a): an input face. (b): a full

average face created by applying the mean facial metric to the input. (c): the average face with

the original jawline shape by setting the corresponding beautification weight to 0. (d): with the

original nostril shape. (e): with the original left and right eyebrow shapes.

features, such as preserving the shapes of the eyebrows more while enhancing the shapes of the

jawline more. This can be naturally done using our metric representation. We denote a vector of

beautification weights as w ∈ RN , where 0 ≤ wi ≤ 1 is a user-specified value controlling how

much the facial shape related to the i-th landmark can be altered. We group the landmarks into the

jawline, left eyebrow, right eyebrow, nose bridge, nostril, left eye, right eye, outer lip, and inner

lip, as visualised in Fig. 5.3. The landmark weights within each group are equal. As a result,

the beautification weight matrix W = ww
T ∈ RN×N indicates the weight configuration of the

whole face: Wij is larger if the relative geometric configuration of the landmarks i and j should be

enhanced more, and Wij is smaller if the configuration needs to be preserved more. We compute

the reshaped facial landmarks as follows:

User-controlled Facial Reshaping︷ ︸︸ ︷
P ∗ = [(1−W )M +WM∗]P (5.9)

where M and M∗ are the original and the optimised facial metrics respectively. If w is a vector

of 0, no beautification is applied and the original face is recovered. If w is a vector of 1, the new

face is generated without preserving any features of the original. By adjusting the weights of the

facial parts, users can enhance input faces while preserving certain desired features.

Fig. 5.8 shows an example of applying the mean facial metric to reshape an input face, while

keeping some of the original facial parts fixed during reshaping. The mean metric is computed on

the training set of (Le et al., 2012) and the created full average face appears to have more round

and symmetric facial features than the input. By setting the beautification weights of the facial
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landmarks on the jawline to 0, the partial average face looks more similar to the input than the full

average, as the jawline has a global influence on the shape of the whole face. By fixing the nostril

or the eyebrows instead, the results are more similar to the full average face, but the shapes of

the nostril and eyebrows still resemble the originals. Our user-controlled facial reshaping method

produces satisfactory customised results in all cases.

5.2.5 Facial Image Warping

Finally, given an input facial image and the detected facial landmarks P , the final step of our

approach is to produce a beautified image using the optimised facial landmarks P ∗. Our goal is

to geometrically deform the input image so that the original facial landmarks can be matched to

the optimised ones, while ensuring that the deformed image remains realistic and high-quality. To

this end, we adopt the Moving Least Squares method of (Schaefer et al., 2006) for fitting a rigid

transformation on each image location. To more efficiently process high-resolution facial images

that are popular nowadays, we modify the original method by sampling a low-resolution grid

(10% of the image resolution) on the input image and deforming the grid using the original and

the optimised landmarks. Afterwards, for each quad on the deformed grid, we compute a back-

ward perspective transformation that maps the quad to the corresponding one on the original grid.

Finally, we use these backward transformations to fill the output image using the corresponding

pixels from the input image. Our modified method is capable of producing a high-quality, high-

resolution beautified image within a second. We use it to generate all of the modified face images

in this work.

5.3 Results

5.3.1 Full-face Beautification Results

We show our full-face beautification results in Fig. 5.9. We generate these results using the popular

Helen facial image dataset (Le et al., 2012), which consists of 11, 147 high-resolution facial images

for training and 2, 330 images for testing. These images cover a diverse range of genders, races,

ages, poses, and expressions. The diversity of the Helen dataset is important for well representing

the local density modes in the face space, which our method seeks for face beautification. Despite

the diverse backgrounds, shapes, poses, and expressions of the input faces, our method manages
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Figure 5.9: Our Full-face Beautification Results. These faces are selected to cover a wide range

of gender (male and female), pose (frontal and non-frontal), and expression (neutral and non-

neutral). Our method is purely unsupervised and does not require any human-annotated facial

attractiveness scores for training.
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(a) Input Face (b) [Leyvand et al. ] (c) Ours

Figure 5.10: The Comparison of Our Unsupervised Method with the Supervised Method of

