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Abstract

Human blood is a scarce resource and its role in healthcare is fundamental, with

donated blood saving the lives of many on a daily basis. The blood supply chain is

responsible for the transfer of blood from donor to the recipient, but the availability

of such an invaluable resource as human blood is ultimately attributable to the

many voluntary donors. Thus, the efficiency of the collection of donated blood is

crucial to the downstream effectiveness of the blood supply chain.

Working in partnership with the Welsh Blood Service, our aim is to create a decision

support tool to aid the scheduling process to match supply and demand of blood

products, whilst minimising costs and wastage in the system. We present an integer

linear programme model that consists of two stages. The first stage schedules mobile

blood donation clinics, considering over 300 locations, with the objective to minimise

both the number of clinics scheduled within the planning horizon and the amount

of blood collected that exceeds the demand. The second stage assigns workers to

each scheduled clinic, with the objective of minimising costs such as overtime costs.

Both stages of this scheduling model are developed in Python and are solved using

PuLP - an open source Python package which utilises COIN-OR CBC solver.

Test instances are designed and the experimental results are presented which demon-

strate the effectiveness of the two-stage model to improve cost and time efficiencies

of the collections process at the Welsh Blood Service, in addition to enabling the

matching of supply to demand. Finally, some insights regarding the staffing levels

of each region are discussed.
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Chapter 1

Introduction

This chapter serves as an introduction to the background of this research project,

conducted as the product of a research partnership with the Welsh Blood Ser-

vice (WBS), funded by both the WBS and Knowledge Economy Skills Scholarships

(KESS 2). The chapter begins with a history of blood transfusion described in

Section 1.1, followed by a discussion about the demand for blood products in Sec-

tion 1.2, and subsequently, the blood supply chain is described in Section 1.3. The

Welsh Blood Service and how they collect blood donations are presented in Sec-

tion 1.4 alongside details of the research partnership. Research aims of this project

are discussed in Section 1.5, followed by a thesis outline in Section 1.6

1.1 History of Blood Transfusion

Human blood is a scarce resource and its role in modern healthcare is fundamental,

with donated blood saving the lives of many on a daily basis. The first reported

successful human to human blood transfusion was performed by James Blundell, a

British obstetrician. There is debate about when this blood transfusion occurred,

but it likely took place sometime between 1818 and 1829, with the transfusion for

treatment of postpartum haemorrhage [31]. Prior to this, many experiments were
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conducted transfusing blood between animals, including between different species,

and even from animals such as sheep to humans as early as 1667. Many of these

experiments resulted in deaths [18]. However, James Blundell was aware of the

research of John Leacock, who theorised that blood transfusions between the same

species could be safe. Blundell undertook his own research, transfusing blood be-

tween dogs, before his first attempted blood transfusion on a human [31]. In total,

Blundell was responsible for ten human to human blood transfusions, with five of

these being successful. However, blood types and compatibility were not discovered

until much later.

Human blood types, A, B and O, were discovered in 1901 by Austrian physician,

Karl Landsteiner, along with the conclusion that when blood of different types were

mixed, this often led to clotting. Landsteiner was awarded the Nobel Prize for his

work in 1930 [3]. His colleagues Alfred Decastello and Adriano Sturli discovered

the fourth blood type, AB, shortly after in 1902. In 1937, Karl Landsteiner and

Alexander Weiner, with later contributing findings made by Philip Levine and Rufus

Stetson in 1940, discovered the Rh blood group system (named in error after the

Rhesus Monkey) [28]. The Rh blood groups consider the antigens present in human

blood, and their names are given by the presence of antigen Rh(D) i.e. Rh positive

indicates the presence of Rh(D), whilst Rh negative indicates the lack of antigen

Rh(D). Combined with the ABO blood group system, these two blood group systems

form the basis of blood type compatibility, as displayed in Table 1.1.

Advances were made in the understanding of anticoagulants, such as sodium cit-

rate proposed by Richard Lewisohn [57], and their vital role in preserving blood

products so that they could be stored for some days before being used. This fa-

cilitated blood banks being developed, with the first known blood bank opened in

Leningrad Hospital in Russia in 1932. Many other blood banks were set up in the

following years, with blood transfusions becoming increasingly common in the 1940s

as a result of the demand caused by World War II [18]. Further progress is made
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Donor’s Blood Type

O− O+ B− B+ A− A+ AB− AB+

Recipient’s
Blood Type

O− 3 3 3 3 3 3 3 3

O+ 3 7 3 7 3 7 3 7

B− 3 3 7 7 3 3 7 7

B+ 3 7 7 7 3 7 7 7

A− 3 3 3 3 7 7 7 7

A+ 3 7 3 7 7 7 7 7

AB− 3 3 7 7 7 7 7 7

AB+ 3 7 7 7 7 7 7 7

Table 1.1: Blood Type Compatibility

through the mid to late twentieth century developing collection, storage and testing

technologies [26], in addition to the separation of blood into its components which

enables each donation to treat several patients.

1.2 Demand for Blood Products

The World Health Organization (WHO) estimates that 118.4 million blood dona-

tions are collected each year globally [67]. Regarding the demand, according to a

study conducted by N. Roberts et al. [82], in 2017 the global blood need was approx-

imately 304.7 million blood products whilst the global blood supply was estimated

to be 272.3 million blood product units. The disparity between global supply and

demand is clear from these figures, with shortages more likely to occur in low-income

countries [67].

After collection, blood donations are usually separated into its components, includ-

ing red blood cells, platelets, and plasma, with each of these products used for

different treatments. Red blood cells can be used to treat all types of anaemia

(including anaemia caused by rheumatoid arthritis or cancer), while red blood cell

transfusions are frequently used to replace heavy blood loss as a result of child-

birth, surgery or an accident [19]. Platelets are often utilised to treat bone marrow

failure, leukaemia, and following a transplant or chemotherapy. Finally, plasma is

commonly given to trauma and burn patients, in addition to being important in
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treatments for immune deficiencies. With the wide variety of life-saving treatments

enabled by blood donation, it is a critical element of modern-day healthcare.

Most blood donations in the world today are voluntary; as of 2018, the WHO

estimates that 79 countries collect over 90% of their blood supply via unpaid donors

[67]. However, there were still 56 countries that receive more than 50% of their blood

supply from either paid donors or from the family of the patient.

1.3 The Blood Supply Chain

The blood supply chain is responsible for the process of transportation of blood

products from the vein of a donor to the vein of a patient. The success of the supply

chain is of utmost importance, with inefficiencies and errors potentially leading to

fatalities. The structure of the blood supply chain model may vary depending on

location, politics, costs, etc. but the ultimate goal is universal: to satisfy the demand

at minimal cost and minimal wastage [70].

The blood supply chain is commonly divided into the following four echelons (Osorio

et al. [68]):

� Collection: This is the beginning of the blood supply chain and involves

either fixed or mobile blood donation clinics, or a combination of both. Blood

products may be collected in the form of either an individual blood component

via a process called apheresis, or whole blood which is the most common form

of donation. From a donor’s perspective, a clinic typically follows the process

displayed in Figure 1.1, with queues often arising between the activities (which

we will refer to as workstations). Eligibility screening is necessary as there are

many restrictions on who may donate blood [92]. Screening often becomes a

prolonged process with many health-related questions and a test for iron levels

within the donor’s blood. The collection echelon ends with all blood donation

units transported to a blood processing centre.
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Donor Arrives

at Clinic
Registration

Eligibility

Screening

Donation of

Blood
Refreshment

Donor Leaves

Clinic

Figure 1.1: Typical Path of a Donor at a Donation Clinic

� Production: This takes place at a blood processing centre, where donated

units of blood are tested and separated into various components (red blood

cells, platelets and plasma) as required. The production of platelets depends

on the amount of time since the donation, as platelets must be separated

from whole blood shortly after collection. This echelon ends with blood being

packaged ready for distribution and moved to storage.

� Inventory: Storage of blood products may either take place at a blood pro-

cessing centre or a stock-holding unit. Each type of blood product has unique

shelf-lives and specific storage requirements, with platelets being the most

complicated; platelets must be kept in an agitated state at ambient tempera-

ture for a maximum of approximately 5 days.

� Distribution: This echelon consists of the preparation of orders of blood

products and the transportation of such orders to the respective hospitals.

Decisions involved include the dates and blood types of dispatched products,

due to blood compatibility and possible limited inventory.

1.4 The Welsh Blood Service

The research presented in this thesis was undertaken as part of a project funded

by both Knowledge Economy Skills Scholarships (KESS 2) and the Welsh Blood

Service (WBS). KESS 2 facilitates collaborative projects between organisations and

academia to support the development of key technologies in Wales, funded by the

European Social Fund via the Welsh European Funcding Office (WEFO). The WBS

is a division of the Velindre University NHS Trust and is responsible for the blood

supply chain in Wales, UK. The service previously only covered South West and
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South East Wales but as of 2016, it is an all-Wales blood service. The WBS collects

blood from the general public on a voluntary, non-remunerated basis, and processes,

tests, and distributes blood products to hospitals across Wales.

The Welsh Blood Service has a total of 577 employees as of September 2021, with

approximately 125 of these employed as whole blood donation clinic staff. The

organisation operates mainly mobile blood donation clinics, with only one fixed

clinic located at the headquarters of the organisation. These mobile clinics consist

of both ‘community’ clinics (set in a local venue, often at a monetary cost) and

‘trailer’ clinics (set in a mobile trailer, often parked at a supermarket or business).

The vast majority of these clinics operate for one day only each time the clinic

is scheduled, whilst some may operate over several consecutive days each time -

we refer to these as multi-day clinics. The current collection model also involves

clinic ‘tours’ which consist of more rural clinics being operated over consecutive days.

Due to the location of these clinics, the clinic staff stay overnight at accommodation

local to the clinics to minimise travel time. The WBS also operate several apheresis

clinics each week for donation of platelets at a clinic based at the organisation’s

headquarters.

1.4.1 Facility and Clinic Locations

The WBS operate mobile whole blood clinics in around 350 different locations across

Wales. Each clinic is assigned to a base (usually the closest in geographical distance)

i.e. where equipment is stored and where staff are typically based. There are a total

of four bases across Wales, located in Bangor, Wrexham, Dafen and Talbot Green

(WBS Headquarters), resulting in four regions. Figure 1.2 displays the location of

the four bases (represented by black pinpoints) with each clinic location represented

by a coloured circle, the colour indicative of the base of which the clinic is assigned

i.e. blue represents clinics assigned to Bangor base, yellow represent the clinics as-

signed to Wrexham base, red to Dafen base and green to Talbot Green (HQ).
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Figure 1.2: Welsh Blood Service Clinics by Region

All of the blood products are processed for production and tested at the headquar-

ters in Talbot Green, requiring all collected blood units to be transported to HQ at

the end of each working day. The storage of processed blood products is mostly at

HQ also, with some stock transported to a stock-holding unit in North Wales for

faster delivery to hospitals located in the north of Wales, as and when required.

1.4.2 Frequency of Clinics

Whole blood donation clinics have a variety of regulations to ensure a safe service

is provided. One of these regulations is a temporal restriction between consecutive

donations: For male1 donors this means that there must be a minimum of 12 weeks

between consecutive donations, whereas there is a minimum of 16 weeks for female

1Where the terms male and female are used, we are referring to those assigned this sex at birth.
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donors. Due to this temporal restriction, there are also restrictions on the frequency

of mobile clinics, with most scheduled no more frequently than once every 16 weeks.

Some clinics may have a significantly large donor panel and thus may operate several

times within a 16-week period, with a different section of its donor panel targeted

each time. The operating hours for each mobile clinic are predetermined, with

time for travelling from team base, set-up and set-down of the clinic taken into

consideration. The majority of clinics run for one day, whilst the remaining clinics

may operate over several consecutive days each time. This is usually the case in

clinics that have a large donor panel and/or require several hours in travelling to

and from the clinic for staff, with the latter sometimes resulting in staff requiring

overnight accommodation.

1.4.3 Collections Planning

Currently, the clinic planning process is tedious and time-consuming, and carried out

in four-week planning periods, relying on various sources of data and local knowledge

to form each plan. Each clinic is given a collection estimate based on an average of

the previous three days that the clinic was operated, and this is taken into account

during the scheduling process. However, fulfilling staff contractual hours is also a

goal in addition to meeting the blood product demand i.e. ensuring a minimum

number of clinics are scheduled in each region per four-week period. This can

result in more clinics being scheduled than is necessary to reach demand, potentially

causing overcollection of blood or the additional associated costs of operating more

(and often smaller, less efficient) clinics to meet the demand.

Similarly to clinic schedules, workforce schedules are currently completed manually

and in four-week periods. Each clinic has various skill mix requirements, depending

on the capacity of the clinic and venue type, and these must be considered when

workforce schedules are created. Training of clinic staff must also be considered to

ensure that all required certification is valid.
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1.4.4 Research Partnership

The research presented in this thesis was conducted as a project funded by both

Knowledge Economy Skills Scholarships (KESS 2) and the Welsh Blood Service.

The Welsh Blood Service has provided a project supervisor throughout the duration

of the project to oversee work and ensure all research aligns with the requirements

of the organisation. Through discussion with the WBS, it was established that the

organisation sought to improve clinic and workforce planning processes to reduce

costs and wastage in the system, such as resources’ time and wastage of blood

products from overcollection.

Despite the success of the blood supply chain ultimately being dependent on the

efficiency of the collection of donated blood, there is a current lack of existing

research focussing on optimisation of the whole blood collections process (as shown

in Chapter 2). This gap in the literature overlaps with the aims of the WBS.

Therefore, throughout this research we focus exclusively on the collection echelon,

more specifically the collection of whole blood donations.

More detailed descriptions of the Welsh Blood Service collection model are presented

in further chapters, namely Chapter 3 and Chapter 4.

1.4.5 Available Data

The Welsh Blood Service provided data to aid research where possible, with NHS

data protection compliance so that donors cannot be identified. All clinic data

was made accessible such as clinic names, locations, venue capacities, and resource

requirements. Due to the anonymous nature of historical bleed figures, all figures

from 2017 to 2020 were provided; these include how many units of blood were

collected from each clinic and how many donors attended. Similarly, all blood

issuing data was also provided by the WBS for the period from January 2017 to

March 2020, which includes the age of each blood product at the time of issue.
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The WBS also provided an anonymised dataset of all donation clinic staff, with

identifiable information such as names and addresses removed. This data includes

staff roles, skill level, agreed working day patterns and contracted hours. While

only salary bands for each employee were provided by the WBS and not a specific

pay rate, information regarding salary band pay rates and annual leave entitlement

is openly accessible online, published by the NHS.

1.5 Research Aims

Having introduced the partner organisation and their requirements, we now present

our research aims. The research detailed in this thesis aims to answer the following

research questions:

1. How can mathematical modelling help to schedule the Welsh Blood Service’s

blood donation clinics more efficiently?

2. How can mathematical modelling help to schedule the clinic-based workforce

at the Welsh Blood Service?

3. Can these mathematical methods be integrated into a decision support tool

for planners at the Welsh Blood Service to use?

These research questions were identified through in-depth discussion with the Welsh

Blood Service about their needs and the strategic direction for the organisation. Re-

search question one arose from the goal of the WBS to minimise wastage of expired

blood products, usually caused by overcollection of blood donations. Research ques-

tion two follows a similar basis to research question one, with the WBS requiring

staffing-related costs to be reduced. Finally, research question three stems from the

desire of the WBS to have a usable tool to improve clinic and workforce scheduling.



CHAPTER 1. INTRODUCTION 11

1.6 Thesis Outline

This thesis consists of seven chapters, together attempting to answer the research

questions described in Section 1.5. This chapter has introduced the Welsh Blood

Service and a general overview of how they collect blood from donors across Wales,

in addition to a summary of the blood supply chain and the history and importance

of blood transfusion. Chapter 1 has also provided the research questions of this

thesis.

Chapter 2 is a review of all relevant literature to the optimisation of the collection

echelon of the blood supply chain. It provides a detailed taxonomy of any methods

utilised, objectives of any research described in the publications, and an outline of

the planning decision levels considered. This chapter identifies gaps in the literature

and therefore areas of research that require further exploration, namely optimisation

of workforce planning.

Chapter 3 explains the current clinic scheduling practice of the Welsh Blood Service,

detailing aspects such as the venues, frequency and availability of clinics. The blood

supply and demand are also discussed. This is followed by the limitations of the

current practice, and a mathematical formulation of the Blood Donation Clinic

Scheduling Problem in the form of a linear programme to optimally schedule clinics

over a given planning horizon. Three alternative objective functions are presented

along with many constraints to ensure the output clinic schedule is as realistic as

possible. This formulation addresses research question one.

Chapter 4 details the current practice at the Welsh Blood Service of workforce

scheduling for clinic-based staff. All clinic roles and related skill requirements are

introduced, in addition to how overtime is managed and utilised at the Welsh Blood

Service. Issues caused by the current workforce scheduling practice at the WBS

are discussed before the mathematical formulation of the Blood Collection Work-

force Scheduling Problem is presented. This problem is also formulated as a linear
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programme to optimally assign workers to a clinic schedule, with two alternative

objective functions introduced and followed by various constraints to ensure that

the workforce schedule solution is feasible for the WBS. This formulation addresses

research question two.

Chapter 5 presents a prototype clinic scheduling model developed in Microsoft Excel

using the OpenSolver add-in. The aims of this prototype are discussed in addition

to the limitations of the model, and how this model addresses research question

three. This chapter also presents the development of the formulations introduced

in Chapter 3 (the Blood Donation Clinic Scheduling Model) and Chapter 4 (the

Blood Collection Workforce Scheduling Model) as mathematical models in Python,

utilising the open source linear programme library PuLP and solved using COIN-

OR. The design of various test instances are introduced for both of the models.

Chapter 6 presents the experimental results for the test instances described in Chap-

ter 5, with both computational and solution-related results of the BDCSM and the

BCWSM. Key findings are discussed alongside and how these models improve upon

current practice at the WBS, addressing research questions one and two.

Chapter 7 summarises the work of all previous chapters and provides answers to

the research questions introduced in Section 1.5. The discussion section of this

chapter addresses limitations related to implementation of the model. Following

this, identified areas related to optimisation of clinic and workforce scheduling that

would benefit from further work are explored.
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Chapter 2

Literature Review

This chapter discusses literature that considers modelling of the collections process

of the blood supply chain. Currently, the vast majority of literature concerns the

inventory stage (Osorio et al. [68]) with little in-depth research carried out on the

collections process. Therefore, the aim of this chapter is to evaluate the existing

literature that deals with modelling of blood collection, provide a detailed classifi-

cation of the selected articles, and thus identify any areas that may benefit from

further research.

The remainder of this chapter is structured as follows: in Section 2.1, we describe

how we conducted the structured search and provide an overview of previous liter-

ature reviews. In Section 2.2, we describe the relevant characteristics of blood col-

lections. We demonstrate how the retrieved articles from Section 2.1 were classified

into the various categories. Section 2.3 closes our literature review with conclusions.



CHAPTER 2. LITERATURE REVIEW 14

2.1 Selection Criteria and Previous Reviews

2.1.1 Selection Criteria and Search for Relevant Literature

We search for journal publications from the Clarivate Analytics Journal Citation

Report (JCR) in the subject categories of Health Policy and Services (HPS), Med-

ical Informatics (MI), Industrial Engineering (IE), as well as Operations Research

and the Management Sciences (OR/MS). These categories are selected due to the

complex nature of the blood supply chain, with modelling of such arising from

various fields and disciplines. The rationale for choosing these categories is to cap-

ture literature from a range of perspectives, whether it be policy decisions and

service improvement (HPS), information systems and data mining (MI) or quanti-

tative healthcare engineering (IE). The inclusion of these categories, together with

OR/MS, yields a thorough analysis of research contributing to improvement of the

collection echelon of the blood supply chain.

Using a structured search string, Scopus provided a base set of articles with the

search mainly focusing on “blood collection” and “blood donation”. The search

excludes all publications before 1996 and produced a total of 125 results in October

2021. All articles that did not specifically refer to the collections process were

considered irrelevant, as were all articles that did not contain quantitative analysis

or discuss optimisation of the blood supply chain. A forwards and backwards search

from relevant articles was then conducted (as suggested by Webster & Watson

[100]) and all relevant results collated. In carrying out our forwards search, we not

only retrieved journal publications citing the articles from the original search but

also a PhD thesis (van Brummelen [98]) which we decided to include in our final

(relevant) set of publications. Collectively, this gives a total of 68 articles, as shown

in Figure 2.1. This is an expanded literature search from the search we conducted

in February 2019 [101] using the same search string, as displayed in Appendix A.

Since February 2019, there has been an additional 22 relevant publications: 12 of
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these were results from the search string, six results were from the forwards search,

and four results from the backwards search1

Original Search

125

Relevant Findings

39

Forwards Search

500

Backwards Search

1202

Relevant Findings

19

Relevant Findings

10

Total Relevant

Findings

68

Figure 2.1: Scopus Search Results

2.1.2 Previous Reviews

There is a vast amount of literature that addresses modelling of the blood supply

chain, however, only a minority of articles focus on the collection echelon. From our

findings, there are five relevant reviews that address modelling of blood collection

from donors; [11, 12, 14, 68, 75]. The most specific of these is written by Baş Güre

et al. [11] who state that there are still several aspects of blood collection that have

not yet been explored from an optimisation perspective, but specifically focus on

donation appointment scheduling.

Baş Güre et al. also published another review [12], prior to the above article,

which studies existing literature surrounding the blood supply chain in general,

categorising by echelon and perspective of research. Similarly, Osorio et al. [68]

provide a review of the whole blood supply chain, with a brief insight into the

literature considering the collections process, categorisation of its planning decisions,

and quantitative models of the process. In both reviews, the section addressing

collections however is significantly smaller than those regarding other echelons of the

supply chain, indicating that there is less existing research covering this particular

1Please note that Figure 2 in our published literature review [101] contained an error which has
been corrected in this thesis; a publication was incorrectly included as a result from the original
search. The relevant findings from the original search were in fact 27 (instead of 28) and the
relevant findings from the forwards search were 13 (instead of 12).
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echelon. However, Beliën and Forcé [14] deliver a review of the whole blood supply

chain also, but instead categorise by methods used, blood product considered, etc.

rather than by echelon of the supply chain. This makes it difficult to identify areas

within sections of the blood supply chain that require further research.

Lastly, Pirában et al. provide a more detailed (and more recent) taxonomy of all

literature involving models of the blood supply chain [75], with a breakdown of re-

search by various categories such as methods, echelon(s), blood products considered,

and objectives. This review identifies gaps in the existing literature such as the lack

of studies that consider ‘the design and application of collection policies to prevent

inventory levels from exceeding the demand’.

The rest of this chapter provides a detailed taxonomy of articles, specifically fo-

cussing on the collection echelon of the blood supply chain. It includes all existing

research on blood collection that consider an OR approach, including those from

an interdisciplinary perspective, and provides an up-to-date analysis of surround-

ing literature due to the significant increase in publications within this field over

recent years, as demonstrated by Table 2.1. Thus, our literature review presents

an in-depth discussion of current literature on the collections process and clearly

identifies areas that require further research.

2.2 Classification of Literature

Employing the selection criteria, a total number of 68 articles were retrieved and

considered relevant for this review. The articles can be categorized by publication

year as given in Table 2.1. The table reveals that this field of research is becoming

increasingly popular, since 84% of the relevant articles were published within the

last seven years. Earlier publications mainly consist of more simplistic statistical

analyses, such as the impact of sharing blood donor deferral registries to stream-

line donation clinics [29]. However, in 1996 Jacobs et al. [50] published an integer

programming method to advise the American Red Cross on whether to relocate a
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permanent facility. In more recent years, integer programming methods remain pop-

ular in optimising blood collection, in addition to many other OR methods including

simulation and machine learning. The dramatic increase in research in optimisa-

tion of blood collection may be attributed to the technological advancements which

enable the growing range of OR methods to be utilised effectively.

Table 2.1: Number of Articles by Publication Year

Time Period Before
2005

2005–
2007

2008–
2010

2011–
2013

2014–
2016

2017–
2019

2020–
Present

Total

Number of Articles 2 2 2 5 14 27 16 68

The articles can also be classified by geographic location, as seen in Table 2.2.

Here, articles are classified under either the location of any mentioned case studies,

or that of the first named author. The majority of research in blood collections

has been based in Asia, and most of these are in developing and emerging nations

(such as Iran) and consider the blood collections process in the event of disasters

(from natural or man-made causes) e.g. earthquakes. However, there is a lack of

research regarding the blood supply chain in the event of disasters from elsewhere

in the world, and this suggests that there is further research to be done to aid

the blood services in countries who may face similar circumstances. There are a

significant amount of articles concerning modelling of blood collection from Europe

and America (North and South America collectively) which indicates that this is

indeed a worldwide issue.

Table 2.2: Number of Articles by Continent

Continent America Asia Europe Rest of
World

Total

Number of Articles 11 39 17 1 68

The articles may also be classified according to their respective JCR (Journal Ci-

tation Report) category to illustrate the approach and perspective of the research.

The four subject categories are Health Policy and Services (HPS), Industrial Engi-

neering (IE), Medical Informatics (MI) and Operations Research and Management
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Sciences (OR/MS). A total of 47 articles are listed in Table 2.3, with the remaining

20 articles from other journals outside of these categories (all of which are from the

forwards and backwards search) reinstating the multi-disciplinary nature of blood

collection. The OR/MS category is clearly the most popular of the four categories;

this conveys the usefulness of OR methods to tackle modelling of blood collection

from donors.

Table 2.3: Articles by JCR Category

JCR Category Articles Total

HPS [6,29,71,103] 4
IE [11,33,61,63,68,73,84,90] 8
MI [27,96,102] 3
OR/MS [9, 10, 13, 14, 16, 22, 25, 34, 35, 41, 43, 44, 46, 50–52, 58, 60,

65,69,72,75,76,78,79,81,85,86,88,89,91,104]
32

In the next subsections, a classification framework for these articles will be provided,

categorising into functional areas, methods and approaches, planning decision level,

and whether a case study was incorporated.

2.2.1 Functional Areas Considered

We now classify the articles by the functional area in which the research aims to im-

prove/target. The functional areas have been organised into the following categories:

� Appointment Scheduling: All articles that discuss an appointment schedul-

ing policy, framework, or optimisation of appointments.

� Collection Policy: This covers all research and analysis of the way in which

blood is collected from donors, including eligibility/deferral of donors and also

the collection strategy.

� Crisis Situation: This involves all research into the blood supply chain from

the perspective of a crisis occurring and emergency aid being required e.g.

natural disasters such as earthquakes.
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� Donor Demographics: This includes all analysis and research of donor

demographics such as donor behaviour, location, age, blood type, etc, and

donor motivation.

� Location/Clinic Planning: This category includes all research which con-

siders the location of either temporary or permanent facilities used for blood

collection (mostly location of donation clinics). Both the allocation of clinics

and relocation of facilities are categorised under this.

� Staff Utilisation: This category includes all articles which consider the allo-

cation of staff to clinics and also analysis of staff level requirements and skill

mix.

� Vehicle Routing: All articles that consider routing of vehicles that transport

blood and resources for blood collection.

Note that articles which do not fit into any of the above categories are literature

reviews and thus not proposing any particular methods or action.

Table 2.4: Functional Areas of Research

Functional Area Articles

Appointment Scheduling [6, 13, 63,98,103]
Collection Policy [6, 9, 10,27,29,39,44,60–62,69,71,72,87,88,102]
Crisis Situation [25,33–35,39,42,51,52,59,76,78,81,86–91,93,95]
Donor Demographics [5, 6, 27, 35,43,46,56,65,79,96]
Location/Clinic Planning [5,8,9,22–25,30,33–35,39,41,42,44,46–48,50–52,

61,70,76–79,81,84–86,88–91,93,95,104,105]
Staff Utilisation [5, 6, 17, 30,58,96,98]
Vehicle Routing [41,59,63,73,77,81,85]

2.2.1.1 Appointment Scheduling

Appointment Scheduling is the least popular category, as revealed by Table 2.4.

While many donation sites worldwide accommodate for unbooked or “walk-in”

donors, appointment systems provide an opportunity to control the arrival pat-

terns of donors and better manage resources and inventory. Mobasher et al. [63]
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consider how many donations should be collected within certain time intervals in ac-

cordance with vehicle routing to maximise donations viable for platelet production.

Alfonso et al. [6] place more of an emphasis on appointment strategies regarding

frequency of apheresis donations throughout the day, whilst Baş Güre et al. [13]

focus on pre-allocating appointment slots to each blood type at a permanent facil-

ity. Van Brummelen [98] considers the combination of appointments and “walk-ins”

and produces an optimal appointment schedule based on minimising waiting times

for donors. Yalçındaǧ et al. [103] present a risk-averse framework for appointment

scheduling under uncertain donor arrivals.

More generally, the literature surrounding appointment scheduling in healthcare

neglects mainly strategic decisions but also most tactical decisions; according to

Ahmadi-Javid et al. [4] the vast majority of publications concerning optimisation of

outpatient appointments focus on an operational level. Contrastingly, the publica-

tions focusing on blood collection take a more tactical approach. Ahmadi-Javid et

al. [4] also discuss the increasing interest in appointment scheduling, as over 73% of

the publications considered in their review were produced between 2012 and 2016

(the most recent at the time of publication). Despite this, there is still a significant

lack of research applied to blood donor appointment scheduling.

There is also a lack of research that considers combining various aspects of appoint-

ment scheduling. Reducing waiting times, matching supply to demand (including

blood type specific demand) and managing donor arrivals are all key elements of

effective and efficient blood collection, yet research within appointment scheduling

often focus on just one of these goals.

2.2.1.2 Collection Policy

Collection policy is considerably widely researched, with a significant amount of

these articles considering how many units of blood should be collected at a clinic

[9,39,44,60–62,69,71]. This is considered from a variety of perspectives, such as the
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number of mobile clinics to deploy [44], how much to collect at each clinic under

various scenarios [9, 87], or when to stop collecting each day [62]. Lowalekar &

Ravi [61] use the Theory of Constraints (TOC) thinking process to evaluate the

collections process associated with a blood bank in Chennai, India, to identify areas

for improvement in the collection policy and thus improve inventory management.

The TOC thinking process is a ‘process improvement methodology that emphasizes

the importance of identifying the “system constraint” or bottleneck’ [97].

Donor deferrals are observed [6, 27, 29, 61], with Custer et al. [27] evaluating blood

safety and policy decisions to assess the impact of deferrals on inventory. Xu et

al. [102] consider the optimal interval between consecutive blood donations from

male donors, ranging from eight weeks to 12 weeks. Various methods of blood

product collection are also studied [6,69,71,72,88], with Osorio et al. [69] optimising

the balance between whole blood and apheresis, considering cost and the number

of donors required to reach demand. Ayer et al. [10] discuss the manufacturing of

a specific blood product (cryoprecipitate) and how best to collect blood donations

for this.

2.2.1.3 Crisis Situation

Of the 20 articles that address the blood supply chain in the event of a crisis situa-

tion, the majority of these also include location/clinic planning [25,33–35,39,42,51,

52, 76, 78, 81, 86, 88–91, 93, 95] with other articles considering alternative areas such

as vehicle routing [59] or collection strategy [81, 87]. This is due to the importance

of facilities (collection and processing) being located in an accessible area for a re-

sponsive and reliable supply chain. The aims of these articles vary from minimising

transport time [33,35] to ensuring fairness in the distribution of blood products [25].

Most of the publications include a case study [25,34,35,39,42,51,52,76,81,86–91,93]

with most of these based on the scenario of an earthquake in either Istanbul, Turkey

or various cities in Iran, whilst one focusses on blood collection during the COVID-

19 outbreak in Iran [87]. There is a lack of research within this area from elsewhere
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in the world, particularly studying disasters with anthropogenic causes.

2.2.1.4 Donor Demographics

Donor demographics and behaviour have a significant impact on the success of

the collections echelon, and while many articles indirectly consider these aspects,

only seven directly incorporate such aspects into their models. Alfonso et al. con-

sider donor behaviour such as generosity and availability to inform their location-

allocation model [5] and simulation model [6]. Custer et al. [56] study donor demo-

graphics regarding likelihood of donor deferrals, while Testik et al. [96] study donor

arrival patterns. The location of donors is considered in various location planning

models [5, 35, 79] to inform where to locate clinics to ensure the required amount

of blood will be collected. Lee & Cheng [56] classify disparities in donor behaviour

to identify possible causes of decreasing donations and predict donors’ intentions,

while Nagurney & Dutta [65] consider donor satisfaction and the effect of this on

competing blood organisations. Lastly, both Haeri et al. and Hosseini-Motlagh et

al. [43, 46] consider the link between donor motivation and a sufficient supply of

blood.

2.2.1.5 Location/Clinic Planning

Location and clinic planning is the most popular category within the selected lit-

erature. This is unsurprising since the success of a clinic depends heavily on the

location, which is ideally easily accessible and within a given radius of a large amount

of regular donors in order to meet the collection targets. The majority of articles in

this category detail a location-allocation problem [5, 8, 9, 23, 25, 33–35, 39, 41, 42, 44,

46–48, 50–52, 70, 76–79, 81, 84–86, 88–91, 95, 105] i.e. deciding the location of mobile

and/or fixed donation clinics, and often also attempt to minimise the costs involved

with moving clinics and transportation of blood products. The next most popular

area of research within this category is the planning of clinics, such as the explicit

scheduling of clinics at locations that are already assigned [5, 85]. Several articles
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in this category either focus on relocating or establishing a new facility such as a

blood centre or stock holding unit [16, 23, 50, 76, 84, 93], whilst the comparison of

effectiveness of mobile and fixed clinics is also considered [6]. Centralisation of a

regional blood service is discussed in the literature, with various levels of central-

isation considered and analysed by Osorio et al. [70]. Finally, a variety of clinic

configurations are considered by Doneda et al. [30] i.e. clinic layout and number of

donation chairs.

2.2.1.6 Staff Utilisation

Staff Utilisation is another category lacking in research, with only seven articles

exploring this area. All of these propose slightly different approaches, but nearly

all deal with determining the general staffing requirements for donation clinics in

order for the blood services to reach their targets for donor satisfaction and volume

of collected blood. Alfonso et al. [6], Doneda e al. [30] and Blake & Shimla [17]

all consider various configurations of clinic staff and the impact of these on donor

waiting times and service level, with the former two studies using simulation and the

latter using queueing theory. The aim for all three models is to keep costs and queues

to a minimum, and along with Testik et al. [96], intend to better inform policy.

However, Testik et al. approach the problem from the perspective of donor arrivals

and the effect of this on workforce utilisation. The goal of this is to identify patterns

in donor behaviour (through data mining methods) and determine an adaptive

workforce with varying numbers of staff throughout the day to better cope with

changes in donor arrivals. Li et al. [58] consider staff schedules for blood donation

clinics across Beijing, focussing on meeting donor demand by scheduling staff to

transfer to another clinic in the same working day.

Van Brummelen [98] presents an ILP model to optimally assign varying length shifts

to staff to best cope with donor arrival patterns. Van Brummelen also considers

intra-day scheduling of staff across the stations within the clinic to minimise donor

waiting times and staff hours worked. This model is based on fixed clinic sites,
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whereas Alfonso et al. [5] consider staff scheduling for mobile sites also. Alfonso et

al. [5] present a two-stage model in which the latter produces a staff schedule for

each clinic. However, the model does not include intra-day scheduling. Furthermore,

none of the articles consider intra-day scheduling regarding employee breaks or

closure of clinic for lunch and how this may effect donor flow. This lack of research

in explicit scheduling of staff at donation clinics is surprising, since a lack of efficient

staffing can have a massive impact on donor satisfaction, volume of collected blood,

and monetary costs.

