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Abstract
The topological nature of nodal lines in three-band systems can be described by non-abelian
topological charges called quaternion numbers. Due to the gauge freedom of the eigenstates, the
sign of quaternion numbers can be flipped by performing a gauge transformation, i.e., choosing a
different basis of eigenstates. However, the sign flipping has not been explicitly shown in realistic
systems such as phononic and photonic topological semimetals. Here, we elaborate on the
sign freedom of non-abelian topological charges by visualizing numerically calculated topological
charges in phononic and photonic topological semimetals. For this, we employ a common
reference point method for multiple nodal lines and thus confirm that the sign flipping does not
cause any inconsistency in building the quaternion group.

1. Introduction

Multiple nodal lines in momentum space can be interpreted by non-abelian band topology [1]. In
particular, topological charges of nodal lines in a three-band system can be described by the quaternion
group Q = {±i,±j,±k,±1}, where i, j, and k satisfy (i) the square relations i2 = j2 = k2 = −1, (ii) the
multiplication relations ij = k, jk = i, ki = j, and (iii) anticommutation relations, ij = −ji, jk = −kj,
ki = −ik. Recently, a large number of studies on the nodal lines [2–7] have been reported, including nodal
rings [8, 9], nodal chains [10–14], nodal links [11, 12, 14–19], and nodal knots [17, 19, 20]. Theoretical
and experimental efforts have been made to demonstrate the quaternion topological charges in such nodal
line systems [18, 21–24]. Hence, the field of research on the non-abelian topological nodal lines is rapidly
expanding in parallel with the study on Dirac [25–32] and Weyl points [33–42].

Although the gauge dependence of the non-abelian charges has been already discussed in the literature
[1, 21, 43–47], such property has not been explained by visualizing the eigenstates. In any eigenvalue
problem, if u is an eigenstate of a system, eiθ u (θ = (0, 2π ] ) is also an eigenstate of the system, and these
two are regarded as the equivalent states (gauge freedom). Even if we restrict the gauge eiθ to be a real
number, i.e., θ = 0 or π, the eigenstate of the system can be expressed either by u or −u. This means that
the gauge freedom allows any signs of the topological charges in the nodal line system generated in the
electronic (metals [1, 10, 15] and semimetals [11, 12]), photonic [18, 22], and phononic systems [7, 9, 48].
This property, however, does not contradict the argument of the non-abelian band topology in a three-band
system, and it is important to fix the basis of eigenstates as pointed out in reference [1].

In this paper, we elucidate the gauge-dependent sign freedom of the non-abelian topological charges by
visualizing the topological charges in phononic and photonic topological semimetals. First, we exemplify
such a property with phononic and photonic systems. Then, the reference point method, which is
equivalent to fixing of the basis in Hilbert space [1, 45], is adopted for our topological semimetals. Finally,
we discuss the consistency of the topological charges’ non-abelian relations and the important points to be
considered when using this method in phononic and photonic topological semimetals focusing on the path
and degeneracies in momentum space.
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Figure 1. An example of 3 × 3 Hamiltonian about elastic waves that exhibits either positive or negative topological charges for a
single closed loop. (a) Nodal link by the elastic waves (middle) and the closed loops that encircle the orange (left) and cyan
(right) nodal lines. The orange and cyan nodal rings are formed by the first and second bands and the second and third bands,
respectively. The white open circles on the closed loops mean the points k0, and the arrows indicate the winding directions.
(b) and (c) Eigenvectors un

k obtained along the closed loop in the left and right figures in (a), respectively. (d) Eigenvectors
replotted after flipping the signs of u1

k0
and u3

k0
in (b). (e) Eigenvectors replotted after flipping the signs of u1

k0
and u2

k0
in (c).

2. Gauge-dependent property of topological charges

Obtaining the quaternion charge of a nodal line starts with calculating eigenstates along the closed loop that
encloses the nodal line. We denote the starting point of the closed loop’s winding as k0 as shown in
figure 1(a). Once the signs of the eigenstates at k0 are determined, their signs at subsequent points k on the
loop are assigned. Finally, the topological charges are calculated by analyzing the rotation behaviors of the
eigenstates. Due to the sign freedom of the eigenstates at k0, the topological charge also has the
sign freedom [1, 21, 43–47]. In this section, we discuss the examples that show the sign freedom of the
quaternion charges originating from the sign freedom of eigenstates at k0.