(Leyvand et al., 2008). (a): the input facial images. (b): the beautified images from (Leyvand

et al., 2008). (c): the beautified images generated by our method. While the method of (Leyvand

et al., 2008) requires human-annotated attractiveness scores for training and only works on frontal

portraits, our method does not have these restrictions.
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(a) Input Face (b) [Chen et al.] (c) Ours

Figure 5.11: The Comparison of Our Unsupervised Method with the Supervised Method of

(Chen et al., 2014). Left: the input facial images. Middle: the beautified images taken from (Chen

et al., 2014). Right: the beautified images generated by our method. Similar to that of (Leyvand

et al., 2008), the method of (Chen et al., 2014) requires human annotations for training and only

works on frontal portraits. Our method does not have these restrictions.
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to automatically optimise the input facial geometric configurations and produce high-resolution

images with improved facial attractiveness. Importantly, the poses and expressions of the input

faces are well preserved by our method. Note that neither human-annotated attractiveness scores

(Leyvand et al., 2008; Chen et al., 2014; Li et al., 2015) nor 3D face modelling (Liao et al.,

2012) are required by our method. Our face beautification results are all generated in a purely

unsupervised manner.

Comparisons with Supervised Methods. Here, we compare our method with that of (Leyvand

et al., 2008) and (Chen et al., 2014). These two methods only work on frontal portraits and there-

fore cannot generalise well to non-frontal poses and non-neutral expressions. Besides, they both

require human-annotated facial attractiveness scores for training, which unfortunately are difficult

to obtain for non-frontal and non-neutral faces that exist in many real-world applications.

Due to the limited number of results provided in (Leyvand et al., 2008) and (Chen et al., 2014),

we can only compare with a few facial images taken from the original papers in Fig. 5.10 and

5.11. Both our unsupervised method and the two supervised methods improve the perceived at-

tractiveness of the input faces. While the supervised methods are shown to apply more intense

modifications to the eyebrows and eyes, our method preserves more features of these regions. The

beautified faces generated by our method appear more similar to the input, which is because our

method performs beautification via iterative locality-sensitive averaging. Therefore, it is capable

of maintaining some of the input facial features that are normally missing during the supervised

optimisation process of (Leyvand et al., 2008) and (Chen et al., 2014).

5.3.2 User Study

To empirically evaluate the effectiveness of our face beautification method, we designed a user

study for collecting human preferences towards the original faces or the beautified versions gen-

erated by our method. The study consists of two courses, one based on 100 general facial images

from the challenging Helen test set (Le et al., 2012) and the other based on 100 more controlled

frontal portraits we collect from the Internet. We conducted the study on both sets of images to

demonstrate the robustness of our method in handling non-frontal, non-neutral faces in the wild.

We generated the beautified results for both sets of images. We recruited 12 male and 12 female

human subjects aged 22-35. In each course, we randomly presented pairs of the original and the
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General Facial Images Frontal Portraits

Beau�fied Faces

Original Faces

No Preferences

Figure 5.12: The User Study of Our Method. Left: the percentages of human subjects preferring

the original faces, the beautified faces, or without preferences on general facial images. Right: the

percentages of human preferences on input faces with frontal poses and neutral expressions.

beautified images to each of the subjects, with the order of the images in each pair being ran-

domised. We asked each subject to pick the more attractive face in each pair or to express no

preferences. When finished, we obtained 2, 347 and 2, 085 choices for the two courses respec-

tively. To comply with the European General Data Protection Regulation 2016/679 (Voigt and

Von dem Bussche, 2017), we asked the subjects for consent to participate in the study and con-

ducted full anonymisation to ensure that no personal identity information can be misused. After

forming the overall statistics of preferences as displayed in Fig. 5.12, we also discarded the prefer-

ences of the individual subjects to ensure that no personal preferences towards facial attractiveness

evaluation can be inferred.

As shown in Fig. 5.12, the subjects in both courses prefer the full-face beautified images over

the originals. Remarkably, the percentages of subjects preferring our results on the much more

challenging general facial image course, which includes non-frontal and non-neutral faces, are

comparable to that on the frontal portraits (70% versus 65%). This demonstrates the robustness

of our method for enhancing non-frontal and non-neutral faces, which are very common in many

real-world applications. To our knowledge, this is the first time in the field that a method has been

shown to be capable of beautifying such challenging faces.

