
Northumbria Research Link

Citation: Rafiq, Husnain, Aslam, Nauman, Issac, Biju and Randhawa, Rizwan Hamid
(2021) An Investigation on Fragility of Machine Learning Classifiers in Android Malware
Detection. In: The Sixth IEEE International Workshop on the Security, Privacy, and Digital
Forensics of Mobile Systems and Networks (MobiSec 2022): in conjunction with IEEE
International Conference on Computer Communications, INFOCOM 2022, 2-5 May 2022,
Virtual. (In Press)

URL: https://infocom2022.ieee-infocom.org/sixth-ieee-in... <https://infocom2022.ieee-
infocom.org/sixth-ieee-international-workshop-security-privacy-and-digital-forensics-
mobile-systems-and-networks>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/48534/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

An Investigation on Fragility of Machine Learning
Classifiers in Android Malware Detection

Husnain Rafiq, Nauman Aslam, Biju Issac and Rizwan Hamid Randhawa
Department of Computer and Information Sciences

Northumbria University
Newcastle, United Kingdom

{husnain.rafiq, nauman.aslam, biju.issac, rizwan.randhawa}@northumbria.ac.uk

Abstract—Machine learning (ML) classifiers have been increas-
ingly used in Android malware detection and countermeasures
for the past decade. However, ML-based solutions are vulnerable
to adversarial evasion attacks. An attacker can craft a malicious
sample carefully to fool an underlying pre-trained classifier. In
this paper, we highlight the fragility of the ML classifiers against
adversarial evasion attacks. We perform mimicry attacks based
on Oracle and Generative Adversarial Network (GAN) against
these classifiers using our proposed methodology. We use static
analysis on Android applications to extract API-based features
from a balanced excerpt of a well-known public dataset. The
empirical results demonstrate that among ML classifiers, the
detection capability of linear classifiers can be reduced as low as
0% by perturbing only up to 4 out of 315 extracted API features.
As a countermeasure, we propose TrickDroid, a cumulative
adversarial training scheme based on Oracle and GAN-based
adversarial data to improve evasion detection. The experimental
results of cumulative adversarial training achieves a remarkable
detection accuracy of up to 99.46% against adversarial samples.

I. INTRODUCTION

The arm-race between Android security companies and mal-
ware developers seems to be enduring. Machine learning has
been demonstrated as the core element of Android malware
detection by many researchers; however, it is vulnerable to
evasion attacks [1], [2]. The adversarial evasion attacks are
primarily dependent on the attacker’s insight to defender’s
feature set of training data [3]. The detection model makes
a prediction based on ranked features that can be a piece of
sensitive information for the attacker. The attacker can make
a slight change into any of the top-ranked features to generate
an adversarial sample [4], [5]. However, such attacks are based
on the domain knowledge of the attacker. There can be three
possible knowledge levels for the attacker. The first and the
best case is full knowledge (FK), where the attacker has access
to the training data and knows about the underlying classifier.
The second is limited knowledge (LK), where the attacker has
no knowledge about the underlying classifier, however, still has
access to the training data. The third case is no knowledge
(NK), where the attacker neither has access to training data
nor the knowledge about the underlying classifier. Although
the Android malware detectors can hide the underlying model,
however, there are many publicly available Android malware
datasets that can help the attacker to get insights into the
training data [6]. So there is a large gap to fill in research for

adversarial evasion detection considering the publicly available
datasets while designing a sophisticated Android malware
detector.

Given the AMD, authors in [7] were the first to discuss
the problem of evasion attacks. They performed multiple
lightweight evasion attacks and were able to evade 50%
of commercial malware analysis tools. Aydogan et al. [8]
applied genetic programming to formulate evasion attacks and
were able to evade 33% of Android malware on commer-
cial antivirus tools. Meng et al. [9] proposed a technique
to automatically generate Android malware samples to test
multiple classifiers and antivirus tools and achieved an average
evasion rate of 80%. Grosse et al. [5] crafted adversarial
Android malware samples to evade deep neural networks and
were able to evade almost 80% of the adversarial samples.
Calleja et al. [10] proposed LagoDroid, a tool to generate
evasion attacks against an existing Android malware detector
called RevealDroid [11] and achieved an evasion rate of 98%.
We propose a more lightweight and practical evasion attack
methodology using feature injection achieving up to 100%
evasion rate. We inject the top features of benign Android
applications into malicious samples and test the ML-classifiers.

