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Non-existence of the asymptotic flocking in the
Cucker-Smale model with short range
communication weights

Xiuxia Yin, Zhiwei Gao,

Abstract—For the long range communicated Cucker-Smale
model, the asymptotic flocking exists for any initial conditon. It
is noted that, for the short range communicated Cucker-Smale
model, the asymptotic flocking only holds for very restrictel
initial conditions. In this case, the non-existence of thesymptotic
flocking has been frequently observed in numerical simulatins,
however, the theoretical results are far from perfect. In ths note,
we first point out that the non-existence of the asymptotic floking
is equivalent to the unboundedness of the second order spag®-
ment, i.e.,sup, 3 |zi(t) — z;(t)|* = oo. Furthermore, by taking
the second derivative and then integrating, we establish agw and
key equality about this moment. At last, we use this equalityand
relevant technical lemmas to deduce a general sufficient cdition
to the non-existence of the asymptotic flocking.

Index Terms—Cucker—Smale model, multi-agent system,
asymptotic flocking, communication weights.

I. INTRODUCTION

During the recent two decades, flocking of agents h
attracted much attention from various research fields [1
[5], such as control theory, biology, robotics, smart sens

networks, etc. The CuckeiSmale (C-S) model, which was

first proposed and investigated in [1] in 2007, is a classic%ﬁD
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from perfect. In [16], a sufficient and necessary condition t
the non-existence of the asymptotic flocking was estaldishe
when the particle numbeN = 2, and the emergence of the
bi-cluster flocking was investigated from some well-pregar
initial configurations that were already close to bi-cluste
flocking configurations. To keep every agent staying in ite ow
sub-ensemble, a sufficient condition to the non-existerice o
the asymptotic flocking was obtained in [17] fof > 3. It
is noticed that in theory and practice it is highly possilhlatt
some agents will move from one cluster to another. Recently,
based on a specific structure of-S model inR!, a sufficient
and necessary condition to the non-existence of the asyimpto
flocking was obtained for the one dimensional case in [18].
Nevertheless, similar specific structure does not existghdr
dimensions. Therefore, for the short range communicates C
model, it is extremely challenging to get a sufficient and
Qecessary condition iR? with d > 2 and N > 3 if it
2Xists. In this technical note, by establishing a new etyuali
bout the second order space moment we obtain a general and
brief sufficient condition to the non-existence of the astatip
cking. We do not need to divide the agents into the sub-

model that captures many of the observed features of m&lrlsembles beforehand, or assume the decreasing of

ing animals in nature, such as flocking of birds, schoolinﬁ]

of fishes and so on. From then on, the-€ model was
quickly extended in many directions [6]-[14], includinget

model with singular communication functions or other gaher
t

communication weights, the model with stochastic noides,
kinetic description of this model, and so forth.

The remainder of this paper is organized as follows. Section
is to address system description and some preliminalties.

h Section I, we are devoted to developing a general sufftcien

condition to the non-existence of the asymptotic flockinge T
key is that a new equality about the space moment. The
technical note is ended by the conclusion in Section IV.

For the C-S model, the existence of the asymptotic flocking

depends on the decay rate of the communication weight

between agents. When the communication weighhas a

long rangé, the asymptotic flocking occurs for any initial
condition. However, when the communication weight has
short range, the asymptotic flocking appears only for ve

restricted class of initial configurations. In this case tton-

existence of the asymptotic flocking has been observed in

numerical simulation$or a finite set of initial conditionsee
[15] for example. It is noted that the theoretical results far
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1A long range communication weighit means a nonnegative, bounded an

decreasing function satisfying ¢(r)dr = co.

Let N be the number of agents and lgt;(¢),v;(t)) €
R? x R? denote the position and velocity of théh agent
r§ time ¢, where the dimensiod > 1. The C-S model is
Hescribed by the following dynamical system

PRELIMINARIES

.IL = Uy,
. 1
0= 5z > Ml — wil) (v — vi) (1)
j#i
subjecting to the initial configuration
(2:(0),v;(0)) = (zi0,vi0), (2)

where | - | denotes the standard Euclidean normRyf The
Jronnegative functiom denotes the communication weight.
Firstly, we give the definition of the asymptotic flocking.