5.3.3 User-controlled Beautification Results

Beyond full-face beautification without user intervention, our method allows users to prescribe

a beautification weight in [0, 1] for each individual facial part. The smaller the weight, the bet-

ter preserved the shape of the corresponding part. Fig. 5.13 shows some user-customised face

beautification results, for which we allow users to preserve one or more facial parts while fully
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(a1) Input Face (a2) Lips = 0.4 (a3) Lips = 0.8 (a4) Full

(b1) Input Face (b2) Jawline = 0.5 (b3) Jawline=0.9

(c1) Input Face (c2) Lips=0.5, Eyebrows=0.3 (c3) Lips=0.7, Eyebrows=0.9

(d1) Input Face (d2) Eyes=0.25 (d3) Eyes=0.75

(b4) Full

(c4) Full

(d4) Full

Preserving User-specified Facial Parts

Figure 5.13: Our User-controlled Face Beautification Results. Here, we allow users to preserve

one or more facial parts while fully beautifying the remaining. On each row, we show the input

facial image on the first column and the full-face beautified images on the fourth column. We show

the intermediate beautified images on the second and third columns, with the user-customised

beautification weights of the facial parts being preserved. The beautification weights of the parts

not being preserved are set to the largest value of 1.0.
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Table 5.1: The Run Time of Our Method for Beautifying a Typical Input Facial Image of

Resolution 1280× 960. The steps (b)-(d) are our contributions in this work.
Operation Run time

Step (a) Facial Landmarks Detection 0.451723s

Step (b) Facial Metric Computation 0.000117s

Step (c) Facial Metric Optimisation 0.190622s

Step (d) Facial Landmarks Reshaping 0.002041s

Step (e) Facial Image Warping 0.323160s

Total The Whole Process 0.967839s

beautifying the remaining. As shown on the first row, our method generates natural and smooth

transitions between the shape of the input mouth and that of the fully beautified version, when

users change the beautification weights of the outer and inner lips from 0.0 (i.e. no beautification)

to 0.4, 0.8, and 1.0 (full beautification). Our method works equally well for allowing users to

control the beautification level of the jawline (on the second row) and eyes (on the fourth row) of

an input face. More challenging is the case when users want to preserve more than one facial part,

as shown in the third row of Fig. 5.13. Still, our method generates intermediate beautified images

that naturally interpolate the original and the fully enhanced eyebrows and mouth.

5.3.4 Computational Cost

We list the run time of each computation step of our face beautification method in Table 5.1. The

time is measured for processing a typical facial image of resolution 1280 × 960 on a laptop with

an Intel(R) Core i7-6500U 2.5GHZ CPU and an 8GB RAM. Overall, the whole beautification

process takes less than 1 second to finish, which allows for continuous user interactions with low

latency. The steps of facial metric computation (b), facial metric beautification (c), and facial

landmarks reshaping (d) are extremely efficient because (b) mainly involves the inverse of a 3× 3

matrix, (c) is accelerated using a KD-tree structure, and (e) is simply a linear projection. While

the step of facial image warping (e) is the most time-consuming, it is still reasonably fast given

the high resolution of the input image. Note that the steps of facial landmarks detection (a) and

facial image warping (e) are not the focus of this work, and they could be replaced by other faster

methods in the future.
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5.4 Summary

In this chapter, we have proposed a metric representation for purely unsupervised facial shape

beautification, without requiring any human-annotated facial attractiveness scores for training.