Most of the existing techniques to evade malware classifiers
were either based on the gradient information or manual
crafting of rules till 2017 [12]. However, later it was estab-
lished that Generative Adversarial Networks (GANs) could
also be used to automatically generate adversarial examples to
trick ML classifiers. Zhang et al. [13] proposed AndrOpGAN,
a technique to generate adversarial examples of Android
malware that achieved an evasion rate of 99% against four
malware detectors. Furthermore, Li et al. [14] proposed a
technique based on bi-objective GANs to generate a novel
adversarial examples attack method against Android malware
classifiers. Salman et al. [15] used GANs to harden the security
of Android malware detectors through intents based features.
Taheri et al. [16] used five different evasion attack models on
Android malware classifiers and used GANs to formulate a
countermeasure against evasion attacks. The authors in [16]
claim that GAN based methods improve the evasion detection
of Android malware up to 50%. Millar et al. proposed Dan-
Droid, a novel model to classify obfuscated and unobfuscated
Android benign and malicious applications by using GANs.
In our work, we feed GANs with malicious data to generate

synthetic data that mimic the real malicious applications.
In the proposed model, we have used classifier-two sample
test (C2ST) to evaluate the generator of GAN in addition
to the expectancy loss and accuracy of both generator and
discriminator.

We red-flag the fragility of ML classifiers such as support
vector machine (SVM), logistic regression (LR), perceptron
(PT), decision tree (DT), random forest (RF) and xgboost
(XGB) to compare their effective candidacies for the AMD.
We have performed Oracle and Generative Adversarial Net-
work (GAN) based adversarial attacks against a practical
dataset called Drebin that is publicly available [17]. We pro-
pose a technique to generate adversarial evasion examples that
fool the classifiers mentioned above. It has been demonstrated
that the linear classifiers SVM, LR, and PT are least impressive
in contrast to their ensemble counterparts in the AMD for
Android. Since there is no silver bullet defence against evasion
attacks, therefore, only proactively knowing the attacker’s
manipulations could be cardinal to a robust defence strategy
[3]. This is where adversarial training comes that has proved
to be an effective proactive defence [18]. We propose a
robust adversarial training scheme called TrickDroid based
on cumulative adversarial training of ensemble classifiers on
Oracle and GAN based adversarial data to improve evasion
detection. Finally, we compare our results with adversarial
training of individual Oracle and GAN based attacks and
adversarial training.

The rest of this paper is organised as follows. Section II
explains the proposed methodology for evasion attacks, the
experimental results followed by analysis are presented in
Section III and Section IV concludes this paper.

II. PROPOSED ATTACKS METHODOLOGY

Our proposed methodology of evasion attacks is illustrated
in Figure 1 which shows the key components of the system. In
the feature extraction module, we reverse engineer the Android
applications to extract API-based features. The extracted fea-
tures are further used to train multiple ML classifier models.
To evade the trained classifiers, we generate code injection
and GAN-based adversarial data in the adversarial samples
generation module. The adversarial samples are further tested
on the existing pre-trained classifiers. Finally, we perform
adversarial training to harden the security of Android malware
classifiers against adversarial evasion attacks.

A. Dataset and Feature Extractor

In this study, we use Drebin [17] as a benchmark dataset.
The dataset is composed of 5560 malicious and 213,453
benign applications. We randomly select 5600 benign applica-
tions to balance the dataset. Furthermore, we reverse engineer
the Android application packages (APKs) in the dataset to
extract java source code. APKs are decompiled in the form of
.dex and then transformed into .jar files. The .jar files are then
disassembled into java source code in order to extract features.
Static analysis is applied on the reverse-engineered code to
extract API-based features from the Android applications.

Fig. 1. Evasion Attacks Methodology

API-based features tend to be strong behaviour-based features
for malware classification [1], [19]. A total of 315 unique API
calls were found from all of the applications in the dataset.
Furthermore, each application in the dataset is transformed
into a feature vector of length 315. Each cell of the feature
vector contains a binary value where 1 represents the presence
of a specific feature and 0 represents its absence.