2.2.1.7 Vehicle Routing

In all publications under this category, the principle aim is to minimise the distance

travelled by vehicles associated with the collections echelon, though the motivation

behind this aim varies. Several articles discuss the importance of vehicle routing

in order to maximise platelet production [63, 73, 77] due to its perishable nature.

Şahinyazan et al. [85] and Gunpinar & Centeno [41] both utilise vehicle routing

in order to maximise the number of blood donations collected, while Lodree et

al. [59] and Razavi et al. [81] determine the optimal routes during the response

phase following a large-scale disaster.

2.2.2 Methods

Since this thesis utilises mathematical modelling methods, a detailed overview about

the methods and solution approaches of relevant literature is given in Table 2.5. The

approaches are categorised into Data Mining and Machine Learning, General Statis-

tical Analysis, Game Theory, Goal Programming, Heuristics, Integer Programming

(includes mixed integer programming), Queueing Theory, Qualitative, Simulation,

and Stochastic Modelling. Note that any previous literature reviews are assigned

to the Qualitative category, and that the category Statistical Analysis includes ar-

ticles that incorporate probability distributions or forecasts of certain aspects such

as blood product demand or donor behaviour.
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Table 2.5: Methods

Methods Articles

Data Mining and Machine Learning [52,56,63,73,96]
Statistical Analysis [5, 27,29,60,61]
Game Theory [65]
Goal Programming [23,42,43,52,81]
Heuristics [48,59,60,63,70,72,73,77,78,81,85,93,95,98]
Integer Programming [5, 8, 9, 13, 22, 24, 25, 34, 35, 39, 41, 44, 46, 47, 50,

51,58,59,63,69,71,72,76,77,79,84,85,88,90,91,
93,95,98,103–105]

Queueing Theory [17,96,98]
Qualitative [11,12,14,61,68,75,90]
Simulation [6, 16,27,30,60–62,71,86,98,102]
Stochastic Modelling [9,10,25,33,35,39,41–44,46,47,58,69,71,77,79,

86–89,103–105]

The table reveals that (mixed) integer programming is a commonly used modelling

and solution method in the field of blood collections. All of the articles that use

this method, utilise it to solve an allocation problem: either of location, appoint-

ments, staff shifts, or routes of vehicles, with the objective function mostly being to

minimise costs and to maximise donor satisfaction or blood collected. This conveys

why integer programming is the most popular approach, since the effective alloca-

tion of clinic locations, donor appointments and vehicle routes are fundamental to

the success of a blood supply chain.

Stochastic modelling is also a popular method in optimisation of collection of blood,

and mostly used alongside an integer programme [9, 25, 35, 41, 44, 46, 47, 58, 69, 71,

77, 79, 88, 103–105]. This is due to the stochastic nature of the blood supply chain,

particularly regarding both the demand of blood products and supply from donors.

A significant amount of these publications present a robust optimisation approach

[9, 25, 35, 41–43, 46, 47, 58, 79, 86, 89, 104, 105] which mostly consider the uncertainty

in parameters such as donor arrival, costs and demand. For instance, Zahiri et

al. [105] propose a strategic robust possibilistic programming model to ensure the

results are still relevant and applicable over the long planning horizon, minimising

the effect of changes in parameters over time. Many of these publications focus

on disaster relief [25, 33, 35, 39, 42, 46, 47, 86–89] and utilise stochastic modelling to
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create a more robust blood supply chain, to ensure effectiveness even in the midst

of an emergency.

Heuristic techniques involve algorithms that seek approximate solutions quickly,

and these are a frequently used mathematical method within the selected literature.

These are also often used alongside integer programming methods [59,63,72,77,85,

93, 95], and in this case are mostly integer-programming-based algorithms i.e. the

relaxed linear programme solution is utilised as a construction heuristic. Heuristics

are also used with statistical methods to aid a primarily simulation approach [60],

as Lowalekar et al. use a gradient search-based heuristic to identify the optimum

policy parameters for their model. Van Brummelen [98] uses a heuristic algorithm

to allocate appropriate appointment slots throughout the day. Only one of these

articles uses heuristics as their primary method [48] - Hsieh et al. propose a solu-

tion to a location-allocation problem regarding donation clinics, and here they use

a sorting genetic algorithm to search for the Pareto set to solve the multi-objective

problem. A common theme in the utilisation of heuristic algorithms is vehicle rout-

ing problems [59,73,77,81,85] due to the complexity associated with such problems,

as they are NP-complete and cannot be solved exactly. The efficiency of heuristic

methods is beneficial to many other problems within the blood supply chain, as such

problems are often very complex with a large amount of parameters and variables.

Simulation is widely used to analyse and optimise the blood collections process.

However, some of the articles in this category only use simulation as support or

stochastic evaluation of the mathematical model, and it is therefore not the pri-

mary method in use. For example, simulation is used as a way of evaluating the

implementation of a proposed model [60, 61, 86, 98], evaluating a current systems

performance [6], or to generate scenarios for a mathematical programming formu-

lation [5]. The only articles in which simulation is used as the primary method to

optimise blood collections are [16,27,30,62,102]. Blake et al. [16] use simulation to

determine the impact of the addition of a stock holding unit in a given region in
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Canada, Lowalekar & Ravichandran [62] use simulation to compare two potential

new collection policies against each other and indeed against the current policy.

Custer et al. [27] evaluate the cost of blood per unit using simulation, while Doneda

et al. [30] use simulation to observe the effect on donor time in the system and cost

of a clinic under several different clinic configurations. Finally, Xu et al. [102] utilise

simulation to compare different inter-donation intervals among male donors.

Data mining and machine learning techniques are mainly used to support other

mathematical methods. For instance, Mobasher et al. [63] and Özener & Ekici [73]

utilise clustering algorithms to assist with vehicle routing problems. Meanwhile,

Testik et al. [96] and Lee & Cheng [56] use data mining and clustering methods to

evaluate donor behaviour such as likelihood to donate and arrival patterns at clinics.

Lastly, Khalilpourazari et al. [52] utilise neural learning methods to gain knowledge

from past experiences to adapt to new challenges such as natural disasters. These

methods provide an innovative approach to modelling of the blood collections pro-

cess as they offer the opportunity for donation clinics to be planned in alignment

with the respective donor-base of a given region, regarding the planning of location,

capacity and staff.

2.2.3 Model Objectives

In what follows, we will break down articles which provide a mathematical model

of the blood collection problem into various objectives; such objectives are clearly

identifiable in the case of some methods, such as integer programming. For other

methods, we identify objectives from the authors detail on the aims of their research,

and outcomes of their model. A total of 54 articles are found to specify an objective

to be maximised or minimised, with the most popular of these detailed in Table

2.6 whilst Table 2.7 displays the articles which share a common objective. The five

objectives are defined as the following:
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� Maximise blood collection: Models that aim to collect as much blood as

possible.

� Minimise blood shortage: Any models that seek to minimise the shortage

of blood products (less than demand).

� Minimise cost: Models that aim to lessen any costs, from clinic operation

to transportation costs

� Minimise distance: Any models that aim to decrease distance in some way,

ranging from distance travelled to distance between facilities.

� Minimise time: This includes the minimisation of time used - either re-

garding a specific aspect (such as transportation), or that of the whole blood

supply chain.

Both Table 2.6 and Table 2.7 clearly show that the most popular objective is min-

imisation of cost. This is unsurprising since most blood services are non-profit

organisations, and donors are usually voluntary and non-remunerated. While many

articles aim to minimise the cost of the collection echelon in general, or even the

whole blood supply chain, some focus on more specific costs. An example of this

is the cost of clinic operation; Salehi et al. [86] seek to minimise the costs of estab-

lishing permanent blood centres, while Blake & Shimla [17] aim to minimise costs

associated with staffing.

The minimisation of time is the second most popular objective, which is typically

due to the perishable nature of blood. This objective is often considered alongside

minimisation of costs as the two are closely linked, especially regarding transporta-

tion and staffing. Some articles present a model which aims to minimise the length

of the blood supply chain, across all echelons i.e. reduce the time blood products

spend in the system, from donation to distribution at a hospital. For example,

Attari et al. and Arvan et al. [8, 9] present this goal in their respective models.



Table 2.6: Popular Objectives

Objective Articles

Maximise Blood Collection [35,58,63,77,85]
Minimise Blood Shortage [25,34,39,42,52,61,71,78,91]
Minimise Cost [8–10,17,22–25,30,33–35,39,42–44,46,47,50–52,58,65,69–72,76–79,81,84–91,93,95,98,104,105]
Minimise Distance [23,24,41,86]
Minimise Time [8, 9, 30,33,35,39,44,51,52,73,84,87,95]

Table 2.7: Common Objectives

Objectives Articles

[8] [9] [23] [24] [25] [30] [85] [33] [34] [35] [84] [39] [42] [44] [51] [52] [58] [71] [77] [78] [86] [87] [91] [95]

Maximise Blood Collection 3 3 3 3

Minimise Blood Shortage 3 3 3 3 3 3 3

Minimise Cost 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Minimise Distance 3 3 3

Minimise Time 3 3 3 3 3 3 3 3 3 3 3 3
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However, other models focus on a specific attribute such as transportation time

[33,35,39,51,52,73,95] - distance is closely related to this, which may be the reason-

ing behind fewer articles detailing the minimisation of distance as a main objective.

Although, minimising distance may also concern factors other than transportation,

such as fairness in distances between blood centres and hospitals within a given re-

gion [23]. Additionally, Şahin et al. [84] aim to minimise the total demand-weighted

distances both from donation clinics to blood processing centres, and from blood

processing centres to hospitals.

Five articles detail the maximisation of blood collected as an objective, though

from varying perspectives. Rabbani et al. [77] and Mobasher et al. [63] wish to

maximise the amount of donations that can be processed for platelet production,

while Şahinyazan et al. [85] aim to maximise the amount of blood collected while

optimising vehicle routing between mobile clinics. Fazil-Khalaf et al. [35] seek to

collect as much blood as possible in disaster situations, while Li et al. [58] aim to

collect as much blood as possible whilst reducing staff transfer costs. Though each

blood service requires a significant amount of blood to support demand, perhaps

this objective is less popular due to overcollection of blood leading to wastage of

blood products.

A total of nine articles explicitly aim to minimise the shortage of blood products

i.e. the amount of viable donations less than the demand. Matching supply to

demand is the fundamental goal of blood services as not meeting the blood product

demand of patients has fatal consequences. Thus, the number of articles considering

this as an objective is surprisingly low, and indicates a possible priority for future

research in the area of optimisation of the blood collection echelon. However, some

articles utilise a constraint ensuring that the blood demand is met as a constraint

and therefore would not appear as an objective function.

Aside from the objectives listed in Table 2.7, various objectives were discussed

individual to specific articles. For example, since the functional area of [13] is ap-
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pointment scheduling, in this article, Baş et al. focus their objective function on

balancing the production of each blood type among days to minimise wastage of

blood. Alfonso et al. [5] aim to minimise the system overtime, whilst maximising

the donor service level. Mobasher et al. [63] focus on minimising the total working

time along with the blood supplied by other regions (and thus incurring a cost).

Lowalekar & Ravi [61] concentrate on inventory-related objectives and aim to min-

imise both shortages and outdates of blood products, whilst Testik et al. [96] focus

on clinic operation related objectives such as maximisation of staff utilisation and

minimising donor wait.

A wide variety of objectives are covered in the selected literature, and whilst min-

imising costs is of high importance to a blood service, donor satisfaction is crucial

and often overlooked. As discussed above, the minimisation of donor waiting times

and service level has been considered, though minimally. The matching of supply

and demand is vital to the success and effectiveness of a blood supply chain, and

there is little optimisation of this considered in the literature, as it is usually indi-

rectly - this implies that further research which places matching supply and demand

(not simply meeting demand) as a main objective would be of great benefit to blood

supply chains worldwide and reduce both ‘overcollection’ and wastage of blood.

2.2.4 Planning Decision Levels

The selected articles can be categorised by the planning decision level that they

discuss; namely strategic, tactical or operational (offline or online).

Table 2.8: Articles by Planning Decision Levels

Planning Decision Level Articles

Strategic [5,8,9,16,22–25,27,29,33–35,39,42,43,46,47,50–52,
56,60,61,70,71,78,79,84,86,88–91,95,104,105]

Tactical [9, 10, 13, 30, 35, 39, 44, 46, 48, 52, 58, 59, 63, 65, 69, 72,
73,76,77,81,85,87–89,93,98,102,103,105]

Operational
Offline [5, 6, 13, 17,41,58,63,71,85,96,98]
Online [13,98]
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As described by Hulshof et al. [49], strategic planning ‘addresses structural decision

making’ and involves the decisions which help to develop and improve an organ-

isation, more specifically in our case, a blood service. This is therefore typically

over a long planning horizon. As shown in Table 2.8, a significant number of the

articles deal with strategic planning decisions. This is due to the vast number of

articles that deal with locational planning and collection policy, as changes to these

are typically implemented incrementally, and over a long period of time.

Tactical planning ‘translates strategic planning decisions to guidelines that facilitate

operational planning decisions’, and often involves the coordination of operations

within an organisation, as described by Hulshof et al. [49]. These decisions essen-

tially focus on the ‘what, where, how, when and who’ of a given process. A total of

29 of the selected articles fit into this category, and these are mainly either appoint-

ment scheduling,vehicle routing problems, or insights about how to adapt during

an emergency - these types of problems are often solved by providing a framework

for the blood service to implement, a decision support tool, or specific managerial

insights.

Operational planning is typically on a short-term basis, involving the execution of

a blood service’s processes; this planning decision level is further categorised into

offline and online planning. Operational offline decisions are those that are made in

advance of a process being carried out, such as assigning a resource to a donor, while

operational online decisions are ‘control mechanisms that deal with . . . reacting to

unplanned events’ [49] during the process. All of the articles in the operational

planning category are also in the operational offline planning subcategory, with

only two also being in the operational online planning subcategory. This illustrates

the need for processes to be well-prepared and organised in advance of starting a

donation clinic, but also online decisions may need to be made regarding sickness

of staff, appointment cancellations and prioritisation of donors.

Due to the complex nature of the blood supply chain, all planning decision levels
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are important and necessary. However, strategic planning allows for perhaps the

most significant improvements towards a more effective and efficient supply chain,

as long-term goals are able to be realised, such as the alignment of demand and

supply.

2.2.5 Case Studies and Implementation

A total of 51 of the articles (75%) include a case study, with real-life data from

a chosen blood service, as seen in Table 2.9. Several of these articles are of re-

search motivated by a specific blood service, with the aim of any findings being

implemented if proven effective, or to inform future policy.

Table 2.9: Articles by Case Study Inclusion

Case Study Included Articles

Yes [5,6,9,10,13,16,17,22,25,27,29,30,34,35,39,41–44,46–
48, 50–52, 60–63, 65, 69, 70, 72, 76, 79, 81, 84–91, 93, 96, 98,
102–105]

No [8, 11,12,14,23,24,33,56,58,59,68,71,73,75,77,78,95]

Only 17 of the articles did not present a case study within their research - note that

the five previous literature reviews are included in this category, and aside from

these, the remaining articles propose findings which are either tested on hypothetical

data/situations or simply presented as theoretical arguments.

The majority of selected publications presented a solution which could possibly be

implemented in real-life scenarios, yet only five of these articles specifically stated

that their proposal had either been implemented or are likely to be implemented

[10,22,50,71,103]. These findings are similar to that of Brailsford et al. [21] who state

that ‘levels of implementation for models in healthcare OR are very small indeed’.

Harper and Pitt [45] discuss common reasons for this lack of implementation in

healthcare settings. However, this figure may not be a true representation of the

implementation of the current research, due to the possibility that the timeline of

many projects may have ended before implementation could be carried out, and
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thus the corresponding article would have no mention of such.

2.3 Literature Review Findings

This chapter has presented a categorisation framework to distinguish methods, func-

tional areas and various other aspects of existing research, and provides a clear clas-

sification of the literature surrounding blood collections. This enabled us to identify

any areas that require further research.

Perhaps the most notable area which calls for more in-depth research to be con-

ducted is that of resource planning at blood donation clinics, and more specifically

workforce planning. Presently, very few publications explore this (within our lit-

erature search) with most simply analysing the levels of required staff instead of

explicitly scheduling staff optimally. Van Brummelen [98] does consider intra-day

scheduling of staff and varying shift lengths but only for fixed clinic sites. Only one

model explicitly generates a staff schedule for mobile donation clinics [5], but this

does not consider intra-day scheduling. Not only does the assignment of staff to

clinics require further research, but also the scheduling of staff throughout a day,

especially considering staff breaks and how to mitigate the effects of this on the

donor waiting times. Intra-day scheduling is of great importance as it can help to

improve donor service level, reduce waiting times and increase productivity, through

utilising the workforce in alignment with varying donor behaviour throughout the

day.

Appointment scheduling is also lacking in research within optimisation of the col-

lection of blood, despite appointments enabling clinics to have some control over

queues and donor arrivals. In the existing literature, the research tends to focus

on one aspect of appointment scheduling such as apheresis donations, blood types,

or aligning appointments with transportation of collected units. However, appoint-

ment scheduling provides the opportunity to not only control inventory in regards

to volume and blood type, but also to manage the donor flow through a clinic via
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analysis of frequency of appointment slots. There is much research to be undertaken

that marries all of these important aspects together.

Both the scheduling of staff and appointments have great impact on the efficiency of

a clinic and donor satisfaction. Due to donors (in most cases) being volunteers and

non-remunerated, it is vital to maximise the experience of donors as far as possible

i.e. minimisation of queues, efficient service, convenient location and appointment

time, etc. Future research within this field should place donor satisfaction at the

forefront of its aims and objectives, as the success of blood supply chains ultimately

rely on the many generous donors worldwide.

Matching supply and demand is the goal of any supply chain, but achieving this goal

is of utmost importance to the blood supply chain, with failure to do so resulting

in potentially critical consequences. Despite this, matching the supply and demand

of blood is often neglected or only indirectly considered. Whilst many publications

account for demand being satisfied, there is a significant lack of research regarding

‘overcollection’ of blood as this leads to avoidable wastage of invaluable products.

In conclusion, as human blood is an invaluable and scarce resource which is essential

to modern healthcare, the blood supply chain is vitally important globally. Since

the success of the blood supply chain is ultimately dependent on voluntary donors

in most parts of the world, further research into the collection of donated blood is

imperative to reduce wastage and shortages of blood, and increase the effectiveness

and efficiency of blood services.

2.4 Summary

This literature review chapter has focussed primarily on articles which discuss the

analysis and optimisation of the collections echelon of the blood supply chain, as

there is a distinct lack of existing reviews providing an extensive and recent evalu-

ation of this particular field of research. Gaps in the research area have been iden-
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tified; namely the optimisation of staff scheduling including intra-day scheduling,

appointment scheduling for donors, and the direct matching of supply to demand

for blood products.

In the following chapter, Chapter 3, the Welsh Blood Service collection model is

described and the limitations of this current practice are identified. Further, the

Blood Donation Clinic Scheduling Model is presented in a mathematical formulation

in the format of a linear programme, to optimally schedule clinics across a given

planning horizon. Decision variables are described, along with all other parameters,

before three alternative objective functions and constraints are presented.
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Chapter 3

The Blood Donation Clinic

Scheduling Problem

This chapter describes the current practice for scheduling blood donation clinics

at the Welsh Blood Service (WBS), the limitations of this practice, and proposes

a mathematical model to improve the efficiency of the clinic scheduling process.

This chapter is structured as follows: the current practice of blood donation clinic

scheduling at the WBS is described in Section 3.1, with the mathematical formula-

tion of the Blood Donation Clinic Scheduling Problem (BDCSP) introduced in the

subsequent Section 3.2 with all relevant parameters. The Blood Donation Clinic

Scheduling Model (BDCSM) formulation is presented in Section 3.3 with a descrip-

tion of all decision variables, objective functions and constraints.

3.1 Current Practice

It has been identified that the way in which the WBS collects their blood donations,

though consistently meeting demand for blood products, would benefit from an

increase in efficiency. At present, the WBS often exceeds their target of number

of blood units collected, resulting in the demand being satisfied but also increasing
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the likelihood of wastage of product due to the perishable nature of blood products.

This then renders the donors of any wasted product ineligible for donation for a

minimum of 12 weeks for male donors and 16 weeks for female donors1. This also

implies that less clinic hours are required to meet the demand (within some tolerance

to account for variation between predicted and actual demand). In addition, the

Welsh Government require that the WBS waste no more than 2% of all collected

units each calendar year, with potential fines presented if the wastage exceeds this.

Therefore, matching supply to demand is of great importance to the continued

success of the Welsh Blood Service and indeed the blood supply chain in Wales.

The Welsh Blood Service collects nearly all of their whole blood donations from

‘mobile’ clinics, i.e. temporary clinics, with only one permanent clinic based at their

headquarters in Talbot Green. Every temporary clinic is either located in a venue

(often hired at cost) or in a parked trailer (owned by the WBS) at a specific location.

The former of these clinic types are referred to as ‘community’ clinics and the latter

as ‘trailer’ clinics. As of 2016, the WBS collects blood donations from all counties

in Wales and is the only organisation operating blood donation clinics in Wales.

3.1.1 Regions

The WBS has four ‘bases’ i.e. locations where clinic-based workers start their shift

to travel to a donation clinic, and also where equipment and vehicles are stored.

Every clinic is assigned to a specific base such that only resources from the assigned

base serve this clinic. This allows Wales to be split into four regions operationally

with each base as the hub of each region, as displayed in Figure 1.2.

The South East region has significantly more clinics than any of the other regions

due to the population density being much larger in this region with almost half

of the Welsh population residing in this area [40], and therefore there are more

donors to reach. For this reason, the WBS has the resources to operate up to four

1Where male and female donors are referring to those assigned the respective gender at birth.
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clinics a day in the South East region. Each other region (South West, North West

and North East) has only one team of clinic workers and therefore the capacity to

operate at most one clinic per day in each region.

3.1.2 Clinic Venue Types

There are two clinic venue types (excluding the one permanent clinic at the WBS

headquarters) namely ‘community’ clinics and ‘trailer’ clinics. The former usually

take place in a venue such as a local community centre whereas the latter usually

take place in a parked trailer (often outside a supermarket). Community clinics

typically have a larger capacity than trailer clinics, as the latter are often limited to

a maximum of 6 donation chairs. The number of trailer clinics that can operate on

a given day is limited as there are a fixed number of them available to the WBS.

In addition, some clinics are organised with a given company to operate at a partic-

ular workplace, with appointments to be reserved for employees only, and therefore

closed to the general public. These clinics are called ‘company’ clinics, with all other

clinics deemed to be ‘public’ clinics.

3.1.3 Clinic Tours

Due to the bases being located either far to the north or south of Wales, Mid-Wales

clinics such as Aberystwyth involve significant travel time. In order to serve these

more rural areas of Wales, as obligated by the Welsh Government, these clinics are

operated via clinic tours. A clinic tour consists of a team being deployed to work

multiple consecutive days at clinics in Mid-Wales, and staying overnight in the local

area to minimise travel time. The tours are pre-determined with specific clinics

grouped together in a set order to further minimise travel time. For example, the

South East base serves the tour illustrated by Table 3.1.

In this specific tour, workers leave the South East base on the morning of day one,

travel to the first location of Rhayader and set up the clinic in the hired venue. At
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Table 3.1: Example of a Clinic Tour

Day 1 2 3 4

Clinic
Location

Rhayader Builth Wells Llandrindod Wells Llandrindod Wells

the end of the clinic, all equipment is loaded onto the WBS lorry and the workers

travel to nearby booked accommodation. Similarly, on the second day, the workers

travel from the booked accommodation of the first night to Builth Wells to set up

the clinic there and so on, until at the end of the fourth day, the workers travel back

to the South East base. Donated blood products are collected each day from the

scheduled tour clinic and transported back to the processing centre separately.

3.1.4 Clinic Frequency

Due to the eligibility requirements regarding frequency of donation i.e. males must

wait at least 12 weeks and females must wait at least 16 weeks between each dona-

tion, clinics are limited to how often they can operate in the same location. In most

cases, a given clinic will not be scheduled to operate more frequently than every 16

weeks. However, if the donor panel of a clinic is large enough to support a given

clinic being scheduled more frequently, then it may be scheduled every six weeks,

or three times within every 16 week period. This only occurs in areas of higher

population density.

The Welsh Government require the WBS to give every eligible person in Wales the

option to donate blood i.e. donors should not have to travel more than a reasonable

distance to a donation clinic. This means that more rural clinics such as those in

Mid-Wales, which generally have a very small donor pool and therefore return only

a small amount of whole blood donations, must be scheduled at least once every

calendar year.
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3.1.5 Clinic Availability

Each clinic has an associated weekday availability pattern and a seasonal availabil-

ity pattern due to the variety of venues and their requirements and/or schedules.

A weekday availability pattern details the specific weekdays that a given clinic is

available e.g. ‘weekdays only’ or ‘Mondays only’. Similarly, a seasonal pattern de-

tails the availability of a given clinic over the calendar year, e.g. ‘March - October

only’ or ‘school holidays only’.

3.1.6 Clinic Duration Pattern

Each donation clinic has an associated duration pattern i.e. the pattern of days that

a given clinic is to run each time it is scheduled. The vast majority of the WBS

clinics have a duration of one day, and therefore start and end on the same day.

However, a minority of clinics run for a number of days, usually consecutive, with

some clinics having more complicated duration patterns such as three consecutive

days one week followed by two consecutive days the next week.

3.1.7 Blood Supply

Each clinic has a capacity of donors each day that it operates based on the physical

capacity of the venue, the number of hours that the clinic is in operation, and the

number of workers available. Therefore, each clinic has a maximum supply of whole

blood that can be collected each day that it runs. Due to eligibility screening in

the clinic, failed venepuncture, and ‘Do Not Attends’ (DNAs) i.e. donors failing to

attend their appointment, the maximum supply of a clinic is unlikely to be met.

The WBS typically calculates their estimated supply per clinic based on an average

bleed figure over the last three times the given clinic occurred, where bleed figures

relate to the number of donors that provided a blood donation (viable or not). The

WBS utilise these supply estimate figures during clinic scheduling to ensure the

demand is met.
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3.1.8 Demand

The Welsh Blood Service delivers blood products to all hospitals across Wales,

both NHS and private sector. All collected blood products are processed at the

laboratory at the WBS headquarters in the South East region and delivered to

hospitals as required.

The WBS is undertaking research to identify the ‘true demand’, as supplied hospitals

work independently from the WBS and are in control of determining their own blood

product orders. This means that at present the actual demand is not known as the

hospitals do not report back their usage. However, throughout this research, we

have assumed the demand to be that of meeting the hospitals’ orders.

3.1.9 Clinic Scheduling Process

Currently, the WBS schedule their clinics using a manual and tedious process, work-

ing on four-week planning periods at a time. The process is described in Figure 3.1.

Figure 3.1: Welsh Blood Service Clinic Scheduling Process

The first stage of the process shown in Figure 3.1 involves the clinic planner identi-

fying clinics which are available to be scheduled during the given planning horizon
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by assessing the date of the previous time each clinic was scheduled against the max-

imum frequency of each clinic. In most cases, the maximum frequency is 16 weeks

(due to donor eligibilty) but this may be as often as every four weeks if a clinic is

in a particularly densely populated area and therefore has a large donor panel to

support this frequency. Following this, the clinic planner prioritises clinics that are

listed as ‘hard to book’ (this is often due to the venue having limited availability)

and clinics in this category need to be booked much further in advance than others.

Once any ‘hard to book’ clinics are scheduled within the given planning horizon, the

other clinics can then begin to be scheduled. These clinics are scheduled with the

requirement to meet the estimated weekly demand (using the estimated collection

figure per clinic and also considering the availability pattern of each clinic) but also

ensuring that staff contractual hours are met. This often results in more clinics being

operated than is necessary to meet demand. Once the first draft of the schedule is

complete, the associated venues are contacted to make a booking on the required

day(s). If an issue arises during this process i.e. a venue is not available for the

allocated day(s), the schedule is iteratively changed; an alternative available clinic

is selected to replace the newly unavailable clinic. This last process is repeated until

all clinic bookings are confirmed and secured.

3.1.10 Limitations of Current Practice

The current clinic scheduling practice and blood collection strategy at the WBS

causes various inefficiencies to arise. Firstly, the current aim of the WBS is for each

four-week clinic schedule to not only to meet the estimated blood product demand,

but also to satisfy the contractual hours of the clinic-based workforce. This likely

results in unnecessary monetary costs, including transportation and venue hire costs,

as a result of potentially operating more clinics than is required to meet demand.

This also implies that there are more contractual hours for the clinic-based workforce

than required. This is the motivation behind objective function one (3.3) described

in Section 3.3.2 i.e. the minimisation of the number of clinic days scheduled over a
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given planning horizon.

In addition to this, if the overcollection rate is consistently higher than is desired

(with some tolerance needed to counteract variation in demand) the production

of these blood products may end in waste, whilst the donors themselves remain

ineligible to donate until 12 (male) or 16 (female) weeks have passed. This is the

motivation behind objective function two (3.4) - the minimisation of overcollection

i.e. the minimisation of estimated collected blood donations in excess of the demand.

Each four-week clinic schedule is created manually which poses a complex task for

clinic planning team, with many restrictions to consider. Most of the constraints

associated with a clinic are logged digitally, though these are often across multiple

files and are not in one central location, with some constraints dependent on the

relay of local knowledge by the clinic planner(s). The intractability of the number

of constraints to manage whilst creating a clinic schedule results in each initial

schedule requiring approximately five working days to be completed by the clinic

planning team. This schedule then may undergo various amendments in an iterative

process to account for any venues that are newly-unavailable or other changes in

circumstances until a schedule is finalised.

We aim to address these limitations in the following model by providing the WBS

with a more streamlined and efficient clinic scheduling process that enables all re-

strictions and constraints to be considered whilst better matching supply to demand

and reducing unnecessary costs by operating fewer clinics where possible.

3.2 The Blood Donation Clinic Scheduling

Problem Formulation

Stage one of our mathematical model schedules blood donation clinics in alignment

with the estimated supply at various locations and demand for blood. We formulate

the problem as follows.
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3.2.1 Planning horizon:

Let T = {1, . . . , T} be the set of discrete times within the planning horizon of

length T , such that T is a multiple of seven. This set of discrete times are equally

incremented as days, and thus we will relate to each time increment as one day,

t ∈ T . We interchangeably refer to T and the planning horizon as one and the

same. Each planning horizon is to begin on a Monday (aligned with how the WBS

operates) with each full calendar week during the planning horizon within the set

W = {1, . . . , T/7} of weeks.

3.2.2 Clinics and Clinic-Dependent Parameters:

Set I depicts a set of established clinics, with each unique clinic denoted as i. We

introduce tuples of clinics, (i1, i2), and a set of such tuples, Nb ⊂ I ×I. Each tuple

(i1, i2) ∈ Nb consists of clinics that cannot run within b ∈ N days of each other.

Therefore, let bi1,i2 denote the number of days that must lapse between occurrences

of clinics i1 and i2. Each clinic i ∈ I has the following attributes:

� Clinic Duration Pattern: Let ci,t,t′ = 1 if a clinic i ∈ I is scheduled to begin

on day t ∈ T and therefore is also scheduled to run on day t′ ∈ T due to the

duration pattern of clinic i. Where clinic i has a duration of one day each time

it is scheduled, clinic i can only run on the ‘starting day’ and thus ci,t,t′ = 1 if,

and only if t = t′. However if clinic i occurs for a given number of consecutive

days each time it is scheduled, for example three days, then ci,t,t′ = 1 where

t′ ∈ {t, t + 1, t + 2}. An example of a clinic duration pattern is illustrated in

Table 3.2 below.

� Frequency: Let fi be the minimum number of days that must lapse between

each time clinic i ∈ I is scheduled. Some clinics are required to be scheduled

much more frequently and as such must be scheduled within each planning

horizon; Let I forced ⊂ I denote the set of clinics that are obligated to be

scheduled within each planning horizon.



CHAPTER 3. THE BLOOD DONATION CLINIC SCHEDULING PROBLEM 46

� Availability: Let aweekdayi,t = 1 if clinic i ∈ I is available to be scheduled on

day t ∈ T regarding weekday availability, and 0 otherwise. Let aseasonali,t = 1

if clinic i ∈ I is available to be scheduled on day t ∈ T regarding seasonal

availability, and 0 otherwise.

� Estimated Supply: Let si,t represent the estimated supply of blood to be

collected from clinic i ∈ I if it takes place on day t ∈ T .

� Region: Let r ∈ R denote the set of regions. Let Ir denote the subset of

clinics that belong to region r. Let Rmax
t,r denote the maximum number of

clinics that can be scheduled to occur on day t ∈ T for region r. Similarly,

let Rmax
w,r denote the maximum number of clinics that can be scheduled to

occur over a calendar week w ∈ W in region r. Finally, let Rmin
T ,r denote the

minimum number of clinic days to be scheduled during the whole planning

horizon T for region r.

� Length of Day: Let li,t denote the expected duration of a working day (in

hours) for clinic i ∈ I if it takes place on day t ∈ T . Let L12 be the set of

clinics i with length of day greater than or equal to 12 hours i.e. li,t ≥ 12.

� Venue Type: Let itrailer denote the clinics i ∈ I that take place in a trailer

venue type. Therefore, Itrailer is the set of all trailer clinics.

� Clinic Type: Let Itours ⊂ I denote the set of tuples of clinics, (i1, ...iK) ∈

Itours where each tuple forms a clinic tour. Let k ∈ N≤K represent each

individual day of a tour, where K ∈ N denotes the final day number of a tour.

Thus, K also denotes the length of a tour i.e. the number of consecutive days

it requires each time it is scheduled.

� Date Last Held: Let oi denote the date that clinic i ∈ I most recently

occurred, prior to the current planning horizon T .

� Distance: Let Zj ⊂ I × I denote the set of pairs of clinics (i1, i2) with a

public donor panel type, that are within j ∈ N miles of each other.
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Table 3.2: Example of a Clinic Duration Pattern

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1

*Example of a duration pattern of a clinic (for a one-week planning horizon) that
operates for three consecutive days each time it is scheduled. If the clinic is selected
to start on Monday, then it also runs Tuesday and Wednesday. However, it cannot
start on a day later than Friday as it could not run for three consecutive days due
to Sunday being the end of the planning horizon in this case.

� Number of Days Booked: Let gi ∈ N denote the number of days to be

scheduled for clinic i ∈ I, each time it is scheduled i.e. the number of clinic

days for clinic i.

3.2.3 Demand

Let dw be the total number of units of blood determined to be collected per week,

∀w ∈ W , i.e. the weekly demand.

3.3 Model Formulation

With all parameters introduced, we now present the decision variables and their

domains along with the constraints.