2.1. 3 × 3 Hamiltonian
We consider phononic waves in an orthotropic elastic material [49] whose constitutive equation is given by
Hooke’s law ε = C · s (see equation (A.1)). Here, ε =

{
εij

}
and s =

{
sij

}
(i, j = 1, 2, 3) are the Cauchy

strain and stress tensors, respectively. C is a compliance matrix, which is a function of Young’s moduli, shear
moduli and Poisson’s ratios: C = C

(
Ei, Gij, νij

)
. Its inverse is the stiffness matrix S, i.e., C−1 = S, thereby

the constitutive equation becomes s = S · ε which is analogous to the one-dimensional Hooke’s law
F = −kx.

By using the density ρ, Young’s moduli Ei, shear moduli Gij, Poisson’s ratios ν ij, and restoring forces fi

(i, j = 1, 2, 3) listed in table A1 in appendix A, the eigenvalue problem for this elastic wave system is
expressed as
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⎡
⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤
⎦un

k = ρ(ωn)2un
k, (1)

with

H11 = k2
1M11 + k2

2G12 + k2
3G31 + f1 (1a)

H12 = k1k2 (λ12 + G12) (1b)

H13 = k1k3 (λ31 + G31) (1c)

H21 = k1k2 (λ12 + G12) (1d)

H22 = k2
1G12 + k2

2M22 + k2
3G23 + f2 (1e)

H23 = k2k3 (λ23 + G23) (1f)

H31 = k1k3 (λ31 + G31) (1g)

H32 = k2k3 (λ23 + G23) (1h)

H33 = k2
1G31 + k2

2G23 + k2
3M33 + f3, (1i)

where un
k (n = 1, 2, 3) is the three-component displacement eigenvector satisfying the orthonormal

condition um
k · un

k = δmn, and ωn is the angular frequency as an eigenfrequency (the detailed derivation of
equation (1) can be found in appendix A). Here, the superscript n is the band number, and k is a point in
the momentum space.

For the nodal link shown in figure 1(a) in this phononic system, we choose two closed loops (the
arrowed loops) that enclose each nodal ring (the orange and cyan colored shapes, respectively). We calculate
the orthonormal eigenvectors un

k along the closed loops [22]. We gather all the eigenstates at the origin, and
their evolution in a three-dimensional space R3 defined by the three components of un

k’s are shown in
figures 1(b) and (c), respectively. We may regard the topological charge for figure 1(b) as the quaternion
number k because u1

k and u2
k rotate by +π around fixed u3

k [1, 18, 22, 50]. Likewise, u2
k and u3

k rotate by
+π around fixed u1

k in figure 1(c), and thereby its topological charge is the quaternion number
i [1, 18, 22, 50].

Meanwhile, due to the sign freedom of the eigenstates, we can choose different eigenstates at k0. For the
orange loop in figure 1(a), we flip the signs of u1

k0
and u3

k0
while keeping u2

k0
fixed. Then, un

k at the
following points k on the loop is determined by un

k0
. The resulting relation between the eigenstates un

k

exhibits −π-rotations of u1
k and u2

k around u3
k (see figure 1(d)). Thus, the topological charge for this

situation is considered as −k, compared to figure 1(b). Likewise, we apply the sign-flipping of u1
k0

and u2
k0

while fixing u3
k0

to the cyan loop in figure 1(a). It generates the −π-rotations of u2
k and u3

k around u1
k

(see figure 1(e)) making its topological charge to be −i in contrast to figure 1(c). Therefore, the topological
charges of the left and right figures of figure 1(a) can be any of the four sets of quaternion numbers [k, i],
[−k, i], [k,−i], or [−k,−i].