B. ML Models Segment

We used SVM, LR, PT, DT, RF and XGB classifiers on
API-based features of APKs. All of the classifiers used default
hyper-parameters setting (provided in sklearn 1.0.1 python
library), whereas 10-folds were used for cross-validation. We
distribute the dataset into 80% training set and 20% testing
set for each iteration for cross-validation. In order to present
the fragility of the Android malware classifiers, code injection
and GAN-based adversarial evasion attacks will be applied.
Subsequently, we will perform adversarial training to harden
the security of models against such attacks.

C. Evasion Attacks Generator

In this section, we discuss our evasion attack strategies
against pre-trained Android malware classifiers. The first step
is to train the ML classifiers on an API-based dataset. Once
the classifiers are trained, we apply code injection and GAN
based evasion attacks on the classifiers.

1) Code Injection Attacks (CIA): To perform code injection
attacks (CIA), we first find the top 20 most discriminating
features from benign Android applications from the dataset

and then inject those one by one in the malicious applica-
tions. It has been observed that many API-based features are
frequently used and are overlapping in both malicious and
benign applications e.g. StartActvity(), GetDeviceId(), GetAc-
tiveNetworkInfo() etc. However, some features are highly
discriminating in the sense of defining the class of Android
applications, e.g. sendTextMessage() API is present in 1903
malicious applications in the dataset, whereas only 42 benign
applications call this API.

Algorithm 1 shows the pseudo-code of features injection
attack. The dataset of malicious Android apps M and top 20
features of benign class from Drebin FTop are provided as
input to the algorithm. Once the top features are identified,
we look for those in the feature vectors of malicious apps.
If a feature is missing, i.e. 0 in the malicious samples, we
change it to 1 (Algorithm 2, lines 1-4). The process of adding
the features is carried out linearly, i.e. we mutate 1 top feature
in all the malicious samples from 0 to 1 and test the samples
on the model (Algorithm 2, line 6) to find out the evasion
rate. Subsequently, the second top feature is mutated and then
tested on the model and the same process is applied for the
top 20 features.

Algorithm 1 CIA Algorithm
Input: M = {m1,m2,m3mn} and
FTop = {F1, F2, F3F20}
Output: ERate

1: for all i ∈ F do
2: for all j ∈M do
3: if i ∈ j == 0 then
4: j[F [i]]← 1
5: end if
6: MEvade ← j
7: end for
8: ERate ← Classifier(MEvade)
9: end for

10: Return ERate

2) GAN Adversarial Examples Attacks (GAEA): A GAN is
a combination of two neural networks, among which one is
called generator (G) and the other is known as discriminator
(D). (G) generates the data and (D) evaluates this generated
data. Both these networks are connected in a way that the loss
of D is fed back to G while D’s weights are not updated so
that G can try to follow the real data probability distribution
more efficiently and fool the D. In this work, the primitive
version of GAN, also called vanilla GAN was used, to keep
the experiments simplistic for estimating GANs potential for
Android API based data generation. There is a further research
gap for the exploration of a suitable GAN for the generation of
Android API data. We leave this as future work. The generator
model G in original/vanilla GAN can be represented as G:z→
X where z is the normal distribution from noise space and X
is the real data distribution. The discriminator D:X → [0,1]
model is a classifier that outputs an estimate of probability how

TABLE I
GAN CONFIGURATION

Parameter Value
Network Type Densely Connected Feed Forward
Number of Layers G: 5, D/C: 4
Input Layer Activations G: relu , D: relu
Output Layer Activations G: sigmoid , D: sigmoid
Batch Size 128
Multiplier(n) 128
Neurons in Input Layer G: 128 , D: 128
Neurons in Layer 1 G : n× 1 = 128, D : n× 2 = 256
Neurons in Layer 2 G : n× 2 = 256, D : n× 1 = 128
Neurons in Layer 3 G : n× 3 = 384
Neurons in Output Layer G: 315, D/C: 1
Layer Regularization G,D: BatchNorm
Optimizer Adam (beta 1=0.5, beta 2=0.9)
Loss Function binary cross entropy
Learning Rate 1e-5

much the data coming from G, is real or fake. The loss function
of the combined model can be represented by Equation 1.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]
(1)

Here, E stands for the probability estimation; x and z are
the real and noise samples, respectively, while pdata and pz
represent the probability distributions of real and noise data.
The goal in the mini-max game is to minimise the G loss in
creating data similar to the real data. Since the generator can
not control the loss of D on real data but it can maximise the
loss of D on generated data G(z). The loss function of G is
given by Equation 2.

