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Non-existence of the asymptotic flocking in the
Cucker−Smale model with short range

communication weights
Xiuxia Yin, Zhiwei Gao, Zili Chen and Yichuan Fu

Abstract—For the long range communicated Cucker−Smale
model, the asymptotic flocking exists for any initial condition. It
is noted that, for the short range communicated Cucker−Smale
model, the asymptotic flocking only holds for very restricted
initial conditions. In this case, the non-existence of the asymptotic
flocking has been frequently observed in numerical simulations,
however, the theoretical results are far from perfect. In this note,
we first point out that the non-existence of the asymptotic flocking
is equivalent to the unboundedness of the second order spacemo-
ment, i.e., supt

∑
|xi(t)− xj(t)|

2 = ∞. Furthermore, by taking
the second derivative and then integrating, we establish a new and
key equality about this moment. At last, we use this equalityand
relevant technical lemmas to deduce a general sufficient condition
to the non-existence of the asymptotic flocking.

Index Terms—Cucker−Smale model, multi-agent system,
asymptotic flocking, communication weights.

I. I NTRODUCTION

During the recent two decades, flocking of agents has
attracted much attention from various research fields [1]–
[5], such as control theory, biology, robotics, smart sensor
networks, etc. The Cucker−Smale (C−S) model, which was
first proposed and investigated in [1] in 2007, is a classical
model that captures many of the observed features of mov-
ing animals in nature, such as flocking of birds, schooling
of fishes and so on. From then on, the C−S model was
quickly extended in many directions [6]–[14], including the
model with singular communication functions or other general
communication weights, the model with stochastic noises, the
kinetic description of this model, and so forth.

For the C−S model, the existence of the asymptotic flocking
depends on the decay rate of the communication weight
between agents. When the communication weightφ has a
long range1, the asymptotic flocking occurs for any initial
condition. However, when the communication weight has a
short range, the asymptotic flocking appears only for very
restricted class of initial configurations. In this case, the non-
existence of the asymptotic flocking has been observed in
numerical simulationsfor a finite set of initial conditionssee
[15] for example. It is noted that the theoretical results are far
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1A long range communication weightφ means a nonnegative, bounded and
decreasing function satisfying

∫
∞

0
φ(r)dr = ∞.

from perfect. In [16], a sufficient and necessary condition to
the non-existence of the asymptotic flocking was established
when the particle numberN = 2, and the emergence of the
bi-cluster flocking was investigated from some well-prepared
initial configurations that were already close to bi-cluster
flocking configurations. To keep every agent staying in its own
sub-ensemble, a sufficient condition to the non-existence of
the asymptotic flocking was obtained in [17] forN ≥ 3. It
is noticed that in theory and practice it is highly possible that
some agents will move from one cluster to another. Recently,
based on a specific structure of C−S model inR1, a sufficient
and necessary condition to the non-existence of the asymptotic
flocking was obtained for the one dimensional case in [18].
Nevertheless, similar specific structure does not exist in higher
dimensions. Therefore, for the short range communicated C−S
model, it is extremely challenging to get a sufficient and
necessary condition inRd with d ≥ 2 and N ≥ 3 if it
exists. In this technical note, by establishing a new equality
about the second order space moment we obtain a general and
brief sufficient condition to the non-existence of the asymptotic
flocking. We do not need to divide the agents into the sub-
ensembles beforehand, or assume the decreasing ofφ.

The remainder of this paper is organized as follows. Section
II is to address system description and some preliminaries.In
Section III, we are devoted to developing a general sufficient
condition to the non-existence of the asymptotic flocking. The
key is that a new equality about the space moment. The
technical note is ended by the conclusion in Section IV.

