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1. Introduction

The presence of chiral pharmaceuticals in the environment is an
issue of great concern since pharmaceuticals are biologically active
compounds. Enantiomers of chiral pharmaceuticals often behave dif-
ferently in chiral environments such as biological systems; hence, their
toxicities, therapeutic properties, and environmental fate may exhibit
stereoselectivity (Smith, 2009). The review “Chiral pharmaceuticals:
Environment sources, potential human health impacts, remediation
technologies, and future perspective” examined the toxicities, occur-
rences, and removal of pharmaceuticals and pesticides in built and
natural environments (Zhou et al., 2018).

In this commentary, I argue that the review by Zhou et al. (2018)
overlooked the implications of chirality on the environmental occur-
rence, removal technologies, and human toxicity of chiral pharmaceu-
ticals. Zhou et al. (2018) identified wastewater treatment plants
(WWTP) as the primary source of chiral pollutants but did not show the
role of WWTPs in the enantiomeric enrichment as well as chiral in-
version of some chiral pharmaceuticals. They discussed the potential
human health risk of chiral pharmaceuticals by addressing their toxi-
cities. However, they did not critically examine the human exposure
pathways or stereoselective toxicity of the chiral pharmaceuticals. Zhou
et al. (2018) misclassified pesticides as pharmaceuticals. Listed below
are my main concerns regarding the review.

2. Pharmacological properties

Zhou et al. (2018) did not critically examine the complexities as-
sociated to enantioselective interactions and biotransformation of
chiral pharmaceuticals in humans. Following the thalidomide tragedy,
several studies were conducted on enantioselectivity in the pharmaco-
kinetic properties (e.g. adsorption, distribution, metabolism, and
elimination) of chiral pharmaceuticals (Albani et al., 1984; Ariéns,
1986; Bai et al., 1983; Walle et al., 1983). Plasma protein binding in-
crease the half-life of the drugs while decreasing their volume of dis-
tribution and liver metabolism (Mehvar et al., 2002). However, the
binding of chiral pharmaceuticals on plasma protein is usually en-
antioselective. For example, (S)-propranolol preferentially bound to a1-
acid glycoprotein and lipoproteins than (R)-propranolol and (S)-na-
proxen preferentially bound to human serum albumin (Shen et al.,
2013). Chiral pharmaceuticals can undergo enantioselective bio-
transformation via enzymatic action resulting in the production of
bioactive metabolites. Furthermore, interactions at the primary drug
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target may favor one enantiomers resulting in differences in their
therapeutic properties. In some cases, the antipode might be toxic; for
example, (S)-naproxen and (S)-thalidomide have been shown to be
teratogenic while (R)-naproxen is a painkiller and (R)-Thalidomide is a
sedative. Hence, some researchers advocated for chiral switching (i.e.
commercialization of single enantiomers) (Ariéns, 1986). For example,
ibuprofen and ketoprofen were successfully switched to their S-en-
antiomers which are more potent inhibitors of the cyclooxygenase 1
(COX-1) enzyme (Calcaterra and D'Acquarica, 2018). However, ac-
counting for chirality in human exposure is further complicated by the
fact that some drugs such as ibuprofen and naproxen can undergo chiral
inversion whereby one enantiomer is converted to its antipode (Zhou
et al. (2018) inaccurately referred to this process as enantioselective
transformation).

The US Food and Drug Agency recommended the evaluation of
pharmacokinetics of individual enantiomers in racemic drugs (U.S.
Food and Drug Administration, 1992). Zhou et al. (2018) suggested that
the US FDA recommendation on stereoisomeric drugs accelerated de-
velopment of single enantiomers drugs. However, surveys on new drugs
that were approved by US FDA from 2002 to 2015 do not show a clear
trend towards single enantiomer drugs (Agranat et al, 2012;
Sanganyado et al., 2017). In fact, 50% of chiral drugs approved in 2009
were racemic while 8.3% and 0% were racemic in 2008 and 2010,
respectively (Sanganyado et al., 2017).