JG(G) = Ez∼pz(z)[log(D(G(z)))] (2)

Table I shows the hyperparameter settings for the GAN model.
It can be observed from this table that we used ’sigmoid’ in
the output layer of G due to the reason that we wanted to
generate the API data in which the values need to be between
0 and 1.

We propose a GAN based methodology inspired by [20] that
could mimic and generate the API based APK feature set. We
propose the GAN evaluation by tweaking the classifier two-
sample test (C2ST) [21] for G performance evaluation. The
C2ST is a quantitative metric to compare two different samples
of data. In other words, if we have samples real APK API
data (Xm) and GAN APK API data (G(z)), then we can
assess if both samples have similar or the same probability
distributions. The more the distributions overlap, the more is
the chance that GAN APK API samples are realistic. The
C2ST method has been shown in Algorithm 2. Here,A denotes
the accuracy after splitting the input m samples from (X) i.e.
(Xm) into 80% train set tr and 20% test set ts. The accuracy
A is computed as per the Equation 4.

The GAN evaluation used in GAEA is different from C2ST
in the evaluation parameter. The intuition is that the metric
in C2ST, i.e. ’accuracy’, should be replaced with the evasion

Algorithm 2 C2ST Algorithm
Input: Xm (real APK API samples), G(z) (GAN APK API
samples), Classifier
Output: A(accuracy)

1: tr ← Xm[0 : m(8/10)] ∪G(z)[0 : m(8/10)]
2: ts ← Xm[m(8/10) : m] ∪G(z)[m(8/10) : m]
3: train ML classifier on tr
4: test ML classifier on ts
5: Return A = (TP + TN)/(TP + TN + FP + FN)

rate (eRate) if we want to reduce the false negatives in the
classifier performance in post augmentation testing. The false
negatives are the possible evasions that are already present in
the test set, which the classifiers are not trained on. Hence, the
C2ST has been tweaked so that the objective function becomes
as given in the Equation 3. In Equation 3, ˆeRate(argmax) is
the evasion rate on Dtest which is test set, ntest is the total
number of samples in test set, zi are the samples in test set, li
are the labels, f(zi) is the conditional probability distribution
p(li = 1|zi) and I is the indicator function. The intuition
is that if a GAN APK API data is very close in probability
distribution with a real APK API samples, then the evasion
rate in Equation 3 should remain close to 100%. This means
that the classifier was totally evaded, or the sample was
misclassified as real APK API data. So if we use the evasion
rate as the metric instead of accuracy, then we can better
minimise the false negatives due to the reason that accuracy
includes the value for false positives (FP) and true negatives
(TN) given by Equation 4. Since our objective function is to
minimise false negatives in generator evaluation so we must
choose the epochs in which the evasion was the highest instead
of accuracy being the lowest.

ˆeRate(argmax) =
1

ntest

∑
zi,li∈Dtest

I[I(f(zi) >
1

2
) = li] (3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

However, in the evasion rate, we only have true positives (TP)
and false negatives (FN) as given by Equation 5.