We have proposed to formulate face beautification as the process of iteratively pulling the met-

ric representation of an input face towards a local nearby density mode in the metric space of

faces. Benefiting from the orthogonal projection nature of our metric representation, it frees the

beautification process from the nuisance affine transformations of facial landmarks and naturally

groups facial landmarks into individual facial parts for user control. It also significantly simplifies

the reconstruction of beautified facial landmarks as linear projection, which is very efficient and

guaranteed to be globally optimal. Due to the locality of our iterative face averaging method, the

beautified version of an input face faithfully preserves the original pose and expression, which

have been confirmed by many examples shown in the work. Our method has been shown to be

capable of beautifying both frontal portraits and general facial images that contain a wide range

of non-frontal poses and non-neutral expressions, which is beyond the ability of the current super-

vised face beautification methods. On top of this, our method enables users to flexibly prescribe

beautification weights so that certain facial parts can be preserved more while others can be en-

hanced more. As the speed of our method is interactive, it allows users to continuously customise

the beautification weights until satisfactory results are obtained.
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Chapter 6

Human Shape and Pose Modelling

In Chapter 5, we have studied the problem of facial shape synthesis using our proposed metric

representation framework. In this chapter, we plan to generalise the singular task of shape syn-

thesis to the modelling of shapes and poses for humans. The motivation is that virtual human

synthesis has recently become a very active research topic in computer graphics, which has broad

applications in computer games and virtual reality. As an extension work of this thesis, our key

idea is learning the low-dimensional probability manifolds of human shapes and poses in the auto-

encoding rather than the original geometry space with GANs. Because the underlying dimensions

of the manifolds are independent of the ambient embedding space, the learning task can be made

considerately easier for synthesising higher-quality human samples.

6.1 Introduction

3D human body shapes and poses are ubiquitous in computer games and animations. Modelling

their distributions is a fundamental building block for automatically synthesising realistic-looking

human characters and animations.

The drawback of linear subspace methods such as the SMPL model (Loper et al., 2015) is that

random sampling far from the centre (i.e. the average human shape and pose) of the resulting

Gaussian distributions would produce non-realistic humans (Kanazawa et al., 2018). This is be-

cause the distributions of real human shapes and poses are more likely to be locally supported

on non-linear manifolds, instead of on the full subspaces where the Gaussian distributions are
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globally supported on. Also, the SMPL model is mainly used for reconstructing human shapes

and poses from images or videos (Kanazawa et al., 2018; Bogo et al., 2016; Lassner et al., 2017),

rather than for synthesising virtual humans without any guidance. In contrast, we focus on gener-

ating humans via random sampling in this study and pursue the task of guided reconstruction in

the future work.

The more recent work on generative adversarial networks (GANs) for non-linear distribution mod-

elling (Goodfellow et al., 2014) still cannot produce satisfactory results, because they embed the

shape and pose manifolds directly in the high-dimensional geometry spaces (Kanazawa et al.,

2018). The training can be difficult because measuring the overlap of two manifolds (i.e. the real

and the generated) in high-dimensional spaces is difficult.

In this work, we propose to learn the distributions of real human shapes and poses using two sep-

arate GANs, not in the original high-dimensional geometry spaces but in the more representative

low-dimensional latent spaces discovered by a shape and a pose auto-encoder network respec-

tively. The motivation is that the dimensions of the real shape and pose manifolds should be

independent of the ambient spaces. As a result, measuring their overlaps with the generated shape

and pose manifolds can be made easier in a much lower-dimensional ambient space. Therefore,

we train a shape encoder (similarly a pose encoder) to embed real human shapes into a low-

dimensional hidden space, while training a shape decoder (similarly a pose decoder) to reconstruct

the input. We train a shape generator (similarly a pose generator) to transform a standard Gaussian

distribution into this space, in which a shape discriminator (similarly a pose discriminator) is also

trained to approximate the distribution distance for the generator to minimise.

We propose the two following contributions in this work:

• We propose to learn the non-linear manifolds of real human shapes and poses separately

in two respective low-dimensional auto-encoding spaces, rather than in the original high-

dimensional geometry spaces. We note that there is no sharing of parameters between shape

and pose modelling in this study.

• We demonstrate the capacity of our learned priors by generating high-quality human shapes

and poses via random sampling. We release our source code∗ to facilitate the synthesis of

∗https://drive.google.com/open?id=1y-aPe8FGzetxnY3FpSESci3U59KgQSUJ
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6.2. DSPP: Deep Shape and Pose Priors of Humans

realistic humans in real-time (around 5ms using a GTX 1080 graphics card).

