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Scaled consensus and reference tracking in
multiagent networks with constraints

Yilun Shang

Abstract—This paper considers the scaled consensus problem
for networks of groups of agents having state constraints. We first
address the problem by using a gradient projection approach
and design distributed consensus protocols that implement state
restriction and steer agents asymptotically to proportions in
terms of pre-assigned scales. We then extend the method to
multiagent systems with static reference values. We propose and
analyze sufficient conditions on agent dynamics such that scaled
reference tracking problem is solved. The results are applied to
a ship steering system and numerical examples to verify the
effectiveness of the proposed cooperative coordination system
scheme.

Index Terms—scaled consensus; complex network; tracking;
constraint; cooperative system.

I. INTRODUCTION

IN the last two decades there has been an ongoing intensive
attention of multiagent networks and their cooperative

control. Consensus-based control approaches are critically en-
tailed in modern autonomous systems. Two classical problems
have been considered in the literature of cooperative control
of multiagent systems, namely, consensus and tracking. The
consensus problem involves designing distributed algorithms
that would allow agents to converge to an agreement on a
scalar or vector state using only local information exchange in
a leaderless scenario [1]–[3], whereas the objective of tracking
is for all follower agents to track the leader’s behavior [4]–[6].

The problem of reaching standard consensus requires the
convergence of states of all agents in the network. How-
ever, in many cooperative coordination problems in real-
world complex systems, agents operate in multiple scales and
different consensus values among them can emerge. Examples
include compartmental mass-action systems, water distribution
systems [7], social network opinion cluster formation [8], [9],
transcale coordination of multi-vehicle systems with space
vehicles and simulating robots on ground [10]. Continuous-
time scaled consensus problems are firstly characterized by
using M -matrices in [7], where agents are driven to different
initial-state-dependent values in terms of proportions of as-
sumed scales. Besides standard consensus, many other related
consensus problems such as bipartite or signed consensus
[2], [11] as well as cluster or group consensus [12] can be
investigated under the framework of scaled consensus. The
scaled consensus approach developed in [7] has been extended

Y. Shang is with the Department of Computer and Information
Sciences, Northumbria University, Newcastle NE1 8ST, UK (e-mail:
yilun.shang@northumbria.ac.uk).

Manuscript received xxx; revised xxx.

to investigate a wide range of practical coordinated con-
trol issues including communication delays [13], convergence
speed including finite-time and fixed-time convergence [10],
[14], resilient consensus against attacks [15], [16], and leader-
follower behavior [17], [18]. In [19], time-dependent scale
values have been examined for a linear time-varying system.
Moreover, scaled consensus problem has been studied in [20]
for continuous-time systems with output saturation.

A significant and realistic issue encountered in the study
of leader tracking and leaderless consensus problems is the
possible constraints on agents’ states, inputs, or communi-
cation. These constraints include, for instance, formation of
autonomous robots or vehicles with limited speed and re-
stricted safe operation area, smart building control of humidity
and temperature in an appropriate range, and public and
private opinion expression conforming to social norms. In
[21], a discarded consensus algorithm has been introduced to
achieve state constrained consensus for both continuous-time
and discrete-time multiagent systems. Velocity constraint has
been considered in [22] by transforming the system matrix
into a state-dependent stochastic matrix. Projected consensus
algorithms have been adopted to confine states to a convex
set for multiagent networks [23]–[25]. An integral barrier
Lyapunov function has been used in [26] to implement fuzzy
tracking control under full state constraints. A survey of
cooperative coordination with constraints can be found in [27].
However, in the existing literature of constrained consensus,
general scaled consensus is still an open problem.

Based on the above-mentioned issues, this paper aims
to address scaled consensus problems for networks under
state constraints. A continuous-time multiagent network is
considered, where each agent proposes a convex constraining
set which is only known to itself. We first present a scaled
consensus algorithm by adopting gradient projection operators
and nearest neighbor rules. We provide sufficient conditions
for reaching scaled consensus and ensuring the scaled states
of agents remain inside the intersection of constraints if
nonempty. Different from the previous works on constrained
control [21]–[25], the agents here are allowed to move out of
the individual constraining sets in the evolution and only the
scaled values are restricted. The proposed idea is conceptually
similar to the recent framework of soft interval consensus
[28], [29], where the final consensus value is in a given
interval but transient trajectories are trespassable. However, the
dynamics therein is tailored for real-valued agent states and
only standard consensus has been considered. The approach
used there is also fundamentally different from the current
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work. On the other hand, the methods developed in dealing
with unconstrained scaled consensus problems such as [7],
[10], [14], [18] are not applicable here due to the intrinsic
nonlinearity induced by the constraints.

As a further contribution, we study scaled consensus track-
ing problem with a static reference signal. It is shown that if
the reference value is inside the intersection of all constraining
sets, our proposed tracking protocol enables all other agents
to converge to this reference value in the sense of scaled
consensus. This framework offers a flexibility to restrict the
trajectories of agents within their respective constraining sets
while prescribed proportions are still reached asymptotically.
It is worth noting that although in the previous works on
scaled tracking (e.g. [17], [18]) dynamical leaders have been
considered, the agents with state constraints may not track the
leader due to constraint nonlinearities. Our proposed tracking
protocol accommodates both convex constraints and scaled
states in tracking the reference signal.

The rest of the paper is organized as follows. Section 2
provides background information for network topology and
system dynamics, setting the stage for Section 3, which
introduces the scaled consensus and tracking protocols and
presents the main results. Section 4 is devoted to detailed
proofs and some numerical examples including a ship steering
system are illustrated in Section 5. Conclusion in Section 6
ends the paper.