II. PRELIMINARIES

Let N be the number of agents and let(xi(t), vi(t)) ∈
Rd × Rd denote the position and velocity of theith agent
at time t, where the dimensiond ≥ 1. The C−S model is
described by the following dynamical system











ẋi = vi,

v̇i =
1

N

∑

j 6=i

φ(|xj − xi|)(vj − vi)
(1)

subjecting to the initial configuration

(xi(0), vi(0)) = (xi0, vi0), (2)

where | · | denotes the standard Euclidean norm ofRd. The
nonnegative functionφ denotes the communication weight.

Firstly, we give the definition of the asymptotic flocking.
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Definition 1: [1], [19] Model (1) exhibits the asymptotic
flocking if and only if {(xi(t), vi(t))}Ni=1 satisfies the follow-
ing two conditions:

(i) The relative velocity fluctuation tends to zero as time
goes to infinity, i.e.,

lim
t→∞

N
∑

i=1

|vi(t)− vc(t)|2 = 0. (3)

(ii) The diameter of the group is uniformly bounded in time
t ∈ [0,∞), i.e.

sup
t≥0

N
∑

i=1

|xi(t)− xc(t)|2 < ∞, (4)

where (xc(t), vc(t)) is the average position and velocity at
time t, i.e.

(xc(t), vc(t)) =

(

1

N

N
∑

i=1

xi(t),
1

N

N
∑

i=1

vi(t)

)

.

Note that from (1) we have thatvc(t) ≡ vc(0) and
xc(t) = vc(0)t + xc(0). For simplicity, we use(xc, vc) to
denote(xc(0), vc(0)).

Secondly, we state key properties of model (1).
Lemma 1: [7], [19], [20] Let {(xi, vi)}Ni=1 be a smooth

solution to model (1). Then, for anyt ≥ 0,

d

dt

N
∑

i=1

|vi(t)−vc|2 = − 1

N

N
∑

i=1

∑

j 6=i

|vi−vj |2φ(|xi−xj |), (5)

and for anyα > 0, t ≥ 0,

d

dt
[(t+ α)

N
∑

i=1

∣

∣

∣

∣

vi −
xi

t+ α

∣

∣

∣

∣

2

− 1

N

N
∑

i=1

∑

j 6=i

∫ |xi−xj|

|xi0−xj0|
rφ(r)dr]

=−
N
∑

i=1

∣

∣

∣

∣

vi −
xi

t+ α

∣

∣

∣

∣

2

− t+ α

N

N
∑

i=1

∑

j 6=i

|vi − vj |2φ(|xj − xi|),

(6)

where
∫ |xi−xj|
|xi0−xj0| := −

∫ |xi0−xj0|
|xi−xj| if |xi − xj | < |xi0 − xj0|.

Remark 1:Let {(xi, vi)}Ni=1 be a smooth solution to model
(1). Then,{(xi(t) − xc(t), vi(t) − vc)}Ni=1 is also a smooth
solution to model (1). From the above lemma, equality (6)
also holds for(xi(t)− xc(t), vi(t)− vc). Thus,

∫ t

0

N
∑

i=1

∣

∣

∣

∣

vi(s)− vc −
xi(s)− xc(s)

s+ α

∣

∣

∣

∣

2

ds

∫ t

0

s+ α

N

N
∑

i=1

∑

j 6=i

|vi − vj |2φ(|xj − xi|)ds

≤ α

N
∑

i=1

∣

∣

∣

∣

vi0 − vc −
xi0 − xc

α

∣

∣

∣

∣

2

+
1

N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr. (7)

Equality (5) can be used to deduce the asymptotic flocking
when φ has a long range. Actually, without restriction of

initial conditions, asymptotic flocking was firstly obtained in
[1] and [19] for φ(r) = (1 + r2)−

β
2 with β ∈ [0, 1) and

β = 1, respectively. Then, such results were generalized to
the C−S model with long range communication weights in
[7]. But, the asymptotic flocking occurs only for special initial
configurations whenφ has a short range. To be specific, we
have the following lemma.

