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Abstract –The European Union funded the FLARECAST project, that ran from January 2015 until February
2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several inno-
vations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment
of hundreds of physical properties viewed as promising flare predictors on equal footing, extending mul-
tiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal
footing, to optimize the immense Big Data parameter space created by these many predictors; third, the
establishment of a robust, three-pronged communication effort oriented toward policy makers, space-
weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infras-
tructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are
now available) in multiple machine-learning algorithms, some of which were designed exclusively for
the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring
levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous
training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition,
the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful
clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejec-
tions (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help
facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite
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of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not
managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare
prediction thus remains inherently probabilistic.

Keywords: Sun / solar flares / solar flare forecasting / machine learning / big data / computer science

1 Introduction

The first decades of the 21st century have seen the transfor-
mative effect of the ever-increasing, widespread use of wireless
technologies. Enhanced by the equally expansive use of the
internet, these technologies have claimed, and are expected to
continue claiming, a crucial part of our everyday routine, from
services to communications and from information to edutain-
ment. Space-based satellite technologies have also been instru-
mental in establishing wireless capabilities to a degree that
few could predict, even by the standards of the late 20th
century.

When relying on space, however, it is imperative to keep in
mind the decisive effects of our magnetically active star, the
Sun. Simultaneously with the expansion of human capabilities
came increased awareness of the adverse effects of space
weather, namely, the short-term (hours to days) impact of solar
magnetic activity, from the fast solar wind spewed by extended
coronal holes to the storm-like transport of solar eruptions
through the entire heliosphere. Electromagnetic and particulate
emission from solar eruptions can cause anything from short-
lived, relatively unimpactful disruptions to major damage in
satellite infrastructure, on top of the biological hazards they pose
to exposed humans in space conditions, either during extrave-
hicular activities or in future manned space travel and missions
to Moon and Mars (see, for example, ESA’s1 Moon Village and
NASA’s Artemis Programs).

Exceptional solar flares and eruptive manifestations, up to
the first flare observed by Carrington (1859), are among deep-
space phenomena whose repercussions go past the ionosphere,
reaching down to aviation altitudes and even to Earth’s surface.
Figure 1 portrays this impact in an image produced by the
University of Applied Sciences and Arts of Northwestern
Switzerland (FHNW) partner of the FLARECAST Consortium.
There, one sees ramifications spanning from what we already
knew before the space age (i.e., the aurora, long-range electrical
power networks or radar disruptions) to any applications that
GPS or Galileo enable. During the space age we have seen
some solar eruptions that have caused major effects in May
1967, March 1989, and October–November 2003, although
solar flares associated with these eruptions were arguably smal-
ler than the Carrington flare (Cliver & Dietrich, 2013). How-
ever, while cruising on the far-side of the Sun in July 2012,
the STEREO-A spacecraft detected the transit of an extreme

solar eruption that was characterized as a Carrington-scale event
(Baker et al., 2013). Geospace was spared from that eruption
but, statistically, in future events it will not be (see, e.g., Riley
& Love, 2017).

The staggering short- and long-term financial impact of
extreme space weather has been delineated in a series of recent
works (e.g., MacAlester & Murtagh, 2014; Oughton et al.,
2017; Eastwood et al., 2018), as well as in governmental guide-
lines and action plans, such as the US National Space Weather
Strategy and Action Plan (2015, 20192) and the UK Space
Weather Preparedeness Strategy (20153). Of particular interest,
however, is the 2008 National Research Council’s Severe Space
Weather Events: Understanding Societal and Economic
Impacts Workshop Report (NRC, 2008) that portrays in its
Figure 3.1 the nonlinear inner workings and interconnections
of sectors comprising our societal fabric. Like domino bricks,
if any of these sectors fails due to extreme space weather, the
ramifications will be hard to imagine and even harder to miti-
gate. The reliable forecasting of extreme space weather, there-
fore, upgrades to a major challenge of our times.

Energetic events accompanying major solar eruptions are by
far the main agents of extreme space weather. These events
comprise three distinct aspects: solar flares, CMEs, and SEP
events. A reliable forecasting, therefore, should encompass three
very different forecast efforts with unique characteristics and
challenges. In solar flare prediction, that is the topic of discus-
sion in this work, there is no early warning for the flares’
X- and c-ray photons. Only a slim window of ~10–12 min
exists for flare-accelerated SEPs, if any (Haggerty & Roelof,
2002; Rust et al., 2008). To address the lack of advance warn-
ing, therefore, major solar flares – and flare-related, impulsive
SEP events, by extension – need to be predicted well before
their occurrence (i.e., several hours to 1–2 days in advance).
There are currently significant shortcomings in our flare fore-
casting ability, as sections below will show. In addition, CMEs,
particularly the fastest ones that are stemming from solar ARs
and are virtually associated one-to-one to major flares (Yashiro
et al., 2005, but see Liu et al., 2016 for an exceptional active
region), should ideally be predicted along with flares and SEPs
(e.g., Anastasiadis et al., 2017). There is a window of inner-
heliospheric transit ranging between ~20 h and 2–3 days after
the initial, near-Sun detection of CMEs until they reach

.

Ὁ ἥkio1 ot’ l�omom. . . mέo1 e’u0 ἡlέqῃ The Sun is young every day,

e’rsím, a’kk0 a’eí mέo1 rtmev~x1. incessantly and eternally.

Ἠq�ajkeiso1, ~500 P.K.E. Heraclitus, ~500 BCE

1 All abbreviations and acronyms used hereafter are explained in
Appendix D.

2 Available at https://trumpwhitehouse.archives.gov/wp-content/
uploads/2019/03/National-Space-Weather-Strategy-and-Action-
Plan-2019.pdf.
3 Available at https://www.gov.uk/government/publications/space-
weather-preparedness-strategy.
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geospace. If Earth-directed, their arrival time and geoeffective-
ness (i.e., their potential ability to trigger a geomagnetic storm)
should also be predicted in advance (e.g., Möstl et al., 2014;
Mays et al., 2015). Finally, CME-shock-accelerated SEP events
may arrive at geospace hours after the source solar eruption or,
in the worst-case scenario, even before the CME registers in
near-Sun height-time diagrams (Reames, 2017; Malandraki &
Crosby, 2018, and references therein). We also need to know
in advance the temporal profile of the SEP event and its
peak flux or fluence, particularly for proton energy channels

exceeding 50–100 MeV, as per NOAA guidelines and recently
defined benchmarks4.

Although an ultimate goal, we still seem to be far from
achieving an integrated platform for the prediction of all
extreme space weather manifestations. Among them, solar flare
prediction has historically been humanity’s first stride. Since the

Fig. 1. A graphical representation of extreme space weather and its effects on contemporary technology and infrastructure. Credit: FHNW.

4 See the US Space Weather Phase 1 Benchmarks at https://
trumpwhitehouse.archives.gov/wp-content/uploads/2018/06/Space-
Weather-Phase-1-Benchmarks-Report.pdf.
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1980s, there have been persistent efforts toward flare prediction
introducing a wealth of physical, semi-empirical or empirical
AR properties and proxies that have been claimed to hold a
flare-predictive capability. A short, non-exhaustive review of
these properties, including an effort to group them into different
categories, appears in Georgoulis (2012).

However, earlier efforts (e.g., Leka & Barnes, 2003b, 2007;
Barnes & Leka, 2008) aiming to assess the relative performance
of these properties indicated that, on one hand, none was solely
capable to predict flares reliably while, on the other hand, when
a capability to simultaneously test multiple properties was
achieved, the predictive information contained in the full prop-
erty set was highly redundant. The first comparative evaluation
of prominent flare-predictive properties and methodologies,
undertaken by Barnes et al. (2016), established that no single
method clearly outperformed the others. This and other initial
findings (e.g., the predictive value of timeseries, previous flare
history) were further solidified by collaborative work on opera-
tional forecasts by Leka et al. (2019a, b) and Park et al. (2020).

Meanwhile, the explosive increase in computing power
spearheaded critical advances in computer science, in an already
existing Big Data ecosystem facilitated by the wealth of ground-
and space-based solar observations since the mid-1990s. Data
mining and the advent of machine learning eventually led to
the first application of a SVM and neural networks in flare fore-
casting (Qahwaji & Colak, 2007). Several seminal works fol-
lowed thereafter (Li et al., 2008; Qahwaji et al., 2008; Song
et al., 2009; Yu et al., 2009; Bobra & Couvidat, 2015;
Muranushi et al., 2015; Nishizuka et al., 2017) and the list is
ever-expanding. Today, we know that solar flare forecasting –

and space weather forecasting, in general – should be viewed
as an interdisciplinary effort, with a potentially critical contribu-
tion from machine learning (Camporeale et al., 2018, and refer-
ences therein), albeit not without open challenges impeding
progress (Camporeale, 2019).

In this continuously and rapidly evolving landscape, a
Consortium of nine institutes spanning over six European coun-
tries took advantage of the EU Horizon-2020 2014 PROTEC-
2014 opportunity to propose the FLARECAST project. Having
all the above in mind, FLARECAST pledged to develop an
advanced solar flare prediction system based on automatically
extracted physical properties of solar active regions, coupled
with state-of-the-art machine learning solar flare prediction
methods and validated using the most appropriate forecast
verification measures. FLARECAST featured three top-level
objectives, namely, one scientific, one devoted to the R2O
philosophy and one engaging in communication. In particular,
FLARECAST proposed:

– In terms of science, to understand the drivers of solar flare
activity and improve flare forecasting.

– In terms of R2O, to provide a globally accessible flare fore-
cast service that facilitates expansion.

– In terms of communication, to engage with space weather
end users, inform stakeholders and policy makers, and edu-
cate the broader public on solar flares and space weather in
general.

This collective work summarizes FLARECAST’s most sig-
nificant findings and conclusions in all three objectives above,
along with key elements from peer-reviewed publications that

occurred in its course. Section 2 describes the methodology
followed throughout the project, while Section 3 elaborates on
the tasks of data handling and monitoring. Section 4 discusses
the FLARECAST performance verification strategy, while
Section 5 briefly describes the project’s scientific results and
explorative component. Section 6 encapsulates the main conclu-
sions of the project’s three top-level objectives (i.e., science,
operations, communication) along with lessons learned in its
course. Finally, in a series of Appendices we provide detailed
instructions on accessing FLARECAST data, codes and infras-
tructure (Appendix A), key results from the FLARECAST
Users Survey (Appendix B; see Sect. 2.5.1 for a relevant discus-
sion), the list of refereed publications related to or acknowledg-
ing the FLARECAST project (Appendix C) and, finally, a list of
acronyms and abbreviations used in this paper (Appendix D).

All things considered, as commented by an attendee of one
of the FLARECAST Stakeholders’ Workshops, “the real fun
starts now”; we expect a number of future works that will take
advantage of and exploit the FLARECAST products. These
may not be restricted to flare prediction, as (i) the volume of
metadata provided by the processing of the NRT SHARP data
product (Bobra et al., 2014) is substantial and (ii) as per EU’s
OpenAIRE initiative (https://www.openaire.eu), all data, codes
and infrastructure of the project are openly available to any
interested individual or team worldwide. Ideally, then, one
might view the FLARECAST infrastructure as a vehicle for a
future integrated space weather prediction platform. Compre-
hensive and diverse material on the FLARECAST project can
be found in the openly accessible FLARECAST website
http://flarecast.eu (see also Fig. 9 in Sect. 2.5 for a top-level
structure of this website).

2 The FLARECAST approach

FLARECAST embraced the technical architecture and
methodology structure illustrated in Figure 2. This was realized
in a sequence of four procedural steps, namely, (1) [external]
data acquisition, (2) property extraction, (3) machine learning-
based prediction and (4) forecast verification. The overall pro-
ject methodology was implemented in seven WPs, as follows:

– WP1: Project Management.
– WP2: Active Region Properties as Predictors of Flaring

Activity.
– WP3: Flare Prediction Algorithms.
– WP4: Data Storage and Processing Cloud.
– WP5: Data and Forecast Verification.
– WP6: Explorative Research.
– WP7: Dissemination.

This work plan structure, together with the technical scheme
of Figure 2, show the design philosophy of the FLARECAST
science and technology. The project relied on machine learning
applied to data from the HMI vector magnetograph (Scherrer
et al., 2012; Schou et al., 2012) onboard the SDO mission
(Pesnell et al., 2012) in order to implement a technological
service for flare forecasting with the ultimate goal of contribut-
ing to a data-driven understanding of the physical trigger-
ing fmechanisms of flares. Rigorous forecast verification and
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dissemination of results have been crucial steps of this basic
research effort.

2.1 Science motivation

The solar flare phenomenon pertains to explosive energy
release in the low solar atmosphere that results in short-lasting
(i.e., minutes to hours) enhancement of emission over virtually
the entire electromagnetic spectrum (see, e.g., Benz, 2008;
Fletcher et al., 2011 for comprehensive reviews). Major,
highly-energetic flares (i.e., GOES M- and X-class events, in
particular) are much less frequent (in a distribution that is long
known to be a power law – see Drake, 1971; Rosner & Vaiana,
1978; Crosby et al., 1993) than minor flares (i.e, GOES C-class)
and subflares5. In terms of mean occurrence frequency, or
climatology in the statistical language of forecasting problems
(e.g., Barnes et al., 2016; Leka et al., 2019a), major flares fall
under the category of rare events, namely, events that are much
more infrequent than the physical systems in which they appear
(in this case, solar ARs). A typical 11-year sunspot cycle
involves the appearance, evolution and fading of a few thousand
NOAA-numbered ARs, yet Carrington’s flare is considered a
one-in-a-century (or even more rare) event. In other words,
viewing a set of flaring ARs as a “positive” sample vs. a “neg-
ative” sample of non-flaring ones, the ratio of sample sizes is
substantially different than one. Increasing the flare magnitude
threshold between positive and negative samples only pushes
this ratio to further extremes. For example, in Solar Cycle 23
only ~1.8% of ARs hosted at least one GOES X-class flare
(an imbalance ratio of ~0.0183), with a respective ratio of

~0.005 for GOES �X5.0 flares. The climatology of the FLAR-
ECAST flare sample in the even weaker Solar Cycle 24 is 1
GOES C-class flare every ~11 h, 1 M-class flare every ~4.5
days and 1 X-class flare every ~67 days; substantial variations
obviously exist over different phases of the cycle. Class imbal-
ance in major flare prediction and other rare-event problems is a
central concern (Woodcock, 1976; Bloomfield et al., 2012;
Jolliffe & Stephenson, 2012; Bobra & Couvidat, 2015) for
machine learning methods with proposed remedies including
undersampling, oversampling and misclassification weighting
(e.g., Longadge & Dongre, 2013; Ahmadzadeh et al., 2021).

Flares at the top end of the observed energy distribution are
viewed and treated as extreme events, given their very signifi-
cant disruptive ability on top of their scarcity. For diverse
accounts of extreme events in physical systems one may review
Albeverio et al. (2006), Meyers (2011) and Sharma et al.
(2012), among other comprehensive works. These accounts also
refer extensively to two intrinsic characteristics of extreme
events: environmental complexity and difficulty in forecasting.
It is a fact that forecasting solar flares is a pressing issue for
space-faring nations, mainly for two reasons: first, because of
flares’ biological and technological repercussions and, second,
because flares are a common element of the two other aspects
of extreme space weather, CMEs and SEPs. Notwithstanding
the lack of an early warning for flares, mentioned already, just
a cursory examination of some biological implications indicates
that, say, a 500 keV c-ray photon has a wavelength of ~0.25
nm. This is much shorter than a DNA helix (~3.5 nm), meaning
that such radiation acting on exposed humans engaging in
extravehicular activities can lead to acute radiation sickness, if
not being altogether fatal (see, for example, Freese et al., 2016).