II. PRELIMINARIES

A. Graph theory

A graph G = (V, E) is a pair of sets V and E , with V =
{1, 2, · · · , n} the set of nodes and E ⊆ V×V the set of edges.
The communication topology between agents is characterized
by the graph G, where (i, j) ∈ E represents that agent i can
receive information from agent j. We assume G is undirected,
namely, (i, j) ∈ E is equivalent to (j, i) ∈ E . We denote by
Ni = {j ∈ V : (i, j) ∈ E} the set of neighbors of node i.
The elements of the adjacency matrix A = (aij) ∈ Rn×n are
defined as aij > 0 if (i, j) ∈ E and aij = 0 otherwise. We
assume aij = aji and aii = 0 for all i, j ∈ V . The matrix
L = (lij) ∈ Rn×n denotes the Laplacian matrix of G, where
lij = −aij if i 6= j and lii =

∑
j∈V,j 6=i aij . It is well known

that L is a symmetric and positive semidefinite matrix. G is
said to be connected if there is a path linking any pair of
nodes i and j. L has a single zero eigenvalue if and only if G
is connected.

We further introduce an extended graph G = (V, E), with
V = V ∪ {n + 1}. The added node n + 1 is viewed as the
leader agent, which emits directed edges towards some of the
nodes in V whereas Nn+1 = ∅. G is said to have a directed
spanning tree with root n + 1 if for any node i ∈ V there
is a directed path from n + 1 to i. This is equivalent to the
existence of some i ∈ V satisfying (i, n + 1) ∈ E when G is
connected.

B. System dynamics

Consider a multiagent network G with dynamical agents
in V = {1, 2, · · · , n}, where the i-th agent is described as

follows:

ẋi(t) = ui(t), i ∈ V, (1)

where xi(t) ∈ Rm is the state, ui(t) ∈ Rm is the control input,
and t ≥ 0 is the time variable. Let (α1, α2, · · · , αn)T ∈ Rn be
a list of scalars, where T means matrix transpose and αi 6= 0
for 1 ≤ i ≤ n. For i ∈ V , define

wi(t) = sgn(αi)
∑
j∈Ni

aij(αjxj(t) − αixi(t)), (2)

where sgn(·) is the signum function, which returns 1 for a
positive argument and −1 for a negative argument. The control
input ui(t) will be designed in Section 3 as a function of wi(t)
to accommodate the constraints defined below.

Each node i ∈ V holds a state constraining set Ωi ∈ Rm,
which is a closed convex set. The intersection is denote by
Ω = ∩i∈VΩi. In particular, we assume:
Assumption 1. The set Ωi can be expressed as Ωi = {yi ∈
Rm : ψi(yi) ≤ 1}, where ψi : Rm → R is a twice
differentiable convex function. Moreover, Ωi\∂Ωi 6= ∅, where
∂Ωi = {yi ∈ Rm : ψi(yi) = 1} is its boundary.
Remark 1. The state constraining set Ωi is expressed as
a level set of a convex function. In general, if ψi is not
twice differentiable, we can find a twice differentiable convex
function ψ′

i to approximate ψi in the sense of Hausdorff
metric [30]. The assumption Ωi\∂Ωi 6= ∅ indicates that the
interior of Ωi is non-empty. It is also worth mentioning that
the state constraints here are expressed in terms of convex
functions, which is a geometric characterization compared to
other works using constraint boundary functions; e.g. [35],
[36]. This approach is more amenable to our analysis of
projection operator below while not too restrictive.
Assumption 2. Assume that αixi(0) ∈ Ωi for each i ∈ V .

In the reference tracking scenario, we assume that the leader
agent n + 1 follows

ẋn+1(t) = 0m, (3)

where 0m ∈ Rm is the all-zero vector. In other words, the
agent n + 1 offers a static signal. We denote αn+1 = 1. With
a slight abuse of notation, the neighborhood set Ni in the
expression for wi(t) in (2) will be interpreted with respect to
G in the reference tracking case.
Assumption 3. Assume that xn+1(0) ∈ Ω.

The objective is to design distributed control protocols ui(t)
such that scaled consensus for the multiagent system (1) is
achieved, namely, limt→∞ ‖αixi(t) − αjxj(t)‖ = 0 for all
i, j ∈ V [7], and xi(t) is constrained relevant to the set Ωi in
both leaderless and leader tracking senses, where ‖ · ‖ is the
Euclidean norm.

III. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we propose projection based strategies
involving a gradient operator to achieve scaled consensus and
reference tracking for the multiagent system (1) under state
constraints. The design is to partition each convex set Ωi into a
core area Ωc

i and a peripheral area Ωp
i , where different control

input ui(t) will be applied.
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For i ∈ V and yi ∈ Rm, define φi(yi) = (ψi(yi) − ξi)(1 −
ξi)−1 ∈ R, where the number ξi can be chosen by each node
i individually such that ξi ∈ (minyi∈Ωi ψi(yi), 1). Note that
this interval is non-empty by Assumption 1. Moreover, the
boundary ∂Ωi = {yi ∈ Rm : φi(yi) = 1}. Define a positive
semidefinite matrix

Γi(yi) =
∇φi(yi)∇φi(yi)T

‖∇φi(yi)‖2
, (4)

where ∇ : R → Rm is the gradient operator. Write yi =
(yi1, yi2, · · · , yim)T ∈ Rm for i ∈ V . We have

∇φi(yi)

=
(∂φi(yi)

∂yi1
,
∂φi(yi)
∂yi2

, · · · ,
∂φi(yi)
∂yim

)T

=
1

1 − ξi
·
(∂ψi(yi)

∂yi1
,
∂ψi(yi)

∂yi2
, · · · ,

∂ψi(yi)
∂yim

)T

. (5)