3.3.1 Decision variables

Let the binary decision variable, xi,t be introduced, such that;

xi,t =


1, if clinic i ∈ I starts on day t ∈ T

0, otherwise

(3.1)

Let xi,t denote the starting day of clinic i ∈ I i.e. the first day that a clinic runs
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Table 3.3: Notation for Model Formulation

Sets

I Set of clinics
Ir ⊂ I Set of clinics in region r ∈ R
Itrailer ⊂ I Set of clinics of trailer venue type
Itours ⊂ I Set of clinic tours
L12 Set of clinics with li,t ≥ 12
Nb ⊂ I × I Set of pairs of clinics that must be at least b ∈ N days apart
R Set of regions
T Set of days
W Set of weeks
Zj ⊂ I × I Set of pairs of public clinics within j ∈ N miles of each

other

Parameters

aweekdayi,t, Weekday availability of clinic i ∈ I on day t ∈ T
aseasonali,t Seasonal availability of clinic i ∈ I on day t ∈ T
bi1,i2 Number of days that must lapse between clinics i1 ∈ I

and i2 ∈ I
ci,t,t′ Duration pattern of clinic i ∈ I on day t′ ∈ T with starting

day t ∈ T
dw Blood collection demand for week w ∈ W
fi Number of days that must lapse between

consecutive occurrences of clinic i ∈ I
gi Number of days to be scheduled for clinic i ∈ I
(i1, ..., iK) ∈ Itours Clinic tour consisting of K ∈ N clinics
li,t Length of day for clinic i ∈ I on day t ∈ T
oi Date that clinic i ∈ I last occurred
Rmax

t,r Maximum number of clinics that can be scheduled on day
t ∈ T in region r ∈ R

Rmax
w,r Maximum number of clinics that can be scheduled over

week w ∈ W in region r ∈ R
Rmin
T ,r Minimum number of clinics to be scheduled over T in re-

gion r ∈ R
si,t Estimated supply at clinic i ∈ I on day t ∈ T
T ∈ T Final day of the planning horizon T

Decision Variables

∆+
w Units of blood collected in excess of demand in week w ∈ W

xi,t 1, if clinic i ∈ I starts on day t ∈ T , 0 otherwise

each time it is scheduled, as clinics may have a duration that exceeds one day. The

‘stop’ day of a clinic is dependent on the clinic duration pattern, ci,t,t′ .

Let ∆+
w be the estimated total units of blood to be collected that exceeds the demand
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for each week w ∈ W , i.e. the weekly amount overcollected such that;

∆+
w =

(∑
i∈I

∑
t∈Tw

∑
t′∈Tw

ci,t,t′ · xi,t · si,t

)
− dw ∀ w ∈ W (3.2)

3.3.2 Objective Function

Having introduced all sets, indices and decision variables we formulate the three

alternative objectives as follows:

Objective Function One

Minimise
∑
i∈I

∑
t∈T

∑
t′∈T

ci,t,t′ · xi,t (3.3)

Objective Function Two

Minimise
∑
w∈W

∆+
w (3.4)

Objective Function Three

Minimise

(∑
i∈I

∑
t∈T

∑
t′∈T

ci,t,t′ · xi,t

)
+

(∑
w∈W

∆+
w

)
(3.5)

Objective function one (3.3) minimises the total number of scheduled clinic days

over the planning horizon while objective function two (3.4) minimises the weekly

overcollection for each week of the given planning horizon. Objective function three

(3.5) combines both objective functions one and two and minimises both the number

of clinics days scheduled and the weekly overcollection over the given planning

horizon.
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There are no weights currently assigned to the terms in objective function three (3.5),

due to experimental results indicating that the values for both the total number

of clinic days scheduled and the estimated overcollection (over the given planning

horizon) were satisfactory. For nearly all instances utilising objective function three,

the estimated overcollection was successfully minimised to zero, with the number

of clinic days scheduled being the minimum permitted by the constraints included,

or otherwise the minimum required to meet the demand. The only instances where

this is not the case are the North East instances, due to the lack of options of clinics

to schedule to achieve zero overcollection, and only one iteration (of a total of 10)

for instance SW213, where one additional clinic is scheduled in place of one unit of

overcollection.

It would be required that the WBS determine their preferences in terms of balancing

the two variables (total clinic days and overcollection) if the model were to be

implemented, to ensure that any solution meets their needs and priorities. One

popular method to help determine how these weightings should be balanced is Pareto

optimisation. We discuss the possible use of this method in Section 7.4.1.

3.3.3 Constraints

Demand Satisfaction Constraints

We establish the connection between demand, estimated supply and overcollection

with the following constraint (3.6).

dw −

(∑
i∈I

∑
t∈Tw

∑
t′∈Tw

ci,t,t′ · xi,t · si,t

)
+ ∆+

w = 0 ∀w ∈ W (3.6)

The following constraints are to ensure that the estimated supply of each week in

the planning horizon meets the weekly demand.

∑
i∈I

∑
t∈Tw

∑
t′∈Tw

ci,t,t′ · xi,t · si,t′ ≥ dw ∀w ∈ W (3.7)
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Frequency-based Availability Constraints

To ensure that the frequency-based availability of each clinic is considered, con-

straints (3.8) ensure that the minimum number of days have lapsed since the most

recent time that the clinic was scheduled (prior to the planning horizon) before the

clinic is scheduled again.

(t′ − oi) · ci,t,t′ · xi,t ≥ fi · ci,t,t′ · xi,t ∀ i ∈ I, t, t′ ∈ T (3.8)

To consider the frequency of clinics within the planning horizon, two sets of con-

straints are utilised. Firstly, we consider the subsets of clinics Ifi≤T−t ∀t ∈ T that

have a maximum frequency less than or equal to the number of remaining days of

the planning horizon, from starting day t ∈ T . These clinics must not be scheduled

more than once during fi days. The following constraints (3.9) ensure that this

holds true by requiring the number of times a clinic is scheduled over fi remaining

days is less than or equal to one.

∑
t̃∈[t,t+fi]

xi,t̃ ≤ 1 ∀ i ∈ Ifi≤T−t, t ∈ T (3.9)

Similarly, we consider the sets of clinics Ifi>T−t ∀t ∈ T that have a maximum

frequency greater than the remaining length of the planning horizon T after the

considered starting day t ∈ T . Constraints (3.10) ensure that these clinics are not

scheduled more than once during the remaining days of the planning horizon.

∑
t̃∈[t,T ]

xi,t̃ ≤ 1 ∀ i ∈ Ifi>T−t, t ∈ T (3.10)

As discussed in Section 3.1.4, the Welsh Blood Service requires each clinic location

to be visited at least once per year. Constraints (3.11) ensure this.

(t′ − oi) · ci,t,t′ · xi,t ≤ 365 ∀ i ∈ I, t, t′ ∈ T (3.11)
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Weekday and Seasonal Availability Constraints

Some clinics may only be available on specific weekdays, or specific times of the

year; thus we have weekday and seasonal availability, ensured by constraints (3.12)

and (3.13), respectively.

∑
t∈T

ci,t,t′ · xi,t ≤ aweekdayi,t′ ∀ i ∈ I, t′ ∈ T (3.12)

∑
t∈T

ci,t,t′ · xi,t ≤ aseasonali,t′ ∀ i ∈ I, t′ ∈ T (3.13)

If for example, a given clinic i is not available on a Monday, this relates to the

weekday availability and the aweekdayi,t that corresponds to Monday(s) would be

aweekdayi,t = 0.

Minimum and Maximum Clinics Per Time

It must be ensured that each clinic is not scheduled more than once on any given

day (3.14).

∑
t∈T

ci,t,t′ · xi,t ≤ 1 ∀ i ∈ I, t′ ∈ T (3.14)

Each region has a maximum number of clinics that can be scheduled to occur on

a given day due to resource constraints. Thus constraints (3.15) prevent this from

being exceeded.

∑
i∈Ir

∑
t∈T

ci,t,t′ · xi,t ≤ Rmax
t,r ∀ r ∈ R, t′ ∈ T (3.15)

Similarly, each region also has a maximum number of clinic days it can operate over

a calendar week due to resource constraints. To ensure these are met, we have the

following constraints.
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∑
i∈Ir

∑
t′∈Tw

∑
t∈T

ci,t,t′ · xi,t ≤ Rmax
w,r ∀ r ∈ R, w ∈ W (3.16)

Due to workforce contractual hours at the Welsh Blood Service, it must be ensured

that the minimum number of clinic days are scheduled per region over the given

planning horizon. Thus, we have the following constraints.

∑
i∈Ir

∑
t′∈T

∑
t∈T

ci,t,t′ · xi,t ≥ Rmin
T ,r ∀r ∈ R (3.17)

Constraints for Conflicting Clinics

For the pairs of clinics that must not be scheduled within a given number of days

of each other, we include the following constraints.

(t′ − oi2) · ci1,t,t′ · xi1,t ≥ bi1,i2 · ci1,t,t′ · xi1,t ∀ (i1, i2) ∈ Nb, b ∈ N, t, t′ ∈ T

(3.18)

(t′ − oi1) · ci2,t,t′ · xi2,t ≥ bi1,i2 · ci2,t,t′ · xi2,t ∀ (i1, i2) ∈ Nb, b ∈ N, t, t′ ∈ T

(3.19)

Constraints (3.18) and (3.19) ensure this considers clinics that were scheduled in

previous planning horizons, whilst constraints (3.20) considers only days within the

given planning horizon, where q = min{bi1,i2 , T − t} i.e. the smallest of either the

minimum number of days between the given conflicting clinics, or the remaining

number of days of the planning horizon.

∑
t̃∈[t,t+q]

xi1,t̃ +
∑

t̃∈[t,t+q]

xi2,t̃ ≤ 1 ∀ (i1, i2) ∈ Nb, b ∈ N, t ∈ T (3.20)

The following constraints (3.21) ensure that no public clinics within 5 miles of each

other are scheduled on the same day. This is to minimise the risk of donors attending
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an alternative clinic due to a potential overlap of donor panels between clinics in

close proximity to each other.

ci1,t,t′ · xi1,t + ci2,t,t′ · xi2,t ≤ 1 ∀ (i1, i2) ∈ Zj, t, t
′ ∈ T (3.21)

Constraints by Venue Type

Due to limited resources, a maximum of two trailer clinics can be scheduled to occur

on the same day in the South East region, r = SE. Thus, we include constraints

(3.22).

∑
i∈ISE∪Itrailer

∑
t∈T

ci,t,t′ · xi,t ≤ 2 ∀t′ ∈ T (3.22)

Clinic Tour Constraints

To ensure that clinic tours are scheduled in the correct sequence, we make use of

constraints (3.23) where we consider only the days that the tour can run fully; this

excludes the last (K − 1) days to ensure that there are at least K consecutive days

available from the starting day of the first clinic of a tour, for the whole tour to be

scheduled.

ci1,t,t · xi1,t = cik,t+(k−1),t+(k−1) · xik,t+(k−1) ∀ k ∈ N≤K , (i1, ..., iK) ∈ Itours,

∀t ∈ [t1, tT−(K−1)] (3.23)

Each clinic within a tour must only be scheduled as part of said tour and should not

be scheduled separately. The above constraint does not ensure that clinic two or

three of a tour are not scheduled on the first (K − 1) days. Therefore the following

constraints ensure that these cases are considered.

cik,t,t · xik,t = 0 ∀ k ∈ N≤K \ {1}, (i2, ..., iK) ∈ Itours, t ∈ [t1, tk−1] (3.24)
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The following example demonstrates how both constraints (3.23) and (3.24) work:

Consider a clinic tour consisting of three clinics, namely clinic ‘A’, clinic ‘B’ and

clinic ‘C’. In this case, K = 3. To ensure that these three clinics are scheduled in the

correct sequence, constraint (3.23) requires that any time clinic ‘A’ is scheduled to

start on day t ∈ [t1, tT−(K−1)], then clinic ‘B’ is scheduled to start on day t+k−1 =

t + 1 and likewise, clinic ‘C’ is scheduled to start on day t + k − 1 = t + 2. These

constraints also enable the converse to hold; that if clinic ‘A’ is not scheduled over

the days t ∈ [t1, tT−2], then neither is clinic ‘B’ over the days t ∈ [t2, tT−1] or

clinic ‘C’ over the days t ∈ [t3, T ]. Constraints (3.24) restrict clinic ‘B’ from being

scheduled individually on the first day of the planning horizon, and clinic ‘C’ from

being scheduled individually during the first two days of the planning horizon.

Workforce Constraints

Clinic-based workers require a day off following a 12 hour working day. This needs to

be considered at the clinic scheduling level, especially for the three regions (namely

South West, North East and North West) that only have enough workers to form

one clinic team, as this means no clinics can be scheduled on a day following a clinic

that exceeds 12 working hours. Constraints (3.25) ensure that this is considered,

where i′ ∈ Ir ∪ L12 denotes a clinic in region r ∈ R that has a length of day

greater or equal to 12 hours. The first day of the planning horizon is excluded from

the summation over all t̃ since these constraints consider only days following long

working days, and thus this cannot be the case for the first working day of the

horizon.

ci′,t,t′ · xi′,t′ +
∑
i∈Ir

∑
t̃∈T \{t1}

ci,t̃,t′+1 · xi,t̃ ≤ Rmax
t,r ∀ i′ ∈ Ir ∪ L12, r ∈ R,

∀t, t′ ∈ T \ {T} (3.25)

Constraints (3.25) work by ensuring that the sum of all clinics in a given region

scheduled on the day following a clinic that exceeds 12 working hours is one less
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than the maximum per day, by including the addition of the 12-hour clinic the day

prior.

Clinic workers also require a day off before they work a clinic tour. Since workers

from the South East region are more likely to work a clinic tour, we need to ensure

that at most, the number of clinics scheduled on the day before a clinic tour is due

to begin, is one less than the maximum per day per region i.e. Rmax
t,r − 1. There-

fore, formulated in a similar manner to constraints (3.25), we have the following

constraints to ensure this is the case.

ci1,t,t · xi1,t +
∑
i∈Ir

∑
t̃∈T \{T}

ci,t̂,t−1 · xi,t̃ ≤ Rmax
t,r ∀ i1 ∈ Ir ∪ Itours, r ∈ R,

∀t ∈ T \ {t1} (3.26)

Constraints for Obligatory Clinics

The clinic that takes place at the WBS headquarters must be scheduled to occur on

a regular basis. In addition, we utilise dummy clinics for annual leave and training

of clinic-based workers, and these are to be scheduled to occur every weekday, for

employees to be assigned to a corresponding dummy clinic when they have booked

annual leave or training. The following constraints (3.27) ensure that all obligatory

clinics are scheduled as required, where gi denotes the number of days that clinic

i ∈ I must run for each time it is scheduled.

∑
t∈T

∑
t′∈T

ci,t,t′ · xi,t = gi ∀i ∈ I forced (3.27)

Decision Variables and (their) Domains

The following constraints apply to the decision variables to ensure that they are

non-negative, and are binary in the case of the variable xi,t.
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xi,t ∈ {0, 1} ∀ i ∈ I, t ∈ T (3.28)

∆+
w ∈ R≥0 ∀tw ∈ T , w ∈ W (3.29)

3.3.4 Summary

In this chapter, the current practice of clinic scheduling at the Welsh Blood Service

has been described, including the format of their blood donation clinics and the

limitations of the current practice. A formulation of the Blood Donation Clinic

Scheduling Problem is presented in the form of a linear programme to schedule

clinics optimally over a given planning horizon. All parameters have been intro-

duced, along with three alternative objective functions; minimisation of the number

of clinic days scheduled, minimisation of overcollection, and minimisation of both

the number of clinic days scheduled and overcollection. All constraints have been

formulated to ensure that the output of the model is a feasible and realistic solution

for the WBS.

This model addresses research question one – ‘how can mathematical modelling help

to schedule the WBS clinics more efficiently?’ – by reducing monetary costs associ-

ated with scheduling more clinics than is necessary to meet demand and/or reducing

potential wastage of blood product collected in excess of demand. Additionally, the

model aims to streamline the clinic scheduling process and decrease the time taken

to generate an initial four-week clinic schedule. This model will be combined with

the model presented in Chapter 4 to construct a decision support tool for the Welsh

Blood Service, with results of the BDCSM presented in Chapter 5.

In the next chapter, Chapter 4, the Blood Collection Workforce Scheduling Problem

is presented following a description of the current practice at the WBS for scheduling

clinic-based workers.
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Chapter 4

A Blood Collection Workforce

Scheduling Problem

This chapter describes the current practice for scheduling the blood collection work-

force at the Welsh Blood Service (WBS), the limitations of this practice, and pro-

poses a mathematical model to improve the efficiency of the clinic-based workforce

scheduling process. This chapter is structured as follows; Section 4.1 describes the

current practice of scheduling the clinic-based workforce at the WBS, while Sec-

tion 4.2 presents the mathematical formulation of the Blood Collection Workforce

Scheduling Problem (BCWSP) with all relevant parameters. The Blood Collection

Workforce Scheduling Model (BCWSM) formulation is presented in Section 4.3 with

a description of all decision variables, objective functions and constraints. A mod-

ified version of the BCWSM is presented in the subsequent Section 4.4 to improve

upon solutions of the original model.

4.1 Current Practice

At present, the Welsh Blood Service (WBS) organises their clinic workforce into

set teams with limited flexibility between these teams. Each worker is assigned to
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one of four regions, based on their home address and willingness to travel. The vast

majority of the time, each worker will only be assigned to clinics in the corresponding

region, unless there is a shortage of staff; in this case, workers from other regions

that are willing to cover another region may be asked to do so. A team is assigned to

each scheduled clinic (within the same region) far in advance, with a more detailed

workforce schedule created closer to the time (usually four to five weeks prior to the

first week of a schedule) considering individual workers shifts, annual leave, training

etc. Similarly to clinic schedules determined in Chapter 3, workers’ schedules are

planned over four-week periods at a time.

4.1.1 Clinic Teams

One-Team Regions

In the three smaller regions, namely South West, North West and North East, there

is only enough clinic-based workers to form one clinic team. This is due to the

smaller population in these regions, with at most one clinic scheduled per day in

each of these regions. Some members of the workforce in one of the north regions

may be willing to work clinics in the alternative north region if there is a staff

shortage, but due to the distance between team bases, this only occurs in rare

circumstances.

Multi-Team Region

The South East region consists of four teams of clinic-based workers with little

flexibility between these teams. Two of these teams are assigned to only community

clinics (at a venue) whilst the other two teams are assigned to only trailer clinics

(bloodmobile). In cases where one team may have a staff shortage on a given day,

workers from another team that are willing to do so will join the team that requires

cover. Up to four clinics per day can be scheduled in this region, with the population

density high enough to support this.
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For all regions, if there are not any workers able to cover absences, then the clinic

will operate at a reduced capacity by decreasing the number of donor chairs open

and limiting the number of ‘walk-in’ appointments on the day proportionate to the

staff shortage and capacity of the clinic.

4.1.2 Roles and Skills

Clinic Roles

There are a variety of roles required at blood donation clinics to ensure effective

collection of blood.

� Registered Nurse (RN): At least one nurse is required to be present at

each clinic to assist with eligibility screening of donors to deal with more

complicated elements such as diseases or medications, etc.

� Supervisor: Each clinic requires a Clinic Supervisor i.e. the manager of the

clinic for its duration. This role may be assigned to either a qualified Super-

visor or a Deputy Supervisor if there is not an available Supervisor within the

same region.

� Clinic Care Assistant (CCA): Multiple CCAs are required to work each

scheduled clinic, with the specific number required dependant on the capacity

of the clinic. A CCA is (in most cases) a trained venepuncturist and therefore

able to work at any station within a clinic.

� Clinic Service Assistant (CSA): A CSA is similar to a CCA with the main

difference being that CSAs are not venepuncturists, and therefore may assist

with donors at all stages of the donation process except for venepuncture.

Each clinic has a minimum requirement for each clinic role (with CCA and CSA

considered together) and these numbers are dependant on the capacity of the clinic.

For small clinics, only one nurse may be necessary whereas for much larger clinics,

having two nurses can help to drive efficiency and reduce bottlenecks in the eligibility
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screening process. The official Welsh Blood Service guidance on the clinic role

configuration is displayed in Table 4.1, which breaks down the specific roles required

at a clinic. Clinic workers that are CCAs and CSAs are assigned to these more

specific roles, with the exclusion of the roles of Supervisor and RN. However, the

‘pod care’ activity requires venepuncture and therefore only CCAs can be assigned

to this role.

Driving Roles

Each whole blood clinic (with the exception of the clinic located at the WBS Head-

quarters in Talbot Green) has vehicle requirements in order to operate. We describe

the function of each vehicle type below.

� Lorry: Utilised to transport clinic equipment including donation chairs, pri-

vacy screens and blood bags. They require unloading and loading at the

beginning and end respectively of each day in use. Lorries are necessary for

any community clinics as they take place in a booked venue, and all clinic

equipment needs to be transported to and from the clinic site.

� Minibus: These are ideally utilised for every clinic that takes place outside

of WBS premises to transport all clinic workers from the region base to the

clinic and back at the end of the working day.

� Support Vehicle: These are essentially a ‘bloodmobile’ i.e. a vehicle that

acts as a clinic when it is parked at a designated trailer clinic site. All clinic

equipment is already in place and therefore no unloading or loading is neces-

sary. Each support vehicle has a capacity of six donation chairs.

� Mobile Donation Unit: Similarly to a support vehicle, a mobile donation

unit acts as a clinic when it is parked at a designated trailer site. The difference

between the two vehicle types is that a mobile donation unit has a smaller

capacity of only three donation chairs.



Table 4.1: Clinic Role Configurations per Clinic Size

Number of Workers Advised per Activity/ Role
Clinic Size
(Number of

Chairs)
Clinic Type Registration Screening

Pod
Care

Pod
Support

Post-Donation
Care

Quality
Check

Supervisor
Registered

Nurse
Total

3 Trailer 1 1 1 1 4
3 Community 1 1 1 1 1 5
4 Community 1 1 2 1 1 1 7
5 Community 1 2 2 1 1 1 8
6 Trailer 1 2 2 1 1 1 1 1 10
6 Community 1 2 2 1 1 1 1 1 10
7 Community 1 2 2 1 1 1 1 1 10
8 Community 1 3 2 1 1 1 1 1 11
9 Community 1 3 3 1 1 1 1 1 12
10 Community 1 3 3 1 1 1 1 2 13
11 Community 2 4 4 1 1 1 2 15
12 Community 2 4 4 1 1 1 1 2 16

All activities excluding Registered Nurse (RN) and Supervisor are reserved for all other clinic workers i.e. Clinic Care Assistants (CCAs) and Clinic
Support Assistants (CSAs). A Supervisor role may be filled by a Deputy Supervisor, otherwise a Deputy Supervisor is assigned as a CCA. For
example, a four-chair community clinic requires a minimum of one Supervisor, one RN and two CCAs/CSAs.
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Each community clinic requires both a lorry and a minibus. Trailer clinics only

occur in the South East and North West regions, and each of these clinics require

either a support vehicle (for South East clinics) or a mobile donation unit (for North

West clinics), in addition to a minibus. If there are not enough certified minibus

drivers available to cover all demand within a region on a given day, clinic-based

workers are asked to make their own way to their assigned clinic, for all clinics

without a minibus.

Only a select number of workers in each region are qualified and insured to drive

specific vehicles. Generally, if a worker is trained to drive one vehicle type, then

they are trained to drive all other vehicle types required in their region e.g. a worker

in the South East region that is qualified to drive a lorry with likely also be qualified

to drive a minibus and a support vehicle. However, there are a few exceptions with

some drivers only being trained and/or willing to drive a limited number of vehicle

types.

At present, the number of trained drivers in some regions seems restrictive, which is

likely to cause issues meeting demand with absences due to sickness and/or annual

leave amongst the drivers.

4.1.3 Contracted Hours and Agreements

Working Day Patterns

For the majority of clinic workers, their agreed working days are Monday to Friday

with the occasional Saturday clinic. However, some workers have more specific

working day patterns due to childcare issues or an agreed work/life balance. For

example, some workers may have a specific weekday that they do not work, while

others may have a more complicated pattern such as differing specific weekdays on

alternating months.
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Contracted Hours

There is a range of 12 different weekly contracted hour amounts across the clinic-

based workforce, with the minimum being 18 hours and maximum being 37.5 hours.

Full-time is considered to be 37.5 hours per week, with anything less than this

deemed part-time. Clinic workers are paid for their contracted hours regardless of if

all hours were actually worked, due to the variability of demand and clinic schedules.

Annual Leave

Every worker is entitled to annual leave, with the number of days per year dependant

on the length of time a given worker has been employed by the NHS. This ranges

from 27 days (plus Bank Holidays) for under five years of NHS employment, 29 days

(plus Bank Holidays) for those with 5-10 years of NHS employment, and 33 days

(plus Bank Holidays) for those employed with the NHS for over ten years.

Training

Each clinic worker is required to complete a minimum of three days mandatory

training per year. Each training day is a standard working day of 7.5 hours. Most

training is regarding health and safety such as manual handling for clinic equipment,

and needs to be completed each year as certification expires.

Salary

Salary for clinic workers follow the standard NHS Wales model and is determined

by both employee skill band and the duration of their employment. Different clinic

roles, as described above, have a different salary band, as displayed in Table 4.2

retrieved from online data [66]. Each band has a corresponding salary range, with

those with less than one year experience in the role starting at the lower bound

of the range. For each year that an employee gains experience in the role, their

salary will increase, until the upper bound of the range is reached; This is six years

for bands two to four, seven years for band five and eight years for band six. The
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salary is based on full-time work i.e. 37.5 hours per week, and is calculated pro-rata

for any part-time employees. We have calculated the average hourly pay rate per

salary band (see Table 4.2) by taking the mid-point of the salary range per band

and dividing by 52 weeks, and then dividing again by 37.5 hours.

Table 4.2: NHS Salary Bands as of April 2020

Clinic
Role

Salary
Band

Salary
Range

Average
Hourly Rate

CSA 2 £18,005 - £19,337 £9.58
CCA 3 £19,737 - £21,142 £10.48
Deputy Supervisor 4 £21,892 - £24,157 £11.81
Supervisor 5 £24,904 - £30,615 £14.24
RN 5 £24,904 - £30,615 £14.24
Senior RN 6 £31,365 - £37,890 £17.76

Overtime

Overtime is voluntary and assigned on a ‘first come, first serve’ basis. Some em-

ployees prefer not to work any overtime, whilst others are more flexible and are even

willing to work overtime in a different region from their own base region.

Overtime is defined as any worked hours in excess of total contracted hours over a

four-week period, e.g. if a full-time worker (with 37.5 contracted hours per week)

works 40 hours one week, but 36 hours each of the remaining weeks of the four-week

period, this is a total of 148 hours and is less than their contracted 150 hours, and

therefore no overtime was worked.

It is each employee’s decision if they would prefer overtime to be paid or be awarded

time off in lieu. The vast majority of the WBS clinic workers are paid overtime,

with the rate of pay for overtime hours depends on the total hours worked over the

four-week period. If the total number of worked hours is below the full-time amount

(150 hours), then the hourly rate is the same rate as usual for that worker. If the

total worked hours over the four-week period exceeds full-time, then the hourly pay

rate for each hour in excess of this is at 1.5 times the usual rate for that worker.

Therefore, it is in the interest of WBS to minimise these costs, particularly for
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overtime at the increased rate.

4.1.4 Limitations of Current Practice

The current practice has a range of limitations on efficiency that may cause un-

necessary costs to the organisation. Firstly, the lack of flexibility in the workforce

based in the South East region drives inefficiency, as the team size is fixed (often the

size necessary to operate the largest clinics) but the clinic sizes and staffing require-

ments vary considerably. This model results in the WBS requiring a higher level of

workers in the South East region than is likely necessary if a more flexible staffing

model were introduced. Usually, aside from any workers that have booked annual

leave or training, or are absent due to sickness, all members of a clinic team will be

assigned to a clinic, regardless of if the clinic requires that number of workers. This

often leads to clinics being overstaffed in order to fulfil contractual hours of workers.

Occasionally, an overstaffed clinic may provide opportunity to open an additional

donation chair, and perhaps accept more ‘walk-in’ appointments. However, this is

often prohibited due to the physical capacity of the clinic venue and related health

and safety regulations.

Secondly, the Welsh Blood Service uses a considerable amount of overtime hours

amongst their clinic-based workers to enable all scheduled clinics to run effectively.

This implies that there is an insufficient number of workers and/or contracted hours

to adequately manage typical clinic schedules. However, with the Blood Donation

Clinic Scheduling Model (BDCSM) presented in Chapter 3 aiming to schedule fewer

clinics to meet demand, the resulting clinic schedules will likely require less overtime.

Additionally, the optimal levels of staffing and balance of skills and roles is unknown

by the organisation. Currently, if an employee leaves the WBS, their same role

(including number of contractual hours) is usually advertised to be filled. The

staffing level decisions are not informed by data, but by ensuring each team has

enough workers to operate the largest capacity clinic in the corresponding region
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with absences (annual leave and sickness) considered.

Finally, the workforce planning team typically spend an average of 48 hours in

total to produce a four-week schedule for clinic-based workers for all regions. This

includes inputting data such as annual leave into a digital rostering system, but the

system is not automated and thus schedules are required to be created manually.

This process is extremely time-consuming for the planning team and would benefit

from an increase of efficiency.

We aim to address these limitations in the following model formulation, with the

main objective to reduce costs through minimisation of overtime pay and to stream-

line the workforce scheduling process for clinic-based workers, whilst considering all

of the required constraints. In addition, the workers in the South East region are

considered in the model collectively as one pool of staff in replacement of four pre-

determined teams to promote better use of contracted hours.

4.2 Problem Formulation

The Blood Collection Workforce Scheduling Model forms the second stage of the

scheduling model and assigns clinic-based workers to each clinic scheduled in the

first stage of the model, the Blood Donation Clinic Scheduling Model (BDCSM).

4.2.1 Planning Horizon

Let T = {1, . . . , T} be the set of discrete times, within the planning horizon. They

are equally incremented as days, and thus we will relate to each time increment

as one day, t ∈ T . Each planning horizon is to begin on a Monday, with each

full calendar week during the planning horizon within the set W = {1, . . . , T/7} of

weeks.
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4.2.2 Workforce

Set S depicts the set of all clinic-based workers, where s ∈ S represents a unique

worker. Set J depicts the set of all potential roles of clinic workers, where Sj ⊂ S

represents a subset of workers who can perform role j. We also need to consider the

following for each worker:

� Workforce Availability: Let as,t denote the availability of worker s ∈ S

such that;

as,t =


1 if worker s ∈ S is available to work at a clinic on day t ∈ T

0 otherwise

(4.1)

This availability considers any booked annual leave, pre-scheduled training

days and a worker’s agreed working day pattern.

� Annual Leave: Let gleaves,t denote the booked annual leave of worker s ∈ S

such that;

gleaves,t =


1 if worker s ∈ S is to have annual leave on day t ∈ T

0 otherwise

(4.2)

� Training: Let gtrainings,t denote the pre-determined days of training for worker

s ∈ S such that;

gtrainings,t =


1 if worker s ∈ S is to have training on day t ∈ T

0 otherwise

(4.3)

� Contracted Hours: Let hs denote the number of contracted hours per week

for worker s ∈ S. Let C denote the number of contracted hours per week for

a full-time worker.
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� Region: Let R denote the set of regions. Let sr denote a worker s ∈ S that

is based in the region r ∈ R.

� Preferences: Each worker s ∈ S may provide preferences regarding what

types of clinics they are to be assigned to work. Let povertime
s denote whether

worker s is willing to work overtime, such that;

povertime
s =


1 if worker s ∈ S is unable to be assigned to work overtime

0 otherwise

(4.4)

Let ptours denote whether worker s is willing to work at trailer clinic, such that;

ptours =


1 if worker s ∈ S is unable to be assigned to a tour clinic

0 otherwise

(4.5)

� Overtime Pay: For simplification, we assume that all workers are paid for

overtime, since only one worker currently receives time off in lieu instead

of additional pay and this is unlikely to have an impact on overall annual

leave. As described in Section 4.1.3, there are two pay rates for overtime: a

base hourly rate which is the corresponding estimated hourly pay for a given

worker, and an increased rate of 1.5 times the base rate. The base rate is

paid for all hours worked up to full-time hours over the four-week period (150

hours), while the increased rate is for any hours worked in excess of this. Let

bs denote the base hourly rate of worker s, displayed as average hourly rate in

Table 4.2. Therefore the increased hourly rate for worker s is given by 1.5 bs.

4.2.3 Clinics

Set I depicts a set of clinic locations, with each unique clinic location denoted as

i. We use a pre-determined clinic schedule (the output of stage one of the model

i.e. the BDCSM) and utilise the notation of the stage one formulation (Chapter 3)
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such that;

xi,t =


1, if clinic i ∈ I is scheduled on day t ∈ T .

0, otherwise.

(4.6)

Each clinic i ∈ I has the following attributes.

� Region: Let R denote the set of regions. Let ir denote the region r that clinic

i is located within.

� Length of Day: Let li,t denote the expected length of working day (in hours)

of clinic i ∈ I on day t ∈ T . Let L12 be the set of clinics i with length of day

greater than or equal to 12 hours i.e. li,t ≥ 12.

� Venue Type: Let itrailer ∈ I denote the clinics in a trailer venue type and

icommunity ∈ I denote a community venue clinic.

� Clinic Type: Let Itours ⊂ I denote the set of tuples of clinics, (i1, ...iK) ∈

Itours where each tuple forms a clinic tour. Let k ∈ N≤K represent each

individual day of a tour, where K ∈ N denotes the final day number of a tour.

Thus, K also denotes the length of a tour i.e. the number of consecutive days

it requires each time it is scheduled.

� Resource Demand: Let di,j denote the minimum number of workers required

to perform role j ∈ J each day that clinic i is open ∀i ∈ I.

Dummy Clinics

In order to include worker hours for training and annual leave for the workforce, we

utilise dummy clinics. Each worker s ∈ S has an associated annual leave dummy

clinic, ileaves ∈ I, with length of day, li equivalent to one day of annual leave based

on the contracted hours of worker s. Similarly, there is one dummy training clinic

(as the length of training days are the same for all workers) which we denote as

itraining ∈ I. Therefore, let Istandard ⊂ I denote the set of clinics, i, that are actual

clinics of the organisation and not dummy clinics.
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4.2.4 Working Modes

In order to account for situations where a worker may have more than one role to

carry out on a given day (and at a given clinic) i.e. a clinic role and a driving role,

we include the concept of working modes. Let m ∈ Ms denote a working mode

of worker s ∈ S. Due to all RNs, Supervisors, CCAs and CSAs only having one

possible clinic role, there is a maximum of five possible working modes for each of

these workers; these consist of the clinic role alone with no driving role, and each

driving role in turn alongside the clinic role, as displayed in Table 4.3. However,

for those with the job title of Deputy Supervisor, they have two possible clinic roles

- Supervisor and CCA. Therefore, the maximum number of modes for a Deputy

Supervisor is ten, as displayed in Table 4.4. Since not all clinic workers are willing

and/or qualified to have any driving roles, most workers have only one possible

working mode.

Table 4.3: Working Modes Example for RN

Driving Role Clinic Role

Mode Lorry Minibus SV MDU RN Supervisor CCA/CSA

1 0 0 0 0 1 0 0
2 1 0 0 0 1 0 0
3 0 1 0 0 1 0 0
4 0 0 1 0 1 0 0
5 0 0 0 1 1 0 0
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Table 4.4: Working Modes Example for Deputy

Driving Role Clinic Role

Mode Lorry Minibus SV MDU RN Supervisor CCA/CSA

1 0 0 0 0 0 1 0
2 1 0 0 0 0 1 0
3 0 1 0 0 0 1 0
4 0 0 1 0 0 1 0
5 0 0 0 1 0 1 0
6 0 0 0 0 0 0 1
7 1 0 0 0 0 0 1
8 0 1 0 0 0 0 1
9 0 0 1 0 0 0 1
10 0 0 0 1 0 0 1

4.3 Model Formulation

With all parameters introduced, we now introduce the decision variables and their

domains as well as the constraints.