The complexity, in terms of the multiscale (i.e., multifractal)
behavior in the turbulent solar atmosphere (see, for example,

Fig. 2. The FLARECAST architecture and WP Assignment. Rectangles indicate exchangeable software components, such as algorithms and
codes, while cylinders indicate data model components. WPs 6 and 7 are not included here but are integral to the project and complement the
overall efforts.

5 For a definition of NOAA/GOES flare classes, see https://www.
swpc.noaa.gov/phenomena/solar-flares-radio-blackouts.
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Georgoulis, 2005) undoubtedly adds to the difficulty of predict-
ing solar flares. In particular, flares are long thought to be
responses of nonlinear dynamical systems (solar ARs) in a
SOC state. The SOC concept was initiated by seminal works
on the topic (Lu & Hamilton, 1991; Lu et al., 1993; Vlahos
et al., 1995) inspired by groundbreaking developments in theo-
retical physics (Bak et al., 1987, 1988; Kadanoff et al., 1989;
see also Bak, 1996 for an encompassing account). An account
of apparent SOC manifestations in Astrophysics, including
flares, is presented in relatively recent anniversary works
(Aschwanden et al., 2016; McAteer et al., 2016). However, a
SOC evolution of flaring ARs would lead to an intrinsic

stochasticity in flare occurrence; this translates to an intrinsically
probabilistic forecasting relying by definition on small probabil-
ities for major and extreme flares. Randomly driven SOC mod-
els explore precisely this stochasticity; hence they are incapable
of predicting small- and mid-size flares. However, Strugarek &
Charbonneau (2014) reported that a class of deterministically
driven SOC models could be used for predictive purposes as
they raise the memory of the system, thus exerting a partial con-
trol over flare waiting times; however, this is an avenue of
research yet to be sufficiently explored. Recent studies have also
aimed to assess the frequency of a Carrington-level event in the
framework of extreme value theory (Elvidge & Angling, 2018).

Fig. 3. Examples of two solar ARs, in terms of their photospheric continuum intensity images (a, b), LOS magnetograms (c, d) and EUV
coronal images at 19.3 nm (e, f). Both active regions were observed on 5 September 2017 at around 12:01 UT. Of them, NOAA AR 12673 (left
column) was intensely eruptive, giving the largest eruptive flares since January 2005, while NOAA AR 12674 (right column) did not host any
major flares. Images (a–d) have been acquired by HMI, while images (e, f) by AIA, both onboard the SDO mission.
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Rather than focusing exclusively on extreme events, the key
scientific question and incentive behind the FLARECAST
project was to determine to what extent can the skill currently
achieved in the forecasting of solar flares be advanced.

Correlating solar flares with magnetic evolution dates back
several decades. One of the earliest, pioneering accounts was that
of Howard & Severny (1963), who reported major magnetic
field changes before and after a major (coined as “great”) flare.
More systematic works were added in the 1980s with limited-
resolution magnetograms (Krall et al., 1982; Hagyard et al.,
1984; Zirin & Liggett, 1987) linking flares –and even repeated
flaring– to d-sunspot complexes and velocity shear, before the
first semi-operational flare prediction schemes appeared
(McIntosh, 1990; Zirin & Marquette, 1991). In more recent
years, however, the formation of long and intense magnetic PILs
in the photospheric magnetic field of ARs was established as a
feature of direct relevance to major flaring (for comprehensive
reviews, see Schrijver, 2009; Toriumi & Wang, 2019). By
“intense”, we mean PILs exhibiting substantial amounts of mag-
netic flux and strong magnetic gradients due to the closely
seated, opposite magnetic polarities and magnetic/velocity shear
(e.g., Georgoulis et al., 2019; Patsourakos et al., 2020, and refer-
ences therein). Major flares occur as such PILs evolve and inten-
sify, fueled by magnetic flux emergence and cancellation along
them (van Ballegooijen & Martens, 1989; Gibson & Fan, 2006;
Archontis & Török, 2008). Sometimes, an eruption including a
major flare may occur in the absence of intense PILs, when
the emerging flux reconnects with the pre-existing field or has
enough magnetic twist to become unstable during emergence.
Such a exceptional case, giving rise to a GOES X3 flare, was
reported by Gary & Moore (2004). Regardless, the majority of
X-class flares –the ones mostly affecting space weather condi-
tions– occur above evolving, intense photospheric PILs.

An example of ARs with and without strong PILs is given
in Figure 3, where the relatively flare-quiet (up to mid-C-class
flares) NOAA AR 12674 is compared against the intensely
flaring NOAA AR 12673. The latter in September 6 and 10
2017 gave the strongest (~X10) flares of solar cycle 24 (e.g.,
Yan et al., 2018). Both active regions evolved simultaneously
in the solar disk, located just a few hundred arcsec away from
each other. While the photospheric compactness and conspicu-
ous PILs are evident in NOAA AR 12673, NOAA AR 12674 is
much more scattered. Coronal information in Figure 3 (sampled
indicatively at 19.3 nm to showcase some structure) indeed
shows significant complexity in terms of several bright kernels,
complexity and apparent twist; significant non-potentiality, in
brief (e.g., Schrijver et al., 2005). Emission generally lacks
bright kernels and does not show such non-potentiality in
NOAA AR 12674.

Figure 4 further shows a PIL analysis on NOAA AR 12253,
achieved in FLARECAST’s framework. More information is
given in Section 5.1.

2.2 Data

2.2.1 Active region properties and flare predictors

Flare forecasting relies almost entirely on statistical correla-
tions between solar magnetic field data and observed flare char-
acteristics. In this case, local (i.e., AR scale) photospheric

magnetic fields are parameterized in order to identify and quan-
tify patterns potentially associated with flares. Should a flare
occur, flare detection and classification is primarily done using
the GOES 0.1–0.8 nm soft X-ray band. The peak photon flux in
this band is historically used to determine the GOES flare class.
There are obviously other sophisticated ways to detect flares in
EUV, X-ray, and optical wavelengths (see Martens et al., 2012,
for an attempt in the framework of the HEK project), but the
GOES X-ray classification is the one used most widely by the
space weather and flare forecasting communities. Although
the GOES soft X-ray detectors are, in essence, spectral irradi-
ance instruments without spatial resolution on the solar disk,
observations by the GOES/SXI telescopes complement flare
information with the source ARs, at least for the largest events.
However, these spatial identifications are not error-free and ver-
ification of all GOES flare locations is a nontrivial task. Signif-
icant effort on identified flare locations was also put by Hock
(2012) and, more recently, by Angryk et al. (2020).

Quantitative active region photospheric properties, used as
flare predictors in FLARECAST’s framework,were derived from
the HMI SHARP data product (Bobra et al., 2014; Hoeksema
et al., 2014). A FLARECAST processing pipeline was developed
using the hmi.sharp_cea_720s_nrt data series that
contains AR maps of the LOS magnetic field component, BLOS,
continuum intensity, Ic, and vector magnetic field components
in the radial, Br, co-latitude, Bh, and azimuthal, B/, directions
of the solar spherical coordinate system. These maps are
produced at HMI’s JSOC6 at a cadence of 12 min, while the
NRT HMI stream assures that these data products are available
within typically 4 h of acquisition7 (Hoeksema et al., 2014).

Fig. 4. Automated PIL identification in a photospheric longitudinal
magnetogram of NOAA 12253, observed by SDO/HMI on 2 January
2015. The identified PILs in the region are further characterized as
“moderate” (yellow contours) and “strong” (red contours). The
difference between “strong” and “moderate” PILs relies on the
absolute value of the gradient of the vertical magnetic field (>40 G/
pixel and >16 G/pixel, respectively) and the strength of the horizontal
field (>120 G and >100 G, respectively). Parts of the PIL that are not
highlighted in color are below one or both thresholds and are
considered as “weak”. The algorithm used is the FLARECAST PIL
identification code, accessible as described in Appendix A.2.

6 http://jsoc.stanford.edu/ajax/lookdata.html?ds=hmi.sharp_720s_nrt
7 This time has been varying for different intervals of the SDO
mission. With the current NRT data level, data are made available
typically within 3 h.
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Table 1. The complete list of FLARECAST properties, separated in property groups and accounting for a total of 209 predictors. The vast
majority (197) of them correspond to the AR magnetic field, while the rest include information from the NOAA SWPC Catalogues and from
photospheric intensity images.

Data Source Property group No. of
predictors

Relevant
predictor

Adapted
from

Related
references

SWPC Solar region summary
(SRS) properties

2 McIntosh and Hale classes McCloskey et al.
(2016)

McIntosh (1990)

3 Number, area and
longitudinal extend of
sunspots

Lee et al. (2012)

Catalogues GOES soft X-ray flare
eventsa,b

4 Flare magnitude, start, peak,
and end times

Surface-normal
component (radial
and line-of-sight)
magnetograms

Effective connected
magnetic field
strengthc

1 Beff Georgoulis & Rust
(2007), Georgoulis
(2011, 2013)

Fractal and multifractal
parameters

1 Fractal dimension Conlon et al. (2008) Abramenko et al.
(2003)

1 Generalized correlation
dimension

Abramenko (2005)

2 Holder exponent; Hausdorff
dimension

Al-Ghraibah et al.
(2015)

2 Structure function’s inertial
range index

Fourier and Wavelet
power spectral indices

2 Power-law exponent Hewett et al. (2008),
Guerra et al. (2015)

Decay index (DI)d 8 Mean DI over PIL segments;
height of DI; ratio of PIL
length to DI height

Liu (2008)
Zuccarello et al. (2014)

Magnetic PIL
properties

5 Sum of PIL segments, longest
PIL segment

Mason & Hoeksema
(2010)

1 R value Schrijver (2007)
1 WLsg Falconer et al. (2012)

3D magnetic null
pointsd

6 Number of null points in
different height ranges

Haynes & Parnell
(2007)

Pontin et al. (2013)

(from 2 to 100 Mm above
photosphere)

Barnes & Leka
(2006)

Ising Energyc 6 Original and partitioned Ising
energy

Ahmed et al. (2010) Kontogiannis et al.
(2018)

Magnetic energy and
helicity

11 Poynting flux and magnetic
helicity flux proxies

Park et al. (2010)
Park et al. (2012)

Full-vector
magnetograms

SHARP propertiese 100 Horizontal gradient of B
components; shear angle;
unsigned vertical current;
higher-order moments
of time series

Bobra et al. (2014)
(validated)
Leka & Barnes (2003b,
2007)

Magnetic energy and
helicity

22 Poynting flux and magnetic
helicity flux

Kusano et al. (2002) Berger & Field
(1984), Welsch
et al. (2009)

Non-neutralized
currents

6 Total non-neutralized current Georgoulis et al.
(2012)

Kontogiannis et al.
(2017)

Flows around PIL 22 Speed of
diverging/converging/shear
flows

Park et al. (2018) Deng et al. (2006),
Wang et al. (2014)

Intensity imagesf Magnetic field gradient 3 Total horizontal magnetic
gradient

Korsós et al. (2014) Kontogiannis et al.
(2018)

a AR coronal information.
b The project uses the flare attributes as properties. At least one flare of desired magnitude in the forecast window signifies a positive instance.
c Photospheric proxy for coronal information.
d Uses PFEs.
e Most SHARP parameters correspond to mean values. In the FLARECAST pipeline, other relevant magnetogram-related parameters are also
used as predictors; these are maximum and minimum values, median, standard deviation, kurtosis, and skewness.
f Used in conjunction with magnetograms to calculate the sum of the magnetic field gradients between all possible opposite-polarity umbrae
pairs.
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Another reason for using the NRT stream was that any
operationally-oriented flare forecasting service has to rely on
NRT data for training, testing, and validation of its method(s).
In a further attempt to replicate operational conditions to the
greatest extent possible, FLARECAST did not restrict its input
data to longitudinal areas close to the central solar meridian,
but identically treated all data regardless of solar disk position
(for regions very close to the solar limbs though, some selection
criteria were imposed, as discussed below). This was decided in
spite of a complete understanding that magnetic projection
effects, foreshortening and noise near the solar limbs are
substantial.

In the FLARECAST processing pipeline, NRT SHARP
maps are pre-processed before extracting any property. Pre-
processing aims to:

(a) check for missing information in the FITS headers and
restore it, if possible;

(b) examine for bad-quality or missing data (i.e., a NaN or a
constant value);

(c) capture possible differences between WCS (Thompson,
2006) positions and header positions;

(d) trim any part of the FOV containing off-disk pixels for
ARs near the limbs.

Fig. 5. Monthly numbers of (a) calculated property groups and (b) processed NRT SHARP timestamps between 14 September 2012 and 30
January 2019. Property group numbers are shown at highest (1-h; orange bars) and at lowest (24-h; blue bars) cadence. The shaded interval
between 13 April 2016 and 8 September 2017 corresponds to a period of questionable quality for the HMI NRT SHARP data (see text for
details). Histograms represent a total of 32,098 processed SHARP timestamps, leading to millions of predictor values, since each timestamp
could potentially provide up to 209 predictors.
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Magnetogram maps are flagged as null and no properties are
calculated for HARP timestamps and dates with (i) bad-quality
data, (ii) absolute differences between FITS header coordi-
nates and WCS-calculated coordinates that are larger than 5� or
(iii) trimmed images that are less than 20 pixels in horizontal size.

Active region properties extracted from the photospheric
magnetic field in FLARECAST have all been previously
tested for relevance in flare prediction. These properties are
presented in Table 1, itemized into 15 different groups. Each
property group relates to either a certain property or a set of
properties and gives rise to one or more flare predictors, respec-
tively. These predictors, and groups thereof, quantify the state of
the AR photosphere and corona and reflect (1) the entire region
or SHARP FOV, (2) magnetic PILs, or (3) sunspots (as the
areas with the strongest magnetic field). Most property groups
characterise only the state of the photospheric magnetic field.
Some, however, characterize the state of the AR corona, either
by photospheric proxies or by means of current-free PFEs or
by differences between the photospheric field and that expected
by a PFE. The two last columns of Table 1 indicate relevant
published work, distinguishing between studies that were
directly implemented in the course of the project from additional
or previous studies pertinent to some predictors.

It should be mentioned that, for many of the properties in
Table 1, estimating uncertainties is nontrivial. For the cases
uncertainties exist, mostly in terms of r-values in fits, these
values are provided in the property database. This said, predic-
tion algorithms (Sect. 2.3) currently do not utilize predictor
uncertainties. Uncertainties in verification metrics are provided,

however, as per the sensitivity analysis of Section 4.3. Evaluat-
ing the impact of predictor uncertainties in multi-parametric
machine learning prediction schemes could be a meaningful
future step.

Up to 209 predictors are calculated from each SHARP
observation at different cadence, namely 1 h, 3 h, 6 h, 12 h,
and 24 h. The full 12-min cadence of HMI SHARPs was
exploited only in a very limited number of cases, due to the
immense computational time it required. This computational
expense dictated the different cadence as a necessity. Clearly,
FLARECAST did not restrict to the 25 scalar properties
included in the SHARP predictor metadata. It did, however,
replicate the calculations of these predictors to validate them
and consider additional image statistics (i.e., higher-order
moments). Instructions on how to access these and other data
and information are detailed in Appendix A.

