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ABSTRACT 

BACKGROUND 

T-cells are essential in the mediation of immune responses, helping clear bacteria, viruses 

and cancerous cells. T-cells recognise anomalies in the cellular proteome associated with 

infection and neoplasms through the T-cell receptor (TCR). The most common TCRs in 

humans, αβ TCRs, engage processed peptide epitopes presented on the major 

histocompatibility complex (pMHC). TCR-pMHC interaction is critical to vaccination. In this 

thesis I will discuss three pieces of software and outcomes derived from them that 

contribute to epitope-based vaccine design.  

RESULTS 

Three pieces of software were developed to help scientists study and understand T-cell 

responses. The first, STACEI allows users to interrogate the TCR-pMHC crystal structures. 

The time consuming, error-prone analysis that previously would have to be ran manually, is 

replaced by a single, flexible package. The second development is the introduction of 

general-purpose computing on the GPU (GP-GPU) in aiding the prediction of T-cell epitopes 

by scanning protein datasets using data derived from combinatorial peptide libraries (CPLs). 

Finally, I introduce RECIPIENT, a reverse vaccinology tool (RV) that combines pangenomic 

and population genetics methods to predict good vaccine targets across multiple pathogen 

samples. 

CONCLUSION 

Across this thesis, I introduce three different methods that aid the study of T-cells  that will 

hopefully improve future vaccine design. These methods range across data types and 

methodologies, with methods focusing on mechanistic understanding of the TCR-pMHC 

binding event; the application of GP-GPU to CPLs and using microbial genomics to aid the 

study and understanding of antigen-specific T-cell responses. These three methods have a 

significant potential for further integration, especially the structural methods. 
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INTRODUCTION 

 THE ROLE AND ORIGINS OF THE IMMUNE SYSTEM 

The immune system detects and eliminates threats posed to a host organism. This can include 

the presence of foreign bodies; for example, bacteria, viruses, fungi and parasites as well as 

aberrant self-cells which are cancerous. The immune system in higher order vertebrates can 

be roughly categorized into two divisions: the innate and adaptive immune systems. 

 INNATE IMMUNITY 

 Innate immunity consists of an evolutionarily old defence, designed to provide a wholesale 

“one size fits all” protection against pathogens which do not differ in response to changing 

threats. These protections include physical and chemical barriers such as the skin and 

antimicrobial peptides which limit pathogens’ access to the body, as well as fast acting 

mechanisms of clearance, including molecular pathways such as complement and cellular 

component with cytotoxic, cytolytic and phagocytotic behaviours1. The innate immune 

system has a broad church of targets and can interact and modulate bacteria, viruses, fungi 

and parasites.  

Naturally, these four pathogens vary vastly in terms of size and mode of interaction with the 

host. Viruses for example, can be range from 5-750nm in diameter. Viruses are obligate 

intracellular pathogens, meaning that they are unable to reproduce on their own, instead 

requiring the molecular machinery of their host to reproduce. Viruses can cause direct cell 

death by causing lysis. Bacteria are larger than viruses, have their own reproductive 

machinery and can engage with and destroy cells directly, or indirectly through the release 

of toxins. Similarly, many single celled parasites, for example members of the genus 

Plasmodium can kill cells. The largest of these parasites, helminths (parasitic worms) are too 

large to infect a host cell, but their presence in the body can lead to tissue damage through 

the formation of cysts2.  
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The presence of the above pathogens is contrasted with the presence of commensal micro-

organisms. Commensal micro-organisms include archaea, bacteria and fungi and cause no 

harm to the host and often contribute to a symbiotic relationship with the host. 

A host has three main routes of dealing with pathogens: avoidance, resistance, and 

tolerance3. Avoidance refers to methods in which the host can avoid exposure to pathogens 

in the first place, usually through anatomical and physical barriers and behaviour. If this first 

barrier is succumbed, then resistance is the next step. Resistance refers to more direct 

methods of eliminating and reducing pathogens. To defend against these pathogens, 

resistance engages different effector mechanisms. Finally, tolerance involves adaptations 

that increases a tissue’s capacity to resist damage caused by the pathogens. 

1.2.1 Anatomical and chemical barriers 

The foremost defence against pathogens are chemical and physical barriers. The most 

obvious examples of physical barriers are the skin and mucosal surfaces. At many 

anatomical barriers there are further resistance mechanisms that help solidify this defence 

such as antimicrobial peptides (AMPs) found on mucosal surfaces. AMPs have naturally 

occurring, broad-spectrum antimicrobial effects. 

1.2.2 Inflammatory response 

Once a pathogen has breached the host’s first-line defence of anatomical and chemical 

barriers it will be met with cellular immune responses from the innate immune system. This 

engagement occurs when cells known as sensor cells interact with inflammatory inducers. 

Generally speaking, inflammatory inducers are molecules found uniquely on pathogens such 

as bacterial lipopolysaccharides (LPS) or molecules which are not normally found in the 

extracellular space, for example ATP.  
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 The innate immune system detects pathogens by a variety of targets including 

lipopolysaccharides (LPS) and double stranded RNA (ds-RNA), collectively known as 

pathogen associated molecular patterns (PAMPs). PAMPs activate pathogen recognition 

receptors such as toll-like (TLR) and nucleotide binding oligomerisation domain-like 

receptors (NOD-like receptors). NOD-like receptors initiate inflammation which leads to a 

cascade of immune cell and coagulatory agents being recruited at the site of infection.  

The engagement of LPS and ds-RNA markers leads to further recruitment of more immune 

cells, including macrophages, neutrophils, dendritic cells (DCs) and basophils, which can 

engulf and destroy target cells and pathogens via phagocytosis. There are also more direct 

actions of cytotoxicity delivered by complement and natural killer (NK) cells. A number of 

these cells function in conjunction with the adaptive immune system by up-taking and 

presenting short peptide fragments of the pathogen, known as antigen on the cell surface. 

This is primarily performed by professional antigen presenting cells (APCs) which include DCs 

and macrophages. 

 ADAPTIVE IMMUNITY 

The innate immune system is broadly acting and provides a good first response to any 

generalized target. However, this wide-ranging action is counterbalanced by its inability to 

launch a targeted or bespoke defence against a specific pathogen. Herein lies the role of the 

adaptive immune system; so called as it encompasses the ability to adapt during the life of an 

individual so as to remember a previously encountered pathogen.  

 
Figure 1 A simple representation of  cells and proteins of the innate (left) and adaptive (right) immune 
systems. 
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The adaptive immune system is primarily comprised of T-cells and B-cells which detect 

antigens via the T-cell receptor (TCR) and B-cell receptor (BCR) respectively. The BCR also can 

act in its soluble form, which is known as an antibody. These receptors both carry and 

immense degree of sequence variation. This means that a given TCR or BCR can engage an 

antigen (which can consist of a protein, peptide, or small molecule) with a specificity 

unachievable by the innate immune system. 

The TCR and BCR recognise protein epitopes (the site of the antigen responsibly for immune 

cell binding) in two distinct manners which give rise to different molecular behaviours. 

 B-CELLS AND ANTIBODIES 

B-cells and antibodies interact with whole intact antigens. Antigens can be comprised of 

whole proteins (or lipoproteins), peptides and polysaccharides. Antigens are found either in 

free solution or at the cell surface. and are bound either linearly: where the epitope is one 

uninterrupted sequence of amino acids, or where the epitope forms a uniform sterically 

available site. Usually these epitopes are between 15 and 20 amino acids in length4. This is 

described in Figure 2. Human antibodies are heterodimers, consisting of a heavy and a light 

chain. 

 

Figure 2 Example of a linear epitope (left) and a non-linear epitope (right). The red dots represent the epitope, 

whilst black dots are non-binding sites in the antigen. 

The antigen binding region of antibodies varies vastly between different antibodies. This 

antigen binding region is known as the variable (V) region. This variability is what gives rise 

to the antibody’s ability to bind with and engage a specific antigen. This V region is 
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contrasted to by the constant (C) region which does not vary in the same way. There are five 

main forms of C region, known as isotypes which are used to engage different effector 

mechanisms. As it is membrane bound via the C region, the BCR does not have these 

effector functions. BCRs engage antigen via the V region, leading to B-cell activation which 

in turn leads to clonal expansion and antibody production5. 

Antibodies are unable to cross cell membranes so can only bind to extracellular of cell surface 

antigens; antibodies cannot bind to intracellular antigens. Intracellular protein antigens can 

be detected in processed form by the other antigen receptor – the T-cell receptor. 

1.4.1 Antibody structure 

Due to the fact that antibodies are soluble and are secreted in large quantities, they are 

easily obtained and studied. Therefore, most information on structure of BCRs and 

antibodies comes from the study of antibodies. 

Antibodies are broadly “Y” shaped (Figure 3). The shape of the antibody allows to perform 

two distinct tasks, binding and engaging with antigens while also binding to effector 

molecules and cells that are recruited to destroy the antigen.  

The ends of the two arms of the “Y”, the V regions are involved in antigen binding. As the V 

regions name suggests, its structure is varied. The stem or join of the “Y” confers the C 

region and as such is much more conserved. It is the C region that interacts with effector 

molecules and cells. Each “arm” of the antibody is formed from a heavy chain and a light 

chain, identical to those found on the other “arm”.  In mammals, there are two categories of 

light chain, designated lambda (λ) and kappa (κ). Λ and κ chains give rise to physiochemical 

and structural differences in antibodies possessing the other chain6. 
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Figure 3 Cartoon representation of an antibody. The two antigen binding sites, the variable regions are found at the tips of 
the arms, joined to the others at the hinge region. 

There are five different classes of immunoglobulins known as Immunoglobulins A, D, E, G 

and M (IgA, IgD, IgE, IgG and IgM). They are distinguished by having different C regions with 

their own inherent structure and properties. These classes, or isotypes, are defined by their 

heavy chain which determine their effector function. The function of these heavy chains is 

governed by the C-terminal region of the heavy chain; that is, the region of the heavy chain 

not associating with the light chain. Although different, the structural properties of the 

isotypes are similar in terms of antigen binding. 

 THE T-CELL RECEPTOR 

The obvious failing of antibody immunity is that it cannot engage with intracellular antigens 

or antigens whose tertiary protein structure shifts dynamically. The T-cell is key in addressing 

this shortcoming. Like the antibody, it is also a heterodimer, consisting of two chains. 

T-cells can be grouped into two main classes based on the genes used to make their TCR: the 

α and β TCR or γ and δ TCR. γδ T-cells possess a constituent γ chain and δ chain and represent 

a minority of the TCRs found in human blood, but account for up to half of the T-cells in the 
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gut and skin. Although known antigens of γδ TCRs are scarce, they have been shown to 

interact with phosphorylated isoprenoid antigens in the context of molecules called 

butyrophilins7,  CD1 restricted lipids8 and general stress ligands, for example those produced 

in human cytomegalovirus (HCMV) infection9. 

However, by far the most common TCR in human is the αβ TCR denoted by its α and β chains. 

Conventionally, the αβ TCR responds to linear sequences of amino acids (called peptides) 

presented at the cell surface in molecular cradles called major histocompatibility complex 

(MHC). MHC molecules can be divided into two different classes: MHC class I which generally 

presents peptides of 8-11 amino acids in length derived from intracellular proteins and MHC 

class II which can present longer peptides of 20+ amino acids derived from extracellular 

proteins. In humans the MHC is called human leukocyte antigen (HLA)10. The TCR recognises  

the combination of MHC and peptide (pMHC) by making specific molecular contacts with each 

species11. 

 

 

Figure 4 Cartoon schematic of the interaction of the TCR and the peptide MHC. Unlike antibodies which interact with a free 
antigen, in the classical case the TCR interacts with a short peptide bound to the MHC. 
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Between the TCR, the peptide and the MHC there is a diversity unsurpassed in molecular 

biology. It is estimated that the human body maintains approximately 1012 T-cells, of which 

9% possess a distinct TCR12. This is much below the theoretical limit of possible human TCRs 

which is 1018 if comparable to predictions made in mice13 as humans have considerably more 

TRBV genes. 

Huge TCR diversity is complimented by massive germline variation in the HLA, with there 

being 18,691 HLA class I alleles and 7065 HLA class II at the time of writing 

(https://www.ebi.ac.uk/ipd/imgt/hla/stats.html)14. In evolutionary terms, many HLA loci are 

among the fastest evolving coding regions in the human genome15. 

1.5.1 V(D)J Recombination 

The TCR can thank six hypervariable hairpin loops, known as complementarity determining 

regions (CDRs) for its incredible diversity16. Each TCR chain is coded for by a variable and 

constant domain, followed by a membrane-spanning region and cytosolic tail. It is the 

sequence of this variable region that give rise to the CDR loops. 

The TCR variable and joining regions are encoded for by the V and J gene segments in the case 

of the TCRα and the V, D and J gene segments in the case of the TCRβ. During T-cell 

development the V, (D) and J gene segments are physically joined at recognition signal 

https://www.ebi.ac.uk/ipd/imgt/hla/stats.html
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sequences (RSS) flanking the V(D) and J gene boundaries. This joining is performed by 

recombination activating gene 1 and 2 (RAG1/2).  

Each RSS is composed of a conserved 9-mer and 7-mer nucleotide sequence separated by 

either 12 or 23 nucleotides, which roughly correspond two one or two turns of a DNA helix. 

This gap, known as a spacer, is highly conserved in terms of length but not sequence. This 

spacer is essential for proper recombination spacing, known as the 12/23 rule. 

The process is such that the CDR1 and CDR2 segments of both the α and β chains are coded 

entirely by the germline, but the CDR3 loops have palindromic (P) and non-template encoded 

Figure 5 Cartoon of V(D)J recombination, for the α chain on the top and β chain on the bottom. The CDR1 and 2 

are encoded by the germline V segments, whereas the CDR3 is encoded by the V(D) and J segments. Random 

additions and deletions of nucleotides gives further variation to the CDR3. 
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(N) nucleotides inserted at the end of the gene segments prior to the V(D) and J gene 

segments being paired and ligated17.  

1.5.2 The TCR-pMHC binding event 

In spite of being an incredibly diverse molecule, many aspects of the TCR and indeed its 

mechanisms of recognition of the pMHC remain conserved. In the majority of cases, the TCR 

docks above the long axis of the pMHC binding cleft in a roughly diagonal binding orientation 

(Figure 6). Due to the orientation in the binding face of the TCR11 the CDR1 and CDR2 loops are 

primarily engaged in binding the MHC.  

 

Figure 6  Cartoon representation of a TCR-pMHC structure. The TCRα (top left) and TCRβ (top right) engage the 

pMHC from above, along the long axis of the pMHC binding domain. The CDR loops are shown colourised as: 

CDR1α- red; CDR2α- green; CDR3α- blue; CDR1β- yellow; CDR2β- cyan and CDR3β- orange. The peptide is 

shown in magenta. 

The CDR3, which sits almost directly above the peptide is the prime communicator with the 

peptide. This pattern of binding has been shown to be much less promiscuous than 

equivalent antibody antigen binding fragments (Fab) to pMHC structures. The reduced 
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diversity of TCR binding mode has been suggested that this is because unlike antibodies, 

TCRs are expected to signal and to engage with the peptide in a specific manner18. 

Early structural studies showed that TCR CDR3 loops underwent conformational change upon 

interaction with the pMHC, suggesting that a TCR could flex and accommodate a variety of 

pMHCs. On a similar note, the surface complementarity (SC), a measure for “goodness of fit” 

between two complexes, in this case the TCR and pMHC was observed to be relatively low 

(0.41 to 0.64 in the first 5 structures published) suggesting that a TCR did not require  

particularly high binding affinity in order to activate19. 

A number of other studies have also shown that the pMHC can change its conformation in 

order to engage different TCRs20,21. Also, it has been observed that the same mutation to 

different TCR-pMHC does not necessarily have the same impact on peptide recognition22. 

1.5.3 TCR cross-reactivity 

Unlike an antibody, the TCR never undergoes affinity maturation. This means that TCRs 

expressed by naïve T-cells must be required to engage peptides that it will never have 

encountered before, many of which are evolving dynamically at rates unachievable for the 

TCR itself. If TCRs could not bind to all possible pMHC, the existence of so-called T-cell “blind 

spots” would present a gap for rapidly evolving pathogens to exploit. 

 

The need for individual TCRs to bind large numbers of different peptides becomes obvious 

when discussing the theoretical number of peptides there are for a given length. For example, 

the 20 proteogenic amino acids have the theoretical potential to combine to 2010 different 

10-mer peptides. If only the top 1% are able to bind MHC that still leaves 12 x 1011  distinct 

peptides of this single length, an order of magnitude more than the total number of T-cells in 

the body23. 

It is unsurprising therefore that there is a growing literature evidencing TCR cross-reactivity, 

ranging from structural examples where the same TCR is bound to a different pMHC24; 

sequencing experiments combined with yeast expression libraries directly implicating >100 

different epitopes to the same TCR25 and mathematical modelling in conjunction with 
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combinatorial peptide libraries (CPLs) predicting a single TCR can have on the order of 106 

different peptide ligands26 

1.5.4 Types of αβ T-cells 

αβ T-cells make up the majority of human T-cells27 and hence there is a bias in both the 

literature and methodologies surrounding this T-cell subtype. Usually αβ T-cells are 

categorised by the expression of a co-receptor molecule, namely cluster of differentiation 4 

and 8 (CD4 and CD8, respectively).  

CD8+ T-cells, also known as cytotoxic T-cells, are directly involved in the lysis of virally infected 

cells and cancer cells. CD8+ T-cells are also responsible for the elimination of intracellular 

bacteria and protozoa through the recognition of “foreign” peptides presented by MHC class 

I molecules at the cell surface. The majority of MHC class I-presented peptides are of 8-11 

amino acids in length, but epitopes of up to 15 amino acids in length have been observed28. 

Most commonly MHC class I-restricted peptides are of length 9 or 10 amino acids11.  

CD4+ T-cells, or helper T-cells are involved in helping and regulating immune function. They 

recognise peptides presented by MHC class II molecules. Unlike MHC class I, these peptides 

are of much longer length, ranging between 12-20 amino acids as they can extend beyond 

the open-ended MHC peptide binding groove29.  

The TCR binding and signalling event (described in 1.5.2) is enhanced by the MHC molecule 

being engaged by the CD4 or CD8 co-receptor. The binding of CD4/8 occurs on the invariant 

regions of the MHC. CD4 Is a single chain protein composed of four Ig-like domains named 

D1-4 (Figure 7), where the first two domains are packed tightly together, followed by a hinge 

which joins to the next two domains. The MHC binding region of CD4 is found on D1. CD4 

binds to a hydrophobic nook located between the α2 β2 domains of the MHC II molecule. This 

site is far from the peptide:MHC interface, allowing for the simultaneous engagement of the 

TCR. CD4 enhances sensitivity to the antigen up to 100x (meaning that 100-fold less antigen 

is required to activate the T-cell)30. 

CD8 is structured differently from CD4 (Figure 7) as it is present on the T-cell surface as a 

dimer of two α chains or as an αβ heterodimer. Naïve T-cells exclusively express CD8αβ31 

whereas CDαα homodimers also exist in activated effector and memory T-cells32. CD8αα  
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Figure 7 The CD4 and CD8 co-receptors. CD4 is a single linear molecular comprised of two hinged Ig-like units, whereas CD8 
is comprised of two membrane bound Ig-like units. 

homodimers also exist on unconventional T-cells such as mucosal invariant T-cells (MAITs). 

CDαβ binds to a conserved site on the α3 domain of the MHC class I molecule. The strength 

of this interaction is modulated by the glycosylation of the CD8 molecule. Like CD4 and MHC 
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class II, the interaction between CD8 and MHC class I can happen simultaneously to the 

interaction between MHC and TCR. 

 THE ROLE OF THE MHC 

1.6.1 MHC structure 

MHC class I molecules consist of two chains, a larger variable membrane spanning heavy chain 

associated with a smaller conserved β2 microglobulin (β2M) domain. The heavy chain has 

three sub-domains called the α1, α2 and α3 domains. Similar to β2M with which it interacts, 

the α3 is conserved. The α1 and α2 subunits are polymorphic and make up the antigen binding 

groove. The binding of longer peptides is limited as the binding groove is closed at each end, 

meaning that longer peptides are physically unable to settle into the MHC binding groove 

without distorting. Due to the limited space in this binding groove, peptides of longer length 

tend to “bulge” out the centre of the groove. This closed groove and bulge can be seen in 

Figure 8. 

 

Figure 8 The MHC class I molecule’s binding groove (PDB code 1XH3) presenting a 14-mer peptide, the longer 

length of the peptide means the central residues protrude out of the binding groove and into the CDR loops of 

the TCR. 

MHC class II molecules are formed by an α and β chain, both of which are fixed into the plasma 

membrane. Both the α and β chains have 2 subunits, called α1 and α2 in the MHCα and β1 

and β2 in MHCβ.  Unlike the MHC class I molecule, the binding groove is made by both the α1 
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and β1 subunits. Both chains express polymorphism. The difference between MHC I and II is 

shown in Figure 9. 

 

Figure 9 cartoon representation of MHC class I (left) and MHC class II (right). MHC class I is composed of one 

MHCα subunit and one β2M subunit. The MHCα is responsible for all binding of peptide, unlike in MHC class II, where the 

MHCα and MHCβ constitute two halves of the MHC binding groove. 

The relative openness of the binding groove compared to MHC class I means the N and C 

terminal residues of the peptide can overhang the groove. The ‘extra’ amino acids form 

peptide flanking residues (PFRs) that are often described as the “ends of a hotdog” hanging 

outside of the MHC class II “bun”. Conversely, the middle 9 amino acids form a binding core 

which constitutes TCR recognition33 as depicted in Figure 8. 
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Figure 10 The MHC class II molecule’s binding groove (PDB code 1FYT) presenting a 13-mer peptide. Compared 

to Figure 8, the peptide is much flatter against the binding groove. It also manages to extend beyond the 

binding groove as the MHC binding domain is opened at the terminal ends, unlike in MHC class I. 

A key facet of the binding of peptide to MHC molecules is that the peptide stabilises the 

MHC (both MHC I and II), meaning that this binding has to be stable. The importance of this 

stability is demonstrated by the fact that peptide:MHC stability is a better predictor of 

immunogenicity than outright affinity of the peptide34.   

1.6.2 Antigen processing  

MHC class I and II interact with peptides generated by two completely distinct methods of 

processing and presentation. MHC class I-restricted peptides are of intracellular origin and 

are produced by means of degradation of proteins by proteasomes, large complexes with 

proteolytic action35. 

Peptides are then transported to the lumen of the ER by transporter associated with antigen 

processing (TAP). Peptides produced by the proteasome are then further trimmed to an 

optimal length by peptidases. This process occurs in the endoplasmic reticulum (ER) by the 

aminopeptidase ERAP136. Once in the ER, the MHC and peptide form a complex with the aid 

of chaperone proteins. This complex then leaves the ER by secretion where it heads to the 

cell surface for presentation to T-cells37. 

MHC class II bind to peptides derived from extracellular proteins generated through endocytic 

and phagocytic pathways38. During development MHC class II proteins are inhibited from 
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associating with antigens by binding to an invariant chain. The MHC class II complex travels 

through the Golgi apparatus to the MIIC and CIIV compartment39. Here, the invariant chain is 

degraded to Class II associated invariant chain protein (CLIP) where it is then swapped for 

antigenic peptides with higher affinity for the specific MHC class II molecule. 

It should be noted however, that while the mechanism of endogenous peptides being 

presented on MHC class I and exogenous peptide on MHC class II is the most common, other 

routes of presentation exist. Some APCs, such as DCs can present extracellularly derived 

peptides on their MHC class I molecules. This is known as cross presentation40. Cross 

presentation is important as it allows DCs to collect antigens from other tissues, such as those 

infected with virus41 or cancerous tissues42. 

 T-CELL MEDIATED IMMUNITY 

Upon completing development in the thymus T-cells enter the blood stream and migrate 

through lymphoid tissues where they circulate between the two. Mature T-cells who have 

not encountered their specific antigens are called naïve T-cells. To mount an immune 

response a naïve T-cell must meet and engage its cognate antigen via the TCR. TCR 

engagement induces T-cell proliferation and differentiation. The progeny of this 

differentiation is known as effector T-cells.  

Upon encountering antigen, naïve T-cells differentiate into several classes of effector T-cells, 

each having a specialised effector function. CD8 T-cells recognise MHC I presented peptides 

and differentiate into cytotoxic effectors that destroy infected cells whilst CD4 T-cells have  

a broader set of effector functions. After recognising MHC II presented peptides, naïve CD4 

cells can specialise into a number of different subsets. The main effector subsets are TH1, 

TH2, TH17, and TFH  which activate their target cells; there are also regulatory (Treg) cells which 

inhibit and modulate the potency of the immune response. 

TH1 subsets, primarily defined as CD4+ and TBX21+ cells are central to responses against 

virus and cancer. They are show to increase antigen presentation when engaging with DCs 

and also allow APCs to prime CD8 T-cells43. TH1 cells have also been shown to stimulate 

macrophages and lead to the destruction of pathogens and stimulate further presentation44. 

In the context of viral immunity TH1 cells secrete pro-inflammatory cytokines interferon γ 
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(IFN-γ) and tumour necrosis factor (TNF) which can drive CD8 effectors to the site of 

infection as well as the involvement of innate cells45. 

TH2 cells are CD4+ and GATA3+ positive. TH2 cells are triggered by IL-4 and IL-2. It is 

suggested they have evolved in response to helminth infection. However, in the absence of 

helminths they are involved in mediating bacterial and fungal infections46.  

TH17 cells are CD4+ and retinoic acid-receptor-related orphan receptor (RORC)+ and 

function via the release of IL-17 and IL-22. They enable the recruitment of neutrophils to 

sites of inflammation. It is suggested they evolved to protect the host from microbes that 

TH1 and TH2 immunities were not well-adapted for, such as extracellular bacteria and fungi. 

TH17 cells produce IL-17 which is a strong mediator of stromal cells which produces 

inflammatory cytokines and recruits neutrophils, bridging the gap between innate and 

adaptive immunity47.  

TFH play an important role in the formation of germinal centres that are structures that form 

in secondary lymphoid organs during a persistent immune response, as well aiding affinity 

maturation and development of high affinity antibodies and B-cells48. 

 METHODS AND TECHNOLOGY FOR UNDERSTANDING TCR-ANTIGEN RECOGNITION 

Given the amazing diversity of the TCR-pMHC, it is unsurprising that understanding of TCR-

antigen recognition is wrought with difficulties. Most mechanistic knowledge has been 

gathered from a very small pool of TCR-pMHC protein structures. At the time of writing there 

are 185 crystal structures publicly available in the PDB (as counted by the STCRDab: 

http://opig.stats.ox.ac.uk/webapps/stcrdab/)49. This means any assumption made about 

TCR-pMHC may only represent the “tip of the iceberg” in terms of overall variation. Similarly, 

next-generation sequencing (NGS) of TCRs remains relatively naïve compared to other NGS 

technologies. The complete list of TCRs with a known antigen specificity50 represents only a 

tiny fraction of known TCR sequences. There are 81,762 TCRα and TCRβs in the literature, 

with only 25,881 full αβ TCR complexes (taken from vdjdb.cdr3.net 50 on 8th November 2021). 

This scarcity in data, along with the inherent complexity of TCR-antigen recognition means 

that there are a wide number of different technologies which must be utilised, often in 

conjunction with one-another to explore the mechanism of TCR pMHC recognition. These 

http://opig.stats.ox.ac.uk/webapps/stcrdab/
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technologies are underpinned by several computational methods. Both the technologies and 

the computational methods they rely on will be discussed below. 

1.8.1 High throughput TCR sequencing 

Most often, TCR sequencing is performed on genomic DNA (gDNA) and performed “in bulk” 

across a population of cells (e.g., whole blood or tumour). Bulk sequencing informs on the 

overall abundance of a given TCR chain, but does not provide pairing information51. 

TCR sequencing protocol varies depending on the exact technology used. However, the basic 

principle is that either a chain in its entirety is sequenced, or just the CDR3. The TCRβ chain 

includes a D segment and has a higher diversity than TCRα52 and is therefore generally the 

chain of choice for single chain sequencing. Most commonly, only the CDR3 is sequenced as 

such protocols lend themselves well to the short-read lengths and high throughput achievable 

with the Illumina platform. As only the CDR3 sequence is non-germline the entire TCR chain 

can be assembled if the V gene can be assigned using software such as MiXCR 

(https://mixcr.readthedocs.io/en/master/). 

1.8.2 RNA sequencing 

The above methods give a detailed view of TCR diversity. As they rely on targeted sequencing, 

they do not capture any of the other transcriptional diversity happening outside of the area 

chosen to be sequenced. 

CDR3 sequences can be extracted from bulk RNA-seq experiments. This is computationally 

difficult as in tissues T cells are not abundant and make up approximately 1 in every 2000 

transcripts53. One would expect much less efficiency in sequencing this way but if wider 

transcriptional profiling is required then RNA-seq can provide a potentially interesting 

method for TCR profiling. A comparison of this method and gDNA sequencing is shown in 

Figure 11. 
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Figure 11 A comparison between gDNA sequencing of TCRs (left) and RNA-seq of TCRs (right). Non-TCR 

fragments are shown light green, while TCR fragments are annotated with a red, yellow, and purple band, 

representing the V, J and C segments respectively. In gDNA sequencing, specific primers, in this case for the C 

locus of the TCR mean that only TCRs fragments are amplified and sequenced, ignoring non TCR fragments. 

RNA-seq makes use of shotgun sequencing, so all transcripts in the sample are fragmented and have adapters 

annealed to them, therefore the whole array of fragments are sequenced, including those with no TCR on them. 

1.8.3 Single cell sequencing (SCS) 

Single cell RNA-sequencing (scRNA-seq) is a much newer technology than bulk RNA-seq. 

scRNA-seq works by rapid isolation of individual cells, often via fluidics. Sequencing is then 

performed using reverse transcription, an amplification step and library preparation. 

Amplification can be done using a nucleic acid sequence tag (commonly referred to as a 

barcode) or by using full-length cDNA sequencing. The obvious advantage of SCS of T-cells is 

that TCRα and TCRβ can be paired to produce the entire functional TCRαβ heterodimer. This 

technique can also provide information on the rest of the transcriptome to allow T-cell 

phenotyping (CD8+, CD4+, Treg etc). 

1.8.4 TCR repertoire alignment and assembly 

The exact protocol of the above three technologies vary, but they all result in a TCR CDR3 that 

is comprised of gene fragment and insertions/deletions which must be aligned, assembled, 

and quantified. The first step entails aligning the TCR fragments to a known reference and 

determining the gene usage. While this is a well-established step in classical genome 

assembly, it is more difficult with TCRs as they are made up of V, (D) and J segments which 
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are very similar and must be untangled, usually this involves alignment directly to a reference 

set of V, (D) and J genes supplied by the IMGT database54. The exact step of alignment varies 

from implementation to implementation, with some methods using the BLAST55 algorithm56 

or BLAST with a secondary alignment step57. Similarly, other tools may use alternative 

alignment softwares such as Bowtie258 for gene detection59. Other tools may opt for a “tag” 

based approach where their algorithm searches for exact matches of small substrings60. 

Finally, others may use a hybrid of the two approaches61,62. 

Once alignment has been performed, the abundance of a sequence is estimated. This is done 

by counting the same CDR3 sequence if the CDR3 sequence is viable; the DNA sequence is in 

frame and there are no premature stop codons. This step can be corrected for if the 

sequencing technology included used unique molecular identifiers (UMIs).  

Finally, there is an error correction step where low quality (based on the PHRED score in a 

FASTQ file) and low abundance sequences are removed. Other methods include clustering all 

sequences by their Hamming distance (the number of amino acids different between two 

strings) and removing outliers62. 