6.2 DSPP: Deep Shape and Pose Priors of Humans

We focus on modelling the probability distributions of real human body shapes x ∼ p(x) and

real human body poses y ∼ p(y). In computer gaming and animation, it is typical to represent

a human shape x ∈ RN×3 as a 3D point cloud with a given mesh topology, and a human pose

y ∈ RM×3 as an array of 3D joint Euler angles. Combining the two using skinning techniques can

produce a deformed human shape in the given pose (Wang et al., 2015).

The challenge of modelling p(x) and p(y) is that they are high-dimensional distributions but can

only be specified as the empirical distributions of scanned human shapes and motion-captured hu-

man poses in practice. That is, sampling from them is equivalent to sampling from a shape dataset

and a pose dataset respectively. As a result, our task is approximating them using continuous

distributions p̂(x) and p̂(y) so that the drawn samples are visually similar to that from the given

datasets.

The overview of our method is illustrated in Fig. 6.1. The key is that we assume p̂(x) and p̂(y)

to be locally supported on two low-dimensional manifolds respectively, whose dimensions are in-

dependent of the ambient spaces the manifolds are embedded in. Our method departs from the

previous work on linear subspaces that assume both distributions to be Gaussian with a global

support (Loper et al., 2015). It is also in contrast with the recent work on generative distribution

modelling that embeds the manifolds in the original high-dimensional geometry space. Partic-

ularly, our method learns some low-dimensional ambient spaces and the manifolds embedded

within, which is shown to produce higher-quality samples.

6.2.1 Auto-encoding Ambient Spaces

To find the low-dimensional ambient spaces for generative distribution modelling, we learn two

pairs of deep encoders {fshape, fpose} and decoders {hshape, hpose}, by minimising the two follow-
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Figure 6.1: The Overview of Our Human Modelling System. We train a pair of shape en-

coder/decoder and a pair of pose encoder/decoder so that we can learn the non-linear manifolds

of human shape and pose in the low-dimensional auto-encoding ambient spaces. Synthesizing

realistic human shapes and poses amounts to sampling from a standard normal distribution, then

applying the corresponding generators, and finally applying the corresponding decoders. We note

that the shape and pose modelling branches are separately trained with no sharing of parameters

between them.
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ing reconstruction losses respectively:

l(x, fshape, hshape) = Ex∼p(x)‖x− hshape(fshape(x))‖
2
F (6.1)

l(y, fpose, hpose) = Ey∼p(y)‖y − hpose(fpose(y))‖
2
F (6.2)

where the expectations of the squared Frobenius norms† are taken with respect to the empirical

shape and pose distributions, p(x) and p(y), respectively.

We denote zx = fshape(x) and zy = fpose(y) as the learned hidden representations of real human

shapes and poses respectively. This allows us to obtain zx ∼ p(zx) and zy ∼ p(zy) as the low-

dimensional empirical distributions of real human shape and pose representations. Because we can

use a much smaller dimension for zx and zy respectively, our task of approximating the original

high-dimensional empirical distributions p(x) and p(y) can be greatly simplified to model p(zx)

and p(zy) instead.

6.2.2 Generative Modelling in the Auto-encoding Spaces

Now, we seek to find a pair of continuous distributions p̂(zx) and p̂(zy) so that they can be made

close to their empirical distribution counterparts, by minimising some distribution distance be-

tween them. Assuming the continuous distributions to be Gaussian and taking the distance as

the Kullback−Leibler divergence, as done in the previous work on linear subspace methods, re-

cover the globally supported Gaussian distributions that produce non-realistic samples far from

the centres.

Instead, we assume p̂(zx) and p̂(zy) to be only locally supported on the low-dimensional human

shape and pose manifolds, which are embedded in the auto-encoding shape and pose ambient

spaces respectively. Therefore, we leverage the state-of-the-art GANs for discovering such non-

linear manifolds (Goodfellow et al., 2014). We train a shape generator ϕshape : z → zx and a

pose generator ϕpose : z → zy that embed a random sample z ∼ N (0, I) from a low-dimensional

standard Gaussian distribution into the shape and pose ambient spaces respectively. This way,

synthesising human shapes and poses from the embedded manifolds is equivalent to sampling z

and then applying the two generator functions respectively.