Definition 1: [1], [19] Model (1) exhibits the asymptotic initial conditions, asymptotic flocking was firstly obtathé
flocking if and only if {(z;(t), v;(t))}Y, satisfies the follow- [1] and [19] for ¢(r) = (1 + 7~2)—§ with 8 € [0,1) and

ing two conditions: 8 = 1, respectively. Then, such results were generalized to
(i) The relative velocity fluctuation tends to zero as timéhe C-S model with long range communication weights in
goes to infinity, i.e., [7]. But, the asymptotic flocking occurs only for speciatiili
configurations wherp has a short range. To be specific, we
lim Z v ( —0. 3) have the following lemma.
t—o0

Lemma 2: [1], [7], [19] (1) Let the communication weight
be nonnegative, decreasing and non-integrable. Then model

(ii) The diameter of the group is uniformly bounded in t|m$1) exhibits the asymptotic flocking for any initial conaiti.

t€[0,00), ie. (2) Let the communication weight be nonnegative, de-
creasing and integrable. Then model (1) exhibits the asymp-
Sggz |2i(t) — 2e(t)[? < o0, (4) totic flocking if
t
where (z.(t),v.(t)) is the average position and velocity ammax |z — x| > 0, max |vjo — ve| < 5/ ¢(2r)dr.
timet, i.e. max 20— | ®)
1 X 1 Condition (8) is a sufficient condition of initial conditien
(we(t),ve(t) = | = ) zi(t), = > wvi(t) that model (1) exhibits the asymptotic flocking, which means
N N . : o
i=1 i=1 that the contrary side of (8) is a necessary condition of the
Note that from (1) we have that.(t) = v.(0) and non-existence of the asymptotic flocking. We are devoted to
2o(t) = v.(0)t + 2.(0). For simplicity, we use(z.,v.) to finding a general sufficient condition of non-existence & th
denote(z.(0), v.(0)). asymptotic flocking with short range communication weights
Secondly, we state key properties of model (1). In this case, equality (6) is useful, which was establishred i
Lemma 1: [7], [19], [20] Let {(z;,v;)}), be a smooth [20] recently, see [21] for its kinetic version. Actually,ofm
solution to model (1). Then, for any> 0, (6) we can establish that
d & 1 &
%;Wi(t)vcpN;;Wivﬂ%ﬂxifﬂ)a (5) Zlvz O/t — 0, ast oo (9)
and for anya > 0, t > 0, forany0 < ¢ € L'(R*). See Remark 2 (4) in [20] for the
N precise proof. By the definition of.(t), v, (9) is equivalent
d l2:— ”*’J' to
Lit+a)Y Joi - Z / dr]
dt i=1 i=1 j#i 0 JC]0| o mt(ﬁ) B xC(t) ?
N Zvi(t)—vc—f — 0, ast—oco. (10)
tta i=1
= — Vi — |UZ_U | ¢ |.T/' _m¢|)
; Ta ;; ’ ’ Then, we have the following remark.

(6) Remark 2:Let ¢ be nonnegative and integrable. Model (1)
s wi0—z0] - has an asymptotic flocking if and _only :ﬁlptzoz | (t) —
where [ "7 = = [0 s — @) <zio — g0l 2,(8)]? < co. In other words, there is the non-existence of the
Remark 1:Let {(z;,v;)};-, be a smooth solution to modelasymptotlc flocking if and only ifup, > [z (t) —z.(t)]* =
(1). Then,{(z;(t) — x.(t),v;(t) — ve)}, is also a smooth oo.
solution to model (1). From the above lemma, equality (6) When the asymptotic flocking does not exist, from Defini-

also holds for(z;(t) — x.(t), v;(t) — v.). Thus, tion 1 and the above remark there are two cases:
¢ N 2 (1) sup, >0 3 |2i(t) = (t)|* = oo and} |vi(t) —ve|* — 0.
/Z vi(s) — v, — LTl g (2) 3 [oi(t) — vl 0.
s+a Now, we show that what do€s, |v;(t) — v.|? - 0 mean.
By (5) we have the decreasing df |v; —v.|?, so there exists
/ sta ZZ [vi —vj2p(|x; — x:])ds aco > 0 such thaty” |v;(t) —v.|? — co. Then it follows from
=1 i (10) that
N o 2
QZUWUC*% 2 Jwi(t) — et 2

ZZ |v1(t) - vc|2 - Z ’Uz(t) — Ve — M
N ZZ / . @) Se0)2 "

=1 j#i |@io— J'JO‘

Equality (5) can be used to deduce the asymptotic flockih@l sufficiently |32f99t §0 > |vi(t) — ve|*> - 0 can deduce
when ¢ has a long range. Actually, without restriction of_ |zi(t) — zc(t)|* = Ct°. The reverse is similar.



Remark 3:Let ¢ be nonnegative and integrable, thetf the initial conditions satisfy that

S |ilt) — ve|* - 0 if and only if >~ |2 (¢
for sufficiently larget.

)=z (t)? > CF?