2.2. Correlation vectors in photonic systems
Alternatively, the gauge-dependent non-abelian charges can be visualized using the correlation vectors [22].
For the closed loop in figure 2(a), we compute the orthonormal eigenstates |ψn

k〉 (n = 1, 2, 3 for the third,
fourth, and fifth bands, respectively). Then, we calculate the correlations Cn

k defined by the following
equation [22]:

Cn
k =

[〈
ψ1
k0
|ψn

k

〉
,
〈
ψ2
k0
|ψn

k

〉
,
〈
ψ3
k0
|ψn

k

〉]
. (2)

All the correlations Cn
k on the closed loop are collected at the origin, as shown in figure 2(b). The result

means its topological charge is −iσ3, equivalent to k. Now, we adjust the signs of
∣∣∣ψ1

k0

〉
and

∣∣∣ψ3
k0

〉
while

fixing the sign of
∣∣∣ψ2

k0

〉
. The signs of |ψn

k〉 at the remaining points k on the closed loop are assigned by the∣∣∣ψn
k0

〉
. The resulting topological charge in figure 2(c) is +iσ3, or −k.

Likewise, for the closed loop in figure 2(d), we consider two sets of
∣∣∣ψn

k0

〉
. The sign of

∣∣∣ψn
k0

〉
in the first

set is not adjusted. For the second set, we flip the signs of
∣∣∣ψ1

k0

〉
and

∣∣∣ψ2
k0

〉
with fixing the gauge of

∣∣∣ψ3
k0

〉
.

Thus, the topological charges of figures 2(e) and (f) are −iσ1 and +iσ1, respectively, which correspond to i
and −i, respectively.
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Figure 2. Comparison of the topological charge of the nodal lines in a photonic system [22] when the correlations’ signs are
manipulated. (a) and (d) Closed loops that enclose the orange and cyan nodal rings, respectively. The orange and cyan nodal
rings are formed by the third and fourth bands and the fourth and fifth bands, respectively. Adapted from Park et al, ACS
Photonics 2021 [22]. (b) and (c) Correlations Cn

k without and with the sign-flipping of |ψ1
k〉 and |ψ3

k〉, respectively. (e) and
(f) Correlations Cn

k without and with the sign-flipping of |ψ1
k〉 and |ψ2

k〉, respectively.

3. Application of common reference point method

To unambiguously determine the signs of the topological charges of our topological semimetals, we fix the
gauge of the eigenstates using a reference point [1, 45]. Here, we denote the common reference point as kr,
and a line connects kr and k0 of each loop, as illustrated in figure 3. There can be several k0 for several
closed loops whereas we consider only one kr. When the topological charge on one closed loop in figure 3 is
investigated,

∣∣ψn
kr

〉
is calculated first.

∣∣ψn
kr+Δk

〉
is also calculated at kr +Δk on the kr − k0 line. The sign of∣∣ψn

kr+Δk

〉
is determined to make

〈
ψn
kr
|ψn

kr+Δk

〉
positive. For all the remaining points k on the kr − k0 line,

the same calculations are performed; the sign of |ψn
k〉 is determined by

〈
ψn
kr−Δk|ψn

k

〉
> 0. Once k reaches

k0,
∣∣∣ψn

k0

〉
is determined. Finally, the topological charge is calculated by the eigenstates only on the loop.

Instead of using the reference point kr, one can choose the loops whose starting points k0 coincide at
one point in momentum space. However, a smaller loop generates a more accurate topological charge, due
to the effect coming from the relative positions between the path and degeneracies that will be explained in
section 5.1. Thus, this alternative approach can be employed in limited situations where the nodal lines are
sufficiently close to each other.

For the phononic topological semimetals discussed in section 2.1, we set a common reference point
kr = [−1, 1, 0.5] as shown in figure 4(a), and then we calculated the eigenstates of equation (1) along each
path. The eigenstates on the closed loop denoted as path A in figure 4(a) are shown in figure 4(b), and
collecting them at the origin results in +k (as shown in figure 4(c), identical to figure 1(b)). Likewise, the
eigenstates on the closed loop denoted as path B in figure 4(a) are plotted in figures 4(d) and (e) (identical
to figure 1(c)) resulting in topological charge +i. Here, the eigenstates at the common reference point kr for
path A and B should be identical.