Lemma 2: [1], [7], [19] (1) Let the communication weight
φ be nonnegative, decreasing and non-integrable. Then model
(1) exhibits the asymptotic flocking for any initial condition.

(2) Let the communication weightφ be nonnegative, de-
creasing and integrable. Then model (1) exhibits the asymp-
totic flocking if

max |xi0−xc| > 0,max |vi0− vc| <
1

2

∫ ∞

max |xi0−xc|
φ(2r)dr.

(8)
Condition (8) is a sufficient condition of initial conditions

that model (1) exhibits the asymptotic flocking, which means
that the contrary side of (8) is a necessary condition of the
non-existence of the asymptotic flocking. We are devoted to
finding a general sufficient condition of non-existence of the
asymptotic flocking with short range communication weights.
In this case, equality (6) is useful, which was established in
[20] recently, see [21] for its kinetic version. Actually, from
(6) we can establish that

N
∑

i=1

|vi(t)− xi(t)/t|2 −→ 0, as t → ∞, (9)

for any 0 ≤ φ ∈ L1(R+). See Remark 2 (4) in [20] for the
precise proof. By the definition ofxc(t), vc, (9) is equivalent
to

N
∑

i=1

∣

∣

∣

∣

vi(t)− vc −
xi(t)− xc(t)

t

∣

∣

∣

∣

2

−→ 0, as t → ∞. (10)

Then, we have the following remark.
Remark 2:Let φ be nonnegative and integrable. Model (1)

has an asymptotic flocking if and only ifsupt≥0

∑ |xi(t) −
xc(t)|2 < ∞. In other words, there is the non-existence of the
asymptotic flocking if and only ifsupt≥0

∑ |xi(t)−xc(t)|2 =
∞.

When the asymptotic flocking does not exist, from Defini-
tion 1 and the above remark there are two cases:

(1) supt≥0

∑

|xi(t)−xc(t)|2 = ∞ and
∑

|vi(t)−vc|2 → 0.
(2)
∑

|vi(t)− vc|2 9 0.
Now, we show that what does

∑

|vi(t) − vc|2 9 0 mean.
By (5) we have the decreasing of

∑ |vi− vc|2, so there exists
a c0 > 0 such that

∑ |vi(t)−vc|2 → c0. Then it follows from
(10) that

t−2
∑

|xi(t)− xc(t)|2

≥
∑

|vi(t)− vc|2 −
∑

∣

∣

∣

∣

vi(t)− vc −
xi(t)− xc(t)

t

∣

∣

∣

∣

2

≥c0/2 (11)

for sufficiently larget. So
∑ |vi(t) − vc|2 9 0 can deduce

∑ |xi(t)− xc(t)|2 ≥ Ct2. The reverse is similar.
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Remark 3:Let φ be nonnegative and integrable, then
∑ |vi(t) − vc|2 9 0 if and only if

∑ |xi(t)− xc(t)|2 ≥ Ct2

for sufficiently larget.

III. M AIN RESULTS

A. Non-existence of the asymptotic flocking

Now, we use inequality (7) to deduce a sufficient condition
of the non-existence of the asymptotic flocking. Firstly, we
need the following lemma, which is a bridge between the space
moment

∑ |xi(t)− xc(t)|2 and the velocity-position moment
∑ |vi(t)− vc − xi(t)−xc(t)

t+α
|2.

Lemma 3:Let {(xi, vi)}Ni=1 be a smooth solution to model
(1). Then for anyǫ > 0 andα > 0,

(1 + ǫ)α2

(t+ α)2
|xi(t)− xc(t)|2 ≥ |xi0 − xc|2 −

α(1 + 1/ǫ)

∫ t

0

∣

∣

∣

∣

vi(s)− vc −
xi(s)− xc(s)

s+ α

∣

∣

∣

∣

2

ds. (12)