IIl. M AIN RESULTS

A. Non-existence of the asymptotic flocking

Now, we use inequality (7) to deduce a sufficient condition (1 + ¢)
of the non-existence of the asymptotic flocking. Firstly, we

N
> (wio — ) - (vio —

i=1

mzz/

i=1 jsq 7 1Ti0— zJOl
(15)

there is non-existence of the asymptotic flocking.
Proof. It follows from Lemma 3 and inequality (7) that

E]% — el

t+a2

need the following lemma, which is a bridge between the space

momenty_ |z;(t) — z.(t)|? and the velocity-position moment

ozt —w(t

Z |vi (t) - [y

2.

Lemma 3:Let {(x;,v;)}, be a smooth solution to model

(1). Then for anye > 0 anda > 0,

%l i(t) — 2 ()] > |$i0—$c|2—

. . . +
Proof. For simplicity, we denote the vector-valued function

vi(t) — ve — % = g,;(t) for any i. By solving the
ODEs

d wi(t) —w(t)

ai(t) (1) - T =

we obtain that

t+ «

zi(t) —we(t) = (xio_xc)'i‘(t-f—a)/o f;%ds. (13)

Note that for anya,b € R, we have the following basic
iequality

|a+b|2 |a|2+ |b]? +2a-b < (1Jre)|a|2 (14 Y3,

> Z |mLO - mc
i=1

2

zi(s) — xc(s)
a(l+1/e / v;(8) — Ve ds
/9 0 ; s+«
N Xio — T 2
ZZL’WO —zo[? = (1+1/e) [agz Vip — Ve — ¢
(6%
i=1 i=1
« N > ]
YXT [ e
i=1 j£i ¥ |Tio—Tjo
Thus, if there existsy > 0 such that
N N - "
2 2 10 — de
10 — L¢ > 10 — Ve —
Z|x0 Ze| aZvo V) "
ey [ " 0
‘1«70 J«]O‘

N
then we can choose sufficiently largeto get > |z;(¢)
1=1
x.(t)|* — oo. Condition (16) is equivalent to

a? Z [vio — ve|? — 20&2 Vig —

ﬂfzo

)

wheree can be any positive constant. So from (13) and the

above inequality,

2

t+ «
‘ (@io — xc)

zi(t) —ze(t) — (t+ ) /t Mdsr

0 Stu«

< (146 |zi(t) — ze(t))? )
" gi(s)
10 |ra) [ 20
< (46 |zi(t) — z(t))?

t 2ot
w4108 Mgpas, aa
0
where the last inequality is obtained from Holder’s indgya
By (14) we get (12).
U
Then, by choosing a sulfficiently largeand an appropriate

«, we use inequality (7) and Lemma 3 to deduce the foIIowmﬂwn for anyS ¢ {1,2,

result.
Theorem 1:Let {(x;,
el (1). Assume that is nonnegative, bounded and(r) € L!.

v;)}., be a smooth solution to mod-

r)dr < 0.

zz/
i=1 j#i J«qo Jv;0|

When the initial conditions satisfy (15), the above inegyal
and (16) hold for somer > 0. 0

Remark 4:(1) In the above proof, we actually get that
S lwi(t) — xo(t)|> > Ct? for sufficiently larget. Therefore,
from Remark 3 we have that |v;(t) — v.|? - 0.

(2) The non-existence of the asymptotic flocking means
that there is non-flocking in the whole groyp,2,--- , N}.
Actually, the method in Theorem 1 can be used to show
that there is non-flocking in a smaller group for some initial
conditions. Firstly, we can follow the method in Lemma 3 to
get that

((175176))2| () — 2 ()] > |wio — w0
N O 10l
—a(1+1/6)/0 vi(s) — v;(s) s+ a o

-, N} we have that

’> Z lwio — wjo”

i,JES

(1+ €)a?
(t+a)?

> i)

i,JES



2

—x; From this equality, we know from (15) that the space
—a(l+ 1/6)/ 2:1 ; Vi s + a ds. moment is on the increase all the time, and
[ JF
Combining the above inequality with (7), for some initial s Zm *P>C>0 a7
conditions we can ge}~, . |zi(t) — z;(t)]* — oo, which _
means that there is non-flocking i for anyt > 0. But, a more reasonable way is that (17) holds