For each i ∈ V , let

ui(t) =



wi(t), if φi(αixi(t)) ≤ 0,
wi(t), if φi(αixi(t)) > 0,

αi∇φi(αixi(t))Twi(t) ≤ 0,
[Im − φi(αixi(t))Γi(αixi(t))]wi(t),

if φi(αixi(t)) > 0,
αi∇φi(αixi(t))Twi(t) > 0,

(6)

where t ≥ 0, wi(t) ∈ Rm is given in (2) and Im ∈ Rm×m is
the identity matrix.
Remark 2. For any xi ∈ Ωi, by definition φi(αixi) ≤ 1. At
time t ≥ 0, the constraining set Ωi is divided into a convex
core area Ωc

i (t) = {yi ∈ Rm : φi(yi) ≤ 0} and a peripheral
area Ωp

i (t) = {yi ∈ Rm : 0 < φi(yi) ≤ 1}. Note that the time
derivative φ̇i(αixi(t)) = αi∇φi(αixi(t))Tẋi(t). Hence, the
control input in (6) is taken as wi(t) if αixi is inside Ωc

i (t)
or αixi is in Ωp

i (t) but it is moving towards the core area.
For example, at the critical state αi∇φi(αixi(t))Tẋi(t) = 0
for some t, φi(αixi(t)) does not change and the scaled state
αixi is still governed by the usual diffusion term (2) driving
agents towards consensus. On the other hand, the control input
ui(t) is chosen as [Im − φi(αixi(t))Γi(αixi(t))]wi(t) if αixi

is within Ωp
i (t) but it is moving towards the boundary. Recall

that ∂Ωi = {yi ∈ Rm : φi(yi) = 1}. We will see in Lemma 1
below that the operator [Im − φi(αixi(t))Γi(αixi(t))] forms a
projection over Ωi, which will turn the trajectory of xi towards
the boundary to avoid potential trespassing. In other words,
when the scaled state of an agent has a tendency to move out of
its respective constraint, the projector takes action to divert its
trajectory back into the set. Otherwise, only the usual diffusion
term (2) applies. Similar projection based design has been
extensively used in adaptive control and signal processing; see
e.g. [23]–[25], [31], [32].
Theorem 1. Consider the multiagent system (1) with (6) over
the network G = (V, E). Suppose that Ω = ∩i∈VΩi 6= ∅ and
G is connected. Under Assumptions 1 and 2, for any i, j ∈ V ,
limt→∞ ‖αixi(t) − αjxj(t)‖ = 0. Furthermore, for each i ∈
V , αixi(t) ∈ Ωi for any t ≥ 0.
Remark 3. Let xi := (xi1, xi2, · · · , xim)T for i ∈ V .
We conclude from Theorem 1 that the ratio of the states
xil(t)/xjl(t) → αj/αi as t → ∞ for any 1 ≤ l ≤ m, namely,

the scaled consensus is achieved. Moreover, αixi(t) ∈ Ω for
sufficiently large t.

Remark 4. Since the interior of Ω is nonempty by Assumption
1, Ω is not a single point. Thus, the convergence of scaled
state αixi(t) is not guaranteed in general. This is different
from the standard unconstrained scaled consensus problem,
where the existence of equilibrium and even the value may
be analytically identified through finite-time stability analysis
[14]. Moreover, although xi(t) remains in the convex set
α−1

i Ωi, it is not known whether or when the state xi(t) will
be inside the original constraining set Ωi.

To address these issues, we next consider the reference
tracking scenario where the leader xn+1 offers a reference
signal.

Theorem 2. Consider the multiagent system (1) and (3) with
(6) over the network G = (V, E). Suppose that G has a directed
spanning tree with root n + 1 and G is connected. Under
Assumptions 1, 2 and 3, for any i ∈ V , limt→∞ ‖αixi(t) −
xn+1(0)‖ = 0 and αixi(t) ∈ Ωi for any t ≥ 0.

Remark 5. All followers in G will track the leader signal in
the sense xil → xn+1,l(0)/αi for any 1 ≤ l ≤ m and i ∈ V .
It is worth noting that the absolute value |αi| is not essential
but the ratio αi/αj is for i, j ∈ V . Hence, without loss of
generality, we can always assume mini∈V |αi| = 1. In the
reference tracking case, we can often choose xn+1(0) ∈ Ω
such that xn+1(0)/αi ∈ Ω for all i ∈ V , and hence xi(t) ∈
Ω for sufficiently large t. For example, if there exists a ball
B ⊆ Ω containing the origin, this is always true. In fact, if Ω
itself is a ball centered at the origin, then by taking xn+1(0)
as any point on the sphere, we obtain xn+1(0)/αi ∈ Ω for all
i ∈ V . The general case can be seen similarly.

Remark 6. We mention that for both leaderless and leader
tracking scenarios we rely on a high level LaSalle’s invariance
principle argument, which does not offer insights on the
rate of consensus. It would be interesting to incorporate the
techniques of finite-time convergence [10], [14] to address fast
consensus. However, the protocols therein cannot be directly
applied due to the convex constraints and substantial effort
may be needed.

IV. TECHNICAL PROOFS

A. Leaderless consensus

We start with the scaled consensus case over G without a
leader agent. The first result shows that the constraining sets
{Ωi}n

i=1 are invariant relevant to the scaled trajectories.

Lemma 1. Consider the multiagent system (1) with (6). Under
Assumptions 1 and 2, for any i ∈ V , αixi(t) ∈ Ωi for t ≥ 0.