 

Figure 12 An overview of the steps of TCR repertoire analysis, from gene identification(top) and quantification 

of a clonotype, to error correction (bottom left) and finally downstream analysis (bottom right) 

The final step is downstream analysis of the TCR sequence data, which can be incredibly varied 

and dependent on biological context and the aims of the experiment. Downstream analysis 
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can include clonotype abundance and ecological diversity measures such as Shannon or 

Simpson diversity63; measure of abundance of a given clonotype against a theoretical 

distribution64 and motif enrichment analysis65.  

1.8.5 Structural modelling 

As previously discussed, 3D protein structures of TCRs and their cognate pMHCs are essential 

for disseminating the mechanism of interaction between TCR and antigen. Examples of the 

role of 3D structures are numerous, including being used to explain epitope escape having 

undergone mutation66; the knowledge of the “induced fit” of different peptide anchor 

residues 67 and the occurrence of cross-reactivity68. 

TCR structures are essential for “looking back” and explaining already understood 

phenomena and to ascribe a mechanistic explanation to it. Increasingly, the reverse is true 

where structures are being used proactively to predict of unknown 3D structures from 

sequence and in the rational design of therapeutic TCRs. 

Design of TCRs has been used to model point mutations and observe their impact on 

structure. This is has to be done dynamically using tools such as Rosetta69. Such methods have 

been used to demonstrate that hydrophobic substitutions are often conducive to improved 

binding affinity as there is an improvement in interface complementarity between the TCR-

pMHC70. Indeed, this is logical as studies have shown tryptophan, methionine and 

phenylalanine are the most highly conserved residues found in binding sites of proteins71. 

Other methods focus not only on binding affinity but specificity also72. 

Modelling plays an important role in TCR p-MHC structure prediction. Given the difficulty of 

resolving structures, sometimes prediction of the 3D structure is the only alternative to 

genuine structural analyses. While the general prediction of 3D structures is a well-developed 

field, modelling TCRs remains difficult due to the dynamism of the TCR being able to adopt 

multiple conformations to allow for cross-reactivity. Fundamentally, these algorithms work 

by aligning the TCR amino acid sequence to a reference TCR with a resolved structure, then 

determining the conformation of the CDR loops using anchors at the start and end of the loop 

as points to which the predicted sequence is grafted onto. Then the backbone atoms of each 

amino acid are iteratively grafted onto the template sequence73. Following that, side chains 



29 
 

are refined to reduce steric clashes74,75. TCR structural behaviour has also been used to inform 

sequence based models76 as discussed below. 

1.8.6 Sequence based modelling. 

The advent of NGS protocols for TCR sequencing has generated enough data that TCR epitope 

prediction from sequence is possible. Epitope prediction is framed to take the form of a 

classification problem where the user supplies a sequence of a TCR (typically the sequence of 

the CDR3β alone) and a potential epitope and the user receives a Boolean prediction whether 

the TCR will bind, with no answer to the degree at which this interaction occurs. 

While the exact methods differ, the core methodology is well-conserved and entails encoding 

the CDR3 and epitope sequence into a 2D matrix of physiochemical features, along with data 

pertaining to the V/J gene usage. The exact method of prediction varies, with several tools 

opting to use convolutional neural networks (CNNs)77,78, Gaussian processes (GPs)79 or 

random forests80. All these methods share a commonality in that they allow for spatial 

features of the TCR-epitope to be retained. 

Another facet of sequence-based modelling is the clustering of TCRs into groups with similar 

or identical epitopes, based on their properties. These methods make use of detecting motifs 

in both TCRs and epitopes. String based methods can then be used to create a pairwise 

distance metric between TCRs as shown by Dash et al.81 or to calculate global and local 

convergence as in Glanville et al.76. Other methods employ a graph based method to find 

over-represented TCRs in NGS data82 by comparing it to a theoretical distribution generated 

by a Bayesian model64. 

1.8.7 Combinatorial peptide libraries 

Combinatorial peptide libraries (CPLs) provide a way screen for recognition of a vast number 

of peptides by a given T-cell clone. For a 9-mer peptide, a CPL is divided into 180 different 

peptide mixtures arranged alphabetically in positional scanning format using single letter 

amino acid code. In each peptide mixture, a single residue remains fixed, while the remaining 

8 residues can be made up for any one of 19 naturally occurring amino acids (cysteine is 

excluded as it causes peptides to aggregate via disulphide bond formation). Recognition of 

CPL by T-cells informs on the importance of each amino acid at each fixed position as shown 

in Figure 13. These mixtures are then exposed to the T-cell of interest and activity of the T-cell 
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is measured by an ELISA of macrophage inflammatory protein-1β (MIP-1β); the most sensitive 

readout for CD8+ T-cells83,84 

This approach has been used to predict potential existing epitopes85, as well as estimate the 

breadth of cross-reactivity of a given T-cell clone26. 

 

 

Figure 13 An example of a 9-mer amino acid CPL library. The “X” indicates a fixed amino acid, and the “O” 

denotes a degenerate mix of amino acids. There are 180 of these per library scan, meaning each combination 

of fixed amino acids is covered. 

1.8.8 Knowledge driven models. 

A number of tools and predictive methods incorporate non-immunological parameters as a 

“context” for enhanced predictive power. This is particularly prevalent in neoantigen, and 

tumour associated antigen (TAA) prediction. For example, weighting a prediction of a MHC 

class II antigen in the context of neoantigens has been shown to increase predictive 

performance86. This same study showed that there was a bias in peptides that were secreted 

or expressed on the cell membrane. 

The importance of subcellular location of antigen is not just limited to self/cancer immune 

recognition. The Ovalbumin (OVA) antigen has been used in both Escherichia coli87 and 

Toxoplasma gondii 88 to demonstrate that subcellular localisation has an impact on CD4+ and 

CD8+ T-cell activation and expansion, respectively.  
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2 AIMS OF PROJECT 

 

 

Figure 14 the function of each of the three pillars of the thesis. A) Discusses STACEI, a tool for structural analysis 
of TCR-pMHC structures. B) discusses GPU-accelerated epitope prediction through CPL scans and finally C) 
discusses RECIPIENT, a tool for pangenome reverse vaccinology. 

As discussed above, interaction between TCRs and pMHC complex is incredibly complex and 

a broad understanding of these interactions requires a range of technologies. Most of these 
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technologies require computation and bioinformatics. In this thesis, I aim to present three 

methods of exploring the TCR-pMHC interactions as follows: 

1. STACEI (structural tool for analysis of TCR-pMHC interactions): A tool for the structural 

analysis of TCR-peptide-MHC Interactions 

2. Application of parallel computing to CPL driven epitope prediction 

3. RECIPIENT (reverse vaccinology for protein vaccine candidates): a pangenome reverse 

vaccinology tool 

The general workflow of each of these chapters are shown above in Figure 14. 

These three methodologies aim to understand the TCR-pMHC complex across different scales 

of biological interpretation. As they require different bioinformatics backgrounds, I will 

discuss the preliminaries of these in the following chapter. 

 

Figure 15 The 3 computational methods described in this thesis. Each theme moves to a more TCR-specific 

method for understanding the TCR-antigen interaction and its application towards vaccine design. 

Although these three chapters differ in their methodologies, the biological goal that 

underpins them is the same: to enhance understanding of the interaction between TCR and 

antigen across different scales of biological interpretation, going from deriving mechanistic 

insights of TCR-pMHC recognition at a structural level; identifying epitopes for T-cells using 
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CPL scans and parallel computing and broad context-dependent discovery of vaccine targets 

using reverse vaccinology (RV). 

 

 AIMS OF STACEI: A TOOL FOR THE STRUCTURAL ANALYSIS OF TCR-PMHC 

INTERACTIONS 

Section 1.8.5 discusses the importance of structural biology in deeply understanding the 

precise molecular mechanisms governing TCR-pMHC recognition. This will be expanded 

further on in Chapter 3. While numerous structural biologists study TCR complexes, there is 

very little in the way of software and tooling for the bespoke analysis of TCR-pMHCs 

specifically. This analysis is performed often on an ad hoc basis, meaning that the process is 

time-consuming and wrought with potential avenues for human error. Different groups have 

defined molecular interactions in different ways over time so there is an important need for 

standardised methodology for comparisons. I will discuss the creation of STACEI (structural 

tool for analysis of TCR-pMHC interactions) and its role in automating, standardising and 

ultimately expediating this analysis. STACEI will be discussed in chapters 4 and 5. 

 AIMS OF THE APPLICATION OF PARALLEL COMPUTING TO CPL DRIVEN EPITOPE 

PREDICTION. 

As discussed briefly in 1.8.7, CPL scans provide a powerful avenue for assessing both TCR 

cross-reactivity as well as the outright prediction of T-cell epitopes. This will be introduced, 

along with the concepts of parallel programming in chapter 6. In chapters 7 and 8 I will discuss 

the role of using parallel computing, namely Compute Unified Device Architecture (CUDA) to 

speed up and enhance these predictions previously carried out by Peptide Identification by 

CPL (PICPL). 

 AIMS OF RECIPIENT: A PANGENOME REVERSE VACCINOLOGY TOOL 

Chapters 8, 9 and 10 will discuss RECIPIENT (reverse vaccinology for protein vaccine 

candidates), a tool for the identification of potential peptide or full-protein vaccinations using 

RV. RV is the concept of using pre-existing knowledge, usually at an ‘omics level to try and 

predict vaccine targets. In this section of the thesis, I will discuss the implications on 
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integrating T-cell epitope prediction, MHC binding predictions, subcellular location, and 

population genetics methods to pangenomes in order to predict T-cell epitopes. 
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3 BACKGROUND: STACEI-  A TOOL FOR THE STRUCTURAL ANALYSIS 

OF TCR-PMHC INTERACTIONS 

 

Structural data of TCR-pMHCs, derived almost exclusively from x-ray crystallography, is key to 

understanding the function of these recognition events at the molecular level. This 

information has been helpful in revealing the mechanisms of recognition of tumour, bacteria, 

and viruses; along with the role of TCRs in recognition of self-antigens in the context of 

transplant rejection and autoimmunity.  

3.1.1 Generalised tools for analysing TCR-pMHC structures 

Most structural biology software for the analysis of these TCR-pMHC structures is not bespoke 

for analysing these complexes, rather general-purpose tools for analysing any 

macromolecular protein complexes are used. The lack of bespoke, customised software 

means that several tools are used on an ad hoc basis. In addition, most of general molecular 

recognition software has a specific goal in mind. For example, there are a number of tools 

specifically designed for visualising PDB structures, including RASMOL89, CCP4MG90 and 

PyMOL91. While these tools offer some flexibility in analysing structures, they are by no means 

field leaders when it comes to gaining mechanistic insight into a structure (other than that 

gained from visualising the 3D structure). 

A number of tools exist for the mechanistic insight of structures and determination of 

contacts between residues. A contact is usually defined as two atoms being within 4Å, 

however the exact distance used has varied over time and across different research groups. 

Contacts can be calculated a number of ways including using an application programming 

interface (API) or library to read the file programmatically, such as BioPython92 and 

Atomium93 in Python; BioJulia (https://biojulia.net/) in Julia and Rpdb (https://cran.r-

project.org/web/packages/Rpdb/index.html) and bio3d94 in the R language. The existing 

general tools all require the user to be able to access the packages mother programming 

language, install that package and use the API to run through the steps to get the data they 

require. An alternative is using a software with a graphical user interface (GUI). A tool with a 

GUI tends to be easier to install and is more user-friendly to a structural biologist who may 

https://biojulia.net/
https://cran.r-project.org/web/packages/Rpdb/index.html
https://cran.r-project.org/web/packages/Rpdb/index.html
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not have a programming background. The main example of a GUI tool that calculates contacts 

is NCONT and its predecessor CONTACT7, part of the CCP4 suite95. The CCP4 suite has 

executable binaries of all of its softwares as well as a GUI. PyMOL also offers a contact 

function, shown in Figure 16.  

 

Figure 16 An example of measured contact distances in PyMOL. The distance is measured between two atoms in Euclidian 

space. It can be used to show the engagement of the TCR (TCRα in red, TCRβ in green) with the peptide (cyan). The PDB file 

in question is 5MEN. 

Another metric commonly applied to TCR-pMHC complexes that is highly generalizable is 

buried surface area (BSA). BSA is a geometric quantity that measures to total surface area (in 

Å2) of a complex buried within a another complex96. In terms of the TCR-pMHC this is useful 

for a number of reasons, it can be used as a proxy for contact formation in low-resolution 

structures, informing how much each CDR loop is contacting the pMHC and contributing to 

recognition22, as well as being used as a quick comparison between numerous structures 22,97. 

BSA can also be used to determine which parts of the peptide are buried/acting as anchors to 

the MHC and which are available for recognition by the TCR98. At the time of writing, there 

appears to be only two commonly used tools for this purpose: PISA99 which again is part of 

the CCP4 suite as a standalone binary and GUI tool, as well as a webtool 

(https://www.ebi.ac.uk/pdbe/pisa/pistart.html) and Chimera100.  

The final general method used to inspect the TCR-pMHC complex is shape complementarity 

(SC). SC can be viewed as a measure of “goodness of fit” between two complexes (Figure 17). 

https://www.ebi.ac.uk/pdbe/pisa/pistart.html
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It depends on the overall structure of the complexes, as well as how the interaction between 

them brings parts of each complex into contact. SC exists as a score between 0 and 1, where 

0 represents no proximity between the two complexes and 1 represents a full interface101. 

This measure has a long history of being used to assess the interface of the TCR and pMHC 
102,103.  Current implementations for calculating SC include CCP4104 and Rosetta69. 

 

Figure 17 Cartoon representing SC. A high SC interaction will show two complexes in a large amount of contact, forming one 

interface (left), which a poor or low SC will be indicative of an interface with a large degree of gaps in it (right) 

All the above methodologies have well-characterized tools available already. However, their 

use in the context of TCR-pMHC complexes still requires a degree of user experience in 

working these tools and applying them correctly to the TCR-pMHC structure. Normally, this 

would require an expert user to know the constituent chains in the PDB file for each protein 

in the structure (TCRα, TCRβ, peptide, MHα and β2M/MHβ) as well as the MHC class 

restricting the peptide as this must be known and given to the software a priori.  

3.1.2 Bespoke analysis of TCR-pMHC complexes 

Unlike the above methodology, some of the routines used to analyse these complexes are not 

present as a software package. For example, the contacts and BSA of a structure may be able 

to be computed using a software package, but there are no pre-existing tools that allow ready 

exploration and visualisation. This existing software requires manual detection/assignment 

of CDR loops and manual counting of contacts and their nature. The structural biologist must 

then port these data into the plotting software of their choosing to generate data or figures. 

The same manual input is required for visualising 3D structures in PyMOL. In addition, these 

tools do not allow for ready description of features used to describe the TCR-pMHC 

recognition landscape such as crossing angle. 
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3.1.3 Standards in structural biology and analysing TCRs 

3.1.3.1 The PDB File 

Structural biology utilises numerous well-conserved and defined standards for analysing 

structural complexes. Probably the most obvious, is the PDB file. The PDB format is curated 

by the Research Collaboratory for Structural Biology (RCSB)105 and described at 

http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html. The start 

of each line of a PDB file is annotated with a term explaining what the line represents. These 

header annotations, known as records, are vast so the main ones are summarized in Table 1.  

Table 1 a summary of the main header annotations found in a PDB file. 

Remark Description 

HEADER Contains metadata about file, including date of deposition and type of 

structure 

TITLE Title of experiment, often the same as the title of the paper associated 

with it 

SEQRES Record of covalently linked amino acids/nucleic acids 

SSBOND Identifies location of disulphide bonds 

ANISOU Information about anisotropic temperature factors 

ATOM Information about each atom and its location in 3D space 

 

The most important header summarized in Table 1 is the ATOM header. ATOM describes the 

location of each atom in 3D space, as well as information about what amino acid it is a part 

of, what the residue number is and whether it is an insertion of deletion. The ATOM header 

is described in more detail below in Table 2. To summarize, the ATOM header is a column 

delimited line where each piece of information is stored in a certain set of columns which are 

then filled with whitespace. This consistency in the PDB header allows for easy parsing and 

handling computationally.  

 

http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html
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Table 2 Summary of the content of the ATOM header 

Start 

column 

End 

column 

Name  Description 

1 6 ATOM Header 

7 11 serial Serial atom number 

13 16 name Name of atom 

17 NA altLoc Alternate location 

18 20 resName Residue name 

22 NA chainID Chain identifier 

23 26 resSeq Residue sequence number 

27 27 iCode Code for insertion residue 

31 38 x Coordinate in X plane in 

Angstroms 

39 46 y Coordinate in Y plane in 

Angstroms 

47 54 z Coordinate in Z plane in 

Angstroms 

55 60 occupancy Occupancy factor 

61 66 tempFactor Temperature factor 

77 78 element Element symbol 

79 80 charge Charge of atom 
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Asides from the ATOM header, another important header is the HETATM field. The HETATM 

field represents “non-standard” residues. Here, “non-standard” refers to residues that do 

not originate from either nucleic acids or amino acids. These can include co-factors and 

inhibitors, ions and solvents. Water is classically stored in the HETATM field. In the case of 

non-peptide derived antigens, such as those recognised by γδ TCRs. 

3.1.3.2 IMGT standards for describing TCR sequences 

The other side of the standards regarding TCR-pMHC structures has been overlooked by the 

structural community is the IMGT numbering scheme. The IMGT numbering scheme 

renumbers the TCR chains to allow for consistent comparison between CDR loops as they vary 

in length. Each CDR loop is constrained such that the first and last residue remain the same 

regardless of length. The CDR1 and CDR3 loops are determined by counting in from 

alternating sides of the loop, which are fixed by a conserved cysteine at the start and a 

conserved aromatic residue at the end, travelling from the N to C terminus. The CDR2 is 

determined by an anchor residue at position 54; and an anchor at 67 for the CDRα and 

position 69 for the CDR2β. In longer CDR3 loops, there are additional residues between 

position 111 and 112 represented by a decimal value (111.1, 111.2 etc.). This is shown visually 

in Figure 18. 

 

Figure 18 IMGT numbering scheme for TCRs, shown for the CDR1 (left), CDR2 (middle) and CDR3 (right). The conserved 
anchors for CDR1 and 3 are shown as they are conserved. The anchor residues for CDR2 vary between CDR2α and CDR2β. 

While there are tools for the annotation of TCR-pMHC structures49, this is usually done 

separately to analysis and appears not to have been taken up in the literature. This is most 
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likely because those who are performing the analysis are not comparing across a large 

number of samples. Reliable comparison between structures requires that the IMGT residue 

numbering system be adhered to. This serious issue is only relevant to the structure of antigen 

receptors due to the unique quasirandom nature of the V(D)J process that generates them as 

described in section 1.5.1. There is one pre-existing tool that will annotates a TCR sequence 

to the IMGT standard, ANARCI106, ANARCI leverages a hidden Markov model (HMM) 

implemented in the HMMER package107 to first detect TCRα and TCRβ chains before detecting 

domains of the TCR and numbering the amino acids accordingly. ANARCI does not work 

directly on PDB files, hence a PDB file must be converted into a FASTA file prior to numbering.  
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4 METHODS: STACEI- A TOOL FOR THE EXPLORATION OF TCR-

PMHC COMPLEXES 

 

 AIMS 

The aims of STACEI was to provide a robust platform for the analysis of TCR-pMHC structural 

complexes. As discussed in the introduction, there are a numerous databases available for 

collecting basic information about TCR-pMHC complexes and a number of general tools for 

analysing protein structures. However, very little tooling exists in the niche between the two, 

that allows for the bespoke, in-depth interrogation of TCR-pMHC structures. 

 DATA COLLECTION 

To provide testing material for the development of STACEI, as well as reviewing the current 

scope of TCR-pMHC structures, a dataset of all TCR-pMHC structures found on the PDB was 

generated. At the time of writing there are 135 MHC class I restricted structures and 51 MHC 

class II. 

The annotation of TCR-pMHC structures is often varied in style and some structures do not 

wholly adhere to the PDB specification. For example, the header file does not strictly specify 

the peptide/antigen and instead refer to it as the amino acid sequence it has. Likewise, there 

is no guarantee the MHC or TCR are named accordingly. This exists both in the header file of 

the PDB itself and the annotation in the PDB website (if the structure is publicly available). 

 The PDB API names and describes the contents of PDB files by the header and deposition 

information. This is not done in a consistent style, so a web scraper written in Python was 

written to manually collect structures from the database. The script loops through all 

structures (169,436 at the time of writing) and stores their ID in a set() object in Python. If the 

structure contains 5 chains, then it is then downloaded to be assessed. The PDB file is then 

converted into a FASTA file using the Biopython module. The FASTA file is then passed into 

ANARCI106 to detect both α and β subunits of the TCR. If this criterion is not met, then the 

structure is skipped. If not, the remaining sequences not detected as the TCR are aligned 

against a database of MHC alleles14 (downloaded from 
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https://github.com/ANHIG/IMGTHLA/tree/Latest/fasta) using the Smith-Waterman 

algorithm using the swalign Python package (https://pypi.org/project/swalign/). If both the 

MHCα and β2M/MHCβ are detected, based upon a similarity score >300 then the file is kept. 

The set() object is then stored so that the next time the script is ran these structures are 

skipped meaning only new structures are analysed. 

 WORKFLOW 

STACEI is written primarily in Python, that integrate numerous pre-existing analyses from 

other structural biology software with novel analyses. The general workflow is described in 

Figure 19. The workflow first collects and input PDB file, detects which chains are the TCRα,  

TCRβ, peptide, MHCα and β2M/MHCβ; performs a number of housekeeping and 

normalisation steps. The MHC class is also determined. Once these steps have been 

performed, several downstream structural analyses are performed. These include the analysis 

of contacts, shape complementarity, BSA and crossing angle. The files generated by those 

analyses are then used to produce a collection of static and interactive visualisations in the 

form of tables, plots, graphs and 3D structures generated in PMOL. These data are then 

summarized in a HTML document.  

https://github.com/ANHIG/IMGTHLA/tree/Latest/fasta
https://pypi.org/project/swalign/
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Figure 19 The STACEI workflow. First the structure is annotated and its MHC class is determined, then the annotated 

structure is passed down a number of “arms” of the analysis. These include surface/shape complementarity, crossing angle, 

BSA and contacts. Workflow diagram was created internally with Dr. Bruce MacLachlan for use in presentations. 

 

4.3.1 PDB file cleaning 

Most the PDB files fed into STACEI require cleaning in order to prevent errors in downstream 

analyses. In particular, the CCP4 programs and any modules using Biopython can often throw 

errors when interacting with insertions and deletions in the sequences; isomeric 

conformations; gapped numbering in the α of the PDB file and the presence of small 

molecules. 

In order to deal with faulty or poorly annotated PDB files, STACEI first performs a sanitation 

step. This module collects all the ATOM denominated parts of the PDB file. These atom chains 

are then checked for the presence of alternative locations by looking for the presence of a 

letter in index 17 of the PDB file (as discussed in the introduction, PDB files are column 
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delimited). Alternative locations indicate the presence of atoms indicated in more than one 

location, either because the atom is mobile or because the structure could not be resolved. If 

an alternate location is discovered, the first location is taken. In analysing all the TCR-pMHC 

structures in the PDB, none of these alternative locations were found to be near the interface 

of the TCR-pMHC complex, but if the atom is within the interface the user is encouraged to 

replace these lines themselves, as there is no way to tell which is correct without a priori 

knowledge of the structure.  

A non-standard annotation in PDB files is the definition of insertions and deletions at column 

21 of the ATOM header. In the same iteration as above, any residues with letter in column 21 

are deleted and the chain is renumbered (e.g. 112A becomes 113) as well as all the chains 

downstream of this. 

As all the non-ATOM headed lines are removed. STACEI is not suitable for structures with non-

amino acid ligands (e.g. γδ TCR complexes). This decision, however, was a conscious decision 

as non-amino-acid residues have caused errors in CCP4 programmes and in Biopython. 

4.3.2 Chain and class determination 

The user can provide chain annotation themselves via the command line arguments of 

STACEI, however this can be a hindrance when analysing a large quantity of files. Therefore, 

to avoid needing user input STACEI identifies the chains and MHC class of a TCR-pMHC 

complex. This determination is the same as described as above, TCR chains are detected by 

ANARCI and MHC by the swalign package. 

Once the TCR-pMHC chains have between identified it is necessary to find which TCRs bind to 

which MHCs in the case of PDB files with multiple units. For TCRs this is performed by 

calculating the distance between the conserved cysteine residue at position 104 in both the 

α and β chains and pairing each based on closest proximity to one another in Euclidian space. 

For MHC this is designated by calculating the greatest number of contacts between MHCα 

and β chains at residues 20-80. TCR-MHC complexes are then determined by finding the 

pairing of TCR and MHC with the largest number of contacts made by residues 80-120 of the 

TCRα and TCRβ chains to the MHC. Peptides are then selected as chains that are not 

determined to be a TCR or MHC chain by ANARCI or alignment and are of a relevant number 

of residues (<30 amino acids). The correct peptide held within the MHC is then determined 



46 
 

as the peptide making the most contacts to a TCR-MHC complex. Users can also supply chain 

information in the program, should they wish to analyse a specific monomer of the supplied 

PDB file. All of the contact calculations are performed by making calls to CCP4’s NCONT via a 

self-contained Python module, the output is written to a text file before being parsed and 

counted again in Python. 

4.3.3 Gene usage and CDR loop annotation 

STACEI makes use of the IMGT numbering scheme to assure that analyses are comparable 

between different TCR-pMHC complexes. For example, with structures from the PDB, there 

is no guarantee that the conserved cysteine at position 104 is actually at residue 104 in the 

PDB file due to inconsistent numbering. The IMGT numbering scheme also accounts for 

variable length CDR loops, meaning that it is easier to compare between CDR loops.  

The IMGT numbered file is  created by a Python snippet reading the ANARCI output file 

containing the variable region of the TCR and the corresponding numberings. The amino acids 

in the ANARCI file are concatenated to make a single sequence which is then aligned against 

the original file using the swalign package’s Smith-Waterman alignment. This allows STACEI 

to find the start of the variable region numbered by ANARCI and join it to the constant region 

in the original PDB file. The constant region is then numbered to match where the variable 

region starts, as defined by ANARCI.  

The only assignment that is non-canonical is the CDR2 loops. It was observed that some CDR2 

loops, while annotated correctly in terms of gene usage, did not fully encompass all contacts 

made by that loop of the TCR. This behaviour is shown in Table 3 Example of the extended 

CDR2 definition scheme using the TCR 5MEN. Using the canonical IMGT annotation the CDR2α 

would range from residues 56-64, wherein the range of CDR2 contacts were expanded 

beyond that of the gene definition. This range was determined to be from residues 56 to 64. 

CDR1 and CDRfw loops are determined by taking residues from within the range adopted by 

the IMGT. CDR1, CDR3 and the framework are left to be determined by ANARCI.  
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Table 3 Example of the extended CDR2 definition scheme using the TCR 5MEN. Using the canonical IMGT annotation the 
CDR2α would range from residues 56-64, meaning that some residues that make contacts would not be annotated. 

Donor 
Chain 

Donor 
Annotation 

Canonical Donor 
Residue 

Acceptor 
Chain 

Acceptor 
Annotation 

TCRA CDR2a No 55 MHCA MHCa2 

TCRA CDR2a No 55 MHCA MHCa2 

TCRA CDR2a Yes 57 MHCA MHCa2 

TCRA CDR2a Yes 58 MHCA MHCa2 

TCRA CDR2a Yes 58 MHCA MHCa2 

TCRA CDR2a No 66 MHCA MHCa2 

 

4.3.4 Buried surface area 

Buried surface area (BSA) and available surface area (ASA) are measures of the total area that 

makes contact between two interfaces. They are commonly used to describe TCR-pMHC 

engagement108. BSA and ASA are both calculated using CCP4’s PISA109. Both are calculated for 

the pMHC alone and the whole TCR-pMHC complex. Assuming the that BSA > 0, a value for 

availability (e.g. how much of a given residue is buried relative to how much is free) is 

calculated: 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 100 − �
𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵𝐵𝐵
× 100� 

 

Once BSA has been calculated in PISA, the residue levels of BSA and ASA are parsed using a 

Python script. These numbers are then used to calculate availability as above. The values are 

then integrated with the residue number, amino acid letter, chain and (if necessary) CDR loop 

or MHC subunit.  
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Figure 20 Three examples of buried surface area (BSA) at varying degrees of information. Visualization of BSA, available 

surface area (ASA) and availability (fraction of total surface area not buried). Top: Total availability of individual peptide 

residues for the TCR based on how buried the peptide is in the MHC. Middle: Overall BSA of each CDR loop, that is, how well 

each CDR loop is interfacing with the pMHC. Bottom: total BSA of each chain in the TCR-pMHC complex. 

A plot is generated for the availability of each residue in the peptide in relation to the TCR. 

This gives an indication of where the anchor residues are in the peptide, as they will not be 

available to the TCR given that they are buried within the MHC. As well as this, the tabulated 

data is passed into shiny R, where the user can view the BSA, ASA or availability on a residue-

by-residue basis, for each CDR loop, for each chain or for the whole complex. This multi-
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levelled analysis is performed by reformatting the data in R using the dplyr verb system upon 

user input. An example of these different levels of analysis are shown above in Figure 20. 

4.3.5 Shape complementarity 

SC is a geometric value describing the “goodness of fit” between a concave and convex 

surface. High SC values indicate that there is a large interface between the TCR and pMHC, 

whereas a low SC indicates that some parts of the TCR and pMHC may not be accessible to 

one another. SC is calculated by passing a cleaned PDB file and its chain information into the 

SC programme110. The output file is then parsed leaving a single value between 0 and 1, where 

0 is no fit at all and 1 is a fully complementary fit. 

4.3.6 Contact analysis 

The ligand binding action of the TCR and pMHC can be inferred by quantifying the number of 

non-covalent intermolecular contacts. A disparity in the number of contacts between regions 

(e.g. CDR loops) can be useful in describing the mode of binding in the TCR-pMHC complex. 

The contact distance between atoms is calculated using NCONT104. STACEI determines a 

contact as any two pairs of atoms being within 4Å, although this can be modified by the user. 

Contacts determined by STACEI are then annotated as one of three bond types: hydrogen 

bond (HB), salt-bridge (SB) and van der Waal (vdW) interaction. 

HBs are determined by having a backbone carbon or side chain hydrogen donor within 3.4Å 

of a backbone amide or hydrogen acceptor side chain. The side chain donors and acceptors 

are described by the IMGT111. SBs are also annotated as contacts within 3.4Å where a 

glutamine or aspartic acid carboxyl carbon pairs with a lysine or arginine amino atom. The 

remaining contacts that do not meet the HB or SB criteria are annotated as a vDW. The exact 

list of donors and acceptors is described in Table 4. 

4.3.7 Contact tables 

Atom level contacts are concatenated into residue level contacts and are then further 

collected to chain (TCRα, TCRβ, MHCα, MHCβ/β2M & peptide) and sub-chain (CDR1α, MHCα1 

etc.) components by integrating the annotations derived earlier. These groupings allow the 

quantification of contacts by each component and their relative contribution to ligand 

engagement. The tables are exported into an interactive shiny R output that allows for  
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Table 4 Contact annotation criteria for TCR-pMHC and p-MHC interactions: atom IDs using the IUPAC nomenclature for 

amino acids used by PDB 112. All contacts that meet the criteria for HB or SB but not the distance cut-off is annotated as 

vdW providing they meet the vdW cut-off criterium. 