Proof. For simplicity, we denote the vector-valued function
vi(t) − vc − xi(t)−xc(t)

t+α
= gi(t) for any i. By solving the

ODEs

d

dt
(xi(t)− xc(t))−

xi(t)− xc(t)

t+ α
= gi,

we obtain that

xi(t)−xc(t) =
t+ α

α
(xi0−xc)+(t+α)

∫ t

0

gi(s)

s+ α
ds. (13)

Note that for anya, b ∈ Rd, we have the following basic
iequality

|a+ b|2 = |a|2 + |b|2 + 2a · b ≤ (1 + ǫ)|a|2 + (1 + ǫ−1)|b|2,

whereǫ can be any positive constant. So from (13) and the
above inequality,

∣

∣

∣

∣

t+ α

α
(xi0 − xc)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

xi(t)− xc(t)− (t+ α)

∫ t

0

gi(s)

s+ α
ds

∣

∣

∣

∣

2

≤ (1 + ǫ) |xi(t)− xc(t)|2

+(1 + 1/ǫ)

∣

∣

∣

∣

(t+ α)

∫ t

0

gi(s)

s+ α
ds

∣

∣

∣

∣

2

≤ (1 + ǫ) |xi(t)− xc(t)|2

+(1 + 1/ǫ)
(t+ α)2

α

∫ t

0

|gi(s)|2ds, (14)

where the last inequality is obtained from Hölder’s inequality.
By (14) we get (12).

�

Then, by choosing a sufficiently largeǫ and an appropriate
α, we use inequality (7) and Lemma 3 to deduce the following
result.

Theorem 1:Let {(xi, vi)}Ni=1 be a smooth solution to mod-
el (1). Assume thatφ is nonnegative, bounded andrφ(r) ∈ L1.

If the initial conditions satisfy that
N
∑

i=1

(xi0 − xc) · (vi0 − vc) >
1

2N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr,

(15)
there is non-existence of the asymptotic flocking.
Proof. It follows from Lemma 3 and inequality (7) that

(1 + ǫ)α2

(t+ α)2

N
∑

i=1

|xi(t)− xc(t)|2

≥
N
∑

i=1

|xi0 − xc|2

− α(1 + 1/ǫ)

∫ t

0

N
∑

i=1

∣

∣

∣

∣

vi(s)− vc −
xi(s)− xc(s)

s+ α

∣

∣

∣

∣

2

ds

≥
N
∑

i=1

|xi0 − xc|2 − (1 + 1/ǫ)

[

α2
N
∑

i=1

∣

∣

∣

∣

vi0 − vc −
xi0 − xc

α

∣

∣

∣

∣

2

+
α

N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr



 .

Thus, if there existsα > 0 such that
N
∑

i=1

|xi0 − xc|2 > α2
N
∑

i=1

∣

∣

∣

∣

vi0 − vc −
xi0 − xc

α

∣

∣

∣

∣

2

+
α

N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr, (16)

then we can choose sufficiently largeǫ to get
N
∑

i=1

|xi(t) −
xc(t)|2 → ∞. Condition (16) is equivalent to

α2
N
∑

i=1

|vi0 − vc|2 − 2α

N
∑

i=1

(vi0 − vc) · (xi0 − xc)

+
2α

2N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr < 0.

When the initial conditions satisfy (15), the above inequality
and (16) hold for someα > 0. �

Remark 4: (1) In the above proof, we actually get that
∑ |xi(t) − xc(t)|2 ≥ Ct2 for sufficiently larget. Therefore,
from Remark 3 we have that

∑ |vi(t)− vc|2 9 0.
(2) The non-existence of the asymptotic flocking means

that there is non-flocking in the whole group{1, 2, · · · , N}.
Actually, the method in Theorem 1 can be used to show
that there is non-flocking in a smaller group for some initial
conditions. Firstly, we can follow the method in Lemma 3 to
get that

(1 + ǫ)α2

(t+ α)2
|xi(t)− xj(t)|2 ≥ |xi0 − xj0|2

−α(1 + 1/ǫ)

∫ t

0

∣

∣

∣

∣

vi(s)− vj(s)−
xi(s)− xj(s)

s+ α

∣

∣

∣

∣

2

ds.