Figure 5 displays histograms of the monthly number of prop-
erty groups and SHARP timestamps analyzed over the period
September 2012 – January 2019, for the finest (1 h) and the
coarsest (24 h) cadences considered. Numbers corresponding
to 12-min cadence are not shown due to their lack of statistical
significance. The progression of Solar Cycle 24 can be roughly
assessed, with significantly higher numbers until early 2016,
when the declining phase gave way to the latest solar minimum.
Thereafter, the numbers of both calculated property groups and
processed SHARP timestamps gradually decline as eligible
SHARPs in the NRT stream become fewer and fewer. The
shaded interval between 13 April 2016 and 1 September 2017
corresponds to a time of potentially problematic NRT data due

Fig. 6. Attributes of 5557 SHARP-associated flares over September 2012 to May 2019. (a) Flare onset times, in terms of GOES classes X (red),
M (orange) and C (green) and respective sub-classes (tick marks; right ordinate), plotted over the 90-day averaged sunspot number over Solar
Cycle 24 (left ordinate; Source: Sunspot Index and Long-Term Solar Observations [SILSO], Royal Observatory of Belgium). The numbers of
flares for each GOES class are also given. The bottom line shows waterfall diagrams of the distributions of rise time (b), decay time (c) and
duration (d). Extrema for each distributions are shown in each plot. The “All flares” diagram corresponds to the sum of flare numbers in each
bin. We use fixed, 10-min bin sizes.
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to a transient misalignment between the two HMI cameras pro-
viding filtergrams for the generation of the full Stokes vector8.
Only definitive vector magnetogram data were reprocessed –

NRTs were not – while full-disk LOS magnetograms at 45s
cadence were not affected. Artifacts in this case intensify with
increasing central meridian distance.

The property data set shown in Figure 5 is, to our knowledge
and understanding, one of the largest and most diverse ever
assembled for flare prediction, offering unique opportunities
for statistical and physics-based studies to interested teams
worldwide. In Guerra et al. (2018), a sub-group of six predictors
were studied to determine the effects of using the LOS field
(BLOS) versus the surface-radial field (Br) for their calculation
and subsequent use in flare forecasting. It was determined that
both LOS and radial field components can be advantageous in
different circumstances. The project hence decided to use both
property versions to facilitate any independent information these
two versions could furnish.

2.2.2 Flare association

The NOAA/SWPC flare event list data include the universal
times (UT) of their start (i.e., onset), peak, and end, along with
the flare magnitude, all obtained by the GOES spacecraft 0.1–
0.8 nm soft X-ray channel. Where possible, source ARs are
identified from the daily NOAA/SWPC flare event lists, with
their morphological properties extracted from the daily
NOAA/SWPC SRS reports. NOAA ARs, flaring or not, are
linked to the HMI SHARPs and the FLARECAST property
database includes information on all ARs located within each
SHARP FOV.

The process below is followed for each SHARP during its
solar disk passage:

1. SHARPs are first checked to determine whether their
FOV contains the time-advanced centroid locations of
NOAA-numbered ARs. This makes use of the closest
SRS report before the SHARP observation, with solar
fdifferential rotation taken into account.

2. If any NOAA ARs are assigned to the SHARP, the SWPC
flare event list is searched for those NOAA numbers and
related flares are associated to all of that SHARP’s prop-
erty database entries.

3. For X-ray flares with no reported NOAA number, loca-
tions of co-temporal flares observed in ground-based Ha
images (also from the NOAA/SWPC flare event list) are
used to determine if the multi-wavelength flare event
occurred within the SHARP’s FOV (again taking solar
differential rotation into account). Positive Ha flare asso-
ciation results in the inclusion of the respective X-ray
flare. A very small fraction of flares of GOES class C
and above, of the order 0.1%, seems to miss both criteria
above over the analysis period.

After all SHARP-associated flares are identified, we extract
the following properties for each flare:

– FM: GOES peak magnitude (e.g., M1.3).
– ss: Time difference (in seconds) between the SHARP

observation time T0 and the reported flare start time Ts (i.
e., ss = Ts � T0).

– sp: Time difference (in seconds) between T0 and the
reported flare peak time Tp (i.e., sp = Tp � T0).

– se: Time difference (in seconds) between T0 and the
reported flare end time Te (i.e., se = Te � T0).

Figure 6 provides a snapshot of FLARECAST’s flare data
set and displays the temporal distribution of different flare
classes for Solar Cycle 24 (Fig. 6a), along with their rise time
(Fig. 6b), decay time (Fig. 6c) and duration (Fig. 6d) for approx-
imately the same time coverage as that of the property database
statistics in Figure 5. Rise/decay times and durations have been
provided by NOAA.

We consider as eligible flares only those of GOES C-class
and above (i.e., �C1.0) to make sure that as many as possible
are included, unobscured by an often elevated solar soft X-ray
background. We acknowledge, though, that even a C1.0 flare
threshold might result in loss of some flares in cases of intensely
high solar activity. Others may be lost due to lack of, or an
erroneous, location information.

2.3 Methods: machine learning

The FLARECAST computational component fully relied on
machine learning, that is, on prediction algorithms that utilize an
automatic learning step based on either labeled or unlabeled
input data. The conceptual core of each machine learning tech-
nique lies on the modality of this learning step. Labeled data are
characterized by a tag including one or more property-specific
labels (e.g., flaring or non-flaring), whereas unlabeled data are
free of such tags.

We distinguish between two broad categories of relevant
machine learning methods:

– Unsupervised methods, that are free to infer the data struc-
ture from the data themselves and realize the learning task
in a fully data-driven manner. Such methods train on unla-
beled data.

– Supervised methods, that perform an unknown input-output
mapping from known input–output samples. Sparsity
enhancing techniques in these methods enable a quantitative

Table 2. FLARECAST unsupervised and supervised machine
learning methods (final release).

Unsupervised methods – K-means
– Fuzzy C-means
– Possibilistic C-means

Supervised methods – LASSO
– Hybrid LASSO
– Elastic net
– Logit
– Hybrid Logit
– Random forests (RFs)
– Multi-layer perceptron (MLP)
– Recurrent neural network (RNN)
– Support vector machine (SVM)
– Garson’s method
– Olden’s method

8 See https://solarnews.nso.edu/20170901/#section_hoeksema for
more information.
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ranking of properties (predictors) that contribute most to the
achieved prediction. Supervised methods nominally train on
labeled data.

The project’s machine learning inventory comprises three
(3) unsupervised and eleven (11) supervised machine learning
methods, listed in Table 2. We chose to implement a diverse
array of methods because we identified a need to experimentally
test the strengths and weaknesses of each method, along with
their key differences and predictive capacity. Identifying the
state-of-the-art in machine learning methods flows directly from
FLARECAST’s main goal (Sect. 1).

2.3.1 Unsupervised methods

FLARECAST proposes three unsupervised (i.e., clustering)
methods for the automatic classification of sets of unlabeled AR
properties. To briefly explain how these three algorithms work,
we denote as X ¼ fxkjxk 2 Rdk ¼ 1; . . . ; ng a set of unlabeled
samples xk = (x1k, . . . , xdk), where xik is the i-th property of the
k-th sample xk, d is the dimension of the property space Rd and
Y ¼ fyjjyj 2 Rd ; j ¼ 1; . . . ; cg is the set of the c centers of the
clusters to determine. The algorithms’ objective is to minimize a
certain functional with respect to the cluster centers. The func-
tionals of the K-means (Anderberg, 2014) and Fuzzy C-means
(Bezdek, 1981) algorithms are given by,

J X ; Y ;Uð Þ ¼
Xn

k¼1

Xc

j¼1

ujkd
2
jk; ð1Þ

and,

JmðX ; Y ;UÞ ¼
Xn

k¼1

Xc

j¼1

ðujkÞmd2jk; ð2Þ

respectively. In both equations above, U = [ujk] is the n � c
membership matrix whose entries represent the memberships
of the k-th sample to the j-th cluster and djk is the distance of
the k-th sample from the j-th cluster center. In the case of the
K-means algorithm, the memberships are binary values, while
in the case of the Fuzzy C-means algorithm they are real num-
bers 2[0, 1], representing the membership probability. In the
latter case, there is also a “fuzzifier” parameter m.

The third clustering method is Possibilistic C-means
(Krishnapuram & Keller, 1996; Massone et al., 2006). This is
an elaborate development of Fuzzy C-means, in which each
sample can, in principle, belong simultaneously to several clus-
ters with different degrees of membership. In this case the cost
function to minimize is given by,

JmðX ; Y ;UÞ ¼
Xn

k¼1

Xc

j¼1

ðumjkd2jkÞ þ
Xc

j¼1

gj
Xn

k¼1

ð1� ujkÞm; ð3Þ

where the entries of the membership matrix satisfy the con-
straint maxjujk > 0 "k and, for each j, the regularization
parameter gj depends on the average size and shape of the
j-th cluster.

2.3.2 Supervised methods

Most FLARECAST methods are supervised, in line with
contemporary applications of machine learning to flare
prediction (e.g., Ahmed et al., 2013; Bobra & Couvidat, 2015;

Benvenuto et al., 2018; Florios et al., 2018). A detailed descrip-
tion of these methods is beyond the scope of this work. The latest
release of the project’s platform contains a standardMLP trained
by means of Error-Back-Propagation and two RNNs that allow
feedback loops in the feed-forward architecture. This modifica-
tion is realized by means of both an Elman neural network
(Elman, 1990), in which any number of context nodes is permit-
ted, and a Jordan neural network (Jordan, 1997) serial, in which
the number of context nodes is constrained to coincide with the
number of output nodes.

In a more recent development, regularization neural net-
works (Evgeniou et al., 2000) enable the connection between
training and generalization via the minimization of functionals
such as the following,

V ðyi; f ðxiÞÞ þ kf F ! minimum; ð4Þ
where fðxi; yiÞgNi¼1 represents the training set made of N prop-
erty-label pairs, V(�,�) is the loss function that measures the
price paid for the inaccuracy of predicting yi with f(xi), and
k is the regularization parameter, which realizes the trade-
off between fitting over the training set and generalization.

SVM for regression (Scholkopf & Smola, 2001) is one of the
standard regularization networks implemented in FLARECAST.
In this case, V(�,�) is a standard quadratic loss function andF is a
Reproducing Kernel Hilbert Space (De Vito et al., 2004), in
which four different kernel types can be selected (i.e., linear,
polynomial, radial basis function, and sigmoidal). The FLARE-
CAST platform also contains a SVM for classification that uses
the hinge loss function, namely the one thought most appropriate
for classification (Rosasco et al., 2004). Two sparsity enhancing
regularization methods were also implemented, in which the
number of features that effectively contribute to the generaliza-
tion is constrained to the smallest possible. This is achieved by
minimizing the l1 norm of the feature vector (i.e., the sum of
the absolute values of its components), which is further achieved
by means of two different approaches: penalized logistic regres-
sion (Wu et al., 2009), in which the loss function realizes the
Bernoulli distribution for the labels, and LASSO (Yuan & Lin,
2006), in which the loss function is quadratic. FLARECAST
also includes a hybrid version of penalized logistic regression
and LASSO, in which the regression outcome is partitioned by
means of a Fuzzy C-means scheme, without focusing on opti-
mizing a specific skill score (Benvenuto et al., 2018). The plat-
form contains a further generalization, namely an elastic net
(Zou & Hastie, 2005) algorithm, in which the minimization
functional contains two penalty terms (l1 and l2) with two differ-
ent regularization parameters optimized by cross validation.

Ensemble learning (Dietterich, 2000) is another supervised
approach that uses a combination of different learning models
to increase the classification accuracy. In this framework,
FLARECAST offers a RF algorithm (Breiman, 2001), which
works as a large collection of de-correlated decision trees. Given
a training set of samples made of properties and corresponding
labels, a decision tree recursively splits the training samples into
subsets based on the value of a single property. Each split cor-
responds to a node in the tree and the task is to separate records
in the training set that have different characteristics. We follow
the implementation described in Liaw & Wiener (2002), by
splitting the tree until every subset is pure (i.e., all samples in
the subset belong to the same class). In this way all terminal
nodes (i.e., the leaves) are assigned a unique class label. Once
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the decision tree has been constructed, classifying a test record
is achieved by starting from the root node, applying the test con-
dition to the record and following the appropriate branch based
on the outcome of the test. This can lead either to another inter-
nal node, for which a new test condition is applied, or to a leaf
node. If a leaf node is reached, the label associated with it is
assigned to the record. In the RF approach, the training set is
randomly divided into a fixed number of subsets and for each
subset a decision tree is built. New, incoming unlabeled samples
are classified by aggregating the predictions of the decision trees
via a majority vote procedure.

Details on how to obtain the FLARECAST machine learn-
ing algorithms can be found in Appendix A. We note in passing
that the landscape of machine learning methods is continuously
and rapidly evolving, with new algorithms constantly intro-
duced. Our approach, as explained in Section 2.4.3 below, is
an implementation based on modularity in such a way that
incoming machine learning methods can be easily integrated
in the FLARECAST platform.

2.4 Technology

FLARECAST relies on a broad selection of different tech-
nologies, including hardware for storage and computing as well
as software for data handling, infrastructure management and
computation. The software was designed in a way that is hard-
ware independent and can be installed on numerous platforms.
All code developed during FLARECAST has been published
under an open source license and is freely available. Code
acquisition and license information are detailed in Appendix A.

2.4.1 Computing hardware

A computing server dedicated to FLARECAST has been
integrated into the MEDOC computing infrastructure9 and hosts
the production version of the FLARECAST pipeline. Queries
on this server for SDO/HMI data are made directly into the
MEDOC database tables, and SDO/HMI files are accessed
locally. This allows efficient runs of the FLARECAST property
extraction algorithms.

2.4.2 Data storage hardware

The main FLARECAST data volume is provided by eight
SDO/HMI data series at 12 min cadence that have been

downloaded using the SDO NetDRMS and archived as part of
theMEDOC solar physics data archive. Besides the one used pri-
marily for the forecasting tasks (hmi.sharp_cea_720s_
nrt), downloaded series included hmi.m_720s, hmi.

m_720s_ nrt, hmi.sharp_720s, hmi.sharp_720s_
nrt, hmi.sharp_cea_720s, hmi.ic_720s and hmi.

ic_nolimbdark_720s_nrt. Not all of them were finally
used by the Consortium, although definitive SHARP data and
continuum images were used for tasks akin to the explorative
science component (Sect. 5). NRT data series were downloaded
no later than 1 hr after they weremade available byHMI’s JSOC.
This overall delay could be further reduced, if necessary, bymore
frequent download requests.

2.4.3 FLARECAST software architecture

The FLARECAST architecture design was driven by the
needs for modularity, portability and ability to perform and
accommodate different algorithms written in various program-
ming languages. This philosophy is best described by the top-
level diagram of Figure 2 in Section 2. The diagram reflects
the four processing steps of the FLARECAST pipeline:

– Step 1: Acquisition and transformation of data from multi-
ple sources (SDO/HMI & NOAA SWPC – Sect. 2.2).

– Step 2: Extraction of properties from the data by several
algorithms (Sect. 2.2).

– Step 3: Prediction through implementation of several
machine learning algorithms (Sect. 2.3).

– Step 4: Verification of the generated forecast data products
(Sect. 4).

The underlying management infrastructure controls and
monitors these algorithms. The layout of the FLARECAST
architecture simplified the project management as the individual
components are under the responsibility of dedicated WPs. The
relation between components and WPs is shown by the black
rectangles in Figure 2. The software infrastructure is discussed
in detail in Section 3.

2.4.4 Software components

The software components, represented by the blue rectan-
gles in Figure 2, fulfill specific tasks such as data loading, prop-
erty extraction, machine learning, or verification. Generally,

Fig. 7. A data component (dashed box) consists of a database (blue cylinder) and a well-defined API (white box). An algorithm (blue rectangle)
uses this API to read data (green arrow) and another API to write data (red arrow) into a separate data component.