†‖X‖2F = trace(XTX)
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To fit the embedded shape and pose manifolds to the empirical distributions p(zx) and p(zy), we

take the popular discrimination loss:

l(p̂(zx),p(zx)) = −Ez∼N (0,I)[logψshape(ϕshape(z))] (6.3)

l(p̂(zy),p(zy)) = −Ez∼N (0,I)[logψpose(ϕpose(z))] (6.4)

where ψshape : zx → (0, 1) and ψpose : zy → (0, 1) are the separately trained discriminator

functions that tell whether a given shape and a pose are real samples or not: near-1 probabilities

mean real and near-0 probabilities mean synthetic. Minimising (6.3) and (6.4) amounts to finding

the shape and pose generators that produce synthetic samples indistinguishable from the real ones

according to the corresponding discriminators (Goodfellow et al., 2014).

6.2.3 Datasets, Architectures, and Training

To validate the effectiveness of our method, we train our human shape and pose distribution mod-

elling system on the MPII Human Shape dataset (Pishchulin et al., 2017) and the SFU Motion

Capture dataset (SFU Motion Capture dataset, n.d.). The former contains 4,308 3D human body

shapes registered to a common mesh topology, with each shape consisting of 6,449 surface points.

The latter provides 3D human motion capture clips covering various activities such as walking,

running, dancing, and interactions. We extract over 100,000 poses from these clips using a regular

sampling rate of 4 frames/second. We represent each pose using the 3D Euler angles of 20 body

joints defined in (Pishchulin et al., 2017), excluding that of the Hips root joint as it describes global

rotations.

We illustrate the neural network architectures of our shape and pose subsystems in Fig. 6.2 and 6.3

respectively. We also show the baseline shape and pose discriminator architectures that work in the

original geometry spaces in Fig. 6.4, where we use the max-pooling operator to aggregate point

features for global context modelling (Qi, Su, Mo and Guibas, 2017b). We use the Parametric

Rectified Linear Unit (PReLU) activation function for the encoders, decoders, and generators (He

et al., 2015), while using the Rectified Linear Unit (ReLU) (Nair and Hinton, 2010) for the dis-

criminators. Importantly, we follow the method of (Miyato et al., 2018) to normalise the spectral

norm (SN) of each linear transformation in the discriminators to be 1, which effectively stabilises

the training of GANs. In each of 100,000 training cycles, we first randomly sample a pair of real
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Figure 6.2: The neural network architectures of our proposed shape encoder, shape decoder,

shape generator, and shape discriminator.
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Figure 6.3: The neural network architectures of our proposed pose encoder, pose decoder,

pose generator, and pose discriminator.
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Figure 6.4: The architectures of the baseline shape and pose discriminators that work in the

original geometry ambient spaces.
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Figure 6.5: The loss of our shape encoder, shape decoder, shape generator, and shape dis-

criminator.
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Figure 6.6: The loss of our pose encoder, pose decoder, pose generator, and pose discrimina-

tor.

shape and pose to train the corresponding encoders and decoders. We then train the discriminators

using the updated embeddings and a pair of synthetic samples computed from the respective gen-

erators. Finally, we train the two generators based on the corresponding updated discriminators.

We use the Adam optimiser with the default settings for training (Kingma and Ba, 2014).

We implement our system in PyTorch (V1.1) on a PC with a GTX 1080 graphics card with 8GB

graphics memory. Each training step takes around 70ms, and generating a pair of shape and pose

takes around 5ms. Our code is publicly available from this link: https://drive.google.com/open?

id=1y-aPe8FGzetxnY3FpSESci3U59KgQSUJ

6.3 Results

We show the training losses of our proposed human shape and pose modelling subsystems in Fig.

6.5 and 6.6 respectively. As the training progresses, both the shape and pose reconstruction losses

decrease rapidly. This shows that the shape and pose encoders effectively compress the original
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Figure 6.7: Human Shape Comparison. Comparison of our randomly sampled human shapes

with that sampled from the baseline method of learning discrimination in the original shape space.