However, if we focus on the non-existence of the asymptot‘P(E“y for sufficiently larget. Based on Proposition 1 and other
flocking, condition (15) in Theorem 1 is too strong. Even thiechnicalestimatesve can achieve this goal and get a better
communication is very weak, which yields the right hand siggdfficient condition than (15).
of (15) is small,> " (vio — ve) - (w0 — x.) should be positive,
at least. Thus, the space momeéntz; () — z.(t)|* increases C. Revisit the non-existence of the asymptotic flocking
initially, since 2(v;o — v.) - (x50 — x) is the derivative of this

moment att — 0. Before giving the main theorem, we need the following

lemma, which was established in Remark 2 (3) in [20].
Lemma 4: [20] Let {(z;,v;)}¥, be a smooth solution
B. A new equality to model (1). Assume thap is nonnegative, bounded and
Now, we establish a new equality abdu}l|x; () — z.(t)[2, T(r) € L'. Then,vj := lim v;(t) exists for anyi, and
from which we can first get a better understanding of condlitio
(15). -1
Proposition 1: Let {(x;,v;)}}¥., be a smooth solution to Z () <o V>0
model (1). Then,
N Theorem 2:Let {(z;,v;)}}¥., be a smooth solution to mod-
d <1 Z s (t) — @ (t)|2> el (1). Assume thap is nonnegative, bounded and(r) € L!.
' ¢ If the initial conditions satisfy that

t N N
= / Z |vi(s) —vc|2ds+z Ti0 — (vio — ve) WZMO *’Uc|2 - ZZ/
Lo “

i=1 j#i Zi0— CEJ0|

|@i(t)— xg(t)\
Z / T)d?“ + Z Ti0 — xc Uz() (% ) > 0; (18)

i=1 j#i ‘1«70 x]Ol

Proof. We compute, dt? S |2 (t) — 2.(t)* and then integrate there is the non-existence of the asymptotic flocking. If we

over (0,t). It follows from (1) that further assume that

s lZleacmfac Ol #il —vel” = ZZ/
a2 \ 2 P v ¢ 4||¢HL°° ; i=1 jAi i0— $10|
d N

= o Z(ﬂh(t) —z(8)) - (vi(t) — ve) + Z Ti0 — T¢) - (Vio — ve) > 0, (19)

i=1

N

= > Juit) —vel* + thenz|u( ) — ve|2 - 0.
=1

Proof.. F|rstly, we show that

. . ey ) t
i=1 j#i /0 Z |vi(t) — ve|?ds
i=1

N
- 1(8) = vel* = al —exp{— -
= ; |'Uz(t) 'UC| > Z |’Ui() _ ’UC|2 1 [§) 2p|{¢||2L||i)|L t} . (20)
N
QL DD o) () = @i(t) - (v5(t) — i) Following from (5) we obtain that
i=1 ji N
wherea(-) = é(|; (¢) — i (t)]). Note that % ; 0s(2) — v?
/ B(125(5) — () (5 (5) — 2:(5)) - (05(5) — vil))ds N PN
|zi(t)—z;(t)] = N ; ; |vz UJ|
:/ r¢(r)dr,
|

:Eiofibjo-l - = ||¢)HLO€ ZZ| - UC| + |UJ - UC| )

so we obtain the conclusion. (] i=1j=1



N
“2l|ll= S i — vl
=1

Thus, > |vi(t) — vel? > exp{—2|¢| L=t} > |vio — ve|?, and

then by integrating ovef0,¢) we obtain (20). Combining

Proposition 1 with (20), we can obtain that

N
4 (35 wo-wor)

N
1 —exp{—2([¢| L=t}
> [vio — ve|?
E ‘ 20|6] .~
N
Z(Iﬂz‘o - ICC) : (Ui() - N Z Z/
Ti0— a:Jol

i=1 i=1 j#i

Thus, if condition (18) holds, there exists > 0 such that
L (5 Jai(t) —xc(t)|2) > C for sufficient larget, which

yields thatz |z (t) — zc()|* = .

Now, we prove the second conclusion. On the one ha

from inequality (7) we have that

S+«
/ zzwﬁm Olz; — wil)ds
i=1 j#i
N 2
Ti0 — T
az Uio*vc*T

NZ

i=1 j#i /im —zjol

On the other hand, from (5) we can take the derivative
(t+a) > Jv; —v|?, and then

N t N
(t+04)2|vi—vc|2—/ Zlvi—vc|2ds
/ ZZIM*%I |z — xi])ds

i=1 j#i

N
OLZ |’Ui() — ’UC|2.
i=1

S+ «

Z |zio — x
feXp{f2||¢HLwt}Z|v(_v| . °
k2 C
2||¢>HL°° P a
i=1 j#i /J’”) —zjo]

Thus, if condition (19) holds, we can choose a sufficiently
large a such that

N
Z |vq (t)

for sufficiently larget. Then we use Proposition 1 to get that

Z ()

for sufficiently larget.