The topological charge j = ki can be described by the composition of the loops in path A and B, which
are the closed loops encircling both orange and cyan nodal lines. Note that their starting points k0 should
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Figure 3. A reference point for the gauge fixing. kr is the common reference point. The lines that connect kr and k0 are also
shown. Nodal lines are marked as orange and cyan points.

Figure 4. Evaluation of the topological charges k and i. (a) Two closed loops encircling each nodal line and the paths that
connect k0 of each closed loop and kr. (b) and (d) Eigenstates along the closed loops plotted with respect to an arbitrary
orthonormal coordinate system. (c) and (e) Eigenstates collections at the origin. They indicate their topological charges as
+k and +i, respectively.

be connected to the common reference point kr. Here, the circling sequence is related to the order of k and i
in the multiplication. If the first and second half of closed loop scan the cyan (i) and orange (k) nodal lines,
respectively, the relation is written as ki. The signs of k and i are concerned with winding direction of the
closed loop. As we can consider four different combinations in this multiplication, namely ki, ik, (−i) (−k),
and (−k) (−i), their results are j, −j, −j, and j as shown in each panel of figure 5, respectively. The plots in
figure 5 are the calibrated results following the step in reference [22]. The calibration angle was set as
0.8θ0 (k) where θ0 (k) is the angle between u2

k and u2
k0

.
Note that the topological charges k, i, and ±j of the double diamond photonic crystal in reference [22]

were calculated using the reference point. More details will be explained in section 5.1.

4. Consistency of topological charges’ signs by the reference point method

In the following, we will show that the reference point method can eliminate the chance that the
non-abelian charges are misinterpreted as abelian. For example, let us suppose that two closed loops, which
are marked as loop 1 and 2 in figure 6, respectively, are in different locations in momentum space. If we
denote topological charges by these loops as N1 and N2, respectively, and if we consider an additional loop,
marked as loop 3a in figure 6, circling along loop 2 and 1 in sequence [18, 22], the loop 3a’s topological
charge N3a is calculated by the composition of N1 and N2, i.e., N3a = N1N2. We also suppose that loop 3b
scans around loop 1 first then circles along loop 2, as shown in figure 6. Its topological charge is expressed
as N3b = N2N1. If N3a and N3b satisfy N3a = −N3b, this leads to N1N2 = −N2N1. This relation can be called

5
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Figure 5. Topological charge j by the closed loop encircling both orange and cyan nodal lines. (a)–(d) Correspond to ki = j,
ik = −j, (−i) (−k) = −j, and (−k) (−i) = j, respectively. The lines that connect kr and k0 are not shown in all the panels,
although they were considered.

Figure 6. Closed loops composition about N3a = N1N2 and N3b = N2N1.

‘non-abelian’. To write this relation, the signs of each charge should be first determined by such kind of
sign convention. If there is not any sign convention, and if the topological charge of loop 3b can be either
plus or minus, it means that we can assume the sign-flipping of N3b while fixing the other charges’ signs.
Then, the above relation N3a = −N3b becomes N3a = N3b or N1N2 = N2N1. Thus, such a situation could be
incorrectly interpreted as ‘abelian’. This behavior is, however, simply a result coming from the gauge
freedom of the eigenstates, and there is no inconsistency in the non-abelian nature of the non-abelian band
topology.

5. Remaining issues when using the reference point method in phononic and
photonic topological semimetals

5.1. kr − k0 path and degeneracies
Although figure 3 illustrates the paths between kr and k0 as a line, they do not have to be a straight line.
Instead of the straight line (see figure 7(a)), the path sometimes should make a detour around degeneracies
(see figure 7(b)) which can be zero-, one-, two-, or three-dimensional. Let us suppose we investigate the
topological nature of three bands indexed as n, n + 1, and n + 2. Then, the paths should avoid the
degeneracies that at least one of the three bands is concerned with, e.g., the degeneracies by the bands n − 1
and n or the degeneracies by the bands n + 2 and n + 3. This is because the degeneracies destroy the
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Figure 7. Consideration for using the reference point. (a) and (b) Two examples of kr − k0 paths going through or avoiding the
degeneracies, respectively. Red lines mean degeneracies. (c) Nodal link and another set of degeneracies by the double diamond
structure [22]. The nodal link is formed by the third, fourth, and fifth bands (n = 1, 2, and 3, respectively), and the pink-colored
degeneracies are formed by the second and third bands (n = 0 and 1, respectively). Two paths are also marked. Path 1 intersects
the pink degeneracies near k0 while path 2 does not. (d) and (e)