9 https://idoc.ias.u-psud.fr/MEDOC
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a software component contains several algorithms and each
algorithm implements a specific variant of a task. Each property
extraction or machine learning method, for example, has its own
dedicated algorithm.

The management infrastructure orchestrates the execution of
the FLARECAST workflow. It launches the extraction algo-
rithms as soon as new observational data arrives. After they
are finished, the management infrastructure triggers the flare
prediction algorithms.

The management infrastructure is implemented as a col-
lection of containers (see Sect. 2.4.6 below). In automated
mode, a set of repeatedly executed computer scripts (i.e., cron
jobs) regularly check for new data and start the algorithms, if
necessary. Additionally, a small web application allows users
with administrator privileges to manually trigger the execution
of algorithms.

2.4.5 Data components

The blue database symbols in Figure 2 denote individual
parts of the FLARECAST data model, hereafter referred to as
data components. Within the workflow, every software compo-
nent (i.e., every algorithm) reads from several and writes to pre-
cisely one data component. Like this, the software components
are decoupled from each other and only have to provide a con-
trol interface (start, stop) for the management infrastructure. The
management infrastructure connects to a dedicated data compo-
nent for configuration and data logging.

Each data component defines a generic interface to read,
create, update, and delete data. The read methods include a
query language for simple queries. Figure 7 illustrates this pro-
cess for an example property extraction algorithm.

2.4.6 Docker containers

All FLARECAST infrastructure components are imple-
mented as Docker containers. Docker10 is an open source soft-
ware ecosystem (i.e., engine) in which different Docker

containers co-exist and function independently. A Docker con-
tainer can be viewed as a light-weight virtual machine that hosts
an arbitrarily configured software environment. This includes
custom programming languages and different library versions
per container. Each FLARECAST infrastructure component or
algorithm is deployed in a dedicated Docker container. These
containers can be installed on a high performance cluster as well
as on a developer’s desktop machine, making it possible to
deploy FLARECAST in different environments at the same
time. A schematic of the FLARECAST Docker containers is
shown in Figure 8.

2.4.7 Language independence

As mentioned already, algorithms may be written in any
programming language. This allows to re-use already existing
libraries for certain tasks. Currently tested and supported are
Python 2.7 and 3.0, the Interactive Data Language (IDL) 8.5
and R. Other languages that can be executed on a Linux system
(e.g., Java, C++ and Perl) are not expected to generate major
issues, but we must make clear that we have not systematically
tested them.

2.4.8 Data model

The design of the data model is balanced between flexible
support for different kinds of data structures and strict schema
definitions for better interoperability. This can be achieved
through a semi-structured data model. Its main structures are
defined by a traditional table-based, relational data model. Indi-
vidual entries of the table support weakly-typed data types (i.e.,
types supported by weakly- or loosely-typed programming lan-
guages, such as C). In this sense, an algorithm can handle data
types as simple as numeric values or strings simultaneously with
more complex data types, such as arrays, matrices, dictionaries
and whole hierarchies of objects. For the weakly-typed data
types we rely on the built-in JSON data type of PostgreSQL
9.6. Algorithms encode their output (e.g., extracted properties)
in the JSON data format. JSON is supported by most C-like pro-
gramming languages, including Python, R and IDL.

Fig. 8. Components of the FLARECAST architecture within the main Docker engine. The different grayscale rectangles correspond to
different Docker containers, while adjacent containers typically share a common interface.

10 https://www.docker.com
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2.5 Communication and dissemination

The FLARECAST communication objective ran throughout
the project as it had a dedicated, overarching WP (WP7; see the
WP list in Sect. 2). The FLARECAST Consortium aimed to
raise awareness in three different directions, namely industry
and government, space weather end users, and the general
public.

2.5.1 Industry/government, scientists and end users

Initial engagement with end users, in terms of both scientists
and forecasters, evolved into a User Survey conducted by the
Met Office partner in autumn 2016, in advance of the FLARE-
CAST First Stakeholders’ Workshop held at the Met Office
(Exeter, UK) in January 2017. In its findings (described in more
detail in Appendix B) about a quarter of respondents were not
sure about the accuracy of the forecasts they were using, clearly
indicating a need for more education about the forecast
methods, as well as about the verification of data, methods,
and performance. This may also explain why around 60% of
respondents were passive regarding recommending forecast
services. Further, it was found that timeliness, accuracy and ease
of use are the most important factors in a forecast, while scien-
tific detail is the least important information to include.

The First Stakeholders’ Workshop was attended by 30 par-
ticipants in total, including 20 non-FLARECAST attendees
from basic solar and space-weather research and operational
forecasting, as well as end users and stakeholders from the avi-
ation, defence, marine, satellite, and communications sectors.
There was discussion of the survey results and an extended

discussion on the construction of rough research and develop-
ment roadmaps for the short and long terms. Top-level conclu-
sions of the Workshop included the following:

– One forecasting solution is not possible to fit all sectors and
users, as different sectors need different forecast windows,
latencies and means of verification depending on their gen-
eric business models (i.e., false alarms, misses, cost-to-loss
ratios, etc. . .).

– FLARECAST forecasts will need an intermediate step before
reaching end users, to make the forecasts understandable to
them. This step should be taken by operational centres, such
as the Met Office Space Weather Operations Centre (MOS-
WOC). It was deduced that the real end users of FLARE-
CAST are, in fact, the operational forecasters themselves.

– The users stressed the practical aspects of an operational
forecast (i.e., reliability and precision) over scientific
details. They also found the Workshop to be an excellent
educational experience.

– The need for an integrated, Sun-to-Earth, space-weather
forecasting system was portrayed as evident and pressing.
It will become increasingly pressing in the future.

A Second Stakeholders’ Workshop was held in Ostend
(Belgium) in November 2017 (alongside that year’s European
Space Weather Week) and was oriented more toward scientists,
end users and operational space-weather forecasters. Among
others, it featured participation by the EASA and NASA’s
CCMC. This second workshop pointed out that FLARECAST
is producing and publishing results that are readily available to
be used and validated, and the FLARECAST forecasting service

Fig. 9. Structure and components of the FLARECAST website (http://flarecast.eu).
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will follow shortly. However, some convenors agreed that, in
some respects, the “fun” for FLARECAST’s potential really
starts now, since the greater community should think about sci-
entific/operational projects involving the new FLARECAST
“software instrument”. Finally, in view of the strong contribution
from EASA in the discussion, it is increasingly clear that aviation
agencies (and the aviation industry, naturally) are becoming
more engaged in space-weather impacts and associated forecast
services. Therefore, the heliophysics community needs to proac-
tively follow up with them to ensure that this opportunity for a
meaningful, prolific interaction is not missed.

In addition, intense communication took place with the
scientific community at conferences and during a dedicated
FLARECAST Science Workshop organized in June 2017 in
Paris by the CNRS partner. These actions anchored FLARE-
CAST within the larger field of current and future space-
weather research and secured collaboration between interested
parties beyond the project’s duration.

2.5.2 Education and public outreach

A variety of communication formats were used to involve
the public in all partner countries: science cafés; citizen science
events; children’s workshops; interactive exhibits; social media.
Public engagement activities raised awareness not only about
space weather and the need for reliable solar flare forecasts
but also, more generally, about the working of collaborative
research in Europe. We witnessed the relentless interest and fas-
cination of the public on the realization that real efforts are made
to predict solar activity, because this can have a very tangible
impact on human life and well-being. This was not initially clear
and we strove to pass the word clearly and compellingly.

2.5.3 Press releases and press appearances

The numerous direct interactions and networking activities
between scientists and different stakeholders in the project’s
framework were aimed at sharing information, advancing
mutual understanding, and increasing trust in science (i.e.,
embedding the project in society at large). These efforts came
just in time, as two partner countries (Switzerland and United
Kingdom) faced political uncertainties about their involvement
in future European research programmes. In one remarkable
development11, the project itself was brought up as a paradigm
of solid, meaningful collaboration between British and Conti-
nental European researchers.

This visibility was assisted by the Consortium’s concerted
efforts to exploit opportunities for disseminating the project’s
achievements and deliberations. There were annual press
releases in all official languages of the partner countries, while
Consortium members were interviewed in numerous occasions
by the electronic and printed media based in the partner coun-
tries. Much attention was, therefore, paid to contextualized press
work to make sure that the project was broadly communicated
in all participating countries and beyond.

Detailed information on all three communication and
dissemination elements of FLARECAST can be found on the
project’s website, a skeleton diagram of which is provided in
Figure 9.

3 The FLARECAST infrastructure: handling
and monitoring

The software developed within FLARECAST is a computa-
tional resource enabling one to apply several machine-learning
methods to data available in the FLARECAST property data-
base. The software is object-oriented, with a set of objects for
reading and analyzing data formats (i.e., model learning or pre-
diction), another set for visualizing the results and, finally,
another set for storing them in appropriate prediction
databases. The software has been designed and written in
Python, with the pertinent software modules described in the
following sections.

3.1 Data handling

Data handling is managed by a database interface module
that can read and collect properties from the FLARECAST
property database and write the results of the analysis into other
databases. The databases involved are:

1. Property database: It contains the relevant AR informa-
tion and comprises the following data:
(a) SHARP HMI metadata (i.e., properties);
(b) data set of SHARP-calculated properties exclusive to

FLARECAST;
(c) NOAA/SWPC SRS data;
(d) flare association as extracted from the NOAA/SWPC

event list.

2. Machine learning configuration database: It contains
information learned by a given machine learning method
from a given training set according to the machine learn-
ing algorithm category. We have generated the following
machine learning algorithm categories and corresponding
parameters to be saved and stored:
(a) Neural networks ? architecture, synaptic weights.
(b) Clustering methods ? clusters’ centers.
(c) Regression methods ? predictors’ weights, regular-

ization parameters.

3. Machine learning result database: It contains the pre-
diction results associated to a given AR property set
(i.e., the labels predicted by the selected machine learn-
ing algorithms). Depending on the machine-learning
algorithm utilized, ARs at a given point in time can be
labeled using different types of prediction labels. The
label types are:
(a) Predicted flare occurrence: binary values, 0 (no-flare)/

1 (yes-flare) values, referring to the flare occurrence at
a specific GOES flux level that must be fixed a priori
(e.g., flares � M1.0).

(b) Predicted flaring probability: decimal percentage val-
ues between 0 and 1, similar to above.

(c) Flare intensity: a positive real number.
(c) Flare intensity and delay: two positive real numbers.

The flare intensity number reflects the GOES flare class
(forecast and actual), while the delay refers to the interval
between the time of the specific flare forecast and the actual
flare onset.11 https://www.theyworkforyou.com/lords/?id=2016-11-03b.771.2
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3.2 Data monitoring

A consistent and as complete as possible coverage of the
SDO/HMI archive at MEDOC is important for FLARECAST
to fully exploit the JSOC data, along with the ability to promptly
download the latest SDO/HMI NRT SHARPs for as long as
they are available. As a result, both the archive coverage and
download delays had to be monitored. Additional monitoring
tools have, therefore, been developed to keep track of both
the infrastructure workflow and database coverage.

3.2.1 Data coverage monitoring

Monitoring of data coverage is achieved using the scripts in
the “coverage” directory of the project’s public Git repository.12

These scripts are automatically executed daily with their results
published at MEDOC.13 This webpage uses color tables to dis-
play the percentage of existing SDO/HMI data, for different
data series, that are available at JSOC and are mirrored at
MEDOC. This is done as a function of month and day of month
using a color table in which even just one missing observation is
visible and encodes in white those cases where no data are
available at JSOC. Notice that for the SHARP data series a
gap may exist either when no eligible SHARPs can be found
on the solar disk on a given day or in (relatively rare) cases
of issues with the HMI data pipeline.

3.2.2 Download delays monitoring

Monitoring of download delays is achieved using the script
in the “delays” directory of the above-mentioned Git repository.
The observation date and time at which files are available at
MEDOC are directly queried from the database, with year
and month supplied to the script as external arguments.

The output is a plot displaying the download delay (com-
pared to the observation [i.e., data acquisition] time) as a func-
tion of observing time for the selected month. The delay axis
spans from 0 h to 24 h. Missing data (that could not be down-
loaded from JSOC) are shown as a 0-h delay in red, while data
downloaded with a delay of more than 24 h are shown as a 24-h
delay in orange.

3.3 Infrastructure and database coverage monitoring

To overview and monitor the workflow process and data-
base coverage, the FLARECAST infrastructure provides several
viewers, some of which are intended as internal tools. These
tools can be found in dedicated Git repositories in the INFRA
project area.14 The infra_viewer allows FLARECAST develop-
ers to manually start new processes and to monitor their perfor-
mance. The property_viewer and the prediction_viewer allow to
visually inspect the distribution and completeness of the data.
They help system admins to better assess the quality of the data.

In addition to viewers, the FLARECAST infrastructure
provides a collection of API routes to analyse the data on a data-
base level (Appendix A). These scripts iterate through the entire

data set and report unexpected gaps in text form. Manual anal-
ysis is then needed to decide if data need to be reprocessed or
the gaps can be explained by missing or corrupted source data
(i.e., HMI SHARPs).

4 Performance verification strategy

The entire verification software for the FLARECAST pro-
ject is contained in the verification_engine.py and verification_
module.py codes in the project’s Stash repository.15 The starting
point for the software is reading from a JSON-format configu-
ration file. This initializes the algorithm name for the prediction
method, the threshold flare intensity of interest, the base issuing
time of the forecasts, the length of the forecast window, the
latency of the forecast windows from their issuing times,
whether magnetic and/or flare history property sets are used
and, finally, the start and end date-times for the period undergo-
ing verification. Given an input forecast window length, the
software determines which issuing times will be considered
for reading prediction “algorithm_config_name” entries from
the prediction database. This is to ensure that temporally
edge-to-edge forecasts are considered in the verification, such
as a single 24-h forecast window issued at 00:00 UT each
day, or two 12-h forecast windows issued at 00:00 and 12:00
UT each day, or four 6-h forecast windows issued at 00:00,
06:00, 12:00, and 18:00 UT each day. In all of these examples,
the latency (i.e., the time difference between a forecast issuing
time and the start of the prediction window) is zero, meaning
that forecasts are effective immediately. Nonzero latency can
also be implemented, if desired.

Following this, two separate calls are made to the FLARE-
CAST prediction API. The first is a request to the “algocon-
fig/data” service for the related prediction algorithm
configuration settings (or a list of prediction algorithm configu-
ration settings in the case of forecast window durations less than
24 h). The second is a request for the entire set of prediction
results through the “prediction/list_v2” service. Having
retrieved the full set of forecasts to be verified, minimum and
maximum flare class information for that prediction set are
extracted from the “algoconfig/data” results. This information
is needed to convert the associated flare information contained
in each prediction result entry into the relevant binary observa-
tional truths (i.e., one or more suitable flare did [1], or did not
[0], happen within the forecast window) that are then compared
to the decimal forecast probability or binary classification issued
by the prediction algorithm under consideration.

The next stage of verification_engine.py is the initial con-
struction of the output metadata structure, containing the full
set of metadata keys and a placeholder for the “data” key. At this

Table 3. 2 � 2 contingency table for categorical flare forecasting.