However, if we assume that(t) — v, for any, then from
Lqemma 4 we have thdw;(t) — v.| < Ct~2. By integrating
We obtain thatiz; (t) — z.(t)| < Ctz + |20 — x| for any i,
which is equwalent to

Z ()

Obviously, inequallty (22) is in contradiction with ineditya
(21). So the assumption, i.e;(t) — v, for any i, does not

hold. That is, Z [vi(t) — ve|* = 0. a

Remark 5: (18) is still a sufficient condition of the non-
flstence of the asymptotic flocking. By a simple computgtio
? 8) is equivalent to

—vP>Ct+a)?

(t)]* > Ctlog(t + «) (21)

_xc

Mt <Ct+1). (22)

_mc

Z Z Ti0 — IC]() Uzo - Ugo)
i=1 j#i
; b /xz() x]Ol
- S5 oo = ol
2N(N —1) ||¢>HL o

i=1 j#i

Combining the above two inequalities together, we have froRPughly speaking, it means that the averagéagf — ;o) -

inequality (20) that
N

(t+ ) Jvi— v
i=1
t N N
/ Z |v; — ve|*ds +O‘Z [vio — ve|?
Lo — Te
aZ :
= 1_;751 /x“’ x50l

vio — Ve|® +2 ) (vio — ve) - (Tio — )
2||¢|\L Z' * Z ;

Y

Vio —

Y

(vio — vjo) has a lower bound, which can be negative and
independent ofN. Thus, (18) is a rather general sufficient
condition. Another sufficient condition was obtained in The
orem 3.1 of [17]. However, all agents should be divided into
sub-ensembles at= 0, and the minimum of initial velocity d-
ifferences between agents with different sub-ensembiesigh
be very large, especially wheN > 1. Actually, in [17] the
authors further proved that every agent will stay in its ioréd
sub-ensemble under this strong sufficient condition. Sis, th
condition is more useful in the multi-cluster problem.

Finally, we point out that there could be the asymptotic
flocking when the left hand side of (18) is negative or even
zero. Now, we give an example. Let= X[0,4v/3] 2andN = 3,

ZX[O,R] is an indicator function such thafjo, z)(r) = 1 if r € [0, R] and
X[O,R](r) =0 if r > R.
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Ha, S.-Y., Lee K., Levy D.: Emergence of time-asymptdtacking in a
stochastic CuckerSmale systemCommun. Math. Sci7(2), 453-469
(2009).

Antoniou, P., Pitsillides, A., Blackwell, T., Engellaiet, A., & Michael,
L.: Congestion control in wireless sensor networks basedbivd
flocking behaviorComputer Network&7(5), 1167-1191 (2013).
Peszek, J.: Existence of piecewise weak solutions of screfie
Cucker-Smale’s flocking model with a singular communication weight
J. Differ. Equ.257(8), 2900-2925 (2014).

Ha, S.-Y., Liu, J.G.: A simple proof of the CuckeBmale flocking
dynamics and mean-field limitCommun. Math. Sci7(2), 297-325
(2009).

Peszek, J.: Discrete CuckeBmale flocking model with a weakly
singular weight.SIAM J. Math. Anal47(5), 3671-3686 (2015).

Fig. 1. Positionse;(¢), velocity differencesv; (t) — v. and upper bound ofc; (t) — z.(¢)].
d=3, [4]
10 = (\/§;_150)7 V10 = (\/55_151)7 [5]
T20 = (*\/5, *LO)a V20 = (*\/57 -1, ]-)a
T30 — (0, 2, 0), V30 = (O, 2, 1). [6]
The above initial condition satisfies
[7]
Vi — dr
Tl Z' " 2N22/m ol D
=1 j#i [8]
) - (vio — ve) =0, (23) O

+ Z(l‘io — X
1=1 [10]

and model (1) exhibits the asymptotic flocking. See also Figl]
1.

[12]
IV. CONCLUSION

This paper has investigated the non-existence of the asympgy

totic flocking for the CuckerSmale model with short range
communication weights. First, we have pointed out that tH&!
second order space momept |z;(t) — z.(t)|* is the key

to the non-existence of the asymptotic flocking. Then, wes)
have deduced an inequality betwe®n|z;(t) — z.(t)|> and
the velocity-position momen}_ |v;(t) — v, — %P
based on which a sufficient condition of the initial conditso

for the non-existence of the asymptotic flocking has beét]
developed in Theorem 1. Furthermore, we have established
a new equality abou}_ |z;(t) — z.(t)|?, from which we have [18]
deduced some more general and novel sufficient conditions fo
the non-existence of the asymptotic flocking in Theorem 2.[1g

[16]
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