3. Chiral separation and analysis

Previous reviews extensively discussed the current developments
and challenges in chiral separation and analysis of chiral pharmaceu-
ticals in environmental and biological matrices (e.g. Awad and El-
aneed, 2013; Calcaterra and D'Acquarica, 2018; Sanganyado et al.,
2017; Stalcup, 2010; Xie and Yuan, 2017). Chiral pharmaceuticals are
commonly separated using chiral chromatography and capillary elec-
trophoresis, and they are identified using mass spectrometry
(Sanganyado et al., 2014). However, these techniques do not provide
adequate information on the 3-D molecular structure of the analytes. In
fact, previous studies often identified enantiomers according to their
elution order, yet the elution order varied with mobile phase conditions
(Sanganyado et al., 2017). Hence, techniques such as optical rotation,
electronic circular dichroism, and vibrational circular dichroism are
often used to determine the absolute configuration of the pharmaceu-
ticals (Polavarapu and He, 2004). Stereoselective matrix effects may
occur in the internal standard, particularly in electrospray ionization
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stereoselectivity demonstrated dependence on the type of organism as
well as the B-blocker. For example, (S)-atenolol was found to be more
toxic to a microalga (Pseudokirchneriella subcapitata) than its antipode,
but it was less to toxic than (R)-atenolol to a protozoan (Tetrahymena
thermophila) (De Andrés et al., 2009).

6. Removal technologies

Removal of chiral pharmaceuticals in water and wastewater treat-
ment systems can often lead to the enrichment of a single enantiomer,
particularly in a chiral environment. To date, no studies have been
conducted on the effects of chirality on the removal of chiral pharma-
ceuticals using sonolysis, photocatalysis, advanced oxidation processes,
and ozonation. Such abiotic processes are often assumed to be achiral
since they involve the interaction of the chiral pharmaceutical with an
achiral reactive species in an achiral environment (Kasprzyk-Hordern,
2010).

Biotransformation processes involve the enzymatic breakdown of
chiral pharmaceuticals by microbes. Enzymes are chiral sensitive and
enantiomeric enrichment may result. Hence, the review should have
discussed how aerobic granular sludge-sequencing batch reactor and
constructed wetlands can result in enantiomeric enrichment. For ex-
ample, Matamoros et al. (2009) did not observe stereoselectivity in the
removal of ibuprofen enantiomers using horizontal subsurface-flow
constructed wetlands (an anaerobic system) whereas the (S)-ibuprofen
degraded faster than (R)-ibuprofen in the vertical-flow constructed
wetland (an aerobic system) (Matamoros et al., 2009). In contrast, (S)-
naproxen degraded faster than (R)-naproxen in both types of con-
structed wetlands. Amorim et al. (2016) found that the removal of
norfluoxetine using an aerobic granular sludge-sequencing batch re-
actor was stereoselective. However, the removal of alprenolol, biso-
prolol, metoprolol, propranolol, venlafaxine, salbutamol, and fluox-
etine were not stereoselective (Amorim et al., 2016). Amorim et al.
(2016) suggested the lack of stereoselectivity was because adsorption
was the predominant removal mechanism. In this review, Zhou et al.
(2018) make the same assumption that adsorption is a non-stereo-
selective. However, a previous demonstrated that adsorption of [-
blockers on to sludge was stereoselective when ionic interactions
dominate the sorption process (Sanganyado et al., 2016). Hence, the
need for more systematic studies on factors influencing the stereo-
selective removal of chiral pharmaceuticals using aerobic granular
sludge-sequencing batch reactor.

Incorporating chirality when assessing the occurrence, fate, and
toxicity of pharmaceuticals is essential for improving the accuracy of
human risk assessments. The review did not critically engage relevant
literature on environmental behaviors of chiral pharmaceuticals, fo-
cusing on the impact of chirality. As a result, the significance and
sometimes validity of the discussions and conclusions drawn in the
review are inadequate.
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