EvasionRate =
FN

TP + FN
(5)

In Algorithm 3, first of all, we need to extract the malicious
real APK API samples Xm from the preprocessed train set T .
Then we create GAN models and start training for 150 epochs
in which for the batch size of 128, in each batch iteration,
xi is taken as a random batch from Xm. We use the normal
distribution of mean = 0 and standard deviation = 1 of the
same size as of batch for noise input to G. The G and D
compute their gradients and update in backpropagation. After
each epoch, we generate data Gzi of size equal to Xm and
add in a set U. Now, we can perform the proposed method
to evaluate the performance of G in terms of evasion rate
eRate. We perform 10-fold train-test split with 70-30 ratio

Algorithm 3 GAEA Algorithm
Input: T (preprocessed train set in csv format), batch size,
epochs, batches, Classifier
Output: ERate

1: Xm ∼ T
2: Create G and D models
3: for i ∈ epochs do
4: for j ∈ batches do
5: xi ∼ Xm

6: zj ← N{mean=0,std=1,size=batch size}
7: gzj ← Ezi∼p(zj)

8: θDj ← θDj − η∇θDjL(xj)
9: θDj ← θDj − η∇θDjL(gzj)

10: θGj ← θGj − η∇θGjL(zj)
11: end for
12: θG i ← θGj

13: zi ← N{mean=0,std=1,size=sizeof(Xm)}
14: Gzi ← Ezi∼p(z)

15: U = Xm ∪Gzi

16: for k ∈ 10 do
17: split pointer = k
18: tr ← 80% of U
19: ts ← 20% of U
20: train Classifier on tr
21: test Classifier on ts
22: compute eRate

23: end for
24: Compute eRateavg

25: end for
26: z ← N{mean=0,std=1,size=Normal−real APK APIsamples

27: GzIargmax(eRateavg)
← Ez∼p(z)

28: ERate ← Classifier(GzIargmin(ERate))
29: Return ERate

and compute the average evasion rate eRateavg
. After the

training is complete, we use the weights of the G for the epoch
in which the value of eRateavg

was maximum and generate
GAN APK API data GzIargmax(eRate). The GAEA algorithm
then outputs the ERate illustrated in Figure 4 the details of
which will be mentioned in section III.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the performance of different
ML classifiers against code injection attacks (CIA) and GAN
adversarial examples attacks (GAEA). Furthermore, we per-
form adversarial training of ML classifiers on CIA called CIA
Adversarial Training AT or ’CIA AT’ and GAEA Adversarial
Training or ’GAEA AT’ to improve the evasion detection of
classical ML classifiers and evaluate against evasion attacks.
We also perform GAEA on classifiers trained with CIA AT
and CIA on classifiers trained with GAN AT. Finally, we
perform evasion attacks on TrickDroid, a proposed adversarial
training scheme on both CIA and GAEA based data and
record the evasion rate in Figure 4. We use an API-based
dataset which is composed of 5560 malicious and 5600 benign

TABLE II
CLASSIFICATION RESULTS

Precision Recall F1-measure Accuracy
SVM 0.898 0.841 0.868 0.876
Logistic regression 0.891 0.840 0.865 0.872
Perceptron 0.717 0.914 0.804 0.783
Decision Tree 0.924 0.870 0.896 0.902
Random forest 0.927 0.881 0.904 0.908
Xgboost 0.897 0.831 0.862 0.871

Fig. 2. Code Injection Attack

Android applications for the experiments. The experiments
were performed on Dell G3 with 2.60GHz 6 core(s) processor,
16GB RAM and NVIDIA RTX 2060 GPU, running Windows
10.

In case of no adversarial attacks (NAT), we train the
SVM, LR, PT, DT, RF and XGB classifiers on default hyper-
parameters settings with 10-folds cross-validation with a dis-
tribution of 80% train set and 20% test set on each iteration.
Table II presents the classification results obtained by the
classifiers trained on API-based features. Amongst all the other
classifiers, RF yields remarkable classification results with
90.8% accuracy. Figure 2 presents the results of CIA where
the x-axis presents the number of features injected, and the y-
axis represents the evasion rate. Consequently, linear classifiers
SVM, LR and PT are affected the most with an evasion rate of
100%, which means all the adversarial samples in the test set
were evaded. In comparison, DT was evaded the least with an
evasion rate of 44.82. The evaluation of the CIA shows that
linear classifiers are very fragile against the CIA.

The next attack we performed was the GAEA on NAT
classifiers. As shown in Figure 3, similar to the CIA, in the
case of GAEA, linear classifiers were affected the most with
an evasion rate of more than 85% in all cases, whereas DT
was least affected as compared to all the other classifiers
with an evasion rate of 46.14%. As compared to CIA, GAEA
have a slightly lower evasion rate with no classifier being
evaded 100%. However, both of the attacks (CIA and GAEA)
have proved to be significantly effective in evading pre-trained
classifiers on the Android malware dataset.