4.3.1 Decision Variables

We introduce the binary decision variable ys,m,i,t such that;

ys,m,i,t =



1, if worker s ∈ S is assigned to work mode m ∈Ms

at clinic i ∈ I on day t ∈ T

0, otherwise

(4.7)

We introduce the following continuous decision variables zovers,w and zunders,w to represent

weekly overtime and ‘undertime’ respectively, per worker, s, such that;

zovers,w ∈ R≥0 (4.8)

zunders,w ∈ R≥0 (4.9)
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Table 4.5: Notation and list of abbreviations

Sets

I Set of clinics
Istandard ⊂ I Set of standard clinics (not dummy clinics)
Itours ⊂ I Set of clinic tours
J Set of all potential roles of workers
K Set of days of a clinic tour
L12 Set of clinics i with li,t ≥ 12
Ms Set of modes for worker s ∈ S
Ms,j ⊂M Set of modes for worker s ∈ S for role j ∈ J
Ms,sup ⊂M Set of modes for worker s ∈ S with clinic role of Supervisor
R Set of regions
S Set of workers
Sr Set of workers based in region r ∈ R
T Set of days
Tw Set of days in week w ∈ W
W Set of weeks

Parameters

as,t Availability of worker s ∈ S on day t ∈ T
bs Hourly pay for worker s ∈ S
βn ∈ R Objective function weight parameter for the nth term,

where n = {1, 2, 3}
C ∈ R≥0 Full-time weekly contract hours
di,j Demand for role j ∈ J at clinic i ∈ I
gleaves,t Annual leave indicator for worker s ∈ S on day t ∈ T
gtrainings,t Training indicator for worker s ∈ S on day t ∈ T
hs Contracted hours per week for worker s ∈ S
ir ∈ I Clinic in region r ∈ R
icommunity ∈ I Clinic of community venue type
ileaves ∈ I Dummy clinic for annual leave for worker s ∈ S
itrailer ∈ I Clinic of trailer venue type
itraining ∈ I Dummy training clinic
(i1, ..., iK) ∈ Itours Clinic tour consisting of K ∈ N clinics
li,t Working day duration for day t ∈ T of clinic i ∈ I
povertime
s Overtime preference indicator for worker s ∈ S
ptours Tour preference indicator for worker s ∈ S
xi,t Schedule indicator for clinic i on day t ∈ T

Decision Variables

v1,s Number of hours worker s ∈ S is scheduled in excess of full
time

v2,s Number of overtime hours worker s ∈ S is scheduled
ys,m,i,t 1 if worker s ∈ S is scheduled to work clinic i ∈ I in mode

m ∈Ms on day t ∈ T , 0 otherwise
zovers,w ∈ R Scheduled overtime for worker s ∈ S for week w ∈ W
zunders,w ∈ R Scheduled ‘undertime’ for worker s ∈ S for week w ∈ W
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We make use of variables v1,s and v2,s to indicate the rate of overtime pay for each

worker, s ∈ S such that;

v1,s =



(
∑

m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t)− 37.5 · |W|, if
∑

m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t >

37.5 · |W|

for worker s ∈ S.

0, otherwise.

(4.10)

v2,s =



(
∑

m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t)− hs, if
∑

m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t > hs

for worker s ∈ S.

0, otherwise.

(4.11)

Thus, v1,s is the number of hours that worker s is scheduled for overtime that exceeds

full-time hours and will be paid at the increased rate of 1.5 times their usual hourly

pay. Similarly, v2,s is the number of hours that worker, s, is scheduled for overtime

in total. This allows us to calculate the correct payment for scheduled overtime

hours for each worker in the following objective functions.

4.3.2 Objective Function

We consider two alternative objective functions; one to minimise the total cost of

scheduled overtime and one to minimise the total cost of all scheduled hours. The

former relates directly to the priority of the WBS to reduce overtime where possible,

while the latter is motivated by the possibility of further reducing costs for the WBS.

We formulate the two alternative objective functions as follows:
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Objective Function One

Minimise
∑
s∈S

(
bs · v2,s

∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t +
bs
2
· v1,s

∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t

)

+ β
∑

s∈Sdep

 ∑
m∈Msup

∑
i∈I

∑
t∈T

ys,m,i,t

 (4.12)

Objective Function Two

Minimise
∑
s∈S

(
bs
∑

m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t +
bs
2
· v1,s

∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t

)

+ β
∑

s∈Sdep

 ∑
m∈Msup

∑
i∈I

∑
t∈T

ys,m,i,t

 (4.13)

We include a penalty function (the second term in each objective function) where

the constant β is some constant to enable the penalty value to be comparable to

the values of other terms in the objective function and therefore considered in the

optimisation process. We utilise this penalty function to discourage workers with

the title of Deputy Supervisor being scheduled to fulfil the clinic role of Supervisor

for a given shift if other Supervisors are available to work this shift.

The inclusion of variables v1,s and v2,s enables us to consider the costs as required. As

shown in 4.10, the variable v1,s represents the difference between the total scheduled

hours for worker s ∈ S over the four-week planning horizon and the threshold for

overtime paid at the increased rate, if the former is greater than the latter, i.e. v1,s

gives the number of hours worker s is scheduled to work overtime at the increased

pay rate. Similarly, as shown in 4.11, v2,s represents the difference between the total

scheduled hours and the total number of contracted hours, hs over the four-week

planning horizon for worker s ∈ S, i.e. v2,s gives the number of hours of overtime

scheduled for worker, s.
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Thus, objective function one (4.12) aims to minimise the total cost of overtime over

the planning horizon and to minimise the number of Deputy Supervisors assigned

to the role of Supervisor, whilst objective function two (4.13) aims to minimise

the total cost of all scheduled hours and again to minimise the number of Deputy

Supervisors assigned to the role of Supervisor.

4.3.3 Constraints

Resource Demand Constraints

Each standard clinic, i ∈ Istandard, on any day t ∈ T that it is scheduled, must

have enough workers assigned to the clinic to meet the clinic’s resource demands,

di,j. This is to ensure that the clinic can operate effectively, with the predetermined

number of workers per role (as displayed in Table 4.1) to be fulfilled.

∑
s∈S

∑
m∈Ms,j

ys,m,i,t ≥ xi,t · di,j ∀i ∈ Istandard, t ∈ T , j ∈ J (4.14)

These constraints ensure that for every role j ∈ J that is required to occur at clinic

i ∈ I, the minimum number of workers per role are scheduled.

Availability Constraints

The availability of each clinic-based worker, s ∈ S, needs to be considered; this in-

cludes approved annual leave, scheduled days of training, and working day patterns.

∑
m∈M

∑
i∈Istandard

ys,m,i,t ≤ as,t ∀s ∈ S, t ∈ T (4.15)

The above constraint ensures that any worker is only assigned to work any given

clinic i ∈ Istandard on day t ∈ T if they are available to work on day t.

Feasibility Constraints

We include the following constraints to ensure that the output schedule is feasible.
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Constraint 4.16 ensures that any worker s ∈ S is only assigned to a clinic i ∈ I on

day t ∈ T if clinic i is open on day t.

ys,m,i,t ≤ xi,t ∀s ∈ S, m ∈Ms, i ∈ I, t ∈ T (4.16)

Constraint 4.17 ensures that each worker s ∈ S is only assigned to at most one

clinic i ∈ I per day t ∈ T .

∑
m∈Ms

∑
i∈I

ys,m,i,t ≤ 1 ∀t ∈ T , s ∈ S (4.17)

Region Constraints

Each worker has a base region, usually the same region that they live in, and should

only be assigned to clinics that are within this same region to ensure that there are

reasonable travel times to and from work. Let r′ ∈ R denote a region different to

region r ∈ R.

∑
m∈Ms

∑
t∈T

ys,m,ir,t = 0 ∀s ∈ Sr′ , i ∈ Istandard, r ∈ R \ r′ (4.18)

Staff Preference Constraints

Each worker has the option to work overtime or not. The following constraint

ensures that workers who do not work overtime are not scheduled any hours in

excess of their contracted amount.

povertime
s ·

∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t ≤ hs · |W| ∀s ∈ S (4.19)

Each worker should only be assigned to clinics that align with any stated preferences

regarding clinic type. Constraints (4.20) ensures that only workers that are willing

to work a full clinic tour are scheduled to do so.
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ptours ·
∑

m∈Ms

∑
itour∈I

∑
t∈T

ys,m,itour,t = 0 ∀s ∈ S (4.20)

Working Regulation Constraints

In the U.K., working an excess of an average of 48 hours per week is prohibited by

law. Therefore, we include the following constraints to ensure that all scheduled

work is legal.

∑
t∈T

∑
i∈I

∑
m∈Ms

ys,m,i,t · li,t ≤ 48 · |W| ∀s ∈ S (4.21)

The WBS imposes a rule that any clinic-based worker that works 12 hours or longer

in one day is required to have the following day off. Thus we utilise constraints

(4.22) to ensure this holds. Similarly, the WBS also imposes a requirement that any

clinic-based worker due to work a clinic tour must have a day off on the day prior

to the tour commencing, and constraints (4.23) ensure this occurs.

∑
m∈Ms

ys,m,̃i,t +
∑

i∈Istandard\̃i

∑
m∈Ms

ys,m,i,t+1 ≤ 1 ∀s ∈ S, t ∈ T ĩ ∈ L12 (4.22)

∑
m∈Ms

ys,m,i1,t +
∑

i∈Istandard

∑
m∈Ms

ys,m,i,t−1 +
∑

m∈Ms

ys,m,itraining,t−1 ≤ 1

∀t ∈ T \ t1, s ∈ S, i1 ∈ Itours
(4.23)

Tour Constraints

Tour clinics require the same workers to work through the duration of the tour

i.e. the same workers need to be scheduled to each clinic of a given tour. Let the

number of days of a given tour be denoted by K ∈ N, such that each clinic day

within a tour is denoted by k ∈ N≤K . We ensure that if worker s ∈ S is scheduled

to work a clinic ik ∈ Itours within a tour, then they are scheduled to work every

other clinic within the same tour.
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∑
m∈Ms

ys,m,i1,t =
∑

m∈Ms

ys,m,ik,t+k ∀ k ∈ N≤K , t ∈ T , i1 ∈ Itours, s ∈ S (4.24)

Dummy Clinic Constraints

In order to include worker hours for training and annual leave for the workforce, we

utilise dummy clinics. Each worker s ∈ S has an associated annual leave dummy

clinic, ileaves ∈ I, with length of day, li,1, equivalent to one day of annual leave based

on the contracted hours of worker s. Similarly, there is one dummy training clinic,

itraining, as training days are the same length for all workers.

∑
m∈Ms

ys,m,ileaves ,t = gleaves,t ∀s ∈ S, t ∈ T (4.25)

Constraints 4.25 ensures that each worker s ∈ S is assigned to their corresponding

dummy clinic ileaves ∈ I for each day of booked annual leave. Likewise, constraints

4.26 ensures that each worker s ∈ S is assigned to the dummy training clinic,

itraining ∈ I, for each day of booked training.

∑
m∈Ms

ys,m,itraining,t = gtrainings,t ∀s ∈ S, t ∈ T (4.26)

Workload Balancing Constraints

We introduce a balancing constraint, involving decision variables zovers,w and zunders,w , to

enable these variables to have the desired values of weekly overtime and ‘undertime’

respectively, for each worker s ∈ S.

(∑
t∈Tw

ys,m,i,t · li,t

)
− hs − zovers,w + zunders,w = 0 ∀w ∈ W , s ∈ S (4.27)

We also utilise the following constraints to determine the bounds of decision vari-

ables, zovers,w and zunders,w . Constraints (4.28) ensure that weekly overtime is non-

negative. Constraints (4.29) ensure that weekly ‘undertime’ for a worker is at most
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their weekly contracted hours, hs, and non-negative.

0 ≤ zovers,w (4.28)

0 ≤ zunders,w ≤ hs (4.29)

Linking Constraints

To ensure that decision variables v1,s and v2,s are correctly utilised as overtime pay

indicators, we have the following constraints.

( ∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t

)
− v1,s ≤ C · |W| ∀s ∈ S (4.30)

( ∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t

)
− v2,s ≤ hs ∀s ∈ S (4.31)

v1,s ∈ R≥0 ∀s ∈ S (4.32)

v2,s ∈ R≥0 ∀s ∈ S (4.33)

4.4 Model Modifications

The original Blood Collection Workforce Scheduling Model provided poor results (as

displayed in Appendix C), with scheduled overtime and an unbalanced assignment

of clinic hours across all clinic-based workers. With some workers assigned almost

all of their contracted hours, others are assigned very few working hours. This is

unrealistic and unsustainable as a staffing model, and does not align with the WBS

goal of utilising all contracted hours. To improve the fairness of allocated working

hours across the clinic workforce, we make the following modifications to the model.
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4.4.1 Parameters

In addition to all parameters previously introduced in Table 4.5, we introduce the

following:

� Maximum available clinic hours: Let Ωs,w denote the maximum available clinic

hours that worker s ∈ S could be assigned to in week w ∈ W. This considers all

scheduled clinics in the corresponding region for worker s, and deducts all unavail-

able clinic hours for worker s due to pre-determined annual leave and training, or

their established working day pattern.

� Total Leave Hours: Let cs,w denote the total booked annual leave and training

hours for worker s ∈ S on week w ∈ W. Therefore, let Scs,w<0.5·hs ⊂ S denote

the set of clinic workers that have fewer than 50% of their contracted hours, hs,

scheduled as annual leave and/or training.

With all new parameters introduced, we continue to the modified objective functions

of the improved model.

4.4.2 Objective Function

To enable the model to consider a fairness of assignment of hours across workers, we

utilise the decision variables zovers,w and zunders,w i.e. weekly overtime and ‘undertime’ per

worker respectively. Overtime is calculated by the WBS over the whole four-week

planning horizon. However, since these variables consider each worker’s assigned

hours per week, when considering across all weeks in the planning horizon, this

gives an indication of how far the assigned hours are from the target of a worker’s

contracted hours and how well balanced they are over the planning horizon.
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Therefore, we formulate the two modified objective functions as follows:

Objective Function One

Minimise
∑
s∈S

(
bs · v2,s

∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t +
bs
2
· v1,s

∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t

)

+ β1
∑
s∈S

∑
w∈W

zovers,w + β2
∑
s∈S

∑
w∈W

zunders,w + β3
∑

s∈Sdep

 ∑
m∈Ms,sup

∑
i∈I

∑
t∈T

ys,m,i,t

 (4.34)

Objective Function Two

Minimise
∑
s∈S

(
bs
∑

m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t +
bs
2
· v1,s

∑
m∈Ms

∑
i∈I

∑
t∈T

ys,m,i,t · li,t

)

+ β1
∑
s∈S

∑
w∈W

zovers,w + β2
∑
s∈S

∑
w∈W

zunders,w + β3
∑

s∈Sdep

 ∑
m∈Ms,sup

∑
i∈I

∑
t∈T

ys,m,i,t

 (4.35)

We use β1, β2, and β3 ∈ R as constants to allow the smaller terms of the objective

function to be comparable to the first larger term.

By including the minimisation of the total weekly overtime and total weekly ‘un-

dertime’ across all clinic-based workers, the model is motivated to assign the target

weekly hours to each worker i.e. their contracted hours.

4.4.3 Constraints

To ensure that no worker is scheduled an unreasonable amount of overtime, we

include the following constraints to limit weekly overtime to 50% of a worker’s

contracted hours.

zovers,w ≤ 0.5 · hs ∀s ∈ S, w ∈ W (4.36)

Additionally, we include new constraints to reduce the likelihood of a worker being
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scheduled hours below a lower threshold.

∑
t∈Tw

∑
i∈Istandard

∑
m∈Ms

ys,m,i,t · li,t ≥ 0.5 ·min{hs − cs,w,Ωs,w}

∀s ∈ Scs,w<0.5·hs , w ∈ W

(4.37)

Constraints (4.37) ensure that for each worker with at least half of their contracted

hours available for clinic hours on a given week w ∈ W , the minimum of either half

of their remaining available contracted hours (hs − cs,w) or half of the maximum

available clinic hours that week (Ω), are assigned to worker s. We include the

latter value, Ωs,w to ensure that the problem remains feasible if there are no clinics

scheduled in a given week.

4.5 Summary

In this chapter, the current practice of clinic-based workforce scheduling at the

Welsh Blood Service has been introduced, including details about how the work-

force are organised, and limitations of this current practice have been identified. A

formulation of the Blood Collection Workforce Scheduling Problem (BCWSM) is

presented in the form of a linear programme to assign workers to clinics optimally.

We detailed all parameters of the problem, followed by two alternative objective

functions; minimisation of overtime costs, and minimisation of the cost of all sched-

uled hours. Both objective functions also include a penalty function to discourage

the model from selecting a Deputy Supervisor to be assigned to the clinic role of a

Supervisor if there are Supervisors available. We introduced all of the constraints

required to ensure the output of the model is a feasible solution for the WBS. Addi-

tionally, we identified areas of improvement for the formulation and introduced two

modified alternative objective functions to include the minimisation of both weekly

overtime and ‘undertime’ per worker, and introduced a new constraint. The aim of

this modified version of the model is to create a more realistic schedule output for

the Welsh Blood Service.
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In the next chapter, Chapter 5, we discuss the development of a prototype decision

support tool for the BDCSP, alongside the development of both the model described

in this chapter (BCWSM), and the clinic scheduling model presented in Chapter 3

(BDCSM).
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Chapter 5

Model Development

This chapter discusses the development of both the Blood Donation Clinic Schedul-

ing Model (BDCSM) and the Blood Collection Workforce Scheduling Model

(BCWSM), in addition to a prototype decision support tool for the Blood Dona-

tion Clinic Scheduling Problem (BDCSP). This chapter is structured as follows: the

background of the models and their development is briefly discussed in Section 5.1,

with a description of the available data in the subsequent Section 5.2. COIN-OR

and its CBC solver are described in Section 5.3, with Python and PuLP outlined af-

terwards in Section 5.4. Section 5.5 presents the prototype tool created in Microsoft

Excel to solve the BDCSM, while sections 5.6 and 5.7 detail the development of the

models written in Python for the BDCSP and BCWSP, respectively.

5.1 Background

With the initial goal of this research project to create a decision support tool

that would be implemented at the Welsh Blood Service (WBS), a prototype clinic

scheduling tool was developed in Microsoft Excel, with the aim to trial this tool

on-site at the WBS Headquarters with the planning team. Unfortunately, due to

the COVID-19 pandemic, this tool was not able to be piloted, and to adapt to
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the new circumstances, the focus became furthering the development and improve-

ment of the BDCSM and BCWSM in Python (utilising the Python package PuLP

as a solver) to ensure that these models are feasible for the WBS and a realistic

representation of the clinic scheduling process and limitations.

5.2 Available Data

The Welsh Blood Service provided all available data required for the clinic schedul-

ing process. This includes all ‘bleed figures’ i.e. blood collection data, since January

2017; these figures include how many units of blood were collected from each clinics,

how many of these were viable donations, and how many donors attended. Simi-

larly, all blood issuing data was provided by the WBS for the period from January

2017 to March 2020, which includes the age of each blood product at the time of

issue to a hospital. Due to the COVID-19 pandemic and its effect on the operations

of the WBS donation clinics, collection data from 2020 is not a true representation

of business as usual and therefore we consider only data prior to this.

All clinic data was made available, such as each clinic’s location, donor capacity,

staffing level requirements, and typical availability pattern. Additionally, the WBS

provided an anonymised dataset of the donation clinic workforce, with identifiable

information such as names and addresses removed. This data includes staff roles,

skill level, agreed working day patterns and contracted hours. While only salary

bands for each employee were given by the WBS and not a specific pay rate, in-

formation regarding salary band pay rates and annual leave entitlement is openly

accessible online, published by the NHS.

5.3 COIN-OR Solver

All three models utilise COIN-OR CBC optimisation engine, including the prototype

donation clinic scheduling tool via the OpenSolver Excel add-in. There are existing
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scheduling tools that utilise COIN-OR via OpenSolver such as the ‘Shift Scheduling

Game’ developed by Michigan Center for Healthcare Engineering and Patient Safety

[37]. COIN-OR solvers are free and open source which is a necessity for the Welsh

Blood Service as the minimisation of cost is a priority as an NHS organisation.

Although more advanced commercial solvers such as Gurobi and CPLEX are known

to have the best performance, these solvers are not an option due to the significant

associated costs. However, COIN-OR CLP and CBC solvers are among the strongest

open-source solvers for linear programming with the CLP solver concluded to be

the top performing open-source solver by the U.S. Office of Scientific and Technical

Information [38] when compared with popular solvers GNU Linear Programming Kit

(GLPK), lp solve, and Modular In-core Nonlinear Optimisation System (MINOS).

COIN-OR (Computational Infrastructure for Operations Research) is a project

managed by the COIN-OR Foundation with the aim to build an “open-source

community for operations research software” [1]. There are many smaller projects

within the COIN-OR project, namely the development of various software for a

range of problems, methods and coding languages. There are two main linear pro-

gramming solvers developed by the COIN-OR community; CLP (COIN-OR Linear

Programming) which mainly uses the simplex algorithm as its main algorithm, and

CBC (COIN-OR Branch and Cut) which is a mixed integer linear programme-based

branch and cut library and also utilises CLP. Both of these solvers are written in

C++ but can be utilised with various languages through available packages such

as PuLP. Due to the nature of the BDCSP with decision variables required to have

integer values, the CBC solver is the more suitable choice.

5.4 Python and PuLP

PuLP is a linear programme modeller written in the computer programming lan-

guage Python [2]. It can utilise a number of solvers such as CPLEX, GUROBI

and COIN-OR CLP/CBC. Due to the minimisation of cost being important to
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the Welsh Blood Service, our developed models utilise PuLP as it is open source

and therefore free to use, and is simply installed as a Python package. We choose

Python as the primary language for development of the model as it is open-source,

readable, high level and thus easy to learn [80]. This supports the possibility for

future implementation of the model (embedded within a tool) at the WBS and in-

deed for maintenance, expansion and further development of the model by the WBS

themselves.

5.5 Development of a Blood Donation Clinic

Scheduling Decision Support Tool

With the initial goal outcome of this research being an implementable tool for the

Welsh Blood Service to optimise their clinic and workforce scheduling, we devel-

oped a prototype clinic scheduling decision support tool. In order to make ongoing

maintenance of the tool as straightforward as possible, in addition to maximising

the usability of the tool among the clinic planning staff, the tool was created in

Microsoft Excel. The tool utilises OpenSolver to solve the Blood Donation Clinic

Scheduling Problem (BDCSP) optimally using COIN-OR CBC optimization engine.

It was planned to pilot the tool at the WBS with an iterative feedback approach

from clinic planning staff, and to use this feedback to further improve and adjust

the tool as required. However, due to the COVID-19 pandemic, the tool was not

able to be piloted, and thus a second stage of the prototype tool for optimisation of

workforce scheduling was not developed.

5.5.1 Aims of Decision Support Tool

The development of a tool for the Welsh Blood Service to assist their clinic planning

process would not only minimise clinic associated costs and improve efficiency of

the collection of blood, but also improve efficiency within the planning department.
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Currently, the clinic planning process is extremely tedious and time consuming, with

an initial four-week clinic schedule taking an average of five working days to create.

The use of such a tool would produce an optimal clinic schedule in significantly less

time and also with less input required from the planning team.

Additionally, the tool needs to be easily accessible, inexpensive, and usable for the

planning team with minimal training required. The maintenance of the tool is also

required to be minimal, as the IT department of the WBS have limited resources.

This led to the decision for the tool to be embedded within Microsoft Excel, as it

is a software that all staff at the WBS are widely familiar with and would require

minimal training to use the tool.

5.5.2 Decision Support Tool Development

The prototype considers all blood donation clinics in the South West region (i.e.

those associated to the Dafen base) which totals 51 clinics. This region was chosen

as the significantly larger South East region poses a more complex problem with

up to four clinics permitted to be scheduled each day, whereas the three remaining

regions all have resource levels to support a maximum of one clinic per day. The

South West region presents a slightly more complex problem than both North East

and North West regions as multiday clinics occur in this region. This provides the

opportunity to incorporate constraints related to these clinics that would not be

relevant in either of the north regions.

The decision support tool consists of a Microsoft Excel file with multiple sheets for

details such as availability and estimated supply. Each type of parameter has its

own individual sheet such as a sheet for each type of availability, and named clearly

to ensure the clinic planner is able to easily access data as required. Due to the

limitations of the software, all data to be considered in the optimisation model must

be on the same sheet, and thus to prevent important data accidentally being altered

during the pilot study, all data is stored in alternative protected sheets, and simply
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called upon on the ‘model’ sheet. Since the model is developed to be specifically

for the WBS, all required clinic data is already input and therefore, most data is

unlikely to require editing except for cases where a new clinic is added or the details

of an existing clinic have changed. Therefore, the ‘model’ sheet is located first, with

the aim that this sheet, along with the adjacent ‘schedule’ sheet, are the only sheets

that require frequent use. Of the remaining sheets, those that are more likely to

require altering such as ‘clinic frequency’ are located before sheets that require very

infrequent adjustments such as ‘clinic types’ which categorises clinics into one-day

clinics and multi-day clinics.

Planning Horizon

The WBS plan their clinics over four-week periods at a time; to ensure the tool

is as implementable as possible, a four-week planning horizon is considered with

the ‘start date’ of the planning horizon easily adjusted on the ‘model’ sheet. The

specific planning horizon considered for the pilot version of the tool is 06/01/2020

- 02/02/2020.

Clinic Availability

Due to the nature of mobile clinics, availability of clinic venues for the WBS is a

major constraint. In most cases, clinic availability is predetermined and follows a

regular pattern. These availability patterns can be divided into three types; week-

day availability (e.g. Mondays only), seasonal availability (e.g. no winter months,

or school holidays only) and frequency-based availability (ensuring that a pre-

determined minimum number of days have lapsed between consecutive occurrences

of a given clinic).

To inform the optimisation model of the availability of each clinic, a binary clinic

availability matrix is considered for each type of availability, where a ‘1’ represents

that the corresponding clinic is available on the corresponding day of the planning

horizon, and ‘0’ represents that the clinic is unavailable. These matrices take the
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form of a table on an individual sheet per availability type, with clinic names in

the leftmost column, availability patterns in the adjacent column, followed by the

binary matrix with each day of the planning horizon as the column headers, as

displayed in the example for weekday availability in Figure 5.1.

Figure 5.1: Prototype Tool - Weekday Availability of Clinics

Visual Basic (VBA) code has been utilised to provide a drop-down menu to select

the availability pattern of a clinic, as shown in Figure 5.1, for both weekday and

seasonal availability. Once an option is selected, the row automatically generates

the associated availability (in the form of a binary value per day of the planning

horizon) for that clinic. This matrix is then referred to by the model to ensure each

clinic is only scheduled on days where the venue is available.

Frequency-based availability is determined by observing the most recent date at

which each clinic was held, prior to the current planning horizon. These dates are

input into the table for frequency-based availability, with the adjacent column con-
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taining the date at which each clinic is next available to be scheduled, by considering

the corresponding maximum frequency for a given clinic. Each cell in the binary

matrix for the availability then utilises a formula that considers this next available

date alongside the given date of the planning horizon (denoted by the column head-

ers), and inputs a ‘1’ if a given clinic is available to be scheduled on a given day,

and ‘0’ otherwise.

Multiday Clinics

The Welsh Blood Service operates multiday clinics in several locations across Wales.

These are usually in locations where the donor panel is large and the venue has

limited availability throughout the year such as a university. The duration of these

clinics vary from two to five consecutive days, with some multiday clinics in the

South East region occurring over non-consecutive days.

Figure 5.2: Prototype Tool - Multiday Clinics

Configuring these clinics in the Excel tool requires a different method to the standard

one-day clinics. We created ‘start’ and ‘stop’ days (both binary decision variables)

for each multiday clinic, with the former being the first day that the clinic is to be

operated, and the latter being the last day of the clinic. We also created a dummy

(binary) decision variable per multiday clinic for if the clinic is to be scheduled

during the planning horizon or not. With the inclusion of constraints ensuring that

the number of days between (and including) the start and stop days is equal to the

required duration of the multiday clinic, the model successfully includes clinics of

this type within the schedule.
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Supply and Demand

The supply estimates for each clinic are calculated based on the mean of the three

previous ‘bleed’ figures for the clinic, as this is the method that the WBS used prior

to the COVID-19 pandemic. The tool allows for the weekly demand to be input,

and ensures that the sum of these per week is met for each week of the planning

horizon.

The weekly demand input into the tool is set at an arbitrary value of 372 units of

blood; this is based on 21.3% of the total weekly demand across all regions, as this

percentage is the mean proportion of total blood donations collected from the South

West region during 2019. The total weekly demand across all regions considered for

the tool is the value of 1750 units, which is the value that the clinic planning team

frequently use as a target, based on rough estimates by the WBS. A constraint is

created for each week’s estimated supply to ensure that the weekly demand is met.

Decision Variables and Objective Function

The decision variables considered in this prototype tool are as described in Section

3.3, with xi,t as binary decision variables where i ∈ I denotes all clinics in the

South West region and t ∈ T denotes the days of the given planning horizon. For

the multiday clinics, each start and stop day are individual binary decision variables.

The tool considers only one objective function: the minimisation of overcollection

i.e. the minimisation of blood collected in excess to demand. This is due to the tool

being developed prior to the proposition to include an alternative objective function

to minimise the total number of scheduled clinic days over a given planning horizon

to promote a reduction of monetary costs.

Excluded Constraints and Simplifications

With the initial purpose of the prototype tool to be trialled at the WBS and further

developed as an iterative process, not every constraint detailed in Section 3.3 is
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included. Constraints (4.22) and (3.26) are not included in the prototype tool as a

simplification of the problem for an initial pilot of the tool; these constraints ensure

that the number of clinics scheduled in a region are restricted if a day off for some

workers is required, as a result of either a 12-hour working day or a clinic tour. For

the same reasons, constraints (3.18) - (3.20) and (3.21) are not included in the tool.

Similarly, constraints (3.23) and (3.24) are excluded for simplification; although

there are technically clinic tours in the region, they consist of several consecutive

days at the same clinic venue and thus the clinic duration enforces all days of the

tour to be scheduled. However, constraints (3.27) are not applicable to the South

West region as there are no obligatory clinics in the region.

Tool Functionality and Output

The prototype considers all blood donation clinics in the South West region (i.e.

those associated to the Dafen base) and solves within one minute. The clinic schedul-

ing model can be solved by the user by inputting the first day of the four-week

planning horizon and selecting the embedded ‘Generate Schedule’ button (see Fig-

ure 5.3). The scheduled clinics display in green in the respective date column for

each day that the clinic is to operate. Alternatively, each scheduled clinic is auto-

matically listed under the corresponding date on the ‘schedule’ sheet of the file.

The focus with this tool was to ensure that it is user-friendly and accessible. Many

options provide automated outputs for ease of use, such as choosing the start date

of the planning horizon and availability patterns of each clinic. In addition to the

scheduled clinics highlighted in green, the sheet named ‘schedule’ contains all sched-

uled clinics listed in columns titled with the corresponding date of a scheduled clinic.

This schedule sheet is automatically generated using a macro written in VBA to

provide the clinic planner with a clear clinic schedule. Figure 5.4 presents an exam-

ple of this output, displaying the first week of the planning horizon.
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Figure 5.3: Prototype Tool - Model Solution
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Figure 5.4: Prototype Tool - Schedule Output

5.6 Development of the Blood Donation Clinic

Scheduling Model in Python

To avoid limitations of VBA and Microsoft Excel, a more detailed and accurate

optimisation model for the scheduling of blood donation clinics was created us-

ing Python and the linear programme package PuLP. This model follows the full

formulation for the BDCSP set out in Chapter 3.

5.6.1 Aims of Model

The BDCSM was built in Python to schedule the WBS clinics optimally, across all

regions. The output of the model is a four-week clinic schedule that aims to match

supply to demand and/or minimise clinic associated costs by reducing the number

of clinics scheduled to meet the demand. This forms an ideal ‘starting point’ for the

clinic planning process as an initial schedule, and thus can be changed manually by

the planning team if any clinic venues are newly unavailable for the scheduled date.

The benefits of this model being used in place of the current practice at the WBS

include a reduction in manual scheduling for the clinic planning team, an ability

to increase cost efficiency of blood collection by scheduling as few clinics as possi-

ble required to meet demand, and to better match supply to demand. These all

contribute to answering to research question one: How can mathematical modelling

help to schedule the Welsh Blood Service’s blood donation clinics more efficiently?

The BDCSM forms the first stage of the full scheduling model for the WBS, with

the output of the BDCSM to be used as input into stage two of the model (the
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BCWSM) to assign donation clinic-based workers to scheduled clinics optimially.

5.6.2 Development of Model

The model was built incrementally, beginning with a small simplified model consid-

ering only the South West regions, similar to the prototype tool version. Gradually,

the model was expanded to include all constraints detailed in Section 3.3 and to

consider all four regions of Wales, to ensure that the model provided an accurate

reflection of the clinic scheduling process at the WBS and all related rules and

limitations.

Input of Clinic Data

All clinic data that is relevant to the clinic scheduling process was collated into one

Microsoft Excel file, separated into individual sheets by region, with an additional

sheet with all clinic data included i.e. all regions collectively. For each clinic, this

data includes a unique identification key, the number of days that a clinic should

run each time it is scheduled, availability patterns, estimated supply, the expected

length of working day for each day that a clinic runs, the maximum frequency that

a clinic may be scheduled, and the most recent date that a clinic was scheduled

prior to specific planning horizons. The model reads this file and utilises a function

specifically created to extract relevant data into a new dataset, also known as a

‘dataframe’ in the Python package, Pandas. This function requires a selected region

and season as arguments, and returns the corresponding dataset.

Dummy clinics were created to enable workers to be assigned to a corresponding

dummy clinic for any annual leave or training days. A total of 12 dummy clinics

were constructed, one for each number of weekly contractual hours for the clinic-

based workforce at the WBS. The length of day for these dummy clinics are the

corresponding number of contracted hours divided by five (working days) as this is

how the WBS calculates the number of hours accounted for by a day of annual leave

per worker. One dummy clinic is created for training days as all days of training
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for their clinic-based workforce are equivalent to 7.5 hours.

Planning Horizon

The planning horizon is input by assigning a date value to the ‘initial date’ param-

eter, which is the first day of the planning horizon, and assigning a value to the

‘number of weeks’ parameter. All dates regarding school and university term dates

for the given calendar year are written in the main script of the model, and need

to be manually input as date ranges each year to enable them to be considered for

clinic availability patterns.

Clinic Availability Patterns

Clinic availability patterns are input using specifically created functions, one for each

type of clinic availability pattern i.e. weekday availability and seasonal availability.

These functions require a unique clinic key and the planning horizon as arguments,

and return a list of binary values to represent the clinic availability i.e. a ‘0’ if

the clinic is not available to be scheduled on the given day, or a ‘1’ if the clinic

is available. These functions look up the weekday or seasonal availability pattern

against the unique clinic key in the clinic dataset, and the specified term dates (if

applicable) to determine which days of the planning horizon may be affected.

Clinic Duration Patterns

Clinic duration patterns are written in the main script of the model in the format

of |T | × |T | binary matrices using the Python package, NumPy, where T denotes

the set of days in the given planning horizon. Each column of the matrix represents

a day of the planning horizon, whilst each row represents which day would be the

starting day of a clinic, if selected. An example of how these matrices work is

provided in Table 3.2 with examples of the Python code in Appendix D. All of the

clinic duration patterns that the WBS used prior to the COVID-19 pandemic are

included in the model.
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Estimated Supply

The WBS typically calculates their estimated supply per clinic based on an average

‘bleed’ over the last three times the given clinic occurred i.e. the number of attendees

that began a donation. The WBS utilise these figures during clinic scheduling to

estimate the supply of a clinic. Since there is usually a small but significant decrease

in the number of viable collections from the bleed figures due to issues during the

donation that result in a unviable donation, this drop-off rate must be accounted for

in supply estimates. Therefore estimated supply is calculated by taking the mean

viable collected donations over the three previous clinics (of the same location and

type) instead of bled donors to incorporate the typical drop-off rate per clinic.