Flaring observed

Yes No

Flaring Yes True positive (TP) False positive (FP)
Predicted No False negative (FN) True negative (TN)

12 https://dev.flarecast.eu/stash/projects/INFRA/repos/hmi-
coverage/
13 http://sdo.ias.u-psud.fr/medoc-hmi-list/
14 https://dev.flarecast.eu/stash/projects/INFRA 15 https://dev.flarecast.eu/stash/projects/VER/repos/standard_verification
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point, “forecast_type” and “source_predictions” are left blank as
the content depends on whether forecasts are probabilities or
classifications; distinction is not possible based only on “algo-
rithm_config_name” because some prediction methods generate
both types. Classification forecast-observation pairs are then
passed into the calc_class_stats() function in verification_
module.py, while probability forecast-observation pairs are
passed into the equivalent calc_prob_stats() function. Both
return structured results saved directly into the “data” key at
the metadata level of the output structure. Numerous skill

scores are then computed for both the probabilistic and the cat-
egorical-classification format of forecasts, outlined in more detail
below.

4.1 Probabilistic forecasting

The computation of probabilistic scores relies on two met-
rics associated to the i-th forecast: the binary observed flaring
oi � {0, 1}, and the forecast probabilty fi 2 [0, 1]. Using them,
the verification module computes the Brier Score,

Table 4. Metrics and skill scores used for categorical forecasts in FLARECAST, along with their applicable ranges. All parameters shown rely
on the simple 2 � 2 contingency table of Table 3.

Name Notation Formula Range

Accuracy ACC TPþ TN

N
[0, 1]

False alarm ratio FAR
FP

TPþ FP
[0, 1]

Bias BIAS
TPþ FP

TPþ FN
[0, 1]

Threat score TS
TP

TPþ FNþ FP
[0, 1]

Equitable threat score ETS
TP� RETS

TPþ FNþ FP� RETS
[�1

3, 1]

Using RETS ¼ ðTPþ FNÞðTPþ FPÞ
N

Probability of detection POD
TP

TPþ FN
[0, 1]

Probability of false detection POFD
FP

FPþ TN
[0, 1]

Odds ratio OR
TP � TN
FN � FP [0, 1]

Odds ratio skill score ORSS
ðTP � TNÞ � ðFN � FPÞ
ðTP � TNÞ þ ðFN � FPÞ [�1, 1]

Heidke skill score HSS
TPþ TN� RHSS

N � RHSS
[�1, 1]

Using RHSS ¼ ðTPþ FNÞðTPþ FPÞ þ ðTNþ FNÞðTNþ FPÞ
N

True skill statistic TSS POD � POFD [�1, 1]

Symmetric extremal dependence index SEDI
logðPOFDÞ � logðPODÞ � logð1� POFDÞ þ logð1� PODÞ
logðPOFDÞ þ logðPODÞ þ logð1� POFDÞ þ logð1� PODÞ [�1, 1]

Appleman’s discriminant AD
TN� FN

FPþ TN
if (TP + FN) > (FP + TN) [�FN

FP
, 1]

TP� FP

FNþ TP
if (TP + FN) < (FP + TN) [�FP

FN, 1]
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BS ¼ 1
N

XN

i¼1

ðoi � fiÞ2; ð5Þ

together with its decomposition into the three components of reli-
ability, resolution, and uncertainty (see, e.g., Richardson, 2012).
From the BS, one obtains the Brier Skill Score,

BSS ¼ 1� BS

BSref
; ð6Þ

where the reference score BSref is given by,

BSref ¼ 1
N

XN

i¼1

ðoi � �oÞ2; ð7Þ

and �o ¼ 1
N

PN
i¼1oi is the average of the binary observed flare

occurrences over the N forecasts (i.e., the climatology).
Notice that BSS directly combines probabilistic forecasts

with binary observations in a paired format. Further characteri-
zation is achieved through binning of these forecast-observation
paired data according to their forecast values. This enables con-
struction of the four quantities required to plot reliability dia-
grams, which are plots comparing the observed frequency of
events to the forecast probability (see, e.g., Broecker, 2012, as
well as Murray et al., 2017 for an application to flare forecast-
ing). These quantities are (1) the number of entries in each fore-
cast bin, (2) the average forecast value in each bin, (3) the
average observation in each bin, and (4) an estimate of uncer-
tainty in the average observation value. The key parameter in
the construction of these reliability diagram quantities is the size
of the decimal-probability forecast value bins, which is con-
trolled by the “data set”–“probabilities”–“rel_dia_stepsize”
parameter in the JSON configuration file input into verification_
engine.py. The reliability diagram data are specifically included
in the verification output “data” result structure to prevent the
need for the full prediction set to be requested again through
the API service at a later time.

In addition to the standard probabilistic metrics, decimal
forecast probabilities are converted by a threshold value into
categorical-classification forecasts of no-flare (i.e., probabilities
below the threshold) and yes-flare (i.e., probabilities at or above
the threshold). Varying this threshold yields a series of binary
forecast and observation data sets that have the full set of cate-
gorical metrics and skill scores calculated for them. These
threshold-dependent categorical metric data sets are then
included in the output probability verification “data” result
structure as a nested list of categorical-classification output
result dictionaries, with each list entry supplemented by the
threshold probability value used to construct that entry. These
categorical metrics and skill scores are provided below.

4.2 Categorical forecasting

Given a certain range of flare magnitudes, forecast window
duration and latency, verification of the simplest possible cate-
gorical forecasting scheme (i.e., binary 0 for no-flare and 1
for yes-flare) relies on the 2 � 2 contingency table (aka “confu-
sion matrix”) of Table 3. This is constructed from the intersec-
tion of the binary forecast-observation pairs corresponding to
the following four cases: number of forecast windows predicted
to flare with flare(s) observed (TP); number of forecast windows

predicted to flare with no flare(s) observed (FP); number of
forecast windows predicted to not flare with flare(s) observed
(FN); number of forecast windows predicted to not flare with
no flare(s) observed (TN). The first row (TP + FP) provides
the number of flare-predicted forecast windows, while the sec-
ond row (FN + TN) corresponds to the number of non-flare-pre-
dicted forecast windows. The first column (TP + FN) provides
the number of observed flaring forecast windows, while the sec-
ond column (FP + TN) corresponds to the observed non-flaring
forecast windows. The total number of forecast windows is
N = TP + FP + FN + TN. Table 3 gives rise to a long list of
possible forecast metrics and skill scores, with those utilized
in FLARECAST outlined in Table 4.

Another important element of forecast verification is the use
of the POD and POFD (see Table 4) as ordinate and abscissa,
respectively, of the ROC plot (see, e.g., Broecker, 2012, as well
as Sharpe & Murray, 2017 for an application specific to flare
forecasting). For thresholded probabilistic forecasts (Bloomfield
et al., 2012) the ROC plot contains the (POD, POFD) pairs for
each probability threshold. In a manner similar to the reliability
diagram of Section 4.1, readily creating ROC plots avoids
unnecessary reprocessing of large quantities of forecast data just
for visualization purposes. ROC plots directly provide the AUC
metric that is determined by the integration of the POD values
over their spacing in POFD.

4.3 Verification metric uncertainty calculation

In standard operation, the verification process calculates a
single value of each metric and skill score that represents the
performance achieved across all forecasts within the selected
verification time range. FLARECAST also includes an optional
assessment of uncertainty for these single-valued metrics and
skill scores, controlled through the “data set” – “uncertainties”
parameters in the JSON verification configuration file. The
choice of resampling method for the calculation of uncertainties
is controlled by the string-format “sampling_scheme” parame-
ter. In the current implementation, three resampling schemes
can be utilized, namely bootstrap and jackknife (Efron, 1982)
or random sampling without replacement (i.e., a sub-sampling
method). The size of each partial sample is set via “sample_per-
cent”, namely the decimal percentage of the total number of
forecast-observation pairs in the verification time range, N.
Finally, the number of times that resampling is performed is
set by the “realizations” parameter. It is worth noting that the
jackknife method overrides these to self-define the sample size
as N � 1 (one less than the number of forecast-observation
pairs) and the number of realizations as N, because this is the
number of times one forecast-observation pair can be dropped.
In addition, the standard bootstrap method uses N samples (i.e.,
“sample_percent” = 1), with the freedom to choose any number
of realizations. In our infrastructure it is also possible to run the
FLARECAST verification engine with the bootstrap resampling
with replacement but using “sample_percent” < 1, although this
should not be treated (or referred to) as a standard bootstrap
implementation, except in the case “sample_percent” = 1.

The assessment of metric uncertainties is optionally invoked
after the categorical-classification or probability forecast metrics
have been written into the output verification data structure. In
the calc_ss_uncert() uncertainty assessment function, indices
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for the forecast-observation pair arrays are resampled to create
2D index arrays of the form [“realizations”, “sample_size”].
For a bootstrap, indices in the range [0, (N � 1)] are uniformly
randomly drawn for a total of “realizations” � “sample_size”
times to directly populate the 2D index array. For a jackknife,
each index is dropped to generate a 2D [N, (N� 1)] index array.
Finally, for a subsample, in each realization the monotonic array
of indices 0, 1, 2, . . . , (N � 1) are randomly shuffled and the
first “sample_size” number of indices are extracted and stored in
the 2D [“realizations”, “sample_size”] index array. After the 2D
index permutation sets are generated, the full suite of verifica-
tion metrics and skill scores are calculated over the “sample_-
size” entries for each realization. These are achieved using
calc_class_stats() and calc_prob_stats() once again to ensure
consistency of the metric and skill score calculations with those
reported as primary results in the verification data structure. To
simplify the uncertainty assessment portion of the structure, any
key names containing nested structures are removed (i.e., the
contingency table in the classification data structure and the
probability-thresholded reliability diagram in the probability
data structure). Following this, averages and standard deviations
are calculated over the number of realizations for each separate
metric and skill score. The resulting dictionaries of average and
standard deviation values are separately saved into the
“unc_avg” and “unc_std” keys, respectively, in the output ver-
ification data structure.

We note for completeness that the above implementation of
metric uncertainties is used because it is deemed as the most
time and computationally effective. Alternative implementations
can be pursued, but these are reserved for future FLARECAST
infrastructure upgrades.

5 The FLARECAST science results

FLARECAST’s scientific outcome relied on the following
four pillars: an investigation of new, or a revisit of potentially
interesting, flare predictors (Sect. 5.1); the application of
machine-learning methods to flare forecasting, also enabling
feature (i.e., predictor) ranking in terms of predictor importance
(Sect. 5.2); exploration of, first, eruptivity studies with synthetic,
3D MHD models (Sect. 5.3) and, second, the flare-CME con-
nection (Sect. 5.4). This last component shows that, importantly,
the FLARECAST AR property database can be meaningfully
coupled with CME catalogs such as those of the EU HELCATS
project16 or NASA’s DONKI17 to extend flare forecasting to
eruptive flare (i.e., CME onset) forecasting with expectation val-
ues of CME properties. The complete list of FLARECAST-
related peer-reviewed articles can be found in Appendix C.

5.1 New and revisited flare predictors

In spite of possessing one of the most comprehensive
ensembles of flare predictors, FLARECAST opted to identify
additional properties that could assist in flare forecasting. In this
respect, subsets of the FLARECAST property (including
flare association) database were used and linked to the flaring
history of ARs. Promising quantities involved photospheric
shear flows (Park et al., 2018), non-neutralized electric currents
(Kontogiannis et al., 2017), magnetic gradients (Kontogiannis
et al., 2018), and the differential emission measure calculated

Fig. 10. Example of the development and tests of new morphological flare predictors (adapted from Kontogiannis et al., 2018). (a) Input LOS
magnetogram of NOAA 11611. (b) The magnetogram is partitioned into positive- (red contours) and negative- (blue contours) polarity flux
patches that are used to derive the Ising energy EIsing,part of the AR. These partitions, along with the vector magnetogram of the AR, are further
used to calculate the total unsigned non-neutralized currents INN,tot. (c) Positive- (red) and negative- (blue) polarity umbrae identified in maps of
continuum intensity are used to calculate the Ising energy of the umbrae EIsing,spot and the sum of the horizontal magnetic gradient Gs. (d–e)
Conditional probabilities for GOES �C1.0 and �M1.0, respectively, calculated for a set of successive thresholds in EIsing, EIsing,part, EIsing,spot,
Gs and INN,tot. The respective probabilities inferred for the total unsigned magnetic flux U are also shown for reference.

16 https://www.helcats-fp7.eu/
17 https://swc.gsfc.nasa.gov/main/donki
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above ARs (Gontikakis et al., 2020). In addition, FLARECAST
has taken advantage of the results of Guerra et al. (2018), advo-
cating for the joint use of line-of-sight and solar-surface-vertical
versions of predictors in machine learning methods, as well as
of the results of McCloskey et al. (2016), revisiting sunspot
class associations with flaring rates and confirming the increased
likelihood of flaring in case flux emergence enhances the
photospheric compactness of ARs.

Strong shear flows are observed along intense magnetic
PILs in the AR photosphere. PILs are arguably the single most
telltale feature of enhanced flare productivity. Properties derived
from a map of plasma shear flows were thus analysed by Park
et al. (2018). In particular, an algorithm was developed to quan-
tify photospheric shear flows in ARs in terms of three proper-
ties, treated as predictors in this framework: the mean (<S>),
maximum (Smax) and integral (Ssum) shear-flow speeds along
strong-gradient, strong-field PIL segments. This algorithm was
then applied to a large data set of ~2500 co-aligned pairs of
AR vector magnetograms with 12-min separation over the per-
iod 2012–2016. Park et al. (2018) found that ARs with more
widespread and/or stronger shear flows tend to not only be more
flare-productive over the next 24 h but also produce major flares
sooner. This finding paves the way for future conditional predic-
tions as well as forecasts better integrating the flare history of
ARs. The importance of flare history in predictions of future
flaring has already been identified by Falconer et al. (2012),
as well as by comprehensive statistical studies (Leka et al.,
2019a, b; Park et al., 2020). As further discussed in Park
et al. (2018) and Welsch et al. (2009) shear-flow properties
exhibit a weaker, albeit still positive, correlation with the flare
peak flux than Schrijver’s R. However, Park et al. (2018) revis-
ited the problem using almost as large a sample of co-aligned
magnetograms as Welsch et al. (2009), but at much higher qual-
ity (i.e., spatial resolution, cadence) and with a more detailed
sample of NOAA-numbered ARs (i.e., in terms of observed
times/locations, flaring activities and photospheric magnetic
properties). Park et al. (2018) further focused on flaring
activity over the next 24 h, as well as on the waiting time
between major flares as a function of the shear-flow properties.
We believe that the new results obtained with this improved
magnetogram dataset and systematic study warrant additional
investigation.

The predictive potential of properties related to non-neutra-
lized electric currents in ARs was also investigated. Intense,
shear-ridden PILs are exclusive areas of non-neutralized cur-
rents that imply the injection of net currents into the corona
whose associated non-potential (i.e., free) magnetic energy
could be instrumental for flares and eruptions (Török et al.,
2014; Dalmasse et al., 2015). Georgoulis et al. (2012) had
already proposed a method to calculate non-neutralized currents
accurately, along with their applicable uncertainties. This
method is slightly different than the one of Leka & Barnes
(2003a) who added the absolute values of the total current from
each magnetic polarity in that, first, it algebraically adds the total
currents from both polarities to obtain the net current and, sec-
ond, it performs a robust flux partitioning of a given magne-
togram to identify and distinguish between magnetic
polarities. The integral form of Ampere’s law for the inference
of net currents was also applied by Falconer et al. (2002); how-
ever, no specific discussion on the precise choice of contours
was made. Relying on the method of Georgoulis et al. (2012)

and Kontogiannis et al. (2017) implemented the computation
of the non-neutralized electric currents within the FLARECAST
property database. Calculations for a sample of AR time series
showed with statistical significance that the systematic increase
in the amount of non-neutralized currents concurred with the
development of strong PILs and signaled phases of intense flar-
ing. Further application to a representative sample of Solar
Cycle 24 ARs showed that the total unsigned non-neutralized
current of an AR is promising in distinguishing between flaring
and non-flaring AR populations within a 24-h time window
(Kontogiannis et al., 2017). “Promise” in that work implied a
significantly better (i.e., beyond applicable uncertainties) ability
to distinguish between flaring and non-flaring active regions
than the (often used as baseline) unsigned magnetic flux – see
Figure 10 and discussions in Barnes & Leka (2008) and
Georgoulis (2012, 2013).