As a countermeasure to mitigate the effects of evasion

Fig. 3. Results of GAEA

attacks, we retrain classifiers on adversarial data and then
evaluate those against evasion attacks. Firstly, we retrain the
classifiers on code injection attacks (CIA AT) and perform
the evaluation. As shown in Algorithm 1, to perform CIA, we
inject the top features of benign Android applications in the
malicious apps and evaluate those against pre-trained classi-
fiers. We do so by first injecting the first top discriminating
feature of benign apps into the malicious apps in all of the
test sets and evaluating it against the classifiers. Furthermore,
in addition to the first top feature, we inject the second top
discriminating feature of the benign app in a malicious test set
and perform the evaluation. The same process is applied till
the injection of the top 20 benign features in the malicious test
set. As discussed earlier, the CIA proved to be very effective
to evade multiple ML classifiers. To perform retraining of
classifiers on CIA, we generate an Oracle where for each
malicious Android app, we added 20 new modified samples.
The first sample has one top benign feature injected, the
second sample has two benign top features injected and so
on. Consequently, the size of the training set increased by 20
folds (i.e. 5560 to 111200). Although the size of the training
set has dramatically increased, however, the CIA AT proved to
be very effective. As a result of adversarial training of existing
classifiers on CIA data (CIA AT in Figure 4), the most evaded
classifier is XGB with only a 0.88% evasion rate.

In the next experiment, we perform GAEA Adversarial
Training (GAEA AT) on the classifiers. We generate 5500
samples similar to the original malicious data using the method
as mentioned in Section II. We augmented the GAEA data
with the original dataset. As shown in Figure 4, classifiers
trained on GAN adversarial examples (GAEA AT) perform
remarkably well against GAEA with a worst-case of 12.53%
evasion rate achieved in the case of PT trained on GAEA. All
the other classifiers retrained on GAEA have an evasion rate
of less than 10%. As compared to CIA AT, it is worth men-
tioning here that GAN based adversarial sample attacks were
minimised by just retraining the classifiers on 5500 adversarial
samples; however, to avoid CIA, we retrained classifiers on
an Oracle of 111200 new samples as mentioned previously.
Furthermore, we perform experiments by performing GAEA

Fig. 4. Evasion Rate

on CIA AT and CIA on GAEA AT to cross-validate the
efficacy of the two adversarial training CIA AT and GAEA AT
on the classifiers. As shown in Figure 4, in case of performing
CIA on GAN based adversarial trained classifiers (CIA[GAEA
AT]), all the linear classifiers (SVM, LR and PT) have been
evaded more than 85% whereas DT, XGB and RF perform
very well with a worst-case evasion rate of 17.85% in case of
XGB. Consequently, by applying GAEA on classifiers trained
on code injection attacks (GAEA[CIA AT]), surprisingly, the
results were opposite to CIA[GAEA AT]. As shown in Figure
4, in the case of GAEA[CIA AT], all the linear classifiers
performed remarkably well with a worst-case evasion rate of
11.15% in the case of PT. Whereas DT, RF and XGBoost were
evaded more than 82% in all cases. As a final countermeasure,
we train classifiers on both CIA AT and GAEA AT and call
this adversarial training as TrickDroid. As shown in Figure
4 (highlighted in the red colour text), TrickDroid remarkably
works well against both CIA[GAEA AT] and GAEA[CIA AT]
with an evasion rate of no more than 0.51 in the worst case.

IV. CONCLUSION

The excessive use of Machine learning (ML) classifiers in
Android malware detection demands a greater degree of inher-
ent security due to the threats of adversarial evasion attacks. In
this work, we highlight the fragility of classical ML classifiers
against these types of attacks. After performing Oracle and
GAN adversarial examples based attacks on different ML
classifiers on a public Android dataset, we demonstrate an
evasion rate of up to 100%. Our experiments reveal that the
linear classifiers are less robust as compared to their ensemble
counterparts both in Oracle and GAN based attacks. Further-
more, we present that despite adversarial training against one
attack type, the classifiers are still vulnerable to other attacks.
Hence, in order to further ruggedize the classifiers, we propose
a Trickdroid, a cumulative adversarial training technique and
demonstrate its efficacy with upto 99.46% evasion detection.