Estimated Demand

Demand data is manually input in the main script per week per region. Since

the WBS are conducting their own research to identify the ‘true’ demand, the

values considered for our experimental results in Chapter 6 are calculated using

our own methods, with these calculations to be replaced with the WBS methods

once finalised, if the model is to be implemented. To estimate the weekly demand,

we used the WBS forecasts of issue of whole blood products per calendar week of

2019 alongside the average age of blood products at date of issue (averaged over all

blood types for 2017-2018). By combining these, we worked backwards from week

of forecasted issue to estimated week of collection to determine the total number

of estimated bags that would be required to be collected each week to meet the

forecasted demand with which it corresponds. In addition, an average of 3.9% of

viable collections do not make it to inventorised stock due to issues that can arise

during production. To account for this, we divide each weekly estimated demand

by 96.1%.
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Decision Variables, Objective Functions and Constraints

As described in the formulation of the BDCSP in Section 3.3, the model considers

both xi,t and ∆+
w as decision variables, for a given region’s clinics and a given

planning horizon. The model considers three alternative objective functions; the

minimisation of the total number of clinics days scheduled over the given planning

horizon, the minimisation of overcollection, and the minimisation of both the total

clinic days scheduled and overcollection. The objective function considered is to

be chosen each time the model is run. All constraints detailed in Section 3.3 are

included in the model.

Testing and Validation of Results

Throughout the incremental development of the stage one model, the solutions have

been inspected to ensure that they are as expected. To ensure that any solution

reached by the model meets all of the included constraints, an assert statement is

considered for each constraint to ensure that it holds true. This ensures that in

circumstances where an optimality gap or time limit is considered during the ‘solve’

process, the solution is still valid.

We developed a package of functions to enable the model to perform various actions

such as cleansing of data, retrieval of weekday and seasonal availability patterns,

and retrieving the distance between two given clinics. All of these functions were

also developed in Python and were each unit tested to ensure that they act as

expected.

5.6.3 Development of Experimental Scenarios

To assess the solutions of the model, and how the model performs under different

scenarios, we design various instances for experimental trials of the model.



CHAPTER 5. MODEL DEVELOPMENT 103

Test Instances

We designed various instances which can be found in Table 5.1. There were three

main factors identified to likely have a significant effect on the goodness of a solution

and the computation time: the region(s) considered, the planning horizon, and the

inclusion of more specific constraints to reflect the current collection model of the

Welsh Blood Service. A more detailed explanation of each of these factors follows.

Regions

Firstly, we consider each region of Wales separately (of which there are four) in

addition to the instance considering the whole of Wales. The number of clinics and

resource levels vary greatly between regions, with South East having significantly

more of both. It was anticipated from early stages of the development of the model

that due to the increasing complexity associated with increasing the number of

clinics available to be scheduled, the instances considering all regions together would

be computationally expensive. It was a possibility that an optimal solution for All

Wales instances may not be reached within a feasible time, and that a schedule for

the whole nation may need to be comprised of each region schedule when solved

individually. Additionally observing the results from these instances of individual

regions can provide further insight into the model and indeed the clinic scheduling

problem.

Planning Horizon

Secondly, we consider different planning horizons. There are seasonal availability

constraints for a significant number of clinics, and so it is important to understand

the impact of this variation on the schedule output. We consider two specific four-

week planning horizons; one in the winter season (24/01/2019 to 03/02/2019) and

one in the summer season (22/07/2019 to 18/08/2019). Both considered planning

horizons are four weeks in length and commence on a Monday, as this reflects the

current planning process at the Welsh Blood Service.
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Table 5.1: Stage One - Base Instances

Instance
Name

Region
Number of
Clinics in
Region

Number of
Available
Clinics

Planning
Horizon
Length

Planning
Horizon
Season

Additional
Constraints

Included

Mean Time
Window per

Available Clinic

Total
Available

Clinic Days

AW11 All Wales 344 163 4 weeks Winter Yes 10.1 1639
AW12 All Wales 344 163 4 weeks Winter No 10.1 1639
AW21 All Wales 344 169 4 weeks Summer Yes 11.1 1870
AW22 All Wales 344 169 4 weeks Summer No 11.1 1870
NE11 North East 38 16 4 weeks Winter Yes 6.2 99
NE12 North East 38 16 4 weeks Winter No 6.2 99
NE21 North East 38 19 4 weeks Summer Yes 4.2 79
NE22 North East 38 19 4 weeks Summer No 4.2 79
NW11 North West 51 21 4 weeks Winter Yes 10.5 221
NW12 North West 51 21 4 weeks Winter No 10.5 221
NW21 North West 51 30 4 weeks Summer Yes 10.6 319
NW22 North West 51 30 4 weeks Summer No 10.6 319
SE11 South East 205 96 4 weeks Winter Yes 11.6 1116
SE12 South East 205 96 4 weeks Winter No 11.6 1116
SE21 South East 205 95 4 weeks Summer Yes 12.7 1202
SE22 South East 205 95 4 weeks Summer No 12.7 1202
SW11 South West 51 24 4 weeks Winter Yes 9.4 226
SW12 South West 51 24 4 weeks Winter No 9.4 226
SW21 South West 51 25 4 weeks Summer Yes 6.8 171
SW22 South West 51 25 4 weeks Summer No 6.8 171
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Additional Constraints

Thirdly, we consider how constrained the problem is, and for this we consider both

the inclusion and exclusion of a specific constraint; constraints 3.17. Presently

the Welsh Blood Service schedules clinics not only based on fulfilling demand but

also based on satisfying clinic staff contractual hours. This leads to inefficiencies

such as more clinics being scheduled than necessary to meet demand and potential

overcollection and therefore potential wastage of blood products. Working with the

clinic planner at the Welsh Blood Service, we formulated these constraints in the

form of (3.17) whereby each region has a minimum number of clinics that must

be scheduled per four-week planning horizon. We consider the exclusion of these

constraints to measure their effect on the efficiency of the optimal clinic schedule.

Ideally, it would provide a more efficient collection model if constraints 3.11 could be

removed. These constraints represent the obligation that the Welsh Blood Service

have to the Welsh Government to ensure that even extremely rural and inefficient

clinics are operated to provide those in the area with the opportunity to donate

blood if they so wish. This means that each clinic must be scheduled at least once

each calendar year.

Instance Nomenclature

In addition to the above variations, we also consider each of these base instances

under each of the three objective functions, giving a total of 60 test instances. For

ease of analysis and referral, each instance is given a name consisting of two letters

followed by four e.g. SW1123. The instance nomenclature has been developed as

follows and is explained using the same example;

� Region: The two letters at the start of each instance name represents the

considered region e.g. in SW1123, the region is South West.

� Planning Horizon: The first number denotes the season; ‘1’ represents

the winter planning horizon and ‘2’ represents the summer planning horizon.
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Therefore, in the chosen example SW1123, the considered planning horizon is

that of winter.

� Additional Constraints: The second number represents the inclusion (de-

noted by ‘1’) or exclusion (denoted by ‘2’) of the additional constraints, as

discussed above e.g. in the case SW1123, the additional constraints are in-

cluded.

� Objective Function: A final number may be added to represent the objec-

tive function used i.e. ‘1’ denotes objective function one (the minimisation

of clinics scheduled), ‘2’ denotes objective function two (minimise estimated

overcollection), and ‘3’ denotes objective function three (the combination of

both prior objective functions). In the given example, SW1123, objective

three is considered. In absence of this third number, the more general base

instance is being referred to.

5.7 Development of the Blood Collection

Workforce Scheduling Model in Python

Similarly to the BDCSM in Section 5.6, an optimisation model for the scheduling

of the clinic-based workforce at the WBS was created using Python and the linear

programme package PuLP. This model follows the full formulation for the BCWSP

described in Chapter 4. The BCWSM forms the second stage of the full scheduling

model for the Welsh Blood Service.

5.7.1 Aims of Model

The BCWSM was built in Python to schedule the WBS clinic-based workforce

optimally i.e. to optimally assign workers to the scheduled clinics in the output

of stage one of the model, the BDCSM. The output of the stage two model is a

workforce rota that aims to minimise workforce associated costs for the WBS.
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The benefits of this model being used in place of the current practice at the WBS

include a reduction in manual scheduling for the workforce planning team and an

ability to increase cost efficiency. This is in answer to research question two: how

can mathematical modelling help to schedule the clinic-based workforce at the Welsh

Blood Service?

5.7.2 Development of Model

Similarly to the development of the BDCSM in Python, the BCWSM was developed

incrementally; beginning with a small instance with only workers based in the South

West region to schedule over one week, expanding to a model where all regions are

able to be considered (one at a time) over a four-week period. This formed the

original model for the BCWSP, described in Section 4.3. Following experimental

trials of this model, it was evident that some solutions were poor, with unfair

distribution of hours across workers. This prompted modifications to be made to

the model to improve the viability of the solutions for the WBS, and formed the

model described in Section 4.4.

In contrast to the stage one model, stage two only considers one region at a time;

this is because the scheduling of the clinic-based workers in a given region is com-

pletely independent from that of other regions. The WBS only considers assigning

clinic-based workers to a region different from their base region in cases such as a

staff shortage due to sickness or emergency etc. These are therefore short-notice

operational offline decisions and do not form part of the initial workforce scheduling

process.

Input of Clinic Schedule and Clinic Data

The output of stage one of the model i.e. the BDCSM is a clinic schedule which

is read into stage two of the model in the form of a dataframe using Pandas. The

corresponding output of stage one is selected using a set of arguments relating to

parameters of the model such as region and season.
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From this schedule, the planning horizon is determined using the column headers.

The clinic data is read into the model using the same data and method as described

in Section 5.6.2 and a function is utilised to associate each scheduled clinic with its

corresponding data. This is necessary for the model to obtain relevant information

for workforce scheduling, such as the minimum number of workers per role required

to operate a given clinic and the expected length of a working day for workers

assigned to the clinic.

The workforce demands for a scheduled clinic consist of clinic roles and driving

roles, as described in Section 4.1.2. A series of ‘if’ statements in the model main

script sorts through each scheduled clinic and assigns it a ‘resource demand matrix’;

this contains the minimum number of each clinic role and driving role required at

a given clinic.

Input of Workforce Data

Data concerning the clinic-based workforce that is relevant to the workforce schedul-

ing process was collated into one Microsoft Excel file, separated into separate sheets

by region. Since the workforce data provided by the WBS was anonymised, a unique

staff number is generated to represent each clinic-based worker. The relevant data

also includes, for each worker, their clinic role, any prospective driving roles, their

number of weekly contracted hours, their base region, their working pattern (if any),

their salary band and estimated hourly pay rate. This data was provided by the

WBS with the exception of the estimated hourly pay; this was calculated using the

salary range per salary band for the NHS which is openly accessible online. Since

the pay rate for an NHS employee is dependent on the length of employment within

the organisation, and the length of employment per worker was not able to be pro-

vided by the WBS, the mid-range salary per band is taken and divided by full-time

hours to determine the hourly rate per salary band. This dataset is read into the

model using the Python package, Pandas.



CHAPTER 5. MODEL DEVELOPMENT 109

Worker Modes

Due to limitations of PuLP, in order to include working modes for each worker and

to keep the problem linear, the worker modes were created independently from the

worker variables.

A binary |M| × 7 ‘mode matrix’ is created for each worker, where M denotes

the set of modes and each column represents a role; there are four columns for a

driving role per vehicle (lorry, minibus, support vehicle and mobile donation unit)

and three columns for the clinic roles (Registered Nurse, Supervisor and Clinic

Care Assistant/Clinic Support Assistant). Each row of a mode matrix represents

a potential working mode for a given worker, where any ‘1’ values denote that the

worker would perform the corresponding role of the given column if this mode is

selected. A worker may work at most one driving role and one clinic role at any

time. Examples of the mode matrices are presented in Tables 4.3 and 4.4.

These worker mode variables are included in the decision variable, where all modes

are iterated over for each worker. Since these are to be iterated over independent of

workers, all workers are required to have the same number of modes. To solve this

issue, the parameter ‘maximum modes’ was introduced, which takes the value of the

maximum number of unique modes of any worker considered in a given instance.

To ensure that all workers have the same number of modes, duplicates of the final

row of a given worker’s mode matrix are appended to the matrix until the number

of rows (and therefore modes) is equivalent to the maximum modes.

Worker Availability Patterns

Most clinic-based workers at the WBS are available to work any day that may

be assigned to them (with the exception of any booked annual leave or sickness)

but a small minority of workers have an agreed working pattern with the WBS.

These specific working day patterns mean that they are not able to work on certain

weekdays, and is often due to reasons like childcare or other commitments. To
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ensure that the model considers these working day patterns, we have created a

function that requires a specific worker and the planning horizon as arguments, and

returns the weekday availability of a worker. This is in the form of a list of binary

values that correspond to each day of the planning horizon consecutively, where

‘0’ denotes that they are unavailable and ‘1’ denotes that they are available to be

assigned to a clinic on the given day.

Annual Leave and Training

Since annual leave entitlement is dependent on the length of employment with the

NHS (ranging from 27 to 33 days plus bank holidays), and we were not provided

with this information by the WBS, we assume that each worker has a total of 30 days

annual leave. Additionally, each worker is required to undertake a minimum of three

training days per calendar year. To enable the model to consider annual leave and

training to ensure that solutions are somewhat realistic, we randomly generate an

annual leave and training schedule for the clinic-based workforce using a probability

distribution relating to their 30 days of annual leave and three days of training over

a calendar year. Two versions of this schedule are created, a descriptive version

with entries consisting of either ‘available’,‘annual leave’ or ‘training’. Additionally,

a binary version of this schedule is created with a ‘0’ to denote any days that a

worker is not available to be assigned to work a blood donation clinic i.e. they are

scheduled for either a day of annual leave or training, and a ‘1’ otherwise.

These schedules are read into the main script of the model and compared with

worker weekday availability to ensure that no training days are scheduled for a

worker on a day where they are unavailable to work. Any training days where this

is the case are removed from the annual leave and training schedules. Each worker

is assigned a dummy clinic corresponding to the correct number of hours for one

day of annual leave, based on a worker’s weekly contracted hours. This is the clinic

that a worker will be scheduled to ‘work’ for any days of annual leave to ensure that

these hours are also considered in the objective function. Similarly, there is one
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dummy training clinic for all workers since one day of training is always equivalent

to 7.5 hours, regardless of contracted hours.

Sickness Leave

To provide the option for the model to consider sickness of workers, an argument

for the model is created to determine if sick leave is included. If sick leave is to be

included, the annual leave and training schedules are altered to randomly assign sick

days in replacement of any days that are not already determined to be training or

annual leave days. For the binary version of this schedule, any sick days are denoted

with a ‘0’ value to represent that a given worker is not available to work on a given

day. These sick days are assigned according to a probability distribution with the

assumption that sickness is at a rate of 6% for the clinic-based workforce; this figure

was provided by the WBS as the mean sickness rate of 2019 for the clinic-based

workforce.

Decision Variables, Objective Functions and Constraints

As described in the formulation of the BCWSP in Section 4.3, the model considers

a total of five types of decision variable; ys,m,i,t (binary decision variable to decide

if worker s ∈ S is assigned to work clinic i ∈ I on day t ∈ T in working mode

m ∈ M), v1,s (hours scheduled for worker s ∈ S in excess of full time hours), v2,s

(number of overtime hours scheduled for worker s ∈ S), zovers,w and zunders,w (number

of hours scheduled for worker s ∈ S per week w ∈ W as overtime and ‘undertime’,

respectively).

The model has two alternative objective functions; the minimisation of total over-

time pay or the minimisation of total pay for scheduled hours, alongside the minimi-

sation of weekly overtime and undertime per worker in the modified version of the

model. Both of these objective functions also include a penalty function to ensure

that Deputy Supervisors are only scheduled for the clinic role of Supervisor if there

are no Supervisors available. The objective function to be considered is decided
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each time the model is run. All constraints described in Section 4.3 are included in

the model, with additional constraints detailed in Section 4.4 also included in the

modified version of the model.

Testing and Validation of Results

Throughout the incremental development of the stage two model, the solutions have

been inspected to ensure that they are as expected. Similarly to stage one, to ensure

that any solution reached by the model meets all of the included constraints, an

assert statement is considered for each constraint to ensure that it holds true. This

ensures that in circumstances where an optimality gap or time limit is considered

during the ‘solve’ process, the solution is still valid.

5.7.3 Development of Experimental Scenarios

To assess the solutions of the model, and how the model performs under different

scenarios, we design various instances for experimental trials of the model. To

consider workers in excess of the actual WBS clinic-based workforce, we create

‘dummy’ workers; these consist of a duplicate worker for each actual worker, but

with a different unique staff number. This enables the effect of staffing level on

the goodness of solutions to be observed, with the decision to remove a worker at

random once each iteration of an instance is complete. Iterations of a given instance

begin with double the actual WBS workforce for the given region (due to the dummy

workers), and end once the problem is no longer feasible; this process is illustrated

in Figure 5.5.

Test Instances

To assess the solutions of the model, and how the model performs given different

scenarios, we considered various instances which can be found in Table 5.2. In

addition to the three variables identified in stage one of the model i.e. the BDCSM,

there were three main factors identified to likely have a significant effect on the
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Figure 5.5: Worker Removal Process

goodness of a solution and the computation time: the prioritisation of the removal

of dummy workers before any actual WBS workers, the removal of driving role

constraints, and the inclusion of sickness leave.

Since objective function three for the BDCSM is concluded to be the preference of

the alternative objective functions (an explanation for this is provided in Section

6.2.3), we only consider the output of these instances for stage two of the model;

specifically, we utilise the output from the first iteration of each of these instances.

To illustrate the differences between the instances designed for stage two of the

model, Table 5.2 displays this for the North East region (when solved independently

of other regions in stage one of the model i.e. not an ‘AW’ instance). These instances

are the same for all other regions with the letters at the beginning of an instance

altered to represent the corresponding region of the instance. For cases where the

region was solved collectively with other regions in stage one, an additional ‘AW’ is

added before the specific region’s letters.
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Table 5.2: Stage Two - Instances for the North East Region Utilising Objective Function One

Instance
Name

Region
Number of
Scheduled

Clinic Days

Planning
Horizon
Length

Planning
Horizon
Season

Additional
Constraints

Included

Priority
Removal of

Dummy
Workers

Driving
Role

Constraints
Included

Sickness
Leave

Included

NE1131111 North East 15 4 weeks Winter Yes Yes Yes No
NE1131112 North East 15 4 weeks Winter Yes Yes Yes Yes
NE1131121 North East 15 4 weeks Winter Yes Yes No No
NE1131211 North East 15 4 weeks Winter Yes No Yes No
NE1231111 North East 14 4 weeks Winter No Yes Yes No
NE1231112 North East 14 4 weeks Winter No Yes Yes Yes
NE1231121 North East 14 4 weeks Winter No Yes No No
NE1231211 North East 14 4 weeks Winter No No Yes No
NE2131111 North East 15 4 weeks Summer Yes Yes Yes No
NE2131112 North East 15 4 weeks Summer Yes Yes Yes Yes
NE2131121 North East 15 4 weeks Summer Yes Yes No No
NE2131211 North East 15 4 weeks Summer Yes No Yes No
NE2231111 North East 13 4 weeks Summer No Yes Yes No
NE2231112 North East 13 4 weeks Summer No Yes Yes Yes
NE2231121 North East 13 4 weeks Summer No Yes No No
NE2231211 North East 13 4 weeks Summer No No Yes No
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Priority Removal of Dummy Workers

As portrayed in Figure 5.5, a worker is removed at each iteration of the model for

a given instance. The option is provided by the model to prioritise dummy workers

to be removed before any actual WBS workers. This helps to avoid any potential

infeasibility that could be caused by removing workers completely at random, as

there may be insufficient numbers of a specific role. This also enables the observation

of how the model performs with actual staff (once all dummy workers are removed)

as the staffing level decreases.

The motivation behind including the option to remove a worker completely at ran-

dom (regardless of if a worker is a dummy worker or not) gives the potential to gain

insight into the balance of skills and/or roles and if this could be improved. For

example, as presented in Table 5.3, the numbers of workers in the role of Registered

Nurse (RN) is limited in several regions, while this number appears inflated for the

South East region.

Driving Role Constraints

The model also provides the option to exclude driving role demand constraints and

to exclude driving roles from mode matrices. This allows the observation of how far

the iteration over driving role modes increases the computation time. Additionally,

this enables us to gain insight into how much the problem is constrained by the

limited number of drivers per region, as displayed in Table 5.4. By removing the

constraints that require the driving role demands to be met per scheduled clinic, in

addition to removing driving roles from each workers mode matrix, this is effectively

simulating the scenario where all clinic-based workers are able to drive any vehicle.

Sickness Leave

Though sickness leave is usually determined with short-notice to the planning team

at the WBS, with operational offline decisions needing to be made to counteract
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Table 5.3: Number of Workers per Region

Region

North East North West South East South West

Number of Workers
Considered in the
First Instance

34 26 154 36

Number of Actual
WBS Workers

17 13 77 18

Number of Actual
WBS RNs

3 2 16 3

Number of Actual
WBS Supervisors

1 1 4 1

Number of Actual
WBS Deputy
Supervisors

1 1 4 1

Number of Actual
WBS CCA/CSAs

12 9 53 13

RN = Registered Nurse; CCA = Clinic Care Assistant;
CSA = Clinic Support Assistant

Table 5.4: Number of Drivers per Vehicle per Region

Region

North East North West South East South West

Number of Actual
WBS Lorry Drivers

3 3 7 5

Number of Actual
WBS Minibus Drivers

3 3 7 5

Number of Actual
WBS SV Drivers

0 0 8 0

Number of Actual
WBS MDU Drivers

0 3 0 0

SV = Support vehicle; MDU = Mobile donation unit
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any negative impact of sickness on the operation of clinics, considering an estimated

sickness rate in the model allows us to observe this impact on the staffing level

requirements.

Instance Nomenclature

Table 5.2 display the instances for the North East region (when stage one is solved

independent of other regions) when objective function one is considered. Each of

these instances are also included where objective function two is considered, giving

a total of 256 initial test instances (32 for each region when solved either collectively

or independently of other regions in stage one, for each objective function). For ease

of analysis and referral, each instance is given a name building on the names given

in stage one of the model. The instance nomenclature has been developed as follows

and is explained using the same example;

� Region: The two letters at the start of each instance name represents the

considered region e.g. in SW1131112, the region is South West.

� Planning Horizon: The first number denotes the season; ‘1’ represents

the winter planning horizon and ‘2’ represents the summer planning hori-

zon. Therefore, in the chosen example SW1131112, the considered planning

horizon is that of winter.

� Additional Constraints: The second number represents the inclusion (de-

noted by ‘1’) or exclusion (denoted by ‘2’) of the additional constraints in

stage one of the model e.g. in the case SW1131112 the additional constraints

are included.

� Stage One Objective Function: Following this, since we only consider

output from stage one of the model that utilises objective function three, a ‘3’

is always in this position for all stage two instances.

� Stage Two Objective Function: This fourth number represents the ob-

jective function considered for the BCWSM; a ‘1’ denotes objective function



CHAPTER 5. MODEL DEVELOPMENT 118

one (the minimisation of total overtime pay, weekly overtime and weekly un-

dertime) while a ‘2’ denotes objective function two (minimisation of total pay

for scheduled hours, weekly overtime and weekly undertime). In the given

example, SW1131112, objective function one is used.

� Priority Removal of Dummy Workers:The fifth number denotes whether

the removal of dummy workers is prioritised over the removal of any actual

WBS workers, with a ‘1’ representing cases where dummy workers are removed

first, and a ‘2’ represents cases where the removal of a worker is random, and

not dependent on whether they are a dummy or actual worker. In the example

of instance SW1131112, dummy worker removal is prioritised.

� Driving Role Constraints:The sixth number in the instance names for stage

two represent whether or not driving role demand constraints are included,

where a ‘1’ denotes the inclusion of driving role constraints, and a ‘2’ denotes

the exclusion of these constraints. In the example instance of SW1131112,

driving role constraints are included.

� Sickness Leave: Lastly, the final number in an instance name for stage two

signifies whether sickness of workers is considered, where a ‘1’ denotes cases

where sickness is not considered, and a ‘2’ denotes cases where sickness of

workers is included, e.g. the instance SW1131112 does consider sickness leave.

5.7.4 Summary

In this chapter, the prototype tool for the Blood Donation Clinic Scheduling Prob-

lem (BDCSP) has been presented followed by the Blood Donation Clinic Schedul-

ing Model (BDCSM) and Blood Collection Workforce Scheduling Model (BCWSM)

both developed in Python, using PuLP as a linear programme modeller. For each

model, the aims of the model and the use and format of data was described in addi-

tion to how the model was developed. For both of the models developed in Python,

various test instances were presented alongside the motivation behind the design of
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the instances, and the instance nomenclature has been described in detail.

In the following chapter, Chapter 6, the results of these experimental test instances

are presented with an analysis of the insights gained from the solutions and how the

current practice of both clinic and workforce scheduling at the Welsh Blood Service

could be more efficient.
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Chapter 6

Experimental Results

In this chapter, the results of the experimental scenarios for the Blood Donation

Clinic Scheduling Model (BDCSM) and the Blood Collection Workforce Scheduling

Model (BCWSM) are presented. This chapter is structured as follows: Section 6.1

describes the hardware utilised to run the experimental scenarios for both stages

of the scheduling model (the BDCSM and the BCWSM) in addition to the soft-

ware used. Section 6.2 presents the computational results of the BDCSM and dis-

cusses the solutions of the selected test instances. Similarly, Section 6.3 presents

the computational results of the BCWSM alongside the solutions of the chosen test

instances. The two latter sections each close with insights gained from the experi-

mental results.

6.1 Equipment

All test instances for both the BDCSM and the BCWSM were run remotely on

servers (located in the university) limiting each instance to run on only one core

utilising GNU Parallel software [94]. Since PuLP and COIN-OR CBC solver are

limited to only utilising one core during the preprocessing phase, the ability to

utilise more than one core is restricted. This also recreates similar circumstances to
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how the model might be run on site at the Welsh Blood Service (WBS) if it were

implemented, since they have a server estate in their data centre where their current

digital rostering system, for example, is hosted and run remotely from PCs.

6.1.1 Hardware

All test instances (unless stated otherwise) were run remotely on servers with a

total of 64 cores. The server workstation consists of four processors (AMD Opteron

6366HE - 1.8GHz, 16Mb cache) with each processor having 16 cores. The memory

of the workstation is 8 × 32GB 1600MHz DDR3 ECC Reg with Parity DIMM Dual

Rank.

6.1.2 Software

Both of the models developed in Python (BDCSM and BCWSM) utilise Python

version 3.8.3 and PuLP version 2.3 which uses COIN-OR CBC version 2.9. Other

Python packages are used such as Pandas (version 1.0.5), NumPy (version 1.18.5)

and GeoPy (version 2.0.0). A virtual environment was created for each of the two

models to certify that identical versions of all software packages are utilised by the

models for all results; this ensures that all results are reliable and that the code

functions as expected. Additionally, GNU Parallel 2018 was utilised to run each

test instance on exactly one core.

6.2 Blood Donation Clinic Scheduling Model

The Blood Donation Clinic Scheduling Model developed in Python, detailed in

Chapter 5, was run for each problem instance described in Table 5.1 for each of

the three alternative objective functions. The model was run with an optimality

gap of 0.5% i.e. a solution may be considered optimal if it is within 0.5% of the

best known solution; this is to enable a solution to be reached within a smaller

time. The experimental results are presented in this section, and how the model
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can increase efficiency of the clinic scheduling process for the WBS, in answer to

research question one (described in Section 1.5).

6.2.1 Computational Results

To ensure the computational results are reliable, we ran each instance 10 times and

collated the results. The following tables (categorised by objective function) detail

the median, minimum, and maximum solution times and total run times for each

instance. As a reminder to the reader, the instance nomenclature for the BDCSM

follows the structure of A/B/C/D where:

� A denotes the region considered i.e. {AW = All Wales; NE = North East;

NW = North West; SE = South East; SW = South West}

� B denotes the planning horizon i.e. {1 = winter; 2 = summer}

� C denotes the inclusion of the additional constraints i.e. {1 = minimum num-

ber of clinics to be scheduled per region included; 2 = minimum number of

clinics to be scheduled per region excluded}

� D denotes the objective function i.e. {1 = minimisation of clinic days sched-

uled; 2 = minimisation of estimated overcollection; 3 = minimisation of both

clinic days scheduled and estimated overcollection}

Tables 6.1, 6.2 and 6.3 also exhibit the number of decision variables and the number

of constraints for each instance. In the instances for the model where all regions

are solved collectively i.e. AW instances, the total number of constraints considered

reaches a maximum of over 2.2 million. Despite this, the maximum solution time

for these large instances is 526 seconds (AW212) with a maximum total run time

of around eight hours for all regions solved collectively (AW213). In comparison

to the current practice of manually scheduling clinics over four-week periods, the

model performs well, providing an optimal (or near optimal) clinic schedule in a

much shorter time frame.
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Table 6.1: Objective Function 1 - Computational Results

Instance
Number of
Decision
Variables

Number
of

Constraints

Median
Solution

Time (secs)

Min.
Solution

Time (secs)

Max.
Solution

Time (secs)

Median
Total Run
ime (secs)

Min.
Total Run

Time (secs)

Max.
Total Run

Time (secs)

AW111 10,000 2,263,681 101.4 89.8 121.1 4,599.3 4,190.3 5,401.6
AW121 10,000 2,263,677 85.6 79.4 94.2 4,177.2 3,810.4 4,497.4
AW211 10,000 2,263,681 83.5 77.8 87.4 4,180.3 3,996.3 4,494.4
AW221 10,000 2,263,677 88.9 81.9 101.3 4,296.1 3,937.3 5,021.5
NE111 1,432 212,241 6.5 5.8 7.0 108.4 95.0 116.7
NE121 1,432 212,240 8.0 7.6 10.5 103.1 100.2 131.9
NE211 1,432 212,241 6.6 5.8 7.1 102.0 94.9 111.9
NE221 1,432 212,240 9.5 9.1 9.9 103.7 102.9 104.7
NW111 1,796 137,202 4.8 4.4 5.2 134.1 129.9 136.2
NW121 1,796 137,201 5.8 5.5 6.9 120.5 118.0 157.5
NW211 1,796 137,201 4.7 4.3 5.5 133.1 130.1 175.3
NW221 1,796 137,200 5.4 5.2 6.0 119.0 116.8 120.6
SE111 6,108 1,633,127 57.7 52.8 64.7 1,425.1 1,391.5 1,645.5
SE121 6,108 1,633,126 68.2 64.4 70.7 1,334.6 1,290.6 1,408.0
SE211 6,108 1,633,128 57.4 56.6 64.9 1,598.5 1,573.3 1,641.8
SE221 6,108 1,633,127 68.8 65.9 74.6 1,490.3 1,450.7 1,543.4
SW111 1,796 133,847 11.9 9.6 13.4 1,202.2 1,085.3 1,316.5
SW121 1,796 133,846 13.2 11.2 15.1 782.6 701.1 846.7
SW211 1,796 133,847 7.7 7.2 8.1 862.0 801.3 894.9
SW221 1,796 133,846 14.8 14.2 16.6 843.9 745.7 852.5
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Table 6.2: Objective Function 2 - Computational Results

Instance
Number of
Decision
Variables

Number
of

Constraints

Median
Solution

Time (secs)

Min.
Solution

Time (secs)

Max.
Solution

Time (secs)

Median
Total Run

Time (secs)

Min.
Total Run

Time (secs)

Max.
Total Run

Time (secs)

AW112 10,000 2,263,681 150.6 132.9 168.0 1,890.9 1,582.0 1,966.9
AW122 10,000 2,263,677 198.6 181.8 204.9 1,799.4 1,675.0 1,842.3
AW212 10,000 2,263,681 486.3 444.8 526.1 2,216.2 1,986.7 2,288.5
AW222 10,000 2,263,677 128.7 120.5 140.6 1,644.6 1,499.0 1,682.1
NE112 1,432 212,241 10.1 9.8 10.9 80.7 79.4 81.3
NE122 1,432 212,240 25.9 24.5 28.1 86.0 85.1 88.8
NE212 1,432 212,241 48.5 44.5 52.8 118.4 114.8 124.0
NE222 1,432 212240 61.6 54.2 69.2 134.4 108.2 151.7
NW112 1,796 137,202 960.5 650.5 1,082.0 1,033.3 721.4 1,157.6
NW122 1,796 137,201 29.4 27.9 32.1 92.7 90.8 102.7
NW212 1,796 137,201 7.1 6.7 7.6 82.5 72.4 83.2
NW222 1,796 137,200 6.0 5.3 6.3 69.2 67.2 73.5
SE112 6,108 1,633,127 216.4 209.5 220.9 988.6 981.5 1,008.3
SE122 6,108 1,633,126 178.6 167.1 188.1 773.3 729.3 816.2
SE212 6,108 1,633,128 139.9 120.1 151.8 994.4 881.0 1,098.8
SE222 6,108 1,633,127 125.0 117.2 159.7 691.5 658.2 945.5
SW112 1,796 133,847 235.3 221.8 266.8 1,117.9 1,044.2 1,366.7
SW122 1,796 133,846 342.5 266.6 403.9 1,085.6 979.1 1,186.5
SW212 1,796 133,847 24.9 22.0 26.2 783.8 695.9 820.5
SW222 1,796 133,846 273.8 216.8 395.4 1,101.4 963.2 1,329.0
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Table 6.3: Objective Function 3 - Computational Results

Instance
Number of
Decision
Variables

Number
of

Constraints

Median
Solution

Time (secs)

Min.
Solution

Time (secs)

Max.
Solution

Time (secs)

Median
Total Run

Time (secs)

Min.
Total Run

Time (secs)

Max.
Total Run

Time (secs)

AW113 10,000 2,263,681 79.5 68.4 92.9 17,736 14,124 19,554
AW123 10,000 2,263,677 70.5 65.1 83.5 22,452 18,930 25,914
AW213 10,000 2,263,681 78.1 67.6 115.5 25,278 22,332 28,380
AW223 10,000 2,263,677 74.4 64.0 86.6 13,926 12,270 15,948
NE113 1,432 212,241 1.9 1.8 1.9 474 444 498
NE123 1,432 212,240 2.1 1.8 2.6 1,242 1,062 1,380
NE213 1,432 212,241 2.0 2.0 2.0 1,110 1,062 1,230
NE223 1,432 212,240 2.3 1.8 2.7 1,698 1,446 1,986
NW113 1,796 137,202 4.0 3.9 4.4 7,998 7,596 8,988
NW123 1,796 137,201 2.3 2.3 2.4 1,638 1,554 1,950
NW213 1,796 137,201 2.4 2.3 2.4 840 810 870
NW223 1,796 137,200 2.0 2.0 2.1 408 390 450
SE113 6,108 1,633,127 33.8 31.7 35.4 29,724 26,040 32,532
SE123 6,108 1,633,126 29.1 25.6 29.5 18,954 17,364 19,956
SE213 6,108 1,633,128 27.7 26.6 32.1 9,678 9,330 10,524
SE223 6,108 1,633,127 32.0 29.2 33.9 31,758 29,820 34,314
SW113 1,796 133,847 17.1 15.8 17.8 6,708 6,150 7,524
SW123 1,796 133,846 20.4 18.7 22.7 14,328 11,958 16,248
SW213 1,796 133,847 20.0 19.5 23.4 23,490 21,804 33,642
SW223 1,796 133,846 18.9 16.7 22.2 10,944 10,212 12,786
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The number of constraints for each region does not follow the same increase as

the number of decision variables, and this is due to a particular set of constraints.

Constraints (3.21) ensure that any public clinics within a given number of miles of

another public clinic should not be scheduled on the same day. Of the smaller regions

(North East, North West and South West), the North East region has significantly

more public clinics that are within five miles of another public clinic than the other

smaller regions, with a total of 107 pairs of conflicting clinics. Following this is the

North West region with 52 pairs of conflicting clinics and lastly the South West

region with 45 pairs of conflicting clinics. This explains the trend in increase in

number of constraints amongst these smaller regions.