Additionally, FLARECAST developed new algorithms to
reproduce some recently proposed predictors not yet imple-
mented in forecasting schemes, relying on the complexity of
the spatial distribution of the photospheric magnetic flux. These
were the sum of the horizontal magnetic gradient (c.f. Korsós
et al., 2014, 2015; Korsós & Erdélyi, 2016) and the Ising energy
(Ahmed et al., 2010). The sum of the horizontal magnetic gra-
dient is calculated by combining magnetograms and photo-
spheric continuum images. The latter are used to locate the
umbrae of sunspot groups while the magnetograms are used
to define the mean magnetic field strength in the umbrae. These
values and the separation distances between opposite-polarity
umbrae are used to calculate the sum of the magnetic field gra-
dients between all possible opposite-polarity umbrae pairs. Fur-
thermore, while the original formulation of Ising energy
considers pairings between opposite polarities on a pixel-by-
pixel level, FLARECAST examined that form as well as the
Ising energy of opposite-polarity umbrae and topologically
inferred magnetic partitions.

Kontogiannis et al. (2018) demonstrated that magnetic-
gradient- and Ising-energy-based predictors are also worth
including in automated flare forecasting schemes. In terms of
Bayesian conditional flaring probabilities (Fig. 10), the sum of
the horizontal magnetic gradient appeared to be the most effi-
cient property, followed by the Ising energy of the umbrae pairs.
Efficiency here implies again an ability to better distinguish
between flaring and non-flaring active region populations, not
necessarily in terms of predictive potential. The latter, of course,
is to be tested in more strict terms within machine learning pre-
diction methods employing multiple predictors and being able
to rank them. Although many of these and other properties
relate to PILs, Kontogiannis et al. (2018) showed that each of
these properties exhibits specific dependence on the position
of ARs on the solar disk and encompasses different information.
These differences can justify the different efficiency of these
flare predictors and their potential inclusion in multi-parameter
machine learning-based forecasting schemes.

Gontikakis et al. (2020), in a forthcoming study, introduced
a new, “orthogonal” view on flare prediction, analysing EUV
image time series of ARs. More specifically, the temporal evo-
lution of the DEM, calculated over ARs, was studied as a pos-
sible flare predictor. The DEM shows the distribution of the
plasma EM as a function of temperature, T, and is derived from
optically thin spectral lines. It is defined as DEMðT Þ ¼
n2edl=dT and involves the derivative of the line-of-sight l over
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the plasma temperature, with ne being the electron number den-
sity. Syntelis et al. (2016) found that the DEM calculated over
an intensely eruptive AR increased substantially a few (i.e., ~5)
hours before one of the eruptions, with the other eruption fol-
lowing shortly after. This was interpreted as a possible pre-flare
manifestation (see, e.g., Fletcher et al., 2011). To achieve statis-
tical significance in a DEM-based pre-flare activity study,
Gontikakis et al. (2020) used DEM inferences by the GAIA-
DEM archive.18 In GAIA-DEM, the DEM is assumed to be a
Gaussian function of log(T) (Guennou et al., 2012) and the
archive provides images of three Gaussian parameters, along
with v2. These parameters are the EM (i.e., the integral of the
DEM), the temperature Tmax where the DEM is maximized,
and the Gaussian width of the DEM. Gontikakis et al. (2020)
used 6-h long time series of each DEM parameter. The DEM
parameters were computed from solar structures extracted from
9000 HMI HARPs. Positive derivatives of the time series, indi-
cating that AR plasma heating is at work, were treated as indi-
cators of imminent flares. Analyzing the DEM time series
appeared to give more significant conditional flare probabilities
than the reference unsigned magnetic flux (i.e., its value at the
end of the time series) for GOES �M1.0 flares, but it was less
successful for GOES �C1.0 flares. These may be grounds to
advocate that, provided that the significant uncertainties in the
DEM calculation can be constrained, DEM time series may
complement or even enhance the short-term predictive ability
of photospheric properties, at least for major flares.

5.2 Flare prediction and feature ranking

The FLARECAST machine-learning prediction component
draws from and relies on the plethora of predictors extracted
from NRT HMI SHARP magnetograms populating the pro-
ject’s property database. This central objective has been realized
by Benvenuto et al. (2018), Florios et al. (2018), Piana et al.
(2019) and Campi et al. (2019), while the overall process has
been described and discussed by Massone et al. (2018).

Benvenuto et al. (2018) tested an array of supervised and
hybrid (i.e., comprising both supervised and unsupervised ele-
ments; see Sect. 2.3) machine-learning methods on historical
NOAA/SWPC sunspot classifications between August 1996
and December 2010, training the methods on similar data
between December 1988 and June 1996. They relied on flaring
rates associated to certain sunspot classes, similar to McCloskey
et al. (2016), but using machine learning for prediction. The
main result was that hybrid methods tend to outperform strictly
supervised ones and approach the performance of clustering
methods. Benvenuto et al. (2018) used a variety of metrics
and skill scores present in Table 4 and further determined that
a reliable feature ranking by means of their prediction value is
possible.

Florios et al. (2018) used three different supervised methods
(i.e., MLPs, SVMs and RFs; see Table 2) on a subset of the
FLARECAST property database over a five-year interval cover-
ing 2012–2016. They were able to correlate between the differ-
ent methods and concluded that RFs (Breiman, 2001) could be

the method of choice in a routine, operational flare forecasting
scheme. Feature ranking was performed by means of different
scores and indices and it was found that peak performance could
be achieved by using 10–12 predictors in total. Both purely
probabilistic and probability-thresholded categorical perfor-
mance verification was performed, with optimal probability
thresholds determined. The overall performance practically
matched, and in some cases exceeded, that of Bobra & Couvidat
(2015) who used a SVM and performed the first flare forecast-
ing work using HMI SHARPs.

The study of Campi et al. (2019) performed a data- and
property-intensive flare prediction investigation. It utilized a
database of 14,931 point-in-time property vectors, each com-
prising up to 171 predictors within the interval September
2012 – April 2016. The main objective was to determine
whether, and to what extent, this abundance of predictors is
essential or redundant in flare prediction. The study utilized
two machine-learning methods, namely hybrid LASSO and
RFs, and opted to construct four training and four testing sets,
each corresponding to a 24-h forecast window from a specific
issuing time (i.e., 00:00, 06:00, 12:00, and 18:00 UT each
day). Particular attention was paid to the complete separation
between training and testing sets, that were not only non-
time-overlapping (i.e., results from each issuing time were not
combined) but they used different ARs (i.e., HARP numbers,
in implementation) for training and testing. As such, another
objective was to find the impact of different intervals of the
same ARs being used in both training and testing. The main
findings of Campi et al. (2019) were the following:

– Properties with the best predictor ranking have the smallest
variance in ranking, which implies that their impact on pre-
diction is consistently high. However, the order of best-
ranking predictors varies for different prediction methods.

– Particularly for prediction of GOES �C1.0 flares, the best-
ranking predictors are common across all issuing times
studied. This is less of a case for the prediction of major
flares of GOES �M1.0 flares.

– Only a small number of predictors (different for each
method, however, most notably for major flares) suffices
to make the prediction method achieve its top performance.
Hence, the vast majority of predictors are redundant in such
approaches and, in fact, using all of them can even be detri-
mental to performance. The redundancy of predictors was
also noted in Barnes et al. (2016) as possibly due to intrin-
sic, but not necessarily known ab initio, correlations
between different predictor values. This effect may also
be enhanced for events of increased rarity and hence poorer
statistics, i.e., when forecasting increasingly higher flare
classes.

– The stricter approach of separating ARs between training
and testing sets leads to notably lower skill score values.
Relaxing the robustness of training and testing by allowing
“information leaking”, not necessarily in terms of temporal
overlapping but in terms of different intervals in the same
ARs, readily increases these values. Improved performance
in this case, however, is due to memorization, rather than
learning, on behalf of the machine learning method used.
Lower skill scores for unbiased training and testing, as also
found by Piana et al. (2019), reflect the intrinsic, uncom-
promising stochasticity of the flaring phenomenon.

18 The GAIA-DEM is a MEDOC database that archives full-disk
maps of DEM parameters, derived from the 6 EUV channels of the
SDO/AIA telescope.
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We note at this point that the relatively small number of best
predictors found by Florios et al. (2018) and Campi et al. (2019)
essentially aligns with earlier results by Ahmed et al. (2013),
Bobra & Couvidat (2015) and Barnes et al. (2017). The latter
study also found that a set of three or four predictors was suffi-
cient to guarantee best performance for two classifiers, NPDA
and RF. That study addressed prediction of both filament erup-
tions and flares and found significant overlapping of about half
of best predictors between the two types of predictions. In the
case of Campi et al. (2019), however, such predictor patterns

were found only for the prediction of GOES �C1.0 flares
within different classifiers, while mostly different sets for differ-
ent classifiers were found in the prediction of major flares (i.e.,
GOES �M1.0).

Both Florios et al. (2018) and Campi et al. (2019) used var-
ious metrics and skill scores from Table 4 but focused on HSS
and TSS. Example runs by both studies and their associated
HSS and TSS values are shown in Figure 11. This leads to
the conclusion that, for both studies, the metric values increase
while adding more predictors, although in both cases the

Fig. 11. Example prediction runs adapted from (a) Florios et al. (2018) and (b) Campi et al. (2019) for the same basic prediction settings,
namely a 24-hr forecast window for GOES �M1.0 flares. Both TSS and HSS values are shown in a using RFs only, while b shows only TSS
values for two different methods, namely hybrid LASSO (HLA) and RF. The abscissas in both plots correspond to the number of predictors
used.

Fig. 12. Example of the impact of thresholding, here of the threshold Bh,th for the horizontal magnetic field strength Bh, on the efficiency of two
potential flare predictors, namely the lengths of the strong-shear and strong-gradient PIL, Lss and Lsg, respectively (see text for details).
Figure adapted from Guennou et al. (2017).
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amplitude of the increase and the values achieved depend on the
adopted skill score. Furthermore, in Florios et al. (2018) the
increase seems to persist after 12 predictors while in Campi
et al. (2019) saturation is reached with just six predictors
(although when RF is implemented on three predictors, it leads
to a TSS value very close to the one obtained with six predic-
tors). The difference between the two studies (and subsequent
panels in Fig. 11) is probably due to the different way the train-
ing set is populated, the latter experiment not mixing up active
regions between the training and test sets. We notice, moreover,
that the TSS value for Campi et al. (2019) is lower than that of
Florios et al. (2018) for both applied methods, despite the fact
that the predictors used in Florios et al. (2018) are a subset of
those used in Campi et al. (2019). This is again a result of
the more stringently separated training and testing procedure
followed by Campi et al. (2019). In fact, the prediction method
itself may often be less important than the robustness of training
and testing practices. By roughly reproducing the training and
testing of Bobra & Couvidat (2015), Florios et al. (2018),
Campi et al. (2019) were able to practically match the
performances of these studies for different machine learning
methods. As a result, the “uncompromised” stochasticity of flare
occurrence, as coined by Campi et al. (2019), could not be
curbed even with one of the largest-dimensionality parameter
spaces.

Given the above, the FLARECAST performance verifica-
tion infrastructure (Sect. 4) is in place and allows the evalua-
tion of performance of any future effort than can rely on
either the existing or enhanced property database (Sect. 2.2)
and the prediction database (Sect. 2.3). Obviously, the quest
continues.

At this point it is important to clarify that, although FLAR-
ECAST valued highly the use of predictor time series for flare
forecasting, this important part of the analysis did not have the
time to materialize during the project’s nominal period of
execution. The only exception is the forthcoming work of
Gontikakis et al. (2020) that exploits DEM time series to
uncover flare predictors or precursors. Time series, in terms of
flare history and/or predictor evolution, have been found useful

in flare prediction (Leka et al., 2018, 2019b; Park et al., 2020),
going beyond point-in-time forecasting. While this avenue is yet
to be investigated with the FLARECAST databases, these data
clearly enable one to pursue this objective in the future.

5.3 Studies using synthetic data

While observational data are the ultimate reference frame to
determine the flare-predictive ability of a given quantity, these
data have critical limitations toward a complete and pertinent
description of solar ARs. For example, while it is agreed that
the 3D coronal distribution of the AR magnetic field plays a
key role in the triggering and development of instabilities lead-
ing to flares and eruptions in general, only the 2D photospheric
field vector can be routinely inverted from Stokes images by
means of the Zeeman effect. Thanks to tremendous develop-
ments in computational solar physics, numerical experiments
of flare and eruption triggering are becoming increasingly com-
mon and realistic (see, e.g., the review of Green et al., 2018).
These experiments have now made it possible to explore new
flare predictors. Kusano et al. (2012) have carried out numerous
3D MHD simulations in which the initial set-up was parametri-
cally modified to accommodate eruptive and non-eruptive con-
figurations. Distinguishing between flaring and non-flaring
configurations is essential in investigating the efficiency of
potential predictors.

This exploratory component of FLARECAST was facili-
tated by the 3D MHD simulations of Zuccarello et al. (2018),
who extended upon Kusano et al. (2012). These simulations
started with a dipole magnetic configuration, emulating the
two polarities of an AR, and were driven by specific, carefully
modeled and controllable photospheric velocity flows. Four
types of converging flows were tested (all eventually leading
to eruptions) against a control, non-eruptive case. Depending
on these driving flows and their experimental control, eruptions
took place at different times that, however, could be determined
precisely for each simulation. Given the full 3D data sets, differ-
ent scalar volumetric quantities were calculated, among which
were the potential and non-potential (i.e., free) magnetic energy

Fig. 13. (a) Correlation between CME speed and the peak of total, unsigned magnetic flux in the source active region up to 24 h prior to the
eruption. Points correspond to the actual data values for 124 CME – source region pairs, while a box-and-whiskers plot is overlaid along with a
spline fit to quantify the correlation. Reproduced from Murray et al. (2018). (b) Linear correlation coefficient and respective uncertainties
between source region properties and CME speed for a sample of 32 CME – source region pairs. A distinction between fast (red columns) and
slow (green columns) CMEs has been made while results for the entire CME sample are shown in blue columns. Reproduced from
Kontogiannis et al. (2019).
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budgets and the relative magnetic helicity H, that was further
decomposed into non-potential and volume-threading helicity
terms (c.f. Berger, 2003; Moraitis et al., 2014; Linan et al.,
2018). At the onset of eruptions, all parameter values showed
a significant dispersion, indicating the lack of a practical
instability threshold. Interestingly, no particular free-energy
threshold could be identified for flares and eruptions in general,
despite the key role of the magnetic free energy in eruptions.
However, the ratio of a specific term Hj (coined the “non-poten-
tial” helicity) to the total relative helicity behaved differently;
eruptions seemed to always take place for the same value of
the ratio Hj/H. Therefore, this ratio may represent a critical
threshold at which a modeled AR becomes unstable.