Then, for anyS  {1, 2, · · · , N} we have that

(1 + ǫ)α2

(t+ α)2

∑

i,j∈S

|xi(t)− xj(t)|2 ≥
∑

i,j∈S

|xi0 − xj0|2
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− α(1 + 1/ǫ)

∫ t

0

N
∑

i=1

∑

j 6=i

∣

∣

∣

∣

vi − vj −
xi − xj

s+ α

∣

∣

∣

∣

2

ds.

Combining the above inequality with (7), for some initial
conditions we can get

∑

i,j∈S |xi(t) − xj(t)|2 → ∞, which
means that there is non-flocking inS.

However, if we focus on the non-existence of the asymptotic
flocking, condition (15) in Theorem 1 is too strong. Even the
communication is very weak, which yields the right hand side
of (15) is small,

∑

(vi0 − vc) · (xi0 − xc) should be positive,
at least. Thus, the space moment

∑ |xi(t)− xc(t)|2 increases
initially, since2(vi0 − vc) · (xi0 − xc) is the derivative of this
moment att = 0.

B. A new equality

Now, we establish a new equality about
∑ |xi(t)−xc(t)|2,

from which we can first get a better understanding of condition
(15).

Proposition 1: Let {(xi, vi)}Ni=1 be a smooth solution to
model (1). Then,

d

dt

(

1

2

N
∑

i=1

|xi(t)− xc(t)|2
)

=

∫ t

0

N
∑

i=1

|vi(s)− vc|2ds+
N
∑

i=1

(xi0 − xc) · (vi0 − vc)

− 1

2N

N
∑

i=1

∑

j 6=i

∫ |xi(t)−xj(t)|

|xi0−xj0|
rφ(r)dr

Proof. We computed2

dt2

∑ |xi(t)− xc(t)|2 and then integrate
over (0, t). It follows from (1) that

d2

dt2

(

1

2

N
∑

i=1

|xi(t)− xc(t)|2
)

=
d

dt

N
∑

i=1

(xi(t)− xc(t)) · (vi(t)− vc)

=

N
∑

i=1

|vi(t)− vc|2 +

1

N

N
∑

i=1

∑

j 6=i

φ(·)(xi(t)− xc(t)) · (vj(t)− vi(t))

=

N
∑

i=1

|vi(t)− vc|2 −

1

2N

N
∑

i=1

∑

j 6=i

φ(·)(xj(t)− xi(t)) · (vj(t)− vi(t))

whereφ(·) = φ(|xj(t)− xi(t)|). Note that
∫ t

0

φ(|xj(s)− xi(s)|)(xj(s)− xi(s)) · (vj(s)− vi(s))ds

=

∫ |xi(t)−xj(t)|

|xi0−xj0|
rφ(r)dr,

so we obtain the conclusion. �

From this equality, we know from (15) that the space
moment is on the increase all the time, and

d

dt

∑

|xi(t)− xc(t)|2 ≥ C > 0 (17)

for any t ≥ 0. But, a more reasonable way is that (17) holds
only for sufficiently larget. Based on Proposition 1 and other
technicalestimateswe can achieve this goal and get a better
sufficient condition than (15).

C. Revisit the non-existence of the asymptotic flocking

Before giving the main theorem, we need the following
lemma, which was established in Remark 2 (3) in [20].

Lemma 4: [20] Let {(xi, vi)}Ni=1 be a smooth solution
to model (1). Assume thatφ is nonnegative, bounded and
rφ(r) ∈ L1. Then,v∗i := lim

t→∞
vi(t) exists for anyi, and

N
∑

i=1

|vi(t)− v∗i |2 ≤ Ct−1, ∀ t > 0.