Objective Function

Recall in Section 3.3.2, the following three alternative objective functions were in-

troduced; objective function one is the minimisation of the number of clinic days

scheduled (3.3), objective function two is the minimisation of estimated overcollec-

tion (3.4), whilst objective function three is the minimisation of both the number of

clinic days scheduled and estimated overcollection (3.5). The effect of these objec-

tive functions on solution time is presented in Figure 6.1. The results are shown in

full, followed by two graphs with the more extreme results excluded to increase the

visibility for shorter solution times. Most of these extreme results are due to spe-

cific instances having longer solution times than others, e.g. instances NW112 and

AW212 have much higher solution times than all other instances for these regions.

There is a noticeable increase in solution time for objective function two when com-

pared to the other two alternative objective functions, across all regions. This is

likely caused by the complexity associated with meeting demand exactly (i.e. min-

imisation of overcollection). The solution time for objective function three, despite it

being the combination of both objective functions one and two, is the fastest solution

of all alternative objective functions with the exception of the South West region,

where objective function one marginally outperforms objective function three.
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Figure 6.1: Solution Time per Region per Objective Function
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Please note the box plots are in ascending order of objective function number for each region, for cases where the values are close to zero
and the colour is not visible.
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Figure 6.2: Solution Time and Total Run Time per Region per Objective Function
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Regions along the x-axis are in ascending order of number of decision variables.
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The total run time for objective function three is drastically slower than for objective

functions one and two; this is likely due to the time taken to set up the objective

function and all associated decision variables, as this objective function considers

both number of clinics scheduled and weekly overcollection. However, the solution

times for this objective function are all less than 116 seconds, and shows that the

additional time in the total run time is caused by the time to set up the model.

Regions

The general trend across regions regarding computation times can be seen in Fig-

ure 6.2. This trend is as the number of decision variables increases, both the solution

time and the total run time increase. However, this is not the case for instances

that consider objective function two, most likely due to the complexity associated

with meeting demand exactly i.e. achieving zero estimated overcollection.

Table 6.4: Mean Total Run Times for All Wales - Collective Model Vs. Independent
Model

Mean Total Run Time (secs)

Instance Collective Model Independent Model

AW111 4,688.29 2,926.06
AW112 1,819.63 3,171.67
AW113 17,183.11 45,043.67
AW121 4,161.68 2,349.77
AW122 1,794.48 2,038.38
AW123 22,066.74 36,112.89
AW211 4,201.02 2,700.75
AW212 2,171.93 1,953.73
AW213 25,690.53 36,922.69
AW221 4,331.34 2,558.37
AW222 1,618.32 2,043.67
AW223 13,904.50 45,021.63

Table 6.4 presents the mean total run time per instance for the whole of Wales

i.e. ‘AW’, both when the model solves for all regions collectively and when regions

are solved independently, with the latter run times being the sum of the mean

total run time per instance per region. For the cases where objective function

three is considered, it is faster to solve the model for all regions collectively than
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independently. This also applies to most instances considering objective function

two, while the converse is true for objective function one.

Seasonality

The model was tested on two distinct four-week planning horizons to observe any

potential seasonal trends and any effect this may have on complexity. Planning

horizon one (or season one) is in the winter, whilst planning horizon two (or season

two) is in the summer. There are differing trends in the relationship between season

and solution time between the regions, as displayed in Figure 6.3. All of the solution

times in this figure exceeding 116 seconds are from objective function two, with little

contrast in solution time between seasons for objective functions one and three.

Figure 6.3: Solution Time per Region per Season
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For North East instances, the season two instances have a greater solution time

than that of season one instances. This is likely due to there being an average time

window size per available clinic of 4.2 days for the region during the season two

planning horizon, compared to 6.2 days for the season one planning horizon. In

addition, the total available clinic days for season one for the North East region is

99 with fewer available clinic days in season two at 79.
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Contrastingly, season one generally appears to have a greater solution time for most

cases in all other regions, with the exception of some instances for ‘AW’ (where all

regions are solved collectively) with the slower solve time likely associated with the

model prioritising meeting demand exactly with less flexibility (discussed further

in Section 6.2.1). For the North West and South East regions, the solution time is

generally slower for season one than for season two, and this is likely due to these

regions having a higher number of total available clinic days per planning horizon for

season two (as displayed in Table 5.1). Finally, the South West region is generally

solved in a similar time for season two and season one (according to the mean),

with the exception of the SW212 instances being solved much faster than the other

South West instances solved under objective function two. This is unsurprising as

there are 24 clinics available to be scheduled in the South West region in season one

and 25 in season two.

Figure 6.4: Solution Time per Region per Constraints Type
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Additional Constraints

Alternative scenarios are considered for the constraints of the model where a set

of constraints are either included (‘constraints type one’) or excluded (‘constraints

type two’) for different instances. Figure 6.4 displays the solution time per region

per constraints type, and illustrates that the instances with the slowest solution

times consider constraints type one; this is the case for regions ‘AW’ and ‘NW’,

more specifically, for the instances AW212 and NW112. The latter instance likely

takes significantly slower to solve due to objective function two attempting to meet

demand exactly (by minimising estimated overcollection) with less flexibility due to

a minimimum of 15 clinics required to be scheduled in the North West region over

the planning horizon by the included set of constraints. In addition to this, the

North West region when solved independently has the lowest collection demand of

all the regions, increasing difficulty to meet this low demand whilst scheduling the

minimum number of clinics. Similarly for the AW212 instance, though regions are

solved collectively and therefore do not have a pre-determined demand, the inclusion

of the set of constraints that ensure a minimum number of clinics are scheduled per

region gives the model significantly less flexibility to meet the demand exactly, and

increases complexity.

Contrastingly, the South West region has a long solution time for constraints type

two. This is caused by one particular base instance (with constraints type one)

for the South West region under both objective functions one and two having a

significantly faster solution time than the other base instances i.e. the apparent

increase in solution time for constraints type two instead originates from the cor-

responding instance with constraints type one (SW212) having an unusually low

solve time (with both objective functions one and two, as all South West instances

under objective function three have a low solve time). This difference in computa-

tional time between instances SW212 and SW222 is likely due to the tighter average

time window size per available clinic for the former at 6.8 days, compared to 9.4
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days for the latter, contributing to fewer possibilities for the model to consider for

SW212. This reflects findings in the literature regarding solution times and com-

plexity, with Koné et al. [54] describing the ‘easy-hard-easy’ pattern associated with

how constrained a scheduling problem is (in the form of a linear programme). With

a relatively unconstrained problem, it is easy to solve, but the complexity increases

as the problem becomes more constrained until it decreases again as there are few

possible solutions remaining.

6.2.2 Schedule Solutions

The solutions of the Blood Donation Clinic Scheduling Model for all test instances

are now discussed, to observe how well the model performs at providing a feasible

clinic schedule for the Welsh Blood Service. Please note that when we refer to the

number of clinics scheduled, this may include multiday clinics where each day of

the multiday clinic is considered to be one clinic i.e. the total number of clinics

scheduled is referring to the total number of clinic days scheduled.

Since dummy clinics were included in the model to support to assignment of workers

to annual leave and training in the workforce scheduling model, this totals to an

additional 240 clinic days scheduled each four-week planning horizon. When the

number of clinic days scheduled are discussed in this section, the number consists

of standard clinics only, with dummy clinics deducted. However, these 240 dummy

clinic days are likely to play a role in the optimality gap of a given objective function

value.

Objective Function

With three alternative objective functions tested for each instance, Table 6.5 dis-

plays the performance of the BDCSM under each objective. The performance can

be judged on the two values that are considered in the objective functions (com-

bined) i.e. total number of clinic days scheduled over the four-week planning horizon

and total estimated units of blood collected in excess of the demand.
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The values in Table 6.5 are the mode number of clinics scheduled and mode esti-

mated overcollection. In the majority of cases, these values are the same across all

iterations of each instance, however in three cases, there is some variation between

iterations. Namely, the mode number of clinics scheduled for instance SW213 is

15, with mode overcollection being 1, however in some iterations these values are

instead 16 and 0, respectively. This is due to the total objective value being the

same in both cases as weights for each term in objective function three have not

been introduced, and would need to be determined by the WBS to reflect their pref-

erences and priorities. Similarly, the mode number of clinics scheduled in instance

SW222 is 15, but in some iterations this value is 16. This is a result of objective

function two minimising only the estimated overcollection, and thus the number of

clinics scheduled is not considered in this objective function.

In most instances in Table 6.5, the values for both number of clinics scheduled and

estimated overcollection for objective function three are the same or marginally

higher than for the respective considered value in objective function one and ob-

jective function two. In some cases, objective function three even improves upon

the respective considered value in the alternative objective functions; this is due to

the optimality gap of the model. Each of these instances where either number of

clinics scheduled or estimated overcollection is higher for objective function one or

objective function two, respectively, than for objective function three, are denoted

by a double asterisk in Table 6.5. Table 6.8 displays the results for each of these

instances when the same model is run without an optimality gap. It is evident from

these results that the optimality gap of 0.5% in the original results is responsible

for the suboptimal values for these instances, as the results in Table 6.8 match the

corresponding value for the same instance using objective function three.
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Table 6.5: Solutions per Region for all Objective Functions (Solved Independently and All Wales Collectively)

Objective Function 1 Objective Function 2 Objective Function 3

Instance
Number of

Clinics
Scheduled

Estimated
Overcollection

Number of
Clinics

Scheduled

Estimated
Overcollection

Number of
Clinics

Scheduled

Estimated
Overcollection

AW11 109 199 110 0 109 0
AW12 95 49 107 0 96 0
AW21 109 379 111 0 109 0
AW22 **82 21 88 0 81 1
NE11 15 97 15 26 15 26
NE12 14 59 14 8 14 8
NE21 15 71 15 15 15 15
NE22 13 34 14 **16 13 5
NW11 15 86 15 0 15 1
NW12 11 12 14 0 12 0
NW21 15 28 15 0 15 0
NW22 9 11 12 0 9 0
SE11 **65 67 67 0 64 0
SE12 63 20 67 0 64 0
SE21 64 194 65 0 64 0
SE22 53 83 59 0 53 0
SW11 **16 240 16 0 15 1
SW12 15 195 16 0 16 0
SW21 16 136 15 0 *15 *1
SW22 **15 185 *15 0 14 0

*Figures varied between two values over the total ten iterations of the specific instance.
**Values for either number of clinics scheduled or estimated overcollection are higher than expected when
compared with the same instance under a different objective function.
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Table 6.6: Number of Clinics Scheduled and Estimated Supply per Region for all Objective Functions (Solved Independently)

Objective Function One Objective Function Two Objective Function Three

Instance
Number of

Clinics
Scheduled

Estimated
Supply

Number of
Clinics

Scheduled

Estimated
Supply

Number of
Clinics

Scheduled

Estimated
Supply

NE11 15 861 15 790 15 790
NE12 14 823 14 772 14 772
NE21 15 790 15 734 15 734
NE22 13 753 14 735 13 724
NW11 15 556 15 470 15 471
NW12 11 482 14 470 12 470
NW21 15 470 15 442 15 442
NW22 9 453 12 442 9 442
SE11 65 4,341 67 4,274 64 4,274
SE12 63 4,294 67 4,274 64 4,274
SE21 64 4,216 65 4,022 64 4,022
SE22 53 4,105 59 4,022 53 4,022
SW11 16 1,734 16 1,494 15 1,495
SW12 15 1,689 16 1,494 16 1,494
SW21 16 1,542 15 1,406 *15 *1,407
SW22 15 1,591 *15 1,406 14 1,406

*Figures varied between two values over the total ten iterations of the specific instance.
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Table 6.7: Number of Clinics Scheduled and Estimated Supply per Region for all Objective Functions (Solved Collectively)

Objective Function One Objective Function Two Objective Function Three

Instance Region
Number of

Clinics
Scheduled

Estimated
Supply

Number of
Clinics

Scheduled

Estimated
Supply

Number of
Clinics

Scheduled

Estimated
Supply

AW11 NE 15 839 15 846 15 798
AW12 NE 6 411 11 620 8 514
AW21 NE 15 787 15 734 15 767
AW22 NE 3 208 6 356 6 402
AW11 NW 15 538 15 560 15 582
AW12 NW 5 266 13 497 5 232
AW21 NW 15 421 16 503 15 468
AW22 NW 1 15 5 231 1 64
AW11 SE 64 4,199 65 4,158 64 4,093
AW12 SE 68 4,605 67 4,308 67 4,514
AW21 SE 64 4,450 65 3,940 64 4,062
AW22 SE 62 4,696 62 4,438 58 4,439
AW11 SW 15 1,625 15 1,438 15 1,529
AW12 SW 16 1,769 16 1,577 16 1,742
AW21 SW 15 1,309 15 1,411 15 1,291
AW22 SW 16 1,690 15 1,563 16 1,684
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Table 6.8: Number of Clinics Scheduled and Estimated Overcollection without Op-
timality Gap for Selected Instances

Instance Number of Clinics Scheduled Estimated Overcollection

AW221 81 17
NE222 13 3
SE111 64 52
SW111 15 159
SW221 14 50

All results obtained from running the model without an optimality gap on
a PC with processor Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 2.00
GHz 16GB RAM.

The results displayed in Table 6.8 were obtained from running the model on a PC

with a higher specification than the processors that the original results were run on.

This caused the computation times of the model to decrease for all five instances

when compared with the original computational results. This improvement in com-

putation time ranges from a scale of two to three times faster than the original

computational times for both the solve time and the total run time.

The number of clinics scheduled over a four-week planning horizon per region are

displayed in Figure 6.5, with a comparison between the values for each objective

function. The results when each region is solved independently are shown along-

side the results for each region when all regions are solved collectively i.e. the AW

instances. Since a predetermined percentage of total demand is allocated to each

region when they are solved independently, this causes the lowest number of clinics

scheduled to generally be higher than for the same region in AW instances in or-

der to meet the demand. Figure 6.5 shows that generally, objective function three

performs similarly to objective function one regarding number of clinics scheduled,

or marginally worse. Objective function two unsurprisingly performs the worst re-

garding number of clinics scheduled.
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Figure 6.5: Number of Clinics Scheduled per Region per Objective Function
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Table 6.9: Estimated Overcollection for All Wales - Actual WBS Figures Vs. Model

Objective
Function

Planning
Horizon 1

Planning
Horizon 2

Actual WBS Figures:
Estimated Overcollection

1,080.0 63.0

Collective Model:
Mean Estimated
Overcollection

1 124 200
2 0.0 0.0
3 0.0 0.5

Independent Model:
Mean Estimated
Overcollection

1 388.0 371.0
2 17.0 15.5
3 18.0 15.5
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Figure 6.6: Estimated Overcollection per Region per Objective Function (Solved
Independently and All Wales Collectively)
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Figure 6.6 presents the estimated overcollection values for each region when solved

independent of other regions and all of Wales when solved collectively, comparing

solutions across alternative objective functions. It is clear from Figure 6.6 that

objective function one performs poorly regarding minimising overcollection, and

demonstrates that a focus on only minimising clinics often results in significant

overcollection of blood donation units. Objective functions two and three perform

similarly, with estimated overcollection being zero in most instances. The model

fails to achieve a zero estimated overcollection figure for the North East region; this

is caused by fewer available clinics in this region and a smaller average available

time window size per clinic as displayed in Table 5.1, leaving a limited choice for

the model.
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Due to demand and therefore overcollection being determined collectively across

all regions in the AW instances, we cannot observe estimated overcollection per

individual region in these cases.

Regions

Each of the four regions in Wales were tested for the same instances when solved in-

dividually and collectively. In the instances where regions are solved independently

of each other, the demand for blood collection is predetermined per region according

to the historical proportion of total blood collected that was from the corresponding

region. Figure 6.7 illustrates the number of clinics scheduled for each region when

solved independently (coloured boxplots) alongside the estimated supply from each

region (blue plots). This figure shows that a similar number of clinics are required

to be scheduled per four-week planning horizon for North East, North West, and

South West regions to achieve the corresponding collection demand. However, the

South West region provides significantly higher collection values than the two north

regions. This relates to the efficiency of the clinics in different regions, as the South

West region contains numerous clinics that collect high volumes of donations each

time they operate. Due to the more rural nature of most clinics in both north

regions, but particularly the North West region, this explains the low collection

estimates from a similar number of clinics compared to the South West region.

Table 6.10 displays the mean number of clinics scheduled per region, when solved

both independently and collectively, in addition to the mean estimated supply per

region and the mean estimated supply per clinic per region. This effectively demon-

strates the efficiency of collection in each region, with the North West having the

lowest mean estimated supply per scheduled clinic with 35.7 units when solved in-

dependently of other regions, and 36.2 units when solved collectively. The South

West region is by far the most efficient region for blood collection with 98.3 units

estimated mean estimated supply per scheduled clinic when solved independently

and 100.7 units when solved collectively. The mean estimated supply per scheduled
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Figure 6.7: Number of Clinics Scheduled vs. Estimated Supply per Region (Solved
Independently) and All Wales Collectively
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clinic for the whole of Wales when all regions are solved collectively is 68.2 units,

with a lower efficiency of 66 units per clinic when all regions are solved indepen-

dently.

Table 6.10: Mean Scheduled Clinics and Supply per Region

Region
Mean Number of
Clinics Scheduled

Mean Total
Supply

Mean Supply
per Clinic

Solved
Independently

NE 14.3 773.2 53.9
NW 13.1 467.5 35.7
SE 62.3 4,178.3 67.0
SW 15.4 1,513.1 98.3
AW 105.1 6,932.1 66.0

Solved
Collectively

NE 10.8 606.8 56.0
NW 10.1 364.8 36.2
SE 64.2 4,325.2 67.4
SW 15.4 1,552.3 100.7
AW 100.5 6,849.1 68.2

Figure 6.8: Number of Clinics Scheduled - Actual Vs. Model
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Table 6.11 presents the mean percentage of total blood collection provided by each

region, comparing the figures from the WBS data for the two selected four-week

planning horizons in 2019 with the mean percentages chosen by the BDCSM when
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all regions are solved collectively. Both North East and North West regions are

chosen to supply significantly less of the total collection by the collective model

than the actual WBS mean percentages. This further supports the notion that the

two north regions are inefficient.

Furthermore, comparing the actual number of scheduled clinics by the WBS during

the same planning horizon periods as utilised by the BDCSM Model, as presented in

Figure 6.8, it is evident that the model (both when all regions are solved collectively

and independently) performs better than the manual scheduling process currently

in place at the WBS. Overall, the collective model schedules the least clinics to

satisfy the same demand as the independent model, and therefore would likely

reduce clinic-associated costs. Figure 6.8 also illustrates that the collective model

schedules fewer clinics for the two north regions, as it is more efficient to collect

from the south regions. Conversely, the number of clinics scheduled for the South

West region remains approximately the same for both models and for the actual

WBS schedule. This highlights the effectiveness of collection in this region, with a

minimum of 15 clinics scheduled in this region in both models where the maximum

permitted due to constraints is 16 clinics.
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Table 6.11: Percentage of Total Collection per Region - Actual WBS Figures Vs. Collective Model

Actual Collective Model

Season Region
Percentage of

Total Collection
Mean Percentage

of Total Collection

Mean Percentage
of Total Collection

(Constraints Type 1)

Mean Percentage
of Total Collection

(Constraints Type 2)

Planning Horizon 1
07/01/2019 -
03/02/2019

NE 11.4% 9.5% 11.7% 7.3%
NW 8.6% 6.3% 7.9% 4.7%
SE 59.1% 61.2% 58.7% 63.8%
SW 20.9% 22.9% 21.6% 24.2%

Planning Horizon 2
22/07/2019 -
18/08/2019

NE 10.5% 8.1% 11.3% 4.9%
NW 6.6% 4.2% 6.9% 1.6%
SE 61.4% 65.2% 61.8% 68.6%
SW 21.5% 22.5% 19.9% 25.0%

Table 6.12: Allocated Demand per Region for Region-Independent Model

Allocated Demand in per Region
North East North West South East South West

Planning Horizon 1
07/01/2019 -
03/02/2019

764 470 4,272 1,494

Planning Horizon 2
22/07/2019 -
18/08/2019

719 352 4,022 1,406
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Seasonality

For the experimental results, two four-week planning horizons were considered: sea-

son one is a winter period (07/01/2019 – 03/02/2019) and a season two is a summer

period (22/07/2019 – 18/08/2019). Demand varies slightly throughout a calendar

year in addition to the availability of many clinics, with Table 6.12 displaying the

allocated demand per planning horizon for the model. Observing the differences in

solutions over these two planning horizons allows some insight into the effect of the

season on collection.

It is evident from Figure 6.9 that fewer clinics are scheduled for each region for

season two than season one, and this is due to season two having a lower demand

than season one and therefore less clinics are required to meet the demand. Whilst

the number of clinics scheduled per region for season one is similar across both

models with slightly fewer in the north regions, for season two the collective model

chooses to schedule even fewer clinics in the north regions (shown by the ‘error’

bars to portray the variability across instances) and more clinics in the South East

region than for season one. This demonstrates that the current practice of operating

a consistent number of clinics per region for all planning horizons is an inefficient

approach, and scheduling to demand could reduce costs.

Additional Constraints

Alternative scenarios are considered for the constraints of the model where a set of

constraints are either included (‘constraints type one’) or excluded (‘constraints type

two’) for different instances. The constraints involved are described in (3.17) and

ensure that for each region, a given minimum number of clinics are scheduled per

four-week planning horizon to provide adequate working hours for the clinic-based

workers in each region.

It is clear from Figure 6.10 that constraints type two (the exclusion of the specific

set of constraints) results in fewer clinics scheduled in both north regions, both in
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Figure 6.9: Number of Clinics Scheduled per Region per Season
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the independent model and the collective model. This difference in the number

of clinics scheduled for the two north regions is more significant in the collective

model, as the demand is considered across the whole of Wales and thus the model

prefers to collect from the south regions when it has the ability to do so. Regarding

estimated overcollection, constraints type two performs better in most regions in

the independent model, and significantly better overall for both models.

Table 6.11 details the percentage of total collection to be provided by each region

for both the collective model and the actual historical figures for the WBS. These

percentages are divided into the two planning horizons and then further into the

two constraint types for each planning horizon. These figures give an insight into

how the model chooses to distribute demand across the four regions compared to

the WBS current practice. The model where regions are solved independently is

not included in Table 6.11 as demand per region is pre-determined.
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Figure 6.10: Number of Clinics Scheduled per Region per Constraints Type
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The notable contrast between the two constraint types for the collective model are

also evident in the percentage of total collection per region in Table 6.11. The

mean percentage of estimated collection provided by each region for constraints

type one is similar to the actual WBS figures, for both planning horizons. However,

the corresponding percentages per region for constraints type two are considerably

lower for both north regions, with a higher proportion of the total collection instead
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supplied by the two south regions.

6.2.3 Summary: Blood Donation Clinic Scheduling Model

Results

This section has presented both the computational results and solutions to the

Blood Donation Clinic Scheduling Problem from the model developed in Python,

with regions solved both independently and collectively.

It is clear that objective function three is inferior in computational performance

considering total run time compared to the other two alternative objective functions,

across all regions. For objective functions one and two, all regions can still be

solved (either collectively or independently) to optimality or near optimality (due

to the optimality gap) in 90 minutes or less. However, since objective function three

aligns both the WBS strategic aims of matching supply to demand by minimising

overcollection, and provides more opportunity to reduce costs by minimising clinics,

this objective function is preferable for the WBS.

The maximum total run time utilising objective function three for the whole of

Wales can be as much as eight hours when all regions are solved collectively; this

is still significantly more efficient than the current practice at the WBS where an

original clinic schedule is manually created and takes an employee approximately

five working days. This model provides an optimal (or near optimal) clinic schedule

which can be altered accordingly depending on any changes in circumstances or

venue availability. This is one way in which we have answered research question

one: ‘How can mathematical modelling help to schedule the Welsh Blood Service’s

blood donation clinics more efficiently?’

Generally, utilising objective function three for both the independent and collective

models improves upon the actual Welsh Blood Service figures for overcollection

(shown in Table 6.9) and number of clinics scheduled (shown in Figure 6.8) for

the same planning horizons. However, the demand determined for the model is
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based on the analysis of the issuing data in the weeks subsequent to the selected

planning horizons; this is not known at the time of creating clinic schedules at

the Welsh Blood Service and thus, the comparison of overcollection between actual

WBS figures and the model is not reliable. Despite this, the model still schedules

fewer clinics (as much as up to 20 fewer clinics when regions are solved collectively)

to collect a similar amount of blood as the actual WBS collection over the same

four-week periods. This demonstrates that the efficiency of clinic schedules can be

improved significantly by utilising mathematical modelling, in response to research

question one.

Additionally, some insight is gained into further potential improvement in efficiency

in blood collection by the WBS regarding the restriction of scheduling a minimum

number of clinics in each region for each planning horizon. Understandably, the

WBS include this constraint when scheduling clinics to provide consistent work for

clinic-based workers in all regions. However, from these experimental results it is

evident that this collection model results in an increase in the number of clinics

scheduled due to the low-yield of clinics in the north regions, particularly the North

West region. The effect on workers of removing this constraint is further discussed

in the experimental results for the Blood Collection Workforce Scheduling Model,

which will be presented next.

6.3 Blood Collection Workforce Scheduling

Model

Stage two of our mathematical model is the Blood Collection Workforce Schedul-

ing Model (BCWSM) which was also developed in Python, with the development

detailed in Chapter 5. This model was run for each test instance described in Ta-

ble 5.2 for each region (both when solved collectively with other regions in stage one

i.e. ‘AW’ instances, and when solved independently) for each of the two alternative
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objective functions. The model utilises an optimality gap of 1% i.e. a solution may

be considered optimal if it is within 1% of the best known solution; this is to enable

a solution to be reached within a smaller time and to avoid situations where the

processor may run out of working memory. A larger optimality gap was considered

for stage two of the model, compared to stage one, to cope with the increase in

complexity. From experimental runs of the BCWSM using an optimality gap of

0.5%, for larger instances such as the South East region, the solver occasionally ran

out of working memory. Increasing the optimality gap from 0.5% to 1% solved this

issue. Each instance was run for numerous iterations with the removal of one worker

after each iteration, until the problem became infeasible to solve. The experimental

results are presented in this section, along with explanation of how the model can

increase efficiency of the workforce scheduling process for the WBS, in answer to

research question two (described in Section 1.5).

From initial experimental results of the original model formulation described in Sec-

tion 4.3, it became evident that the workforce schedule solutions of the model were

not realistic. Many workers were scheduled their full contracted hours over the du-

ration of the four-week planning horizon, with some weeks significantly in excess of

their weekly contracted hours, counteracted by working fewer hours in other weeks.

These hours in excess of a worker’s weekly contracted hours are not considered

overtime by the WBS as overtime is calculated over the four-week planning horizon.

Additionally, some workers were consistently scheduled either no or very few hours

each week of the planning horizon. The Welsh Blood Service workforce planning

team attempt to assign workers their full contracted hours (including any annual

leave and training) each planning horizon, to maintain employee satisfaction and to

reduce wastage of monetary costs as they are required to pay the workforce for their

contracted hours whether they are worked or not. The original model formulation

did not maximise the utilisation of contracted hours nor did it maximise fairness

in distribution of working hours across the workforce. To enable the model to con-

sider these two factors, the modifications described in Section 4.4 were made to the
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BCWSM, and the improvement in results are displayed in Appendix C alongside

the difference in computation times. Therefore, the results presented in this section

are that of the modified version of the BCWSM.

6.3.1 Computational Results

The computational results of all test instances are now discussed to observe if the

model provides a solution in a feasible timeframe for potential implementation at

the Welsh Blood Service. Tables 6.13– 6.16 detail the computational results for

each instance under objective function one, including the minimum and maximum

solution times of all iterations per instance. The minimum and maximum number

of decision variables and constraints per instance are also displayed in these tables

to illustrate the size of each problem. As a reminder to the reader, the instance

nomenclature for the BCWSM follows the structure of A/B/C/D/E/F/G/H where:

� A denotes the region considered i.e. {NE = North East; NW = North West;

SE = South East; SW = South West} where ‘AW’ prior to this indicates

instances where the region was solved collectively with other regions in the

BDCSM (stage one)

� B denotes the planning horizon i.e. {1 = winter; 2 = summer}

� C denotes the inclusion of the additional constraints in the BDCSM i.e. {1 =

minimum number of clinics to be scheduled per region included; 2 = minimum

number of clinics to be scheduled per region excluded}

� D denotes the objective function of the BDCSM i.e. {1 = minimisation of

clinic days scheduled; 2 = minimisation of estimated overcollection; 3 = min-

imisation of both clinic days scheduled and estimated overcollection}

� E denotes the objective function of the BCWSM i.e. {1 = minimisation of

total cost of overtime; 2 = minimisation of total cost of scheduled hours}

� F denotes the inclusion of driving role constraints and modes i.e. {1 = included;
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2 = excluded}

� G denotes the inclusion of the prioritisation of dummy workers removed before

actual WBS workers i.e. {1 = included; 2 = excluded}

� H denotes the consideration of sick leave i.e. {1 = not considered; 2 = consid-

ered}

The North East, North West and South West regions have significantly fewer deci-

sion variables and constraints than the South East region, and thus take significantly

less time to run; the total run time for any of these smaller regions is less than 600

seconds which means that the model can produce a workforce schedule for each of

these three regions in fewer than 10 minutes. Due to the size of the problems for

the South East region, the maximum total run time is just over 43,000 seconds (≈

12 hours). However, as displayed in Figure 6.11, the total run time is less than

10,000 seconds (less than three hours) at the current workforce level (at the 77th

iteration) and remains to be the case for some iterations thereafter. Therefore, the

BCWSM requires considerably less time than it takes the WBS to create the clinic

workforce schedules currently, with the completion of four weekly rotas requiring

approximately 32 hours for both the South East and South West regions collec-

tively, and approximately 16 hours for both the North East and North West regions

collectively. However, these WBS figures include the time required to input the

annual leave of workers which would also need to be considered in addition to the

run times of the model.

The results included in Tables 6.13– 6.16 are from the original test instances where

a worker is removed at random at each iteration. To enable the observation of the

direct effect of various parameters on the goodness of solutions across test instances,

we run the models again using an identical workforce across all instances, with one

worker still removed at each iteration, but this worker is the same for all instances.

In practice, the workforce included at each iteration of the 1131111 instance in the

original run of the modified model is input into each corresponding iteration of all
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other instances for a given region. The instances where there is no prioritisation

of the removal of dummy workers over actual WBS workers is not included as this

variable method can not be put utilised whilst inputting a predetermined workforce
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Table 6.13: North East Region Computational Results

Total Number
of Iterations

Number of
Decision Variables

Number of
Constraints

Solution
Time (secs)

Total Run
Time (secs)

Instance Min. Max. Min. Max. Min. Max. Min. Max.

NE1131111 19 47,160 106,896 29,291 62,678 10.4 25.1 189.4 408.3
NE1131112 19 47,160 106,896 29,291 62,678 7.2 18.8 148.6 335.2
NE1131121 18 50,304 106,896 31,048 62,678 7.2 17.8 155.2 330.6
NE1131211 19 23,640 53,584 15,012 32,438 4.7 11.9 45.7 97.2
NE1132111 19 47,160 106,896 29,293 62,678 9.2 23.2 191.2 401.9
NE1231111 19 45,480 103,088 27,417 58,674 7.7 21.1 169.8 384.3
NE1232111 19 45,480 103,088 27,416 58,674 8.1 21.5 165.6 376.4
NE2131111 20 44,016 106,896 27,536 62,675 10.0 26.9 234.6 557.3
NE2132111 19 47,160 106,896 29,290 62,675 12.3 28.7 281.7 587.6
NE2231111 21 37,960 99,280 22,473 54,667 8.1 25.7 153.6 512.3
NE2232111 20 40,880 99,280 24,007 54,667 7.8 26.7 153.7 531.4

AWNE1131111 17 53,448 106,896 32,314 61,692 11.9 38.9 163.4 333.4
AWNE1131112 17 53,448 106,896 32,314 61,692 7.9 21.7 138.8 279.6
AWNE1131121 16 56,592 106,896 34,042 61,692 9.4 22.9 142.3 267.6
AWNE1131211 17 26,792 53,584 16,354 31,452 5.3 13.6 40.8 83.2
AWNE1132111 17 53,448 106,896 32,314 61,692 11.6 31.8 157.2 320.7
AWNE1231111 21 30,680 80,240 13,836 33,664 6.4 18.5 74.6 178.1
AWNE1232111 21 30,680 80,240 13,837 33,664 5.9 17.5 98.3 183.9
AWNE2131111 17 53,448 106,896 32,314 61,689 14.4 34.5 190.7 421.8
AWNE2132111 19 47,160 106,896 28,859 61,689 10.7 30.3 169.1 391.4
AWNE2231111 20 29,904 72,624 11,252 25,653 4.5 12.9 76.7 187.7
AWNE2232111 20 29,904 72,624 11,253 25,653 4.3 12.6 76.9 172.0
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Table 6.14: North West Region Computational Results

Total Number
of Iterations

Number of
Decision Variables

Number of
Constraints

Solution
Time (secs)

Total Run
Time (secs)

Instance Min. Max. Min. Max. Min. Max. Min. Max.

NW1131111 13 40,872 81,744 25,775 48,617 7.1 17.1 160.0 313.7
NW1131112 11 47,160 81,744 29,291 48,617 6.3 12.2 142.2 244.7
NW1131121 11 47,160 81,744 29,291 48,617 6.8 14.7 149.9 255.6
NW1131211 12 22,064 40,976 14,094 25,097 2.9 7.3 39.3 71.8
NW1132111 13 40,872 81,744 25,773 48,617 7.2 17.8 158.7 299.2
NW1231111 13 36,504 73,008 20,819 39,293 3.3 13.9 117.7 238.9
NW1232111 13 36,504 73,008 20,824 39,293 6.1 14.0 131.7 242.7
NW2131111 13 40,872 81,744 25,779 48,610 9.0 17.4 163.5 300.7
NW2132111 13 40,872 81,744 25,781 48,610 8.2 20.4 158.1 300.3
NW2231111 14 29,664 64,272 14,780 29,962 4.3 10.2 104.1 206.0
NW2232111 14 29,664 64,272 14,780 29,962 5.1 11.2 101.5 197.5

AWNW1131111 12 44,016 81,744 27,130 47,863 11.2 20.5 162.5 277.0
AWNW1131112 11 47,160 81,744 28,862 47,863 8.3 15.6 122.1 201.9
AWNW1131121 12 44,016 81,744 27,133 47,863 7.4 14.3 112.0 204.7
AWNW1131211 12 22,064 40,976 13,688 24,343 4.5 8.6 40.6 60.7
AWNW1132111 12 44,016 81,744 27,127 47,863 11.6 19.9 176.6 304.0
AWNW1231111 11 30,360 52,624 10,096 16,783 5.6 10.1 73.6 118.5
AWNW1232111 10 32,384 52,624 10,705 16,783 7.1 12.0 87.0 141.6
AWNW2131111 12 44,016 81,744 27,129 47,856 11.1 24.8 180.6 323.1
AWNW2132111 13 40,872 81,744 25,400 47,856 10.2 23.3 143.1 297.8
AWNW2231111 15 17,336 40,976 1,949 4,344 2.0 5.8 35.9 78.9
AWNW2232111 15 17,336 40,976 1,948 4,344 2.0 6.1 35.5 76.5
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Table 6.15: South East Region Computational Results

Number of
Iterations

Number of
Decision Variables

Number of
Constraints

Solution
Time (secs)

Total Run
Time (secs)

Instance Min. Max. Min. Max. Min. Max. Min. Max.