 Donor atoms Acceptor atoms Distance cut-off (Å) 

Hydrogen Bonds (HB)    

Backbone    

 

 

 

 

 

< 3.4 

All N O 

Side chain   

Arginine Nε, NH1 (2), NH2 (2)  

Asparagine Nδ2 (2) Oδ1 (2) 

Aspartic acid  Oδ1 (2), Oδ2 (2) 

Glutamine Nε2 (2) Oε1 (2) 

Glutamic acid  Oε1 (2), Oε2 (2) 

Histidine Nδ1, Nε2 Nδ1, Nε2 

Lysine Nζ (3)  

Serine Oγ Oγ (2) 

Threonine Oγ1 Oγ1 (2) 

Tryptophan Nε1  

Tyrosine OH OH 

Salt Bridges (SB)    

Side chain    

 

< 3.4 

Aspartic acid  Oδ1 (2), Oδ2 (2) 

Glutamic acid  Oε1 (2), Oε2 (2) 

Lysine Nζ (3)  

Arginine NH1 (2), NH2 (2)  

van der Waals (vdW)    

Backbone    

 

< 4.0 

All All All 

  

Side chain   

All All All  
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filtering, sorting, and exportation into a file format of the user’s choosing. The tables are 

presented interactively using the DT package which interacts with the JavaScript library 

DataTables. 

4.3.8 Visual representations of contacts 

These contact tables generated by STACEI are then used to create downstream analyses. 

These analyses can be on the residue, chain or CDR loop level. These plots are important for 

investigating the binding mode between TCR and pMHC. 

4.3.8.1 Contact bar plots 

A simple and frequently used representation of contact data is a bar plot of the number of 

contacts made by a given residue, chain or sub-chain. There are a large number of 

combinations which can be calculated when considering that the data can be viewed as 

between different residues, CDR loops or whole chains. In order to account for this the R shiny 

package is again used to provide an interactive platform for users to customise their data. 

The user can toggle which chains are to be included in the plot (from the 5 of TCRα, TCRβ, 

MHCα, MHCβ/β2M and peptide), as well as being able to facet the data into separate subplots 

(e.g. a subplot of just TCRα contacts, followed by a second subplot for TCRβ) contacts as well 

as colouring the bars either by the contact force as determined previously, as well as the 

donor and acceptor chain. 

4.3.8.2 Static plots 

Sankey plots and Circos plots are both generated in R, using the NetworkD3 

(https://christophergandrud.github.io/networkD3/) and   Circlize 

(https://jokergoo.github.io/circlize_book/book/) packages, respectively. The Circos plot 

represents the number of contacts between complexes. There are two plots produced, one 

showing contacts between the 5 chains of the TCR-pMHC complex and one showing the same 

but sub-grouped by each CDR loop. The latter is shown in Figure 21. The Sankey plot shows a 

similar flow of information but includes the chains and sub-chains in one plot as a flow 

between them. Finally, a pie chart showing the contribution of each CDR loop to contacts with 

the peptide, MHC and pMHC is also generated. 

https://jokergoo.github.io/circlize_book/book/


52 
 

 

Figure 21 An example of a circos plot including the CDR loops 

4.3.8.3 Contact maps 

Contact maps are plots that show the peptide sequence and a TCR sequence with lines drawn 

between the two representing contacts. They are produced using the networkx 

(https://networkx.github.io/documentation/stable/) package. Each letter of a chain is 

encoded into node in a networkx graph, the contact data is then parsed such that any contact 

between two residues defines an edge in the graph. The edges are then drawn in the package, 

where each force is represented by a different colour. An example is shown in Figure 22. 

These plots are creating across all iterations of the different CDR loops and acceptor chain 

regions.  

 

Figure 22 A contact map between the CDR3β and peptide. 

4.3.9 Crossing angle calculations 

In most TCR-pMHC structures, the TCR interacts with the pMHC with a relatively conserved 

action, wherein the TCR engages across the pMHC surface on a diagonal113. However, 

examples exist that challenge this “canonical” binding engagement114. It is not known 

https://networkx.github.io/documentation/stable/
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whether this reverse polarity enables coreceptor binding and efficient TCR-mediated signal 

transduction and it could be a non-functional anomaly. STACEI calculates three angles which 

describe this docking orientation.  

The crossing angle, described first by Rudoph11 is the angle in 3 dimensional Euclidian space 

between the TCR axis and the MHC binding groove. The TCR axis consists of a vector between 

the averaged coordinates of the conserved cysteine residues at positions 23 and 104 of the 

TCRα and the corresponding coordinates for the same residues on the TCRβ. The MHC axis is 

then determined as the line of best fit through the Cα atoms of the binding groove. In MHC 

class I these are residues 50 to 86 and 140 to 176 in the α subunit and in MHC class II it is 

residues 46 to 78 of the α subunit and residues 54 to 64 and 67 to 91 of the β subunit. The 

numpy library least squares function is used to generate lines of best fit for the two axes. The 

crossing angle is then formally described: 

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑀𝑀𝑀𝑀𝑀𝑀´ ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝛽𝛽𝛽𝛽�����⃗´

|𝑀𝑀𝑀𝑀𝑀𝑀|´ ∙ �𝑇𝑇𝑇𝑇𝑇𝑇𝛽𝛽𝛽𝛽�����⃗ �´ � 

𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 reports the lowest angle between each of the vectors. The direction or polarity of 

the engagement is also reported, meaning that the user receives information of whether the 

TCR is binding the MHC in the the range 0-180° or 180-360°. 

As well as the angle in 3D space (𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) STACEI also reports two angles in 2D space. These 

are the rotation of the TCRαβ in relation to the face of the pMHC and the pitch or “tilt” of the 

TCRαβ away from the pMHC. These two angles (herein referred to as rotation and tilt, 

respectively) both contribute to the overall 3D angle.  

This methodology first generates a plane of best fit through the MHC binding groove as 

previously. The rotation angle is calculated by orthogonally projecting the TCRα, TCRβ and 

pMHC axes onto the pMHC plane. The angle of the TCR projections (TCRαproj and TCRβproj) can 

then be calculated and from this the rotation angle is calculated: 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝������������������⃗´ ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝���������������������⃗´

�𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝������������������⃗ �´ ∙ �𝑇𝑇𝑇𝑇𝑇𝑇𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝛼𝛼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝���������������������⃗ �´ � 
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Figure 23 Overview of the 3 binding angles enforced in STACEI: crossing angle (top), rotation angle (middle) and tilt angle 

(bottom). 

To calculate the tilt, the TCRα and β vectors are shifted across the project vector so that the 

coordinates of TCRβ are now in place along TCRβproj while the TCRα remains in place. The tilt 

angle is then calculated as the angle between the TCR plane and the TCR projection: 

 

𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝���������������������⃗´ ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵�����⃗´́

�𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝���������������������⃗ �´ ∙ �𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵�����⃗´ �
´ � 

Tilt angles are reported such that TCRs which tilt “up” away from the plane have negative 

tilt values. 

4.3.10 3D structure visualisation 

STACEI also aims to provide publication-ready visualisations of TCR-pMHC complexes. In order 

to do so, STACEI makes use of PyMOL to generate images of the 3D structure of the TCR. 

STACEI has a standardised colour system for each chain of the TCR-pMHC complex, as well as 

the CDR loops. This is the same as the colours used in generating the plots above. When 

STACEI generates these images, the TCR-pMHC being analysed is aligned against a reference 

structure, which means that every image is being viewed from the same position. This allows 

users to superimpose images of the same complex or different complexes in a way that is 
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conducive of meaningful comparison. An example of these visualisations are found in Figure 

24, which shows three visualisations of crossing angle. 

 

Figure 24 Samples of visualisations of crossing angles in PyMol. Left: Rotation angle across the Y and Z plane. Middle: 

Crossing angle in X, Y and Z plane. Right: Tilt angle in X and Y plane. 

As well as publication ready images, the images are stored as PyMol session files for easy 

customisation. 

4.3.11 pMHC-centric analyses 

In addition to analysing the TCR to pMHC interface, STACEI also performs analyses on the 

pMHC component. Namely, electron density maps are calculated which allow the validation 

of structural data around modelled peptide residues. Electron density maps are created by 

using an MTZ file. The user can supply their own MTZ file, or if the name of their file matches 

that of a structure in the PDB then the matching MTZ file is downloaded from the PDB.   

Electrostatic (APBS) analysis is performed to calculate the surface charge of the pMHC being 

presented to the TCR. This is performed by removing the peptide from the structure, running 

a single cycle of refinement in recmac5. This refinement is then transformed by a Fast Fourier 

Transform (FFT) using the fft package in CCP4 before  

Finally, contacts made between peptide and MHC are calculated as are the BSA, ASA and 

availability values as described previously, and displayed as network maps, tables and charts 

giving an insight into the anchoring of peptide ligands into the MHC groove.  
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4.3.12 Output file 

As there is a large number of files outputted from a run of STACEI, the tool outputs everything 

in a directory structure. A HTML document (Figure 25) is written to incorporate these outputs 

in a single document that can be opened in a web browser. The interactive plots from Shiny 

are also embedded in these documents. 

 

Figure 25 the STACEI landing page. For every structure analysed the output is collated into a single directory. A HTML file is 
then generated to point to these local files to let the user explore their results in a structured and easy to interpret manner. 

4.3.13 Availability and license 

STACEI is available at http://github.com/whalleyt/stacei. The python package and all its child 

dependencies are able to be installed using the setup tools 

(https://pypi.org/project/setuptools/) package. ANARCI, CCP4 and PyMol are all open 

sourced and free to download but must have their license agreed to separately. This means 

the user must download them themselves to be included in the package. Failing that, a 

Dockerfile is provided so that the user can that instead of installing other softwares. The 

Dockerfile is available from https://hub.docker.com/repository/docker/twhalley93/stacei. 

The tool is licensed under the GNU GPL.  

http://github.com/whalleyt/stacei
https://pypi.org/project/setuptools/
https://hub.docker.com/repository/docker/twhalley93/stacei
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 REVIEWING THE PROTEIN DATABANK 

Of the 135 MHC class I restricted structures and 51 MHC class II structures, there were 120 

and 45 valid structures, respectively. The excluded TCR-pMHC structures contained pMHC 

complexes where the peptide was linked to the MHC chain artificially. As there is no way of 

knowing for certain where the MHC ends and where the peptide begins without a priori 

knowledge these are excluded from the analysis. 

These 186 structures (IDs listed in supplementary table S1) were then used to conduct a 

review of TCR-pMHCs in the PDB. The sake of this was twofold, first to assure the validity of 

the outputs of STACEI. Structures of TCR-pMHCs are very heterogenous, with variation in all 

chains in the complex, along with different extra pieces of information to deal with, such as 

the insertions, deletions, mis-numberings, multiple asymmetric units in the PDB file and 

different metadata. Unlike RNA and DNA sequencing data, where there exists several tools to 

artificially generate data for testing (for example seqgendiff115 and Polyester116 for RNA-seq 

and BEAR117 and grinder118 for genome sequencing) there is no such tool for reliably 

generating PDB files. Similarly, while there are tools for generating artificial or in silico 

immune repertoire sequencing data (most recently, immuneSIM119) to generate TCR 

sequences, there is no way to meaningfully have these as protein structures. The absence of 

simulated TCR structures means that the only viable option for testing the implementation of 

STACEI was to run it on all available structures. The second rationale was to expediate and 

standardise the reviewing process for αβ TCR-pMHC structures. At the time of writing, 

prominent reviews11,19 will have been performed by manually annotating the structures. This 

is both time consuming, potentially error-prone, and self-limiting. Therefore, STACEI was run 

on each of the 186 structures in the PDB and outputs were collected in an automated fashion 

used to generate a report of all known publicly available TCR-pMHC structures.  

The outcome was used to elucidate the molecular “rules” for TCR-pMHC binding which could 

then be applied in numerous fields such as vaccine design, immune response and cancer 

biology.  
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5 RESULTS: STACEI- A TOOL FOR THE STRUCTURAL ANALYSIS OF 

TCR-PMHC INTERACTIONS 

 VALIDATING THE OUTPUTS OF STACEI 

Prior to reviewing the structures in the PDB, the primary goal of running STACEI on all the 

structures was to gain an insight into the performance of STACEI. This meant that each 

structure was checked first for a valid exit status. Then each image was inspected to check 

that it was informative and was self-explanatory. For images of the 3D structure particular 

attention was paid to how the structure was aligned such that the images were consistent 

across structures. Contacts and buried surface area were validated by manually performing 

runs of NCONT and PISA respectively, likewise for calculation of SC in the eponymously named 

SC programme. 

 ERROR HANDLING 

In response to some errors in handling incorrect or unmanageable structures, a number of 

exit conditions were added to STACEI to allow for a descriptive error to be handled on certain 

conditions. The first and probably most common error was in the initial annotation and chain 

determination step. The tool exits and removes all intermediary files if:  

1. there are less than five chains in the PDB file; the tool cannot find at least one TCRα and one 

TCRβ using ANARCI. 

2.  the tool cannot find one MHCα and a β2M/MHCβ. This is determined if there is a chain 

sequence with a score of greater than 50 using the swalign Smith-Waterman alignment 

score. 

3. The tool does not identify a peptide, determined as being a non-TCR and non-MHC complex 

by failing the assessments points 1 and 2. A peptide is only considered if it is less than 50 

amino acids long. This is because some structures contain a superantigen which may pass 

other criteria 

4. There must be at least one pair of TCRα and TCRβ determined by the TCR’s CDR loops being 

within 22Å. 

5. There must be at least one MHCα and a β2M/MHCβ where their centre of masses are within 

22Å, also. 
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6. There must be one peptide making contacts the MHC complex. This pMHC complex must 

then have contacts being made with it by one TCR complex 

If none of these rules fail to be satisfied, then STACEI will exit. Other exit statuses that occur 

later include if the TCRs fail to have a V and J gene annotation by ANARCI. STACEI also warns 

users about potential incorrect annotations. In testing, ANARCI was shown to mislabel some 

TCRα chains as TCRδ chains. This is permissible as the numbering remains correct so instead 

of exiting, the tool will instead warn the user but carry on with its execution. Finally, some 

structures are not permissible to be ran in SC because of “imaginary contains” in the input 

PBD file. Imaginary contains have been associated with hydrogen atoms being in the PDB file 

but at the time of writing this is still considered a bug and the exact explanation as to the 

cause remains unknown. 

 REVIEWING THE PROTEIN DATABANK 

5.3.1 Rationale 

The first rationale in reviewing the PDB was to first provide enough data to successfully 

validate the tool as in section 5.1. The second was to demonstrate the utility of STACEI in 

being able to analyse a wide number of PDB files quickly and effectively. Other reviewing 

efforts were either automated but surface level120,121, aimed to be a reference of all structures 

rather than an analysis; or in depth but time consuming, with most analysis being manually 

performed11,19. 

5.3.2 Data collection 

A total of 120 MHC class I restricted and 45 MHC class II restricted TCR-pMHC structures were 

collected using the web scraper described in 4.2. This was then ran iteratively in STACEI using 

the following command: 

 STACEI -F <pdb_file> -O outputs/<pdb_file> -R 

This input means that chains were determined automatically by STACEI and required no prior 

knowledge from the user. Hydrogen bonds van der Waals forces and salt bridges were defined 

as the default values as discussed in 4.3.6. 
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5.3.3 Overview of data 

 

Figure 26 The V and J gene usage of TCRs in the PDB analysed by STACEI and sequences extracted from VDJDB. 
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Before any full exploratory analysis the V and J gene usage of all chains of the TCRs were 

checked and compared against the sequence in the VDJDB50. The rationale here was that the 

number of protein structures of TCRs means that there is more likely to be a bias in V and J 

gene usage, both because some TCRs may be easier to crystallise and because there is 

inherently a smaller pool of TCRs to select from. For a simple comparison, the top 10 genes 

were counted for TRAV, TRAJ, TRBV and TRBJ in both the PBD files and the sequencing data 

VDJDB as shown in Figure 26. 

Of the top 10 genes in the PDB and VDJB, 4 of the same gene was shared between the two 

TRAV; 3 of the same gene was shared between the two TRAJ genes; 4 were shared in the TRBV 

gene and 9 were shared between the two TRBJ genes suggesting that there is indeed a bias 

in the PDB assuming that there is less bias in the VDJDB. 

5.3.4 Contacts 

Contacts were calculated as any atoms between the donor and acceptor chains within 4Å. 

5.3.4.1 Global TCR and pMHC contacts 

The first assessment made was the total number of contacts made by the TCR to the pMHC 

and then between the peptide and MHC. These are displayed as histograms below in Figure 

27. It shows that there both MHC class I and II complexes make a wide range of contacts. In 

peptide to MHC contacts MHC class II complexes make on average more contacts with the 

peptide than MHC class I (median 57 contacts vs 41 contacts). This is perhaps unsurprising 

given the longer length of MHC class II restricted peptides. 

The behaviour of the TCR contacting the pMHC is much closer, with both median number of 

contacts being made (42 contacts in MHC class I and 40.5 in MHC class II). 
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Figure 27 histogram of the number of contacts made by the interface between the TCR and pMHC (bottom) and the peptide 
and MHC (top). 

5.3.4.2 Contacts made by CDR loops 

In order to decipher whether there was a difference between the overall behaviour of TCR-

pMHC contacts between MHC class I and II, the contacts were further broken down by 

individual CDR The difference in contacts were then compared using an unpaired t-test with 

p values ≤ 0.05 being considered significant (Figure 28). Using this criterion, the CDR2α, 

CDR2β, CDR3α and FWα region all made significantly different amounts of contacts between 

MHC class I and class II structures. Again, like the number of contacts between peptide and 

MHC, this might be seen as unsurprising as the CDR1 and 2 preferentially engage the largely 

conserved MHC, then the contacts may be different between the two major classes of MHC, 

with little variance within these classes as engagement of CDR2 has been shown to be 

energetically inessential to the formation of the TCR-pMHC complex20,122. More surprising is 

that the CDR3α makes a significantly different number of contacts to the pMHC while CDR3β 

does not.  
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Figure 28 number of contacts made by each CDR loop to the pMHC for both MHC class I and class II restricted complexes. 
MHC class I and class II CDR loops were compared using an unpaired t-test. 

5.3.4.3 Describing the difference between MHC I and II complexes 

Figure 28 shows that there are differences in the binding patterns between the TCR-pMHC of 

MHC class I and II restricted structures, but not in such a way that it that can easily be 

explained. Numerous machine learning approaches can be used to predict categorical 

variables (in this case the class of MHC) Many of these methods for predicting categorical data 

are so-called “black boxes” and do not help understand the underlying methods. However, 

decision trees have proven to be helpful in both prediction and mechanistic understanding. 

Decision trees are a non-parametric statistical method that selects the important features 

used to discriminate between two or more categorical variables. The algorithm creates a 

"tree" of decisions where a top down search of "questions" that help distinguish between the 

two datasets are generated. These decisions are measured by their Gini index, a measure of 

the degree of a variable being wrongly classified when randomly selected, where 0 denotes 

that all predictions are to a certain class and 1 is where the elements are randomly distributed 

across the classes. 

 The number of contacts between each CDR loop and each domain of the pMHC were collated 

from STACEI’s output and read into columnar data. The MHCα2 and MHCβ1 domains were 
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masked to be the same functional domain (otherwise the algorithm could predict the 

difference based on the presence of absence of this label). The domains used were MHCα1, 

MHCα2/ MHCβ1 and peptide. As there are 8 CDR loops (including framework regions) this led 

to there being 24 different variables used in the decision tree. A decision tree was built using 

the rpart package in R (https://cran.r-project.org/web/packages/rpart/).  

The data was split into a training set of 80% of the data and a test set of 20% of the data to 

avoid overfitting. The decision tree, shown in Figure 29 demonstrates that the discriminating 

factors

 

Figure 29 decision tree to predict MHC class. The roots of each tree show the "question" asked of each structure and the 
branches show the decision made. 

between MHC class I and II are the number of contacts made by the CDR2β to the peptide, 

with MHC class II making more contacts on average; and the CDR3a making more contacts to 

the peptide and less to the MHC in MHC class I than MHC class II. This model had an accuracy 

of 85.7%. 

5.3.5 Shape complementarity 

As discussed in the methods, the SC is a measure of the “goodness” of fit between two 

complexes, originally discussed in the field of antibodies. Shown below is the distribution of 

https://cran.r-project.org/web/packages/rpart/
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The relationship between SC and number of contacts in Figure 30 made is weak (Spearman’s 

correlation 0.56; Pearson’s correlation 0.59) suggesting that the number of contacts made is 

not necessarily necessitated by the “goodness of fit” of the overall interface of the entire 

pair of complexes, suggesting that there are certain “hotspots” that contribute to TCR-

pMHC SC values, ranging from 0.44 to 0.81.

 

Figure 30 A) The relationship between shape complementarity and number of contacts. While there is a relatively strong 
correlation (Spearman’s correlation = 0.56; Pearson’s correlation = 0.59) the number of contacts do not fully explain the SC. 
B) Histogram of the SC values for MHC class I and II TCR-pMHC complexes. 
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interaction regardless of how the overall conformation of the structure is. This could also be 

the contribution of non-CDR loop residues which are not important in pMHC binding bringing 

the average SC value down. 

5.3.6 Buried surface area 

The BSA is often measuring the same parameter as contacts, meaning the analysis is 

somewhat duplicated. One interesting measure however is the “availability” of each residue 

of the peptide to the TCR when buried in the MHC. 

 As an example, in MHC class I restricted complexes (Figure 31, top) peptides of length 8 shows 

that the anchor residues are at positions 2/3 on the C terminus as they are buried within the 

MHC and at position 8 at the N terminus. When comparing peptides of length 8 to length the 

average availability of the central residues is much higher. For example, residues 7,8,9 of the 

13-mer peptides all have availabilities >90% compared to none being that high in an 8-mer 

peptide. This demonstrates the “bulging” effect of peptide length in MHC class I restricted 

peptides. The picture is not as clear in MHC class II. Although one can still identify the anchor 

residues (e.g. 5 and 10 for 11-mers) there is a lot more overlap in the availability of some 

residues, possibly due to the lack of samples. 

5.3.7 Physiochemical parameters 

The R package Alakazam was used to calculate physiochemical properties of the CDR loops of 

the TCR. The physiochemical parameters were then correlated against the number of contacts 

made by each CDR loop, however no significant results were returned. 
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Figure 31 The availability of each residue of the peptide from each TCR-pMHC complex for MHC class I and II 



68 
 

5.3.8 Crossing angle 

As shown in Figure 32 most crossing angles fall below 90 degrees, apart from 4 MHC class II 

structures (4gg6, 4z7u, 5ks9 and 5ksa) and 1 MHC class I structure (4qrp). Whilst this is not 

enough to say categorically, it may suggest that the more extreme crossing angles tend to be 

made by MHC class II restricted TCRs. 

 

Figure 32 distribution of 3D crossing angle of MHC class I and II structures 

There also appeared to be no relationship between rotation and tilt. Like the 3D crossing angle 

that the rotation and tilt combine to make up, most structures fall close to one another, with 

4 MHC class II structures having extremely high rotation values (the same as the high crossing 

angles) and also 1 MHC class I structure (also the same as in the 3D crossing angle), suggesting 

that while these “extremes” are possible, they are rare. 

 PERFORMANCE AND RUNTIME 

The average runtime for a ray-traced structure was 12 minutes and 30 seconds, this was taken 

from all the structures used in the PDB review. Very little optimisation was performed as the 

rate limiting step was rendering and ray-tracing images in PyMOL which was unavoidable.  
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6 BACKGROUND: APPLICATION OF PARALLEL COMPUTING TO CPL 

DRIVEN EPITOPE PREDICTION 

6.1.1 CPL driven database scanning 

As briefly introduced in 1.8.7 CPL scans are generated by fixing a single amino acid in one 

position and leaving the rest of the residues in the peptide a degenerate mixture of equal 

amounts of 19 proteogenic amino acids (cysteine is excluded from degenerate positions)123.  

In the context of TCR epitope discovery this is then repeated for each of the 20 amino acids 

in each of the residues of a peptide. 

CPL scanning has a number of advantages, namely it allows for a large amount of peptides to 

be synthesised and tested; experiments can use non naturally occurring amino acids or D-

amino acids124 and experiments can be optimised following the initial experiments to narrow 

down candidates123. One of the major potential downsides to CPL screening is the assumption 

that each residue position contributes equally; the methodology also ignores the differences 

in solubility of peptides of different sequence in aqueous solution which presumably favour 

hydrophilic sequences at the expense of peptides with multiple hydrophobic residues.  

Our group has previously released software for T-cell epitope discovery using the CPL 

approach85. An agonist likelihood (ALS or Λ) was derived: 

𝛬𝛬(𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛; 𝑖𝑖) =  � ln
𝑌𝑌𝑝𝑝
𝑎𝑎𝑝𝑝(𝑖𝑖)

∑𝑎𝑎′ ∈ 𝑌𝑌𝑝𝑝𝑎𝑎
′(𝑖𝑖)

𝑛𝑛

𝑝𝑝=1

 

The ALS is the sum of each the natural logarithm of T-cell effector function value (MIP1β 

expression measured by Enzyme-Linked Immunosorbent Assay; ELISA) for a given amino acid 

at a given residue, normalised with respect to each fixed amino acid’s MIP1β expression at 

that position. Rather than calculating this score for every possible peptide (for a 9-mer 

peptide this would require 209 calculations) a FASTA file of protein sequences is scanned, and 

each peptide is scored. This is quicker, if <209 peptides are scanned and gives biological 

context to the origin of the peptide. 
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6.1.2 Parallel programming 

Biologists often need to make use of high-performance computing (HPC) environments for 

their analyses as many of them require long processing times and high memory or storage 

usage. The most common way of parallelising and speeding up software is central processing 

unit (CPU) based parallelisation through either shared memory multiprocessing like 

OpenMP125 or distributed memory multiprocessing such as message passing interface 

(MPI)126. 

Parallel programming is the notion of a program running on more than one processor 

simultaneously. The algorithm run by the program is broken down into sub-components 

which can be run independently. These parallel threads can communicate through fixed 

means, such as mutexes and locks which are discussed below. These allow threads to pass 

information between them safely. 

The exact means of parallelisation is a consequence of the type of algorithm being 

implemented, as well as the data type and hardware architecture being used. There are 

several paradigms through which this can be viewed. Perhaps the most common is the notion 

of task parallelism and data parallelism. Task parallelism breaks the algorithm into separate 

sub-algorithms and runs them in parallel before communicating the results between the 

different sub-jobs. Data parallelism is where the algorithm is kept whole, and the data is 

broken up before being operated on in parallel. 

In most parallel programs, at some point there will be a time where the independent parallel 

processes need to communicate between each other. A simple example of this would be 

multiple threads running a computation before summing the results at the end. Without a 

safeguard, there is no guarantee that these threads will complete at the same time, meaning 

access to the results is variable and unstable. The most common way to combat temporal 

differences is to add a synchronization step where the program waits for all threads to finish 

before proceeding, shown in Figure 33. These conditions are sometimes called race 

conditions. 



71 
 

 

Figure 33 An example of a race condition. A barrier or synchronization step forces the quicker running tasks (tasks 1,2 and 4 
in this case) to wait for the slowest thread (thread 4). 

Another important concept in parallel computing is the concept of a mutual exclusion 

(mutex), sometimes referred to as a lock. Locks are synchronization methods that limit access 

of certain variables or memory locations. An example of when a lock is needed is where two 

parallel threads are trying to write to the same variable, e.g., summing several values into one 

variable. The lock ensures that only one thread can access this variable at a time to avoid 

variable clashes, this is visualised in Figure 34. 

 

Figure 34 An example of the application of a mutex. Thread 1 and 2 both require access to the shared resource. The mutex 
allows only one thread access at a time, meaning thread 1 can interact with the resource but thread 2’s access is limited.  

6.1.3 CUDA 

In recent years general-purpose computing on graphics processing units (GP-GPU) has come 

to the fore. Instead of using the CPU, like most parallel programming APIs, GP-GPU uses the 

graphics card or graphics processing unit (GPU) to perform computations. 

The GPU’s architecture in comparison to CPU is advantageous in certain processing 

contexts127. The primary design purpose of the GPU is to perform large quantities of  very 
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quick and simple operations across thousands of short-lived threads. Compared to the CPU, 

which has much lower multithreading capability this means the GPU excels at running simple 

computations. The architectural difference between GPUs and CPUs is shown in Figure 35. 

Typically, on a per thread basis, the time per operation (latency) is slower, but this is counter-

acted by a greater throughput. 

 

 

Figure 35 Architecture differences between GPUs and CPUs. CPUs (left) typically have a small number of cores with limited 

multithreading capabilities. In comparison GPUs (right) have a larger number of cores. These are arranged into blocks which 

represent a group of threads, which operate in 3D dimensions.  

CUDA is an API developed by the GPU manufacturer NVIDIA. It is designed to work in a 

number of lower-level programming languages, mainly C, C++ and Fortran; with APIs that can 

be called from higher level languages such as MATLAB and Python. CUDA represents a set of 

libraries and functions paired with compiler directives which are then compiled with nvcc, 

NVIDIA’s C/C++ compiler (https://developer.nvidia.com/cuda-llvm-compiler). While other 

APIs such as OpenCL128 exist that work on most GPU architectures, this comes at a cost of 

being lower level and harder to generalise. NVIDIA in contrast is only designed to work on 

NVIDIA GPUs. NVIDIA is arguably the most beneficial choice, as CUDA shows a marginal 

increase in performance 129 with better documentation. 

As there is a consistency in the architecture of GPUs CUDA is designed to work with, CUDA 

programmes can be developed with a certain structure in mind. Each individual thread is 

grouped together to form a block, blocks are then combined to make grids. The exact 

arrangement of these grids and blocks varies from GPU to GPU. A CUDA function, or kernel, 

executes with two assumptions: that every thread will run with the exact same function and 

each thread has a unique ID that can be used to access the memory at that location. 

https://developer.nvidia.com/cuda-llvm-compiler
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By nature, blocks are required to execute independently, meaning that code can call any 

thread in any order. In contrast, threads in a block can cooperate by sharing data. Threads 

can also be synchronised to regulate memory access. This is particularly useful when two 

threads attempt to access the same memory location. Threads can exist in 3 dimensions 

within a single block, likewise blocks within grids also exist in 3 dimensions 130. This means to 

get an individual thread ID the user must access the thread with respect to its index in 3D 

space like so: 

𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 𝑥𝑥 ∗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 𝑥𝑥 + 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑥𝑥 

CUDA programs also require memory to be allocated on the GPU prior to calling the kernel. 

Once memory has been allocated, the user must also copy variables or pointers to variables 

across onto the GPU. Once a kernel has completed, any variables on the device that need to 

be used most be copied back to the host. Memory allocation and the physical copying of data 

from the host to the device is an important caveat to the CUDA paradigm. The data transfer 

must be quick enough relative to the computation time to make the overhead worthwhile. 

6.1.4 Applications of CUDA in bioinformatics 

CUDA is most widely adopted in molecular dynamics, protein modelling and numerical 

optimisation 131 but in recent years there have been a great number of methods focussing on 

DNA, RNA and Protein sequence data. For example, there are a multitude of GP-GPU 

optimised methods for alignment. These can include novel algorithms132 or reimplementation 

of existing algorithms like the Burrows-Wheeler transform (BWT)133 and BLAST134. Outside of 

alignment it has been used to quickly scan protein databases in the context of HMMER 135,136.
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7 METHODS: APPLICATION OF PARALLEL COMPUTING TO CPL DRIVEN 

EPITOPE PREDICTION 

 AIMS 

The aim of this chapter was to increase the performance and expand the use cases of the 

existing PICPL tool using NVIDIA’s CUDA API, a tool suite for GPU parallelising C or C++ code. 

The motivation for expanding the codebase to include parallel programming was because 

many of the potential uses of PICPL were not computationally feasible, e.g. scanning a very 

large database (e.g. all publicly deposited protein sequences totals ~350 million protein 

sequences). This would also mean that CPL scanning could be expanded into other 

applications, for example comparing peptides to all theoretical combinations.  