Proof. Fix i ∈ V . Initially, αixi(0) ∈ Ωi by Assumption 2. In
order for the scaled state to move outside Ωi, it will be in the
peripheral area Ωp

i and point outward. Hence, by (4) and (6)
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we have

φ̇i(αixi(t))

=αi∇φi(αixi(t))Tẋi(t)

=αi∇φi(αixi(t))T [Im − φi(αixi(t))Γi(αixi(t))]wi(t)

=αi∇φi(αixi(t))Twi(t) − αiφi(αixi(t))∇φi(αixi(t))T

· ∇φi(αixi)∇φi(αixi)T

‖∇φi(αixi)‖2
wi(t)

=(1 − φi(αixi(t)))αi∇φi(αixi(t))Twi(t), (7)

where the first term 1−φi(αixi(t)) is positive but decreasingly
approaches to zero as the scaled state move towards ∂Ωi, and
αi∇φi(αixi(t))Twi(t) > 0. Note that ∇φi(αixi(t)) is the
gradient direction pointing toward outside of ∂Ωi. It is also
perpendicular to the tangent space of boundary points. Hence,
the scaled state αixi(t) will be driven along the boundary
instead of going outside of Ωi as it approaches ∂Ωi. 2

Let diag(α1, α2, · · · , αn) ∈ Rn×n be the diagonal ma-
trix with diagonal elements α1, α2, · · · , αn and x∗ =
(x∗

1, x
∗
2, · · · , x∗

n)T ∈ Rmn. Define a set

Z =
{

(diag(α1, α2, · · · , αn) ⊗ Im)x∗ ∈ Rmn :
∑
i∈Φ

|αi|w∗T
i

· [Im − φi(αix
∗
i )Γi(αix

∗
i )]w

∗
i

+
∑

i∈V\Φ

|αi|w∗T
i w∗

i = 0
}

, (8)

where Φ := {i ∈ V : φi(αix
∗
i ) ∈ (0, 1], αi∇φi(αix

∗
i )

Tw∗
i >

0} and w∗
i = sgn(αi)

∑
j∈Ni

aij(αjx
∗
j − αix

∗
i ) for i ∈ V .

Clearly, the above expressions determine those points x∗. We
will keep this notation throughout the paper.
Lemma 2. Let x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rmn

be a solution of the multiagent system (1) with (6). Under
Assumptions 1 and 2, the set of limit points (as t → ∞) of
(diag(α1, α2, · · · , αn) ⊗ Im)x(t) is contained in Z .
Proof. The strategy is to make use of LaSalle’s invariance
principle; see e.g. [33]. To this end, we introduce the Lyapunov
function

V (x) =
1
2
xTdiag(α1, α2, · · · , αn)(L ⊗ Im)

· diag(α1, α2, · · · , αn)x, (9)

which is continuous and locally Lipschitz. By Assumptions 1,
2 and Lemma 1, we obtain

V̇ (x(t)) =x(t)Tdiag(α1, α2, · · · , αn)(L ⊗ Im)
· diag(α1, α2, · · · , αn)ẋ(t)

= −
n∑

i=1

|αi|wi(t)Tẋi(t)

= −
∑

i∈Φ(t)

|αi|wi(t)T [Im − φi(αixi(t))Γi(αixi(t))]

· wi(t) −
∑

i∈V\Φ(t)

|αi|wi(t)Twi(t), (10)

where (2) and (6) are used, and the set Φ(t) is given by Φ(t) :=
{i ∈ V : φi(αixi(t)) ∈ (0, 1], αi∇φi(αixi(t))Twi(t) > 0}.

Note that

Im − φi(αixi(t))Γi(αixi(t))
=Im − Γi(αixi(t)) + (1 − φi(αixi(t)))Γi(αixi(t)). (11)

By (4), the matrix Γi(αixi(t)) is positive semidefinite. By
Lemma 1, 1 − φi(αixi(t)) ≥ 0. Moreover, for any wi =
(wi1, wi2, · · · , wim)T ∈ Rm,

wT
i [Im − Γi(αixi(t))]wi =∑
1≤l1<l2≤m (∇φi(αixi(t))l1wil2 −∇φi(αixi(t))l2wil1)

2∑m
l=1 ∇φi(αixi(t))2l

,

(12)

where we write ∇φi(αixi(t)) :=
(∇φi(αixi(t))1,∇φi(αixi(t))2, · · · ,∇φi(αixi(t))m)T ∈
Rm. It follows from (12) that Im − Γi(αixi(t)) is positive
semidefinite and wT

i [Im − Γi(αixi(t))]wi = 0 if and
only if ∇φi(αixi(t))l1wil2 = ∇φi(αixi(t))l2wil1 for all
1 ≤ l1 < l2 ≤ m. Therefore, we have V̇ (x(t)) ≤ 0 by (10)
and (11). Lemma 2 follows by an application of LaSalle’s
invariance principle. 2

To investigate the scaled consensus, we need to have a
further look at the set Z . The following observation will be
used in the proof of Theorem 1.
Lemma 3. Consider the multiagent system (1) with (6). Under
Assumptions 1 and 2, if αix

∗
i ∈ Ω for all i ∈ V , then w∗

i = 0m

for all i ∈ V .
Proof. Suppose there exists a node k ∈ V satisfying w∗

k 6= 0m.
We have

−αkw∗
k

|αk|
∑

j∈Nk
akj

= αkx∗
k −

∑
j∈Nk

akjαjx
∗
j∑

j∈Nk
akj

. (13)

By assumption αkx∗
k ∈ Ωk. If αkx∗

k ∈ Ωk\∂Ωk, we obtain
φk(αkx∗

k) < 1. From the analysis in Lemma 2, it is easy to see
if there is some vector yk ∈ Rm satisfying yT

k Γk(αkx∗
k)yk = 0

then yT
k [Im − Γk(αkx∗

k)]yk > 0. Hence, by a similar decom-
position as in (11), we know that Im −φk(αkx∗

k)Γk(αkx∗
k) is

positive definite. Since (diag(α1, α2, · · · , αn) ⊗ Im)x∗ ∈ Z ,
we conclude k ∈ V\Φ via (8). But this again forces w∗

k = 0m,
which contradicts our assumption in the beginning.