〈
ψn

k−Δk|ψn
k

〉
along paths 1 and 2, respectively.

eigenstates information at kr. In figure 7(c), path 1 goes through the pink points (near k0) while path 2
avoids them. The pink points are degeneracies between the second and third bands (n = 0 and 1,
respectively).

〈
ψn
k−Δk|ψn

k

〉
(n = 1, 2, 3) at each point on path 1 are calculated, and only the value with

n = 1 shows the sharp change around the degeneracies (see figure 7(d)). In contrast, their behaviors on
path 2 do not exhibit such a sharp change (see figure 7(e)). In other words, the eigenstates information at kr

cannot be delivered through the degeneracies because the degeneracies may act as the sink or source of
certain topological states, like Weyl points [33–42, 51, 52].

Importantly, the sign of the quaternion charges depends on which detour the path takes, as discussed in
references [1, 45]. In our elastic system, we considered kr located in front of the nodal link, as shown in
figure 4(a). When the same reference point is used to figure 5, multiple detour options are available for
setting kr − k0 in figures 5(b) and (d), unlike the points k0 in figures 5(a) and (c) that can be connected to
kr along the shortest path. To calculate the topological charges in figures 5(b) and (d), we used straight
kr − k0 passing the center of the insets in figures 5(b) and (d). These paths go through both orange and
cyan rings. If we choose a detour kr − k0 that does not pass through any of these rings, the signs of the
topological charges in figures 5(b) and (d) remain the same. If the path pierces through only one ring, the
signs are flipped, which can be analyzed in depth following references [1, 45].

Based on the above discussion, it is desirable to set the reference point kr that makes the overall kr − k0

short as possible to reduce the chance of losing the Bloch states’ gauge information. Especially, at the first
step of calculating the quaternion charges, it is simple to set the kr − k0 not to pass through nodal rings. If
kr and k0 are in opposite regions of degeneracies, the topological charge’s signs should be examined using
references [1, 45].

5.2. Gauge freedom at the reference point
Although we have examined the topological charges of our topological semimetals using the reference point
method, the exact sign on each topological charge is not fully determined due to the sign freedom of the
eigenstates at kr. If the eigenstates’ signs at kr are flipped, some quaternion charges’ signs may be flipped
while the other quaternion charges’ signs do not change. For example, regarding figures 4 and 5, if we flip
the signs of u1

kr
and u2

kr
at kr, the result in figure 4(e) may change from i to −i while the topological charge

of figure 4(c) is still k. In this case, the anticommutative relations between the charges are still valid as the
signs in figure 5 are also reversed.
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6. Conclusions

In summary, we have shown that the sign of quaternion charges can be flipped due to the gauge freedom of
eigenstates by using the phononic and photonic topological semimetals. We have also applied the reference
point method, which is equivalent to the basis fixing, to our topological semimetals. Additionally, the
consistency of non-abelian relationship between topological charges with this method has been discussed.

Based on the discussions in section 5.2, we make the following conclusions: (i) gauge fixing by a
common reference point does not result in unique signs of the quaternion charges’ signs but makes the
non-abelian relations satisfied by the quaternion charges, (ii) the signs of nodal lines can be flipped by
choosing the eigenstates’ signs at a reference point kr. In other words, the sign relation between different
nodal lines is more important than the absolute sign of quaternion charges corresponding to each loop.
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Appendix A. Derivation of 3 × 3 Hamiltonian for an orthotropic elastic material

The constitutive equation for an orthotropic elastic material is expressed as ε = C · s, or