SE1131111 99 400,840 1,122,352 336,427 923,630 310.3 36,320.4 7,233.9 41,409.7
SE1131112 98 408,128 1,122,352 342,353 923,625 191.3 22,547.0 5,085.8 26,654.2
SE1131121 102 378,976 1,122,352 318,631 923,630 215.9 36,276.4 4,968.4 40,260.8
SE1131211 100 196,992 561,792 166,665 467,202 81.7 36,327.5 962.2 37,614.4
SE1132111 99 400,840 1,122,352 336,423 923,630 312.3 36,426.5 9,114.1 43,409.6
SE1231111 98 414,400 1,139,600 348,814 941,074 230.3 36,340.0 6,588.8 43,231.4
SE1232111 90 473,600 1,139,600 397,162 941,074 459.3 36,280.3 6,714.7 41,718.0
SE2131111 91 437,976 1,070,608 362,054 871,138 277.3 36,229.3 5,710.3 40,561.9
SE2132111 90 444,928 1,070,608 367,641 871,138 222.5 13,426.6 5,386.5 18,974.2
SE2231111 91 367,416 898,128 289,532 696,700 111.0 3,028.9 3,073.2 11,052.8
SE2232111 98 326,592 898,128 258,200 696,700 105.4 1,455.0 2,471.4 11,647.8

AWSE1131111 97 383,496 1,036,112 313,732 831,944 190.7 36,613.5 5,904.7 41,576.1
AWSE1131112 99 370,040 1,036,112 303,039 831,941 160.5 36,262.0 4,078.2 39,587.0
AWSE1131121 97 383,496 1,036,112 313,736 831,944 200.9 5,528.9 4,140.9 12,548.3
AWSE1131211 96 195,344 518,672 160,330 419,196 78.9 36,284.0 761.2 37,177.5
AWSE1132111 99 370,040 1,036,112 303,057 831,944 254.1 9,471.0 6,499.4 15,563.8
AWSE1231111 90 487,936 1,174,096 410,038 971,496 268.9 364,54.2 6,657.9 42,167.8
AWSE1232111 91 480,312 1,174,096 403,800 971,496 206.1 36,366.2 6,780.7 41,785.4
AWSE2131111 92 389,360 967,120 311,075 760,156 196.2 36,497.7 4,602.8 41,587.2
AWSE2132111 95 370,520 967,120 296,424 760,156 169.4 15,326.2 3,607.0 18,590.8
AWSE2231111 102 320,736 949,872 256,917 744,720 126.4 15,716.0 3,013.8 18,166.5
AWSE2232111 91 388,584 949,872 309,528 744,720 154.9 7,877.4 3,747.8 11,667.3
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Table 6.16: South West Region Computational Results

Number of
Iterations

Number of
Decision Variables

Number of
Constraints

Solution
Time (secs)

Total Run
Time (secs)

Instance Min. Max. Min. Max. Min. Max. Min. Max.

SW1131111 19 40,120 84,960 25,707 51,154 12.3 19.1 133.0 255.8
SW1131112 16 47,200 84,960 29,726 51,153 8.0 15.0 126.8 231.5
SW1131121 19 40,120 84,960 25,702 51,154 7.7 15.2 104.3 219.1
SW1131211 19 26,792 56,736 16,887 34,354 5.6 16.8 58.5 113.9
SW1132111 19 40,120 84,960 25,709 51,154 5.4 19.8 151.7 360.1
SW1231111 18 43,992 87,984 28,755 54,374 14.2 28.6 195.9 425.0
SW1232111 18 43,992 87,984 28,755 54,374 11.1 23.9 141.4 380.1
SW2131111 18 42,480 84,960 27,047 51,150 9.4 18.1 130.4 258.1
SW2132111 18 42,480 84,960 27,047 51,150 9.2 17.4 129.9 258.1
SW2231111 18 40,968 81,936 25,339 47,930 8.9 20.6 132.1 247.3
SW2232111 18 40,968 81,936 25,339 47,930 9.3 20.3 133.3 249.7

AWSW1131111* 18 39,456 78,912 23,175 43,802 7.3 15.4 78.8 149.2
AWSW1131112* 17 41,648 78,912 24,321 43,801 7.4 14.4 80.6 149.1
AWSW1131121* 19 37,264 78,912 22,030 43,802 8.2 15.5 79.3 151.2
AWSW1131211* 18 26,352 52,704 15,132 29,170 5.2 11.5 44.0 83.0
AWSW1132111* 18 39,456 78,912 23,176 43,802 7.9 13.0 80.4 150.5
AWSW1231111* 12 56,640 84,960 34,475 50,242 8.5 15.3 117.6 169.3
AWSW1232111* 12 56,640 84,960 34,476 50,242 9.3 15.0 116.4 169.3
AWSW2131111 18 42,480 84,960 26,489 50,034 11.5 25.7 114.9 218.2
AWSW2132111 18 42,480 84,960 26,489 50,034 11.6 24.7 115.0 216.2
AWSW2231111 17 46,436 87,984 29,647 53,362 11.4 422.7 127.6 530.0
AWSW2232111 17 46,436 87,984 29,648 53,362 10.6 50.9 125.5 233.9

* instances with annual leave constraints removed.
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at each iteration. When data from these comparable results are being referred to,

it will be explicitly mentioned such as results displayed in Figure 6.11.

Figure 6.11: Total Run Times for South East Region Comparable Instances
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Instances for the South Wales region where it is solved collectively with other re-

gions in stage one of the model (i.e. ‘AWSW’ instances) during the winter planning

horizon (season one) are infeasible from the very first iteration, where there are

duplicates of every worker included. This was found to be caused by the randomly

generated annual leave schedules clashing with the scheduling of a clinic tour, as

each clinic tour requires the same workers to be assigned to each day of the tour. The

predetermined annual leave of the Registered Nurses prevented this constraint from

being met. In practice, the Welsh Blood Service would likely not approve annual

leave that would cause major disruption to the operation of a clinic that is partic-

ularly difficult to schedule, such as tour clinics. Alternatively, perhaps adjustments

would be made to the number of chairs operated during the clinics to decrease the

number of workers required: e.g. by reducing a tour clinic to nine or fewer chairs,

only one nurse would be required to be assigned to the clinic tour. Alternatively, a
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nurse from another region (usually the South East due to geographical proximity)

would be assigned to clinics in the South West region to assist with short-staffing

situations. It is complex to generate annual leave schedules that are realistic for

the WBS, and we were unable to receive their data for this due to complications

with anonymity of workers and the data from the time of the considered planning

horizons is not digitally stored and therefore would be difficult and time consuming

to locate.

For the purpose of observation, we remove the annual leave constraint from the

model and run these instances again, and denote these instances with an asterisk.

As presented in Table 6.16, many of these instances fail to reach the 18th iteration

where the current workforce level is considered; these cases are mostly instances

where the additional constraints ensuring a minimum number of clinics are scheduled

per region in stage one (the BDCSM) are excluded, allowing the BDCSM to schedule

a greater number of clinics and/or larger clinics in the South West region instead

of the less efficient north regions. The remaining case where the ‘AWSW’ instance

fails to reach the current workforce level is when sickness leave is included. These

results infer that the current workforce in the South West region (at the time that

the workforce data was shared) are inadequate to cope with both sickness leave

and a maximisation of clinic scheduling efficiency in terms of collecting a greater

proportion of blood donations from this region.

Objective Function

Recall in Section 4.4.2 we introduce the following two alternative objective func-

tions for the modified version of the BCWSM; the minimisation of the total cost of

overtime (4.34), and the minimisation of the total cost of scheduled hours (4.35).

Both of these objective functions also minimise weekly overtime and undertime per

clinic-based worker, and the penalty function to discourage scheduling a Deputy

Supervisor to the clinic role of Supervisor if there is a Supervisor available.
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Figure 6.13 contains all computational results from the modified model in the com-

parable instances, excluding instances that occurred for objective function one but

not objective function two i.e. the instances with alternative parameters at stage

two; This is to allow a fair comparison between the performance of the two objec-

tive functions. This figure illustrates the solution and total run times per region per

objective function considered (at stage two of the model). Generally, there is no

noticeable difference in computational performance between the two objective func-

tions, despite objective function two minimising the total cost of scheduled hours

in addition to scheduled overtime hours.

Alternative Parameters

In the BCWSM, three variable parameters are included in addition to the alternate

objective functions; these will be described as ‘driver constraints’, ‘dummy removal

prioritisation’ and ‘sickness consideration’, with each discussed in more detail in

Section 5.7.3. The only parameter of these that causes the most noticeable differ-

ence in the computational time is the driver constraints. Due to the limitations of

formulating the BCWSP in Python and PuLP, it is required that each worker has

the same number of modes to enable the model to correctly iterate over the decision

variables. This results in the model having to loop over each constraint max{M}

times for each worker, where max{M} denotes the maximum number of modes of

all workers in a given instance. Some workers may have up to five working modes

if they are a driver of several vehicle types, and this can increase to 10 modes if

they are a Deputy Supervisor due to the option of two clinic roles. This can cause a

significant increase in the total run time of the model, especially for instances with

a large number of workers, such as those considering the South East region.

To observe the effect on the model when there are no driver-related constraints,

the resource demand constraints for drivers are removed in instances with driver

constraints type two in addition to all driving roles removed from each worker’s

mode matrix. This reduces the maximum number of modes to be at most two –
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this is the case for Deputy Supervisors with two possible clinic roles, with all other

workers having at most one mode.

Figure 6.12: Computational Times per Region per Objective Function
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Figure 6.13: South East - Computational Times of Comparable Instances
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Figure 6.13 presents the solution and total run times of the comparable instances

that include these alternative parameters, namely sickness consideration (1131112)

and driver constraints (1131211), alongside the standard version of these instances

(1131111) for the South East region. Only iterations from 70 onwards are displayed

since the problem becomes increasingly more difficult as more workers are removed,

with results prior to this following the same pattern as between iteration 70 to 90.

Iteration 77 represents the current workforce level at the WBS in this region. It is

evident from Figure 6.13 that the exclusion of driver-related constraints and driving

role modes from the model drastically reduces the total run time of an instance

across all iterations. Since the time taken to solve the problem is not notably

reduced across all iterations when driver constraints are excluded, this infers that

the problem does not become notably easier to solve in most cases, but does require

significantly less time to ‘set-up’ the problem due to approximately half the number

of constraints and decision variables, as shown in Tables 6.13– 6.16.



CHAPTER 6. EXPERIMENTAL RESULTS 165

Complexity

For each instance, the number of decision variables and constraints changes for

each iteration due to the removal of a worker at random, with the first iteration

of each instance having the maximum figures for decision variables and constraints

displayed in Tables 6.14– 6.16, and the final iteration of each instance having the

minimum values for these figures. However, these values are not a good indication of

the complexity of a given problem, and instead, the time taken to reach an optimal

solution provides more insight into the complexity.

Figure 6.14 illustrates the time taken for the model to reach an optimal (or near

optimal given the optimality gap) solution across iterations of each instance per

region, where the iteration number is directly related to the size of the workforce

considered; as the iteration number increases, the size of the workforce decreases.

Both of the north regions display a trend of decreasing solution time as the number of

workers decreases, however the solution time still remains less than a minute for the

slower solution times. This trend is likely due to at most one clinic being scheduled

per day of a planning horizon in both the North East and North West regions and

at the first iteration, the larger workforce provides more potential solutions for the

model to navigate. The South West region follows a similar trend with the exception

of the 2231111 instance, where there is a significant increase in solution time at

the 17th iteration caused specifically by the AWSW2231111 instance, after which

the ‘AW’ version of the problem instance becomes infeasible, and the SW2231111

solution time remains small across all iterations. This increase in the case of the

‘AW’ version of the instance is likely caused by the greater number of CCA/CSA

shifts required by the clinic schedule – a total of 155 shifts compared to 137 shifts

for the SW2231111 instance.
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Figure 6.14: Solution Time per Region across Iterations
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Contrastingly, the solution time across iterations for South East region instances

remains relatively low until later iterations, where the solution time increases dras-

tically to over 30,000 seconds before the problem soon becomes infeasible. This

demonstrates the increasing complexity of the problem once the workforce has de-

creased past the current workforce level at the WBS (which is reached at the 77th

iteration). The sudden increase in solution time varies between instances, depend-

ing on a combination of both the details of the instance (such as clinic schedule)

and the specific workforce considered at each iteration differing across instances.

6.3.2 Schedule Solutions

The solutions of the modified Blood Collection Workforce Scheduling Model are

now discussed to observe how well the model performs at providing a feasible and

realistic workforce schedule for the Welsh Blood Service, in addition to minimising

costs according to the objective function considered.

Overtime

It is a main goal of the Welsh Blood Service to reduce paid overtime and maximise

the usage of contracted hours, hence the decision to include an objective function

that seeks to minimise the total cost of overtime (4.34). To observe the relationship

between the number of workers considered in a test instance and the total number of

overtime hours scheduled over the whole planning horizon, we present Figures 6.15–

6.18 and discuss each corresponding region consecutively.

North East: For the North East region instances where stage one of the model

is solved collectively with other regions, they become infeasible near the current

WBS workforce level. This can be seen in Figure 6.15 where the number of over-

time scheduled increases as workers are removed, for the majority of instances, until

the current workforce level is reached and the problem becomes infeasible. This is

likely due to how the generated annual leave and training schedules interact with
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the scheduled clinics, resulting in an inadequate number of workers available to

cover absences. After the current workforce line, only the independent model data

instances remain and the number of overtime scheduled decreases in the next iter-

ation with the exception of the 1131112 instance (where sickness is included); this

becomes infeasible at a workforce size of 16 workers which implies that the current

workforce level may be too low to cope with periods of an above average sickness

rate.

Figure 6.15: North East Region - Total Overtime Hours Scheduled for Comparable
Instances
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Please note: instance 1231111 remains at zero overtime until the workforce reduces
to 15 workers.

With the exception of instances 1231111 and 2231111, overtime is required for a

workforce smaller than 20 workers to enable the operation of all scheduled clinics

at the standard donor capacity. This suggests that the current workforce level at

the WBS is too low for the North East region if they are to continue with their pre-

COVID-19 collection strategy. However, overtime remains at zero at the current
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workforce level for the two instances where the constraint for the minimum number

of clinics to be scheduled per region is excluded in the stage one model; this is due to

fewer clinics being scheduled over the four-week planning horizon in the North East

region. If the WBS were to adjust their collection strategy to reduce the number

of clinics required to be operated in the North East region each planning horizon,

then the current workforce level would be sufficient and could possibly be reduced.

North West: For the North West region, Figure 6.16 depicts the lack of necessary

overtime to ensure that all scheduled clinics in the region are adequately staffed.

Overtime is only scheduled for instances 1131111 and 1131112. The latter of these

two instances is the case where sickness leave is included, and this instance becomes

infeasible for a workforce smaller than 15 workers which implies that the current

workforce level of 13 clinic-based workers is not sufficient for the North West region

to cope with sick leave without reducing the donor capacity of clinics and therefore

collecting less blood than required to meet demand. This is reinforced by the fact

that no instances remain feasible once the workforce decreases by one worker from

the current workforce level.

The instance 1131111 has the greatest amount of scheduled overtime, with the

‘AW’ version of the instance (the collective stage one model) being the only cause

of this; a maximum of 30 overtime hours are scheduled with a workforce of size 14

in this case with the problem becoming infeasible once a further worker is removed

and the workforce size decreases to 13 clinic-based workers, while the NW1131111

instance (independent stage one model) has zero scheduled overtime until it becomes

infeasible at a workforce size of 12. Although both of these instances have the same

number of scheduled clinics (15 in total), the collective model instance requires a

minimum of 87 shifts for CCA/CSAs while the independent model instance requires

a minimum of only 69 shifts for CCA/CSAs. This is due to more trailer clinics being

scheduled in the AWNW1131111 instance (a total of 11) which only require three

CCA/CSAs in the North West region, compared to a community clinic in this region
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Figure 6.16: North West Region - Total Overtime Hours Scheduled for Comparable
Instances
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Please note: instance 1231111 remains at zero from 13 to 22 workers, while instance
2131111 remains at zero overtime hours from 14 to 22 workers

which requires a minimum of nine CCA/CSAs.

South East: For the South East region, the minimum number of workers consid-

ered where the test instance remains feasible is 55. The second-greatest number of

overtime hours scheduled among the instances illustrated in Figure 6.17 is the in-

stance where sickness is included (1131112), only exceeded by the instance 1131111

in the case of a smaller workforce. Once the workforce has decreased to 62 workers,

the overtime increases significantly when sickness is included; this is due to workers

having to work additional hours to cover those that have taken sick leave. The

sickness rate considered in the model is typical of the WBS clinic-based workforce

and demonstrates that an uplift of the workforce needs to be considered.

The instance 2131111 also has a drastic increase in overtime hours scheduled when

the workforce decreases to 63 workers, then decreases when 3 more workers are

removed; this is due to the problem becoming infeasible for the instance 2131111
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Figure 6.17: South East Region - Total Overtime Hours Scheduled for Comparable
Instances
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where all regions were solved collectively in stage one i.e. AWSE2131111. This is

a result of larger clinics being scheduled in the South East region when it is solved

collectively with others, than when it is solved independently as more of the demand

is allocated to the region. Since larger clinics operate more chairs and facilitate more

donors at a time, they also require more workers.

The instance with the fewest overtime hours scheduled towards the end of the iter-

ations is 2231111; this instance is the scenario during the summer planning horizon

with the constraint for the minimum number of clinics to be scheduled per region

excluded. The total overtime hours scheduled begin to increase as workers are

removed, similar to the trends for all other instances in Figure 6.17 though still

fewer overtime hours are scheduled until the problem becomes infeasible for the

AWSE2231111 case. The problem remains feasible for the SE2231111 case with

overtime close to zero until the final iteration. This is due to the number of clinics

scheduled in these instances, with 58 clinics in the AWSE2231111 instance and only

53 clinics scheduled in the SE2231111 instance. This demonstrates the fluctuation in
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required hours for the workforce over seasons, as generally fewer clinics are required

to run in the summer planning horizon to meet demand and thus, fewer working

hours are required.

South West: For the South West region, to ensure that all results included in

Figure 6.18 are directly comparable with each other, the collective (stage one) model

instances for the winter planning horizon i.e. season one are excluded due to the

issue with infeasibility discussed previously. For instances 1131112 and 2131111 no

overtime is scheduled, but they do become infeasible at 22 workers and 17 workers,

respectively; the infeasibility of the former instance at a workforce level greater

than the current workforce level at the WBS implies that this workforce level for

the South West region is inadequate to handle sickness.

Figure 6.18: South West Region - Total Overtime Hours Scheduled for Comparable
Instances

17 18 19 20 21 22 23
Total Number of Workers Considered

0

10

20

30

40

50

60

70

80

N
um

be
r o

f O
ve

rti
m

e 
H

ou
rs

 S
ch

ed
ul

ed

South West: Comparable Instances 
 Number of Overtime Hours Scheduled

Current workforce level
1131111
1131112
1131211
1231111
2131111
2231111

The instance 1231111 requires the most overtime hours while it is feasible, and

this is a result of this instance having the greatest number of scheduled clinics to

accommodate at a total of 16 clinics, while all other instances in Figure 6.18 have
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15 or fewer.

With the exception of 2131111, all instances for the South West region at the cur-

rent WBS workforce level require overtime to enable the minimum configuration

of workers to be assigned to each scheduled clinic. In the case of the 2131111 in-

stance, there are slightly fewer required shifts for Registered Nurses (RNs) which

explains the lack of overtime scheduled while it remains feasible. When the work-

force reaches 20 workers, a second RN is removed which is the cause of overtime

for most instances at this iteration, with a third RN removed when the workforce

reaches 18. This causes another significant increase in overtime hours for those that

remain feasible, while the three instances are rendered infeasible at this iteration.

Comparison with WBS figures: Table 6.17 displays the number of overtime

hours scheduled over the two planning horizons, both the actual WBS figures and

the minimum and maximum values from the modified model with the equivalent

workforce. The overtime hours are divided by north and south regions as this is

how the data for the WBS was provided. Unfortunately, the data for the north

regions during the winter planning horizon is not available due to the payroll being

processed locally until later in 2019.

Table 6.17: Number of Overtime Hours Scheduled per Planning Horizon - Model
vs. Actual WBS Figures

Number of Overtime Hours Scheduled

South Regions North Regions

Min. Max.
Actual
WBS

Figures
Min. Max.

Actual
WBS

Figures

Planning Horizon 1
07/01/2019 -
03/02/2019

0.00 63.23 517.25 0.00 28.73 N/A

Planning Horizon 2
22/07/2019 -
18/08/2019

0.00 4.80 207.25 0.00 43.05 84.75

The maximum scheduled overtime hours for both north and south are considerably
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lower than the actual overtime hours at the WBS for the same periods. However,

for both the North West and South West regions, some instances at the current

workforce level were infeasible, implying an increase in workers would be beneficial.

Since the ‘standard’ instances of 1131111 and 2131111 remain feasible for all regions

(at the original modified runs), this implies that the model is capable of significantly

reducing scheduled overtime for the WBS and thus, reducing monetary costs. It is

worth noting that although neither planning horizon contain a bank holiday, there

may be some additional ‘overtime’ in the form of an increased pay rate for any

unsociable hours worked i.e. before 6 a.m. and after 8 p.m., though these numbers

would be minimial since clinics that require working at these times are not common.

Objective Function

Two alternative objective functions are considered in the BCWSM; the minimisa-

tion of total cost of scheduled overtime (4.34) and the minimisation of the total cost

of scheduled hours (4.35). Both of these objective functions also consider the min-

imisation of weekly overtime and undertime, and the penalty function to discourage

the model from scheduling Deputy Supervisors for the clinic role of Supervisor,

unless required.

Figure 6.19 displays the total costs for overtime and scheduled hours and total pay

over the whole planning horizon per region, separated by objective function to allow

for comparison. For all types of costs, the performance of both objective functions

is identical across all regions, as shown in Figure 6.19.
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Figure 6.19: Total Costs per Objective Function for Comparable Instances
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Only instances that were run for both objective functions are included i.e. instances with alternative parameters in stage two are excluded.
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Workforce Utilisation

The percentage of contracted hours typically available to be utilised at a blood

donation clinic varies per region as a result of clinics restricted to weekdays only

in the North West and South West regions, whilst clinics may occur on a Saturday

in the North East and South East regions. For the North West and South West

regions, the estimated amount of contracted hours that are used as annual leave or

training is 13.5%, with this figure for the remaining regions estimated to be 11.6%

of contracted hours. With the inclusion of the average sickness rate of 6%, this

takes the figures to a total of 19.5% for the North West and South West regions and

17.6% for the North East and South East regions.

We define a workforce utilisation rate to be the percentage of contracted hours that

are utilised as clinic hours. Due to the variable nature of a mobile blood donation

clinic model, along with the estimated hours that will be used as annual leave,

training or sickness leave, the WBS is unlikely to achieve a clinic-based workforce

utilisation rate greater than 80% without scheduled overtime.

Figure 6.20 presents the utilisation rate of the whole workforce per region over

comparable instances, to observe the direct impact of variables between instances

on the utilisation of workers. For both the North East and North West regions, the

instances without an enforced minimum number of clinics scheduled in stage one

(i.e. instances 1231111 and 2231111) have significantly lower utilisation rates due

to the reduction of scheduled clinics over the planning horizon. This implies that if

the WBS were to adopt the collection strategy of reducing the minimum number of

clinics scheduled in the north regions each planning horizon, the workforce in each

region would require a reduction in size and/or contracted hours.

For the standard instances (1131111 and 2131111) where the clinic schedule gener-

ated in stage one is representative of the WBS collection strategy pre-COVID-19,

the utilisation rates at the current workforce level is approximately 75% for the

North East region, which is close to the ‘target’ of 80%. However, as Figure 6.15
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shows, at the current workforce level for these instances, up to 15 hours of overtime

are scheduled. For the North West and South East regions, the utilisation rate

at these standard instances in Figure 6.20 are 67% and 64-67% for each region,

respectively. The 2131111 instance for the North West region (in the comparable

case) becomes infeasible at the point that the current workforce is reached. These

utilisation rates align with zero overtime (or infeasibility in some North West in-

stances) as displayed in Figures 6.17 and 6.16 which infers that the configuration

of the workforce (in terms of skill mix and contracted hours) in each region would

benefit from change, to promote the utilisation of contracted hours and continue to

minimise overtime.

Conversely, for the standard instances in the South West region (in the comparable

case), the utilisation rate of the workforce is 83% for the 1131111 instance and an

average of 77% (over region independent and collective instances) for the 2131111

instance. These utilisation rates align with 29–38 hours of overtime, as displayed

in Figure 6.18 which implies that the workforce should be increased in size and/or

contracted hours to prevent overtime whilst maintaining a high utilisation rate.

Please note that the line plot for the 1131111 instance for the South West region

in Figure 6.20 is identical to that of instance 1131211. Additionally, there is no

included data in Figure 6.20 for the collective (stage one) model instances for the

South West region during the winter planning horizon (season one) due to the issues

with infeasibility.
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Figure 6.20: Workforce Utilisation Rates per Region for Comparable Instances
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Figure 6.21: Workforce Utilisation Rates per Role per Region for 1131111 Instance
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Figure 6.21 presents the utilisation rates per worker role per region in the case

of the 1131111 instances, solved independently of other regions during stage one.

Since dummy workers are removed before actual WBS workers in this instance until

this prevents the problem from becoming infeasible, at the current workforce level,

the workforce is likely to be equivalent to the actual workforce at the WBS at the

time that the data was shared. For all regions in this instance, the utilisation of

Registered Nurses (RNs) is the lowest of all roles at the current workforce level

- although this ranking is shared with Supervisors for the North West and South

West regions. For the North West and South East regions, the mean utilisation

rate of RNs at the current workforce level is approximately 55%; this indicates that

the number of RNs in these regions may be greater than required. The South East

region has 16 RNs and thus could indeed reduce this number to reduce costs and

drive efficiency, however the North West region has only two RNs and requires this

as a minimum to allow clinics to continue to be operated when one RN is on leave.

Figure 6.21 implies that the number of CCA/CSAs in the South West region needs

to be increased to manage resource demand without over-utilisation (i.e. relying on

overtime to alleviate short-staffing situations as a result of annual leave or sickness).

Since Deputy Supervisors are assigned to the clinic role of CCA when a Supervisor is

available, the high utilisation rate for Deputy Supervisors in the South West region

supports this conclusion. With a mean utilisation rate of 81% for the current WBS

level of CCAs and CSAs in the North East region in Figure 6.21, it appears that

the region would benefit from an additional CCA/CSA to lessen the pressure on

the current workers and to reduce overtime.
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6.3.3 Summary: Blood Collection Workforce Scheduling

Model Results

This section has presented both the computational results and solutions to the Blood

Collection Workforce Scheduling Problem from the model developed in Python, with

all four regions solved independently of each other.

It is evident that the alternative objective functions perform identically in regards to

minimisation of workforce-related costs such as cost of scheduled overtime and total

pay over a given planning horizon. Both objective functions also perform similarly

computationally, with no noticeable difference between run times or time taken to

reach an optimal or near optimal solution due to the optimality gap. Therefore,

either objective function could be utilised by the WBS; however, since the main

goal of the WBS is to reduce overtime, it makes sense for objective function one to

be the objective function of choice.

The model can generate an optimal (or near optimal) workforce schedule for the

three ‘smaller’ regions – in terms of problem size – namely the North East, North

West and South West regions in less than 10 minutes per region. For the much

larger problem for the South East region, the total run time increases to a maximum

of approximately 12 hours in cases where the workforce is reduced by at least 15

workers from the current workforce level. However, at the current workforce level

(and up to a reduction of 10 workers for most instances) the model generates a

(near) optimal schedule in less than three hours. With workforce schedules for

all four regions collectively produced in under four hours by the BCWSM, this is

a drastic increase in efficiency compared to the current practice, where a total of

approximately 48 hours are required to manually create a four-week schedule. It is

worth noting that the time taken to input the annual leave, training and sickness

leave (if the latter is known at the time of scheduling) would currently need to

be manually input before the model can run, which would need to be considered
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in addition to these figures. However, with the schedules being automated, this

still significantly reduces the manual work for the workforce planning team, where

additional adjustments to the schedule may also be made, as required. This is one

way in which we have answered research question two: ‘How can mathematical

modelling help to schedule the clinic-based workforce at the Welsh Blood Service?’

As a result of assessing the workforce utilisation rates and scheduled overtime hours

at various staffing levels for all regions, it appears that the South West region would

benefit from an increase in workers, particularly of the role of CCA/CSA. Since all of

the winter planning horizon instances with the collective stage one model input are

infeasible from the first instance, and overtime is required at the current workforce

level for all feasible instances, we can assume that the workforce for the South West

region may require a review by the WBS if the collection strategy returns to the

pre-pandemic model. Conversely, the low utilisation rate of RNs in the South East

region and near-zero overtime hours at the current workforce level (and for up to

ten fewer workers thereafter) implies that costs could be reduced for the WBS by a

decrease in the number of RNs in the region’s workforce. The ideal workforce sizes

and mixes for both the of the north regions depend on the collection strategy i.e. how

clinics are scheduled in stage one; with the results from the ‘standard’ instances

that are representative of the WBS pre-COVID-19 strategy implying that both the

North East and North West regions could benefit from an additional worker (likely

a CCA/CSA) to cope with annual leave and sickness, and reduce overtime hours

from being regularly required. However, if the WBS choose to operate slightly fewer

clinics in the less efficient north regions as selected by the collective stage one model,

the current workforce levels appear adequate. These insights have the potential to

support the WBS in their decision making regarding workforce planning and to save

monetary costs where possible.

Finally, the BCWSM provides the potential for the WBS to reduce the overtime

hours required over a given planning horizon, as evident in Table 6.17, especially
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when the model is used in conjunction with stage one i.e. the BDCSM. If the work-

force level insights discussed above are utilised to improve each region’s team, then

this would drive a further reduction of the overtime hours required to collect enough

blood donations to meet the demand, and allow regions to cope more effectively

with sickness of clinic-based workers. However, the balance between additional

contracted hours (for new workers or an increase in contracted hours for existing

workers) and the cost of overtime is complex and requires further inspection by the

Welsh Blood Service to keep costs to a minimum and to ensure overtime is not too

heavily depended on to meet the blood product demand.

The following chapter, Chapter 7 concludes this thesis, with a summary of each

prior chapter, the findings from our research and how we have answered the three

research questions presented in Section 1.5. Additionally, we discuss the limitations

of our models and how this project has been impacted by the COVID-19 pandemic,

followed by areas of interest for further work related to this research.
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Chapter 7

Discussion and Conclusion

This final chapter summarises the content of this thesis, identifying contributions

and how the research questions listed in Section 1.5 have been answered. Addition-

ally, to set the thesis into context, a discussion surrounding assumptions, implemen-

tation, scalability and robustness of the two-stage model is presented in Section 7.3.

Subsequently, a concluding statement is provided to close the thesis.

7.1 Research Summary

Chapter 1 introduced the history and importance of human blood as a life-saving

resource, and the typical layout of a blood service’s supply chain and its multiple

echelons. The Welsh Blood Service (WBS) was also introduced and their require-

ments for this research as an industry partner under the KESS 2 scholarship scheme.

The three following research questions were introduced, focussing on increasing ef-

ficiency of the collections process for the Welsh Blood Service:

1. How can mathematical modelling help to schedule the Welsh Blood Service’s

blood donation clinics more efficiently?

2. How can mathematical modelling help to schedule the clinic-based workforce
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at the Welsh Blood Service?

3. Can these mathematical methods be integrated into a decision support tool

for planners at the Welsh Blood Service to use?

Chapter 2 provided a detailed review of existing literature relevant to this the-

sis i.e. publications that consider optimisation and/or modelling of the collections

echelon in the blood supply chain. Gaps in the literature were discussed in the sum-

mary section of this chapter, such as the lack of research into both optimal workforce

scheduling for blood donation clinics, and matching blood supply to demand. This

identifies a need to focus on these topics, which are addressed in Chapters 3 and 4.

Chapter 3 addresses research question one; the current (pre-COVID-19) collection

model of the WBS is presented, alongside restrictions and limitations of this practice,

such as the tedious manual process of creating a clinic schedule and potential over-

collection of blood donations. Following this, the Blood Donation Clinic Scheduling

Problem (BDCSP) was formulated as a linear programme to optimally schedule

clinics over a four-week planning horizon. Three alternative objective functions

were presented: the minimisation of the number of clinics scheduled, the minimi-

sation of the number of units of donated blood that are collected in excess of the

demand (i.e. overcollection), and the minimisation of both. Multiple constraints are

presented to ensure that the output schedule of the model is as realistic as possible

and is a feasible solution for the WBS.

Chapter 4 addresses research question two; the current practice at the WBS for

scheduling clinic-based workers and associated restrictions are presented and the

limitations of this process were described. These limitations include inflexibility of

the clinic teams, regular use of considerable overtime, and the time-consuming man-

ual process of creating a schedule. Subsequently, the Blood Collection Workforce

Scheduling Problem (BCWSP) is presented, also formulated as a linear programme,

to optimally assign clinic-based workers to the clinics determined in the model de-

tailed in Chapter 3. This formulation utilises modes to select a clinic role and a
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driving role for each worker for each clinic, and considers all workers within a given

region in replacement of predetermined teams. In the original model formulation,

two alternative objective functions were introduced: the minimisation of overtime

cost and the minimisation of the total cost of scheduled hours. A modified version

of this model is presented to ensure the output is realistic for the WBS (to more

fairly distribute clinic hours across workers). It includes an improved version of

each objective function which consider the minimisation of the total weekly over-

time hours and total weekly ‘undertime’ hours per worker, and the addition of a

new constraint to promote the distribution of working hours to all workers.

Chapter 5 addresses research question three with the description of the development

of a prototype decision support tool for scheduling blood donation clinics at the

Welsh Blood Service using Excel and OpenSolver, in addition to the development

of a Blood Donation Clinic Scheduling Model (BDCSM) and a Blood Collection

Workforce Scheduling Model (BCWSM), both built in Python and utilising PuLP.

The aims of these models are discussed, alongside how data is input and utilised.

The design of experimental scenarios is described for test instances for both the BD-

CSM and BCWSM developed in Python, with the motivation behind these design

decisions presented.

Chapter 6 presents the experimental results of the designed test instances for the

BDCSM and the BCWSM, including the computational results and the solutions.

The BDCSM utilising objective function three (the minimisation of both the number

of clinic days scheduled and estimted overcollection over the given planning horizon)

performs well with significantly less overcollection and fewer clinics (up to as many

as 20 fewer) scheduled than the actual WBS figures for the same planning horizons,

thus reducing clinic-associated costs and potential wastage of blood products. Ad-

ditionally, the experimental investigation has revealed that an optimal four-week

clinic schedule is generated by the model in significantly less time than it requires

the clinic planning team at the WBS to create an initial schedule; with the poten-
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tial to reduce the process from an average of five working days (current practice

at the WBS) to approximately eight hours. Collectively, these results demonstrate

how the BDCSM could increase efficiency of the clinic scheduling process, reducing

costs, wastage and time, thus answering research question one.

The results of the BCWSM illustrate how the model (when used in conjunction with

the BDCSM) is capable of reducing scheduled overtime of clinic-based workers, by

as much as 400 hours over a four-week planning horizon, and increases utilisation

of contracted hours to minimise costs associated with overtime. Additionally, the

results provide some insight regarding the staffing levels per region and how these

contribute towards overtime or unnecessary costs for the WBS. Finally, the BCWSM

generates a (near) optimal workforce schedule for a four-week planning horizon

in significantly less time than it takes the workforce planning team at the WBS,

with the potential to reduce the process from an average of 48 hours to only four

hours. This answers research question two, with the BCWSM having the potential

to increase the efficiency of the scheduling of the clinic-based workers in terms of

both cost and time.