Theorem 2:Let {(xi, vi)}Ni=1 be a smooth solution to mod-
el (1). Assume thatφ is nonnegative, bounded andrφ(r) ∈ L1.
If the initial conditions satisfy that

1

2‖φ‖L∞

N
∑

i=1

|vi0 − vc|2 −
1

2N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr

+
N
∑

i=1

(xi0 − xc) · (vi0 − vc) > 0, (18)

there is the non-existence of the asymptotic flocking. If we
further assume that

1

4‖φ‖L∞

N
∑

i=1

|vi0 − vc|2 −
1

2N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr

+

N
∑

i=1

(xi0 − xc) · (vi0 − vc) > 0, (19)

then
N
∑

i=1

|vi(t)− vc|2 9 0.

Proof. Firstly, we show that

∫ t

0

N
∑

i=1

|vi(t)− vc|2ds

≥
N
∑

i=1

|vi0 − vc|2
1− exp{−2‖φ‖L∞t}

2‖φ‖L∞

. (20)

Following from (5) we obtain that

d

dt

N
∑

i=1

|vi(t)− vc|2

≥ −‖φ‖L∞

N

N
∑

i=1

∑

j 6=i

|vi − vj |2

= −‖φ‖L∞

N

N
∑

i=1

N
∑

j=1

|(|vi − vc|2 + |vj − vc|2)
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= −2‖φ‖L∞

N
∑

i=1

|vi − vc|2.

Thus,
∑ |vi(t) − vc|2 ≥ exp{−2‖φ‖L∞t}∑ |vi0 − vc|2, and

then by integrating over(0, t) we obtain (20). Combining
Proposition 1 with (20), we can obtain that

d

dt

(

1

2

N
∑

i=1

|xi(t)− xc(t)|2
)

≥
N
∑

i=1

|vi0 − vc|2
1− exp{−2‖φ‖L∞t}

2‖φ‖L∞

+

N
∑

i=1

(xi0 − xc) · (vi0 − vc)−
1

2N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr.

Thus, if condition (18) holds, there existsC > 0 such that
d
dt

(
∑

|xi(t)− xc(t)|2
)

≥ C for sufficient larget, which

yields that
N
∑

i=1

|xi(t)− xc(t)|2 → ∞.

Now, we prove the second conclusion. On the one hand,
from inequality (7) we have that

∫ t

0

s+ α

N

N
∑

i=1

∑

j 6=i

|vi − vj |2φ(|xj − xi|)ds

≤ α

N
∑

i=1

∣

∣

∣

∣

vi0 − vc −
xi0 − xc

α

∣

∣

∣

∣

2

+
1

N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr.

On the other hand, from (5) we can take the derivative of
(t+ α)

∑

|vi − vc|2, and then

(t+ α)

N
∑

i=1

|vi − vc|2 −
∫ t

0

N
∑

i=1

|vi − vc|2ds

+

∫ t

0

s+ α

N

N
∑

i=1

∑

j 6=i

|vi − vj |2φ(|xj − xi|)ds

= α

N
∑

i=1

|vi0 − vc|2.

Combining the above two inequalities together, we have from
inequality (20) that

(t+ α)

N
∑

i=1

|vi − vc|2

≥
∫ t

0

N
∑

i=1

|vi − vc|2ds+ α

N
∑

i=1

|vi0 − vc|2

−α

N
∑

i=1

∣

∣

∣

∣

vi0 − vc −
xi0 − xc

α

∣

∣

∣

∣

2

− 1

N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr

≥ 1

2‖φ‖L∞

N
∑

i=1

|vi0 − vc|2 + 2

N
∑

i=1

(vi0 − vc) · (xi0 − xc)