If, on the other hand, αkx∗
k ∈ ∂Ωk, then αkw∗

k is a direction
pointing inside Ωk since the last term on the right-hand side
of (13) is within Ω ⊆ Ωk by virtue of the convex combination.
Hence, αk∇φk(αkx∗

k)Tw∗
k < 0 as the angle between the two

vectors is obtuse. This means k 6∈ Φ by the definition of Φ.
Similarly as the above case, by using (8) we know w∗

k = 0m,
which contradicts our assumption. This concludes the proof of
Lemma 3. 2

Now, we are at the stage to show the main result.
Proof of Theorem 1. If we can show Φ = ∅, then
Z = {(diag(α1, α2, · · · , αn) ⊗ Im)x∗ ∈ Rmn : w∗

i =
0m, for any i ∈ V} by (8). By Lemma 2 and the connec-
tivity of G, this means scaled consensus is achieved, which
concludes the proof of Theorem 1.

What remains to show is Φ = ∅. Suppose this is not true,
namely there exists a node k1 ∈ Φ. Clearly, w∗

k1
6= 0m. Denote

by

ρ := max
i∈V

d(αix
∗
i ,Ω), (14)
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where d(·,Ω) means the distance between a point and the
set Ω. By Lemma 3, there must be some node k2 ∈ V such
that αk2x

∗
k2

6∈ Ω, and hence ρ > 0. We investigate two
complementary situations: (i) there exists k ∈ V satisfying
ρ = d(αkx∗

k,Ω) and w∗
k = 0m; and (ii) for all i with

ρ = d(αix
∗
i ,Ω) we have w∗

i 6= 0m. Using vector analysis
[24], [33], we aim to derive some contradiction in both cases.

(i). Let x̂ ∈ ∂Ω be the projection of αkx∗
k over Ω and denote

θ := αkx∗
k − x̂. Hence, ‖θ‖ = ρ. Define Θ := {y ∈ Rm :

θTy = θTαkx∗
k}. It is easy to see Θ is a hyperplane at αkx∗

k

and it is parallel to the tangent plane {y ∈ Rm : θTy = θTx̂}
at x̂. By the fact that Ω is convex and (14), we obtain

θTαix
∗
i ≤ θTαkx∗

k (15)

for all i ∈ V . In other words, all points {αix
∗
i }i∈V and Ω are

at the same side of the hyperplane Θ or on Θ.
Since Φ 6= ∅, as assumed above there is a node k1 ∈ Φ

satisfying w∗
k1

6= 0m. This means there is a node i1 ∈ V
such that αi1x

∗
i1

6= αkx∗
k. By (14), we have d(αi1x

∗
i1

,Ω) ≤ ρ.
Since Ω is convex, αi1x

∗
i1

is not on Θ and hence

θTαi1x
∗
i1 < θTαkx∗

k. (16)

Without loss of generality, we can assume i1 is adjacent to
k in the graph G. [In fact, if this is not the case, for any
i ∈ Nk we have αix

∗
i = αkx∗

k. Since G is connected, by
repeating the above same argument we obtain αjx

∗
j = αkx∗

k

for all j ∈ V . This contradicts the choice of k1.] Recall that
0m = w∗

k = sgn(αk)
∑

j∈Nk
akj(αjx

∗
j − αkx∗

k). We obtain∑
j∈Nk

akjθ
T(αjx

∗
j − αkx∗

k) = 0m. In view of (16) and
the positivity of coefficients akj , there must exist i2 ∈ Nk

satisfying θTαi2x
∗
i2

> θTαkx∗
k. However, this is contradictory

to (15).
(ii). In this case, fix any node k ∈ V satisfying ρ =

d(αkx∗
k,Ω) and w∗

k 6= 0m. Since (diag(α1, α2, · · · , αn) ⊗
Im)x∗ ∈ Z , we have k ∈ Φ in view of (8). Hence,
φk(αkx∗

k) ∈ (0, 1] and

αk∇φk(αkx∗
k)Tw∗

k > 0 (17)

by the definition of Φ. Moreover, we have
|αk|w∗T

k [Im − φk(αkx∗
k)Γk(αkx∗

k)]w∗
k = 0 by (8) again.

Therefore, since αk 6= 0, we obtain

0 =w∗T
k [Im − φk(αkx∗

k)Γk(αkx∗
k)]w∗

k

=φk(αkx∗
k)w∗T

k [Im − Γk(αkx∗
k)]w∗

k

+ [1 − φk(αkx∗
k)]w∗T

i w∗
i . (18)

Recall that Im − Γk(αkx∗
k) is positive semidefinite. In view

of the above comments in case (ii), we have

w∗T
k [Im − Γk(αkx∗

k)]w∗
k = 0 (19)

and φk(αkx∗
k) = 1. Hence, αkx∗

k ∈ ∂Ωk and

∇φk(αkx∗
k)l1wkl2 = ∇φk(αkx∗

k)l2wkl1 (20)

for all 1 ≤ l1 < l2 ≤ m by (19) and the analysis in Lemma
2.

Let x̂ ∈ ∂Ω be the projection of αkx∗
k over Ω and θ :=

αkx∗
k − x̂ ∈ Rm. We have ‖θ‖ = ρ. Define the hyperplane

Θ := {y ∈ Rm : θTy = θTαkx∗
k} at αkx∗

k, which is parallel
to the tangent plane {y ∈ Rm : θTy = θTx̂} at x̂. By the
convexity of Ω and choice of k, we know

θTαix
∗
i ≤ θTαkx∗

k (21)

for all i ∈ V . Namely, all points {αix
∗
i }i∈V and Ω are at the

same side of the hyperplane Θ or on Θ. Following (2) and
(21), we get

θT|αk|
∑

i∈Nk

aki(αix
∗
i − αkx∗

k) = θTαkw∗
k ≤ 0. (22)

Recall αkx∗
k ∈ ∂Ωk and Ω ⊆ Ωk. We know −θ is a

vector at αkx∗
k pointing toward the inside of Ωk. On the

other hand, the gradient ∇φk(αkx∗
k) is perpendicular to the

tangent plane of Ωk at αkx∗
k, and points toward the outside of

Ωk. Therefore, θT∇φk(αkx∗
k) > 0. Combining this with (17)

we have θT∇φk(αkx∗
k)αk∇φk(αkx∗

k)Tw∗
k > 0. This can be

further written as follows by involving (20):