7.2 Contributions

One of the main contributions of this research is the extensive literature review

provided by Chapter 2. This review details all existing publications that consider

optimisation and/or modelling of the blood collection echelon of the blood supply

chain. A detailed taxonomy was developed to present a clear categorisation of

existing research, with an identification of areas that require further research. This

review focusses specifically on the blood donation collection process, where this is

a distinct lack of existing reviews, and provides an up-to-date evaluation of this

particular field of research, with a prior version of this literature review published

in 2020 [101].

Specific gaps in the existing literature were identified in this review, namely the op-



CHAPTER 7. DISCUSSION AND CONCLUSION 189

timisation of workforce scheduling for blood donation clinics, and the direct match-

ing of blood supply to demand for blood products. The Blood Donation Clinic

Scheduling Model and the Blood Collection Workforce Scheduling Model presented

in Chapters 3 and 4 respectively, with results discussed in Chapter 6, fill these

gaps by contributing mathematical models to optimise the scheduling of both mo-

bile blood donation clinics (by matching supply to demand) and the clinic-based

workforce.

7.3 Discussion

To set the research presented in this thesis into context, this section addresses

various aspects of the two-stage model and its potential role at the Welsh Blood

Service and elsewhere.

7.3.1 Assumptions and Limitations

In order to create a two-stage mathematical model, some assumptions and simpli-

fications were required to be made. These will be discussed per individual stage of

the model.

The Blood Donation Clinic Scheduling Model

Regarding the first stage of the model, the BDCSM, the following assumptions were

made:

� It is assumed that the demand is known. As discussed in Section 3.1.8, the

WBS is undertaking research to identify the ‘true demand’, as supplied hos-

pitals work independently from the WBS and are in control of determining

their own blood product orders. This means that at present, the actual de-

mand is not known as the hospitals do not report back their usage. However,

throughout this research, we have assumed the demand to be that of meet-

ing the hospitals’ orders. The Business Intelligence department at the WBS
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has been working on improving demand forecasting, and thus we also assume

that if the model were to be implemented at the WBS, then these demand

forecasts would be input into the model with some tolerance factored into the

figures. This tolerance is to ensure that if the number of blood donations

collected during a given week differs from the estimated supply at the time of

the schedule being generated, then there would still likely be sufficient blood

product available to cope with demand.

� It is assumed that the estimated supply data that would be input into the

model, if implemented at the WBS, is a good prediction of viable collections

expected from each scheduled clinic, i.e. that the actual viable collections from

a given clinic is not likely to vary greatly from the forecasted viable collections.

Similarly to the demand forecasts, the Business Intelligence department at the

WBS has also been improving their estimated supply forecasts. There is still

uncertainty involved in donor attendance and blood donation supply which

will be discussed further in Section 7.3.5. For the experimental results, we

assumed that the estimated supply per day per clinic is the same for any day

that the clinic operates during the planning horizon. However, the supply

forecasts that the WBS have been working on do not assume this and likely

incorporate variation between days. The possible implementation of this is

discussed in Section 7.3.3.

� It is assumed that the WBS are to decide the weights assigned to the terms in

the objective function if objective function three (3.5) is utilised in an imple-

mented model, i.e. that weights will be assigned to both the number of clinic

days scheduled and the estimated overcollection over a given planning horizon.

This would allow the WBS to establish how they value each component, and

how they should be compared to each other.

� The current BDCSM that is presented in this thesis assumes that all clinics

are to be scheduled at the same time. In practice at the WBS, the clinics that
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are considered to be ‘hard to book’ such as clinic tours, are often booked fur-

ther in advance, and then the remaining clinics are scheduled at a later date.

The rationale behind the decision to schedule all clinics over a given plan-

ning horizon at the same time is that since the generation of an initial clinic

schedule would be automated (saving a significant number of hours of manual

scheduling), all clinics can be scheduled as far in advance as desired. Schedul-

ing ‘hard to book’ clinics further in advance than other clinics however could

be easily incorporated into the model, and this is discussed in Section 7.3.3.

� The current model developed in Python is based on the planning horizon

being four weeks since this is how the WBS schedule their clinics. However,

if this were to change to a greater number of weeks such as eight or 16 weeks,

the model may no longer run in a reasonable time, and may need to utilise

heuristic methods for the case where all regions are solved collectively. The

use of heuristic methods for scalability is discussed further in Section 7.3.4.

In addition to the above assumptions, there are some limitations associated with the

BDCSM. The main script contains the various constraints and objective functions

that were presented in Section 3.3. If the collection strategy were to change, such

that the constraints are required to be changed, then the WBS would need to

implement this. For example, in cases where perhaps the maximum number of

clinics permitted to be scheduled per day per region may change, this is a relatively

straightforward change to the main script, only changing the number on the one

side of a constraint. However, if a new constraint needs to be included, this would

require members of the IT department at the WBS to have in-depth knowledge and

understanding of the mathematical constraints and how to write new constraints,

as required. Similarly, if a new clinic duration pattern or availability were to arise,

then this would need to be written into the model by the WBS. This is discussed

further in Section 7.3.3.
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The Blood Collection Workforce Scheduling Model

Regarding the second stage of the model, the BCWSM, the following assumptions

were made:

� It is assumed that a given worker is only assigned to work at clinics that are

based in the same associated region as the worker. In practice at the WBS,

workers may be assigned to work a clinic in a different region (if the worker

is willing to) in cases where there is a staff shortage. However, since this is

not a particularly common occurrence and is often the result of short-notice

operational offline decisions made after the time that a workforce schedule is

published, for simplification purposes, we choose not to consider these cases

in the model. This also allows for regions to be solved independently from

each other and reduces the complexity of the problem.

� It is assumed that the length of working day for a given clinic is true. In

practice, the length of working day for a clinic may vary slightly from the

provided number in the clinic data due to factors such as traffic, the closure of

a clinic delayed due to donations still taking place, breaking down of a vehicle,

issues with the clinic venue, etc. This means that the estimated number of

hours assigned to workers by the model is likely to vary somewhat from the

actual number worked.

� It is assumed that any scheduled overtime is paid additionally to a worker’s

salary, and is not considered as time off in lieu. The WBS generally pay

overtime in addition to salary, with an increased pay rate for hours worked in

excess of ‘full-time hours’ i.e. over 150 hours per four-week period. However,

according to the workforce data provided by the WBS, one clinic-based worker

instead receives overtime as additional time off in lieu. Since this is only one

case and the additional leave is unlikely to have an impact, we simplify the

model and consider only paid overtime.
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� For the clinic-based workforce in the South East region, there are currently

four set teams at the WBS. However, for the model, we assume that this region

is instead one flexible pool of workers that may all work with any other group

of workers in the region. We make this assumption since it is a goal of the

WBS to move towards a more flexible staffing model in this region to promote

efficiency and to avoid situations where an excess of workers are assigned to

a given clinic.

� It is assumed that each worker has 30 days of annual leave. Since the WBS

were not able to provide each worker’s annual leave allowance or duration of

employment for anonymity reasons, we assume that all workers have the mid-

point annual leave allowance of 30 days, as annual leave for NHS employees

ranges from 27 to 33 days dependent on the duration of employment. This

assumption is made for simplification purposes to allow leave schedules to be

generated for the experimental results.

� Similarly, since the WBS could only provide the salary band of each worker

and not the actual salary (or their duration of employment), we assume that a

worker’s salary is the mid-point of their salary band. The salaries per band for

NHS organisations is widely accessible online and is discussed in Section 4.1.3.

� Similarly to the BDCSM, the current model developed in Python is based on

the planning horizon being four weeks since this is how the WBS schedule their

workforce during ‘business as usual’. If this were to change to a greater number

of weeks, the model may no longer run in a reasonable time, and may need to

utilise heuristic methods for the case where all regions are solved collectively.

However, due to the nature of workforce scheduling and considerations needing

to be made regarding annual leave etc. it is unlikely that the WBS would

increase the planning horizon for workforce scheduling. During the COVID-

19 pandemic, workforce schedules have been created for one-week periods at

a time to better cope with increased absences due to sick leave and isolation
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periods of workers. If the model were to only consider a one-week planning

horizon then it would not be able to minimise scheduled overtime effectively,

since this is calculated over four-week periods, and thus is best utilised over

four-week planning horizons to maximise the benefits of its use for the WBS.

Alongside these assumptions, there are limitations associated with the BCWSM.

Similarly to the limitations described for the BDCSM, any changes in the staffing

model for the WBS regarding constraints or availability patterns etc. would need to

be manually changed in the main script by the IT department at the WBS.

7.3.2 Purpose and Use of Decision Support Tool

A decision support tool or system is defined as a ‘computer-based interactive system

that supports decision-makers rather than replaces them; utilizes data and models;

solves problems with varying degrees of structure’ [32]. The initial aim of this

project was to create a mathematical model which could be embedded into a decision

support tool for the WBS to improve how they schedule their clinics and clinic-

based workforce. Utilising the initial schedules produced by the two-stage model as

a starting point for the planning team would allow for potential reductions in both

monetary costs and overcollection of blood donations for the WBS.

If the two-stage model were to be implemented at the WBS, in the form of a decision

support tool, it would provide a close to optimal initial schedule (for both clinics

and the clinic-based workforce) that is generated in significantly less time and with

a reduction in manual work required. The schedule, either clinic or workforce, can

then be easily adjusted as required to account for factors such as a scheduled clinic

being newly unavailable, or a worker requesting annual leave or taking sick leave etc.

It would therefore be helping to inform planning decisions, not explicitly making

these planning decisions, to motivate the creation of more tactical schedules that

align with the goals of the WBS.

Both the BDCSM and the BCWSM have been developed to create various outputs,
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usually in CSV format since this is compatible with various computer operating sys-

tems. There are multiple versions of schedules, which are described in Section 7.3.3.

These are currently output as CSV files but could easily be adjusted to be in Excel

format, as this is familiar to the users of the tool, or as part of the development of

a GUI, if implemented.

7.3.3 Implementation and the Impact of COVID-19

For the two-stage model to be implemented at the WBS, the staff in the IT de-

partment at the WBS would need to be heavily involved. During discussions that

took place early in the project with senior stakeholders at the WBS and members

of their IT department, it was agreed that some capacity would be provided by the

IT department to develop a graphical user interface for the two stages of the model,

with the possibility for further capacity to be allocated to implement the models as

a decision support tool, provided the value of the tool was demonstrated once the

models were more fully developed. Unfortunately, due to the impact of COVID-19,

the collection model of the WBS has changed considerably since March 2020 and at

present, there is no plan to return to the previous collection model given the ongoing

limitations associated with the pandemic. The collection strategy has moved from

aiming to provide a local service to all donors across Wales, to utilising clinic venues

that are large to enable social distancing. These large venues that previously were

only one-day clinics are now scheduled for multiple consecutive days and a larger

donor panel is invited to the clinic, effectively replacing the more local clinics for

many donors. Trailer clinics are no longer being operated as they are too much of

a confined space to allow for social distancing between donors.

This new collection strategy only affects stage one of the model (BDCSM) since the

assignment of workers to clinics remains the same, and the new strategy could be

relatively easily implemented into the model by altering the input data such as clinic

duration patterns and frequency-based availability, and altering the clinic venue

related constraints to prevent any trailer clinics from being scheduled. The new
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strategy may leave little opportunity for improvement through use of the BDCSM

as decision support during the clinic scheduling stage as the problem is now much

more constrained. Since stage two of the model (BCWSM) utilises the output of

stage one, all collection strategy changes are effectively implemented through the

input of a clinic schedule, and this model could be used to improve efficiency of

workforce scheduling for clinic-based workers at the WBS.

The COVID-19 pandemic has placed increasing demand on the IT and Business

Intelligence departments at the WBS due to necessary blood product demand and

donor attendance forecasting efforts, in addition to devising a new collection strat-

egy and locating the best clinics for social distancing. As a result of this, there

is currently no capacity to develop a graphical user interface for the two Python

models (the BDCSM and the BCWSM) and therefore, in the near future at least,

no capacity for implementation of the models.

Client Feedback

In February 2022, Jayne Davey, Interim Blood Supply Chain Lead of Collection

Services at the Welsh Blood Service provided the following client feedback:

The ability of a blood service to ensure a robust supply chain

relies heavily on the strength of its relationship with donors. At

the beginning of the project, due to the long-established ways

of working at the Welsh Blood Service, there were a significant

amount of constraints to be included in the clinic scheduling pro-

cess. These included working practices around staffing, extensive

community presence at low populated communities and a strong

tradition of taking the service as close to the donor as possi-

ble. This resulted in limitations on how far the efficiency of the

collections process could be improved.

The requirement for social distancing associated with the SARS-
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CoV-2 coronavirus pandemic (COVID-19) turned the whole blood

collection portfolio on its head and signalled the loss of the Welsh

Blood Service’s mobile donation clinic trailers, all of the uni-

versity and company clinics and most of the small community

venues. It necessitated a radical change in our collection strat-

egy and as a result, donors have adapted their behaviours and

expectations of the service. This temporary collection strategy is

unsustainable in a post pandemic world and so, further change

will be needed that promotes the development of a sustainable,

future proof blood collection clinic portfolio that is able to meet

patient demand for blood and blood components, values the donor

as the vital supplier of this life saving commodity and aligns to

expectations of Wales as it strives to create a better world for our

future generations. This stabilisation requirement provides the

Welsh Blood Service with the opportunity to improve our collec-

tion clinic model which in turn enables us to incorporate greater

flexibility and optimisation of clinic and workforce scheduling in

the future, increasing the potential impact of the two-stage model

developed during this project.

Requirements for Implementation

From Jayne Davey’s feedback it is evident that there is still support for the model

to be implemented in the future. In the following, we discuss the requirements for

this.

Early in the project, the senior stakeholders and members of the IT department

at the WBS agreed to allocate some capacity to make the mathematical models

useable, in the form of a decision support tool. For this to happen, a graphical

user interface (GUI) would need to be developed to allow the end-user i.e. clinic or

workforce planner to interact with the models. There is currently a digital rostering



CHAPTER 7. DISCUSSION AND CONCLUSION 198

tool (to manually create schedules for clinic-based workers) that is implemented at

the WBS that was created by their own IT department. It is possible that the two-

stage model could be integrated into this GUI, but particularly the second stage

of the model, the BCWSM. Otherwise, the first stage (the BDCSM) could be a

separate tool, as the employees who schedule the donation clinics are independent

from the workforce planners, using a similar GUI to the existing digital rostering

tool.

The current output of the models are schedules in a CSV format. For the BDCSM,

there is a binary schedule output that is saved each time it runs, with the dates of

the planning horizon as column headers, the unique clinic keys as rows, and binary

values in each ‘cell’ to denote whether a clinic is scheduled on a given day, or not.

There is also the alternative schedule output with the estimated supply in each

‘cell’ in place of the binary decision variable. For the BCWSM, there are many

versions of schedules saved at each run. For example, a schedule with the dates of

the planning horizon as column headers, unique ID for each worker as rows, and the

unique clinic key in the ‘cells’ for any clinics assigned to the corresponding worker

on the corresponding day. Alternative schedules (with the dates still as column

headers) include the unique clinic keys as rows and the unique IDs of any assigned

workers, on the corresponding day, as the ‘cell’ values. This makes it relatively

straightforward for the IT department at the WBS to take these output CSV files

and display them in an accessible way for the end-user via the GUI, and/or to save

the output as an Excel file for the planners to view - a format that they are already

comfortable with.

In addition to the development of a GUI, both stages of the model would need to

be able to communicate with the data warehouse and the WBS Blood Establish-

ment Computer System, ePROGESA, which are both hosted on the servers in the

WBS data centre. It has been indicated by the IT department that it would be

straightforward to store a decision support tool on the same servers, that could be
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run remotely from PCs by the clinic and workforce planners, and that the tool could

retrieve the required data from elsewhere on the servers. Ongoing maintenance of

the tool(s) would be required, to fix any bugs and to make any changes to the main

script of the models, as suggested in the discussion surrounding the limitations of

the models in Section 7.3.1. For the tool(s) to be used long-term, any changes to the

collection strategy or staffing strategy at the WBS would need to be included in the

Python scripts of the models. This requires members of the tool maintenance team

to have a working knowledge of the mathematics involved, in order for them to for-

mulate any new constraints correctly. Several members of the Business Intelligence

team at the WBS are familiar with OR methods, including linear programming,

and therefore it would be beneficial if this department could be involved. If imple-

mentation were to happen in future, several knowledge transfer sessions with the

IT and Business Intelligence departments, would need to take place.

At present, due to changes to the collection strategy as a result of COVID-19, the

current first stage of the model, the BDCSM, is not directly applicable. The BD-

CSM, would require minor adjustments before implementation could begin, which

mainly consist of additional clinic duration patterns and changing the input clinic

data to ensure no temporarily unavailable clinics are scheduled. Additionally, to

more closely reflect the clinic planning process at the WBS, any already scheduled

‘hard to book’ clinics (which are typically booked much further in advance of other

clinics) could be read into the model via and Excel or CSV file with the dates that

they are scheduled. With the addition of a few lines of code for the input of booked

clinics and a new constraint, it would be relatively easy for the BDCSM to consider

these clinics and schedule other clinics around them for the remainder of the plan-

ning horizon. The consideration of estimated supply per specific day, as discussed

in Section 7.3.1, would also be relatively simple to include in the model by adding a

‘day’ component to the estimated supply variable in the main script, and ensuring

that the input clinic data includes the relevant data.
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If the two-stage model were to be implemented in future, the process would likely

consist of a development stage (to create a GUI and to integrate the tool with

existing systems) followed by a trial stage with the end-users to gain feedback on

usability. For the successful implementation of a decision support tool, it is imper-

ative to closely involve the end-users in the process to maximise the usability and

accessibility of the tool. Usability testing with end-users may take various forms,

but a common method, and perhaps the most suitable for this particular scenario,

is remote testing. This method involves video recording computer screens of testers

(end-users at the WBS) and audio-recording the testers as they are encouraged to

‘think aloud’ while interacting with the tool [55]. This collects both quantitative

and qualitative data from the end-users, which could be used in combination with

interviews and/or questionnaires conducted with the end-users to establish what

changes should be made to the tool to improve usability.

This would likely become an iterative process, where feedback is taken on-board

and the tool is further developed or adjustments made, followed by another trial

by the end-users, and so on, until the tool is satisfactory, as is common practice

with implementation of decision support tools [55]. This is similar to the process

described for the planned pilot study of the prototype tool in Section 5.5, and may

take several months to complete.

7.3.4 Generalisability and Scalability

This research project is the result of a collaboration with both Knowledge Economy

Skills Scholarships (KESS 2) and the WBS, which limits the scope of the research

to be focussed solely on the activities and objectives of the WBS. Consequently,

the two-stage model presented in this thesis is tailored to the specifics of the (pre-

COVID-19) WBS blood collection model. Since each blood service organisation

across the globe has its own individual infrastructure, requirements and considera-

tions, often unique to the local demographics and/or geography, it is unlikely that

the two-stage model is directly applicable to another blood service in its current



CHAPTER 7. DISCUSSION AND CONCLUSION 201

state.

The two-stage model may be applicable to blood services that rely heavily on ‘mo-

bile’ clinics for their blood supply i.e. not permanent clinics that operate frequently

at a fixed site, but either clinics that take place occasionally at a hired venue or in

a parked trailer. An example of this would be the Scottish National Blood Trans-

fusion Service, who operate permanent clinics at six fixed donor centres, but also

rely on many mobile clinics at various locations to meet blood product demand.

For the two-stage model to be implemented at another blood service with a similar

collection model, there would almost certainly still be required changes to the clinic

availability and duration patterns, as well as the constraints (to reflect the individ-

ual needs of the organisation) in the BDCSM. Changes to the BCWSM to account

for different working day patterns would also likely be required, as a minimum.

In addition to changes required in the problem formulation, the exact method of

integer linear programming is likely not suitable for much larger and more complex

scheduling problems. Stage one of the model, the BDCSM, is a generalisation of the

proven NP-hard job-shop scheduling problem, whilst stage two of the model, the

BCWSM, is an extension of the multi-mode resource-constrained project scheduling

problem, which is also a generalisation of the NP-hard job-shop scheduling prob-

lem [53]. Since Wales is a relatively small nation with a small blood collection

model by the WBS (in terms of number of clinics locations and clinic-based work-

ers compared to other nations such as England), the test instances considered in

this research have been able to be solved to near optimality within a reasonable

time. However, nations with a much larger population and therefore larger demand

need to operate many more clinics, and it is unlikely that this exact method can be

utilised in these cases. For example, NHS Blood and Transplant, the blood service

for England, operates 25 fixed clinics but also operates mobile clinics in ‘thousands’

of locations, according to their website [20], which also implies a significantly greater

clinic-based workforce. For blood services that operate this many mobile clinics, a



CHAPTER 7. DISCUSSION AND CONCLUSION 202

heuristic method is likely to be required to achieve a solution in a reasonable time

due to the associated increase in complexity of the problem for both stages of the

model. This is also discussed in Section 7.4.3.

Other blood service organisations, as well as the WBS in future, may also wish to

incorporate statistical modelling methods to account for the uncertainty associated

with blood donation clinics, to ensure that any schedule solution is robust and more

prepared to cope with fluctuations in supply and demand. This is discussed further

in Section 7.3.5.

7.3.5 Robustness and Resilience

There is a significant element of uncertainty involved in the blood collection process,

such as donor attendance, demand fluctuation, and the more specific demand per

blood type and how to collect from donors to meet this. At present, since the tactical

scheduling of donation clinics happens many months in advance at the WBS, it

is difficult to consider the inventory levels across blood types at the time that a

schedule is produced. The WBS counteracts any low stock levels of a certain blood

type by contacting donors of the blood type that live nearby upcoming scheduled

clinics, to encourage them to attend. For the most part, this is an effective solution

for the WBS, but in cases where it is not, they schedule ‘emergency’ clinics at their

fixed clinic site at the WBS headquarters and again, contact local donors of the

required blood type to attend. For this reason, alongside the lack of available donor

demographic data due to NHS data privacy regulation, we have not considered

specific blood types in the model. However, in future, it would be beneficial for the

WBS to consider donor demographics during the clinic scheduling process, to enable

specific targeting of a given blood type, and even to inform strategic decisions about

where to locate a new clinic. This would enable the WBS to avoid the current

practice of ‘reactive controls’ as opposed to ‘proactive controls’, as discussed by

Mugdh et al. [64] in their framework for balancing resilience and innovation in

relation to optimisation of emergency departments.
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Other elements of uncertainty, such as donor attendance and demand fluctuation,

are addressed through the forecasted supply and demand data that would be pro-

vided by the WBS Business Intelligence department and input into the model, if

implemented. Alternatively, statistical modelling methods could be added to the

model in future to consider these uncertainties and to provide a more robust clinic

schedule as another potential proactive control [64]. In Section 2.2.2, it is evi-

dent that a significant proportion of papers consider both integer programming and

stochastic modelling in combination to provide a robust approach [9, 25, 35, 41–43,

46,47,58, 79,86,89,104,105]. The majority of these papers however focus on creat-

ing a robust model for blood services that are likely to encounter disasters such as

earthquakes, to ensure that there is adequate supply to deal with such emergencies.

It may be beneficial for the WBS to consider these stochastic elements to develop

a more resilient collection model to cope with large-scale emergencies, furthering

their risk management strategy and developing a more proactive approach.

7.4 Further Work

Throughout the research detailed in this thesis, new research questions and direc-

tions of interest have arisen which are not within the scope of this research, but

would further develop this research and/or would further the contributions in the

field of optimisation of blood collection. These research areas are described below.

7.4.1 Pareto Analysis for Weights in Objective Functions

Objective function three (3.5) in the Blood Donation Clinic Scheduling Model (BD-

CSM) seeks to minimise the total number of clinic days scheduled and the total

estimated supply in excess of demand for a given planning horizon. As discussed

in Section 7.3.1, it is assumed that the WBS would determine appropriate weight-

ings to assign to both of these individual terms in the objective function to priori-

tise accordingly between number of clinics and overcollection, since they cannot be

equated. One option to determine weightings is to consider Pareto optimisation,
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which is commonly used in cases of multi-objective optimisation problems to ensure

that any conflicting objectives are optimised simultaneously. A Pareto optimal so-

lution is defined as ‘a set of “non-inferior” solutions in the objective space defining a

boundary beyond which none of the objectives can be improved without sacrificing

at least one of the other objectives’ [7].

An algorithm such as a genetic algorithm, which is commonly used in the literature

surrounding Pareto optimisation [15] due to its ability to avoid being trapped in local

optima, could be used to search for the Pareto front. This would allow decision-

makers to observe the trade-off between the two considered objectives: minimisation

of total clinic days scheduled and minimisation of estimated overcollection. Decision-

makers at the WBS could then utilise a method, such as the TOPSIS (Technique for

Order of Preference by Similarity to Ideal Solution) method [99], to analyse which

results are closest to an ideal solution for the WBS. This analysis could inform

the most suitable weightings to assign to each term in objective function three of

the BDCSM, to ensure that any result would meet their preferences. This method

could also be extended to inform decisions for the weights defined as β1, β2 and β3 in

the modified objective functions one (4.34) and two (4.35) for the Blood Collection

Workforce Scheduling Model (BCWSM).

7.4.2 Consideration of Donor Demographics

As discussed in Section 7.3.5, the consideration of donor demographics can inform

better clinic scheduling decisions. The composition of blood types of a given donor

panel could be incorporated into the BDCSM or a similar model, alongside blood-

type-specific demand figures to better inform the clinic scheduling process. This

would provide the potential to better meet demand and to decrease the likelihood

of both blood product shortage and expiration. Additionally, analysis of the location

of donors and their historical frequency of donation could provide valuable insight

to inform strategic decisions such as locations of new clinics for the WBS.
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7.4.3 Heuristic Methods

Both the Blood Donation Clinic Scheduling Model and the Blood Collection Work-

force Scheduling Model are formulated as a linear progamme and are therefore solved

using exact methods. Since the experimental results prove that these models can

generate (near) optimal solutions in a reasonable time, there has been no require-

ment to improve upon the computation times of the models. However, for larger

problems such as a longer planning horizon or if the model were to be applied to

the blood service of a larger nation (with a greater number of clinics and a higher

population), it might be beneficial to consider the use of heuristic methods to enable

a good solution to be reached in a reasonable time. Heuristic methods may provide

a minimally worse solution but the uncertainty involved in a mobile blood collection

process limits how far it can be optimised.

One possible method of expanding the two-stage integer programming model to con-

sider heuristic methods, is to utilise the linear programming relaxation of both the

BDCSM and the BCWSM individually as a construction heuristic, similar to vari-

ous methods presented in the surrounding literature, as discussed in Section 2.2.2.

Fischetti et al. [36] discuss various mixed integer linear programming (MILP) based

heuristics, including the utilisation of an evolutionary heuristic in combination with

a MILP solver, as proposed by Rothberg [83]. Peters et al. [74] present a com-

parative study between the performance of a MILP and an evolutionary algorithm

metaheuristic when used to solve a NP-hard staff assignment problem. The meta-

heuristic is found to outperform the MILP in only seven minutes. Although the

case study considers only 52 staff members, the planning horizon is 400 days, whilst

there are over 90 jobs to assign and four different skill levels to consider. A larger

instance may take much longer to solve, but is still likely to reach a ‘good’ solu-

tion (within a specified satisfactory optimality gap from the MILP lower-bound) in

a reasonable time in comparison to exact methods. This supports the argument

that a scaled-up version of both the BDCSM and the BCWSM to consider a larger
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blood service, with a greater number of both clinics and workers, could be solved

effectively utilising a similar evolutionary algorithm metaheuristic.

7.4.4 Intra-Day Scheduling

The literature review in Chapter 2 identified that there is limited research regarding

the intra-day scheduling of blood donation clinic staff. Presently at the Welsh

Blood Service, all workers assigned to a clinic have a lunch break at the same

time, which is enabled by most clinics closing half-way through the working day.

This causes a decline in potential productivity with at least an hour of possible

donations lost. This suggests an alternative method could be explored regarding

intra-day scheduling, where clinics are run at a lower capacity for a period in the

day to allow for staggered breaks for the workers.

7.5 Concluding Statement

Throughout this research project, addressing the objectives of the Welsh Blood

Service has been a priority, and as a result, a highly specific two-stage integer

programming model has been developed to schedule blood donation clinics and

the clinic-based workforce more efficiently. This research has addressed gaps in

the existing literature surrounding optimisation of the collection echelon in the

blood supply chain, such as the tactical scheduling of mobile clinics and clinic-based

workers.

Due to the unforeseen impact of the COVID-19 pandemic, unfortunately the model

was not able to be implemented at the WBS in the form of a decision support

tool, where it would provide the opportunity to minimise costs, overcollection and

manual scheduling hours. However, there is still support for implementation of the

model at the WBS in the future, including support for utilisation of the model to

inform strategic decisions regarding adjustments to the collection model following

the pandemic, whilst donors are more accustomed to change.
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Appendix A

Literature Review Search String

TITLE-ABS-KEY(“blood service” OR “blood donation” OR “blood collection” OR

“blood type*” OR “blood clinic” OR “donation clinic” OR “blood donor” OR

“blood donor appointment scheduling” OR “blood service appointment schedul-

ing” OR “blood clinic appointment scheduling” OR “blood donation appointment

scheduling”) (“clustering” OR “k-means” OR “Attribute selection” OR “classifica-

tion” OR “feature selection” OR “machine learning” OR “multidimensional” OR

“Bayes*” OR “combined classification” OR “correlation-based” OR “decision rule”

OR “information gain” OR “markov blanket” OR “neural network” OR “princi-

pal component” OR “relief” OR “support vector machine” OR “tree” OR “wrap-

per” OR “optimization” OR “optimisation” OR “scheduling” OR “mixed integer

program*” OR “simulation” OR “heuristics” OR “L-shaped” OR “programming”

OR “mathematical program*” OR “integer program*” OR “column generation”

OR “constraint program*” OR “linear program*” OR “branch and bound” OR

“branch and price” OR “dynamic program*” OR “goal program*” OR “quadratic

program*”) AND ISSN ( 0001-5172 OR 0003-2409 OR 0310-057x OR 0003-2999

OR 0003-3022 OR 0007-0912 OR 0832-610x OR 0749-8047 OR 0952-7907 OR 0265-

0215 OR 1090-3801 OR 0959-289x OR 0913-8668 OR 1053-0770 OR 0952-8180 OR

1387-1307 OR 0898-4921 OR 0304-3959 OR 1530-7085 OR 1155-5645 OR 1098-7339
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OR 0003-6870 OR 0007-8506 OR 0360-8352 OR 0305-0548 OR 0013-791x OR 0014-

0139 OR 1751-5254 OR 1077-2618 OR 0018-9391 OR 1551-3203 OR 0740-817x OR

1542-894x OR 0263-5577 OR 0143-991x OR 1943-670x OR 0169-8141 OR 0925-5273

OR 0020-7543 OR 0748-5492 OR 0733-9364 OR 0923-4748 OR 0742-597x OR 0278-

6125 OR 0924-0136 OR 0737-6782 OR 0022-4065 OR 0269-9648 OR 1748-006x OR

0953-7287 OR 0898-2112 OR 0748-8017 OR 1684-3703 OR 0746-9179 OR 0951-8320

OR 0934-9839 OR 0895-6308 OR 0925-7535 OR 1012-277x OR 1098-1241 OR 0166-

4972 OR 0933-3657 OR 1472-6947 OR 1538-2931 OR 0169-2607 OR 1460-4582 OR

1833-3583 OR 0739-5175 OR 1089-7771 OR 1753-8157 OR 1386-5056 OR 0266-4623

OR 1532-0464 OR 0885-8195 OR 1356-1294 OR 1438-8871 OR 0148-5598 OR 1067-

5027 OR 0140-0118 OR 0272-989x OR 0026-1270 OR 0962-2802 OR 0277-6715 OR

1619-4500 OR 0254-5330 OR 1524-1904 OR 0217-5959 OR 1435-246x OR 0926-6003

OR 0305-0548 OR 1063-293x OR 0167-9236 OR 0924-6703 OR 1572-5286 OR 0305-

215x OR 1751-5254 OR 0377-2217 OR 0957-4174 OR 1936-6582 OR 1568-4539 OR

1932-8184 OR 0740-817x OR 0315-5986 OR 1091-9856 OR 0092-2102 OR 0951-192x

OR 0219-6220 OR 0925-5273 OR 0020-7543 OR 0020-7721 OR 0267-5730 OR 0969-

6016 OR 1004-3756 OR 0925-5001 OR 1547-5816 OR 0278-6125 OR 0272-6963 OR

0022-3239 OR 0022-4065 OR 1094-6136 OR 1004-4132 OR 0160-5682 OR 0453-4514

OR 0025-1909 OR 1523-4614 OR 1432-2994 OR 0025-5610 OR 0364-765x OR 0275-

5823 OR 0894-069x OR 0028-3045 OR 1566-113x OR 0305-0483 OR 0030-364x OR

0167-6377 OR 0233-1934 OR 0143-2087 OR 1389-4420 OR 1862-4472 OR 1055-6788

OR 0171-6468 OR 1348-9151 OR 0269-9648 OR 1059-1478 OR 0953-7287 OR 0748-

8017 OR 0257-0130 OR 0399-0559 OR 0951-8320 OR 0925-7535 OR 1052-6234 OR

1696-2281 OR 1220-1766 OR 0167-6911 OR 1098-1241 OR 0166-4972 OR 1134-5764

OR 0191-2615 OR 1366-5545 OR 0041-1655 OR 1748-006x OR 0013-791x OR 0894-

587x OR 0954-0121 OR 1088-0224 OR 1819-5164 OR 1448-7527 OR 1472-698x OR

2044-5415 OR 0963-1801 OR 0010-3853 OR 1936-6574 OR 1618-7598 OR 0163-2787

OR 1054-8289 OR 0278-2715 OR 1065-3058 OR 0195-8631 OR 1386-9620 OR 0361-

6274 OR 1041-0236 OR 1057-9230 OR 1744-1331 OR 1369-6513 OR 1833-3583 OR
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0168-8510 OR 0268-1080 OR 0957-4824 OR 1477-7525 OR 0017-9124 OR 1446-1242

OR 1478-4491 OR 1748-5908 OR 0046-9580 OR 1389-6563 OR 0749-6753 OR 0020-

7314 OR 1353-4505 OR 0898-2643 OR 1094-3412 OR 0094-5145 OR 1049-2089 OR

0167-6296 OR 0361-6878 OR 1355-8196 OR 1096-9012 OR 1356-1820 OR 1091-4358

OR 0825-8597 OR 0891-5245 OR 1741-1122 OR 0197-5897 OR 0890-765x OR 0025-

7079 OR 1077-5587 OR 0887-378x OR 1178-1653 OR 1170-7690 OR 1076-8971 OR

1075-2730 OR 1049-7323 OR 1729-0376 OR 1098-3015 )
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Appendix B

Actual Clinic Schedule Figures

Table B.1: Actual Number of Clinics and Overcollection over the Planning Horizons

Planning Horizon 1
07/01/2019 - 03/02/2019

Planning Horizon 2
22/07/2019 - 18/08/2019

Region
Number of

Clinics
Scheduled

Estimated
Overcollection

Number of
Clinics

Scheduled

Estimated
Overcollection

AW 119 1080 109 63
NE 16 160 15 -22
NW 16 228 15 -3
SE 72 498 64 64
SW 15 194 15 23
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Appendix C

Blood Collection Workforce

Scheduling Model: Original vs.

Modified Model
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Figure C.1: BCWSM Computational Times - Original vs. Modified Model
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Figure C.2: BCWSM Solutions - Original vs. Modified Model
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Appendix D

Clinic Duration Matrix Examples
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Figure D.1: Clinic Duration Matrix - Consecutive Day Clinics
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Figure D.2: Clinic Duration Matrix - One Clinic for Two Consecutive Weeks
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