 IMPLEMENTATION 

7.2.1 PICPL 

7.2.1.1 Description of previous implementations 

The pre-existing implementation of PICPL was a webserver (https://picpl-dev.arcca.cf.ac.uk) 

back-ended by a parallel MATLAB script. The script (via the web portal) took 3 user inputs, a 

valid CPL scan file consisted of ELISA measures of MIP1β release of a T-cell clone against each 

peptide mixture in a CPL with the top results returned as an input FASTA file.  The script then 

iterates through each protein in the FASTA file, breaks it into peptides of the same length as 

that described by the CPL scan file and scores each peptide. Scoring is performed by adding 

to the user is then returned a tab-delimited file of the top n peptides, what protein they 

correspond to and their ALS score. To reiterate the scoring step as described in the 

introduction, the ALS is defined as: 

𝛬𝛬(𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑛𝑛; 𝑖𝑖) =  � ln
𝑌𝑌𝑝𝑝
𝑎𝑎𝑝𝑝(𝑖𝑖)

∑𝑎𝑎′ ∈ 𝑌𝑌𝑝𝑝𝑎𝑎
′(𝑖𝑖)

𝑛𝑛

𝑝𝑝=1

 

The ALS is the sum of the MIP1β expression value for a given amino acid at a given residue, 

normalised with respect to each residue of the CPL scan and natural log transformed.  

https://picpl-dev.arcca.cf.ac.uk/
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7.2.1.2 Conversion to serial C++ 

The initial step in writing a CUDA implementation of PICPL was to convert it into C++ code. 

While CUDA implementations exist embedded in higher level languages such as MATLAB and 

Python exist, they are limited in their scope and often to get optimal performance the code 

must be written from scratch in a lower level language like C or C++. Many of the simpler 

operations have like for like functions in both MATLAB and C++, so the basic structure of the 

code remained the same. However, many of the in-built operations of MATLAB centred 

around matrices do not have an equivalent. This means the scoring process was rewritten to 

access the CPL scores by matching to a map dictionary based on the amino and its position in 

the peptide. Also, the normalisation of the CPL table was re-written. 

7.2.1.3 Implementation of OpenMP parallel CPL scanning 

The code was then CPU parallelised using the OpenMP library. As in the serial code, the 

OpenMP version reads and normalises a CPL scan file and reads the protein sequences into 

an array where each index is a pair containing a protein name and a protein sequence, both 

held as strings. The serial version the code iterates through each of these pairs, scores all the 

peptides and dynamically inserts them into a results array if the ALS score is higher than the 

pre-existing contents. In the OpenMP implementation the array is split equally across each 

OpenMP thread. The scoring is performed identically as in the serial version, but with each 

thread having its own results array to save on race conditions. Then when all operations are 

finished, the results array is sorted, and the top n results are returned along with 

corresponding data. 

7.2.1.4 Implementation of CUDA parallel CPL scanning 

The CUDA implementation had some code alterations to allow for improved accessibility on 

the GPU device. The CPL scan file was read in as before but converted to a flat 1D array to 

allow for easier copying to the GPU. The FASTA data was converted to a single array of char 

values as CUDA does not allow for the std library strings, along with this char array, an array 

of type int is generated to denote the length of each protein sequence so that each CUDA 

thread can act across a single protein sequence without overlapping onto each other. Data is 

passed in chunks of 30,000 proteins at a time (if the input is greater than 30,000 sequences) 

in order to guarantee that all the data can be accommodated by GPU memory. Another array 
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of int is used to denote which protein name corresponds to each peptide in the char array. 

The first step on the CUDA copies the CPL lookup table and the char array, generating a full 

lookup table for every protein. This is described in the pseudocode below: 

 

peplen = length of k-mer epitope 

CPL = CPL scan array 

idx = CUDA device index 

AA = amino acid index 

scores = array of positional scores corresponding to protein sequence 

sequence = amino acid sequence of protein 

 

for residue in sequence do: 

    for i in 1:23 do: 

        if sequence[idx] == AA[i] then: 

            scores[idx: idex + peplen] = CPL[i: i + peplen] 

        end if 

    end for 

end for 

 

Then the pre-existing character array is deleted from GPU memory and the protein name 

array and output array are also copied into GPU memory. The peptides are then scored by 

each CUDA thread scoring every peptide in a given protein as described below: 

peplen = length of k-mer epitope 

scores = array of positional scores, generated above 

idx = CUDA device index 

name idx = integer array corresponding to protein of origin of a given peptide 

scores out = array of scores of peptides 

names out = array of parent protein indexes corresponding to the peptide 

 

for i in 1:23 do: 
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    if sequence[idx] == AA[i] then: 

        scores[idx: idx + peplen] = CPL[i: i + peplen] 

    end if 

end for 

scores out = scores[idx: idx + peplen] = CPL[i + peplen] 

names out = name idx[idx] 

 

This output is then sorted using an inbuilt radix sort in the thrust library 

(https://docs.nvidia.com/cuda/thrust/index.html). In short, the radix sort was chosen as it 

has previously been described to be a generally very efficient sorting algorithm that scales 

well on GPUs137. As the data is broken into chunks, in any operation beyond the first one is 

performed on a combination of the chunk outputted in that iteration and the previous scores. 

Both arrays are sorted together, and the top n are kept for the next iteration. On the final 

step the final sorted array is written to a tab-delimited text file. 

 

7.2.1.5 Profiling 

Profiling was performed both using Valgrind (https://valgrind.org/) to check for memory leaks 

and the NVIDIA Profiler (https://developer.nvidia.com/nvidia-visual-profiler) to measure how 

long was being spent on the CUDA operations versus those that performed on the CPU. 

7.2.1.6 Benchmarking 

Benchmarking was performed for the Serial implementation of the code, on OpenMP 

multithreaded using 4 and 8 cores and on the CUDA parallel device. The benchmarking was 

performed in two ways. The first was increasing the size of the database being scored against 

by ranking the same CPL scan dataset against an artificially generated dataset of proteins of 

length 311 amino acids (the average protein length seen in the pre-existing databases). Each 

implementation was run 5 times on databases ranging from 106 to 2x107 sequences in length 

in increments of 500,000.  

The second benchmark was to measure the effect of the number of results returned. This was 

known to place a significant burden on the performance of the code as the sorting of large 

https://docs.nvidia.com/cuda/thrust/index.html
https://valgrind.org/
https://developer.nvidia.com/nvidia-visual-profiler
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results arrays were computationally expensive. The database size was fixed to 1.5x106 and 

were ran returning results ranging from 100 to 106. 

All code was benchmarked on a machine running Ubuntu GNOME 16.19 with a NVIDIA 

QUADRO K1200 graphics card with 512 cores, an Intel Core 6700K processor and 16GB of 

RAM. All CUDA code was compiled with the NVCC compiler (version 8.0.44). The serial and 

OpenMP code was compiled with the GNU g++ compiler (version 5.4.0) using the C++11 ANSI 

standard. All versions, both CUDA and standard C++ were compiled with the highest 

optimisation flag (-O3). The OpenMP code was parallelised in the same fashion as the serial 

code, with the -fopenmp compiler directive to parallelise it. 

7.2.2 Peptide ranking 

The peptide ranking code was generated such that the code would accept two user inputs, a 

valid CPL scan file (a line delimited text file of MIP1β expression value of length 20 x peptide 

length) and a peptide of interest for ranking. Ranking is defined as the how high the ALS score 

is for the test peptide versus every other peptide of that length, irrespective of if it exists in a 

biologically meaningful sense.  For a scan of 9-mer peptides this means ranking 209 unique 

peptides. 

While ranking could be meaningfully framed as a search problem or optimisation problem 

across search space, leaving it as an activity of scoring every possible peptide leaves this as an 

“embarrassingly parallel” problem that can be written, debugged and assessed quickly and 

still offer a performance increase compared to a single threaded or CPU-parallel 

implementation. 

The overall step is shown in Figure 36. The CPL scan is read in as a two-dimensional array of 

floats. The index peptide is checked to see if it is a valid input (a string of the same length as 

the CPL scan file, containing the 20 standard amino acids) and scored. Unlike the database 

scan, the ranking code has the advantage of being able to generate the dataset de novo, 

rather than having to read it from a file in disk. Taking the example of a 9-mer peptide, every 

possible 3-mer peptide is generated for each third of the peptide. For peptides of longer 

length, the peptide is still split into thirds, just of larger chunks.  
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These 3-mers are copied to the CUDA device, along with the rank index value and the CPL 

scan array. Compared to the database scanning code this is significantly quicker as for a 9-

mer peptide this means copying only 24,000 3-mer peptides into GPU memory compared to 

~30,000 proteins, along with information linking each peptide to the position in the protein 

and the protein’s origin or name.  

 

Figure 36 Overview of the steps taken in peptide ranking. For a 9-mer peptide, all possible 3-mers are generated and then 
copied into three pools. The CUDA operation then in parallel generates 9-mer peptides from these three pools. The peptide's 
ALS score is calculated and then compared against the peptide to be ranked, if the score is greater than that of the index 
then one is added to the rank in an access safe method using the CUDA API’s inbuilt atomicAdd function. 

Once copied into memory, threads are called in three dimensions on the CUDA device, e.g. 

across a given block, there are independent threads in the X, Y and Z “directions”. These are 

then leveraged so that each independent thread is called in parallel for each “chunk” or third 

of the peptide being scored. In real terms this means that the X thread is responsible for 

allocating scores for the first third of the peptide, the Y thread for the middle and the Z thread 

for the end.  These three sub-peptides are scored independently and then summed together. 

This peptide score is compared to the peptide of interesting and if the score is higher than 

the peptide then the rank value is added to using the atomicAdd function in the CUDA API. 

The atomicAdd function is used to modify a value in a memory safe way. 
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7.2.2.1 Benchmarking 

This CUDA parallel implementation of the ranking was benchmarked against a single threaded 

implementation performing the same function. As the problem could be described as 

“embarrassingly parallel” the code was not optimised for performance in the serial version 

simply because the likelihood of good parallel performance was extremely high. Due to there 

being a memory safe operation in adding to the rank, it was expected that there would be a 

time difference between ranking the best possible peptide as there would be no race 

conditions, versus the worst possible peptide which would require access from every thread.  

In anticipation of this, ranking was performed on the best and worst peptide possible for the 

CPL scan of the INsB4 T-cell in both serial and CUDA implementations, along with some 

biologically interesting peptides generated by the CPL database scan. 

7.2.3 Peptide alignment 

In addition to outright using CPL scans to gain insight into biologically relevant peptides, a 

CUDA parallel code to perform a simple alignment was developed. The idea behind this was 

to find out how close or distant, in terms of alignment a given peptide was against a FASTA 

file of protein sequences. An interesting example of this would be in attempting to 

approximate potential cross-reactivity in terms of how similar a peptide is to the human 

proteome. To do this one would supply a list of peptides of interest in FASTA format and a 

FASTA of the human proteome. The script then calculates the average PAM30 alignment for 

each peptide in the query file against all peptides in the dataset. 

Alignment is performed in C++ and CUDA. The code takes 3 arguments to be supplied by the 

user, a “query” FASTA file consisting of peptides the user is interested in aligning and a 

“reference” FASTA consisting of sequences of which the query is to be aligned to. The final 

option is the peptide length to be considered. 

The FASTA files are read into memory and converted to peptides of length specified and a 

PAM30 alignment matrix is generated from a hardcoded set of data. The code then calculates 

how many device operations are required. The query peptides are handled by threads in the 

X direction of the block and the reference by Y threads. The peptides are operated in on 

chunks, passing each chunk onto the device, scoring the alignment between them before 

being deleted. This is because it is not guaranteed everything can be fit into GPU memory for 



81 
 

large inputs. The average alignment is calculated by performing the PAM30 distance scoring 

in CUDA, before writing the alignment to a two-dimensional matrix where the rows represent 

each query peptide and the columns each reference peptide. Each row is then averaged to 

give how “close” the query peptide is to the entire proteome held in the reference.  

7.2.4 Utilities 

In addition to the parallel database searching and alignment codes, additional utility scripts 

were developed to help aid in identifying biologically interesting peptides.  One of which was 

developed to query the IEDB to find if a peptide has been identified before. To do so the script 

downloads a zipped CSV file of all T-cell epitopes known in the IEDB 

(https://www.iedb.org/downloader.php?file_name=doc/tcell_full_v3.zip) unzips it. The 

script then takes the output file of PICPL, a tab delimited file containing the peptide, its parent 

protein(s) and its ALS. The script extracts this information and finds matching T-cell epitopes 

in the IEDB file. A file is returned that contains a combination of the ALS and database scan 

results as well as the experimental assay information from the IEDB. 

 CODE AVAILABILITY 

The executable version of the C++ and CUDA versions of PICPL are available at 

https://github.com/whalleyt/PICPL. The source code is not available due to licensing 

constraints. The utility search script is available at https://github.com/whalleyt/CPLutils and 

the alignment code is available at https://github.com/whalleyt/peptide-aligment. 

  

https://www.iedb.org/downloader.php?file_name=doc/tcell_full_v3.zip
https://github.com/whalleyt/PICPLi
https://github.com/whalleyt/CPLutils
https://github.com/whalleyt/peptide-aligment
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8 RESULTS: APPLICATION OF PARALLEL COMPUTING TO CPL DRIVEN 

EPITOPE PREDICTION  

 GPU ACCELERATED EPITOPE PREDICTION 

 

Figure 37 A) Run time for databases containing n number of sequences for the serial implementation in C++, the CUDA 
implementation and two OpenMP implementations using 4 and 8 cores respectively. B.) Run time for fixed number of 
sequences with varied number of results. Compared to serial C++ code, the CUDA implementation was 4.5x quicker. 

As shown in Figure 37B, The CUDA implementation was significantly quicker than any other 

implementation. Compared to serial C++ the compute time was decreased by a factor of 

approximately 4.5. This appears to be linear also, meaning that this metric remains feasible 

well into the millions, if not billions of sequences. The CUDA implementation analysed 18,589 

sequences per second versus 4,624 sequences and 11,800 sequences per second in the serial 

(C++) and OpenMP implementations, respectively. 

Perhaps more importantly, the CUDA code was significantly quicker when increasing the 

number of results scored (Figure 37A). It appeared to only have a marginal increase in run 

time, unlike the serial and OpenMP versions which were slowed down significantly. This is 

important as this opens up the search depth of the data and allows the user to query lower 

scoring peptides without a marked increase in runtime. This increase in runtime is due to the 

inbuilt thrust library’s radix sort. 
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 THEORETICAL RANKING 

The speed up of theoretical ranking between GPU and C++ was also significant. When 

comparing two extreme cases of the best possible peptide for the CPL scan of the INSB4 TCR 

(LLIENILFV) and the worst scoring peptide (GGVAADCDC) there was a significance increase in 

run time. This is because every time the queried peptide scores lower than a given peptide 

the CUDA threads cease, synchronise and perform an atomic operation meaning there is a 

delay. The more times this happens the slower the performance is. The highest scoring 

peptide took 82s whereas the worst took 1117 seconds, leading to a greater than 10-fold 

increase in runtime. However, it should be emphasis that even at its worst performance, the 

GPU accelerated theoretical ranking performed better than the serial C++ version which took 

16088 seconds and 16144 seconds in the base and worst-case scenarios. So even when taking 

the worst case, the GPU optimised code is still ~16 times quicker.  

 PEPTIDE ALIGNMENT 

Peptide alignment scales as function of database size causing exponential runtime growth. 

The notion of developing this script was first decided after runs in serial and parallel C++ were 

deemed unfeasible, meaning that no benchmark could be performed. 

However, the script was benchmarked with two FASTA files of 10,000, where this run took on 

average 1 hour 25 minutes to score the average PAM30 distance between each peptide of 

the reference and query sets. This was stopped after a day in serial C++. 
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9 BACKGROUND: RECIPIENT- A PIPELINE FOR PANGENOME REVERSE 

VACCINOLOGY 

 REVERSE VACCINOLOGY 

RV is centred around the usage of genome sequencing technologies and other high-

throughput bioinformatics workflows to predict vaccine targets122. There is a strong demand 

for this as microbes are rapidly evolving and becoming drug resistant making existing 

therapies ineffective. This puts a burden on those developing new therapies both in terms 

of cost and time. 

 
Figure 22 a schematic of the basic pipeline of RV, a pathogen species is identified, sequenced before a number of 
bioinformatics analyses are applied and candidate targets are selected. These candidates are taken forward for 
experimental validation and potentially clinical trials. 

Fortunately, the rise in demand for therapies has coincided with a rise in technologies. 
Estimates suggest that there were well in excess of 20,000 whole genomes publicly available 
in 2015; and this number has surely grown since123. To compliment the explosion in genomic 
sequences available there is a growing number of bioinformatics tools to help with analyses 
in addition to an increasing number of bespoke databases, including those for antigen 
receptor data. 

There is a breadth of RV tools124–12, which contribute to the “bioinformatics” step of Figure 
22, however many are not open-source, scale poorly in terms of high performance computing 
(HPC) and miss important biological parameters. Another effort that is missing is designing RV 
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pipelines with broad population responses in mind. At the time of writing only one tool exists 
that targets the pangenome129, that is the core genomic features shared between a 
bacteria/virus. 

9.1.1 Microbial genomics 

9.1.1.1 Microbial databases 

RV has been aided by an increased number of databases and tools to support microbial 
genomics. Given the number of bacterial genomes available, it is often difficult to bulk 
download genomes. There exists a number of databases for downloading families of the same 
pathogen (e.g. species, serotype); one example being Enterobase130. Enterobase allows users 
to select and download genomes by their multilocus sequence type (MLST), serotype and 
other types of metadata. It supports several genuses, namely Escherichia, Salmonella and 
Clostridioides among others. Another example is the Global initiative on sharing all influenza 
data (GISAID)131 which does a similar process for influenza viruses and biologically similar 
diseases (e.g. COVID-19). These tools are important in RV as it is often difficult to collect 
genomes from other public sources without a large degree of manual curation. 

9.1.1.2 Genome annotation 

There are also numerous bioinformatics tools that are essential for the basic characterization 
of genomes that underpin several RV pipelines. Once the user has a set of pathogen 
assemblies it is important to annotate them to identify genes and other important features. 
While this is simple in humans and other higher order eukaryotes as their genomes are 
relatively well-conserved, it must be done on a sample-by-sample basis with bacteria and 
viruses as their genomes are constantly evolving and a number of horizontal transfer events 
will be happening simultaneously. 

The most well-adopted annotation software is Prokka132 which packages a number of pre-
existing feature prediction tools that predict the presence of certain features de novo. In the 
case of protein/peptide vaccines the important features are coding sequences (CDS) and 
signal peptides, predicted by Prodigal133 and SignalP134 respectively. This is then followed up 
by finding and annotating these features with pre-existing data using BLASTp55. If there is no 
direct match, then the CDS is matched to a protein family take from Pfam135 or TIGEFAM136 
using HMMER107. 

Prokka may be the most widely used, but other tools for genome annotation exist, for 
example PGAP, which aims to reconcile the differences between ab initio predictions and 
database searches seen in other tools. There also annotation tools that prioritise speed138. 

Aside from classical genome annotation, there is also metagenomic taxonomy annotation, 
that aims to annotate metagenomic data and inform the user information about the make-
up of species in a sample. This is also useful in RV as it can be used as quality control to detect 
contaminants in samples. An example of this type of software is kraken139. 
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9.1.1.3 K-mer sketching. 

Similar to this concept of taxonomic classification is the idea of using k-mer sketching to 
estimate the distance between samples. The distance measure between samples is useful 
again for detecting anomalies as well as describing the overall population of samples. 
Softwares such as Mash140 and Dashing141 estimate similarities in genomes by randomly 
sampling k-mers of DNA, hashing them and computing the Jaccard Similarity between 
samples in a pairwise fashion. 

9.1.2 Pangenomes 

The pangenome is the collection of genes shared across all samples in a species or subspecies. 
The pangenome is classically split into two main groups: core genes, which are shared by the 
majority of the isolates; and the accessory genes which are present in numerous isolates but 
not all142. This is summarized in Figure 23. 

There are a number of pangenomic pipelines142–145, all of which work in a broadly similar way. 
Sequences of the same family are detected by a homology search and their presence is 
detected in each genome. Paralogs and functionally similar groups are joined together to act 
as a similar gene. 

 
Figure 23 The basic concept of the pangenome. Each circle represents an entire genome. The centre, where all these 
genomes overlap can be considered the core genome. Others which have some overlap but not a large amount can be 
considered the accessory genome and final those with no overlap can be considered to not be part of the pangenome, 
instead just being specific to a given strain or isolate. 

9.1.3 Population genetics measures of genes and proteins 

Population genetics tests of neutrality are helpful for detecting whether a gene is undergoing 
natural selection. If a gene is dominated by a small number of highly abundant variants it is 
said to be undergoing negative or purifying selection. The reciprocal of this, positive selection 
is represented by a gene having a high number of low frequency alleles, suggesting that it is 
expanding and undergoing diversification. In the absence of selection in either direction the 
selection pressure is said to be neutral146. In the case of RV, it could be argued that genes 
undergoing negative selection are advantageous to being targeted as a vaccine as the 
alleles/variants under negative selection will remain in the population in high levels. 
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There are several tests for selection. Perhaps the most popular is Tajima’s D147.  Tajima’s D is 
calculated as follows: 

𝐷𝐷 =
𝑑𝑑

�𝑉𝑉�(𝑑𝑑)
 

Where d is the difference in two methods of quantifying diversity, the number of segregating 
sites and the number of mutations outright and 𝑉𝑉�  represents the variance. The number of 
segregating sites is the number of bases in the set of sequences that have more than one DNA 
base on them. These two measures are shown in Figure 24. 

 
Figure 24 Example of calculating the number of segregating sites and total mutants. 

Tajima’s D is a boundless number. If D is zero, then selection is said to be neutral. If D > 0 then 
there is said to be scarcity of rare alleles and negative selection is occurring. If D < 0 then there 
is said to be an abundance of rare alleles and the population is expanding, hence positive 
selection. Tajima’s D should be assessed on a case-by-case basis, however if D is normally 
distributed then 95% of the values for D should fall within [-2,2]. Therefore if |D| > 2 then it 
is said to be undergoing a strong positive or negative selection as a rough rule. However, there 
is no literature supporting this further. The difference between a positive value of D and a 
negative one is shown in Figure 25. 

 
Figure 25 Cartoon demonstrating the interpretation of Tajima’s D. Each circle represents the same gene in a different 
individual in the population. Each colour represents a different allele. The population on the left has an abundance of low 
occurrence alleles hence is undergoing positive selection (D < 0). Conversely the population on the right has a dominant 
allele and rare alleles are infrequent meaning negative selection is occurring (D > 0). 

 Other measures also exist for calculating neutrality. Fu and Li’s D can also be used to test for 
selection. Fu and Li’s D is used in cases where it assumed that all that data comes from one 
coalescent population, meaning that the genes in each sample derived from a common 
ancestor148. If RV were to be applied to broad groups of pathogens common ancestry cannot 
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be assured with prior knowledge. Fay and Wu’s H can be used to take into account the number 
of high frequency variants relative to intermediate frequency ones149. 

A final method of sequence diversity not rooted to the concept of population genetics is the 
entropy of a sequence. Although rooted in information theory and often applied to 
information and communication theory, entropy is often applied to sequences also150,151. A 
commonly used measure of entropy is Shannon’s entropy150, defined as: 

𝐻𝐻𝑛𝑛(𝑝𝑝𝑖𝑖,𝑝𝑝1,𝑝𝑝2 … ,𝑝𝑝𝑛𝑛) = −�𝑝𝑝𝑖𝑖log𝑏𝑏𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Where n represents the number of possible states a value can take, 𝑝𝑝 is their probability of 
occurrence and log𝑏𝑏 is the logarithmic base of the user’s choosing, in the case of sequence 
analysis typically 2. 

9.1.4 Immunological considerations 

The final facet for consideration in RV is the immunological context in which the protein takes. 
Immunogenicity can be measured in a number of ways. The first route of investigation would 
be MHC processing. The Immune epitope database (IEDB)151 host a number of predictive tools 
based on neural networks to predict the likelihood of presentation of a peptide on a MHC 
class I molecule154, MHC class II molecule155. This is complimented by predicting overall 
immunogenicity154 and the likelihood of proteasomal cleavage for a peptide in the context of 
MHC class I156. As well as those supported by the IEDB there are number of other MHC class I 
prediction tools157–159 and likewise for MHC class II86,158. Most models assume that good MHC 
binding will lead to some degree of T-cell response. 

The other facet of RV epitope prediction is predicting B-cell epitopes. The IEDB also hosts 
tools for the prediction of linear B-cell epitopes152. However, as B-cell epitopes can be non-
linear, the majority of these predictive methods require a structure. This, however, is out of 
the scope of most RV applications. 

 SALMONELLA ENTERICA SEROVAR TYPHI 

Salmonella is a bacterial genus of the family Enterobacteriaceae. Most Salmonella diseases 
in animals and humans is caused by serovars within the Salmonella enterica subspecies. 
These disease presentations can range from local gastroenteritis to fatal systemic disease. 
The exact outcome of the infections depends on both the physiology of the Salmonella 
serovar, but also on the host’s immune status153. 

Salmonella serovars are varied in their ability to infect hosts; some have a wide-ranging 
variety of mammalian hosts. In contrast, Salmonella serovars Typhi and Paratyphi (S. Typhi 
and S. Paratyphi) have a limited host range, infecting only humans154. 

Typhoid fever is caused by infection with serovars Typhi or Paratyphi. As of 2017 there were 
14.3 million cases of typhoid and paratyphoid fever occurring worldwide with an estimated 
135,900 deaths155. Aside from improvements in sanitation and infrastructure, initial 
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attempts at mitigating typhoid began with the administration of inactivated whole cell 
vaccinations. The whole-cell vaccinations however, were unsuccessful due to side effects156. 

There are now alternative types of typhoid vaccines available. The first, Ty21a is an orally 
administered attenuated strain. It contains the live-attenuated strain based on the 
pathogenic strain Ty2157. Ty21a has an inactivated galE gene, leading to it being unable to 
produce Vi antigen and other lipopolysaccharides157. The alternatives both use the Vi 
antigen to confer immunity. The first, Vi-tetanus-toxoid conjugate (Vi-TT) is the Vi antigen to 
the tetanus toxoid158. The second, Vi-PS is the purified Vi polysaccharide with no 
conjugate159. 

9.2.1 Studying the pathogenesis of Salmonella infection 

It is important to note that due to the fact that Salmonella Paratyphi and Typhi only infects 
humans, it is difficult to study in typical model organisms. While humanised mouse models 
exist there are no good in vivo systems160. This means that most studies interested in the 
mechanism of typhoid fever study Salmonella Typhimurium. Serovar Typhimurium infected 
mice do however show a similar pathophysiology compared to humans, at least in terms of 
lesion placement in organs as well as the distribution of bacteria in tissues161. 

The transmission of Salmonella serovars happens predominantly through the faecal-oral 
route via the consumption of contaminated food or water. After being ingested, Salmonella 
invades the intestinal epithelial cells in the distal ileum162. Notably, Salmonella can invade 
via Microfold (M) cells. M cells are specialised intestinal epithelial cells that are involved in 
sampling luminal microbes to aid in mucosal immune surveillance163. M cells are found 
frequently over lymphoid structures known as Peyer’s Patches (PP)164 as well as other 
smaller lymphoid aggregates, for example solitary intestinal lymphoid tissues165. 

Salmonella’s ability to access intestinal epithelial cells is conferred by several virulence 
genes encoded by the Salmonella pathogenicity island 1 (SPI-1). The protein products of SPI-
1 form a Type III secretion system (T3SS) that allows the transport of several bacterial 
proteins into the host cytosol166. These proteins can then induce changes in the host cells 
leading to the rearrange of the cytoskeleton and cell membrane as well as the disconnection 
of epithelial cell junctions with facilitates Salmonella invasion162. Once they have accessed M 
cells, Salmonella can access the inner structure of the lymphoid tissue. This lymphoid tissue 
is dense in phagocytic cells meaning it is the initial site for intracellular infection167. Once 
this initial infection has occurred Salmonella can travel through the lymphatic system to 
mesenteric lymph nodes (MLNs) and gain access to the bloodstream and systemic tissues 
through efferent lymphatic vessels. This transport can be mediated by CCR7 in CD11c+ 
DCs168. 

Once spread, Salmonella is then able to replicate in phagocytes in the bone marrow, the 
liver and the spleen169. Another T3SS, this time encoded by Salmonella pathogenicity island 
2 (SPI-2). SPI-2 allows for the evasion of macrophages by reducing the deposition of NADPH 
oxidases. This abrogation is dependent on the interference of the trafficking of oxidase 
containing vesicles to the phagosome170. Salmonella has also been shown to access DCs and 
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CD18+ phagocytes and disseminate rapidly to the blood, bypassing the need for lymphatic 
access. This pathway of action is suggested to be important for the rapid spread of 
Salmonella systemically166. 

9.2.2 Innate immune responses to Salmonella 

The initial response to Salmonella often comes from epithelial cells which can initiate an 
inflammatory response and recruit phagocytes. The initial response to Salmonella in PP and 
MLNs involves neutrophils and inflammatory monocytes169. Neutrophil depletion in 
particular has been shown to be important in the regulation of Salmonella burden and 
spread; as neutrophil depletion has been shown to increase Salmonella load in the 
vasculature of the liver and spleen171. It has been suggested that NK cells play a role in 
producing IFN-γ in the early stages of Salmonella infection in mouse models. As some innate 
lymphoid cells express some NK cell markers, it is also suggested that some IFN-γ is released 
from them172. 

Overall, it is suggested that a multitude of different innate cells are involved in early 
Salmonella infection, centred around phagocytosis and IFN-γ production. Inflammatory 
monocytes are also recruited where they are routed to the PP and MLNs, producing factors 
such as iNOS, TNF and IL-1β leading to an inflammatory response173. Resident macrophages 
within the infected tissues have been shown to phagocytose Salmonella through recognition 
of its flagellin. This is mediated by the NLRC4 inflammasome complex and induces the 
release of IL-1β and IL-18, both pro-inflammatory cytokines174. Salmonella flagellin and LPS 
has also been shown to be recognised by DCs, causing the expression of CCR7, CD80, CD86 
and CD40. The maturation of these DCs leads to enhanced antigen presentation abilities and 
allows them to migrate to the T-cell rich area of the lymphoid tissue to engage an adaptive 
immune response175. 

9.2.3 CD4 T-cell response to Salmonella 

The study of Salmonella specific T-cell responses is a difficult process because the 
abundance of the naïve T-cell repertoire is low and there are few known Salmonella 
epitopes with known MHCs; at the time of writing there are 99 epitopes for Salmonella in 
the IEDB151. Most commonly, techniques to overcome this involve transferring naïve T-cells 
into sites of infection in order to surpass the threshold of detection by flow cytometry and 
immunohistology. Early attempts of this study used ovalbumin (OVA) specific T-cells in 
response to a recombinant S. Typhimurium strain expressing chicken OVA176. A clear caveat 
to any conclusion from these types of recombinant analyses is that the conclusions are not 
drawn from responses to endogenous antigen; instead from heterologous antigen which is 
over-expressed. To overcome this, adoptive transfer systems into natural Salmonella 
epitopes were developed. In this model, CD4 T-cell activation was shown first in the PPs 
followed by the MLNs after oral infection. These CD4 T-cells expressed CD69, followed by IL-
2167. 

In the early stages of T-cell activation, draining MLNs are also a key site of T-cell activation. 
T-cells specific to Salmonella can be detected after 9-12 hours. This is not seen in other 
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secondary lymphoid tissues, pointing to the importance of the MLNs. Further to this, the 
removal of MLNs in vivo showed an increased bacterial load and dysregulated immune 
function in infected mice’s livers168. 