0 < θT∇φk(αkx∗
k)αk∇φk(αkx∗

k)Tw∗
k

= αk

m∑
l1,l2=1

θl1∇φk(αkx∗
k)l1∇φk(αkx∗

k)l2w
∗
kl2

= αk

m∑
l1,l2=1

θl1∇φk(αkx∗
k)2l2w

∗
kl1

= αkθTw∗
k

m∑
l2=1

∇φk(αkx∗
k)2l2 , (23)

where we have written θ = (θ1, θ2, · · · , θm)T and w∗
k =

(w∗
k1, w

∗
k2, · · · , w∗

km)T. This means αkθTw∗
k > 0. Obviously,

it is at odds with (22). Since we have derived contradictions
in both cases, the proof of Theorem 1 is complete. 2

Remark 7. The information exchange of the networked system
is assumed to take place over an undirected graph G, which
is essential for the above analysis of projection operator and
the geometric presentation of vectors. However, it also limits
potential applicability as directed information flow is arguably
more general. Directed networks have been considered in some
recent works on state constrained control for example by
using equivalent system transformations [37] and a fixed-point
theorem [28] in different applications.

B. Reference tracking

In this section, we consider the extended graph G = (V, E)
with a leader node n + 1, which follows (3). The following
lemma can be shown by the same argument in Lemma 1.
Lemma 4. Consider the multiagent system (1) and (3) with (6).
Under Assumptions 1, 2 and 3, for any i ∈ V , αixi(t) ∈ Ωi

for t ≥ 0.
Let diag(α1, α2, · · · , αn+1) ∈ R(n+1)×(n+1) be the diag-

onal matrix with diagonal elements α1, α2, · · · , αn+1, where
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we recall that αn+1 = 1. Let x∗ = (x∗
1, x

∗
2, · · · , x∗

n, x∗
n+1)

T ∈
Rm(n+1), where x∗

n+1 = xn+1(0). Define a set

Z =
{

(diag(α1, α2, · · · , αn+1) ⊗ Im)x∗ ∈ Rm(n+1) :∑
i∈Φ

|αi|w∗T
i [Im − φi(αix

∗
i )Γi(αix

∗
i )]w

∗
i

+
∑

i∈V\Φ

|αi|w∗T
i w∗

i = 0
}

, (24)

where Φ := {i ∈ V : φi(αix
∗
i ) ∈ (0, 1], αi∇φi(αix

∗
i )

Tw∗
i >

0} and w∗
i = sgn(αi)

∑
j∈Ni

aij(αjx
∗
j−αix

∗
i ) for i ∈ V . Note

that as we mentioned in Section 2.2, the neighborhood Ni here
is interpreted relevant to G to avoid excessive notations.
Lemma 5. Let x(t) = (x1(t), x2(t), · · · , xn+1(t))T ∈
Rm(n+1) be a solution of the multiagent system (1) and (3)
with (6). Under Assumptions 1, 2 and 3, the set of limit
points (as t → ∞) of (diag(α1, α2, · · · , αn+1) ⊗ Im)x(t) is
contained in Z .
Proof. Define the matrix

Q =

 L

−a1,n+1

...
−an,n+1

0 · · · 0 0

 ∈ R(n+1)×(n+1) (25)

and the Lyapunov candidate

V (x) =
1
2
xTdiag(α1, α2, · · · , αn+1)(Q ⊗ Im)

· diag(α1, α2, · · · , αn+1)x, (26)

which is a continuous and locally Lipschitz function. By
Assumptions 1, 2, 3 and Lemma 4, we have

V̇ (x(t)) =x(t)Tdiag(α1, α2, · · · , αn+1)(Q ⊗ Im)

· diag(α1, α2, · · · , αn+1)ẋ(t)

= −
n∑

i=1

|αi|wi(t)Tẋi(t)

= −
∑

i∈Φ(t)

|αi|wi(t)T [Im − φi(αixi(t))Γi(αixi(t))]

· wi(t) −
∑

i∈V\Φ(t)

|αi|wi(t)Twi(t), (27)

where Φ(t) := {i ∈ V : φi(αixi(t)) ∈
(0, 1], αi∇φi(αixi(t))Twi(t) > 0}. Noting that (27) is
equivalent to (10) in Lemma 2, we can similarly proceed
as Lemma 2 and show that V̇ (x(t)) ≤ 0. An application of
LaSalle’s invariance principle concludes the proof. 2

The next lemma follows from the same argument in Lemma
3 by considering Z in (24) instead of Z in (8).
Lemma 6. Consider the multiagent system (1) and (3) with
(6). Under Assumptions 1, 2 and 3, if αix

∗
i ∈ Ω for all i ∈ V ,

then w∗
i = 0m for all i ∈ V .

Proof of Theorem 2. We can proceed along the same lines
in the proof of Theorem 1. The aim is to show Φ = ∅, which
would indicate Z = {(diag(α1, α2, · · · , αn+1) ⊗ Im)x∗ ∈
Rm(n+1) : w∗

i = 0m, for any i ∈ V} by (24). It follows from
Lemma 5 and the directed spanning tree with root node n+1

in G that the desired reference tracking is achieved, which will
conclude the proof of Theorem 2.

To this end, we use the method of contradiction. Sup-
pose that Φ 6= ∅. Define the maximum distance ρ :=
maxi∈V d(αix

∗
i ,Ω), which is positive in view of Lemma 6.