ACKNOWLEDGMENT

This work is supported by Northumbria’s Academic Centre
of Excellence in Cyber Security Research (ACE-CSR), and

we are thankful for the support.

REFERENCES

[1] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Make evasion harder:
An intelligent android malware detection system.” in IJCAI, 2018, pp.
5279–5283.

[2] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu, “Gotcha-sly
malware! scorpion a metagraph2vec based malware detection system,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 253–262.

[3] D. Li, Q. Li, Y. Ye, and S. Xu, “Sok: Arms race in adversarial malware
detection,” arXiv preprint arXiv:2005.11671, 2020.

[4] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet, “Deceiving end-to-end deep learning malware detectors using
adversarial examples,” arXiv preprint arXiv:1802.04528, 2018.

[5] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” arXiv preprint arXiv:1606.04435, 2016.

[6] H. Berger, C. Hajaj, and A. Dvir, “When the guard failed the droid: A
case study of android malware,” arXiv preprint arXiv:2003.14123, 2020.

[7] M. Zheng, P. P. Lee, and J. C. Lui, “Adam: an automatic and extensible
platform to stress test android anti-virus systems,” in International
conference on detection of intrusions and malware, and vulnerability
assessment. Springer, 2012, pp. 82–101.

[8] E. Aydogan and S. Sen, “Automatic generation of mobile malwares using
genetic programming,” in European conference on the applications of
evolutionary computation. Springer, 2015, pp. 745–756.

[9] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang,
and T. Chen, “Mystique: Evolving android malware for auditing anti-
malware tools,” in Proceedings of the 11th ACM on Asia conference on
computer and communications security, 2016, pp. 365–376.

[10] A. Calleja, A. Martı́n, H. D. Menéndez, J. Tapiador, and D. Clark,
“Picking on the family: Disrupting android malware triage by forcing
misclassification,” Expert Systems with Applications, vol. 95, pp. 113–
126, 2018.

[11] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-
resilient detection and family identification of android malware,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 26, no. 3, pp. 1–29, 2018.

[12] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.

[13] X. Zhang, J. Wang, M. Sun, and Y. Feng, “Andropgan: An opcode
gan for android malware obfuscations,” in International Conference on
Machine Learning for Cyber Security. Springer, 2020, pp. 12–25.

[14] H. Li, S. Zhou, W. Yuan, J. Li, and H. Leung, “Adversarial-example at-
tacks toward android malware detection system,” IEEE Systems Journal,
vol. 14, no. 1, pp. 653–656, 2019.

[15] S. Jan, T. Ali, A. Alzahrani, and S. Musa, “Deep convolutional gener-
ative adversarial networks for intent-based dynamic behavior capture,”
International Journal of Engineering & Technology, vol. 7, no. 4.29, pp.
101–103, 2018.

[16] R. Taheri, R. Javidan, M. Shojafar, P. Vinod, and M. Conti, “Can
machine learning model with static features be fooled: an adversarial
machine learning approach,” Cluster Computing, pp. 1–21, 2020.

[17] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[18] D. Li and Q. Li, “Adversarial deep ensemble: Evasion attacks and
defenses for malware detection,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3886–3900, 2020.

[19] S. Wang, Z. Chen, X. Yu, D. Li, J. Ni, L.-A. Tang, J. Gui, Z. Li, H. Chen,
and S. Y. Philip, “Heterogeneous graph matching networks for unknown
malware detection.” in IJCAI, 2019, pp. 3762–3770.

[20] R. H. Randhawa, N. Aslam, M. Alauthman, H. Rafiq, and F. Comeau,
“Security hardening of botnet detectors using generative adversarial
networks,” IEEE Access, 2021.

[21] D. Lopez-Paz and M. Oquab, “Revisiting classifier two-sample tests,”
arXiv preprint arXiv:1610.06545, 2016.