−exp{−2‖φ‖L∞t}
2‖φ‖L∞

N
∑

i=1

|vi0 − vc|2 −

N
∑

i=1

|xi0 − xc|2

α

− 1

N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr

Thus, if condition (19) holds, we can choose a sufficiently
largeα such that

N
∑

i=1

|vi(t)− vc|2 ≥ C(t+ α)−1

for sufficiently larget. Then we use Proposition 1 to get that

N
∑

i=1

|xi(t) − xc(t)|2 ≥ Ct log(t+ α) (21)

for sufficiently larget.
However, if we assume thatvi(t) → vc for any i, then from

Lemma 4 we have that|vi(t) − vc| ≤ Ct−
1

2 . By integrating
we obtain that|xi(t) − xc(t)| ≤ Ct

1

2 + |xi0 − xc| for any i,
which is equivalent to

N
∑

i=1

|xi(t)− xc(t)|2 ≤ C(t+ 1). (22)

Obviously, inequality (22) is in contradiction with inequality
(21). So the assumption, i.e.vi(t) → vc for any i, does not

hold. That is,
N
∑

i=1

|vi(t)− vc|2 9 0. �

Remark 5: (18) is still a sufficient condition of the non-
existence of the asymptotic flocking. By a simple computation,
(18) is equivalent to

1

N(N − 1)

N
∑

i=1

∑

j 6=i

(xi0 − xj0) · (vi0 − vj0)

>
1

N(N − 1)

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr

− 1

2N(N − 1)‖φ‖L∞

N
∑

i=1

∑

j 6=i

|vi0 − vj0|2.

Roughly speaking, it means that the average of(xi0 − xj0) ·
(vi0 − vj0) has a lower bound, which can be negative and
independent ofN . Thus, (18) is a rather general sufficient
condition. Another sufficient condition was obtained in The-
orem 3.1 of [17]. However, all agents should be divided into
sub-ensembles att = 0, and the minimum of initial velocity d-
ifferences between agents with different sub-ensembles should
be very large, especially whenN ≫ 1. Actually, in [17] the
authors further proved that every agent will stay in its original
sub-ensemble under this strong sufficient condition. So, this
condition is more useful in the multi-cluster problem.

Finally, we point out that there could be the asymptotic
flocking when the left hand side of (18) is negative or even
zero. Now, we give an example. Letφ = χ[0,4

√
3]

2 andN = 3,

2χ[0,R] is an indicator function such thatχ[0,R](r) = 1 if r ∈ [0, R] and
χ[0,R](r) = 0 if r > R.
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Fig. 1. Positionsxi(t), velocity differencesvi(t) − vc and upper bound of|xi(t) − xc(t)|.

d = 3,

x10 = (
√
3,−1, 0), v10 = (

√
3,−1, 1),

x20 = (−
√
3,−1, 0), v20 = (−

√
3,−1, 1),

x30 = (0, 2, 0), v30 = (0, 2, 1).

The above initial condition satisfies

1

2‖φ‖L∞

N
∑

i=1

|vi0 − vc|2 −
1

2N

N
∑

i=1

∑

j 6=i

∫ ∞

|xi0−xj0|
rφ(r)dr

+

N
∑

i=1

(xi0 − xc) · (vi0 − vc) = 0, (23)

and model (1) exhibits the asymptotic flocking. See also Fig.
1.

IV. CONCLUSION

This paper has investigated the non-existence of the asymp-
totic flocking for the Cucker−Smale model with short range
communication weights. First, we have pointed out that the
second order space moment

∑

|xi(t) − xc(t)|2 is the key
to the non-existence of the asymptotic flocking. Then, we
have deduced an inequality between

∑ |xi(t) − xc(t)|2 and
the velocity-position moment

∑ |vi(t) − vc − xi(t)−xc(t)
t+α

|2,
based on which a sufficient condition of the initial conditions
for the non-existence of the asymptotic flocking has been
developed in Theorem 1. Furthermore, we have established
a new equality about

∑ |xi(t)−xc(t)|2, from which we have
deduced some more general and novel sufficient conditions for
the non-existence of the asymptotic flocking in Theorem 2.
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