We then consider two cases separately: (i) there exists k ∈ V
satisfying ρ = d(αkx∗

k,Ω) and w∗
k = 0m; and (ii) for all i

satisfying ρ = d(αix
∗
i ,Ω) we have w∗

i 6= 0m.
(i). Let x̂ ∈ ∂Ω be the projection of αkx∗

k over Ω and denote
θ := αkx∗

k − x̂. We can analogously show as in Theorem 1
that

θTαix
∗
i ≤ θTαkx∗

k (28)

for all i ∈ V .
Since Φ 6= ∅, we assume there is a node k1 ∈ Φ satisfying

w∗
k1

6= 0m. This means there is a node i1 ∈ V such that
αi1x

∗
i1

6= αkx∗
k. By definition, we have d(αi1x

∗
i1

,Ω) ≤ ρ and
hence θTαi1x

∗
i1

< θTαkx∗
k. We can always assume i1 ∈ Nk

with respect to G. [In fact, if this is not the case, for any
i ∈ Nk we have αix

∗
i = αkx∗

k. Since G is connected and G
has a spanning tree with root n + 1, by repeating the above
same argument we obtain αjx

∗
j = αkx∗

k for all j ∈ V . This
contradicts the choice of k1.]

Since 0m = w∗
k = sgn(αk)

∑
j∈Nk

akj(αjx
∗
j − αkx∗

k), we
arrive at

∑
j∈Nk

akjθ
T(αjx

∗
j − αkx∗

k) = 0m. Noting that the
coefficients akj > 0 for j ∈ Nk and θTαi1x

∗
i1

< θTαkx∗
k,

there exists some node i2 ∈ Nk such that θTαi2x
∗
i2

>
θTαkx∗

k. Moreover, we can assume n + 1 6∈ Nk. Otherwise,
we can apply the above argument to a neighbor of k given
the connectivity of G and Nn+1 = ∅. Therefor, we reach a
contradiction of (28).

(ii). Consider a node k ∈ V satisfying ρ = d(αkx∗
k,Ω) and

w∗
k 6= 0m. Since (diag(α1, α2, · · · , αn+1) ⊗ Im)x∗ ∈ Z , we

have k ∈ Φ by (24). Therefore, we have φk(αkx∗
k) ∈ (0, 1]

and

αk∇φk(αkx∗
k)Tw∗

k > 0 (29)

Since |αk|w∗T
k [Im − φk(αkx∗

k)Γk(αkx∗
k)]w∗

k = 0 and αk 6=
0, we arrive at

0 =φk(αkx∗
k)w∗T

k [Im − Γk(αkx∗
k)]w∗

k

+ [1 − φk(αkx∗
k)]w∗T

i w∗
i . (30)

Noting that Im − Γk(αkx∗
k) is positive semidefinite, we have

φk(αkx∗
k) = 1 and

w∗T
k [Im − Γk(αkx∗

k)]w∗
k = 0. (31)

By (31) and the proof of Lemma 5, we have the ex-
changeable property αkx∗

k ∈ ∂Ωk and ∇φk(αkx∗
k)l1wkl2 =

∇φk(αkx∗
k)l2wkl1 for 1 ≤ l1 < l2 ≤ m.

We then proceed similarly as in Theorem 1 by examining
the hyperplane Θ := {y ∈ Rm : θTy = θTαkx∗

k} at αkx∗
k,

which is parallel to the tangent plane {y ∈ Rm : θTy = θTx̂}
at x̂. Here, θ := αkx∗

k − x̂ ∈ Rm with x̂ being the projection
of αkx∗

k over Ω. We have θTαix
∗
i ≤ θTαkx∗

k for all i ∈ V .
Accordingly,

θT|αk|
∑

i∈Nk

aki(αix
∗
i − αkx∗

k) = θTαkw∗
k ≤ 0. (32)
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Using the fact that −θ is a vector at αkx∗
k pointing to-

ward the inside of Ωk and that the gradient ∇φk(αkx∗
k) is

perpendicular to the tangent plane of Ωk at αkx∗
k pointing

toward the outside of Ωk, we derive analogously as above
that θT∇φk(αkx∗

k) > 0. Combining this with (29) we obtain
θT∇φk(αkx∗

k)αk∇φk(αkx∗
k)Tw∗

k > 0. Invoking the above
exchangeable property, we derive as in Theorem 1 that 0 <
αkθTw∗

k. This contradicts (32) and concludes the proof of
Theorem 2. 2

Fig. 1. Communication network G and extended network G with n = 4 for
Examples 1 and 2.

V. NUMERICAL SIMULATIONS

In the following we present some examples to illustrate the
theoretical results of scaled consensus and scaled reference
tracking.
Example 1. We start by considering scaled consensus over a
connected graph G = (V, E) with V = {1, 2, 3, 4}; see Fig. 1.
Write x = (x1, · · · , x4)T and xi = (xi1, xi2)T for i ∈ V . The
constraining sets {Ωi}i∈V are characterized in R2 by

ψ1(x1) =2(x11 + 4)4 + 2x2
12 + (x11 + 4)x12 − 19,

ψ2(x2) =4(x21 + 4)2 + (x22 + 3)2

− 2(x21 + 4)(x22 + 3) − 16,

ψ3(x3) =(x31 + 1)2 + 3(x32 − 1)2 − 9,

ψ4(x4) =0.