The importance of the ratio Hj/H was further highlighted by
Pariat et al. (2017) who analysed parametric 3D MHD simula-
tions of the formation of solar-like ARs. These simulations were
originally presented by Leake et al. (2013, 2014) and modeled
the self-consistent formation of ARs via the emergence of a
twisted magnetic flux tube from the upper convection zone into
the solar atmosphere. Flux emergence led to the formation of a
magnetic configuration similar to standard bipolar ARs. The
parametrisation of the initial conditions enabled the simulation
of both quiescent and eruptive configurations. In Pariat et al.
(2017), the full 3D MHD simulated coronal magnetic field for
different cases was investigated and analyzed, using magnetic
energy and helicity. While magnetic energy, in particular free
magnetic energy, exhibited strong differences during the evolu-
tion of various configurations, some helicity-based quantities
were robustly discriminating between eruptive and non-eruptive
simulations. The total relative magnetic helicity H was not one
of them, showing its largest budget for the non-eruptive simula-
tion. However, the ratio Hj/H showed high values for eruptive
simulations only, most importantly before the onset of erup-
tions. Shortly after eruptions, its values were similar for both
eruptive and non-eruptive simulations. As a result, the ratio
Hj/H was portrayed as a promising eruptivity proxy.

Given the above, the actual predictive value of the ratio
Hj/H will ultimately be determined by data-driven modeling
of observed solar ARs. If future computational advances make
the meaningful calculation of the non-potential 3D coronal mag-
netic field feasible in NRT, testing of this proxy will become
possible and may lead to innovative flare predictors in future,
advanced versions of FLARECAST and other operationally-
oriented systems.

Synthetic data obtained from numerical simulations can also
be used to study flare proxies following the same methodology
with observed data. Guennou et al. (2017) studied flux emer-
gence simulations by Leake et al. (2013, 2014) in a way that
was similar to the treatment of observational data, namely by
isolating the 2D magnetic field vector of the modeled AR pho-
tosphere. A list of about 100 different scalar properties was then
computed in a way similar to the procedures developed in
FLARECAST. Guennou et al. (2017) found that, among the
properties tested, only those associated with PIL features pre-
sented significant preflare signatures. Virtually all other proper-
ties were not able to differentiate between eruptive and
quiescent simulations. Since the computation of several of these
properties depends on the choice of parameters (e.g., thresholds
for masking the data, magnetic field thresholds, etc.), Guennou
et al. (2017) could study the role of these thresholds on the

ability of a property to determine the eruptivity. As exemplified
in Figure 12, it was found that some properties were highly sen-
sitive to the choice of user-defined thresholds whereas some
others were more robust. The four panels on the left show the
distribution of Bh at the modeled photospheric boundary of
two 3D MHD flux emergence simulations at t = 100, in normal-
ized time units of the non-eruptive (top) and eruptive (bottom)
simulations. The white curves show the portion of the PIL
where Bh > Bh,th, for two different choices of Bh,th (0 G and
50 G). The length of the PIL where Bh > Bh,th is one of two cri-
teria used in the computation of Lss, while Lsg uses a different
criterion based on the potential field, namely the length of the
PIL where Bh,pot > Bh,th.

The six plots on the right show the temporal evolution of Lss
and Lsg for the eruptive (solid curves) and non-eruptive (dashed
curves) simulations under three different values of Bh,th, namely
0 G (top), 25 G (middle), and 50 G (bottom). The different col-
ors corresponds to different choices of criteria also entering in
the computation of Lss and Lsg, with details discussed in
Guennou et al. (2017). As Bh,th increases, Lss becomes similar
for the non-eruptive and the eruptive simulation. This predictor
is thus highly sensitive to the choice of Bh,th. Conversely, Lsg is
relatively insensitive to the choice of Bh,th. As a result, Lsg is
capable of discriminating the two simulations and could con-
ceivably be used as an eruptivity proxy.

In addition, Guennou et al. (2017) studied the robustness of
certain parameters in the presence of noise, reporting that
parameters related to electric currents seem to be the most sen-
sitive. This would imply the need for screening such predictors
before inserting them in prediction pipelines.

5.4 Flare-CME connection studies

The FLARECAST exploratory component further enabled
researchers to expand upon the project results into other cut-
ting-edge research areas, including coronal mass ejection
(CME) prediction. Space-weather operations are currently lack-
ing sufficient warning for eruptive flares, with forecasters only
predicting CME arrival at Earth once an eruption is observed
(see, e.g., Möstl et al., 2014; Verbeke et al., 2019). One may
reasonably expect that CMEs and other solar eruptive phenom-
ena can be physically linked by combining data from a multi-
tude of ground- and space-based instruments, as well as
models. However, this can be challenging for automated opera-
tional systems. Understanding the processes and sources
involved in solar eruptions that could enable the use of photo-
spheric properties is imperative for improving this area of
forecasting.

The flare-CME connection that could advance CME predic-
tion was investigated via a unique synergy between FLARE-
CAST and an EU Framework Programme 7 project funded
under the “Exploitation of space science and exploration data”
Call. The HELCATS project created numerous data products
from heliospheric imaging onboard the two NASA STEREO
spacecraft in order to track the evolution of CMEs in the inner
heliosphere. Using the project’s main catalogue of over 2000
CME events imaged between 2007 and 2017, an automated
algorithm was developed to connect the CMEs observed by
STEREO to any corresponding solar flares and AR sources
on the solar surface, resulting in the HELCATS LOWCAT
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catalogue. Murray et al. (2018) supplemented the LOWCAT
catalogue’s information on CME kinematic properties (such
as speed and angular width) with FLARECAST’s extensive
property database derived from vector magnetograms, enabling
a deeper study into the characteristics of eruptive ARs. Initial
statistical analysis was undertaken on the new combined data
set, with total unsigned flux, vertical current density and current
helicity identified as properties of interest for potential eruption
warning thresholds. Beyond the scientific gain, this collective
effort provided an excellent opportunity to foster communica-
tion between different, large-scale research projects which
may work in parallel on similar research topics to benefit
space-weather forecasting. See Figure 13a for an example of
this synergy, while further details can be found in Murray
et al. (2018).

A further detailed investigation was performed for a smaller
sample of 32 eruptive flares (4 C-class; 16 M-class; 12 X-class)
by Kontogiannis et al. (2019), seeking correlations between
selected AR non-potentiality properties and CME kinematic
characteristics. The selection intentionally focused on PIL-
related properties, including some well-established ones (such
as Schrijver’s R, WLSG and Beff) along with ones implemented
in the course of FLARECAST (such as the Ising energy
and the total non-neutralized electric current; see Table 1).
CME information was collected from NASA’s DONKI data-
base, utilizing CME images by LASCO onboard the SOHO
mission. Positive correlations between CME kinematic proper-
ties were found for all pre-eruption photospheric properties, in
line with the results of Murray et al. (2018). Remarkably, corre-
lations were stronger for faster CMEs implying that selected
non-potentiality properties may be indicative of upper-limit
eruption scales that ARs can produce over a given timescale.
Among the FLARECAST properties tested, the preflare total
unsigned non-neutralized current and the length of the main
PIL stand out, exhibiting stronger correlations with the CME
kinetic energy and speed (Fig. 13b). This finding points to a
causal relationship between non-neutralized electric currents
(stemming from compact, sheared PILs) and the associated
free magnetic energy and helicity budgets in ARs and CMEs.
Therefore, one envisions a future forecasting capability of basic
CME kinematic properties before CMEs actually occur that,
combined with the potential CME launch location as per its
source AR, could give educated guesses of possible CME shock
formation and geoeffectiveness.

6 Conclusions

FLARECAST was a multifaceted, interdisciplinary project.
As such, it is appropriate to identify the different activity areas
of the project and summarize conclusions pertinent to each of
them.

6.1 Science and technology

One of the project’s main aims was to seek the most effi-
cient ways of forecasting solar flares. In this respect, FLARE-
CAST is arguably the most intensive and systematic solar
flare forecasting effort to date due to (i) the amount, cadence
and validation of the input SDO/HMI SHARP magnetogram

data, (ii) the sheer number of AR properties treated as flare pre-
dictors (209 of them, with 171 used in the comprehensive study
of Campi et al., 2019), (iii) the breadth of machine-learning
prediction algorithms implemented (14 included in Table 2),
and (iv) the comprehensive performance verification approach
and infrastructure, along with suggestions on how to implement
it in a rigorous training and testing philosophy.

Solar flares are long known to be stochastic events, namely
responses of strongly nonlinear (quite likely self-organized crit-
ical) dynamical systems, as solar ARs are thought to be. Hence,
flare forecasting appears intrinsically probabilistic, notwith-
standing that some machine-learning prediction methods pro-
vide a binary output. Despite this long-standing knowledge,
the FLARECAST Consortium was keen to determine whether
a combined Big Data and machine learning effort could lift this
stochasticity barrier by achieving a compelling, verified binary
separation between flaring and non-flaring AR populations.
As Campi et al. (2019) declared right from that paper’s title,
and was also implied by the results and discussion of Florios
et al. (2018), stochasticity in flare occurrence and subsequent
forecasting remains uncompromising. This, of course, could
be due to limitations or shortcomings of the tested methods
and/or data. Regardless, despite significant progress brought
by FLARECAST and many other efforts worldwide, a decisive
(i.e., binary and with high enough verification metric values to
be used for decision making on an operational context) flare
prediction capability is still beyond reach. This said, FLARE-
CAST has generated codes, data and infrastructure that could
potentially facilitate this crucial milestone in the future.

A recent trend in the literature (see, e.g., Nishizuka et al.,
2018; Li et al., 2020, and follow-upworks) suggests that machine
learning may not even be sufficient, so the community should be
moving toward deep learning flare prediction efforts. This
remains to be seen; even in the above deep learning efforts,
however, a significant degree of stochasticity persists, reflected
in less-than-optimal performance indicators. So far, solar deep-
learning prediction methods have by no means outperformed
machine learning ones. It is an open question whether this can
be reversed in the future, although themassive data needs of deep
learning algorithms (e.g., Goodfellow et al., 2016) may render
flare prediction a less-than-optimal domain for deep learning
efforts due to the lack of sufficient event instances to train on.

In terms of performance verification, while FLARECAST
created a detailed apparatus (Sect. 4), the nominal duration of
the project did not allow its complete exploitation. Existing pro-
ject studies (Benvenuto et al., 2018; Florios et al., 2018; Campi
et al., 2019) have used meaningful parts of it but not the entire
infrastructure provided in Table 4. Future studies, however, will
have the option to work and rely on this infrastructure for a
comprehensive performance verification assessment.

While FLARECAST was a case study of R2O, it soon
became clear that we could learn from its output, by means of
both predictor ranking and the explorative research component.
Then, part of the project’s output contributes to O2R objectives.
In particular, a robust ranking of predictors triggers the question
of why just a few ([10) predictors, different for each prediction
method at least for flares of GOES class�M1.0, gather virtually
all the predictive power in Campi et al. (2019), while in another
attempt by Florios et al. (2018) that used the same (RF)
method the increase in performance seems monotonic as more
predictors are added. The above generalize and diversify the
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big picture that now calls for (i) a comprehensive review of
training and testing practices, regardless of prediction methods,
and (ii) an investigation of specific predictors’ performance on
given prediction method(s). In light of all these, one key take-
away message is that we should not be employing “black
box” (i.e., non-human-interpretable) prediction methods, in spite
of their performance, in order to keep the knowledge discovery
channel open (Rudin, 2019).

In terms of exploration, the project used synthetic data
(Guennou et al., 2017; Pariat et al., 2017) to investigate ele-
ments not accessible by the available observational data, but
also concerned itself with the flare-CME connection to investi-
gate flare predictors exhibiting a statistically significant correla-
tion with CME parameters. This was pursued via both the
FLARECAST – HELCATS synergy (Murray et al., 2018)
and the FLARECAST – DONKI association of Kontogiannis
et al. (2019). These works, along with previous ones in this
respect (Falconer et al., 2002; Barnes, 2007; Ugarte-Urra
et al., 2007; Georgoulis, 2008), all show promise toward a
viable interpretation of the pre-eruption configuration in solar
ARs and a deeper, more complete understanding of solar
eruptions.

Along with other recent studies (Barnes et al., 2016; Leka
et al., 2019a, b; Park et al., 2020), FLARECAST has showcased
the need for fixed, pre-defined data sets in solar flare (and erup-
tion) forecasting. Such “benchmark” data sets (see Angryk
et al., 2020, for a definition and an example) enable the precise
evaluation of different methods, machine/deep learning or
other, on preset training and testing samples. Performance com-
parisons on different data sets and/or phases of the solar cycle
can be problematic due to the differences in underlying flare
statistics over different time periods, so a benchmark dataset
should be partitioned in such a way as to treat variable climatol-
ogy to the extent possible. The FLARECAST property data-
base could also play the role of a benchmark dataset. It further
enables the important action of time series forecasting, that
was unfortunately not achieved during the project’s nominal
period of execution, and the treatment of class imbalance in
machine learning performance. Such investigations directly
address another trait of major flares, namely their scarcity
and rareness, that becomes extreme for flares of historic
magnitudes.

FLARECAST developed an infrastructure that could help
address the need for an integrated space weather forecasting
platform. Coordination of space weather forecasting efforts
has been identified as a key priority in proposed roadmaps such
as the one developed on behalf of the COSPAR (Schrijver et al.,
2015). It is also prominently recommended by the ESWACC
(Opgenoorth et al., 2019). In line with these studies, global
coordination of space-weather forecasting efforts sprung out
as a top-level conclusion during the FLARECAST Stakeholder
Workshops. The project’s infrastructure could serve as a
testbed, or breadboard, for future applications encompassing
the other two main legs of “stormy” space weather, namely
CMEs and SEPs. Given the versatility of the Docker engine
and containers used in FLARECAST, components of different
programming languages can be removed, updated, or added
in a highly modular fashion.

All in all, FLARECAST has amply shown that solar flare
forecasting should not be, and thankfully is not, an internal affair
for heliophysicists. Fusion of expertise is paramount to advance

and, ultimately, break ground toward an efficient space-weather
forecasting but also other complex real-world problems.

6.2 Operations

By defining different flare forecasting modes (i.e., based on
GOES flare class, forecast window, latency, etc.) and testing
numerous prediction algorithms, FLARECAST reaffirmed that
one single recipe does not fit every need. Patterns between dif-
ferent prediction methods were seen in the best-performing pre-
dictors for GOES �C1.0 flares (i.e., flares of GOES C-class and
above), for example, but not for GOES �M1.0 flares (Campi
et al., 2019). In addition, AR properties that correlate best with
CME properties (Murray et al., 2018; Kontogiannis et al., 2019)
may, or may not, be within the best performing predictors for a
given method. We view these findings in light of an outcome of
the FLARECAST Stakeholders’ Workshops that the real end
users of the project’s results are most likely expert operational
forecasters who can disseminate them as needed. Other syner-
gistic community works fall along similar lines by arguing for
the benefit of human “forecasters in the loop” (Leka et al.,
2019b). It then becomes clear that more time and effort will
be needed before agencies and institutions committed to opera-
tions are able to shift from today’s relatively simple forecast
philosophies to sophisticated, multi-dimensional parameter
spaces, Big Data and intensive machine/deep learning method-
ologies. It is a crucial step to be taken, however, balancing on a
fine line between simplicity and interpretability of the concepts
and the necessary level of complexity dictated by the problem at
hand.

In brief, in spite of its limited duration that left a few envi-
sioned elements to be realised (i.e., time series forecasting and
comprehensive performance verification of all prediction algo-
rithms), we hope that FLARECAST can be thought of as a
future “textbook” R2O case, paving new ways and even nar-
rowing “the valley of death” of less-than-successful approaches
between the two domains of research and operations. As elo-
quently put by Merceret et al. (2013), who drew analogues
between space weather and terrestrial meteorology, there may
be leads able to transform the “valley of death” into a “valley
of opportunity”.