CD4 T-cells also have an important role in protective immunity. Mice without a thymus, αβ 
T-cells, MHC class II and T-bet+ Th1 cells have all been shown to be unable to clear infection 
whilst lack of γδ T-cells and B-cells did not aberrate immune function in response to 
Salmonella177. The role of CD8 T-cells is not wholly clear, some evidence exists suggesting 
the CD8 T-cells are not essential for clearance of Salmonella as β2M deficient mice suffered 
persistent infection177. B2M deficient mice however will lack non-classical MHC molecules 
and CD1 and experiments using mice missing only MHC class I suggest that there is a small 
protective role from CD8 cells178. 

CD4 and CD8 T-cells both have an important role in bacterial clearance in response to a 
secondary infection. In adoptive transfer experiments this immunity is not conferred by 
transfer of spleen cells alone, it also required the addition of immune serum179. In 
concordance with this, mice lacking B cells were able to clear a primary infection but could 
not overcome subsequent secondary challenges, suggesting a role for antibodies in this 
clearance. In mice that were unable to isotype switch or secrete antibodies, however, it was 
shown that B-cells did still play a role in this clearance, suggesting that there was also an 
importance in antigen presentation and cytokine release from B-cells180. The initial 
proliferation of T-cells involves communication with DCs167, suggesting that the B-cell 
mediated antigen presentation occurs after the DC mediated presentation. Overall, there 
seems to a strong emphasis on the role of CD4 in acquired immunity to Salmonella 
infection, whilst being complimented by contributions from CD8 T-cells and B-cells. 

CD4 T-cells undergo a large clonal expansion after Salmonella infection; these expanded 
CD4 T-cells are also able to migrate to non-lymphoid tissues such as the liver as well as 
gaining effector function181. This gain of function and expansion into other compartments is 
suggestive of a role for the CD4 effectors in regulating and controlling bacterial replication. 
Salmonella specific CD4 T-cells have been shown to be stable for over a year post-infection. 
The stability of these cells appears to be governed by small but important activity of pMHC 
class II complexes being presented on chronically infected phagocytes to CD4 T-cells182. 

Mice lacking T-bet, IFN-γ or its receptor IFN-γR are unable to clear Salmonella infection, 
suggesting a role in Th1 cells. IL-17 and IL-22 has been shown to be produced in the 
intestinal mucosa early on in Salmonella infection, suggesting that Th17 cells also have a 
role. The presence of these cytokines is not unique to Th17 cells, but Th17 cells have also 
been detected in the mucosal tissues following infection183. It has been suggested that Th1 
cells are important in the clearance of bacteria in Salmonella infection, whilst Th17 cells play 
a role in protecting spread from the intestine. 

Salmonella responsive CD4 T-cells can relocate to infected tissues and secrete effector 
cytokines. While most studies focus on cognate stimuli, there is a role for non-cognate 
activation. While this has been studied more in the framework of CD8 T-cell responses to 
viruses, typically involving IL-12 and IL-18184, there is a growing pool of analysis surrounding 
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responses to bacteria and Salmonella. The NLRC4 inflammasome is activated and IL-18 is 
released by CD8α+ DCs leading to OVA specific memory CD8 T-cells in Salmonella 
infection174. It has been shown that CD4 T-cell effector function can be elicited indirectly 
after injection of LPS, leading to IFN-γ release. The response is associated with induction via 
TLR agonists. The TLR agonism also requires inflammasome components NLRC4 and NLRP3 
and leads to IL-18 release185⁠. This route of innate stimulation of T-cells may aid in lowering 
the threshold for CD4 T-cell activation. It is speculated that this pathway may be useful in 
helping clear co-infections or super-infections, as co-current infections are likely to occur 
naturally in an in-vivo setting166⁠⁠. 

9.2.4 Antigen localisation in Salmonella 

There are few known antigens of Salmonella. However, in a mouse typhoid model it was 
shown that antigens for Salmonella were preferentially found to be on the outer membrane 
of the bacteria. Surprisingly, this is not thought to be related to any sort of inherent 
immunogenicity186. 

One hypothesis is that surface antigens might become more rapidly available and internal 
antigens only become available once an immune response is already engaged. Another 
proposed model is that many live Salmonella were either found alone or not with other 
dead Salmonella. As there is  no internal antigen as there are no dead Salmonella nearby 
meaning that the immune response must be modulated by an external antigen. 

 ENTEROPATHOGENIC ESCHERICHIA COLI 

Diarrheal disease is a prominent cause of morbidity and mortality, especially in children 
under five years old. The burden of the disease is primarily placed on populations in the 
developing world where sanitation, water access and logistical avenues for medical 
interventions are lower than in developed countries. However, cases also do exist in 
developed nations187⁠. 

Escherichia coli (E. coli) is reported frequently in the developing world. E. coli is a versatile 
bacteria, with life cycles ranging from commensal to invasive. Enteropathogenic Escherichia 
coli (EPEC), an E. coli pathovar is a common causative agent of diarrhoeal disease. 

Classically, E coli pathotypes were typed by 3 antigens: the O (somatic), H (flagellar) and K 
(capsular) antigens. Now serogroups O39, O88, O103, O145, O157 and O158 are considered 
EPEC pathotypes. Of the H antigen, H2 and H6 are commonly considered EPEC, whilst other 
minor H antigens can also be EPEC. However, many EPEC strains do not possess the H 
antigen at all. These strains of EPEC are known as non-motile188. Due to the increasingly 
apparent diversity of the O, H and K antigens, serotyping in this way is not always 
considered a useful diagnostic⁠, with WGS methods instead being employed189. 

Now EPEC is defined based on its virulence factors and phenotypically as a diarrhoea 
causing strain of E coli that can produce attaching and effacing (A/E) lesions, but cannot 
produce Shiga toxins, heat labile (LT) or heat stabile (ST) enterotoxins190⁠. 
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EPEC is characterised by the locus of enterocyte effacement (LEE). LEE encodes an adhesin 
intimin, a T3SS (composed of EspA, EspB and EspD) alongside six other effectors (Tir, EspF, 
Map, EspG, EspH and EspZ)191. 

A/E lesion formation requires LEE. A/E lesions are characterized by attachment of bacteria 
to the apical plasma membrane of intestinal cells, local accumulation of F-actin and 
effacement of the brush border microvilli9⁠. The formation of A/E clusters is mediated by 
intimin. The attachment process is facilitated by Tir (translocated intimin receptor) which 
inserts into the host plasma membrane where it acts as a receptor for intimin192. Once 
attached the T3SS can inject effector proteins into the host cells. 

5 of the 6 LEE effectors are inducers of cytotoxicity, reorganisation of the cytoskeleton and 
of electrolyte imbalances leading to diarrhoea. The remaining effector EspZ integrates into 
the plasma membrane and regulators effector translocation, protecting infected cells from 
cytotoxicity193. 

EPEC can be further grouped into typical EPEC (tEPEC) which has the plasmid encoded 
bundle forming pilus (BFP); and atypical EPEC (aEPEC) which does not contain BFP194⁠. EPEC 
has been shown in vitro to form 3D microcolonies known as localised adherence (LA) 
patterns. BFP mediates LA pattern formation, as well contributing to antigenicity, auto-
aggregation and biofilm formation195–197⁠. 

However, even this sub-categorisation into the tEPEC:aEPEC binary is an over-simplification. 
EPEC infection can range from lethal to non-lethal and non-lethal infections can range from 
having severe symptoms to being asymptomatic. It has been observed using BLAST score 
ratios (a technique used to create a distance matrix between genomes)198  that no single 
gene cluster could be attributed to a single clinical outcome, suggesting that EPEC 
pathogenicity is a multi-faceted arrangement199. A similar study by Hazen et al.200 had a 
number of EPEC samples that did not cluster with other samples. The authors also observed 
that bfpA, a gene encoding for a subunit of the BFP would seemingly undergo several 
independent loss and acquisition events in different lineages. 

Aside from the LEE effector locus, there are a series of other effectors found elsewhere in 
the EPEC genome. A number of these effectors follow the nomenclature of “non-LEE 
encoded effector” (Nle) A number of these are found on prophage regions. Prophage 2 
(PP2) contains 3 effectors NleH1, cycle inhibiting factor (Cif) and espJ. nleH1 has been shown 
to prevent the translocation of ribosomal protein S3 (RPS3) inhibiting NF-κB201. Cif is a 
member of a family of toxins known as cyclomodulins which modulate host cell cycle. Cif has 
been shown to both induce cell cycle arrest but also delay apoptosis in epithelial cells. Cif is 
delivered by the T3SS202. EspJ is known to prevent phagocytosis203. 

PP4 contains 4 Nle genes: NleG, NleB, NleC and NleD. NleG shows a lot of functional 
diversity. It is known to target host ubiquitination machinery, however the specific function 
of members of the family as well as their targets of ubiquitination remain unclear. NleG5-1 
has been shown to localise to the host nucleus and target the MED15 subunit  (mediator of 
RNA polymerase II transcription subunit 15) and NleG2-3 appears to localise to the host 
cytosol where it leads to the degradation of hexokinase 2 and SNAP29204. NleB represses 
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NF-κB activation, but the mechanism at which is unclear, although it is thought to target 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH)205. NleC is a metalloprotease. NleC is 
also shown to repress NF-κB function, this time it appears to be mediated by the cleavage of 
p65 which affects downstream p65 interaction with RPS3206. Finally, NleD, another 
metalloprotease inhibits mitogen activated protein kinase (MAPK) signalling proteins JNK 
and p38 by translocating into host enterocytes where it cleaves and inactivates them207. 

PP6 contains NleA/EspI, NleH2, NleF, espO. NleA has been shown to inhibit NLRP3 
inflammasome activity by the inhibition of caspase 1201. NleH2, like NleH1 has been shown 
to attenuate NF-κB activity through modulation of MAPK signalling via p38208. NleF binds to 
caspases 4,8 and 9. This caspase inhibition leads to apoptosis inhibition209. EspO also inhibits 
apoptosis. This inhibition is mediated through HS1-associated protein X1 (HAX-1)210. 

9.3.1 EPEC vaccination efforts 

Natural immunity after EPEC infection has been observed and antibodies have been shown 
to be protective against future infections. Studies in developing countries have shown IgA 
antibodies against intimin, EspA, EspB, EspC and BFP211. Additionally, antibodies responsive 
to EsPA, B, C and D can confer protection against EHEC pathotypes expressing the LEE locus. 
BfpA and B, although not always expressed on EPEC, are also potential targets. IgA 
antibodies against them have been detected in the faeces of children who had been 
breastfed and had acute diarrhoea but not in those who were not breastfed212⁠. 

EspB has been of particular interest as a target of vaccination. However, it is difficult to 
target as there are three main variants of EspB: α, β, and γ, with the α variant having 3 
further subcategories213. However, this could possibly be overcome by targeting of 
particular conserved epitopes in the EspB sequence. 

 HEPATITIS B 

Hepatitis B virus (HBV) infection results in substantial human morbidity and mortality, 
especially through the consequences of chronic infection. Estimates of people chronically 
infected with HBV range from 240 million to 350 million globally214⁠. HBV was estimated to 
have contributed to 786,000 deaths annually, with 341,000 of those being liver cancer and 
312,000 being liver cirrhosis. This places HBV infection 15th among all causes for human 
mortality215⁠. 

9.4.1 Genome structure 

The HBV is a member of the Hepadnaviridae family. I t is a small DNA virus that replicates 
through an RNA intermediary and can integrate into the host genome. This unusual method 
of replication allows the virus to persist in infected cells. HBV is categorised into 8 different 
genotypes A to H, these genotypes have a distinct geographic distribution. HBV’s genome 
encodes four overlapping ORFs (S, C, P and X)216⁠. 

The S ORF encodes for viral surface envelope proteins. The C ORF encodes for the viral 
nucleocapsid HbcAg or the hepatitis B e antigen (HbeAg) depending on where translation is 
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initiated at the core or pre-core region. The core protein can self-assemble into a capsid like 
structure; while the smaller pre-core region codes for a signal peptide that directs the 
translation product to the ER where the protein is processed to form HbeAg217⁠. The P ORF 
encodes for the polymerase, a large protein of ~800 amino acids in length. Finally, the X ORF 
encodes for HBxAg, a protein with multiple functions, including signal transduction, 
transcriptional activation, DNA repair and protein degradation. Although it is known that 
HbxAg is required in vivo for infection to occur, the reasoning is unknown⁠. HbxAg has, 
however been implicated in a number of biological processes including signal transduction, 
activation of transcription, DNA repair and inhibiting protein degradation216. 

9.4.2 Immune responses 

Understanding of innate immune responses to HBV is limited by epidemiological issues, very 
few patients are recruited when they are undergoing early infection as they are often 
asymptomatic. Likewise, in vitro systems are inefficient and replication of the HBV virus  is 
low in them218⁠. 

However, studies into the innate immune response to HBV has yielded insights. Weak 
activation of innate immunity is typical of acute HBV infection in adults. Levels of pro-
inflammatory cytokines are low in the first 30 days of infection219⁠. It is thought this low-level 
innate response is a result of HBV escaping innate regulation by having covalently closed 
circular DNA (cccDNA) to the cell nucleus and having intermediates of replication (both in 
RNA and DNA form) to the cytoplasmic core particles220⁠. However, this is by no means the 
accepted paradigm, Durantel and Zoulim for example, argue that HBV actively suppresses 
the innate immune system221⁠. 

The adaptive immune system has been recognised as a key player in the clearance of HBV 
infection. Here, CD4 T-cells produce large quantities of cytokines and are essential for the 
development of CD8 CTLs and B-cell antibodies. CD8 T-cells clear HBV infected hepatocytes 
through both cytolytic and non-cytolytic activity whilst B-cell antibodies neutralize free viral 
particles, preventing reinfection222⁠. 

Not much is known about the induction of B-cell response in acute HBV, however CD4 and 
CD8 T-cell mediated response are generally detectably around the point where HBV begins 
to exponentially replicate within its host. Usually, this point occurs 4-7 weeks after 
infection223⁠. Of known epitopes, CD4 T-cells seem to prefer peptides from the capsid 
protein, where CD8 T-cells seem to recognise a wider array of peptides224⁠. 

During acute infection, HBV is often self-limiting leading to a residual infection that can 
return during immunosuppressive events. HBV DNA levels decline by up to 90% in a 2–3-
week period after the peak levels of replication. This decline occurs with very little 
indication of liver damage, suggesting that mechanisms are mediated in a non-cytopathic 
manner by means of IFN-γ and TNF release by CD8s225. There is however, a small portion of 
action that is cytopathic. Recruitment of HBV specific CTLs is promoted by the secretion of 
CXCL-10 and platelet activation and leads to the killing of infected hepatoycyte ⁠s226⁠. 
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Once infection is successfully controlled, the maturation of T-cell memory occurs 
assertively227⁠. Between this maturation of memory and the initial clearance of infection, 
there is a functional impairment of CD8s. At this stage, T-cells are activated but struggle to 
proliferate and show signs of exhaustion. Normally, this is associated with the peak of IL-10 
production and the release of arginase from dying hepatocytes219,228,229⁠. The release of 
arginase is thought to contribute to the down-regulation of the CD3ζ chain by depleting L-
arginine. 

In chronic HBV infection, the T-cell response is much weaker. Seemingly irrespective of the 
cause of the infection being chronic (maternal transmission, abundance of antigen, MHC 
profile etc.) the prolonged expression of antigen can aberrate T-cell response. This 
dampening down of immune response is mediated by expression of PD-1, CTLA-4 and Tim-3 
leading to less proliferation, cytokine production and apoptosis230⁠. 

The length of chronic infection is also a strong influence on T-cell function. Young patients 
with a lower length of infection show less T-cell exhaustion than older patients with longer 
infections231⁠. 

9.4.3 HBV antigens 

HBV infection leads to the persistent release of the soluble form of HbsAg and HBeAg. Both 
are derived from the C ORF. HBsAg has been suggested to impair the abundance and 
function of DCs by modulating TLR-2 expression as well as interfering with TLR mediated 
cytokine release34⁠. Soluble HBV antigens have also been understood to inhibit antigen 
presentation function, the interference of cytokine production and inhibition of T-cell 
response35⁠. It remains unclear why these responses only exist in response to HBV as one 
would expect a chronic HBV infection to correlate with more opportunistic infections. 

However, there are a number of caveats to this model. The first is that experiments tend to 
be performed in vitro with proteins based on yeast or E. coli expression systems; or were 
purified from the sera of chronic HBV patients, potentially leading to LPS and other 
contaminants being present. LPS induced tolerance of APCs via TLR agonism is a known 
phenomena, meaning that the outcome of the experiments could have been impacted⁠232. 
Also, patients chronically infected with HBV often have high levels of IL-10 and liver 
enzymes, meaning they could be modulating immune response, rather than direct action 
from HBV antigens. In patients with high levels of HBsAG but no or mild levels of liver 
inflammation the frequency of T-cells, their function and the level of circulating professional 
APCs (DCs, monocytes and B-cells) did not change233. 

9.4.4 Current HBV vaccine treatments 

The majority of vaccine therapies aim to induce functionally effective HBV specific T-cells. T-
cell response against HBcAg is important for resolution of HBV infection, but most targets 
are only aimed at envelope proteins. This has been explored with woodchuck model’s and a 
DNA prime-adenovirus vaccine containing HBcAg234⁠. 
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 SARS-COV-2 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accounted for 4.7 million 
deaths and 230 million known cases as of September 2021 (https://covid19.who.int/). Viral 
genome sequences available via public initiatives such as the Global Initiative on Sharing All 
Influenza Data (GISAID) exceed 1 million permitting unparalleled levels of genomic 
surveillance235⁠. 

SARS-CoV-2 is a positive sense single stranded RNA virus. Its genome is about 30kb in length 
and is mostly protected by a fatty envelope layer. SARS-CoV-2 is a member of the 
Coronaviridae family. Members of the Coronaviridae family are further split into 5 genera, 4 
of which are members of the subfamily Orthocoronavirinae lettered from α to δ. α and β 
have the ability to infect humans, whilst γ and δ mostly infect birds and pigs236 ⁠. SARS-CoV-2 
is a β coronavirus. 

Similarly, to SARS-CoV and MERS-CoV, the genome of SARS-CoV-2 is comprised of 12 ORFs. 
At the 5’ end of the genome, two overlapping ORFS named 1a and 1b encode for the RNA 
polymerase and other non-structural proteins. These two ORFs occupy approximately 2/3 of 
the genome. Structural proteins such as the spike (S), Membrane (M), envelope (E) and 
nucleocapsid (N) are present in the remaining third, stretching to the 3’ terminus237⁠. 

SARS-CoV-2 uses the angiotensin converting enzyme 2 (ACE2) receptor to gain access into 
human cells. The binding of the ACE2 receptor governs its pathogenicity. The binding 
between the S protein and ACE2 receptor is 10-20 times stronger than that of the S protein 
of SARS-CoV238⁠. 

Coronaviruses gain entry inside the target cell by engaging the host receptor with the S 
glycoprotein. The region of the S protein containing the receptor binding domain (RBD) is 
present on the S1 subunit. Once in the cell, the virus releases its positive sense single 
stranded RNA genome into the cytoplasmic compartment where the translation of ORF1a 
and b begins. This translation leads to the production of two polyproteins, pp1a and pp1ab. 
Three functional proteases then cleave these polyproteins into 16 non-structural proteins 
(NSP1-16) which create the viral polymerase and other assembly proteins. The E protein is 
incorporated into the rER or Golgi apparatus. The RNA combines with capsid protein to form 
the nucleocapsid and then the assembled virus particles are budded from the ER-Golgi 
Intermediate Compartment (ERGIC). The virus laden vesicles are fused to the cell membrane 
for shedding. These virions are accessible to infect nearby healthy cells239. 

9.5.1 Immune response to SARS-CoV-2 

Humoral immune response to SARS-CoV-2 is mediated by antibodies targeting the spike 
glycoprotein and the nucleocapsid protein predominantly. The S1 subunit in particular 
seems to be an important target for neutralising antibodies240⁠. The major role of neutralising 
antibodies is for antigen binding and interacting with cells bearing Fc γ receptors to 
modulate immune responses and as such IgG responses have been detected against the 
nucleocapsid, S1, ORF9b and nsp5 among others by means of proteomic microarray241⁠. 

https://covid19.who.int/
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Patients with infected with SARS-CoV-2 or recovering from it also have IgM and IgA 
responses. The antibody response is characterised by seroconversion of IgM and IgG one to 
two weeks after symptom onset and antibody concentrations persist for weeks or months 
after viral clearance. In longitudinal studies, IgA antibodies were produced early, followed 
by IgM242⁠. In a study of patients with mild COVID-19, a decline in IgG titres specific to the 
RBD of the spike decline after 2-4 months243⁠. However, numerous other papers report that 
antibody kinetics are much more persistent, robust responses244,245. 

SARS-CoV-2 specific T-cells express perforin 1 and granzymes upon in vitro restimulation 
with SARS-CoV-2 antigen. Using expression levels of activation markers (4-1BB ligand 
receptor and CD40-L) as a measure for CD4 T-cell activation, Braun et al. demonstrated that 
83% of patients with COVID-19 had spike epitope specific CD4 T-cells. Perhaps more 
notably, they identified T-cells reactive to spike glycoprotein in 35% of their patients who 
had not had COVID-19246. In another study, this CD4 T-cell response was shown to be 
predominantly mediated by Th1 cells characterised by their high levels of IFN-γ release. 
They were specific for the spike glycoprotein, the membrane protein and the nucleocapsid 
protein predominantly, but there were also lesser responses to non-structural proteins247.  



99 
 

10 METHODS: RECIPIENT- A PIPELINE FOR PANGENOME REVERSE 

VACCINOLOGY 

 AIMS 

As discussed previously in the introduction, the wealth of genomic data means that reverse 

vaccinology (RV) practices are becoming more applicable on a large scale. This chapter 

describes the development for RECIPIENT (REverse vacCInology for PotentIal vaccinE 

caNdidaTes) a pipeline for the design of interesting protein and peptide vaccine candidates 

based on immune recognition and evolutionary conservation. 

 DATA COLLECTION 

The pipeline was tested on four datasets, two sets of bacterial genomes and two sets of viral 

genomes. These four datasets comprised of S. Typhi, EPEC, SARS-CoV-2 and HBV. 

As discussed in 9.2-9.5, all four of these pathogens present a significant burden in terms of 

mortality and the required healthcare interventions. Furthermore, the four datasets 

represented a diverse set of biological challenges to benchmark RECIPIENT against. The S. 

Typhi and EPEC datasets both consisted of bacterial genomes. Bacterial genomes in the 

context of RV  are interesting because typically their genomes have a larger number of genes 

or ORFs to search against. Computationally, this increases the demands on the pipeline to 

deliver results in a reasonable timeframe. Biologically, this increased number of potential 

targets makes the need for a computational pipeline that can effectively filter candidates a 

necessity. The viral datasets provide an interesting contrast to this, as they have a smaller 

number of targets to select from.  

EPEC has a number of effector proteins known to be unique to it compared to commensal E. 

coli, meaning that the selection of it as a test dataset gave a number of specific gene targets 

to search for in validating the pipeline. In contrast the S. Typhi, while still having a number of 

well-described immune targets, had a number of potential undiscovered effectors that were 

unique to S. Typhi but not described in a RV context. 
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The first dataset was collected from Enterobase  (https://enterobase.warwick.ac.uk/)248. This 

dataset consisted of 785 genome assemblies of Salmonella enterica serovar Typhi. The 

complete list of accession Ids for Enterobase can be found in supplementary list S2. 

The next dataset consisted of 58 EPEC genome assemblies taken from Enterobase. The 

accession IDs can be found in supplementary list S3.  

In contrast to the two datasets above, The third dataset was collected from GISAID235 and 

encompassed 123 genomes from across the 2020 global pandemic of COVID-19. SARS-CoV-2 

was  used to show the tool can work on RNA viruses and those with little functional annotation 

compared to bacteria. The accession IDs are shown in supplementary table S4. 

The fourth dataset comprised of 61 genomes of Hepatitis B virus, collected from HBVDB249. 

These two choices were selected to provide a complementary analysis to the SARS-CoV-2 

dataset and demonstrate the tool can work on both DNA and RNA viruses. The accession IDs 

are shown in supplementary table S5. 

 PIPELINE 

10.3.1.1 Implementation 

The RECIPIENT pipeline was implemented in the Nextflow250 pipeline manager. There were 

several reasons for this. Firstly, it allows for reproducibility of the dataset, log files describe 

exactly how the pipeline was executed and what errors were hit. These are then cached so 

the errors can be replicated or if the workflow finishes successfully, they can be re-ran by 

another user without having to fully compute them. 

Nextflow also allows for the use of Singularity (https://singularity.lbl.gov/), Docker 

(https://www.docker.com/), Conda (https://docs.conda.io/en/latest/) containers and 

environments. The benefit of this is two-fold. The first is that it allows for greater 

reproducibility as it guarantees that versions of different packages are the same, meaning 

that subtle changes between versions are avoided. The second is that it means that the user 

does not have to install each software package individually which can prove difficult to ensure 

tools can run on different platforms. Similarly, many HPC environments make it difficult for a 

user to install third party software. Therefore, RECIPIENT comes with a series of Singularity 

containers to expediate installation. Singularity was chosen because it is very commonly used 

https://enterobase.warwick.ac.uk/
https://singularity.lbl.gov/
https://www.docker.com/
https://docs.conda.io/en/latest/
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in HPC environments and it is assumed most HPC users will have access to it. Likewise, 

Singularity is also supported on local systems. In both it does not need to be ran with 

administrator/root privileges meaning that it was chosen over Docker. 

Nextflow also automatically distributes jobs. It creates a directed acyclic graph (DAG) by 

pairing task input to other tasks outputs, meaning it can schedule jobs in the correct order 

and optimise for CPU core usage. This is pertinent again in local and HPC environments. 

RECIPIENT makes use of Nextflow’s labelling system meaning that highly parallel or memory 

hungry tasks are assigned more resources. This is assigned by default; however, users can 

modify this according to their environment. 

As well as job distribution, RECIPIENT makes use of Nextflow’s job scheduling capabilities. On 

release, RECIPIENT comes with 3 profiles designed for local execution or HPC execution on 

systems using the SLURM and PBS job schedulers.  

10.3.2 Workflow 

The workflow itself is described in Figure 38. The pipeline derives a number of measures that 

are amenable to selecting candidate proteins or peptides for vaccinations. The initial first step 

is one of quality control (QC).  

 

Figure 38 Overview of the analysis pipeline. Boxes highlighted in orange represent steps which generate an output file, 
while blue shows steps used only for part of the pipeline 
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QC is performed by first classifying the taxa found in each sample to detect either 

mislabelled or contaminated sequencing data which may affect the creation of a 

pangenome. 

In RECIPIENT’s case it is done with Kraken2139. This is then complimented by a measure of 

Kmer distance between samples to detect outliers that will again affect the creation of a 

pangenome. K-mer distance calculation is performed using MASH140.  

Once QC has been performed the dataset is annotated using Prokka251 and a pangenome is 

created using Roary252 Following this there are two sequence diversity measures calculated 

first Tajima’s D147 then the Shannon Entropy150 of each set of genes in the pangenome.  

Each pangenome sequence has a reference, this then translated where it is passed into MHC 

class I253, MHC class II254 binding prediction; prediction of linear B-cell epitopes152, 

proteasomal cleavage255 and TCR binding prediction79 (should the user choose to investigate 

specific TCRS). Subcellular localisation is then predicted for each gene256. A number of 

physiochemical parameters for each sequence is also calculated, ranging from purely 

physiochemical factors257 to latent representations of sequences that are shown to have 

immunogenic interactions258. The sequence of each reference is also BLAST searched against 

for PDB homologues, then various physiochemical parameters are collected using the 

biostructmap package259. Transmembrane helices are also predicted260. Finally these genes 

are then annotated for essentiality261 and virulence factors262. 

10.3.3 Quality control 

QC was broken down as described in the sections below. The two methods used were read 

classification with Kraken2. Kraken2 was used to identify foreign reads and contaminants in 

the assemblies. MASH was used to calculate the distance between all genomes in a dataset. 

10.3.3.1 Taxonomic read classification with Kraken2 

As the data supplied is a whole genome assembly, it is assumed that quality control has been 

performed to some degree on the read level data. Metagenomic quality control on each 

assembly file is generated using Kraken2 139,263 against the minikraken2 database. Kraken2 is 

a software designed to identify metagenomic reads in a dataset and assigned a taxonomic 

classification to them. In many use cases, this can be used to assess the ecological diversity of 
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metagenomic sequencing, but it has also been applied to classical genomic sequencing to 

search for mis-assigned files or files with a high level of contamination with other species. 

Colloquially, this has also been described as a reason why constructions of pangenomes fails 

in Roary, also (https://sanger-pathogens.github.io/Roary/). 

 Kraken2 masks Kmer sequences (of a length of 35 bases by default, but the user can change 

length according to their need) into a spaced seed map. A spaced seed map is a representation 

of a string in which there are a number of “wildcard” base positions which are assumed to be 

degenerate72,173. This significantly increases the speed and sensitivity of homology 

searches266. Kraken2 optimises for memory then by creating a probabilistic hash table. A hash 

table is a data structure that maps keys, in this case the original Kmer seed map, to a value, 

in this case a taxonomic identification. It does this through a hash function which maps 

variable length strings to a more compact representation. In the case of Kraken2 this is done 

probabilistically, meaning there is a small chance that there will be false positives as there is 

a chance two distinct Kmers will be hashed into the same sequence. The likelihood of this 

happening, however, is small; happening < 1% of the time meaning that results are the same 

or negligibly different. However, Kraken2 performs much quicker than its counterparts, with 

lower memory consumption meaning that this method is often more optimal. 

It was for the above reason Kraken2 was chosen, high level accuracy was not needed because 

the tool is not classifying metagenomic reads, it’s looking at a larger scale for outliers and 

total accuracy is not required as it assumed the user has in some way generated or curated 

their dataset prior to their analysis.  

 Specifically kraken2 was chosen over other tools such as kraken, metaphalan267, TIPP268 

showed comparable performance, while Kraken2 is much more computationally inexpensive, 

both in terms of memory and processing time. 

By default, RECIPIENT is designed to run with the pre-compiled ‘minikraken’ database 

(https://ccb.jhu.edu/software/kraken2/downloads.shtml) which is an 8GB database built 

from the Refseq bacteria, archaea and viral libraries as well as the GRCh38 human genome. 

This was decided to be the default as the full Kraken2 database is ~30GB in size, meaning that 

local users would struggle to fit the data into memory. The configuration file of RECIPIENT 

however allows the user to point to their Kraken2 database of choice. Similarly, there is an 

https://ccb.jhu.edu/software/kraken2/downloads.shtml
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additional workflow step to build a database if so required, however the pre-compiled 

Kraken2 databases are heavily encouraged to be used. 

10.3.3.2 Kmer distance with MASH 

Kmer Sketching was also chosen to be included in the pipeline to allow for insights of how 

much the genomes varied within the dataset. For example, should the user spot certain 

samples be much more distant than expected then they can remove them. Also, as RECIPIENT 

relies on the creation of a pangenome, it is also valid to assess whether the genomes being 

used are close to one another in sequence space. 

The Kmer sketching software MASH was chosen for this purpose. MASH was chosen as it 

supports assembled sequences rather than unassembled fragments. MASH hashes each Kmer 

into a 32-bit value and then the Jaccard index between each samples Kmer hashes is 

calculated by randomly sampling the data as follows: 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =
|𝐴𝐴 ∩  𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|

 

Where A and B represent two sets of genome’s Kmers. 

This random sampling process is relatively quick, hence why it was chosen for QC in 

RECIPEINT. MASH RECIPIENT’s main goal is predicting and assessing vaccine targets. MASH 

was shown to be able to compute the pairwise difference between the NCBI Refseq in 33 CPU 

hours. This total of ~1.5 billion pairwise comparisons140 massively exceeds the expect amount 

of comparisons needed for RECIPIENT, meaning that it guarantees completion for most users. 