(33)

The adjacency matrix A is taken as a binary 0-1 matrix
and we choose (α1, α2, α3, α4) = (1, 1,−2,−2). Define
ξ1 = ξ2 = −5, ξ3 = −2, and ξ4 = 0.5. Fig. 2 shows the
trajectories for the system (1) with (6) under initial conditions
x1(0) = (−5, 2)T, x2(0) = (−6,−6)T, x3(0) = (1, 0)T, and
x4(0) = (−1, 5)T. The result is consistent with our prediction
in Theorem 1. The first 3 agents have convex constraints
and agent 4 is unconstrained. The scaled states tend to a
point inside the intersection Ω = ∩i∈VΩi as shown by a
magnified view in the inset of Fig. 2(b). In Fig. 2(c), the
first components of agents 1 and 2 tend to x11(∞) ≈ −3.1
and the counterpart for agents 3 and 4 is around 1.55, which
is α1x11(∞)/α3 = −x11(∞)/2. Similarly, in Fig. 2(d),
the second components of agents 1 and 2 tend to around
−0.37 and the counterpart for agents 3 and 4 is around
0.185 = −(−0.37)/2.
Example 2. As a second example we consider scaled scaled
reference tracking over an extended graph G = (V, E) with
an added leader agent 5 as shown in Fig. 1. The two new
edges (2, 5) and (4, 5) have weight 1 and we take x5(0) =
(−3, 0)T. All parameters remain the same as in Example 1.
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Fig. 2. Scaled consensus with constraints for Example 1: (a) State trajectories
{xi}4

i=1; (b) Scaled state trajectories {αixi}4
i=1; (c) Time evolution for the

first components {xi1(t)}4
i=1; (d) Time evolution for the second components

{xi2(t)}4
i=1. The scaled states of all agents tend to a common point within

Ω indicated by the arrow in the inset of (b).
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Fig. 3. Scaled reference tracking with constraints for Example 2: (a) State
trajectories {xi}4

i=1; (b) Scaled state trajectories {αixi}4
i=1; (c) Time

evolution for the first components {xi1(t)}4
i=1; (d) Time evolution for the

second components {xi2(t)}4
i=1. The scaled states of all followers track the

static reference point within Ω indicated by the pentagram in (b).

It is straightforward to check that all conditions for Theorem
2 are met. The evolution for the multiagent system (1) and
(3) with (6) is shown in Fig. 3. We observe that the scaled
trajectories of all followers in V are led to the static reference
value x5(0) ∈ Ω. This is further verified by the time evolution
of components shown in Fig. 3(c) and Fig. 3(d). For example,
x51(∞) = −3 = x11(∞) = α3x31(∞)/α1 = −2x31(∞) =
−2 × 1.5.
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Fig. 4. Convergence time versus size of network in random graphs for
Example 3.

Example 3. In this example we investigate the effect of
constrains on convergence time in dense Erdős-Rényi random
graphs G(n, p) [34] with constant edge probability p = 0.1
and different size n. Let m = 2, choose scales αi randomly
in the interval [−2, 2] and each state component of agent i
in the interval [−10, 10] for i ∈ V . One node is taken as a
leader and has value (0, 0)T. Define the convergence time as
min{t : ‖αixi(t)‖ < ε} with ε = 10−3.

We take binary adjacency matrix and consider three dif-
ferent tracking algorithms. First, the unconstrained tracking
for system (1), (3) and (6) with Ωi = R2 for all i. Second,
the scaled reference tracking strategy (1), (3) and (6) with
symmetric constraints, namely, each constraining set Ωi is
taken as a disk centered at xi(0) and contains the origin.
Third, the scaled reference tracking strategy (1), (3) and (6)
with asymmetric constraints, namely, each constraining set Ωi

is taken as an ellipse taking xi(0) and the origin as the two
focal points. Fig. 4 shows the average convergence times for
a sample of 20 random realizations of G(n, p). It takes longer
to track the reference in larger graphs for both constrained
and unconstrained systems. Moreover, both symmetric and
asymmetric constraints hinder the tracking and the system with
asymmetric constraining sets takes even longer time.
Example 4. Finally, we consider a ship steering system coordi-
nating n = 3 ships with a steering station. The communication
topology G = (V, E) is shown in Fig. 5. The objective is to
steer the ships 1 and 2 to a dock located at (−1, 0) and the
ship 3 to a dock at (3, 0). To this end we apply our algorithm
by sending a steering signal only to the ship 2 pointing to
the mid point, the coordinate (1, 0), of the two docks. The
constraining sets, representing for instance safe regions, are
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Fig. 5. Communication network G with V = {1, 2, 3} and extended network
G with V = V ∪ {4} for Example 4.

assumed as follows

ψ1(x1) =(x11 + 1)2 + x2
12 − 9,

ψ2(x2) =x2
21 + (x22 − 1)2 − 9,

ψ3(x3) =(x31 − 3)2 + x2
32 − 9.

(34)

The adjacency matrix A is taken as a binary 0-1 matrix and
we design the scales as (α1, α2, α3, α4) = (−1,−1, 1/3, 1).
Define ξ1 = ξ2 = ξ3 = −2. Fig. 6 shows the trajectories
for the ship steering system under initial conditions x1(0) =
(−1,−2.5)T, x2(0) = (2.5, 1)T, x3(0) = (1.5,−0.8)T, and
x4(0) = (1, 0)T. We observe that the ships 1 and 2 move to
the coordinate (−1, 0) and the ship 3 move to the coordinate
(3, 0) in line with the theoretical result given by Theorem 2.
This example shows the success of a practical choice of the
reference signal and the scales in our proposed method.
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Fig. 6. State trajectories {xi}3
i=1 for the ship steering system in Example

4. The steering station 4 sends a signal to the coordinate (1, 0) indicated by
the pentagram.

VI. CONCLUSION

A model of nonlinear multiagent networks affording scaled
consensus and scaled reference tracking is introduced and
analyzed. The states of the agents in the network are assumed
to be confined to individual convex sets. A gradient projec-
tion approach is proposed to ensure scaled convergence and
suitable sufficient conditions have been developed to ensure
the equilibrium is inside the intersection of constraining sets.
Simulations are performed to show the scaled consensus and
reference tracking as well as how constraining sets could affect

the convergence over the multiagent network. The importance
of the practical choice of reference signal and scales in our
framework is demonstrated by a ship steering system example.
Note that the current framework is based on time-invariant
networks. It would be useful to extend the methods to switch-
ing or time-varying networks. In addition to the potential
limitations mentioned in the paper, faster convergence rate is
also an interesting future research direction.
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