It should not go unnoticed that the immediate next step for
the FLARECAST infrastructure is to become a flare prediction
service of ESA’s SSA Space Weather Service Network19. This
task is undertaken by the FHNW partner that has originally
developed the project’s technology apparatus.

6.3 Communication

A key objective of the project was the communication
with government and industry representatives, that cultivated
into two FLARECAST Stakeholders’ Workshops. A top-level
conclusion of them was that communities involved in (solar
flare or space-weather) forecasting should be in close contact.
There are “language” and terminology barriers that require a
continual effort toward keeping the momentum of communica-
tion and better defining the constantly evolving landscape of
user needs. A prominent example in this direction is the aviation
and power industries that have moved beyond colloquial

19 Available at https://swe.ssa.esa.int/ssa-space-weather-activities.
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interest and are raising their awareness toward the actual capa-
bilities, shortcomings and detailed products of operational
forecasting.

We found from these Stakeholders’ Workshops that accu-
racy, timeliness, and ease of use are the most important factors
in a forecast from the users’ perspective. Less important is the
scientific detail accompanying each forecast. As mentioned
above, it was also found that there should be an intermediate
step between the researchers who devise the forecasts and the
end users. This step is filled by operational forecasters, who
can interpret forecasts and convey their messages in a language
that users can understand and cope with.

As to the communication with the wider public, FLARE-
CAST reaffirmed that the public is keen to listen and eagerly
seeks knowledge on solar flares and space weather. It became
clear that open-access, public-domain projects such as this
one should return part of their discovered knowledge to the tax-
payer citizen, by educating them credibly and responsibly, steer-
ing clear from the (unfortunately high) level of misinformation
spread largely untested and un-scrutinized over the internet and
social media20.

6.4 Lessons learned

In implementing a sizable and diverse project such as
FLARECAST, there was no shortage of lessons to learn. The
intrinsic complexity of the project was not only due to its diver-
sity, but also because Consortium partners were geographically
distributed throughout Europe. This required certain steps to be
taken in order to secure efficient coordination and implementa-
tion. Even so, however, some desired tasks could not be imple-
mented within the nominal duration due to lack of time. The
most important lessons were the following:

– An effective project governance is instrumental for plan-
ning ahead. Well-defined, distinct roles foreseen in the
Consortium Agreement such as those of the Project Coor-
dinator, Project Scientist, Financial and Legal Manager, as
well as bodies such as the Project Management Board and
the Steering Committee, provide a governance structure
that can, in principle, lead the project into fruition via a
properly shared workload. There should be space for some
adjustments in the initial plan. However, radical changes
midway through the project will only lead to confusion
and impede implementation.

– The Consortium further needed an efficient way of remote
communication, beyond e-mails, phone calls and telecon-
ferences. This was achieved via an integrated platform of
collaborative software tools that were utilized on a Consor-
tium-wide level. This system combined flexible internal
wiki-pages (e.g., enabling tagging individuals in docu-
ments with associated email updates, real-time recording
of meeting minutes, efficient exporting of periodic report
documents and code documentation, etc.) with integrated
code repositories that have easily interpretable visualization

interfaces for version tracking (hence, allowing efficient
code reviews and prompt troubleshooting of change-related
issues).

– In Consortium deliberations, common understanding and a
continual pursuit of consensus in a collegial atmosphere
were valued as the most important elements for a success-
ful collaboration.

– In a project with strict requirements for hardware installa-
tion and software development, time (and backup time) is
necessary; efficient time management is paramount for
the aversion of implementation delays. Given the high
degree of synchronization required between parallel tasks,
delays often seem inevitable; when they happen, they
may also cause a domino effect affecting different project
parts. Advance risk assessment and time planning help mit-
igate the impact of these delays.
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Appendix A

Open access of FLARECAST data, codes
and infrastructure

A.1 Data

Access to the FLARECAST property database is provided
via https://api.flarecast.eu/property/ui/, while the prediction
database is accessible via https://api.flarecast.eu/prediction/ui/.
Both services are Swagger-based APIs, enabling data access
in both human and machine readable format. They provide a
collection of API routes to retrieve and analyse the FLARE-
CAST data. While analysis is useful for developers and system
administrators, the View routes are intended for end users. The
graphical interfaces at these URLs serve two purposes. First,
one can retrieve and verify data manually. Second, the interfaces
print out a URL than can be used as query template and can also
be integrated in any programming language supporting HTTP
file access.

The most useful View routes of the property database ser-
vice are:

– data set/list, that provides the list of all registered data sets.
FLARECAST primarily works with the production_03 (1
September 2012 to 12 April 2016 and 9 September 2017
to 30 January 2019) and questionable_02 (13 April 2016
to 8 September 2017) data sets. The second data set
includes HMI NRT data that may be problematic, accord-
ing to a JSOC release21.

– /property_types, that provides the list of individual property
names. This is useful when one is interested in the acquisi-
tion of certain properties only.

– /data set/{data set}/list, that provides the main access to the
property database. Various options can be used to refine the
search, while blank data requests are also possible. As an
example, a general API URL for all property values within
the 2-day interval of 1 June 2014 to 23 June 2014 at all
available cadences reads: https://api.flarecast.eu/property/
region/production_03/list?cadence=all&exclude_higher_
cadences=false&time_start=between(2014-06-01,2014-06-
03)&property_type=*&region_fields=*.

One may refine the search as needed, in terms of cadence,
time interval (via time_start), or specific property (via
property_type).

The most useful View route of the prediction database
service is:

� /prediction/list_v2, that provides the main access to the
prediction database. As with the property database, vari-
ous options can be used to refine the search. As an exam-
ple, an API URL for all available predictions within the
5-month interval of 1 January 2018 to 1 June 2018 reads:
https://api.flarecast.eu/prediction/prediction/list_v2?include_
flare_associations=true&algorithm_config_version=latest&
prediction_time_start=between(2018-01-01,2018-06-01).

The search window can be adapted by prediction_
time_start. Each entry provides the algorithm configuration
name (algorithm_config_name) and id (algorithm_con-
fig_id), along with all other applicable information. One
can look into certain algorithm configuration names to refine
the search further by setting the algorithm_config_name
field accordingly and obtain the respective API route.

Most other routes in the property and prediction database
services are still used by some of the user interfaces and some
debugging scripts, but are not intended for end users.

A.2 Codes

All FLARECAST source codes and computational infras-
tructure are public and can be found in the project’s Bitbucket
repository: https://dev.flarecast.eu/stash/projects/. The repository
includes different directories, namely:

– Download: algorithms for downloading SWPC and flare
staging data.

– Property Extraction: codes and algorithms for the extrac-
tion of all properties included in Table 1.

– Flare Prediction: source codes for the machine learning
algorithms included in Table 2.

– FLARECAST Datamodel: codes for defining and imple-
menting the project’s data model (Sect. 2.4.8).

– FLARECAST Infrastructure: codes for the project’s
computational infrastructure (Sect. 3).

Algorithms typically include brief usage notes, examples
and information on each applicable programming language.

A.3 Infrastructure installation

The first dependency is the installation of a Docker engine
from https://www.docker.com. Docker is an open source soft-
ware that offers an ecosystem in which different Docker con-
tainers co-exist and function independently. Given that each
FLARECAST Docker container contains a different routine or
algorithm written in different programming languages (IDL,
Python, C, or R), the second dependency is that the installa-
tion server must be equipped with licenses of these languages
to be able to edit / modify the infrastructure. With Docker
engine installation in place, the FLARECAST infrastructure is
installed in a Unix/Linux command line environment as fol-
lows:

– Download the installer script:
curl -o infrastructure.sh https://dev.flarecast.eu/stash/projects/
INFRA/repos/dev-infra/browse/infrastructure.sh?raw

– Assign execution mode to the script:
chmod a+x infrastructure.sh

– Setup the infrastructure or update to the most recent
version:
./infrastructure.sh update

– Finally, run the development infrastructure:
./infrastructure.sh run21 http://jsoc.stanford.edu/jsocwiki/ModLRecalibration
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A.4 Licensing

EU’s OpenAIRE policy requires that all source code and
data models must be openly accessible to any interested person
or entity, both within the EU and worldwide. Therefore, the soft-
ware and data licenses chosen by the FLARECAST Consortium
aim to be as permissive as possible, at the same time being free
of any liability and provided “as is”. The majority of the written
code is available under a BSD-2 (https://opensource.org/
licenses/BSD-2-Clause) license. Some of the algorithms, how-
ever, depend on third-party libraries that use a less permissive
GPL licence (https://www.gnu.org/licenses/gpl-3.0.de.html)
and thus these algorithms need to be released under GPL, as
well. All FLARECAST data products are provided under the
fully open ODC PPDL (https://www.opendatacommons.org/
licenses/pddl/1-0/index.html) license.

Appendix B

The FLARECAST user survey

The FLARECAST user survey was carried out in Autumn
2016, with around 100 users approached and 31 responding.
Around 60% indicated that they were using flare forecast or
alert services. Most thought these services were useful but
around a quarter did not know whether their preferred service
was accurate or inaccurate, which points to a need for better
informed end users. Asked whether they would recommend
such a service, around two thirds gave a “passive” response,
indicating that they neither strongly recommend, nor strongly
not recommend, flare forecasting services.

Users were asked if they planned to use flare forecasting
services differently in the future. Five of them provided fur-
ther details of how they would do this. While the assumption
is that most users are in the aviation or defence industries, it
is interesting that out of these five comments, one was from a
satellite user and two from GNSS users. Suggested approaches
included:

– Developing an operational response to space weather
events, and a change in practices to take advantage of
increased precision and advance warnings.

– Comparison with other flare prediction tools, such as
ASSA22.

– Examining correlations between flares and ionospheric
TEC changes.

– Checking the impact of space weather disturbances on
GNSS systems.

– Allowing the spacecraft operator to tailor services for
spacecraft control aspects.

The users were then asked what factors would be most
important to them in a flare forecasting service. Timeliness
and accuracy were found to be most important to a user, while
scientific details were deemed least important. A summary of all
responses appears in Figure B.1.

Most flare forecasts focus on the occurrence of flares
defined by the NOAA R scales (e.g., M-class, X-class), but
77% of responders said forecasts of “All Clear” periods are also
important. A similar number knew about the NOAA R scales,
but 12.5% said that they were not useful for their purposes.
The following reasons were given:

Fig. B.1. Summary of responses to the question, “Which factors are/would be important to you in a flare forecasting service?” Lowest average
score corresponds to the most important factor.

22 http://spaceweather.rra.go.kr/models/assa
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� The R scales classify impacts to radio systems, so are of
some interest to us (a Telecoms company), but we are also
interested in space weather impacts to other systems such
as power distribution.

� The scale is useful globally, but too coarse at local (i.e.,
country) level.

� Currently we are not reacting to NOAA scales. A decision
was taken to react to MOSWOC sourced indices.

Finally, the survey came up with suggestions of other useful
points for discussion during the First Stakeholders’ Workshop.
Suggestions included:

– Details on verification of results and methods.
– Explanations for non-scientists; international coordination

to raise awareness.
– Coupling to D-RAP23; specific solar radio burst forecasts/

alerts.
– The state of the science and roadblocks for forecast

developments.
– Better understanding of impact / consequence of space

weather events, and presentation of this for non-experts.
– Clear presentation of applicable uncertainties.

Appendix C

FLARECAST-related refereed publications

A total of eighteen (18) refereed publications, including this
overview, were fully or partially supported by the FLARE-
CAST project. The other seventeen (17) are (alphabetically by
first author): Barnes et al. (2016), Benvenuto et al. (2018),
Campi et al. (2019), Florios et al. (2018), Gontikakis et al.
(2020), Guennou et al. (2017), Guerra et al. (2018), Kontogian-
nis et al. (2017, 2018, 2019), Massone et al. (2018), McCloskey
et al. (2016), Murray et al. (2017, 2018), Pariat et al. (2017),
Park et al. (2018), Sharpe & Murray (2017).

Appendix D

List of acronyms

2D : Two-dimensional
3D : Three-dimensional
ACC : Accuracy
AD : Appleman’s discriminant
AIA : Atmospheric Imaging Assembly
API : Application programming interface
AR : Active region
ASSA : Automatic Solar Synoptic Analyzer
AUC : Area under curve
BIAS : Bias
BS : Brier score
BSS : Brier skill score
CCMC : Community Coordinated Modeling Center
CME : Coronal mass ejection

CNRS : Centre national de la recherche scientifique
COSPAR : Committee on Space Research
D-RAP : D region absorption prediction
DB : Data base
DEM : Differential emission measure
DNA : Deoxyribonucleic acid
DONKI : Space weather database of notifications,

knowledge, information
EASA : European Aviation Safety Agency
EM : Emission measure
ESA : European Space Agency
ESWACC : European Space Weather Assessment and

Consolidation Committee
ETS : Equitable threat score
EU : European Union
EUV : Extreme ultraviolet
FAR : False alarm ratio
FHNW : Fachhochschule Nordwestschweiz
FITS : Flexible image transport system
FLARECAST : Flare likelihood and region eruption fore-

casting
FN : False negative
FP : False positive
FOV : Field of view
GAIA : Gaussian AIA
GNSS : Global Navigation Satellite System
GOES : Geostationary Operational Environmental

Satellites
GPS : Global Positioning System
HARP : HMI active region patch
HEK : Heliophysics Events Knowledgebase
HELCATS : Heliospheric cataloguing, Analysis and

Techniques Service
HMI : Helioseismic and Magnetic Imager
HSS : Heidke skill score
HTTP : Hypertext Transfer Protocol
IDL : Interactive data language
JSOC : Joint Science Operations Center
JSON : Javascript object notation
LASCO : Large Angle and Specrometric Coronagraph
LASSO : Least absolute shrinkage and selection oper-

ator
LOS : Line of sight
LOWCAT : Low corona catalog
MEDOC : Multi Experiment Data & Operation Center
MHD : Magnetohydrodynamics
MLP : Multi-Layer Perceptron
MOSWOC : Met Office Space Weather Operations Cen-

tre
NaN : Not a number
NASA : National Aeronautics and Space Adminis-

tration
NetDRMS : Network data record and management sys-

tem
NOAA : National Oceanic and Atmospheric Admin-

istration
NPDA : Nonparametric discriminant analysis
NRT : Near-realtime
O2R : Operations to Research
OR : Odds ratio

M.K. Georgoulis et al.: J. Space Weather Space Clim. 2021, 11, 39

Page 36 of 37



ORSS : Odds ratio skill score
PFE : Potential field extrapolation
PIL : Polarity inversion line
POD : Probability of detection
POFD : Probability of false detection
PostgreSQL : Postgres structured query language
PROTEC : Protection of our assets in space
R2O : Research to Operations
RF : Random forests
RNN : Recurrent neural network
ROC : Receiver operating characteristic
SDO : Solar Dynamics Observatory
SEDI : Symmetric extremal dependence index
SEP : Solar energetic particles
SHARP : Space Weather HMI active region patch
SOC : Self-organized criticality

SOHO : Solar and Heliospheric Observatory
SRS : Solar region summary
SSA : Space Situational Awareness
STEREO : Solar Terrestrial Relations Observatory
SVM : Support vector machine
SWPC : Space Weather Prediction Center
SXI : Solar X-Ray Imager
TEC : Total electron content
TN : True negative
TP : True positive
TS : Threat score
TSS : True skill statistic
URL : Uniform resource locator
WCS : World Coordinate System
WP : Work package

Cite this article as: Georgoulis MK, Bloomfield DS, Piana M, Massone AM, Soldati M, et al. 2021. The flare likelihood and region eruption
forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era. J. Space Weather Space Clim. 11, 39. https://
doi.org/10.1051/swsc/2021023.
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