While knowing the K-mer distance between samples is helpful in assessing the overall 

structure of the pangenome and identifying outliers, a more accurate or non-approximation-

based method is not necessary. 

By default, MASH is run on 40 cores, with a Kmer size of 21 and a maximum number of 1000 

hashed Kmers per genome. The input is seeded to ensure reproducibility (however generally 

speaking the results are expected to converge regardless of seed). DNA stranding is ignored. 

All parameters can be changed by the user in the configuration file. 

RECIPIENT accepts the output of MASH, a triangular matrix in Phylip format and converts it in 

to an easier to read square matrix in tab-separated value (TSV) format. This is then read into 
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R and plotted in the Superheat package (https://rlbarter.github.io/superheat/) to plot as a 

heatmap.  

10.3.3.3 Gene and pangenome annotation 

10.3.3.3.1 Single genome annotation with Prokka 

Genome annotation is the first non-QC step of the pipeline. There are number of genome 

annotation tools to be used, in RECIPIENT Prokka251 was chosen. 

Another reason Prokka was chosen to be included is that it is very highly used in the microbial 

genomics community and it is relatively easy to install as all the constituent sub-packages are 

bundled into it. It also comes prebuilt in Conda, Docker and Singularity giving local users of 

RECIPIENT more options should they want to avoid installing anything. This rationale meant 

that it was chosen for genome annotation. The preceding package in the pipeline, Roary is 

also designed to take the general feature format (GFF) files from Prokka in its pipeline. 

In short Prokka annotates a genome and breaks down the contigs into coding sequences of 

the genome by predicting open reading frames (ORFs) with Prodigal269. These putative genes 

are then assigned a name or function against a database of UniProt270 proteins, proteins from 

RefSeq271, failing that they are given protein family predictions based on Pfam272 and 

TIGRFAM273. 

Prokka comes with several parameters that allow for the customisation of annotations based 

on the user’s wants and needs. The only requirement needed by the user is to specify the 

kingdom their species comes from (namely eukaryote, bacteria, or virus) and optionally what 

gram stain their bacteria corresponds to, if they are analysing bacteria. The only other options 

enabled are that tRNA and rRNA will be ignored and certain parameters related to the output 

are set to remain consistent and avoid errors. There are parameters corresponding to the 

genome of the sample being annotated but these are intentionally left out to stop users 

modifying them and stopping the pipeline from being able to annotate. This will increase run 

time, but that is preferable to poor annotation. 

One unfortunate design decision was to leave out SignalP274 a tool for prediction of signal 

peptides from the Prokka pipeline. Due to licensing constraints, SignalP cannot to re-

distributed in wider packages. Should users want to run SignalP within their pipeline in 

https://rlbarter.github.io/superheat/
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Singularity, a Singularity recipe is available at https://github.com/WhalleyT/singularity-

recipes which will copy a user’s license compliant version of SignalP and make it available to 

Prokka within the container.  

10.3.3.4 Pangenome identification 

Pangenome identification was applied by Using Roary252. Roary extracts CDS sequences from 

the supplied Prokka GFF files, translated into protein and filtered to remove truncated 

sequences. They are then iteratively clustered using CD-HIT275 and MCL276 giving a smaller and 

less redundant set of sequences to work with. These remaining groups are split so that 

paralogs are in different groups, leaving sets of true orthologs.    

Roary was chosen because compared to other pangenomic softwares such as BPGA277 as like 

many of the other tools it is relatively quick and efficient. The original publication of Roary 

notes that 128 samples can be analysed in 1 hour with only 1GB of RAM. This and the fact the 

tool is relatively easy to install through apt, Docker or Conda means that it is a safe choice in 

that local users are able to download the software. 

RECIPIENT keeps the Roary description schema for how common a gene family is found in the 

pangenome. It is described below in Table 5.Table 5 Pangenome presence annotations used 

by RECIPIENT and based on the Roary annotation 

 

Table 5 Pangenome presence annotations used by RECIPIENT and based on the Roary annotation 

Name Percentage of genomes 

gene is found in 

Core between 99% and 100% 

Soft between 95% and 99% 

Shell between 15% and 95% 

Cloud less than 15% 

 

These data are then passed into R where they are used to generate some plots about the 

pangenome. Namely the number of genes found in each pangenome category are plotted in 

https://github.com/WhalleyT/singularity-recipes
https://github.com/WhalleyT/singularity-recipes
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a bar plot and pie chart. There is also a heatmap of the presence of each in each sample. This 

is particularly useful for readers who are interested in finding if certain groups of samples are 

missing the same gene or not. All of this is performed using the R packages dplyr and ggplot2 

(tidyverse.org). 

 

Roary is ran with default parameters, with the option to create a multi-gene alignment 

switched on. This is performed using PRANK278. The multi-gene alignment creates a multiple 

sequence alignment (MSA) of each gene. These MSA FASTA files are what are passed into the 

sequence diversity steps (Tajima’s D and Shannon entropy). 

10.3.3.5 Translation and filtering of the data 

Immediately following annotation with Roary, the reference pangenome genes are translated 

to amino acids using the Biopython SeqTools module92. Then extraneous sequences are 

removed. Extraneous sequences are ORFs that are unlikely to code for whole proteins 

(determined here by sequences less than 20 amino acids long).  

10.3.4 Subcellular location annotation 

The reference sequence taken from Roary is then passed into Loctree3256 for subcellular 

localisation prediction. Subcellular localisation helps the user in assessing the role and 

function of a protein, as well as helping inform if it is likely to interact with the immune 

system. Loctree3 makes use of a support vector machine to classify genes into localisations 

based on known gene’s gene ontology (GO) annotation. The output file, containing the 

highest probability location and its likelihood scored are parsed with a Python 3 script and 

read into a TSV file. 

Loctree3 was chosen as it was shown to be more performant than its competitors, including 

Cello279, PSORTB280, WOLF-PSORT281 and YLoc282. Again, it was also selected because it comes 

supplied with a Docker container installation for local users and has been demonstrated to be 

able to run on a local desktop machine, opening it to local users. 
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10.3.4.1 Sequence diversity measures 

10.3.4.1.1 Tajima’s D 

There are several tests for evolutionary selection. Perhaps the most popular is Tajima’s D 147.  

As discussed earlier, Tajima’s D is calculated as follows: 

𝐷𝐷 =  
𝑑𝑑

�𝑉𝑉�(𝑑𝑑)
 

Where d is the difference in two methods of quantifying diversity, the number of segregating 

sites minus the number of mutations outright and 𝑉𝑉�  represents the variance. The number of 

segregating sites is the number of bases in the set of sequences that have more than one DNA 

base on them. 

There are currently several tools that calculate Tajima’s D already. However, none were 

suitable for being included in the RECIPIENT pipeline. Most implementations required some 

degree of conversion of the sequence data into different formats. Two leading examples are 

vcf-tools which requires the FASTA file to be converted to variant call format (VCF) format 

and  DendroPy283 requires the data to be converted into some form of phylogenetic data 

structure; usually a nexus file or a Newick tree graph. Some other leading population genetics 

softwares like DivStat284, MEGA285 and DnaSP286 accept FASTA format directly, but require 

installation of a large package that can only be accessed by a GUI meaning that it is 

inappropriate for automated analysis. 

With this in mind, the Tajima’s D was calculated with a custom Python 3 script to reduce run 

time, simplify error reporting and aid transparency as the script can be packaged with the 

software allowing the user to read the source code. The script reads a FASTA file, calculates 

the number of mutations and segregating sites and estimates the variance before calculating 

D. 

The number of segregating sites is calculated by the snippet below:  
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def _calculate_segregating_sites(sequences): 

 

    combos = combinations(sequences, 2) 

    indexes = [] 

    for pair in combos: 

        seqA = pair[0] 

        seqB = pair[1] 

        for idx, (i, j) in enumerate(zip(seqA, seqB)): 

            if i != j: 

                indexes.append(idx) 

 

    indexes = list(set(indexes)) 

    S, n = len(indexes), len(sequences) 

    denom = 0 

    for i in range(1, n): 

        denom += (float(1) / float(i)) 

    return float(S / denom) 

 

The calculation of segregating sites makes use of the itertools combination function, to 

generate of possible pairs of sequences to be iterated through. Then each pair of sequences 

are checked for differences, the index of these differences is then added to a set object so the 

number of unique sites can be calculated by taking the length of the object. The combinations 

function creates a slight memory burden; however, memory usage was kept below 4 GB for 

10,000 genomes. If a larger dataset would be used, then typically the user would be using the 

dataset in an HPC environment and there is much heavier usage used elsewhere in the 

pipeline.  

The function to calculate the number of pairwise mutations is very similar: 
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def _calculate_pairwise(sequences): 

    """Calculate pi, number of pairwise differences.""" 

    for seq in sequences: 

        if len(seq) != len(sequences[0]): 

            raise("All sequences must have the same length.") 

 

    numseqs = len(sequences) 

 

    num = float(numseqs * (numseqs - 1)) / float(2) 

 

    combos = combinations(sequences, 2) 

    counts = [] 

    for pair in combos: 

        seqA = pair[0] 

        seqB = pair[1] 

        count = sum(1 for a, b in zip(seqA, seqB) if a != b) 

        counts.append(count) 

 

    return(float(sum(counts)) / float(num)) 

 

Variance estimation is the final calculation. Other methods allow for a greater number of 

assumptions about the data, however in aid of simplicity, the variance was assumed to be 

coming from a normal distribution and as such calculated as follows: 

𝑆𝑆2 =
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2

𝑛𝑛 − 1
 

Which was implemented in standard Python 3 to avoid importing any external libraries. This 

led to the final calculation of D. Within the script there were extra methods of error checking, 

for example FASTA files of less than 3 sequences are not calculated, nor are sequences of 
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uneven length. Gapped sequences e.g. those created by an alignment of unequal sequences 

are calculated, where an insert in the multiple sequence alignment is counted as a 

mutation/segregating site against standard DNA bases.  

If it is assumed that the distribution of Tajima’s D scores is Gaussian, then 95% of the data 

falls within the range [2, -2]. This means that as a default RECIPIENT assumes a gene with a 

Tajima’s D > 2 to be undergoing strong negative selection, meaning that the gene sequence 

is being conserved. However D has been shown to vary as a result of sample size287 meaning 

that the user should introspect on their data and assign a cut off relevant to them. This cut 

off is modifiable in the pipeline. 

10.3.4.2 Shannon Entropy 

The aligned sequences are scored for their diversity. Sequence Shannon entropy288 is 

calculated on the aligned DNA sequence of each core gene. Shannon Entropy is essentially a 

measure of information within a given sequence and indicates whether a sequence is diverse 

or not. It is defined as: 

𝐻𝐻𝑛𝑛(𝑝𝑝𝑖𝑖,𝑝𝑝1,𝑝𝑝2 … ,𝑝𝑝𝑛𝑛) = −� 𝑝𝑝𝑖𝑖 log𝑏𝑏 𝑝𝑝𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

Where n represents the number of possible states a value can take, in this case it is fixed to 4 

(representing the 4 DNA bases; A, T, G, C); 𝑝𝑝 is their probability of occurrence and 𝑏𝑏 is the 

logarithmic base of the user’s choosing. In this case we have implemented it at log base 2. 

Shannon Entropy is available in a number of different formats, however again in the aim of 

simplifying the conversion of file formats, a Python 3 script was generated. It read in each 

sequence in a FASTA file, calculates the entropy at a given position and iterates through every 

position in the sequence aligned FASTA file: 
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def shannon(column): 

    dna_bases, M = set(column),len(column) 

    entropy_list = [] 

    # Number of residues in column 

    for base in dna_bases: 

        number_of_bases = column.count(base) 

        probability = number_of_bases/float(M) 

        entropy = probability * (math.log(probability,2)) 

        entropy_list.append(entropy) 

return -(sum(entropy_list)) 

 

This is then averaged across the entire sequence to give the entropy of the sequence. 

10.3.4.3 Structural profiling 

In order to ascertain more information about the protein, coded for by each gene, they are 

searched against all of the sequences found in the PDB. In order to do this, first the PyPDB 

API289 was used to get a list of all PDB files found in the PDB at the time of analysis. These IDs 

were used to create the relevant link to the FASTA file (for example 

https://www.rcsb.org/fasta/entry/<PDB_FILE>) which was the downloaded using the Linux 

package Wget (https://www.gnu.org/software/wget/). Upon completion these files were 

combined to make one FASTA file. 

In order for these sequences to be searched against, the DIAMOND aligner290 was used to 

create a database to search against. DIAMOND was chosen for its speed in performance, it is 

up to 20,000 times quicker than BLAST, whilst maintaining comparable performance in 

alignment. The database was created using default parameters. Then, the reference protein 

sequence of each gene in the pangenome was searched against the database, using a 

BLOSUM62 matrix and the highest sensitivity alignment.  

The highest scoring output based on percentage identity (or “pident” as it is referred to in the 

software) was then taken forward for analysis, assuming this was above a cut off of 98% 

similarity. 

https://www.rcsb.org/fasta/entry/%3cPDB_FILE
https://www.gnu.org/software/wget/
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The corresponding PDB file is then parsed from the ID of the DIAMOND output and 

downloaded using wget. The corresponding matching chain is then also extracted in the same 

way using a Python 3 script. 

From here the PDB file is passed into the BioStructMap259 package, where a number of 

parameters are calculated. These include the Kyte and Doolittle index of hydrophobicity; the 

normalised flexibility, the Hopp and Wood hydrophilicity; the Emini surface fractional 

probability and the Janin interior to surface transfer energy scale. These results are somewhat 

arbitrary as they are aligned against potentially a slightly different protein sequence, however 

they may prove useful in identifying specific sites. These results are then written to a PDB file 

where the parameters for each residue replace the B-factor value. This is a common method 

for visualising parameters over the residues in a protein structure. Due to many users having 

a preferred visualisation software, the output is a PDB file and not an image, allowing the user 

to create publication quality images using PyMOL91, CCP4MG90 or Chimera100. 

10.3.4.4 Physiochemical properties 

As well as structural parameters, the sequence level data is used to calculate physiochemical 

properties. This is done using the Peptides258 package in R. This is done by passing the 

reference sequence from the pangenome into a text file. The exact scores are shown in Table 

6. 

The physiochemical parameters are taken as the mean across the entire protein sequence to 

aid user readability, as the output document would be too large otherwise and would detract 

from readability for the user. 

THMM is also used to predict transmembrane helices. Transmembrane helices are often 

conducive to a protein being difficult to purify experimentally, this is not advantageous to 

vaccine design291. THMM uses an HMM to detect motives associated with transmembrane 

helixes and predict sequences likely to contain them. 

Molecular weight is also counted for each reference sequence using the Biopython ProtParam 

module. 
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Table 6 A list of the parameters used in the physiochemical property analysis, along with a description of what they are and 

the reasoning of why they are included. 

Parameter Description Reasoning 

Juretic 

hydrophobicity 

Hydrophobicity scale reasoned 

through preference function 

Important for stabilisation of protein for 

vaccine 

PP1 PCA parameter based on polarity Important for stabilisation of protein 

transport 

PP2 PCA parameter based on 

hydrophobicity 

Important for stabilisation of protein for 

vaccine 

PP3 PCA parameter based on hydrogen 

bonding 

Hydrogen bonding propensity is 

important for antigen recognition 

Kidera factor 1  Helix formation Shown to be descriptive of TCR and 

Antibody recognition  

Kidera factor 2 Side chain size Shown to be descriptive of TCR and 

Antibody recognition  

Kidera factor 3 Extended structure preference Shown to be descriptive of TCR and 

Antibody recognition  

Kidera factor 4 Hydrophobicity Shown to be descriptive of TCR and 

Antibody recognition  

Kidera factor 5 Double bend preference Shown to be descriptive of TCR and 

Antibody recognition  

Kidera factor 6 Partial specific volume Shown to be descriptive of TCR and 

Antibody recognition  

Kidera factor 7 Flat extended preference Shown to be descriptive of TCR and 

Antibody recognition  

Kidera factor 8 Occurrence in alpha region Shown to be descriptive of TCR and 

Antibody recognition  
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10.3.4.5 Immunological 

A number of immunological parameters are calculated. Instead of allowing the user to specify 

their HLA alleles of interest. The softwares netMHCpan253 and netMHCIIpan292. The 

netMHCpan family use neural networks to predict whether a peptide will not bind MHC, bind 

weakly or bind strongly. By default, it does so across a range of HLA alleles that are said to be 

representative of the wider population, therefore avoiding the lack of broad applicability in 

some RV methods. A python script was generated to parse the outputs and count the number 

of strong and weak binders for each gene and read them to a TSV file.  

Similarly, proteasomal cleavage was predicted for the peptides using a similar method 

employed by netChop255. The output was also cleaved such that the number of cleavage sites 

was predicted as well as counting the peptides cleaved. This was done using a Python 3 script. 

Finally linear B-cell epitopes were predicted using Bepipred-2152. Like above, this also employs 

a neural network method to predict residues which will be recognised by B-cells in a linear 

fashion. A python 3 script was used to parse the output of the number of epitope residues 

per gene and was outputted into a TSV file. 

The percentage of conservation of each antigen was also calculated. The pangenomic 

reference sequence was used to predict MHC I and II and B-cell binding. The epitopes 

Kidera factor 9 pK-C Shown to be descriptive of TCR and 

Antibody recognition  

Kidera factor 10 Surrounding hydrophobicity Shown to be descriptive of TCR and 

Antibody recognition  

Z1 Lipophilicity Membrane transport 

Z2 Steric properties  Spatial presence/availability of residues 

Z3 Electronic properties Charged pockets important for 

interaction 

Z4 electronegativity Important for transport 

Z5 electronegativity Important for transport 
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predicted by this were then taken and matched to their corresponding sites in the alignment 

file containing individual samples. For MHC binding prediction a percentage was calculated 

for how many samples had the exact same matching peptide sequence. For B-cell epitopes 

this was calculated on a residue-by-residue basis as some linear epitopes could long (e.g. >50 

amino acids in length) so calculating their conservation across the whole site would be 

difficult. 

10.3.4.6 Gene essentiality and virulence factor identification 

A FASTA file of essential genes was downloaded from the Gene Essentiality Database261, as 

was one of virulence factors from the Virulence Factor Database262. Using the same process 

as described in 10.3.4.3 these two DNA databases were converted into a DIAMOND database, 

before the original DNA reference sequences in the pangenome were searched for. If there 

was a match with 98% similarity the gene was determined to be essential or virulent, 

regardless of the species of origin. The species was ignored because there is no guarantee 

that the other is using one particular species or subspecies and also that confuses user 

interpretation as to some extent this is dependent on how well annotated the databases are 

in the first place. 

10.3.4.7 Outputs 

Throughout the running of the pipeline, Nextflow automatically copies the results of each 

process into a parent directory, meaning that the user is able to explore the raw data 

themselves. On top of this, the tabulated data is read into R where it is used to generate a 

summary document of the parameters using Rmarkdown. The data summarised in the 

document are the Tajima’s D; the predicted MHC I and I binding percentage; proteasomal 

cleavage; the physiochemical properties discussed in 10.3.4.4; the subcellular location 

prediction and the presence in the core genome.  

The above data are both plotted using the ggplot2 library and also summarized both as a 

master document with interactive tables in the Rmarkdown document using the DT library, 

as well as a hard-coded output in TSV format. The Structure profiled PDB files are left out of 

the summary document as it is difficult to get a production ready image without prior 

knowledge about the protein. Instead, the output gives a set of PDB files with their B-factor 

overwritten with the scores of each analysis.  
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 BENCHMARKING 

Benchmarking was performed across all of the four datasets. This was done in order to 

demonstrate the scalability of the tool in terms of genomes analysed. On top of measuring 

outright usage in CPU usage, the Nextflow tracing feature, which tracks CPU, I/O and RAM 

usage across each process was also used to identify bottlenecks. 

The tool was timed using 40 cores on multithreaded processes, with a total of 15 jobs 

available at one time. It was benchmarked on the Advanced Research Computing @ Cardiff 

University (ARCCA) Raven supercomputer.  

 AVAILABILITY AND LICENSING 

The RECIPIENT pipeline is available at https://github.com/whalleyt/recipient. It is released 

under the GNU GPL V3 license. Where possible the tool makes use of Singularity containers. 

Due to licensing constraints to tools affiliated with the Technical University of Denmark, 

some of these tools have to be downloaded. If they are downloaded and the license is 

agreed for by the user, they are able to use the Singularity recipe scripts to generate their 

own Singularity containers as part of the pipeline at 

https://github.com/whalleyt/singularity_recipes  

https://github.com/whalleyt/recipient
https://github.com/whalleyt/singularity_recipes
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11 RESULTS: RECIPIENT- A PIPELINE FOR PANGENOME REVERSE 

VACCINOLOGY 

 EPEC 

11.1.1 Pangenome identification 

Roary predicted that the core and soft core pangenome was accounted for by 3542 of the 
total 13,698 available genes (Figure 1). The soft core accounted for 1243 genes and the core 
accounted for 2299 genes. However, only genes known to be specific to EPEC, as discussed 
in 9.3 were considered to avoid targeting commensal E. coli genes. 

 

The EPEC pangenome creation was not successful in fully identifying different key EPEC 
genes. For example, some the gene products of the LEE locus (discussed in 9.3) were not 
successfully identified. Their presence in the pangenome is summarised below in Table 7. 
The Prokka pipeline was unable to identify several genes encoded for by LEE, namely EspA, 
EspB, EspD, EspF, EspG, EspH and EspZ, however EspC, EspP, Tir and Map were identified.   

This was not rectified by any parameter changes during genome annotation and 
pangenomic analysis, including specifying the databases used by Prokka using the --Genus 

 

Figure 39 The identification of pangenome components corresponding to the EPEC genomes. A. shows a pie chart of the categorisation of the 
pangenome into the core, soft core, shell and cloud genome. B.) shows a histogram of the percentage a given gene is present across all 
genomes. 
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and –Species parameters, nor was it affected by raising and lower the E value parameter, 
the parameter used to determine a similarity cut off in BLAST searches. A second group of 
EPEC genomes from a study by Hazen et al.200 was downloaded (accession numbers can be 
found in supplementary table S6) and the same issue arisen. Basic QC was performed: 
Kraken2 was used to check for contamination, MASH k-mer distance was used to assess 
genomic distance between samples and SQUAT was used to assess the quality of the 
assemblies and there were no issues discovered with the quality of the assemblies293.  

Table 7 Identification of Genes known as EPEC effectors, NA represents the Prokka pipeline being unable to annotate the 
gene, whilst any numeric values represent the percentage of genomes the gene was found to be in. 

gene presence in 

pangenome 

(%) 

EspA NA 

EspB NA 

EspC 28.1 

EspD NA 

EspF NA 

EspG NA 

EspH NA 

EspP 22.8 

EspZ NA 

Tir 49.1 

Map 100 

 

However, there were multiple genes found on the LEE locus that were successfully mapped 
to the pangenome, albeit in lower levels than expected. The gene encoding for the Map 
effector protein was present in 100% of the samples, meaning that it was the only core gene 
present in the pangenome coming from the LEE locus. This is most likely a reflection of the 
quality of the Prokka annotation, so the other LEE gene products were still considered to be 
of interest, however this denotes an obvious flaw in working with lesser studied genomes, 
as the user may not have the prior knowledge necessary to make such a decision.  
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Of the EAF encoded genes, only BfpB was successfully annotated. It was present in 8.8% of 
the EPEC genomes. Due to the distinction of typical and atypical EPEC, this was not expected 
to be a member of the core genome. The major structural subunit of the BFP, bfpA was not 
identified at all. The second operon encoded on the EAF plasmid, the plasmid encoded 
regulator (Per) has three gene products perA, perB and perC and none were identified by 
Prokka. It has been noted that Prokka is not optimal at detecting plasmids from genome 
assemblies using the default settings (https://github.com/tseemann/prokka/issues/319). A 
wider issue surrounding plasmids is that a number of de novo assembly pipelines are not 
optimised to detect plasmids. For example, SPAdes294, the software used to assemble the 
EPEC FASTA files has a sister software specifically to aid in detecting plasmids295. 

Finally, the annotations were checked for the presence of Nles. Two were successfully 
identified and annotated by Prokka. NleF was present in 64.9% of the pangenome and 
EspFU was present in 49.1% of the pangenome.  

11.1.2 Tajima’s D 

Tajima’s D was calculated for all genes in the EPEC pangenome. A number of key EPEC genes 

appeared to be undergoing negative selection based on their Tajima’s D value (Table 8). 

Here a positive D value indicates negative selection.  

Table 8 Tajima's D values for successfully annotated members of the EPEC effectors. 

gene Tajima's 

D 

espC 0.2 

espFU 24.7 

espP 16.8 

Tir 20.2 

Map 3.8 

BfpB 0.0 

NleF 4.6 

 

With the exception of two genes, all the successfully annotated effectors were undergoing 

negative selection based on their Tajima’s D, meaning that there was a scarcity of rare 

alleles. There appears to be no other attempts in the literature at measuring Tajima’s D in 
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EPEC genes. However, given the effector function of several of these genes, one might 

expect conservation and lack of rare alleles in the functional areas of the effectors.  

11.1.3 Immune response prediction 

As discussed earlier in Chapter 9 there are a multitude of adaptive immune responses from 

EPEC. Therefore, responses from CD8 T-cells, CD4 T-cells (by proxy by means of MHC I and II 

binding affinity) and B-cells were considered. The total number of 9-mer peptides predicted 

to bind MHC class I; the total number of 15-mer peptides predicted to bind MHC class II and 

the total number of unique peptides predicted to be linear B-cell epitopes as well as the 

total number of amino acids predicted to be part of the paratope (Table 9). A number of the 

potential genes of interest had a strong predicted immune response.  

 

Table 9 The total number of good MHC I and II binders, the total number of linear B-cell epitopes, the total number of 
Amino acid residues predicted to be part of the paratope and the sequence length of the potential target gene. 

 

 

 

 

 

 

 

 

 

 

 

Interestingly, the preference of MHC class I to MHC class II epitopes was relatively evenly 

split between the 7 genes, with 4 having more predicted MHC class II peptides and the 

remaining 3 having a stronger predicted preference for MHC class I. Despite some genes 

gene no. 

good 

MHC I 

binders 

no. 

good 

MHC II 

binders 

no. B-

cell 

epitopes 

total no. 

residues 

available 

B-cell 

sequence 

length 

espC 15 37 27 1007 1242 

espFU 2 0 1 200 206 

espP 16 35 23 1073 1326 

Tir 4 16 16 389 537 

Map 7 4 12 81 124 

BfpB 14 10 12 363 538 

NleF 3 7 9 118 188 
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having relatively few good MHC binders predicted, these MHC binders were very highly 

conserved across the pangenome, suggesting that there was not a selection pressure to 

diversify. There were a total of 172 peptides predicted to be good MHC I or II binders of 

those only 13 were not conserved across every sample in the EPEC cohort based on a cut-off 

of >80% of the sequences containing that peptide. Based on the EPEC cohort at hand, this 

suggests that a CD4 or CD8 T-cell mediated immune response to these predicted peptides 

would be well conserved across all samples.  

EspA, B and D all had known epitopes in the IEDB, however none from espC, FU and P were 

found. This could warrant further investigation. There were also no known epitopes mapped 

to BfPB, NleF or Map. One Tir peptide LTGGSNSAVNTSNNPPAP has already been 

described296, but the sequence was not found in any of the sequences for Tir suggesting that 

this peptide is not well conserved. 

11.1.4 Subcellular localisation prediction 

The EPEC dataset and the set of known EPEC effectors gave a good chance to validate the 

effectiveness of subcellular localisation prediction on an observational level. These effector 

proteins are all relatively well-described and as such, have had their subcellular localisation 

described in all but one case (Map) as shown in Table 10. 

Only the annotation for EspFU, and Tir were successfully annotated such that they matched 

the Uniprot annotation. The nature of RECIPIENT means that it is designed such that the 

user may not be working on a well-annotated pathogen, nor are they able to manually 

corroborate all of their predictions. However, it demonstrates a potential need for non-

predictive methods for assigning subcellular localisation. 

Table 10 Subcellular localisation as described by experimental validation, taken from Uniprot and LocTree3 subcellular 
localisation prediction. 

gene localisation 

prediction 

experimentally observed 

localisation 

espC Unknown Secreted 

espFU Host 

Associated 

Secreted, host cytoplasm 
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espP Unknown Cell surface, secreted, 

periplasm 

Tir Host 

Associated 

Secreted, host cell membrane 

Map Cytoplasmic Not annotated 

BfpB Unknown Outer membrane 

NleF Cytoplasmic Secreted, host cytoplasm 

 

 SALMONELLA  TYPHI 

Unlike EPEC, which had a small number of known effectors which distinguished it from other 

commensal strains, S. Typhi is a member of a wholly pathogenic genus meaning that a 

different approach to target identification was needed. Whilst the small number of EPEC 

effectors meant that they could be searched for based on a priori knowledge, S. Typhi’s 

entire genome could be viewed as a potential target. This meant that candidates were 

filtered based on their essentiality to the pangenome, their selection based on Tajima’s D, 

subcellular location and predicted immunogenicity. As discussed in chapter 9.2, there is a 

strong CD4 T-cell mediated response to S. Typhi, so preference was placed on MHC class II 

binding predictions.  

 

11.2.1 Pangenome identification 

The pangenome of S. Typhi showed a similar structure to the pangenome of EPEC. The 

majority of genes fell either into the cloud pangenome or the core genome (47.2% and 

45.2% respectively) meaning that most genes were either found in > 99% of the 785 samples 

or < 15% of them (Figure 40). 
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Figure 40 The identification of pangenome components corresponding to the S. Typhi genomes. A. shows a pie chart of the 
categorisation of the pangenome into the core, soft core, shell and cloud genomes. B. shows a histogram of the percentage 
a given gene is present. 

The strong polarisation of the pangenome to being either core or cloud meant that a large 

number of genes could be discounted straight away as they were so rarely found across the 

pangenome that any targeting of them would be ineffective. Another factor that limited the 

scope of the pangenome annotation was that a large number of the genes annotated were 

of unknown function and were annotated as hypothetical genes, predicted through 

homology or ORF prediction. The majority of these also products had no gene label attached 

to them, meaning that they were predicted by functional group. There were 8915 annotated 

genes annotated by Prokka, of which there were only 609 that were not hypothetical genes.  

Genes were filtered on the genome annotation and the presence of the gene in the 

pangenome. Any genes labelled “hypothetical” or “putative” were discounted. Furthermore, 

a cut off of 90% presence in the pangenome was thresholded. This left 3296 potential genes 

of interest.  
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11.2.2  Tajima’s D 

Tajima’s D was widely distributed among the candidate genes. As the kernel density plot 

shows in Figure 41, most genes were not undergoing positive or negative selection; 2173 of 

the genes’ D values were such that they satisfied |D| < 2 meaning that they were not 

undergoing positive or negative selection. Of the remaining genes, 207 were undergoing 

negative selection (positive D) and 154 were undergoing positive selection (negative D). 762 

genes were either too short or were not fully aligned, meaning their D calculation was 

skipped. 

 

Figure 41 Kernel density plot of Tajima’s D for all genes in the S. Typhi pangenome. 

Therefore, a cut off of D > 2 was determined in order to filter out genes not undergoing 

negative selection, leaving 207 genes. 

11.2.3 Subcellular localisation prediction 

The outer membrane of Salmonella is thought to possess more antigens. This does not 

appear to be mediated through antigenicity directly, meaning that searching solely for good 

MHC binders would not find these targets. Therefore, gene products predicted to on the 

outer membrane were preferentially searched for. Based on the annotation predictions 
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“extracellular”, “outer membrane”, “flagellar” “T3SS”, “host associated” and “fimbriael” 

were considered. The breakdown of subcellular location for genes found in > 90% of the 

pangenome, not assigned hypothetical and with D > 2 is described in Figure 42.  