We use red rectangles to indicate samples that do not look realistic.
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Figure 6.8: Human Pose Comparison. Comparison of our randomly sampled human poses with

that sampled from the baseline method of learning discrimination in the original pose space. We

use red rectangles to indicate our samples that do not look realistic.
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Table 6.1: The statistics (mean and standard deviation) of the distances from the generated

samples to the nearest true samples.
Human Shape Human Pose

Baseline 3.42 ± 1.12 2.79 ± 1.56

Ours 2.68 ± 1.32 2.01 ± 1.54

geometry input into the more representative spaces, from which the corresponding decoders suc-

cessfully reconstruct the input. The fluctuations of the shape and pose GAN losses are desirable,

which indicate that the generators are continuously learning to produce samples that cannot easily

be distinguished by the corresponding discriminators.

We compare our randomly sampled human shapes with that sampled from the method of using the

baseline shape discriminator (Fig. 6.4, left) in Fig. 6.7. Our synthesised shapes look both realistic

and diverse, resembling closely with the samples from the ground-truth dataset (Pishchulin et al.,

2017). In comparison, the baseline method produces noticeable noises around the head, chest,

and feet regions as indicated by the red rectangles, which are caused by the insufficient capacity

of the baseline discriminator that fails to capture fine-scale surface details. We also compare our

randomly sampled human poses with that sampled from the method of using the baseline pose

discriminator (Fig. 6.4, right) in Fig. 6.8. Similarly, our generated poses look considerably more

realistic than the baseline results. Together, these results validate the effectiveness of modelling

shape and pose manifolds in the auto-encoding spaces.

To quantitatively compare the realism of our generated samples with the baseline samples, we

compute the distances from them to their nearest true samples in the shape (Pishchulin et al.,

2017) and pose (SFU Motion Capture dataset, n.d.) datasets respectively, as summarised in Table

6.1. The distance between two shapes is computed as the Frobenius norm of the difference of

their coordinates, while the distance between two poses is computed as the Frobenius norm of

the difference of their Euler angles. We use 100,000 randomly sampled shapes and poses for

comparison. It can be seen that the average distances from our generated shapes and poses to the

true samples are both smaller than from the baseline samples to the true samples. This shows that

our samples are geometrically closer to the real human scans and captures. We note that the nearest

sample distance is an approximate way to measure the visual realism of automatically generated

samples, and it may be enhanced by using controlled user studies in the future work.
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6.4 Summary

In this chapter, we introduced the idea of modelling the non-linear manifolds of human shapes

and poses in the auto-encoding ambient spaces. We discovered the spaces by learning a pair of

encoder and decoder for human shapes and poses respectively. The low-dimension of such spaces

allow us to more effectively learn human shape and pose manifolds, using the powerful non-linear

distribution modelling GAN. The learned manifolds, as embedded in the auto-encoding ambient

spaces, allow for the synthesis of realistic human shapes and poses. Our results showed that our

method produces higher-quality samples, comparing with the method of distribution modelling in

the original geometry spaces.
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Chapter 7

Conclusion and Future Work

In this thesis, we have proposed a unified metric framework for shape analysis and synthesis,

which targets at three important yet diverse applications in computer graphics: facial shape beau-

tification, mesh saliency detection, and non-rigid shape matching. We have framed the central

theme of our framework as representing 2D/3D shapes as semantically informative metrics that

capture the global geometric features of shapes for analysis and synthesis. The global nature of

our metric representations has successfully allowed us to formulate the three problems in a co-

herent global optimisation setup, where the mathematical goal is to leverage the eigenvectors of

the metrics for analysis and synthesis. Concretely, we have formulated facial shape synthesis as

linear projection onto the eigenvectors of a facial orthogonal projection metric. We have also for-

mulated saliency detection as computing the sparse principal eigenvector of the feature distance

metric of a mesh and non-rigid shape matching as computing the Laplacian eigenvectors of the

feature distance metric that is learned by deep learning. The successes achieved for all three appli-

cations demonstrate the usefulness of our metric representations for shape analysis and synthesis.