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε23

2ε31

2ε12

⎤
⎥⎥⎥⎥⎥⎥⎦
= C ·

⎡
⎢⎢⎢⎢⎢⎢⎣

s11

s22

s33

s23

s31

s12

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A.1)

where ε =
{
εij

}
and s =

{
sij

}
are the Cauchy strain and stress tensors, respectively (i, j = 1, 2, 3). Each

component of the Cauchy strain tensor is expressed as εij =
(

1/2
) (

∂ui/∂Xj + ∂uj/∂Xi

)
where

u = [u1, u2, u3] is the displacement vector. C is the compliance tensor:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E1
−ν21

E2
−ν31

E3
0 0 0

−ν12

E1

1

E2
−ν32

E3
0 0 0

−ν13

E1
−ν23

E2

1

E3
0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G31
0

0 0 0 0 0
1

G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.2)

where Ei is the Young’s modulus along i-direction and Gij = Gji is the shear modulus along i-direction on
the plane normal to j-direction. ν ij is the Poisson’s ratio, the negative ratio of a transverse strain along
j-direction to a longitudinal strain along i-direction. Because we assume an orthotropic material, the
relation ν ij/Ei = ν ji/Ej holds and the compliance tensor C is symmetric.

The wave equation for an elastic material is −∇ · s − Fv = −ρü, where Fv is the body force. Here, we
consider the body force as the restoring force expressed as Fv = −f · u, i.e., Fv = −

[
f1u1, f2u2, f3u3

]
. If the

displacement vector is expressed as u (x, t) = u (x) exp (−iωt) = uk exp (−ik · x) exp (−iωt), substituting
this into the wave equation leads equation (1). In equation (1), Mii and λij are the components of the
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Table A1. Parameter-sets to realize the nodal links by orthotropic elastic material.

Quantities Values

Young’s moduli (MPa) E1 = 50, E2 = 40, E3 = 110
Shear moduli (MPa) G12 = 17.5, G23 = 26.7, G31 = 28.6
Poisson’s ratios (1) ν21 = 0.25, ν13 = 0.2, ν32 = 0.4
Density (kg m−3) ρ = 1000
Restoring forces (N m−3) f1 = 0, f2 = 80, f3 = 20

Figure A1. Nodal link by the orthotropic elastic material. (a) Set of degeneracies forming a nodal link. The degeneracies by the
first and second bands and the second and third bands appear as the orange and cyan nodal lines, respectively. (b) and (c) Band
structures along k1 and k3 directions, respectively.

stiffness matrix S = C−1 as follows:

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

M11 λ21 λ31 0 0 0
λ12 M22 λ23 0 0 0
λ31 λ23 M33 0 0 0
0 0 0 G23 0 0
0 0 0 0 G31 0
0 0 0 0 0 G12

⎤
⎥⎥⎥⎥⎥⎥⎦
. (A.3)

This orthotropic elastic material forms a nodal link when the parameters in table A1 are used. In the given
the momentum space with −π � k1 � π, −π � k2 � π, and −π � k3 � π, we calculated the
eigenfrequencies ωn. We regarded that two bands n and n + 1 at point k are degenerate if∣∣ωn+1 − ωn

∣∣ a/
√

E1/ρ < 0.0268, where a = 1 m is the constant for normalization. Sets of the degeneracies
formed between the first and second bands and the second and third bands are depicted as orange and cyan
nodal lines, respectively, in figure A1(a). Band structures along k1 and k3 directions are also given in
figures A1(b) and (c), respectively.
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[1] Wu Q, Soluyanov A A and Bzdušek T 2019 Non-abelian band topology in noninteracting metals Science 365 1273–7
[2] Ahn J, Kim D, Kim Y and Yang B J 2018 Band topology and linking structure of nodal line semimetals with Z2 monopole charges

Phys. Rev. Lett. 121 106403

9

https://orcid.org/0000-0003-3093-7016
https://orcid.org/0000-0003-3093-7016
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1103/physrevlett.121.106403
https://doi.org/10.1103/physrevlett.121.106403


New J. Phys. 24 (2022) 053042 H Park and S S Oh
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