 

Figure 42 Subcellular location prediction by psortB for the filtered list of candidate genes. 

 

Once filtering of the six subcellular localisations described above was applied then 15 

potential genes of interest remained. Of the 15 extracellular genes predicted by psortB, 2 

were predicted to be from the T3SS, 1 was predicted to be fimbriael and the remaining 12 

were predicted to be from the outer membrane. These, along with their manually collected 

annotation from Uniprot are summarised in Table 11 predicted and manually curated for 

the 15 proteins predicted to be on the outer membrane for Salmonella Typhi, following 

filtering on pangenome presence and Tajima's D. All were the same as their manual 

annotation.  

As discussed in the psortB paper280, precision (e.g. the ratio of true positives to the total 

number of true and false positives) is high, meaning that while performance may be poor in 
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assigning a category (e.g. lots of “unknown” predictions) there is a relatively low amount of 

false positives.  

 

Table 11 predicted and manually curated for the 15 proteins predicted to be on the outer membrane for Salmonella Typhi, 
following filtering on pangenome presence and Tajima's D. 

gene subcellular 

localisation 

prediction 

manually curated subcellular location  

sefA Fimbriael Fimbriael 

bamD Outer 

membrane 

Outer membrane 

Caf1A Outer 

membrane 

Outer membrane (multi-pass) 

fimD Outer 

membrane 

Outer membrane 

kdgM Outer 

membrane 

Outer membrane 

lptE Outer 

membrane 

Outer membrane 

ompF Outer 

membrane 

Outer membrane (multi-pass) 

pldA Outer 

membrane 

Outer membrane (multi-pass) 

rcsF Outer 

membrane 

Outer membrane; lipid anchor 

sadA Outer 

membrane 

Outer membrane; cell surface 

ttgl Outer 

membrane 

Outer membrane 
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yehB Outer 

membrane 

Outer membrane 

yfaL Outer 

membrane 

Outer membrane; secreted; cell 

surface 

yscJ T3SS T3SS 

yscU T3SS T3SS 

 

11.2.4 Predicted MHC binding 

As discussed in chapter 9, there is a wealth of literature suggesting there is a strong CD4 T-

cell response to Salmonella infection. Therefore, predicted MHC class II binding prediction 

was used preferentially over MHC class I or B-cell mediated response. The MHC binding 

prediction was calculated based on the pangenome reference sequence, that is, a single 

sequence taken from the collection of sequences of that gene that are representative of all 

of them. Therefore, the presence of each peptide was counted across each individual 

sample. The intention of this was to give an indication of how well conserved that particular 
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site was. This is summarised in Figure 43, where a peptide was considered conserved should 

it appear in 90% of its parent sequences. 

 

Figure 43 43 The number of predicted good MHC class II binders plotted against the total number of well-conserved good 
MHC class II binders, based on a binary classification of the peptide being found in >80% of all sequences for a given gene. 

Apart from 3 genes, which no good MHC class II binders (yfaL, sefA and rcsF) the remaining 

genes had all of their predicted MHC class II binders highly conserved. yfaL, sefA and rcsF 

were then removed. The percentage of conservation for each individual peptide of the 

remaining genes is shown in Figure 44. Every peptide is well conserved (present in greater 

than 80% of sequences) and a large number (76 peptides out of 112) were very highly 

conserved (present in greater than 99% of sequences).  
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Figure 44 Percentage conservation of each peptide predicted to strongly bind MHC class II from the Salmonella Typhi 
pangenome. 

 All of the remaining proteins satisfy a number of conditions which would be conducive to 

the generation of an immune response. They are strongly conserved in the pangenome, 

they are relatively well-understood in that they are known genes with meaningful 

annotations; they have a number of conserved peptides which are predicted to bind MHC 

class II; they come from proteins undergoing negative selection meaning that they are 

unlikely to diversify, and they are proteins which come from the outer membrane of 

Salmonella meaning that they are from a preferentially targeted site. I will now discuss any 

pre-existing literature surrounding these genes as targets for immune response. 

There is little information known about any immune response to bamD. Other RV pipelines 

have suggested members of the bam family to be good potential targets (for example bamA 

in Moraxella catarrhalis297 and bamC in Neisseria meningitidis298). However, outside of that 

there is little information pertaining to whether it elicits an immune response. 

Caf1A is an outer membrane usher protein, which aids in localising the capsular antigen caf1 

which is an important mediator in the inhibition of phagocytosis in Yersinia pestis299. Its role 

in Salmonella Typhi has not been well described. It has been shown that over-expressing 
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Caf1 is able to attenuate Salmonella Typhimurium300 but this is not thought to be immune 

modulated and this was performed by a vector being transferred, so there is still no 

evidence that it is expressed in Salmonella. 

FimD is a member of the fim fimbriael cluster. Together the fim cluster is involved in the 

biogenesis and structure of type 1 fimbriae (T1F). T1F is involved in adhesion, leading to the 

recognition and binding of high-mannose oligosaccharides which are carried and expressed 

on the host surface. T1F is then used to colonise the host cell. FimD is involved in 

chaperoning the T1F complex301. Other RV methods have also predicted fimD as a potential 

immune target in Acinetobacter baumannii302 and Acinetobacter nosocomialis303. Again, 

however no functional insights have been followed up. 

kdgM appears to have very literature in Salmonella specifically. Functionally, most 

information on kdgM is based on information gained studying Erwinia chrysanthhemi where 

it aids in the secretion of pectinases, which degrade the pectin polymers found in plant cell 

walls304. Thus, it is unlikely to be active during infection of human cells. 

 LptE is a protein that aids in the formation of the LptD, a protein which in turn is involved in 

the transport of LPS. It is found in most Gram negative bacteria305. LptE has not been 

directly implicated in any immunological studies or RV studies. However, lptD has been 

predicted in a number of Reverse vaccinology pipelines297,306,307. Also, in Vibrio species lptD 

has been implicated in being a potential vaccine antigen due to its high immunogenicity308. 

The exact mechanism of this remains unclear, but due to lptF’s close proximity in interacting 

with lptD it may also be a fruitful target. 

OmpF has been shown to be a highly protective antigen which is immunogenic and can 

stimulate both an innate and adaptive response without the need for any exogenous 

adjuvants. Response to them appears to follow a Th1/Th17 helper cell profile309. It has also 

been shown that ompF successfully could induce a sustained immune response in 

Salmonella Typhi310  

PldA has not been described in Salmonella with any detail. In Campylobacter coli it has been 

shown to play a role in cell-associated haemolysis, destruction of red blood cells. It has been 

shown that LPS production is dependent on pldA. This is a result of pldA generating fatty 

acids in the outer membrane of the cell, these fatty acid products are processed where 
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eventually they are used to produce LPS311. This is found in a large number of Gram negative 

bacteria meaning that it is possible that immune targets to pdlA would impact commensal 

bacteria. A number of the genes were found in non-Salmonella species, many of which were 

commensals (e.g. E. coli). 

Table 12 Table of the peptides predicted for pldA and whether they are unique to Salmonella or are found in other species. 

gene unique to Salmonella 

WNRLYTRLMAENGNW No 

EVKFQLSLAFPLWRG No 

LKIGYHLGEAVLSAK No, but only matches are in pathogenic 

species 

KIGYHLGEAVLSAKG Yes 

DEVKFQLSLAFPLWR No 

IGYHLGEAVLSAKGQ Yes 

SWNRLYTRLMAENGN No 

NRLYTRLMAENGNWL No 

 

As shown in Table 12 most of the peptides predicted in pldA were found in other species. 

However, 2 were unique to Salmonella and 1 was only found in Shigella, a pathovar of E. 

coli. These 3 peptides still could be involved in conferring immunity to Salmonella Typhi. 

The sadA autotransporter is known to illicit an antibody mediated response via IgG312. 

Currently a T-cell mediated response has not been demonstrated. Linear B-cell epitope 

prediction using Bepipred did show that there were a large number of linear epitopes on 

sadA; with only 15 amino acids not being predicted to be part of a linear epitope, suggesting 

it is highly immunogenic. 

ttgI is a gene encoded for a toluene efflux protein, it is involved in solvent tolerance in Gram 

negative bacteria. There is no external evidence to suggest that it is immunogenic. It is 

found in a number of Gram negative bacteria. As Table 13 shows none of these peptides are 

unique to Salmonella.  



133 
 

 

Table 13 Table of peptides predicted for ttgI and whether they are unique to Salmonella or are found in other species. 

gene unique to Salmonella 

LMAFLQQDALHLSDL No 

ESSLSSIDAAKAAFY No 

VTARIGAVKAREAEQ No 

MAFLQQDALHLSDLF No 

IESSLSSIDAAKAAF No 

TARIGAVKAREAEQE No 

NLMAFLQQDALHLSD No 

 

 yehB is a protein inferred from homology, based on similarity to a protein found in E. coli 

(https://www.uniprot.org/uniprot/P33341). Due to having no functional characterisation, 

being found in non-pathogenic bacteria species and having no literature surrounding 

immunogenicity it was not considered further.  

yscJ and yscU are both involved in the formation of the Ysc-Yop T3SS, allowing Yop effector 

proteins to be injected into the host cytosol where they proceed to interfere with host 

innate immune response313. There appears to be no direct characterisation of this system in 

Salmonella nor has there been any discussion on the immunogenicity of its components. 

11.2.4.1 Verification of known targets 

There are a number of known genes that have epitopes that cause an immune response in 

response to S. Typhi infection. To this end the genes HlyE314,  AhpC315, EutC315 and ompC316 

have all been shown to illicit a CD4 response. They did not appear in the final list of 

peptides, so in order to gain further insights into RECIPIENT’s strengths and weaknesses 

they were searched for in order to try and gain a rationalisation for how to best channel the 

output information. 

https://www.uniprot.org/uniprot/P33341
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OmpC was filtered out because it is undergoing positive selection (D = -0.2). It has a 

relatively low number of predicted MHC class II antigens at 4, but they are all 100% 

conserved across the pangenome. The ompC gene itself was found in 100% of the genome 

and it was successfully predicted to code for a protein that would localise to the outer 

membrane. All these facets are positives that would suggest ompC would make a good 

immune target. The fact that ompC is not under strong purifying selection but still has 

conserved MHC II epitopes gives cause for a sliding window Tajima’s D to be incorporated 

and for preservation of each peptide to be calculated and used as a filtering step with 

preference over Tajima’s D, however this step was computationally expensive. 

A similar reason led to the exclusion of ahpC and eutC, both were annotated as cytoplasmic 

proteins which are less likely to illicit an immune response, however as discussed, while not 

as strongly immunogenic as the outer membrane proteins, they are still capable of inducing 

an immune response.  

 SARS-COV-2 DATASET 

11.3.1 Pangenome identification 

For the SARS-CoV-2 dataset, 46 targets were identified, with most consisting of gene families. 

Of these 46 targets, only 8 were conserved enough to be considered “shell” genes in the 

pangenome. It has previously been noted that Prokka was first used as a bacterial annotation 

tool. Whilst Prokka is still performant on bacteria it is outperformed by other virus specific 

annotation softwares, for example Vgas317 and VAPiD318. 

11.3.2 Tajima’s D and immune prediction 

Only Tajima’s D, MHC I and II binding and BCR epitopes were predicted as there is no tool for 

the prediction of viral subcellular location. Two genes were undergoing strong negative 

selection according to their Tajima’s D;  gene 1a, the protease of SARS-CoV-2 and gene 9b, 

corresponding to ORF1ab.  
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Table 14 the 2 identified conserved genes with strong negative selection 

Gene D BCR 

epitopes 

MHC I 

good 

binders 

MHC II 

good 

binders 

9b 7.092023 0 7 0 

1a 2.228861 98 109 108 

 

Interestingly, gene 1a has no annotation in Prokka, but the DIAMOND search step revealed 

that there was a 100% match with the protein structure with PDB ID 5RE7, identified as the 

SARS-CoV-2 main protease. The paper remains unpublished at the time of writing. The Prokka 

databases may not have been updated at the time of analysis or alternatively Prokka simply 

did not annotate the sequence correctly. Neither was determined to be essential for survival 

or a virulence factor when scanning against the DEG and VFDB databases. 

Gene 9b had no linear epitopes of at least 5 amino acids in length and had no predicted good 

MHC class II binders. It did however have 7 MHC class I binders. However, none of them were 

well conserved across the pangenome.  

All of 1a’s B-cell epitopes and MHC binders were well conserved. However, there are no 

known immune targets corresponding to ORF1ab in the literature that match those predicted 

by RECIPIENT. A number of B-cell epitopes appear to have been predicted in another in silico 

analysis, however none of these sequences have been made available to be verified319. 

Gene 1a has been discussed previously as a drug target for treatment of COVID-19320, but very 

little exists in terms of immune targeting. The protein is dissimilar to human proteases, 

suggesting that it could possibly be a good immune target321. It has been detected to have 

localised in the nucleus, ER and cytosol of host cells322, suggesting that peptide fragments may 

be presented.  

11.3.3 Structural analysis 

The 5RE7 structure was analysed with Biostructmap. The hydrophobicity and surface 

availability of the residues were calculated in Biostructmap. As Figure 45 shows, there is a 

large pocket of highly accessible and low hydrophobicity on the protease (shown at the top 
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from the reader’s view) centred around residue 83. High availability of this region could make 

it more available to access by antibodies. The low hydrophobicity of the area also means that 

it may remain accessible in solution. The region of availability did not match any of the 

predicted epitopes. 

 

Figure 45 The hydrophobicity (left) and availability (right) of residues in the 5RE7 PDB file. The colours are on a spectrum such 
that red is high and blue/violet are low. 

 

 HEPATITIS B DATASET 

11.4.1 Pangenome annotation 

The Hepatitis B analysis revealed 14 conserved gene families. Of these 14 genes, 2 were 

deemed “soft core” (> 95% coverage but < 99%) genes with others falling into the shell 

category. The summary of the presence of each gene in the pangenome can be found in Figure 

46. The gene annotation for every gene was marked as hypothetical in Roary. To overcome 

this, a BLASTx search was performed using the pan genome reference sequence for each of 

the 14 gene families.  

The pangenome calculation appears to have missed gene annotations in certain genomes. As 

discussed earlier, Prokka was originally designed with bacteria in mind. Due to this, all groups 

were considered in order to avoid removing potentially interesting genes. 
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Figure 46 Percentage presence in the pangenome for each gene group identified by Roary. 

Like the example in 11.3, all the results returned were not annotated as genes, but rather as 

ORFs. Through manual searching, it was found that Group_3 and group_5 are both part of the 

polymerase of the Hepatitis B genome, which has already been targeted in anti-viral 

contexts323 but not by the immune system. Group_1 appears to be HBcAg, the Hepatitis B 

core antigen which is a well-described target for vaccines 324,325. HBcAg is the capsid protein 

of the HBV virus. Group_2 was annotated as the X protein.  

11.4.2 Tajima’s D and immune prediction 

A total of 7 of the 14 pangenome groups were undergoing strong negative selection. 

Immunogenicity predictions for the proteins showed that there was a stronger emphasis on 

BCR epitopes being the mode of recognition for these proteins. The number of MHC binders 

(both class I and II) were low for all groups. Group_3, the polymerase gene was the best 

predicted MHC class I and II target with 11 and 7 predicted epitopes, respectively.  
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Table 15 the 7 strongly selected Hepatitis B gene families, with their Tajima’s D score, the number of BCR epitopes and the 
total number of predicted good MHC I and II binders. The number of BCR epitopes here is the total number of peptides 
longer than 5 amino acids with predicted B-cell receptor binding. 

Gene D 

BCR 

epitopes 

MHC I 

good 

binders 

MHC II 

good 

binders 

group_6 14.1548 1 0 0 

group_1 13.53904 5 3 0 

group_5 10.80408 5 2 0 

group_3 10.46658 8 11 7 

group_2 10.32454 2 0 0 

group_7 9.398233 2 3 0 

 

Groups 1, 3 and 5 had the highest amount of BCR epitopes. Group 1 had 5 individual 

epitopes comprising of a total number of 99 amino acids, group 3 had 8 epitopes totalling 

173 amino acids and finally group 5 had 5 epitopes consisting of 72 amino acids. The 

conservation of each peptide was calculated across the pangenome is described in Table 16. 

Table 16 shows that group 1 had 4 peptides that were well-conserved (here deemed to be 

any percentage > 80%), group 3 had 1 peptide and group 5 had 3.  

Group 1 peptide IDPYKEFGATVE was seen to be a substring of known HBV epitopes based on 

a BLAST search with >90% similarity in the IEDB, however this was only to a T-cell epitope, 

not the predicted BCR epitope. However regions of peptide NTNMGLKFRQLLWF had 

previously been described as an epitope326; as did 

TPPAYRPPNAPILSTLPETTVVRRRGRSPRRRTPSPRRRRSQSPRRRRSQSR327. Neither peptide 

showed a similarity to peptides in other species. 
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Table 16 Each peptide predicted to be a good BCR epitope, the gene corresponding to it and the percentage at which it is 
present in the pangenomic sequences. 

gene peptide % 

conservatio

n 

group_

1 

DIDPYKEFGATVE 87.7193 

group_

1 

RDALESPEHCSPH 3.508772 

group_

1 

VNLEDPAS 14.03509 

group_

1 

NTNMGLKFRQLLWF 82.45614 

group_

1 

TPPAYRPPNAPILSTLPETTVVRRRGRSPRRRTPSPRRRRSQSPRRRRSQSR 80.70175 

group_

3 

KFAVPNLQSLTNLLSSNLSWLSLDVSAAFYHLPLHPAAMPHLLVGSS 88.13559 

group_

3 

SNSRILNHQHGTMQN 3.389831 

group_

3 

EHIIQK 5.084746 

group_

3 

KECFRKLPVNRPIDWKV 93.22034 

group_

3 

QAFTFSPT 94.91525 

group_

3 

LNLYPVARQRP 52.54237 

group_

3 

RMRGTFLAPLP 62.71186 
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group_

3 

VYVPSALNPADDPSRGRLGLSRPLLRLPFRPTTGRTSLYADSPSVPSHLPDRVHFA

SP 

67.79661 

group_

5 

DCEFWPRHTVVPPRKLREVHHESR 100 

group_

5 

NKKNPACNTRRGPRNPD 16.66667 

group_

5 

LEKIDDKGEAV 16.66667 

group_

5 

FTVPELEPPAGKYRPLTLGS 66.66667 

 

11.4.3 Database searching 

None of the samples in Table 15 had any association for genes annotated for essentiality 

and virulence in the DEG and VFDB. However, group_1 did have a high similarity (99.5%) 

match with the PDB 6HTX. Unlike in the SARS-CoV-2 example, there was very few pockets of 

highly available residues, with only one residue at position 146 being highly available. This 

can be seen in the red at the top of Figure 47. This did not link to any predicted B cell 

epitopes or predicted MHC presented peptides. The predicted epitope site DIDPYKEFGATVE 

was found starting at residue 2 in the 6HTX PDB file and did not have a high availability. 

 



141 
 

 

Figure 47 Accessibility of the potential HBV vaccine target predicted by RECIPIENT. Red indicates high availability. 

 PERFORMANCE 

Each of the four datasets analysed were done so using HPC resources at Advanced Research 

Computing Cardiff University (ARCCA). MASH and Roary were run on 40 cores as they required 

a large input: every source FASTA file for MASH and every annotated GFF file for Roary. The 

rest of the tasks discussed were ran on one core. The run times in CPU hours are shown in 

Figure 48. 

As shown below in Figure 48, performance scales with the size of the pangenome dataset. 

There is an initial bottleneck in processing and annotating the genome in Prokka and then 

the creation of the pangenome in Roary; as well as the optional steps of k-mer sketching 

and k-mer classification using Mash and Kraken2 respectively. These processes scale with 

the number of input FASTA files.  

The majority of the steps outside of that are scaled on the size of the genome as from there 

on in each process is acted upon an individual gene using the pangenome reference. 

Processes limited in this way include the MHC class I and II binding, BCR epitope prediction, 

the subcellular localisation prediction and database searches. Tajima’s D, sequence entropy 
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and calculating the conservation of peptides is dependent on both the number of genomes 

and the size of the genome in terms of genes found. 

 

Figure 48 runtime in CPU hours for each of the 4 datasets. Performance roughly scales to the size of the pangenome 
analysed. 
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12 DISCUSSION 

 IMPLICATION TO VACCINE DESIGN 

Vaccine design is a constantly evolving field, requiring vast amounts of technological and 

computational resources as well as biological understanding on the target being vaccinated 

against, the immune response of the host and molecular mechanisms underpinning this 

response. This response is of course complicated by the fact that the target of the vaccine 

(e.g., a virus, bacteria, or cancer) are in a dynamic interplay with the host response. This 

interplay happens on both the individual and population level. 

12.1.1 RECIPIENT and reverse vaccinology 

On the whole protein or gene level RV has truly become a viable option for vaccine design 

efforts with the explosion of NGS technologies. In recent years, the cost has dropped 

significantly and continues to do so (Figure 49).  

 

Figure 49 The cost to sequence a megabase of DNA, adapted from US government statistics 
(https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data) 

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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The abundance of raw data is complemented by a growing stable of different methods for 

understanding pangenomes252,328,329 and population dynamics of pathogens. Specific to 

computational immunology, there is also a growing pool of predictive tools available for 

estimating immune response, be it TCR binding, MHC I and II binding, proteasomal cleavage 

and processing and linear or non-linear B-cell epitope prediction. This is supplemented by 

databases understanding the effectiveness, essentiality, and virulence of genes in 

pathogens261,262. 

All of these technological advances mean that RV provides a genuine methodology to 

predict vaccine targets. RECIPIENT contributes to this field by adding several novel features 

not previously considered in the literature, including estimation of selection pressure by 

means of Tajima’s D and Shannon entropy; structural homology scanning and considering 

the pangenome. Furthermore, this novelty is supported by being designed in a framework 

that prioritises ease of use through pipeline management and containerization.  

Pipeline management and containerisation workflows (discussed in 10.3) are an incredibly 

important facet of bioinformatics project. It allows for the bundling of software packages 

into single purpose environments which are easily shared. It improves tool versioning, 

documentation and the ability in installing software330; as well as improving the overall 

reproducibility of results331. 

The biological interpretation of the test data used in RECIPIENT has also garnered some 

interesting vaccine targets, as well as revealing avenues for further improvements to the 

tool.  

In the prediction of potential Salmonella Typhi vaccination targets a number of targets were 

predicted that could be of interest, however further investigation is needed, either because 

that gene is not well functionally phenotyped or has not been described in Salmonella Typhi 

(or similar model systems, such as Salmonella Typhimurium). 

The Salmonella Typhi pangenome showed a strong amount of polarisation, with a large 

number of genes either being in the core genome (45.2%) or the cloud genome (47.2%) 

meaning that a large number of genes were instantly discarded. After filtering genes on the 

following conditions: 
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1. Presence in the pangenome > 90% 

2. Tajima’s D > 2 

3. Not being annotated as a hypothetical gene/gene product 

4. Subcellular localisation predicted to be “extracellular”, “outer membrane”, “flagellar” 

“T3SS”, “host associated” or “fimbriael” 

this left 15 potential gene candidates, 12 of which had at least one MHC class II predicted 

epitopes considered a “good binder” by netMHCIIpan. In these 12 genes, every peptide was 

conserved in >80% of samples and 67.9% of these peptides were present in >99% of 

samples, showing that the RECIPIENT method found a number of potentially immunogenic, 

conserved peptides. 

The efforts to characterise the genes for which these peptides were predicted demonstrates 

one important caveat of RV approaches, a number of these genes were not well-

characterised in Salmonella Typhi. This is a two-edged sword, one the one hand it means 

that this predicted target is novel and could be an interesting vaccine target. However, on 

the other hand it means that without experimental validation these targets remain 

predictions. 

Some of these predicted peptides warrant further investigation. bamD, caf1A, kdgM, lptE, 

PldA all had little information about their role in immune response to Salmonella. BamD is 

well characterised in Salmonella332, but the remaining genes were not. 

FimD is well-described in Salmonella301. Interestingly, other RV methods have also predicted 

fimD as a possible target in Acinetobacter baumannii302 and Acinetobacter nosocomialis303 

but there are no functional studies. OmpF has been shown to be immunogenic in 

Salmonella309 and is also well-described indicating that both could be investigated further.  

The results on the EPEC pangenome were also interesting. Firstly, the fact that many known 

genes were not annotated successfully in Prokka. Especially in other less understood 

systems, this could lead to potential genes of interest being missed. One way around this 

would be allowing the pipeline to accept fastq reads of the data, along with a reference and 

annotation (e.g., a GenBank file or GTF file) and map directly to this. This would limit 

RECIPIENT to systems that are well described and have a reference genome of sufficient 

quality which could hinder usability.  
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This reference-based method however could lead to enhanced results. This would require 

further testing as Roary is designed to be ran on the output of Prokka, however in principle 

the output should be the same. Alternatively, a tool designed to be ran on with a reference 

genome could be used, such as  NGSPanPipe333.  

A well-annotated reference genome, or an option to supply annotation (for example in 

through a genbank file) would also aid in the annotation of plasmids, which was shown to be 

an issue in 11.1.1. This option would be beneficial for well-described genomes. If a sample 

does not have a sufficiently annotated genome, then the pipeline is dependent on being 

supplied assemblies that were plasmid aware. I believe that performing genome assembly 

as part of the pipeline is too complex to do without prior knowledge of the sample. 

7 genes of interest were shown to have a good immune predicted immune response, either 

by MHC I or II mediated presentation, or by containing linear B-cell epitopes. They were all 

well conserved (present in >80% of samples). However, none have been seen in the IEDB. It 

remains unclear whether this is due to the inaccuracy of the epitope prediction software or 

if they have not been validated yet. 

The HBV and SARS-CoV-2 datasets both demonstrated difficulty in finding good vaccination 

targets for the two viruses of interest. Partially this could be argued that the RV approach 

works well for bacteria due to having a higher number of genes. As will be discussed in 12.2, 

there are several possible avenues to be explored that would increase the effectiveness of 

RECIPIENT in analysing viral targets.  

I believe that the SARS-CoV-2 dataset in particular demonstrates the limitations of 

RECIPIENT. Thanks to a large-scale global effort the number of genomes available of SARS-

CoV-2 is unparalleled (>2 million genomes in the United Kingdom alone) and there is a well-

described pipeline for aligning, annotating and tracking mutations of these genomes (for 

example Datapipe and Phylopipe in the United Kingdom334) whose computational resources 

outstretch those of a single user running RECIPIENT. The pangenome generation is very 

computationally expensive, scaling with the size of the genome being studied and the 

number of genomes; meaning that constructing a pangenome of the vast number of 

sequences of SARS-CoV-2 is not feasible.  
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Moreso, given the small and well-conserved nature of the SARS-CoV-2 genome, the 

pangenome approach may be redundant as one could simply extract all of the gene 

sequences made publically available through these sequencing efforts and proceed with 

downstream analysis directly.  

12.1.2 GPU-accelerated CPL scanning 

CPL scans have an important role in vaccine design. The most obvious being the 

identification of high quality potential epitopes through database driven scans335. However 

there is more depth to the role of CPL scans, the naturally wide-searching technique means 

that it can be also used to estimate degeneracy of a T-cell26 and how a high affinity TCR 

might interact with the self proteome336. All methods can be improved in terms of 

computational speed by GP-GPU, as shown in chapter 8. 

GP-GPU is going from strength to strength. As of November 2019, 6 of the top 10 

supercomputers in the world based on the TOP500 (https://www.top500.org) rating have a 

significant influence from GPU acceleration337 and while this was traditionally the domain of 

chemistry, physics and machine learning338 there is an ever-expanding pool of software in 

genomics, structural biology, biochemistry and systems biology that implements GP-GPU131. 

Here I have provided a foundation for applying GP-GPU to CPL library scanning, and more 

broadly have introduced another GP-GPU method for analyzing biological sequence data. 

This is important for two reasons. The first is that it accelerated the CPL scanning software 

significantly. The increase in performance means that larger databases or more samples can 

be scanned without a worry of computational limitations. The second is that the CUDA 

implementation of PICPL has shown more broadly that CPLs and protein sequence datasets 

are conducive to GP-GPU programming. This opens up further avenues for the application of 

GP-GPU to similarly framed problems. 

12.1.3 STACEI and structural profiling of the TCR-pMHC complex 

Structural understanding of the TCR-pMHC complex is essential for truly understanding 

immune recognition and in turn designing vaccines. These efforts could be in generalized 

frameworks, e.g. using the binding “rules” generated by all known structures to inform 

decisions on the repertoire level as in GLIPH76; or they could be more direct methods to gain 

the exact mechanism of a certain vaccine, for example demonstrating that modification of 
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the anchor residues of the peptide confer recognition67,339 and the role of hotspots or 

conserved binding sites in recognition of antigen257. There are also methods for designing 

and inferring structure from sequence75,340 to aid these steps. However, none of these 

various efforts provide a systematic way analyze the binding modes of TCR-pMHC 

complexes, unlike STACEI. This means that the work in chapter 3-5 complements more 

“black box” methods for vaccine design that use machine learning techniques, for example 

in defining the how therapeutic an antibody is341 and using modelling approaches to infer 

the function of a TCR indirectly75,340. 

At the time of writing there are still no methods for calculating the number of contacts for a 

given TCR-pMHC structure, quantify the type of bonds made by these structures and 

present them in a human readable fashion. Likewise, no methods measure BSA, ASA in a 

higher resolution then on a chain-by-chain basis. Also, no other tool generates publication 

quality tools to the same degree as STACEI. Measures that are replicated, such as IMGT 

numbering (found in STCRDAB: http://opig.stats.ox.ac.uk/webapps/stcrdab/) , SC and  

crossing angle (TCR3D: https://tcr3d.ibbr.umd.edu/) are not available to be ran locally or on 

a server with a PDB file of the user’s choice, meaning that analysis is limited to already 

publicly available TCR-pMHC complexes.  

Similar to RECIPIENT, it is version controlled, it exists as part of a Python package and is able 

to be ran in a container, meaning that the tool should be able to be executed in a 

reproducible manner well into the future.  

The findings of the review of αβ TCR-pMHC complexes found in the PDB also shed some 

biological interpretation of the overall binding mechanisms of these complexes, the overall 

number of contacts between TCR and peptide is relatively well conserved, whilst MHC class 

II restricted peptides have a larger frequency of contacts to its constituent MHC, due to the 

flatter binding of the peptide with each end flanking out the ends of the MHC.  

The relationship between SC and number of contacts made shows a weak correlation. This 

demonstrates the inherent need for both measures. SC provides a good overview of 

“overall” binding and interaction between TCR and pMHC; but does not portray the whole 

story. SC does not necessarily constitute good overall affinity, whereas number of contacts 

made by the TCR to the peptide does appear to be moreso342. 

http://opig.stats.ox.ac.uk/webapps/stcrdab/
https://tcr3d.ibbr.umd.edu/
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Calculation of BSA, ASA and availability in STACEI was successful in being able to indicate 

which peptide residues were buried into the MHC binding groove, constituting anchor 

residues and which were able to be accessed by the TCR. This is important in the rational 

design of peptide vaccine targets as one would want to preserve the stability of the anchor 

residues whilst making the remaining residues able to be engaged sufficiently by the TCR. 

Finally, this overall picture of broad TCR-pMHC binding could become more important as 

computationally aided rational design of TCRs becomes more prevalent. Similar to Thera-

SAbDab343 in the antibody design space the collective output of STACEI could be used to 

define “standard” behaviour of a TCR-pMHC complex in order to help predict what designs 

are biologically feasible. However, this is some way off being feasible in terms of TCR-

pMHCs: There are > 3,600 antibody structures in the PDB compared to 520 TCRs at the time 

of writing.  