As an extension work, we have also generalised shape synthesis to the joint modelling of human

shapes and poses for virtual human synthesis. By learning the manifolds of shapes and poses in a

low-dimensional auto-encoding space, the generated samples are higher-quality than that learned

in the original geometry space. In the following, we discuss the future directions for each of these

work.
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Chapter 7. Conclusion and Future Work

7.1 Mesh Saliency Detection

We have selected 50 commonly used graphics meshes for our 3D eye fixation dataset construction.

In the future, we could scale the construction to the SHREC2007 dataset (SHREC’2007 watertight

mesh database, n.d.) so that we can have each of the 400 meshes annotated with 3D eye fixations

and Schelling saliency values (Chen et al., 2012). This would greatly facilitate the large-scale

benchmarking of saliency detection methods for further progress. Implementing more methods

(e.g. of (Feixas et al., 2009; Zhao et al., 2016; Jeong and Sim, 2017)) will also help this.

Our assumption of saliency is a bottom-up computational approximation to the pre-attentive mech-

anism of the human visual system. As a result, it may fail to capture a few visually salient but not

necessarily rare regions of a mesh, such as the chest of the Armadillo and the face of the Teddy, as

shown in Figure 3.5. To capture these challenging regions, more high-level cues like symmetries,

segmentation, and semantic annotations are expected to be helpful.

7.2 Unification of Saliency Detection and Shape Matching

Currently, our system requires dense point-to-point correspondences to enforce the intra-category

consistency property, which have very limited availability and are difficult to label (Anguelov

et al., 2005; Vlasic et al., 2008; Bogo et al., 2014). This may be partly addressed with sparse seg-

ment correspondences (Ovsjanikov et al., 2012), but a more favourable bootstrap solution would be

to compute less accurate matchings for improvement with target tasks jointly and iteratively.

The Laplacian spectral embeddings (Rustamov, 2007) and our saliency-induced ones represent

the two extreme ends of discrimination-invariance trade-off, with the former proven to be the

smoothest and the latter proven to be the most localised. Therefore, our embeddings lack fine-

grained discrimination for non-salient points. This is why we incorporate our embeddings into

the model-based SDP and the learning-based MLP methods for shape matching. In between the

Laplacian spectral embeddings and ours, there would be an optimal discrimination-invariance

trade-off that takes both salient and non-salient points into consideration. Finding the optimal

solution depends on the applications and is a future direction.
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7.3. Facial Shape Beautification

7.3 Facial Shape Beautification

The computational bottlenecks of our face beautification method are the steps of facial landmarks

detection and facial image warping. These are not our focus in this work and can be significantly

accelerated by using other faster methods, such as the one of (Zhang et al., 2014) for landmarks

detection and that of (Liao et al., 2014) for image warping.

Currently, to ease user control in face beautification, we have allowed users to customise beautifi-

cation weights on the level of facial parts (e.g. the jawline and the eyes). An interesting direction

of research is automatically learning these weights from high-level personal traits such as gender,

age, and race.

We have formulated facial shape beautification as an iterative locality-sensitive averaging process

in the face space. We have specified the locality of face averaging using a scale parameter γ,

which has the advantage of producing minimum changes to input faces so that major facial features

are well preserved. In the future, the choice of γ could be optimised based on user preferences

towards facial attractiveness. Non-local faces could also be incorporated in the averaging process

to suggest more diverse, user-satisfied face changes for beautification.

We have focused on the beautification of 2D facial shapes in this work. Still, our facial reshaping

metric and locality-sensitive averaging method are independent of the specific coordinate dimen-

sion, which can be seamlessly adapted for the beautification of 3D facial meshes (Liao et al.,

2012).

7.4 Human Shape and Pose Synthesis

As a future work, we are interested in learning to realistically deform the synthesised shapes

using the synthesised poses. This will open the door of automatic human character synthesis in

applications such as animation and gaming. Although the method of Loper et al. (2015) permits

such applications, it relies on the traditional skinning technique and could result in non-realistic

deformations. The work of Bailey et al. (2018) that automatically learns deformations is worthy

exploration.
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Vestner, M., Litman, R., Rodolà, E., Bronstein, A. and Cremers, D. (2017), Product manifold

filter: Non-rigid shape correspondence via kernel density estimation in the product space, in

‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition’.
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