 FUTURE WORK 

In the future, I would like to expand these tools. STACEI currently exists as a tool specifically 

for analyzing αβ TCRs in complex with pMHC. The decision to specifically target αβ TCR-

pMHCs was made early on in the development of the tool, meaning that a number of 

analyses and error checking steps explicitly make assumptions specific to αβ complexes (e.g. 

that the antigen is a peptide). 

As an ongoing project, collaborators and I are making STACEI more generalized and 

integrating options to analyze “free” structures of TCRs not in complex with pMHC and for 

TCRs engaging with non-peptide antigens and non-classical MHC-like molecules, such as CD1 

and MHC-related protein 1 (MR1).  

Some of the changes needed to be made are relatively simple, for example generalizing 

STACEI to detect and pair γδ TCRs and detect non-classical MHC only requires expansion of 

the BLAST database used in chain pairing. However, detecting non-peptide ligands 

effectively with no a priori knowledge remains a challenge. STACEI assumes that all 

molecules involved in the TCR recognition are independent chains in the PDB file and this is 

often not the case for non-peptide antigens. This means that a search of the HETATOM 

(discussed briefly in 3.1.3.1) section of the PDB file. While finding what atoms contact the 
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TCR in the HETATOM section is trivial, deciding which is the antigen is not, as there are often 

a number of cofactors, solvents and ions contacting the TCR, too.  

In chapter 8 I demonstrated that GP-GPU has a role to play in the efficient scanning of CPL 

databases. In this chapter I briefly touched on assessing the similarity of peptide sets by 

means of CUDA sped-up alignment, I would like to explore this further, and see if PAM30 

alignment matrices can infer peptides which are cross-reactive mimics of self-peptides. In 

order to do this, I would collate known self-peptides and run them against the human 

genome. 

The CUDA driven database scan is also currently ran on one system using one GPU. In future 

the software could be expanded to leverage CUDA’s support for multiple GPUs by using the 

cudaSetDevice() and cudaDeviceSynchronize() functionalties. This should generalize well, 

certainly if still only using a low number of GPUs as each step can still be performed 

independently of the other steps until the final sort is performed. At the time of writing this 

is performed using a bash script that generates multiple instances of the same program and 

then collates the results. While this does work, it is not optimal. 

RECIPIENT, described in chapters 9, 10 and 11 provides a framework for the design of 

potential vaccine candidates. At the moment, a number of the key steps, such as annotation 

and subcellular localization prediction only work for bacteria and fungi (although not 

explored in this thesis). In future, I would first like to address these steps for viral genomes. 

While gene annotation is partially dependent on the literature surrounding a given 

pathogen, there are tools aimed at virus specific annotation such as VAPiD318 and Vgas317.  

Failing this, I would like to consider an input option that allows users to upload a DIAMOND 

search database of genes of their interest to perform bespoke annotation. An alternative 

option would be to allow the pipeline to be ran from FASTQ reads and mapping the genome 

to a reference and annotation file. As discussed above, this would somewhat hinder 

RECIPIENT in only being able to be ran on well-understood systems, it would give more 

accurate results. 

 The second point I would like to address is subcellular localization of viral proteins. This is of 

course, a slightly different framing to most bacterial proteins, and aims to predict instead 

where in the host cell these proteins aggregate. Most tools (e.g. PSORT and LocTree, 
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discussed earlier) are aimed at prokaryotic and eukaryotic localization prediction. However, 

tools such as MSLVP344 are geared towards predicting where in human cells the virus 

localizes. I would like to integrate this into the pipeline to address the problem of 

localization. 

I also would like to explore a more predictive method in assessing these vaccine targets. To 

do this I would need to find known vaccine targets and run them through RECIPEINT. An 

approach similar to the Therapeutic Antibody Profiler341 could be applied wherein new 

targets are compared to how similar their properties are to known vaccine targets. 

 COMBINING THE TOOLS 

There is a great potential to develop these immunoinformatics tools further by utilising their 

strengths in epitope discovery and vaccine design. In particular, the role of structural 

analysis could be particularly fruitful, as it has such a fundamental focus on the bottom-up 

mechanism of TCR-pMHC binding and recognition. For example, the structural analysis 

efforts of STACEI could be applied to the GPU accelerated epitope design. The top scoring 

peptides could be modelled using existing tools69,75,340 to create template TCR-pMHC 

structures to address the difficulty in experimental validation. This could help expediate 

analysis as structure determination is often a difficult bottleneck in the analysis process. 

STACEI could then be used to analyze these structures to find shared commonalities of the 

binding event, as well as find potential areas for improvement not captured by the GPU 

scanning. Likewise, this could also be done in the case of RECIPIENT, incorporating TCR 

modelling and structural analysis to the top epitopes found, as well as modelling the whole 

proteins for antibody targets. Although computationally very expensive, the existing 

framework of RECIPIENT would allow users to filter out incompatible targets. 

Another interesting facet for analysis would be the role of TCR cross-reactivity in vaccine 

design. The degeneracy of the TCR is both a positive and a negative in vaccine design as it 

allows for a potentially pan-pathogen response345, but also can cause targeting of self-

antigens346. One must consider the potential off-target effects of TCR based vaccines. 

STACEI allows for a mechanistic insight into the underpinning of cross-reactivity. There are 

multiple instances of the same TCR being engaged with different pMHC. The mechanism of 

binding could be combined with estimates of diversity from CPL scans to predict whether 
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more cross-reactive TCRs behave so through a conserved mechanism. This could then steer 

vaccine design away from overly cross-reactive T-cells.  

The GPU accelerated CPL scanning could also compliment the RECIPIENT pipeline. In 

another project not discussed in this thesis, a “mock” CPL scan file was generated based on 

the known antigen of a T-cell clone and was used to predict potential viral mimicry in the 

clearance of melanoma347. This same approach could be used to help predict vaccine targets 

in the RECIPIENT pipeline by allowing users to direct their search using CPL scans of T-cells of 

interest.  
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14 SUPPLEMENTARY INFORMATION 

 Supplementary List S1  List of PDB IDs used in the TCR-pMHC structural review in chapters 3, 4 and 5. 

1ao7, 1bd2, 1fyt, 1j8h, 1mi5, 1oga, 1qrn, 1qse, 1qsf, 1ymm, 1zgl, 2ak4, 2bnq, 2bnr, 2esv, 

2f53, 2f54, 2gj6, 2iam, 2ian, 2nx5, 2p5e, 2p5w, 2pye, 2vlj, 2vlk, 2vlr, 2wbj, 2ypl, 3d39, 3d3v, 

3dxa, 3ffc, 3gsn, 3h9s, 3hg1, 3kpr, 3kps, 3kxf, 3mv7, 3mv8, 3mv9, 3o4l, 3o6f, 3pl6, 3pwp, 

3qdg, 3qdj, 3qdm, 3qeq, 3qfj, 3sjv, 3t0e, 3uts, 3utt, 3vxm, 3vxr, 3vxs, 3vxu, 3w0w, 4c56, 

4e41, 4eup, 4ftv, 4g8g, 4g9f, 4gg6, 4grl, 4h1l, 4jfd, 4jfe, 4jff, 4jrx, 4jry, 4l3e, 4may, 4mji, 

4mnq, 4ozf, 4ozg, 4ozh, 4ozi, 4p4k, 4prh, 4pri, 4prp, 4qok, 4qrp, 4y19, 4y1a, 4z7u, 4z7v, 

4z7w, 5brz, 5bs0, 5c07, 5c08, 5c09, 5c0a, 5c0b, 5c0c, 5d2l, 5d2n, 5e6i, 5e9d, 5eu6, 5euo, 

5hhm, 5hho, 5hyj, 5isz, 5jhd, 5jzi, 5ks9, 5ksa, 5ksb, 5men, 5nht, 5nme, 5nmf, 5nmg, 5nqk, 

5tez, 5w1v, 5w1w, 5wkf, 5wkh, 5xot, 5yxn, 5yxu, 6am5, 6amu, 6avf, 6avg, 6bj2, 6bj8, 6cql, 

6cqn, 6cqq, 6cqr, 6d78, 6dfx, 6dkp, 6eqa, 6eqb, 6mtm 

Supplementary List S2  Enterobase  IDs of S. Typhi  genomes used in chapters 9, 10 and 11. 

10040_15, 10873, 11780, 11783, 15604, 15619, 160005TY, 160008TY, 160010TY, 160011TY, 

203377, 203378, 203379, 205588, 206713, 207584, 208724, 208725, 208761, 209994, 

211143, 211756, 212757, 212761, 214578, 214579, 214714, 216315, 216339, 216994, 

218472, 220459, 220513, 221700, 221701, 222161, 224130, 22420_1_100_Pak8770_2017, 

22420_1_10_Pak60006_2016, 22420_1_11_Pak60086_2016, 22420_1_12_Pak60092_2016, 

22420_1_13_Pak60306_2016, 22420_1_14_Pak60352_2016, 22420_1_15_Pak0083_2017, 

22420_1_16_Pak6802_2017, 22420_1_17_Pak0416_2017, 22420_1_18_Pak0417_2017, 

22420_1_19_Pak0364_2017, 22420_1_1_Pak55334_2016, 22420_1_20_Pak0706_2017, 

22420_1_21_Pak0696_2017, 22420_1_22_Pak0582_2017, 22420_1_23_Pak1020_2017, 

22420_1_24_Pak1172_2017, 22420_1_25_Pak1502_2017, 22420_1_26_Pak1421_2017, 

22420_1_27_Pak1672_2017, 22420_1_28_Pak4421_2017, 22420_1_29_Pak2591_2017, 

22420_1_2_Pak53977_2016, 22420_1_30_Pak1783_2017, 22420_1_31_Pak3349_2017, 

22420_1_32_Pak2749_2017, 22420_1_33_Pak3748_2017, 22420_1_34_Pak4006_2017, 

22420_1_35_Pak1986_2017, 22420_1_36_Pak1908_2017, 22420_1_37_Pak3963_2017, 

22420_1_38_Pak250_2017, 22420_1_39_Pak1352_2017, 22420_1_3_Pak55719_2016, 

22420_1_40_Pak4108_2017, 22420_1_41_Pak7563_2017, 22420_1_42_Pak6072_2017, 
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22420_1_43_Pak4714_2017, 22420_1_44_Pak6578_2017, 22420_1_45_Pak6048_2017, 

22420_1_46_Pak6628_2017, 22420_1_47_Pak6547_2017, 22420_1_48_Pak5726_2017, 

22420_1_49_Pak0037_2017, 22420_1_4_Pak56360_2016, 22420_1_50_Pak4590_2017, 

22420_1_51_Pak5339_2017, 22420_1_52_Pak4016_2017, 22420_1_53_Pak11167_2017, 

22420_1_54_Pak11560_2017, 22420_1_55_Pak11570_2017, 22420_1_56_Pak9487_2017, 

22420_1_57_Pak0034_2017, 22420_1_58_Pak7882_2017, 22420_1_59_Pak005_2017, 

22420_1_5_Pak56690_2016, 22420_1_60_Pak11731_2017, 22420_1_61_Pak9394_2017, 

22420_1_62_Pak9695_2017, 22420_1_63_Pak7927_2017, 22420_1_64_Pak12390_2017, 

22420_1_65_Pak11726_2017, 22420_1_66_Pak7778_2017, 22420_1_67_Pak7738_2017, 

22420_1_68_Pak10804_2017, 22420_1_69_Pak10757_2017, 22420_1_6_Pak59032_2016, 

22420_1_70_Pak8215_2017, 22420_1_71_Pak10934_2017, 22420_1_72_Pak12180_2017, 

22420_1_73_Pak12510_2017, 22420_1_74_Pak11964_2017, 22420_1_75_Pak9116_2017, 

22420_1_76_Pak9267_2017, 22420_1_77_Pak11957_2017, 22420_1_78_Pak9392_2017, 

22420_1_79_Pak11476_2017, 22420_1_7_Pak59027_2016, 22420_1_80_Pak8382_2017, 

22420_1_81_Pak8291_2017, 22420_1_82_Pak10550_2017, 22420_1_83_Pak8999_2017, 

22420_1_84_Pak0016_2017, 22420_1_85_Pak0017_2017, 22420_1_86_Pak0022_2017, 

22420_1_87_Pak0024_2017, 22420_1_88_Pak4019_2017, 22420_1_89_Pak56419_2016, 

22420_1_8_Pak59711_2016, 22420_1_90_Pak59691_2016, 22420_1_91_Pak6105_2016, 

22420_1_92_Pak59655_2016, 22420_1_93_Pak52035_2016, 22420_1_94_Pak60168_2016, 

22420_1_95_Pak57387_2016, 22420_1_96_Pak60320_2016, 22420_1_97_Pak59664_2016, 

22420_1_98_Pak15186_2017, 22420_1_99_Pak60147_2016, 22420_1_9_Pak59919_2016, 

229066, 229163, 229164, 236189, 236191, 236253, 238380, 238381, 238765, 240164, 

242364, 243876, 245587, 247223, 247245, 247247, 247255, 248621, 248624, 250722, 

250723, 250726, 250728, 250761, 250762, 252398, 253869, 253870, 253871, 253873, 

253874, 253875, 254622, 254624, 256122, 257032, 257355, 259265, 259414, 261332, 

261906, 264018, 264101, 264102, 265726, 267719, 267722, 267805, 267844, 268671, 

271053, 278082, 278161, 278191, 280356, 282412, 282584, 282585, 282589, 285801, 

285842, 285844, 285963, 287766, 288895, 289070, 289677, 291713, 291747, 291748, 

293002, 293010, 294695, 294969, 296162, 296163, 296207, 296222, 296635, 296820, 

296822, 298759, 298761, 298765, 298767, 298897, 298952, 298960, 299395, 299396, 

299909, 300657, 300658, 300663, 300759, 301855, 302512, 302602, 302604, 302607, 

302872, 302915, 302921, 302924, 304415, 304416, 304424, 305214, 305215, 305258, 
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306526, 306532, 306588, 307466, 308528, 308534, 308545, 308759, 310264, 310271, 

311418, 311422, 311960, 313152, 313840, 313877, 313878, 315157, 316191, 316277, 

316347, 316658, 316659, 316660, 318344, 318354, 318355, 318582, 318583, 319724, 

319726, 319822, 320181, 320184, 320272, 320994, 320995, 320997, 328583, 329141, 

329871, 329879, 329884, 329887, 330438, 330503, 333376, 333912, 335038, 335044, 

337070, 337082, 337114, 337622, 337623, 338394, 338438, 339489, 339493, 340181, 

340238, 340240, 340241, 340242, 341269, 341274, 341275, 341276, 342544, 342550, 

342643, 342648, 342649, 342650, 343717, 343799, 345581, 345582, 346583, 346893, 

346899, 347952, 348081, 348734, 351267, 351324, 352822, 353848, 353870, 353877, 

353885, 355129, 356097, 356299, 356314, 356321, 356507, 356531, 357750, 357979, 

358438, 358440, 360345, 362107, 364177, 365314, 365365, 365366, 366287, 367315, 

369054, 369949, 369998, 370898, 370912, 371794, 374594, 378610, 387213, 391124, 

423183, 429038, 430040, 458426, 490271, 568310, 603405, 611427, 636302, 643112, 

663131, 672572, 672574, 676410, 678025, 680084, 681355, 686749, 690325, 697897, 

724583, 7246, 730774, 730973, 735088, 749413, 767624, 768835, 772865, 782094, 783201, 

798438, 800602, 801143, 801489, 808871, 812070, 814955, 815563, 816253, 818193, 

824393, 824494, 834291, 834848, 871213, 877298, 879304, 879991, 880355, 882861, 

884420, 884427, 885154, 885163, 888113, 890414, 892742, 895926, 903519, 903551, 

904644, 904656, 905412, 908986, 914495, 917873, 920101, AM-51471, BA1321, BA2820, 

BA7428, BA7569, BP200, BP2343, BP2397, BP2608, BV145, ERS1545197, ERS1545200, 

ERS1545201, ERS1545202, ERS1545203, ERS1545204, ERS1545205, ERS1545206, 

ERS1545207, ERS1545208, ERS1545209, ERS1545211, ERS1545212, ERS1545213, 

ERS1545214, ERS1545216, ERS1545217, ERS1545218, ERS1545219, ERS1545220, 

ERS1545221, ERS1545222, ERS1545223, ERS1545622, ERS1545623, ERS1545624, 

ERS1545625, ERS1545626, ERS1545627, ERS1545628, ERS1545629, ERS1545630, 

ERS1545631, ERS1545632, ERS1545633, ERS1545634, ERS1545635, ERS1545636, 

ERS1545637, ERS1545638, ERS1545639, ERS1545640, ERS1545641, ERS1545642, 

ERS1545643, ERS1545644, ERS1545645, ERS1545647, ERS1545648, ERS1545649, 

ERS1545650, ERS1545651, ERS1545652, ERS1545653, ERS1545654, ERS1545655, 

ERS1545656, ERS1545657, ERS1810832, ERS1810833, ERS1810834, ERS1810835, 

ERS1810836, ERS1810837, ERS1810839, ERS1810840, ERS1810841, ERS1810842, 

ERS1810843, ERS1810844, ERS1810845, ERS1810846, ERS1810863, ERS1867173, 
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ERS1867174, ERS1867175, ERS1867177, ERS1867178, ERS1867179, ERS1867180, 

ERS1867181, ERS1867182, ERS1867183, ERS1867184, ERS1867185, ERS1867186, 

ERS1867187, ERS1867188, ERS1867189, ERS1867190, ERS1867191, ERS1867192, 

ERS1867193, ERS1867194, ERS1867195, ERS1867196, ERS1867197, ERS1867198, 

ERS1867199, ERS1867200, ERS1867201, ERS1867203, ERS1867207, ERS1867208, 

ERS1867209, ERS1867210, ERS1867211, ERS1867212, ERS1867214, ERS1867215, 

ERS1867216, ERS1867217, ERS1867218, ERS1867219, ERS1867220, ERS1867221, 

ERS1867222, ERS1867223, ERS1867224, ERS1867225, ERS1867226, ERS1867227, 

ERS1867228, ERS1867229, ERS1867230, ERS1867232, ERS1867233, ERS1867234, 

ERS1867235, ERS1867237, ERS1867238, ERS1867239, ERS1867240, ERS1867241, 

ERS1867242, ERS1867243, ERS1867244, ERS1867245, ERS1867246, ERS1867247, 

ERS1867248, ERS1867249, ERS1867250, ERS1867251, ERS1867252, ERS1867254, 

ERS1867256, ERS1867257, ERS1867258, ERS1867259, ERS1867260, ERS1867261, 

ERS1867262, ERS1867263, ERS1867264, ERS1867265, ERS1867266, ERS1867267, 

ERS1867269, ERS1867270, ERS1867271, ERS1867272, ERS1867273, ERS1867274, 

ERS1867290, ERS1867291, ERS1867304, ERS3348176, ERS3399763, ERS3399771, 

ERS3399792, ERS3399796, ERS3399841, ERS3399859, ERS3399879, ERS3399894, 

ERS3399897, ERS3399915, ERS3399941, ERS3399943, ERS3399951, ERS3399970, 

ERS3400005, ERS3400019, ERS3400047, ERS3400067, ERS3400090, ERS3400110, 

ERS3400115, ERS3400116, ERS3400121, ERS3400124, ERS3400125, ERS3400126, 

ERS3400142, ERS3400144, ERS3400152, ERS3400183, ERS3400196, ERS3400204, 

ERS3400208, ERS3400210, ERS3400212, ERS3400226, ERS3400240, ERS3400249, 

ERS3400250, ERS3400256, ERS3400262, ERS3400263, ERS3400271, ERS3400277, 

ERS3400280, ERS3400283, ERS3400296, ERS3400318, ERS3400323, ERS3400328, 

ERS3400330, ERS3400333, ERS3400334, ERS3400335, ERS3400337, ERS3400342, 

ERS3400343, ERS3400344, ERS3400346, ERS3400356, ERS3400376, ERS3400419, 

ERS3400430, ERS3400437, ERS3400444, ERS3400467, ERS3400483, ERS3400488, 

ERS3400492, ERS3400495, ERS3400520, ERS3400541, ERS3400556, ERS3400558, 

ERS3400593, ERS3400615, ERS3400652, ERS3400681, ERS3400731, ERS5447091, 

Gurgaon01, Gurgaon02, Iso21-29_05_2016, Iso22-04_06_2016, Iso23-11_06_2016, Iso24-

30_06_2016, Iso25-10_07_2016, Iso27-12_07_2016, Iso32-23_10_2015, Iso33-26_10_2015, 

Iso34-30_10_2015, Iso35-11_11_2015, Iso36-16_11_2015, Iso37-23_11_2015, Iso39-
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15_12_2015, Iso41-21_12_2015, Iso42-22_12_2015, Iso43-31_12_2015, Iso44-18_01_2016, 

Iso45-27_01_2016, Iso47-02_03_2016, Iso48-11_03_2016, Iso51-22_03_2016, Iso52-

02_05_2016, Iso53-10_05_2016, Iso54-12_05_2016, Iso55-19_05_2016, Iso58-28_01_2016, 

Iso59-25_05_2016, Iso60-26_05_2016, Iso61-03_06_2016, Iso62-10_06_2016, Iso63-

06_07_2016, Iso64-14_07_2016, Iso65-15_07_2016, Iso66-22_07_2016, Iso67-28_07_2016, 

Iso69-01_08_2016, Iso70-04_08_2016, Iso72-09_09_2016, Iso82-28_02_2016, KRSAL17-

2203, KRSAL17-2204, KRSAL17-2205, KRSAL17-2206, KRSAL17-2207, KRSAL17-2216, 

KRSAL17-2217, KRSAL17-2218, RR051, SalBs19, SLT0096, SLT0291, SLT0469, SLT0596, 

SLT0626, SLT0892, SLT10, SLT1105, SLT1131, SLT11, SLT1, SLT2, SLT3, SLT4, SLT8, XDR10, 

XDR11, XDR13, XDR15, XDR16, XDR17, XDR18, XDR19, XDR1, XDR21, XDR22, XDR23, XDR24, 

XDR25, XDR26, XDR27, XDR28, XDR2, XDR30, XDR31, XDR35, XDR3, XDR4, XDR5, XDR6, 

XDR9, 

Supplementary List S3  Enterobase  IDs of EPEC  genomes used in chapters 9, 10 and 11. 

ESC_BA2094AA_AS, ESC_BA4381AA_AS, ESC_BA6287AA_AS, ESC_BB9042AA_AS, 

ESC_HA9212AA_AS, ESC_HA9215AA_AS, ESC_HA9220AA_AS, ESC_HA9222AA_AS, 

ESC_HA9224AA_AS, ESC_HA9227AA_AS, ESC_HA9229AA_AS, ESC_HA9233AA_AS, 

ESC_HA9237AA_AS, ESC_HA9238AA_AS, ESC_HA9257AA_AS, ESC_HA9264AA_AS, 

ESC_HA9273AA_AS, ESC_HA9286AA_AS, ESC_HB7205AA_AS, ESC_QA4139AA_AS, 

ESC_WB2499AA_AS, ESC_WB2500AA_AS, ESC_WB2501AA_AS, ESC_WB2502AA_AS, 

ESC_WB2503AA_AS, ESC_WB2504AA_AS, ESC_WB2505AA_AS, ESC_WB2506AA_AS, 

ESC_WB2507AA_AS, ESC_WB2508AA_AS, ESC_WB2509AA_AS, ESC_WB2510AA_AS, 

ESC_WB2511AA_AS, ESC_WB2512AA_AS, ESC_WB2561AA_AS, ESC_WB2563AA_AS, 

ESC_WB2570AA_AS, ESC_WB2653AA_AS, ESC_WB2654AA_AS, ESC_WB2655AA_AS, 

ESC_WB2656AA_AS, ESC_WB2664AA_AS, ESC_WB2665AA_AS, ESC_WB2666AA_AS, 

ESC_WB2680AA_AS, ESC_WB2681AA_AS, ESC_WB2684AA_AS, ESC_WB2685AA_AS, 

ESC_WB2692AA_AS, ESC_WB2693AA_AS, ESC_WB2703AA_AS, ESC_WB2704AA_AS, 

ESC_WB2705AA_AS, ESC_WB2707AA_AS, ESC_WB2709AA_AS, ESC_WB2710AA_AS, 

ESC_WB2711AA_AS 

 Supplementary List S4  HBVDB  IDs of HBV genomes used in chapters 9, 10 and 11. 
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 ESC_GA3262AA_AS, ESC_IA2720AA_AS, ESC_KA6005AA_AS, ESC_OA1637AA_AS, 

ESC_GA3268AA_AS, ESC_IA8359AA_AS, ESC_KA6008AA_AS, ESC_OA1638AA_AS, 

ESC_HA0247AA_AS, ESC_KA2130AA_AS, ESC_KA6010AA_AS, ESC_OA1643AA_AS, 

ESC_HA0256AA_AS, ESC_KA2808AA_AS, ESC_KA6014AA_AS, ESC_PA1362AA_AS, 

ESC_HA0258AA_AS, ESC_KA2810AA_AS, ESC_KA6016AA_AS, ESC_PA1363AA_AS, 

ESC_HA0259AA_AS, ESC_KA2811AA_AS, ESC_KA6018AA_AS, ESC_PA1365AA_AS, 

ESC_HA0261AA_AS, ESC_KA5968AA_AS, ESC_KA6019AA_AS, ESC_PA1367AA_AS, 

ESC_HA0262AA_AS, ESC_KA5971AA_AS, ESC_KA6023AA_AS, ESC_PA1377AA_AS, 

ESC_HA2835AA_AS, ESC_KA5975AA_AS, ESC_KA6025AA_AS, ESC_RA1210AA_AS, 

ESC_HA9215AA_AS, ESC_KA5981AA_AS, ESC_NA8556AA_AS, ESC_RA4033AA_AS, 

ESC_HA9222AA_AS, ESC_KA5991AA_AS, ESC_NA9304AA_AS, ESC_RA8968AA_AS, 

ESC_HA9224AA_AS, ESC_KA5992AA_AS, ESC_NA9306AA_AS, ESC_TA0085AA_AS, 

ESC_HA9229AA_AS, ESC_KA5994AA_AS, ESC_NA9307AA_AS, ESC_TA2097AA_AS, 

ESC_HA9237AA_AS, ESC_KA5999AA_AS, ESC_NA9310AA_AS, ESC_TA2098AA_AS, 

ESC_HA9238AA_AS, ESC_KA6000AA_AS, ESC_NA9311AA_AS, ESC_HA9286AA_AS, 

ESC_KA6004AA_AS, ESC_NA9312AA_AS 

Supplementary List S5 GISAID IDs of SARS-CoV-2 genomes used in chapters 9, 10 and 11. 

EPI_ISL_402119, EPI_ISL_404227, EPI_ISL_406799, EPI_ISL_408010, EPI_ISL_408669, 

EPI_ISL_414366, EPI_ISL_422219, EPI_ISL_402120, EPI_ISL_404228, EPI_ISL_406800, 

EPI_ISL_408068, EPI_ISL_408670, EPI_ISL_415655, EPI_ISL_422223, EPI_ISL_402121, 

EPI_ISL_404253, EPI_ISL_406801, EPI_ISL_408430, EPI_ISL_408975, EPI_ISL_416442, 

EPI_ISL_423308, EPI_ISL_402123, EPI_ISL_404895, EPI_ISL_406844, EPI_ISL_408431, 

EPI_ISL_408976, EPI_ISL_416673, EPI_ISL_423623, EPI_ISL_402124, EPI_ISL_405839, 

EPI_ISL_406862, EPI_ISL_408478, EPI_ISL_408977, EPI_ISL_417307, EPI_ISL_424105, 

EPI_ISL_402125, EPI_ISL_406030, EPI_ISL_406959, EPI_ISL_408479, EPI_ISL_408978, 

EPI_ISL_417317, EPI_ISL_424853, EPI_ISL_402126, EPI_ISL_406031, EPI_ISL_406960, 

EPI_ISL_408480, EPI_ISL_408994, EPI_ISL_417455, EPI_ISL_424898, EPI_ISL_402127, 

EPI_ISL_406034, EPI_ISL_406970, EPI_ISL_408481, EPI_ISL_408995, EPI_ISL_417460, 

EPI_ISL_425613, EPI_ISL_402128, EPI_ISL_406036, EPI_ISL_406973, EPI_ISL_408482, 

EPI_ISL_408996, EPI_ISL_417505, EPI_ISL_426704, EPI_ISL_402130, EPI_ISL_406531, 

EPI_ISL_407073, EPI_ISL_408484, EPI_ISL_408998, EPI_ISL_41773, EPI_ISL_427044, 
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EPI_ISL_402131, EPI_ISL_406533, EPI_ISL_407079, EPI_ISL_408485, EPI_ISL_408999, 

EPI_ISL_417935, EPI_ISL_427142, EPI_ISL_402132, EPI_ISL_406534, EPI_ISL_407084, 

EPI_ISL_408486, EPI_ISL_409000, EPI_ISL_418159, EPI_ISL_427312, EPI_ISL_403928, 

EPI_ISL_406535, EPI_ISL_407193, EPI_ISL_408487, EPI_ISL_409001, EPI_ISL_418383, 

EPI_ISL_427358, EPI_ISL_403929, EPI_ISL_406536, EPI_ISL_407214, EPI_ISL_408488, 

EPI_ISL_409002, EPI_ISL_418798, EPI_ISL_427388, EPI_ISL_403930, EPI_ISL_406538, 

EPI_ISL_407215, EPI_ISL_408489, EPI_ISL_409020, EPI_ISL_419482, EPI_ISL_427643, 

EPI_ISL_403931, EPI_ISL_406592, EPI_ISL_407313, EPI_ISL_408511, EPI_ISL_409022, 

EPI_ISL_419606, EPI_ISL_428923, EPI_ISL_403932, EPI_ISL_406593, EPI_ISL_407893, 

EPI_ISL_408512, EPI_ISL_409023, EPI_ISL_419670, EPI_ISL_428950, EPI_ISL_403933, 

EPI_ISL_406594, EPI_ISL_407894, EPI_ISL_408513, EPI_ISL_409024, EPI_ISL_420169, 

EPI_ISL_429021, EPI_ISL_403934, EPI_ISL_406595, EPI_ISL_407896, EPI_ISL_408514, 
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EPI_ISL_406798, EPI_ISL_408009, EPI_ISL_408668, EPI_ISL_414026, EPI_ISL_422118 

Supplementary List S6 GISAID IDs of EPEC genomes used in chapter 11.1 to verify the annotation of the 

genomes. 

JHQV00000000, JHQW00000000, JHQX00000000, JHQY00000000, JHQZ00000000, 

JHRA00000000, JHRB00000000, JHRC00000000, JHRD00000000, JHRE00000000, 

JHRF00000000, JHRG00000000, JHRH00000000, JHRI00000000, JHRJ00000000, 

JHRK00000000, JHRL00000000, JHRM00000000, JHRN00000000, JHRO00000000, 

JHRP00000000, JHRQ00000000, JHRR00000000, JHRS00000000, JHRT00000000, 

JHRU00000000, JHRV00000000, JHRW00000000, JHRX00000000, JHRY00000000, 

JHRZ00000000, JHSA00000000, JHSB00000000, JHSC00000000, JHSD00000000, 

JHSE00000000, JHSF00000000, JHSG00000000, JHSH00000000, JHSI00000000, 

JHSJ00000000, JHSK00000000, JHSL00000000, JHSM00000000, JHSN00000000, 

JHSO00000000, JHSP00000000, JHSQ00000000, JHSR00000000, JHSS00000000, 
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JHST00000000, JHSU00000000, JHSV00000000, JHSW00000000, JHSX00000000, 

JHSY00000000, JHSZ00000000, JHTA00000000, JHTB00000000, JHTC00000000, 

JHTD00000000, JHTE00000000, JHTF00000000, JHTG00000000, JHTH00000000, 

JHTI00000000, JHTJ00000000, JHTK00000000, JHTL00000000, JHTM00000000 
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